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SRRIT is a FORTRAN program to calculate an approximate orthonormal basis

-~
3 E‘ for a dominant invariant subspace of a real matrix A. Specifically,
Z’% - 2 given an integer m, SRRIT attempts to compute a matrix Q with m

: Lﬂ” orthonormal colums and real quasi-triangular matrix T of order m
:‘ - such that the equation

—] Q=

1 is satisfied up to a tolerence specified by the user. The eigenvalues

of T are approximations to the m largest eigenvalues of A, and the
colums of Q span the invariant subspace corresponding to those eigen-
values. SRRIT references A only through a user provided subroutine to

form the product AQ; hence it is suitable for large sparse problems.
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SRRIT - A FORTRAN Subroutine
to Calculate the Dominant Invariant Subspaces
of a Real Matrix

G. W. Stewart

DESCRIPTION

1. Introduction

The program described in this paper is designed primarily to solve
; eigenvalue problems involving large, sparse, real matrices. The programs
: attempt to calculate a set of the largest eigenvalues of the matrix in
question. In addition they calculate a canonical orthonormal basis for
the invariant subspace spanned by the eigenvectors and principal vectors
corresponding to the set of eigenvalues. No explicit representation of
the matrix is required; instead the user furnishes a subroutine to cal-

culate the product of the matrix with a vector.
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Since the programs do not produce a set of eigenvectors corresponding

A

to the eigenvalues computed, it is appropriate to begin with a mathematical
description of what is actually computed and how the user may obtain eigen-

vectors from this output if he so desires. Let A be a matrix of order

ek SR

n with eigenvalues xl,xz,...,xn ordered so that
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lel > |x2| B i |xn| . a
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An invariant subspace of A is any subspace Q for which mm
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i.e., the subspace is transformed into itself by the matrix A.

If Q is an invariant subspace of A and the colums of
Q= (ql’qZ"“’qm) form a basis for Q, then Aqi € 9, and hence Aqi
can be expressed as a linear combination of the colums of Q; i.e.,

there is an m-vector ti such that AQ = Qti. Setting

T e Gkt st)

we have the relation

(1.1) A =QT.

In fact the matrix T is just the representation of the matrix A in
the subspace Q with respect to the basis Q.
If x is an eigenvector of T corresponding to the eigenvalue 1,

then it follows from (1.1) and the relation Tx = \x that

1.2) AX) = M) ,

so that Qx is an eigenvector of A corresponding to the eigenvalue .
Thus the eigenvalues of T are also eigenvalues of A. Conversely if
xil,xiz,...,x lm are any m eigenvalues of A that are distinct from the
other n-m eigenvalues, then there is a unique invariant subspace of dimen-
sion m corresponding to these eigenvalues; i.e., the eigexivalues of T
in (1.1) are precisely xi ,liz,...,xim.

If lxil > lxi +1| ,» then there is a unique dominant invariant subspace

Qi corresponding to L TLOTRERTINT When Q1 and 9_1+1 exist, Qich'rl‘
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The subroutine SRRIT attempts to compute a nested sequence of orthonormal
bases of QI’QZ""’Qm' Specifically, if all goes well, the subroutine pro-
duces a matrix Q with orthonormal columns having the property that if
lxil > lxiﬂl then q,,4,,...,q; span Q.

The case where )‘i-l and xi are a complex conjugate pair, and
hence lki_ll = | Xil, is treated as follows. The matrix Q is calculated
so that the matrix T in (1.1) is quasi-triangular; i.e., T is block
triangular with 1 x 1 and 2 x 2 blocks on its diagonal. The structure of

a typical quasi-triangular matrix is illustrated below for m = 6:

U e
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E T T

® X X X X X

The 1 x 1 blocks of T contain the real eigenvalues of A and the 2 x 2
blocks contain conjugate pairs of complex eigenvalues. This arrangement
enables us to work entirely with real numbers, even when some of the eigen-
values of T are complex. The existence of such a decomposition is a
consequence of Schur's theorem (see [ 9 ]).

The eigenvalues of the matrix T computed by the program appear in
descending order of magnitude along its diagonal. For fixed i 1let
Q'i = (ql’qZ""’qi) and let Tr-i be the leading principal submatrix of T
of order i. Then if the i-th diagonal entry of T does not begin a 2 x 2




block, we have
> i 3

AQll = Q lT 1 j J

Thus the first i colums of Q span the invariant subspace correspond-
ing to the first i eigenvalues of T. When lxil > |>~i+1| this is the }
unique dominant invariant subspace Q. When |xi| = lxi +1| the colums
of Q|1 span a dominant invariant subspace; but is is not unique, since
there is no telling which comes first, Aoor Ay *
Any manipulations of A within the subspace Q corresponding to Q

can be accomplished by manipulating the matrix T. For example, {

kg = o, *
so that if f(A) is any function defined by a power series, we have
£(A)Q = Qf(T) .

If the spectrum of A that is not associated with Q is negligible,
considerable work can be saved by working with the genera’ly much smaller
matrix T in the coordinate system defined by Q. If explicit eigen-
vectors are desired, they may be obtained by evaluating the eigenvectors

of T and applying (1.2). The programs hqr2 in [12] and HQR1 in [7]

will evaluate the eigenvectors of a quasi-triangular matrix.
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: . Usage
' SRRIT is a FORTRAN subroutine to calculate the basis for % described
in Section 1. The calling sequence for SFFIT is
CALL SRRIT(Q,AQ,ATQ,N,NV,M,EPS ,MAXIT,START,T,ER,EI,
TYPE,RSD,RSDX)
with (starred parameters are altered by the subroutine) :
*Q(N,M) A real array that on return contains the approximation
to Q. Initially Q may contain a starting approxima-
tion (cf. START). i
*AQ(N,M) A real array that on return contains the product AQ.
3 ATQ The name of a FORTRAN subroutine that computes the product 1
2 AQ. For details see below. {
f. N The order of A. 1
‘é:'_ ANV The number of vectors to compute. On return, NV contains \’
: the mumber of columns of Q that have converged.
*
2 M The number of columns of Q. M must be greater than or
} equal to NV.
N
gr EPS A convergence criterion.
? MAXIT An integer containing the maximum number of iterations to ‘
$ perform.
START An integer that tells the initial status of Q. If

4 START < 0, a starting approximation is to be generated

- randomly. If START = 0, then Q initially contains a
starting approximation; and if START = 1, then the columns
of Q are assumed to be orthonormal.

*T (M,M) A real array that on return contains the approximation to
the matrix T of (1.1).
*ER(M) A real array that on return contains the real parts of the
: eigenvalues of T.
*EI(M) A real array that on return contains the imaginary parts of

the eigenvalues of T.
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*TYPE(M) An integer array whose i-th entry on return is

0 if the i-th eigenvalue is real

1 if the i-th eigenvalue is the first of a con-
jugate pair of complex eigenvalues

2 if the i-th eigenvalue is the second of a conju-
gate pair of complex eigenvalues

-1 1if the i-th eigenvalue was not correctly

determined
*RSD(M) A real array whose i-th entry is the 2-norm of the
residual associated with the i-th column of Q [cf. (3.2)
below].
*RSDX (M) An integer array whose i-th entry is the iteration at

which the i-th entry of RSD was computed.

The dimensions in the parameter descriptions are the smallest for
which the program will work. In the program listed here they are set for
values of N up to five hundred and M up to ten. To accommodate larger
problems, change the dimension 500 to the largest expected value of N and
the dimension 10 to the largest expected value of M throughout SRRIT and
its auxiliary subroutines (n.b. this includes the dimension information
in the subroutine calls in SRRSTP).

The user may furnish a starting approximation to the matrix Q in
the array Q. Actually all that is required is a set of vectors whose
c_:olunn space approximates % If such a starting approximation is fur-
nished, the parameter START should be set greater than or equal to zero.
If the starting vectors are orthonormal, the parameter START should be set
positive. If START is negative, Q is initialized with random mumbers
and orthogonalized to provide the starting approximation.

The user is required to furnish a subroutine to calculate the product

AQ. The calling sequence for this subroutine is

i

-
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CALL ATQ(Q,AQ,L1,L2)
with
Q(N,M) A real array containing the matrix Q.
AQ(N,M) A real array. On return columns L1 through L2 of
AQ should contain the product of the matrix A with
colums L1 through L2 of Q.

L1 Integers which specify which colums of Q to multiply
L2 by the matrix A.

A call to ATQ causes the iteration counter to be increased by one, so that
the parameter MAXIT is effectively a limit on the number of calls to ATQ.
The convergence criterion is described in detail in Sections 3 and 4.

Essentially the matrices Q and T calculated by the program will satisfy
2.1) eV = QINVTIW

where NV (on return) is the number of columns that have converged and

E is of order EPS. From this it is seen that EPS should be small
compared with A. The criterion insures that the well-conditioned eigen-
values of A will be calculated accurately, and the well-conditioned
eigenvectors can be calculated accurately from Q and T.

The rate of convergence cf the i-th colum of Q depends on the ratio
')‘M-fl/)‘il‘ For this reason it may be desirable to take the number of columns
M of Q to be greater than the mumber of columns NV that one desires to’
compute. For example, if the eigenvalues of A are 1.0, 0.9, 0.5,... it
will pay to take M = 2, even if only the eigenvector corresponding to 1.0

is desired.

P
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Since SRRIT is designed primarily to calculate the largest eigenvalues
of a large matrix, no provisions have been made to handle zero eigenvalues.
In particular, zero eigenvalues can cause the program to stop in the auxi-
liary subroutine @RTH.

SRRIT is supported by a number of auxiliary subroutines (SRRSTP,

RESID, GROUP, @RTH, CPND,RANDPM) which are described in Section 5. It also
requires the EISPACK subroutines @RTHES and @RTRAN [7], and the subroutines
HQR3, EXCHNG, SPLIT, and QRSTEP [11].

SRRIT can be used as a black box. As such the first NV vectors it re-
turns will satisfy (2.1), although not as many vectors as the user requests
need have converged by the time MAXIT is reached. However, the construction
of the program has involved a number of arbitrary decisions. Although the
author has attempted to make such decisions in a reasonable manner, it
is too much to expect that the program will perform efficiently on all
distributions of eigenvalues. Consequently the program has been written
in such a way that it can be easily modified by someone who is familiar
with its details. The purpose of the next three sections is to provide

the interested user with these details.
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3. Method

The Schur vectors Q of A are computed by a variant of simultaneous
iteration, which is a generalization of the power method for finding the
dominant eigenvector of a matrix. The method has an extensive literature
(1,2,3,5,8], and Rutishauser [6] has published a program for symmetric
métrices from which many of the devices in SRRIT have been drawn. The
method about to be described has been analyzed in [10].

The iteration for computing Q may be described briefly as follows. ’
Start with an n x m matrix Q0 having orthonormal columns. Given QV,

form Q, il according to the formula

=1
Q\:+1 % (AQv)Rv+l i

SN - ST ea—

% where RV+1 is either an identity matrix or an upper triangular matrix
chosen to make the columns of QV +1 orthonormal (just how often such an
orthogonalization should be performed will be discussed below). If

Ixml > |\ m+1|’ then under mild restrictions on Q, the column space of

QV approaches Qm

The individual columns of QV will in general approach the correspond-
ing columns of the matrix (Q defined in Section 1; however the rate of

convergence of the i-th column is proportional to max {Ixi/xi_llv.

- Xil"} and may be intolerably slow. The process may be accelerated by

i+l
the occasional application of a '"'Schur-Rayleigh-Ritz step'" (from which
SRRIT derives its name), which will now be described. Start with Qv just

after an orthogonalization step, so that Qsz = . Form the matrix
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and reduce it to ordered quasi-triangular form TV by an orthogonal

similarity transformation YV:
(3.1) YBY =T
VvV VYV v

Finally overwrite Qv with Qva'
The matrices QV formed in this way have the following property.

If |\,

1_1| > |xi| > |x.+1|, then under mild restrictions on Q, the i-th

1

column qgv) of Qv will converge to the i-th column a; of Q at a
. A
rate proportional to |xm*1/xi|
but the first columns of Q, tend to converge faster than the later ones.
A number of practical questions remain to be answered.
1. How should one determine when a column of QV has converged?

2. Can one take advantage of the early convergence of some of the
columns of QV to save computations?

3. How often should one orthogonalize the columns of the Qv?

4. How often should one perform the SRR acceleration described above?
Here we shall merely outline the answers to these questions. The details
will be given in the discussion of SRRIT.

1. Convergence. 1f lxi_ll = |xi| or |xi| = |xi+1|, the i-th column
of Q is not uniquely determined; and when |Xi| is close to |Xi_1|
or |xi|, the i-th column cannot be computed accurately. Thus a convergence
criterion based on the i-th column qgv) of Q, becoming stationary is
likely to fail when A has equimodular eigenvalues. Accordingly we have

Thus not only is the convergence accelerated,
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adopted a different criterion which amounts to requiring that the relation
(1.1) is almost satisfied. Specifically, let ti(V) denote the i-th
column of TV in (3.1). Then the i-th column of the QV produced by
the SRR step is said to have converged if the 2-norm (see [9] for a defi-

nition) of the residual vector

(3.2) ri(v) = Aqi(v) - Qvti(V)

is less than some prescribed tolerance.

If this criterion is satisfied for each column of Qv , then the resi-

dual matrix

will be small. This in turn implies that there is a small matrix

E = -R QT such that
Vv vy
(AE)Q, = QT,

so that Q, and Tv are the matrices associated with the slightly per-
turbed matrix A + E,, provided only that some small eigenvalue of A + Ev
has not by happenstance been included in Tv. To avoid this possibility we
group nearly equimodular eigenvalues together and require that their average
value has settled down before testing their residuals. In addition a group
of columns is tested only if the preceding columns have all converged.

2. Deflation. The theory of the iteration indicates that the initial

columns of the Qv will converge before the later ones. When this happens

considerable computation can be saved by freezing these colums. This saves
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multiplying the frozen colums by A, orthogonalizing them when R w1 1,
and work in the SRR step.

3. Orthogonalization. The orthogonalization of the columns of NQV

is a moderately expensive procedure which is to be put off as long as
possible. The danger in postponing orthogonalization is that cancellation
of significant figures can occur when AQV is finally orthogonalized,

as it must be just before an SRR step. In [10] it is shown that one can

expect no more than
(3.3) t=k log10 k(T)

decimal digits to cancel after k iterations without orthogonalization
(here «(T) = ||ITl IIT-III is the condition number of T with respect to inver-
sion). The relation (3.3) can be used to determine the mumber of iterations
between orthogonalizations.

4. SRR-steps. The SRR-step described above does not actually acceler-
ate the convergence of the Qv; rather it unscrambles approximations to the
columns of Qm that are already present in the column space of Q, and
orders them properly. Therefore, the only time an SRR step needs to be
performed is when it is expected that a column has converged. Since it is
known from the theory of the iteration that the residuals in (3.2) tend
linearly to zero, the iteration at which they will satisfy the convergence
criterion can be predicted from their values at two iterations. As with

convergence, this prediction is done in groups corresponding to nearly

equimodular eigenvalues.
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4. Details of SRRIT

In designing SRRIT, we have tried to make it easily modifiable. This
has been done in two ways. First, we have defined a number of important
control parameters and given them values at the beginning of the program.
The knowledgeable user may alter these values to improve the efficiency
of the program in solving particular problems. Second, a mumber of important
tasks have been isolated in independent subroutines. This should make it
easy to modify the actual structure of SRRIT, should the user decide that
such radical measures are necessary. In this section we shall describe

t. SRRIT in some detaii, specifying the action of the control parameters. In
the next section we shall describe the supporting subroutines.

Here follows a list of the c‘ontrol parameters with their initial values

and a brief description of their functions.

; INIT (5) a number of initial iterations to be performed at
o the outset.
STPFAC (2.0) a constant used to determine the maximum number of
iterations before the next SRR step.
ALPHA (1.0) parameters used in predicting when the nex: residual
BETA (1.1) will converge.

GRPTOL (0.001) a tolerance for grouping equimodular eigenvalues

CNVTOL (0.001) a convergence criterion for the average value of a
Cluster of equimodular eigenvalues.

ORTTOL (2.0) the number of decimal digits whose loss can be
; tolerated in orthogonalization steps.

SEED (69) a seed for the random number generator that initializes Q.
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We now give an informal description of SRRIT as it appears in the
p ALGORITHM section. The variable L points to the first column of Q
that has not converged. The variable IT is the iteration counter. The

variable NXTSRR is the iteration at which the next SRR step is to take

place, and the variable DORT is the interval between orthogonalizations.

srrit:
1. initialize control parameters
2. initialize

1. IT=0

2. L=t

3. . Initialize Q as prescribed by START
5. " SEYL

100
1. perform an SRR step
2. compute the residuals
3. check convergence, resetting L if necessary
4. if L > NV or IT > MAXIT then leave srr
5. calculate NXTSRR :
6. calculate DPRT and NXT@RT
7. Q=AQ; IT = IT+1
8. orth: loop until IT = NXTSRR
1. power: _R%_I until IT = NXT@RT
1. AQ=
2. Q=AQ
- 3. IT = IT+1
power
' 2. orthogonalize Q
3. NXTPRT = min (NXTSRR,IT+DPRT)
end orth
end sIT
T, N =L-1
end srrit

The details of this outline are as follows (the mumbers correspond to the
statements in thg .algorit}m).

2.3, 1If STAKI' < 0, then Q is initialized using the function RANDPM.
1f START < 0, the colums of Q are orthogonalized by the subroutine @RTH.

A
’»
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3. This is the main loop of the program. Each time it is executed
an SRR step is performed and convergence is tested.

3.1. The SRR step is performed by the subroutine SRRSTP, which
returns the new Q and A*Q, as well as T and its eigenvalues.

3.2. The residuals are computed by the subroutine RESID.

3.3. The algorithm for determining convergence is the following.
Starting with the L-th eigenvalue, the subroutine GRAUP is called to deter-
mine a group of nearly equimodular eigenvalues, as defined by the parameter
GRPTPL. The same is done for the old eigenvalues from the last SRR step.
If the groups have the same number of eigenvalues and the average value of
the eigenvalues has settled down (CNVI@L), then the residuals are averaged
and tested against EPS. If the test is successful, L is increased by
the number in the group, and the tests are repeated. Otherwise control is
passed to statement

3.4. where the two temmination conditions for SRRIT are tested.

3.5. The iteration at which the next SRR-step is to take place
(NXTSRR) i_s determined as follows. NXTSRR is tentatively set equal to
STPFAC*IT. If the number of eigenvalues in the new and old groups corre-
sponding to the next set of unconverged eigenvalues is the same, the RMS
average of the norms of the residuals of each group is calculated
(ARSD, APRSD). If ARSD < EPS, then NXTSRR = IT+l. If ARDS > APRSD, then
NXTSRR = STPFAC*IT. Otherwise

NXTSRR = min (IT+ALPHA+BETA*DSRR,STPFAC*IT)

vhere
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DSRR = (@RSDX-RSDX) lgg ARSD/EPS) __

Finally NXTSRR is constrained to be less than or equal to MAXIT.
3.6. The interval DPRT between orthogonalizations is computed from
(3.3):

DGRT = max (1,@RTTPL/1og, o k(T)),

where' the condition number k(T) is calculated by the function OZND.

The next orthogonalization occurs at
NXT@RT = min (IT+D@RT,NXTSRR) .

3.7. Since the SRR step computes a product AQ, the iteration count
must be increased and AQ placed back in Q.

3.8. Loop on-orthogonalizations.

3.8.1. Loop bverwriting Q with the product A%Q.
4.

return.

Set NV. to the number of vectors that have actually converged and
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5. Auxiliary Subroutines

In this section we shall describe the subroutines called by SRRIT.
Some of these subroutines have been coded in greater generality than is
strictly required by SRRIT in order to make the program easily modifiable
by the user.

SRRSTP (Q,AQ,ATQ, L,M,N, T,ER, EI, TYPE, ER, BEI ,@TYPE) .

This subroutine performs an SRR step on colums L through M of
Q. After forming AQ and T = Q'(AQ), the routine calls PRTHES, @RTRAN,
and HQR3 to reduce T to ordered quasi-triangular form. The triangularizing
transformation is postmultiplied into Q and AQ. The eigenvalues from the
last step are stored in the arrays @ER, @EI and @TYPE, and the new eigenvalues

are placed in the arrays ER, EI, and TYPE.
RESID(Q,AQ, T,RSD,RSDX,#RSD,@RSDX,L1,L2,M,N, IT, TYPE) .

This subroutine computes the norm of the residuals (3.2) for columns
L1 through L2 of Q. The old residuals and their iteration numbers are
saved in the arrays @RSD and @RSDX. The I-th entry of the array RSDX is
set to IT depending on whether or not TYPE(I) = 0. For a complex pair of
eigenvalues, the RMS average of the norms of their two residuals is re-
turned.

GR@UP (ER, EI, TYPE, GRPT@L, L,M,N,NGRP, CTR, AE)
This subroutine locates a group of approximately equimodular eigenvalues

XL’)‘L+1""’)'L+NGRP-1. The eigenvalues so grouped satisfy

[ 3, -cm

= GRmL*cm (i.L,L+1’ see ,L+me'1) .
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. The mean of the group is returned in AE.
@RTH (AQ,Q, L,M,N)
For J = L,L+1,...,M this subroutine orthogonalizes the J-th column
of AQ with respect to colums 1,2,...,L-1 of Q and colums 1
L,L+1,...,J-1 of AQ. The results are returned in Q. The method used
is the modified Gram-Schmidt method with reorgonalization. No more than

NTRY reorthogonalizations are performed, after which the routine executes

ol

a ST@PP. The routine will also stop if any column becomes zero.

RANDPM (SEED)
This function subprogram returns a floating-point pseudo-random number

between 0 and 1. It is used to initialize Q.
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6. Numerical Examples

The program described above has been tested on a number of problems.

In this section we give two examples that illustrate the flexibility of

the method and its ability to deal with equimodular eigenvalues. 1
The first example is a random walk on an (n+l) x (n+l) triangular

grid, which is illustrated below for n = 6.

Lot S R B~ R ¥, B @ )

- R

oo 8T % A8 s
The points of the grid are labelled (v,h) (v=0,...,n-h; h=0,...,n). From
the point (v,h), a transition may take place to one of the four adjacent

points (v+1,h), (v,h+l), (v-1,h), and (v,h-1). The probability of jumping
to (v-1,h) or (v,h-1) is

(6.1) pd(v,h) = (v+h)/n

with the probability being split equally between the two points when both
are on the grid. The probability of jumping to (v+1,h) or (v,h+l) is

(6.2) pu(v,h) = 1 - pd (vyh)

with the probability again being split when both points are on the grid.
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If the (n+1) (n*+2)/2 nodes (v,h) are numbered 1,2,...,(n+1) (n+2)/2
in some fashion, then the random walk can be expressed as a finite Markov
chain whose transition matrix A consists of the probabilities aij of
jumping from node j tonode i (A is actually the transpose of the
usual transition matrix; see [4]). To calculate the i-th element of the
vector Aq one need only regard the components of q as the average
number of individuals at the nodes of the grid and use the probabilities
(6.1) and (6.2) to calculate how many individuals will be at node i
after the next transition.

We are interested in the steady state probabilities of the chain,
which is ordinérily the appropriately scaled eigenvector corresponding to
the eigenvalue'unity'. However, if we number the diagonals on the grid
that are parallel to thé hypotenuse by 0,1,2,...,n, then an individual
on an even diagonal can énly jump to an odd diagonal, and vice versa. This
means that the chain is cyclic with period two. Computationally it means
that A has an eigenvalue of -1 as well as +1.

To run the problem on SRRIT, the nodes of the grid were matched with
the components of the vector q in the order (0,0),(1,0),...,(n,0),(0,1),
a,1,...,(n,1),(0,2),... . The subroutine that computes AQ is listed
in the appendix. Note that the matrix A is never explicitly used; all
computatlons are done in terms of the transition probabilities (6.1) and
(6.2). The use of a common block to transmit information from the program

‘that called SRRIT is typical.
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The problem was run for a 30 x 30 grid which means N = 496. We
took M = 6, NV = 4, and EPS = 10°°, The results for each iteration in
which an SRR step was performed are summarized in the following table.
The variables ER and EI are the real and imaginary parts of the
eigenvalues and RSD is the norm of the corresponding residual. CTR
is the center of the current convergence cluster, AE is the average
value of the eigenvalues in the cluster, and ARSD is the RMS average
of the residuals. DSRR is the number of iterations to the next SRR

step and DPRT is the number to the next orthogonalization.
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IT=0
ER  .9457+00  -.9096-01 -.4841-01
EI 0 0 0
RSD .38+00 .60+00 .61+00
CTR  .9457+00
AE .9457+00 DSRR=5
ARSD .38+00
IT =5
ER , .1012+01 -.3912+00 .2400+00
EI 0 .0 0
RSD .19+00 .84+00 .93+00
CTR .1012+01
AE .1012+01 DSRR=5
ARSD .19+00
. IT = 10
ER  .1017+01 -.5987+00 -.3499+00
EI AW 0 0
RSD .12+00 .75+00 .89+00
CIR .1017+01
AE .1017+01 DSRR=10
ARSD .12+00
IT = 20
ER  .1009+01 -.8751+00 .5175+00
Bl - 6 0 0
RSD .58=01 ~46+00 .82+00
CTR .1009+01
AE .1009+01 DSSR=20
ARSD .58-01
IT = 40
ER .1001+01 -.9843+00 .9195+00
EI 0 0 0
RSD .23-01 .14+00 .37+00
CIR ,1001+01
AE 1001+01 DSSR=40
ARSD  .23-01
1 :;31
EX i
T T e " ;

.3469-01
.1617-01
.59+00

D@RT=1

-.1800+00
0
.89+00

D@RT=1

.3251+00
0
.92+00
D@RT=1

-.5124+00
0
.§4+00

D@RT=2

-.9144+00
0
.40+00

D@RT=1

.3469-01
~.1617-01
.59+00

.1371+00
0
.91+00

.9255-01
0
.95+00

.3747+00
0
.88+00

.7946+00
0
. 55+00

-,1921-01
.63+00

«3517-01
0
.93+00

.5706-01
0
.95+00

-.1485+00
0
.94+00

-.5166+00
0
. 95+00
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bl

ER
EI
RSD
CTR
AE
ARSD

ER

ER
RSD

ARSD

ER

EI
RSD

ARSD

.1000+01
0
.74-02 .29-01

-.1000+01

-.1000+01

-.1000+01

-.9998+00
0

.1000+01
.1991-93
.21-01

.1000+01
0

.56-03 .13-02

.1000+01
-.1304-04
.10-02

.1000+01
0

.30-04 .37-05

.1000+01
-.1863-06
.21-04

.1000+01
0

.70-05 .82-06

.1000+01
-.4470-07
.50-05

.9935+00

.9935+00

.9935+00
0

.9935+00

.9935+00

-.23 -

IT = 80

-.9934+00
0 0
.36-01 .78-02

DSRR=80 DPRT=3

IT = 160

-.9935+00
0 0
.38-03 .70-03

DSRR=135 D@RT=2

IT = 295

-.9935+00
0

.13-05 +12-03
.9935+00
.1080-06

.83-04

IT = 325

-.9935+00
0 0
.35-06 .34-04

.9935+00
.7451-07
«24-04

IT = 348

-.9935+00
0 0
.12-06 .12-04

.9935+00
.1118-06
.88-05

AR

.8734+00

0
.43+00

.9470+00

0
.23-03

.9755+00

0
.84-02

DSRR=30

.9755+00

0
.39-02

DSRR=23

.9755+00
0
. 21-02

-.2138+00

-.9738+00

-.9751+00

-.9754+00



-

The course bf the iteration is unexceptionable. The program doubles
the interval between SRR steps until it can predict convergence of the
first cluster corresponding to the eigenvalues *1. The first prediction
falls slightly short, but the second gets it. After a third prediction
the program terminates on the convergence of the second group of two eigen-
values.

It should be noted that the eigenvalue -1 has appeared as the
dominant one. A tranSformation bringing the eigenvector corresponding to
1 can be obtained by calling EXCHNG of [11] to interchange the eigenvalues
1 and -1 (however, in this case the eigenvector corresponding to 1 is
just the absolute value of the eigenvector corresponding to -1).

Without actually making timing runs, it is difficult to predict how
much work is entailed in finding the eigenvalues. For example, runs were
made with M = 2,4,6,8, which gave the following table of iterations

required for ;he convergence of the first group of two eigenvalues.

m it meit
2 1737 3474
4 523 2092
6 325 1950
8 188 1504

As predicted by the convergence theory, the number of iterations decreases
as m increases. However, as m increases we must also multiply more
colums of Q by A, and for this particular problem the number meit is
probably a better measure of the amount of work involved. From the table it

is seen that this measure is also decreasing, although less dramatically than

N/
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the number of iterations. This of course does not include the overhead

gene;ated by SRRIT itself, which increases with m and may be considerable.
The second e*ample shows how SRRIT can be used in conjunction with

the inverse power method to find the smallest eigenvalues of a matrix.

Consider the boundary value problem

y'+uly =0,
(6.3) y(0) = 0,

7o)+ o) =0, T eyl
The eigenvalues of this problem are easily seen to be given by
w=1icosh! (-y'hy,

which are complex. The following table lists the reciprocals of the first

eight eigenvalues for y = 0.01.

w2 Tt
-0.01264 + 0.02313i .02636
, 0.004446 + 0.007308 .008544
(6.4) :
0.002895 + 0.002204 .003638
© 0.001740 + 0.0008901 .001954

The solution of (6.3) can be approximated by finite difference
techniques as follows. Let Yi denote the approximate solution at the
point x; = i/(n+1) (i=0,1,...,n+1). Replacing the derivatives in (6.3)
with three point difference operators, we obtain the following generalized

matrix eigenvalue problem for y = (yl,yz....,yh+1)T:

)
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.
l A}""IJ-B)’—O,
L
where
g ) [
1 '2 1 .\;
6 1) =2 .1 C
A=

0 1 =2 1
4 1 00000 Y -4Y SYJ

and B = h2 diag (1,1,...,1,0). We may recast this problem in the form

1
CY = "i Yo
V)
where C = A™13,
To apply SRRIT to this problem, we must be able to compute z = Cq for

any vector q. This can be done by solving the linear system

Az = Bq ,

which is easily done by sparse Gaussian elimination.

The problem was run for n = 300 with M = 6, NV = 4, and EPS = 104,
The results were the following: :

AN RS S Sy e
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poes
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ER
EI
RSD
CIR
AE
ARSD

ER
EI
RSD

ARSD

ER

EI
RSD

ARSD

-.1525+00 .1179-02
0 0
.15+00 .85-02
.1525+00
-.1525+00
.15+00
-.1264-01 -.1264-01
.2313-01 -.2313-01
.85-07 .85-07
.2636-01
.1264-01
.85-07
-.1264-01 -.1244-01
+2313-01  -.2515-01
.60-08 .60-08
. 2636-01
-.1264-01
.60-08

- 27 -

IT=0
.1548-03 .9887-04
0 .5598-04
.65-02 .15-01
DSRR=5 D@RT=1
IT=5
.4438-02 .4438-02
«7323-02  -.73235-02
.81-05 .81-05
DSRR=5 D@RT=1
IT = 10
.4447-02 .4447-02
.7308-02 -.7308-02
16-07 15-07
.8555-02
4447-02
.15-07

.9887-04
-.5598-04
.15-01

.3104-02
. 2402-02
.20-03

.2909-02
.2204-02
.93-05

e

.2577-04
0
.71-02

.3104-02
-.2402-02
.20-03

.2909-02
-.2204-02
.93-05

Given the extremely favorable ratios of the eigenvalues in Table (6.4)

--the absolute value of the ratio of the seventh to the first is about .075

--it is not surprising that the iteration converges quickly.

Indeed the

only thing preventing convergence at the fifth iteration is that the first

eigenvalue changed from real in the first iteration to complex in the fifth.

Thus .the problem is hardly a fair test of machinery of SRRIT. However, it is

an excellent example how easy it is to apply SRRIT to a problem with complex

eigenvalues.

It also disposes of the notion that large eigenvalue problems

must always require a large amount of work to solve; the factor that limits

the size of n is the storage available, not the time required to compute Ax.

A
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SUBROUTINE SRRIT(QsAQsATRsNsNVsMIEPSIMAXIT»START»T»
1 ERYEI»TYPEsRSD»RSDX,WRITE)

PARAMETERS IN THE CALLING SEQUENCE

oon

INTEGER NsNVsMyMAXIT»START»TYFE(10)»RSDX(10)

REAL Q(500r10)yAQ(S500,10)sEFS»T(10910)ER(10),EI(10)sRSD(10)
LOGICAL WRITE

EXTERNAL ATQ

SRRIT IS A FORTRAN SUBROUTINE TO COMPUTE A NESTED SEQUENCE

OF ORTHONORMAL BASES FOR THE DOMINANT INVARIANT SUBSFACES OF

A REAL MATRIX A OF ORDER N. SFPECIFICALLY» THE FPROGRAM RETURNS

AN NXNV MATRIX Q WITH ORTHONORMAL COLUMNS AND AN NV X NV MATRIX T
SATISFYING

AXQ = QXxT + O(EPS).

THE MATRIX T IS QUASI-TRIANGULAR» THAT IS IT IS BLOCK

TRIANGULAR WITH 1X1 AND 2X2 BLOCKS ON ITS DIAGONAL. THE

EIGENCALUES IN THE 1X1 BLOCKS ARE REAL. THE

THE EIGENVALUES IN THE 2X2 RLOCKS ARE COMPLEX CONJUGATE

;315807 THE EIGENVALUES E(1)sy E(2)r...» E(N) ARE ORDERED
HA

ABS(E(1)). .GE. ABS(E(2)) +GE+.rsss7.GE+ ABS(E(NV)),

AND THESE EIGENVALUES AFPROXIMATE THE LARGEST EIGENVALUES
OF A. THESE FACTS HAVE THE FOLLOWING CONSEQUENCES.

1., IF ECL) .NE. E(L+1) AND E(L) NE. CONJCE(L+1))»

THEN COLUMNS 1s2s...9L OF Q@ FORM AN AFFROXIMATE

BASIS FOR THE INVARIANT SUBSPACE CORRESFONDING TO

THE L LARGEST EIGENVALUES OF A, THE LXL LEADING

PRINCIPAL SUBMATRIX OF T IS A REPRESENTATION OF

A IN THAT SUBSPACE WITH RESPECT TO THE BASIS Q. 2

IF Z IS AN EIGENVECTOR OF T CORRESFONDING TO E»
THEN Q%Z IS AN AFPROXIMATE EIGENVECTOR OF A
CORRESPONDING TO E.

THE PROGRAM ACTUALLY ITERATES WITH AN NXM MATRIX Q
AND AN MXM MATRIX T. SINCE THE RATE OF CONVERGENCE
OF THE L-TH COLUMN OF Q IS ESSENTIALLY LINEAR WITH 3
RATIO ABS(E(M+1)/E(L))» IT MAY FAY THE USER TO SET M

LARGER THAN THE NUMBER» NV, OF VECTORS HE WANTS TO

COMPUTE .

THE USER MUST FURNISH A SUBROUTINE TO COMPUTE THE
PRODUCT A%Q. THE CALLING SEQUENCE IS

CALL ATQ(QrAQsL1,L2)

FOR JsL1sL1+1s...9L2 THE PROGRAM MUST PLACE THE FRODUCT
AXQ(XyJ) IN AQ(XsJ).

THE PARAMETERS IN THE CALLING SEQUENCE OF SRRIT ARE !
(STARRED PARAMETERS ARE ALTERED BY THE FROGRAM) :

*Q AN ARRAY THAT ON RETURN CONTAINS THE
ORTHONORMAL VECTORS DESCRIBED ABOVE. INITIALLY
Q@ MAY CONTAIN A STARTING AFPFROXIMATION

(CF. START BELOW).

XAQ AN ARRAY THAT ON RETURN CONTAINS THE PRODUCT

oonooOoOoOoOoON0OOO0OcO0O0O00000O0O0000000000NO0OCO0OO0O00O000O000000N00
n
.
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o~

By _ - 30 -
ARQ .
ATQ THE NAME OF A SUBROUTINE TO EVALUATE THE
PRODUCT AXQ.
N THE ORDER OF THE MATRIX A. X
NV THE NUMBER OF VECTORS TO COMPUTE. ON RETURNSs
NV CONTAINS THE NUMBER OF VECTORS THAT HAVE
CONVERGED.
M THE NUMBER OF COLUMNS OF Q@ TO ITERATE WITH.
EPS A CONVERGENCE CRITERION.

MAXIT AN UPPER BOUND ON THE NUMBER OF ITERATIONS
THE PROGRAM IS TO EXECUTE.

START AN INITIALIZING SIGNAL. IF START .LT. O»
@ IS INITIALIZED BY ORTHOGONALIZING A SET OF
RANDOM VECTORS. IF START .GE. O THE COLUMNS
OF @ ARE USED AS A STARTING AFPROXIMATION AND
IF START .GE. 1 THEY ARE ALSO ASSUMED TO BE

ORTHONORMAL .

T ON RETURN T CONTAINS THE REFRESENTATION OF A
DESCRIBED ABOVE.

XER AN ARRAY THAT ON RETURN CONTAINS THE REAL PARTS
OF THE EIGENVALUES OF T.

2EI AN ARRAY THAT ON RETURN CONTAINS THE COMPLEX PARTS
OF THE EIGENVALUES OF T.

XTYPE AN INTEGER ARRAY. ON RETURN TYPE(L) CONTAINS

0 IF THE L-TH EIGENVALUE IS REAL
1 IF THE L-TH EIGENVALUE IS THE FIRST OF
A COMPLEX CONJUGATE PAIR.
2 IF THE L-TH EIGENVALUE IS THE SECOND OF
A COMPLEX CONJUGATE PAIR.
-1 IF THE L-TH EIGENVALUE WAS NOT CORRECTLY

DETERMINED.
XRSD AN ARRAY THAT ON RETURN CONTAINS THE 2-NORMS OF
THE RESIDUAL VECTORS AXQ(XsL) - QXT(XsL).
XRSDX AN INTEGER ARRAY THAT ON RETURN CONTAINS

THE ITERATIONS AT WHICH THE RESIDUALS WERE COMPUTED.
WRITE A LOGICAL PARAMETER THAT» IF TRUE» CAUSES
INFORMATION ABOUT THE COURSE OF THE ITERATION TO BE

WRITED ON UNIT 6.

CONTROL PARAMETERS

oooooo0o0aooOnOOO0O000O000O00000000O00000000000000

INTEGER INIT,SEED
REAL ALPHA»BETA»CNVTOL»GRPTOL»ORTTOL»STFPFAC

INTERNAL VARIABLES

0o0oon

INTEGER DORT»DSRR»I»ITsJsLs»NGRPy»NOGRP »NXTORT»
1 NXTSRR»ORSDX(10)0TYPE(10)
REAL AEsAOE»AORSDsARSDsCTRyOCTR,OEIC10)y0ER(10)»0RSD(10)

INITIALIZE CONTROL PARAMETERS

oon

INIT = S

STPFAC = 2.

SEED = 49

ALPHA = 1.

BETA = 1.1

GRPTOL = .001 3
CNVTOL = ,001

ORTTOL = 2.

INITIALIZE

o000

L =1
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IT =0 1
o DO 10 J=11H
| g RSD(J) = 0.
. RSDX(J) = -1
TYPE(J) = -1
& 10 CONTINUE
IF(START .GE. 0) GO TO 40
DO 30 J=1,M
DO 20 I=1,N
Q(I»J) = RANDOM(SEED)
20 CONTINUE
30 CONTINUE
40 CONTINUE
IF(START .GT. 0) GO TO SO
CALL ORTH(Qs1sMsN)
50 CONTINUE

SRR LOOF

nooon

100 CONTINUE
IF (WRITE) WRITE(4,2000) IT»L
2000 FORMAT(/10H SRR IT =sI5+SH L =,13)
CALL SRRSTP(QsAQsATQsL MyNsT,ER/EI»TYPE»OER,OEI»OTYFE,
1 WRITE)
CALL RESID(QsAQs TyRSDsRSDX»ORSD s ORSDXsL s MsMsN» IT»TYPE,
WRITE)

c
& c TEST FOR CONVERGENCE
[

¥ 110 CONTINUE
CALL GROUP(ERYEI,»TYPEsRSD»GRFTOL L sMsN>» \

1 NGRFsCTRyAE+ARSDyWRITE)
CALL GROUP(OER»OEI OTYFE»ORSDsGRPTOL»L.yMsN»
1 NOGRP»OCTR»AOE »AORSD »WRITE)

IF{NGRF .NE., NOGRP) GO TO 130

IF (NGRP .EQ. 0) GO TO 130

IF(ABS(AE-ADE) .GT. CTRXCNVTOLXFLOAT(RSDX(L)-ORSDX(L)))

GO TO 130

IF(ARSD .GT. EFS) GO TO 130

L = L + NGRP

IF(L .GT. M) GO TO 130
GO TO 110

130 CONTINUE

G IF (WRITE) WRITE(6,2000) IT»L

T T B
-

’“ g EXIT IF THE REQUIRED NUMBER OF VECTORS HAVE CONVERGED.
‘ g IF(L .GT. NV) GO TO 300
" g EXIT IF ITERATION COUNT EXCEEDS THE MAXIMUM NUMBER
c OF ITERATIONS.
l é z IFCIT .GE. MAXIT) GO TO 300
; g DETERMINE WHEN THE NEXT SRR STEP IS TO BE TAKEN.

NXTSRR = AMAX1(STPFACXFLOAT(IT),FLOATC(INIT))
NXTSRR = MINO(MAXITsNXTSRR)
DSRR = NXTSRR-IT
IF(NGRF .NE. NOGRP) GO TO 150
IF(NGRP .EQ. 0) GO TO 150
IF (ARSD.GE.AORSI) GO TO 150
DSRR = ALFHA + BETAXFLOAT(ORSDX(L)-RSDX(L))XALOG(ARSD/EPS)/
1 ALOG(ARSD/AORSD)
i DSRR = MAXO(1,DSRR)
150 CONTINUE

.k_?m‘w. e, o w.,” »\ -
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NXTSRR = MINO(NXTSRRsIT+DSRR)
DETERMINE THE INTERVAL BETWEEN ORTHOGONALIZATIONS

-~
oo0on

DORT = AMAX1(1.,0ORTTOL/ALOG10(COND(TyM,WRITE)))
NXTORT = MINOCIT+DORT¢NXTSRR)
IF (WRITE) WRITE(6,2001) IT»NXTSRRsNXTORT
2001 FORMAT(/10H SRR IT =»I5s10H NXTSRR =sI5,10H NXTORT =,1I35)
DO 157 J=L.M 1
DO 153 I=1,N
QCIrJ) = AQCI»J) 1

153 CONTINUE
157 CONTINUE

IT = IT+1

ORTHOGONALIZATION LOOP.
160 CONTINUE
POWER LOOF

0oo0oo0 aooon

170 CONTINUE .
IF(IT .EQ. NXTORT) GO TO 200
CALL ATG(QsAQsL M)
DO 190 J=L,M
DO 180 I=1,N
Q(IyJd) = AQ(I»J) : 4
180 CONTINUE y
190 CONTINUE
IT = IT + 1 ]
GO TO 170 ]
200 CONTINUE \
CALL ORTH(QrsLsMsN)
NXTORT = MINOCIT+DORT »NXTSRR)
IFCIT .LT. NXTSRR) GO TO 160
GO TO 100
300 CONTINUE
NV = L-1
RETURN
END

e

SUBROUTINE SRRSTP(QsAQyATQsLMyNsT+ERIEI»TYPE,
1 OERYOEI»OTYPE,WRITE)

PARAMETERS IN THE CALLING SEQUENCE.

aoon

INTEGER LsMsN»TYPE(10),0TYPE(10)

REAL Q(500,10)+AQ(S500510)5T(10,10)sER(10),EI(10)>
1 OER(10)»0EI(10)

LOGICAL WRITE

EXTERNAL ATQ

SRRSTP PERFORMS A SCHUR-RAYLEIGH-RITZ REFINEMENT ON

THE SET OF M ORTHONORMAL N-VECTORS CONTAINED IN

THE ARRAY G. FIRST THE SUBROUTINE ATQ IS CALLED

TO GENERATE THE PRODUCT OF THE MATRIX A AND THE

VECTORS Q@ IN THE ARRAY Q. THEN THE MATRIX

T=TR(Q)*AQ IS REDUCED TO ORDERED QUASI-TRIANGULAR

FORM BY THE SUBROUTINE OTHESs, ORTRAN AND HQR3.

THE REDUCING TRANSFORMATION V IS POSTMULTIPLIED ‘
INTO Q AND AQ TO GIVE THE REFINDED VECTORS IN @ AND
THEIR PRODUCT WITH A IN AQ. 1IT IS ASSUMENLD THAT IT IS
NECESSARY TO WORK WITH ONLY COLUMNS L THROUGH M OF T.
THE INFORMATION CONTAINED IN POSITIONS L THROUGH M

OF THE ARRAYS ER» EI» AND TYPE 1S STORED IN THE

ooooocooonooaononoon
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CORRESFONDING POSITIONS OF THE ARRAYS CER» OEI AND OTYFPE.

INTERNAL VARIABLES

INTEGER Ir»Jy»K
REAL AP(10),P(10)»V(10510) »MCHEFS

IF (WRITE) WRITE(6+,2000) L

2000 FORMAT(/12H SRRSTP L =,15)

MCHEPS = 1.

3 CONTINUE

IF(MCHEPS+1. .EQ. 1.) GO TO S
MCHEPS = MCHEFS/2.
GO T0 3

S CONTINUE

oo0oon

SAVE THE OLD EIGENVALUES.

DO 10 J=LM
OER(J) = ER(J)
0EI(J) = EICJ)
OTYPE(J) = TYPE(J)

10 CONTINUE

"
oon

20
30
40

R
ooon

PRy

43

g T

45

i
§
¥
&

1000
1001
3 ] 1002
1003
1004
1005
2 1100
c

CALCULATE THE NEW T.

CALL ATQ(QsAQsL M)
DO 40 J=LsM
DO 30 I=1,M
T(IyJ) = 0.
DO 20 K=1,N

T(Ivd) = T(Isd) + Q(K»I)XAQ(K»J)

CONTINUE
CONTINUE
CONTINUE

TRIANGULARIZE T

CALL ORTHES(10sMsLsMsToP)
CALL ORTRAN(10sMsLsMsTsPyV)

CALL HAR3(TsVsMsLsMyMCHEFSsERYEI»TYPE»10,10)

IF (.NOT.WRITE) GO TO 48
WRITE(691001)
DO 43 I=1,M
WRITE(691000) (T(IsJ)sJ=1sM)
CONTINUE
WRITE(651002)
-DO 45 I=1,M
WRITE(691000) (V(Isd)sJd=1sM)
CONTINUE
WRITE(6+1003)
WRITE(691000) (ER(I)sI=1,M)
WRITE(691004)
WRITE(691000) (EI(I)sI=1,M)
WRITE(6,1005)
WRITE(691100) (TYPE(I)»I=iosM)
" FORMAT(/1H »10E12.4)
FORMAT(//2H T)
FORMAT(//2H V)
FORMAT(//3H ER)
FORMAT(3H EI)
FORMAT(//SH TYPE)
FORMAT(/1H »10I12)

48 CONTINUE

MR
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FROR 0QFY, TURALSHID 10008 oo o !
5 1 |
5 N {
c
L c TRANSFORM Q AND AQ 1
c il
DO 80 I=1,N .
DO 60 J=LsM ,
P(J) = 0.
AP(J) = 0. {
DO S0 K=1,M v

PCD) = PC) + QCIPKIRV(Ks D)
AP(J) = AF(J) + AGCI,K)XVU(KsJ) 1

S50 CONTINUE
60 CONTINUE

DO 70 J=LsM
acIsd) = PCD) |
AG(I,J) = AP(J)
70  CONTINUE
80 CONTINUE

RETURN
END
SUBROUTINE GROUP(ERsEIsTYPEsRSDsGRPTOL 7L »MsNsNGRP»CTRsAE » ARSD 1
1 WRITE)

c

; c PARAMETERS IN THE CALLING SEQUENCE. i

c

INTEGER TYPE(10)sL»MsNsNGRP {

REAL ER(10)yEI(10)sRSD(10)GRPTOL,CTR»AEsARSD
LOGICAL WRITE :

GROUP IS A SUBROUTINE TO FIND A CLUSTER OF COMPLEX V
NUMBERS WHOSE REAL FPARTS ARE CONTAINED IN THE ARRAY

ER AND IMAGINARY PARTS ARE CONTAINED IN THE ARRAY EI.
THESE NUMBERS ARE ASSUMED TO RE STORED IN DESCENDING
ORDER OF MAGNITUDE. NGRP IS DETERMINED AS THE LARGEST
INTEGER LESS THAN OR EQUAL TO M FOR WHICH THE ABSOLUTE
VALUE E(J) OF THE NUMBER ER(J)+EI(J)XI SATISFIES

E(L) - E(L+NGRP-1) <= GRPTOL / 2.

AND FOR WHICH TYPE(L)»TYPE(L+1)s...»TYPE(L+NGRP-1) IS ;
NONNEGATIVE. IF NGRP=0» THE SUBROUTINE RETURNS

CTR=AE=ARSD=0, IF NGRP.NE.O» CTR IS SET TO
(EC(L)+E(L+NGRF-1))/2y, AE TO THE AVERAGE OF THE
NUMBERS ER+EIXI» AND ARSD TO THE RMS AVERAGE OF
RSD(L)yRSD(L+1)7.++.7RSD(L+NGRP-1) .

INTERNAL VARIABLES.

ooocOoocoooo0o000000000

INTEGER JsL1
REAL MOD,MOD1
NGRP = 0
MOD = SGRT(ER(L)%X2 + EI(L)%%2)
CTR = 0. )
10 CONTINUE :
L1 = L + NGRP
IF(L1.GT.M .OR., TYPE(L1).LT.0) GO TO 20
MOD1 = SORT(ER(L1)%%X2 + EI(L1)x%x%x2) £
IF (ABS(MOD-MOD1) .GT. GRPTOL®(MOD+MOD1)) GO TO 20
CTR = (MOD + MOD1)/2. : |
NGRP = NGRP + TYPE(L1) + 1 |
GO TO 10
20 CONTINUE
AE = 0, v
ARSD = 0.
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IF(NGRP .EQ. 0) GO TO 40

L1 = L#NGRP-1 1
| : DO 30 J=L,L1
‘ AE = AE + ER(J)
ARSD = ARSD + RSD(J)X%2
30  CONTINUE
AE = AE/FLOAT(NGRP)
ARSD = SGRT(ARSD/FLOAT(NGRP))
40 CONTINUE
WRITE(652000) NGRPsCTR»sAEsARSD
2000 FORMAT(/14H GROUP NGRP =,ISs7H CTR =,E12.476H AE =sE12.4, .
1 8H ARSD =)E12.4)
RETURN
END

SUBROUTINE RESID(QsAQyT»RSDsRSDX»ORSD»ORSDXsL1sL2sMsNsIT»TYFE>»
1 WRITE)

PARAMETERS IN THE CALLING SEQUENCE.

ooon
o

INTEGER RSDX(10)»ORSDX(10)sL1+sL2yMsNsIT»TYFE(10)
REAL Q(S500,10),AQ(500,10)yT(10510)»RSD(10)s0RSD(10)
LOGICAL WRITE

RESID COMPUTES RESIDUALS CORRESFONDING TO EIGENVALUES
L1 THROUGH L2 OF THE QUASI-TRIANGULAR MATRIX T OF i
ORDER M. SPECIFICALLY IF T(XyJ) IS THE J-TH COLUMN

OF Ty RSD(J) IS SET TO NORM(AQ(X»J)-QT(%X»J))» WHERE THE
NORM IS THE EUCLIDEAN NORM. THE INDEX RSDX(J) IS SET
EQUAL TO IT. IF THE J-TH EIGENVALUE IS COMPLEX

(TYPE(J) = 1) THE RMS AVERAGE OF RSD(J) AND RSD(J+1)

IS PLACED IN RSD(J) AND RSD(J+1). THE INITIAL VALUES OF
RSD AND RSDX ARE STORED IN ORSD AND ORSDX.

INTERNAL VARIABLES

oooOonNoO0O0On0n000

INTEGER I»JrK»KU
REAL S

(2]

IF (WRITE) WRITE(652000) L1rL2 b
2000 FORMAT(/12H RESID L1 =yISy6H L2 =,1I3)
IF(L1 .GT. L2) RETURN
DO 30 J=L1,1.2
ORSD(J) = RSD(J)
ORSDX(J) = RSDX(J)
RSDX(J) = IT
KU = MINOCJ+1-M)
IF(TYPE(J) .EQ. 0) KU = J
RSD(J) = 0.
i 0o 20 I=1,yN
3 S = 0.
¥ DO 10 K=1,KU
S =8 + QUIYKIXT(K»J)
10 CONTINUE
RSD(J) = RSD(J) + (AQ(I,J)~-S)X%2
20 CONTINUE
30 CONTINUE
DO SO J=L1,L2
. IF(TYPE(J) .NE. 1) GO TO 40 i
RSD(J) = (RSD(J) + RSD(J+1))/2. |
RSD(J+1) = RSD(J)
40 CONTINUE
. RSD(J) = SART(RSD(J))
S0 CONTINUE

TR e
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IF (.NOT. WRITE) GO TO 40
WRITE(4651000)
WRITE(691001) (RSD(I)yI=1,M)
WRITE(6,1002)

1000
1001
1002
1003

60

oooooono0o000n oo0oo

oo0oon

ao0oo

100

0oo0oon

110

o000 oo

WRITE(671003) (RSDX(I)»I=1,M)
FORMAT(//4H RSD)

FORMAT(/1H ,10E12.4)
FORMAT(//SH RSDX)

FORMAT(/1H ,10112)

CONTINUE
RETURN
END

SUBROUTINE ORTH(QsLsMsN)
PARAMETERS IN THE CALLING SEQUENCE

INTEGER LsM»N
REAL Q(S500+10)

ORTH ORTHONORMALIZES COLUMNS L THROUGH M OF THE ARRAY
Q@ WITH RESPECT TO COLUMN 1 THROUGH M. COLUMNS 1
THROUGH L-1 ARE ASSUMED TO BE ORTHONORMAL. THE METHOD
IS THE GRAM-SCHMIDT METHOD WITH REORTHOGONCELIZATION.
A COLUMN IS ACCEPTED WHEN AN ORTHOGONALIZATION DOES
NOT REDUCE ITS EUCLIDEAN NORM BY A FACTOR OF MORE

THAN TOL. IF THIS IS NOT DONE IN MAXTRY ATTEMPTS

THE PROGRAM STOPS. THE PROGRAM ALSO STOPS IF IT
ENCOUNTERS A ZERJ VECTOR.

INTERNAL CONTROL FARAMETERS

REAL TOL
INTEGER MAXTRY

INTERNAL VARIABLES
REAL NORM»QQ
INTEGER I»JsJM1sKyTRY
MAXTRY = S
TOL = .S
DO 1460 J=LsM
ORTHOGONALIZE THE J-TH VECTOR
M1 = J-1
TRY = 0
CONTINUE
COMPUTE THE NORM OF THE VECTOR.
NORM = 0,

DO 110 I=1,N
NORM = NORM + Q(I»J)%%x2

CONTINUE

NORM = SQRT(NORM)

ERROR TEST

IF(NORM .EQ. 0.) GO TO 170
SCALE THE VECTOR.

DO 120 I=1/sN

-
-
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i QCI»J) = QCI»J)/NORM
120 CONTINUE !

TEST TO SEE IF THE J-TH VECTOR IS ORTHOGONAL .

oo

IF(J .EQ., 1) GO TO 160

IF(TRY .EQ. O0) NORM = O.

IF(NORM .GT. TOL) GO TO 160 {
TRY = TRY + 1

IF(TRY .GT. MAXTRY) GO TO 170 ;

c
c PERFORM ONE MODIFIED GRAM-SCHMIDT STEF. '
c
DO 150 K=1,JM1 ; ‘
Q@ = 0. l
DO 130 I=1sN
00 = QO + QCI/K)XQ(IsJ) 1
130 CONTINUE
DO 140 I=1,N
Q(IsJ) = Q(Isd) - QRXQA(I,K)
140 CONTINUE 1
150 CONTINUE
GO TO 100
160 CONTINUE
RETURN
; c
170 CONTINUE
WRITE(6+2000)
2000 FORMAT(/14H ERROR IN ORTH)
STOF ‘
END
Y
b REAL FUNCTION COND(T»MyWRITE)
c PARAMETERS IN THE CALLING SEQUENCE
c
REAL T(10510)
INTEGER M
a LOGICAL WRITE
c CCND IS A FUNCTION THAT RETURNS THE CONDITION )
i c NUMBER WITH RESPECT TO THE ROW-SUM NORM OF THE UPPER
' c HESSENBERG MATRIX T OF ORDER M.
c
&
C INTERNAL VARIABLES
c

REAL MULT(10)»NTsNTRsNT1/NT1R»T1(10+10)
INTEGER I»I1,JyJM1»J1»K)PVT(10)
MM1 = M-1
NT = 0.
DO 20 I=1,M
I1 = MAXO(I-1,1) |
H NTR = 0.
! D0 10 J=I1,M
Ti(Ied) = T(Id)
NTR = NTR + ﬂBﬂ(T(IJJ))

10 CONTINUE
NT = AMAX1(NTsNTR)
20 CONTINUE !
DO 60 I=1,MM1 |
PUT(I) = 0
MULT(I) = 0.
IF(T1(I+1»1) .EQ. O0.) GO TO 60
IF(ABS(T1(I+1+I)).LE. ABS(T1(I/I))) GO TO 40

X gl
&
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PVUT(I) = 1
DO 30 J=I,M 1
S = TI(I, D)
TICIsd) = T1(I+1,D) .
T1(I+1+J) = S
CONTINUE
CON i TNUE
MULT(1) = T1(I4+1+I)/T1(I,1)
T1(I+1,1) = 0.
I1 = [+1 1
DO SO J=I1,M
T1CI41sJ) = T1(I+15J) = MULT(I)XT1(I,J)
CONTINUE
CONTINUE J
DO 110 J=1,M
IF(T1(JsJ) .NE. O.) GO TO 70
COND = 1.EB
RETURN
CONTINUE
T1(Jed) = 1./T1(Js D)
IF(J .EQ. 1) GO TO 100
M1 = J-1 i
DO 90 I=1,JM1
S = 0.
D0 80 K=I,JM1
S =8 + TI(I,K)XT1(KsJ) 1
CONTINUE :
T1(I»J) = -SXT1(JrJ) 1
CONTINUE
CONTINUE
CONTINUE
DO 160 JJ=1,MM1 V
J = M=-JJ
J1 = J+1
IF(MULT(J) .EQ. 0.) GO TO 130
DO 120 I=1,J1
T1(Isd) = T1(IsJd) = MULT(JIXT1(I»J+1)
CONTINUE
CONTINUE
IF(PVT(J) .EQ. 0) GO TO 150
DO 140 I=1,J1
S = T1(1,0) J
T1C(IsJ) = T1(IsJ41)
T1(IsJ41) = S
CONTINUE
CONTINUE
CONTINUE
NT1 = 0.
DO 180 I=1,M
IM1 = MAXO(1,I-1)
NTIR = 0.
DO 170 J=IM1,M
NTIR = NTIR + ABS(T1(I,J))
CONTINUE
NT1 = AMAX1(NT1,NTIR)
CONTINUE
COND = NTXNT1
IF (WRITE) WRITE(4,2000) NTs»NT1,COND
FORMAT(/11H COND NT =,E12.44H NT1=yE12,4,8H COND =,E12.4)
RETURN
END ’ .

FUNCTION RANDOM(SEED)
INTEGER SEED ’
RANDOM IS A FUNCTION THAT PRODUCES A PSEUDO-RANDOM
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| { € FLOATING POINT NUMBER IN THE INTERVAL FROM ZERO TO D4E.
; ’ SEED = MOD(4421%XSEED+2113,10000)
‘ L RANDOM = FLOAT(SEED)/1.E4

¢ RETURN
END

b : . SUBROUTINE HQR3(AsVsN:NLOWINUPSEPS»ER'EI»TYPE»NA»NV)

INTEGER NsNA»NLOWsNUP NV, TYPE (N)
REAL A(NAN)EI(N)»ER(N)»EPS»V(NV/sN)

HGR3 REDUCES THE UPFER HESSENBERG MATRIX A TO QUASI-

TRIANGULAR FORM BY UNITARY SIMILARITY TRANSFORMATIONS.

THE EIGENVALUES OF A» WHICH ARE CONTAINED IN THE 1X1

AND 2X2 DIAGONAL BLOCKS OF THE REDUCED MATRIX» ARE

ORDERED IN DESCENDING ORDER OF MAGNITUDE ALONG THE

DIAGONAL. THE TRANSFORMATIONS ARE ACCUMULATED IN THE

ARRAY ¥V, HQAR3I REQUIRES THE SUBROUTINES EXCHNG,

QRSTEP» AND SPLIT. THE PARAMETERS IN THE CALLING

SEQUENCE ARE (STARRED PARAMETERS ARE ALTERED BY THE

SUBROUTINE) 4

%A AN ARRAY THAT INITIALLY CONTAINS THE N X N
UPPER HESSENBERG MATRIX TO BE REDUCED. ON
RETURN A CONTAINS THE REDUCED» QUASI-
TRIANGULAR MATRIX.

xV AN ARRAY THAT CONTAINS A MATRIX INTO WHICH
THE REDUCING TRANSFORMATIONS ARE TO BE
MULTIFLIED.
N THE ORDER OF THE MATRICES A AND V.
NLOW A(NLOW-1,NLOW) AND A(NUFsNUP+U) ARE \
NUP ASSUMED TO BE ZERO» AND ONLY ROWS NLOW

THROUGH NUP AND COLUMNS NLOW THROUGH
NUP ARE TRANSFORMED» RESULTING IN THE
CALCULATION OF EIGENVALUES NLOW
THROUGH NUP.

EPS A CONVERGENCE CRITERION.

XER AN ARRAY THAT ON RETURN CONTAINS THE REAL
PARTS OF THE EIGENVALUES.

XEI AN ARRAY THAT ON RETURN CONTAINS THE

IMAGINARY PARTS OF THE EIGENVALUES.
XTYPE AND INTEGER ARRAY WHOSE I-TH ENTRY IS
0 IF THE I-TH EIGENVALUE IS REAL:»
1 IF THE I-TH EIGENVALUE IS COMPLEX
WITH POSITIVE IMAGINARY PART.
2 IF THE I-TH EIGENVALUE IS COMFLEX
WITH NEGATIVE IMAGINARY PART)
=5 IF THE I-TH EIGENVALUE WAS NOT
CALCULATED SUCCESSFULLY.
NA THE FIRST DIMENSION OF THE ARRAY A,
NV THE FIRST DIMENSION OF THE ARRAY V.

INTERNAL VARIABLES

oooooOooooo0o0on0o0O00O00000000cO00O0O00000000000N0O0000

INTEGER I»IT»L,MUsNLINU
REAL E1/,E2/PyQsR»SrTrWsXr»Y»Z
LOGICAL FAIL

c
c INITIALIZE.
c

DO 10 I=NLOW,NUP 3

TYPE(I) = -1
10 CONTINUE

T =0,

c
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MAIN LOOP. FIND AND ORDER EIGENVALUES.
NU = NUP

100 IF;NU JLT. NLOW) GO TO 500

110

120

130

140

150

160

T=0

QR LOOP. FIND NEGLIGABLE ELEMENTS AND PERFORM
QR STEPS.

CONTINUE
SEARCH BACK FOR NEGLIGABLE ELEMENTS.

L = NU
CONTINUE
IF(L .EQ. NLOW) GO TO 130
IF(ABS(A(LsL-1)) .LT. EPSX(ABS(A(L-1sL-1))+ABS(A(LsL))))
GG T0 130
L =L-1
GO TO 120
CONTINUE

TEST TO SEE IF AN EIGENVALUE OR A 2X2 BLOCK
HAS BEEN FOUND.

X = ACNUSNU) .

IF(L .E@. NU) GO TO 300

Y = ACNU-1,NU-1)

W = ACNUsNU=1)%A(NU~1,NU)

IF(L .EQ. NU-1) GO TO 200

‘TEST ITERATION COUNT. IF IT IS 30 QUIT. IF
IT IS 10 OR 20 SET WP AN AD-HOC SHIFT.

IF(IT .EQ. 30) GO TO S00
IFCIT,NE.10 .AND. IT.NE.20) 60 TO 150

- AD-HOC SHIFT.

T=T+X
DO 140 I=NLOW»NU
e ACIsI) = A(ISI) =X
1 CONTINUE
S = ABS(A(NUsSNU-1)) + ABS(A(NU-1,yNU-2))
X = 0.75%8
Yy =X
W= -0,4375%XS%x%2
CONTINUE
IT = IT + 1

LOOK FOR TWO CONSECUTIVE SMALL. SUB-DIAGONAL
ELEMENTS.

NL= NU-2
CONTINUE
SZ = ACNLINL)
‘R X -2

Yol

(RES-W)/ACNL+1sNL) + ACNLINL+L)
A(NL+1/NL#1) - Z - R - S
ACNL$2,NL+1)

ABS(P) + ABS(Q) + ABS(R)

P/S .

a/8

R/S .

F(NL .EQ. L) GO TO 170

S
P
Q
R
S
P
Q
R
1
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‘ g IF(ABS(A(NL /NL=1))X(ABS(Q)+ABS(R)) .LE.
EPSXABS(P)X(ABS(A(NL-17NL-1))+ABS(Z) +ABS(A(NL+1/NL+1))))
60 TO 170
foo [ NL = NL-1
| GO TO 140
. 170 CONTINUE

o
" -

PERFORM A QR STEP BETWEEN NL AND NU.

.-
ooon

CALL QRSTEFP(A»VsF»QsRsNLsNUsNsNAINV)
GO TO 110

2X2 BLOCK FOUND.

o0oon

200 IF(NU .NE. NLOW+1) A(NU-1,NU-2) = O,
A(NUsNU) = ACNUSNU) + T
A(NU-1yNU-1) = A(NU-1,NU-1) + T
TYPE(NU) = 0O
TYPE(NU-1) = O
MU = NU

. o “

LOOP TO POSITION 2X2 BLOCK.

oo

xa

i 210 CONTINUE
NL = MU-1

ATTEMPT TO SPLIT THE BLOCK INTO TWO REAL
EIGENVALUES. :

S5
o000

CALL SPLIT(A»VsyNsNLIEL1/E2sNAYNY)

IF THE SPLIT WAS SUCCESSFULs GO AND ORDER THE
REAL EIGENVALUES.

L e b Y

v

IF(A(MUsMU-1) .EQ. O0.) GO TO 310

TEST TO SEE IF THE BLOCK IS PROFERLY FOSITIONED»
AND IF NOT EXCHANGE IT

o000 oaonoon

IF(MU .EQ. NUP-1) GO TO 220
IF(A(MU+2,MU+1) .EQ. 0.) GO TO 220

TS g e e g

i
!
| IF(MU .EQ. NUP) GO TO 400

THE NEXT BLOCK IS 2X2.

ooo

i IF(A(MU-1sMU-1)XA(MU»MU) -A(MU-1»MU) XA(MU»MU-1)
+GE. A(MU+1,MU+1)XA(MU+2sMU+2)-A(MU+1yMU+2)X
ACMU+2,MU+1))
GO TO 400
1 CALL EXCHNG(A»VyNsNL»2y2,EPSsFAIL,NAYNV)
IF(.NOT. FAIL) GO TO 215
TYPE(NL) = ~1
TYPE(NL+1) = -
1 TYPE(NL+2) = -1
4 TYPE(NL+3) = -1
¢ GO TO SO0

G AN e e TR
-

k! 215 CONTINUE
i MU = MU+2

R GO TO 230

220 CONTINUE

THE NEXT BLOCK IS 1Xx1.

o000

IF (ACMU=-1/,MU=1) %A (MU»MU) -A(NU-1,MU) XA (MU MU-1)
+BE. A(MU+1,MU+1)%%2)
GO TO 400

N -
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CALL EXCHNG(A»V¢NsNL22s1,EPS)FAILINAINV)
IF(.NOT. FAIL) GO TO 225
TYPE(NL) = -1
i TYPE(NL+1) = -1
L TYPE(NL+2) = -1
GO TO 500
225 CONTINUE
MU = MU+1
230 CONTINUE
GO TO 210

SINGLE EIGENVALUE FOUND.

ooo

300 NL = 0
ACNUINU) = A(NUINUY) + T
IF(NU NE. NLOW) A(NUsNU-1) = 0.
TYPE(NU) = 0O
MU = NU

LOOP TO POSITION ONE OR TWO REAL EIGENVALUES.
310 CONTINUE
“'POSITION THE EIGENVALUE LOCATED AT A(NLsNL).

o000 ooon

320 CONTINUE
IF(MU_.EQ. NUP) GO TO 350
IF(MU .EQ. NUP-1) GO TO 330
IFCA(MU+2,MU+1) .EQ. O.) GO TO 330

THE NEXT BLOCK IS 2X2.

o000

IF(ACMUSMU)Y X%2 .GE.
ACMU+1 s MU+1) RACHU+2 7, MUH2) -A (MU+1 s HU+2) XA (MU+25 MU+1))
_ 60 TO 400
_ CALL EXCHNG(AsVyNyMU»1s2/EPSsFAIL sNAINV)
IFC.NOT, FAIL) GO TO 325
TYPE(MU) = -1
" TYPE(MU+1) = -1
TYPE(MU42) = -1
GO TO 500
3zs CONTINUE
: MU = MU42 .
GO TO 340
330 CONTINUE

[ 5 R

THE NEXT BLOCK IS 1X1.

aooo

IF(ABS(A(MUYMU)) .GE. ABS(A(MU+1,MU+1)))
1 : GO TO 3S0
¥ CALL EXCHNG(A»VsNsyMUr191,EPS»FAILINAYNV)
: MU = MU1 ;
340 CONTINUE -
60 TO 320
L 350 CONTINUE
MU = NL
NL =0
IF(MU .NE. 0) GO TO 310

c
c GO BACK AND GET THE NEXT EIGENVALUE.
c
400  CONTINUE
NU = L-1
60 TO 100

Q;L THE EJGNVALUES HAVE BEEN FOUND AND ORDERED.

on




c
c

o0on

o000

aAaaOQaOOO0NOnNNONnNnNnNnn

3500

503
507

510

515

520

530
540

e oot e o Awor ~

S

COMPUTE THEIR VALUES AND TYFE. mwf‘{

IF(NU .LT. NLOW) GO TO 507
DO 503 I=1,NU
ACIsI) = ACII) + T
CONTINUE
CONTINUE
NU = NUP
CONTINUE
IF(TYFE(NU) .NE. -1) GO TO 515
NU = NU-1
GO TO S40
CONTINUE
IF(NU .EQ. NLOW) GO TO S20
IF(A(NUYNU-1) .EQ. O0.,) GO TO S20

2X2 BLOCK.

CALL SPLIT(AsVsNsNU-1,EL1,E2,NANY)
IF(A(NUsNU-1) .EQ. 0.) GO TO 520
ER(NU) = E1
EI(NU-1) = E2
ER(NU-1) = ER(NW)
EI(NU) = -EI(NU-1)
TYPE(NU-1) = 1
TYPE(NU) = 2
NU = NU-2
GO TO S30
CONTINUE

SINGLE ROOT.

ER(NU) = A(NUsNU)
EI(NU) = O,
NU = NU-1
CONTINUE

CONTINUE

IF(NU .GE. NLOW) GO TO 510

RETURN

END

SUBROUTINE EXCHNG(AsVsNsLsB1sR2,EFSsFAILINAYNV)

INTEGER B1,B2sLsNAsNV
REAL A(NA»N) sEPS»V(NVsN)
LOGICAL FAIL

GIVEN THE UPPER HESSENBERG MATRIX A WITH CONSECUTIVE
B1XB1 AND B2XB2 DIAGONAL BLOCKS (B »B2 ,3E. 2)
STARTING AT A(L»sL)» EXCHNG PRODUCES A UNITARY
SIMILARITY TRANSFORMATION THAT EXCH+SGES THE B36@2S
ALONG WITH THEIR EIGENVALUES. THE TRANSFORMATION

IS ACCUMULATED IN V. EXCHNG REQUIRES THE SUBROUTINE
GRSTEP. THE PARAMETERS IN THE CALLING SEQUENCE ARE
(STARRED PARAMETERS ARE ALTERED BY THE SUBROUTINE)

XA THE MATRIX WHOSE EBLOCKS ARE TO EE
INTERCHANGED,

L 1Y THE ARRAY INTO WHICH THE TRANSFORMATIONS
ARE TO BE ACCUMULATED.

N THE ORDER OF THE MATRIX A.

L THE POSITION OF THE BLOCKS.

B1 THE SIZE OF THE FIRST BLOCK.

B2 THE SIZE OF THE SECOND BLOCK.

EPS A CONVERGENCE CRITERION.
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| * c *FAIL A LOGICAL VARIAELE WHICH IS FALSE ON A
; c NORMAL RETURN. IF THIRTY ITERATIONS WERE
; c PERFORMED WITHOUT CONVERGENCE, FAIL IS SET
I c TO TRUE AND THE ELEMENT
L c A(L+B2,L+B2-1) CANNOT BE ASSUMED ZERO. A
c NA THE FIRST DIMENSION OF THE ARRAY A.
g NV THE FIRST DIMENSION OF THE ARRAY V,
c INTERNAL VARIABLES. ;
c
’ INTEGER I»IT,JdsL1sM
REAL PsQsRsSrWsXsYrZ
c
FAIL = .FALSE.
IF(B1 .EQ. 2) GO TO 40
4 IF(B2 .EQ. 2) GO TO 10
€ INTERCHANGE 1X1 AND 1X1 BRLOCKS.
c
L1 = L+1
Q = ACL+1sL+1) - A(LsL)
P = ACLsL+1)
R = AMAX1(F,Q)
IF(R .EQ. 0.) RETURN
P = P/R
Q = a/R
R = SQRT(P%%2 + Q%x2)
P = P/R
Q@ = Q/R
DO 3 J=L,N
S = PRA(LsJ) + QXA(L+1sJ) -
A(L+1,J) = PXA(L+1+J) - QXA(LsJ)
A(LsJ) = S
3 CONTINUE
DO 5 I=1,L1
S = PRA(IsL) + QXA(I,L+1)
ACIsL+1) = PXACI,L+1) - QXACIsL)
ACIsL) = S
s CONTINUE
DO 7 I=1,N
S = PRVU(IsL) + QXV(IsL+1)
VCIsL41) = PXUCI,L+1) ~ QXVCI,L)
V(IsL) = S
7 CONTINUE
A(L+1,L) = O,
RETURN
10  CONTINUE
c :
c INTERCHANGE 1X1 AND 2X2 BLOCKS.
c
X = A(LsL)
P =1,
Qa=1,
R =1,
CALL QRSTEP(A»VsPrQsRsLIL+2,NsNAYNV)
IT =0
20 IT = IT+1
IFCIT .LE. 30) GO TO 30
FAIL = ,TRUE.
RETURN
30 CONT INUE
P = A(LsL) - X .
Q = ACL+1sL)
R = 0.

CALL QRSTEP(AsVsP»sQrRoLsL+2/NsNAINV)
IF(ABS(A(L+2,L+1)) .GT. ’
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EPSX(ABS(A(L+1,L+1))+ABS(A(L+2,L+2))))
GO 70 20 !
A(L+2,L+1) = O,
RETURN
CONTINUE

-

INTERCHANGE 2X2 AND B2XB2 BLOCKS.

M= L+2

IF(B2 EQ. 2) M = M+1
= A(L+1,L+1)

= AlLyL)

= A(L+1sL)%ALIL+L)
=1,

= 1.

DO VE < X

1.
CALL GRSTEP(AsUsPs@rRyLsMsNsNASNY)
IT =0
IT = IT+1
IFC(IT .LE. 30) GO TO 60
FAIL = .TRUE,
RETURN
ONTINUE
= A(LsL)
X -2
Y -2
(RXS-W)/A(L+1sL) + AlLsL+1)
A(L+1sL+1) - Z - R - S
A(L+25L+1)
ABS(P) + ABS(Q) + ABS(R)
P/S
ass ; \
R = R/S
CALL QRSTEF(AsVUsFs@rRsLrMrNsNAINY)
IF(ABS(A(M-1,M-2)) ,BT. EPSK(ABS(A(M-1,M-1))+ABS(A(M-2,M-2))))
1 60 TO SO
A(M=-1,M-2) = 0,
RETURN
CONTINUE
END

c
4
R
S
P
Q
R
S
P
Q

SUBROUTINE SPLIT(AsVsNsLsE1sE2sNAYNV)

INTEGER LsNyNASNV
REAL A(NAN) »V(NVyN)

GIVEN THE UPPER HESSENBERG MATRIX A WITH A 2X2 BLOCK
STARTING AT A(LsL)» SPLIT DETERMINES IF THE
CORRESPONDING EIGENVALUES ARE REAL OR COMFLEX. IF THEY
ARE REALs A ROTATION IS DETERMINED THAT REDUCES THE
BLOCK TO UPPER TRIANGULAR FORM WITH THE EIGENVALUE

OF LARGEST ABSOLUTE VALUE AFPPEARING FIRST. THE
ROTATION IS ACCUMULATED IN V. THE EIGENVALUES (REAL
OR COMPLEX) ARE RETURNED IN E1 AND E2. THE PARAMETERS
IN THE CALLING SEQUENCE ARE (STARRED PARAMETERS ARE
ALTERED BY THE SUBROUTINE)

%A THE UPPER HESSENVERG MATRIX WHOSE 2X2
BLOCK IS TO BE SPLIT.

k3Y THE ARRAY IN WHICH THE SFLITTING TRANS-
FORMATION IS TO BE ACCUMULATED.

N THE ORDER OF THE MATRIX A.

L THE POSITION OF THE 2X2 BLOCK.

¥E1 ON RETURN IF THE EIGENVALUES ARE COMPLEX

¥E2 E1 CONTAINS THEIR COMMON REAL PART AND
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E2 CONTAINS THE POSITIVE IMAGINARY PART. !
IF THE EIGENVALUES ARE REALs E1 CONTAINS
THE ONE LARGEST IN ABSOLUTE VALUE AND E2
CONTAINS THE OTHER ONE.

NA THE FIRST DIMENSION OF THE ARRAY A.

NV THE FIRST DIMENSION OF THE ARRAY V.,

INTERNAL VARIABLES :

oooooooonoc

INTEGER I»JsL1
REAL FrQrReTrUsWeXrYyZ

A(L+1sL+1) :
ACLsL)

ACLsL+1)XACL+1,L) 1
(Y-X)/2. 4
PEX2 + W

F(Q .GE. 0.) GO TO S

X
Y
W
P
Q
I

COMPLEX EIGENVALUE.

oo0on

i

El =P + X
E2 = SQRT(-Q)
RETURN .

S CONTINUE

TWO REAL EIGENVALUES. SET UP TRANSFORMATION.

ooo0

IF(P LT, 0.) GO TO 10
Z=P+2Z .
GO 1D 20 ; : 1
10 CONTINUE ! ; 4
T Z=sP.-12 ‘
20 CONTINUE . ~
| f IF(Z .EQ. 0.) GO TO 30
: R =-wz . ‘
GO TO 40 1
' 30 CONTINUE , |
| R = 0. ; ‘
- 40 CONTINUE ) )
IF(ABS(X+Z) .GE. AEBS(X+R)) Z = R |
; Y=Y-X-2
X = -Z Lys

Z = SART(Q) q

: T = ACLsL+1)
: ; U = A(L+1sL)

z IF(ABS(Y)+ABS(U) .LE. ABS(T)+ABS(X)) GO TO &0

Q=uU .

| ¢ P=y

3 GO TO 70
; ! 60 CONTINUE
| Q=X
| j P=T
’ ' 70 CONTINUE
| R = SQRT(PX%X2 + Q%%2)

IF(R .GT. 0.) GO TO 80
El = A(L,L)
E2 = A(L+1sL+1)
ACL+1sL) = O,

| RETURN . :
» | 80 CONTINUE
| ' P = P/R
] Q= Q/R .
k
v

v

PREMULTIPLY.

:Ol'lﬂ
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DO 90 J=L,N
Z = AlLeJ)
A(LsJ) = PXZ + QXA(L+1,»J)
A(L+1,J) = PXA(L+1,J) - Q%2
CONTINUE

POSTMULTIPLY.

Ll = L+1
DO 100 I=1,L1
Z = A(I»L)
A(IsL) = PXZ + QXAC(IsL+1)
A(IsL+1) = PXA(I,L+1) - Q%2
CONTINUE

ACCUMULATE THE TRANSFORMATION IN V.

DO 110 I=1sN
Z = V(IsL)
V(IsL) = PXZ + QXV(I,L+1)
V(IsL+1) = PRVU(I,L+1) - Q%2
CONTINUE
A(L+15L) = 0.
El = A(LsL)
E2 = A(L+1sL+1)
RETURN
END

SUBROUTINE QRSTEP(AsVsPrQsRsNLINUsN»NAYNV)

INTEGER NsNAsNLsNUsNV
REAL A(NAYN) sP»QsRsVINVN)

QRSTEFP FERFORMS ONE IMPLICIT QR STEP ON THE

UPPER HESSENBERG MATRIX A., THE SHIFT IS DETERMINED
BY THE NUMBERS P»Q» AND Ry AND THE STEF IS APPLIED TO
ROWS AND COLUMNS NL THROUGH NU. THE TRANSFORMATIONS
ARE ACCUMULATED IN V. THE PARAMETERS IN THE CALLING
SEQUENCE ARE (STARRED APRAMETERS ARE ALTERED BY THE
SUBROUTINE)

XA THE UPPER HESSENBERG MATRIX ON WHICH THE
QR STEP IS TO BE FPERFORMED.

1Y THE ARRAY IN WHICH THE TRANSFORMATIONS
ARE TO BE ACCUMULATED

P PARAMETERS THAT DETERMINE THE SHIFT.

xQ

xR

NL THE LOWER LIMIT OF THE STEP.

NU THE UPPER LIMIT OF THE STEP.

N THE ORDER OF THE MATRIX A.

NA THE FIRST DIMENSION OF THE ARRAY A,

NV THE FIRST DIMENSION OF THE ARRAY V.

INTERNAL VARIABLES.

INTEGER I»JsKsNL2yNL3y»NUML
REAL S»XrYsZ
LOGICAL LAST

NL2 = NL+2
DO 10 I=NL2,NU
A(I»I-2) = O,
CONTINUE
IF(NL2 .EQ. NU) GO TO 30

-




20

30 CONTINUE
NUM1 = NU-1
DO 130 K=NL»NUM1 |

o0oon

40

S50
60

ooo0n

70

80

o000

90

100

o000
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CONTINUE . .

DETERMINE THE .TRANSFORMATION.

LAST = K .EQ. NUM1
IF(K .EQ. NL) GO TGO 40
P = A(KsK-1)
Q@ = A(K+1sK-1) }
R = 0.
IF(.NOT.LAST) R = A(K+2,K-1) )
X = ABS(P) + ABS(Q) + ABS(R)
IF(X .EQ. 0.) GO TO 130
P = P/X
Q = Q/x
R = R/X
CONTINUE
S = SORT(PX%X2 + QX%X2 + R¥%2)
IFEP LT, 0.) S = -S
IF(K .EQ. NL) GO TO SO
A(Kr)K-1) = -SXX 1
GO TO 60

2 e

CONTINUE

IF(NL .NE, 1) A(K/K~-1) = -A(KsK-1)
CONTINUE : 2
=P +S

4]

ass

R/S

- Q/P

R/P

DAN<XTD
[ B BB}

PREMULTIPLY,

DO 80 J=KsN
P = ACKsd) + QRACKH1+J) §
IF(LAST) .GO TO 70 4

P = P + RRA(K+2yd) 4
ACK+2,J) = A(K+29J) - PXZ
CONTINUE .
A(K+19J) = ACK+19d) - PRY
ACKsd) = ACKsd) - PEX

CONTINUE
POSTMULTIPLY.

St g

J = MINO(K+3,NU)
DO 100 I=1,J
P = X¥ACIVK) + YXA(IsK+1)
IF(LAST) GO TO 90 . 3
P =P + ZXA(I/K+2) :
ACI/K+2) = ACI,K+42) - PXR
CONTINUE
ACI)K+1) = ACI,K+1) - PxQ
ACI/K) = A(IIK) - P

e

it g

CONTINUE .
ACCUMULATE THE TRANSFORMATION IN V. i
DO 120 I=1,N F

P = XBV(1,K) + YEV(I,K#1)

.
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IF(LAST) GO TO 110
P =P+ ZlV({,K+2)
V(IsK+2) = V(I»K+2) - PR

CONTINUE
V(IyK+1) = V(I,K+1) - PxQ
V(I»K) = U(I/K) - P
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE ORTHES(NMsNyLOW» IGH»A»ORT)
INTEGER I»JoMsNsIIvJJrsLAsMPyNM» IGH KP1,L0OW
REAL A(NMsN)»ORT(IGH)

REAL FsGsH»SCALE

LA = IGH - 1

KP1 = LOW + 1

IF(LA .LT. KP1) GO TO 200

DO 180 M=KP1,LA

H = 0.
ORT(M) = 0.
SCALE = 0.

DO 90 I=1,IGH
SCALE = SCALE + ABS(A(IsM-1))
IF(SCALE .EQ. 0.) GO TO 180
MP = M + IGH
DO 100 II=M»IGH
I = MP - II
ORT{I) = A(IsM-1)/SCALE
H =H + ORT(I)XORT(I)
CONTINUE
G = -SIGN(SART(H)»ORT(M))
H = H- ORT(M)%G
ORT(M) = ORT(M) - G
DO 130 J=MsN
F =0,
DO 110 II=M»IGH
I = MNP - II
F = F + ORT(I)XA(I»J)
CONTINUE
F = F/H
DO 120 I=MyIGH
A(I»J) = A(I»J) - FXORT(I)
CONTINUE
CONTINUE
DO 160 I=1,IGH
F = 0,
DO 140 JJ=MyIGH
Jd = MNP - JJ
F = F + ORT(J)XA(I»J)
CONTINUE
F = F/H
DO 150 J=MsIGH
A(I»J) = A(Ivd) - FRORT(J)
CONTINUE
CONTINUE
ORT(M) = SCALEXORT(M)
A(MyM-1) = SCALEXG
CONTINUE
RETURN
END

SUPROUTINE ORTRAN(NMsNsLOW» IGH»AsORT»2)
INTEGER I»JoNsKL MMsMPoNM» IGH,LOWIMP1

TH1S PAGE
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G TRON OOPY FUNALSHED TODDC  ____ f

: REAL A(NMsIGH) »ORT CIGH) »Z(NMsN) 1
L REAL GrsH
DO 80 I=1,N
DO 40 J=1sN
Z(1,0) = 0.
60  CONTINUE
Z(I,I) = 1.
80 CONTINUE
KL = IGH - LOW - 1
IF(KL .LT. 1) GO TO 200
DO 140 MM=1,KL
MP = IGH - MM J
H = ACMPsMP-1)XO0RT (MP)
IF(H .EQ. 0.) GO TO 140
MP1 = MP+1
DO 100 I=MP1,IGH
ORT(I) = ACI,MP-1)
100  GONTINUE
0 130 J=MP,IGH
G = 0. i
DO 110 I=MP,IGH
G =G + ORT(I)XZ(I,J)

; 110 CONTINUE
i 6 = G/H 1
DO 120 I=MP,IGH 1
: Z(IsJ) = Z(I»J) + GRORT(I) 1
120 CONT INUE

130 CONTINUE

140 CONTINUE :

200 RETURN V
END




