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to Calculate the Dominant Invar iant Subspaces

\~ of a Real Matrix o D D C
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~~

[
~J}SRRIT is a FORTRAN program to calculate an approximate orthonormal basis

for a dominant invariant subspace of a real matrix A. Specifically,
given an inte~~er m , SRRIT attempts to compute a matrix Q with mw

.....J orthonormal colunns and real quasi-triangular matrix T of order m
such that the equation

C-,
~~~~ = Q T

is satisfied up to a tolerence specified by the user. The eigenvalues
of T are approximations to the m largest eigenvalues of A , and the
coltamis of Q span the invariant subspace corresponding to those eigen-
values . SRRIT references A only through a user provided subroutine to

~~~ form the product AQ; hence it is suitable for large sparse problems .

*This work was supported in part by the Office of Naval Research under
Contract No. N 00014-76-C-0391.
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. SRRIT - A FORTRAN Subroutine

to Calculate the Dominant Invariant Subspaces
• of a Real Matrix

C. W. Stewart

DESCRIPTION

1. Introduction

The program described in this paper is designed primarily to solve

eigenvalue problems involving large, sparse, real matrices. The programs

attempt to calculate a set of the largest eigenvalues of the matrix in

question. In addition they calculate a canonical orthonorinal basis for

the invariant subspace spanned by the eigenvectors and principal vectors

corresponding to the set of eigenvalues. No explicit representation of

the matrix is required; instead the user furnishes a subroutine to cal-

culate the product of the matrix with a vector.

Since the programs do not produce a set of eigenvectors corresponding

to the eigenvalues computed, it is appropriate to begin with a mathematical

t description of what is actually computed and how the user may obtain eigen-

L vectors from this output if he so desires. Let A be a matrix of order

n with eigenvalues Xl~X2~~ ~~ ordered so that
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i.e. , the subspace is transformed into itself by the matrix A.

If ~ is an invariant subspace of A and the columns of

Q= (q1,q 2, ...,%) formabasis  for Q, then Aq1 E Q ,  and hence Aq1
can be expressed as a linear combination of the columns of Q; i.e.,

there is an rn-vector t~ such that AQ = Qt1. Setting

T = (t1,t2,... ~
tm)

we have the relation

(1.1) fiL~ =QT .

In fact the matrix T is just the representation of the matrix A in

the subspace Q. with respect to the basis Q.
If x is an eigenvector of T corresponding to the eigenvalue X,

then it follows from (1.1) and the relation Tx = )x that

(1.2) A(Qx) = X (Qx)

so that Qx is an eigenvector of A corresponding to the eigenvalue A.

Thus the eigenvalues of T are also eigenvalues of A. Conversely if

A . ,A. ,...,A . are any m eigenvalues of A that are distinct from the11 12
other n-rn eigenvalues, then there is a unique invariant subspace of diinen-

sion m corresponding to these eigenvalues; i.e. , the eigenvalues of T

in (1.1) are precisely A. ,A . ,...,X.11 12
If I I )j~ I~ then there is a unique dominant invariant subspace

Q1 corresponding to ~~~~~~~~~~~ When and ~~ exist, Q~ c

Si
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1
,~ 3

The subroutine SRRIT attempts to compute a nested sequence of orthonormal
• bases of ~~~~~~~~ Specifically , if all goes well, the subroutine pro-

duces a matrix Q with orthononnal columns having the property that if

ix~l > IX .~1I then q1,q 2 ,. . .,q .  span Q.~.
The case where and are a complex conjugate pair , and

:~ hence IX j 1i = lxii, is treated as follows. The matrix Q is calculated

so that the matrix T in (1.1) is quasi-triangular; i.e., T is block

triangular with 1 1 and 2 x 2 blocks on its diagonal. The structure of

a typical quasi-triangular matrix is illustrated below for m = 6:

4. x X X X X \

0 x x x x
0 x x x x x~~

• 0 0 0  x x x .
1 0 0 0 O x  x

‘. 0 0 0 0 x x

The 1 x 1 blocks of T contain the real eigenvalues of A and the 2 x 2

blocks contain conjugate pairs of complex eigenvalues. This arrangement

I enables us to work entirely with real numbers, even when some of the eigen-

values of T are complex. The existence of such a decomposition is a

consequence of Schur ’ s theorem (see [ g ] ) .

The eigenvalues of the matrix T computed by the program appear in

descending order of magnitude along its diagonal. For fixed i let
• Q~~1 

= 
~~~~~~~~~~~ and let T t 1 be the leading principal subnatrix of T

of order i. Then if the i-th diagonal entry of T does not begin a 2 x 2

h “ 
-

~~~~ —



block, we have

AQ t i  
= Q

I1T 1

Thus the first i columns of Q span the invariant subspace correspond-

ing to the first i eigenvalues of T. When lxii > lx~+1l this is the

unique dominant invariant subspace Q~. When lX~ I = x~ 1 I the columns

of Q” span a dominant invariant subspace; but is is not unique, since

there is no telling which comes first , A1 or ~~~~
Any manipulations of A within the subspace ~ corresponding to Q

can be accomplished by manipulating the matrix T. For example,

AkQ = Q Tk ,

so that if f (A) is any function defined by a power series, we have

f (A)Q = Qf(T)

If the spectnln of A that is not associated with Q is negligible,

considerable work can be saved by working with the genera’ ly nuch smaller

matrix T in the coordinate system defined by Q. If explicit eigen-

vectors are desired, they may be obtained by evaluating the eigenvectors

of T and applying (1.2) . The programs hqr2 in [12] and F[~R1 in (7]

will evaluate the eigenvectors of a quasi-triangular matrix.

~~~~~~~~~~~~ 

• . . 
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2. Usage

SRRIT is a FORTRAN subroutine to calculate the basis for described

in Section 1. The calling sequence for SFFIT is

CALL SRRIT(Q ,N~,A 1~ ,N ,NV ,M,EPS,MAXIT ,START ,T,ER ,EI ,
TYPE ,RSD,RSDX)

with (starred parameters are altered by the subroutine)

*Q(N,f4) A real array that on return contains the approximation
to Q• Initially Q may contain a starting approxima-
tion (cf. START) .

*AQ(N,M) A real array that on return contains the product AQ.

The name of a FOR’FRAN subroutine that computes the product
AQ. For details see below.

N The order of A.

The numb er of vectors to compute. On return, NV contains
the number of columns of Q that have converged.

M The number of columns of Q. M nust be greater than or
equal to NV.

EPS A converg ence criterion.

MAXIT An integer containing the maxi.nun number of iterations to
perform.

START An integer that tells the initial status of Q. If
START < 0, a starting approximation is to be generated
randomly. If START ? 0, then Q initially contains a
starting approximati on ; and if START ? 1, then the columns
of Q are assumed to be orthonor mal.

*T(M,M) A rea l array that on return conta ins the approximatio n to
the matrix T of (1.1) .

*ER(M) A real arr ay that on return contains the real parts of the
eigenva lues of T.

*EI (M) A real array that on return contains the imaginary par ts of
the eigenvalues of T.

~~~~~~~~~~~~ ~~~~~~~~~~ . ~~~~~~~~~ 
S 

~~~~~~~~~~~~~~~ S
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*TYPE(M) An integer array whose i-th entry on return is

0 if the i-th eigenvalue is real
1 if the i-th eigenvalue is the first of a con-

jugate pair of complex eigenvalues
2 if the i-th eigenvalue is the second of a conju-

gate pair of complex eigenvalues
-1 if the i-th eigenvalue was not correctly

determined

*R5D(M) A real array whose i-th entry is the 2-norm of the
residual associated with the i-th column of Q [cf. (3.2)
below] .

*RSDx (M) An integer array whose i-th entry is the iteration at
which the i-th entry of RSD was computed.

The dimensions in the parameter descriptions are the smallest for

which the program will work. In the program listed here they are set for

values of N up to five hundred and M up to ten. To acconinodate larger

problems, change the dimension 500 to the largest expected value of N and

the dimension 10 to the largest expected value of M throughout SRRIT and

its auxiliary subroutines (n.b. this includes the dimension information

in the subroutine calls in SRRSTP) .

The user may furnish a starting approximation to the matrix Q in

the array Q. Actually all that is required is a set of vectors whose

column space approximates Q~. If such a starting approximation is fur-

nished, the parameter START should be set greater than or equal to zero .

If the starting vectors are orthonormal, the parameter START should be set

positive. If START is negative, Q is initialized with random numbers

and orthogonalized to provide the starting approximation.

The user is required to furnish a subroutine to calculate the product

AQ. The calling sequence for this subroutine is

____ * _________

r~. 
- 

3. ~~~~~~~~~ ~



S.
CALL ATQ(Q,AQ, Ll ,L2)

with

Q(N,M) A real array containing the matrix Q.

AQ(N,M) A real array. On return columns Li through L2 of
AQ should contain the product of the matrix A with
columns Li through L2 of Q.

Lii Integers which specify which columns of Q to multiply
L2J by the matrix A.

A call to AR~ causes the iteration counter to be increased by one, so that

the parameter MAXIT is effectively a limit on the number of calls to A1~ .

The convergence criterion is described in detail in Sections 3 and 4.

Essent ially the matrices Q and T calculated by the program will satisfy

(2.1) (A+E)Q INV 
= QINVTINV

where NV (on return) is the number of columns that have converged and

E is of order EPS. From this it is seen that EPS should be small

compared with A. The criterion insures that the well-conditioned eigen-

values of A will be calculated accurately, and the well-conditioned

eigenvectors can be calculated accurately from Q and T.

The rate of convergence of the i-th column of Q depends on the ratio

l.~ 1/x~l. For this reason it may be desirable to take the number of columns

M of Q to be greater than the number of columns NV that one desires to’

compute. For example, if the eigenvalues of A are 1.0, 0.9, 0.5 ,... it

will pay to take M = 2 , even if only the eigenvector corresponding to 1.0

is desired.

~k-J
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Since SRRIT is designed primarily to calculate the largest eigenvalues

of a large matrix, no provisions have been made to handle zero eigenvalues.

In particular, zero eigenvalues caii cause the prograr~ to stop in the auxi-

liary subroutine ØRfl-I.

SRRIT is supported by a number of auxiliary subroutines (SRRSTP,

RESID,GRØIJP,ØRTh,cØND,RAND~’4) which are described in Section 5. It also

requires the EISPACK subroutines ØRThES and ØRTRAN [7], and the subroutines

I-~R3, EXQ-ING, SPLIT, and QRSTI3P [11].

SRRIT can be used as a black box. As such the first NV vectors it re-

turns will satisfy (2.1), although not as many vectors as the user requests

need have converged by the time MAXIT is reached. However, the construction

of the program has involved a number of arbitrary decisions. Although the

author has attempted to make such decisions in a reasonable manner, it

is too much to expect that the program will perform efficiently on all

distributions of eigenvalues. Consequently the program has been written

in such a way that it can be easily modified by someone who is familiar

with its details. The purpose of the next three sections is to provide

the interested user with these details.

S .. 

~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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3. Method

The Schur vectors Q of A are computed by a variant of simultaneous

iteration , which is a generalization of the power method for finding the

dominant eigenvector of a matrix . The method has an extensive literature

[1,2,3,5,8], and Rutishauser [6] has published a program for symetric

matrices from which many of the devices in SRRIT have been drawn. The

method about to be described has been analyzed in [10] .

The iteration for computing Q may be described briefly as follows.

Start with an n x m matrix Q0 having orthonormal columns. Given Q ,
form 

~~~~~ 
according to the formula

= (A~~)R~~1

where R~~1 is either an identity matrix or an upper triangular matrix

chosen to make the columns of 
~~+l orthonorma] (just how often such an

orthogonalization should be performed will be discussed below). If

lAmi > IXm+l I~ then under mild restrictions on Q0 the column space of

~~ 
approaches Q

~.
The individual columns of will in general approach the correspond-

ing columns of the matrix Q defined in Section 1; however the rate of

convergence of the i- th colunn is proportional to max { i~~~~~
1 

V
,

Ix~+1/x~I~’
} and may be intolerably slow. The process may be accelerated by

the occasional application of a “Sclvr-Rayleigh-Ritz step” (from which

SRRIT derives its name) , which will now be described. Start with 
~~ 

just
after an orthogonalization step, so that QTQ I. Form the matrix

—

• T .  ~~~~~~~~~~~~~~ 
~~.i~:A
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B Q
TA Q ,

and reduce it to ordered quasi-triangular form T by an orthogonal

similarity transformation Y :

(3.1) YTB Y  T

Finally overwrite Q with 
~~~~

The matrices Q formed in this way have the following property.

If > Ix. I > xi 4•1 j ,  then under mild restrictions on Q0 the i-th

column q~~ of Q will converge to the i-th column of Q at a

rate proportional to IX +1/X~I’~ Thus not only is the convergence accelerated,

but the first columns of tend to converge faster than the later ones.

A number of practical. questions remain to be answered.

1. How should one determine when a column of has converged?

2. Can one take advantage of the early convergence of some of the
columns of Q to save computations?

3. How often should one orthogonalize the columns of the Q
~

?
4. How often should one perform the SRR acceleration described above?

Here we shall merely outline the answers to these questions. The details

will be given in the discussion of SRRIT.

1. Convergence. If IX~1I — or 1X11 = IX 1~ I, the i-th column
of Q is not uniquely determined; and when ~X~J is close to

or X~I, the i-th column cannot be computed accurately . Thus a convergence

criterion based on the i-th column q~”) of 
~~ 

becoming stationary is

likely to fail when A has equiinodular eigenvalues. Accordingly we have

_ _ 
_ _s,q~ ~~~~~~~ _ _ _
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adopted a different criterion which amounts to requiring that the relation

(1.1) is almost satisfied. Specifically, let 4~
i) denote the i-th

column of T in (3.1). Then the i-th column of the 
~~ 

produced by

the SRR step is said to have converged if the 2-norm (see [9] for a defi-

nition) of the residual vector

(3.2) r~”~ = Aq~’~ Q~
t
~
”
~

i.s less than some prescribed tolerance.

If this criterion is satisfied for each column of Q , then the resi-

P dual matrix

R~~= A Q ~~- Q T

will be small. This in turn implies that there is a small matrix

= ~R Q T such that

(A+F
~)Q~ 

= Q
~T

so that Q and T are the matrices associated with the slightly per-

turbed matrix A + E~, provided only that some small eigenvalue of A + E

has not by happenstance been included in T
~. To avoid this possibility we

gr~ ip nearly equimodular eigenvalues together and require that their average

value has settled down before testing their residuals. In addition a group

of columns is tested only if the preceding columns have all converged.

2. Deflation. The theory of the iteration indicates that the initial

columns of the will converge before the later ones . When this happens

considerable computation can be saved by freezing these columns. This saves

:~~
~~~~~~~~ ~~

.

— 
- 

-. ____



-~l2-

multiplying the frozen columns by A, orthogonalizing them when R~~1 ~‘ I ,

and work in the SRR step.

3. Orthogonalization. The orthogonalizat ion of the columns of AQ

is a moderately expensive procedure which is to be pit off as long as

possible. The danger in postponing orthogonalization is that cancellation

of significant figures can occur when AQ is finally orthogonalized,

as it must be jus t before an SRR step. In [10] it is shown that one can

expect no more than

(3.3) t = k log10 K (T)

decimal digits to cancel after k iterations without orthogonalization

(here K(T) = IITD IIT ’II is the condition number of T with respect to inver-

sion). The relation (3.3) can be used to determine the number of iterations

between orthogonalizations.

4. SRR-steps. The SRR-step described above does not actually acceler-

ate the convergence of the rather it unscrambles approximations to the

columns of that are already present in the column space of and

orders them properly. Therefore, the only time an SRR step needs to be

performed is when it is expected that a column has converged. Since it is

known from the theory of the iteration that the residuals in (3.2) tend

linearly to zero, the iteration at which they will satisfy the convergence

criterion can be predicted from their values at two iterations . As with

convergence, this prediction is done in groups corresponding to nearly

equimodular eigenvalues.

~~

.~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
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4. Details of SRRIT

In designing SRRIT, we have tried to make it easily modifiable. This

has been done in two ways. First, we have defined a number of important

control parameters and given them values at the beginning of the program.

The knowledgeable user may alter these values to improve the efficiency

of the program in solving particular problems. Second, a number of important

tasks have been isolated in independent subroutines. This should make it
easy to modify the actual structure of SRIUT, should the user decide that
such radical measures are necessary. In this section we shall describe

SRRJT in some detail , specifying the action of the control parameters . In
the next section we shall describe the support ing subrout ines .

Here follows a list of the control parameters with their initial values

and a brief description of their functions .

INIT (5) a number of initial iterations to be performed at
the outset .

STPFAC (2.0) a constant used to determine the maxinum number of
iterations before the .~iext SRR step.

ALPHA (1.0) parameters used in predicting when the next residual
BETA (1. 1) will converge.

GRPTOL (0.001) a tolerance for grouping equimodular eigenvalues

CNVTOL (0.001) a convergence criterion for the average value of a
cluster of equimodular eigenvalues.

ORT’FOL (2.0) the nunber of decimal digits whose loss can be
tolerated in orthogonalization steps.

SEED (69) a seed for the random number generator that initializes Q.

ii 
_ _ _ _ _ _ _ _ _ _ _ _ _

& -v’--:,, ~T.5 ~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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We now give an informal description of SBRIT as it appears in the

ALGORIT}Th1 section. The variable L points to the first column of Q

that has not converged . The variable IT is the iteration counter. The

variable NXTSRR is the iteration at which the next SRR step is to take

place, and the variable DORT is the interval between orthogonalizations.

srrit :
1. initialize control parameters
2. initialize

1. I T = 0
2. L = l
3. Initialize Q as prescribed by START

3. srr~ lopp
1. peifôrm an SRR step
2. coqute the residuals
3 check convergence, resetting L if necessary
4.. if L > NV or IT ~ MA.XIT then leave srr
5. ’ calculate ~~rSRR6. calculate DØRT and NXTØRT
7. Q=A Q ; IT— IT+l
8. orth : loop until IT = NXTSPR

1. power: loop until IT = N)(TØRT
1. .ftA~ - A”Q
2. Q = A Q
3. IT = IT+l

end power
2~ orthogonalize Q
3. NXTØRT = mm (NXTSRR, IT+DØRT)

end orth
end srr
~~ NV = L-l

srrit

The details of thi s outline are as fol lows (the numbers corr espond to the

statements in the a].goritlin).

2.3. If START < 0 then Q is initialized using the function RAND~ 1.

If START ~ 0, the columns of Q are orthogonalized by the subroutine ØRfll.

- - r



3. This is the main loop of the program. Each time it is executed

an SRR step is performed and convergence is tested.

3.1. The SRR step is performed by the subroutine SRRSTP , which

returns the new Q and A*Q, as well as T and its eigenvalues.

3.2. The residuals are computed by the subroutine RESID.

3.3. The algorithn for determining convergence is the following.

Starting with the L-th eigenvalue, the subroutine GR~W is called to deter-

mine a group of nearly equimodular eigenvalues, as defined by the parameter

GRPTØL. The same is done for the old eigenvalues from the last SRR step.

If the groups have the same number of eigenvalues and the average value of

the eigenvalues has settled down (CNVTØL), then the residuals are averaged

and tested against EPS. If the test is successful , L is increased by

the number in the group, and the tests are repeated. Otherwise control is

passed to statement

3.4. where the two termination conditions for SRRIT are tested.

3.5. The iteration at which the next SRR-step is to take place

(NXTSRR) is determined as follows. NXTSRR is tentat ively set equal to

5~ppp~ *~~~• If the number of eigenvalues in the new and old groups corre-

sponding to the next set of unconverged eigenvalues is the same, the RMS

average of the norms of the residuals of each group is calculated

(ARSD, ~6ØRSD). If ARSD < EPS, then NXTSRR - IT+l. If ARDS > AØRSD, then

NX’lSRR STPFAC*IT. Otherwise

NXTSRR - min (IT+ALPHA+BETA*DSRR,STPFAC*IT)

where

. ‘ 
5 -

.
- ’ • • T. ~~~~~- ‘~ -‘

‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~
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L 
- 

DSRR = (ORSDX-RSDX) 
~~

Finally NXTSRR is constrained to be less than or equal to MAXIT.

3.6. The interval DØRT between orthogonalizations is computed from
(3.3) : -

DØRT = max (l ,ØRTFØL/log10 k(T)),

where the condition number k(T) is calculated by the function C~ND.
The next orthogonalization occurs at

NXTØRT = min (IT+DØRT,NXTSRR)

3.7. Since the SRR step computes a product AQ, the iteration count
ilust be increased and AQ placed back in Q.

3.8. Loop on- orthogonalizations.

3.8.1. Loop overwriting Q with the product A*Q.

4. Set NV ‘to the nunber of vectors that have actually converged and
return.

~.

- . . ~~~~~ ~~~~~~ 
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5. Auxiliary Subroutines

In this section we shall describe the subroutines called by SRRIT.

Some of these subroutines have been coded in greater generality than is

strictly required by SRR.IT in order to make the program easily modifiable

by the user.

SRRSTP(Q,AQ,A1t~,L,M,N,T,ER,EI ,TYPE,ØER,OEI,Ø’IYPE)

This subroutine performs an SRR step on columns L through M of

Q. After forming AQ and T = QT (4Q) , the routine calls ØRTHES, ØRTRAN ,

and W~R3 to reduce T to ordered quasi-triangular form. The triangularizing

transformation is postnultiplied into Q and AQ. The eigenvalues frau the

last step are stored in the arrays ØER, ØEI and ~ FYPE , and the new eigenvalues

are placed in the arrays ER, El, and TYPE.
RESID(Q,AQ,T,RSD,RSDX,ØRSD,ØRSDX,L1,L2,M,N,IT,TYPE)

This subroutine computes the norm of the residuals (3.2) for columns

Ll through L2 of Q. The old residuals and their iteration numbers are

saved in the arrays ØRSD and ØRSDX. The I-th entry of the array RSDX is

set to IT depending on whether or not TYPE(I) ? 0. For a complex pair of

eigenvalues, the J~s~ average of the norms of their two residuals is re-

turned.

GRØiJP (ER ,EI ,TYPE ,GRPTØL,L,M,N ,NGRP,CTR,AE)

This subroutine locates a group of approximately equimodular eigenvalues

The eigenvalues so grouped satisfy

— J X~ -cTR
I 5 GRP’IDL*CTR (i—L ,L+l ,...,L+NGRP-l)

;

5 

S

‘.‘‘~~~~ 

~~~~~~~~~~~~ ~~~~~~~
‘ ‘: 
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The mean of the group is returned in AE.

ØI~1}1 (AQ ,Q, L ,M,N)

For J = L,L+l,.. . ,M this subroutine orthogonalizes the J-th column

of P~ with respect to columns l,2,...,L-l of Q and columns

L,L+l,... ,J-l of AQ. The results are returned in Q. The method used

is the modified Gram-Sclinidt method with reorgonalization. No more than

NTRY reorthogonalizations are performed, after which the routine executes

a STØP. The routine will also stop if any column becomes zero .

RANL~ 4(SEED)

This function subpr~gram returns a floating-point pseudo-random number

between 0 and 1. It is used to initialize Q.

-‘ ~zS~~

if_
_ _ _ _  

_
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6. Numerical Examples

The program described above has been tested on a number of problems.

In this section we give two examples that illustrate the flexibility of

the method and its ability to deal with equimodular eigenvalues.

The first example is a random walk on an (n+l) x (n+1) triangular

grid, which is illustrated below for n = 6.

6 .
5 .
4 .

3 . . .
2 . — . .
1 — . . . —
0 . . . . . .

v / h O  1 2 3 4 5 6

The points of the grid are labelled (v,h) (v— 0,...,n-h; h”O,...,n). From

the point (v,h), a transition may take place to one of the fot~ adjacent

points (v+l,h), (v,h+l), (v-i ,h), and (v,h-l). The probability of j umping

to (v-1,h) or (v,h-1) is

(6.1) pd(v,h) - (v+h)/n 
S

with the probability being split equally between the two points when both

are on the grid. The probability of jumping to (v+].,h) or (v,h+l) is

(6.2) pu(v,h) — 1 - pd (v,h)

with the probability again being split when both points are on the grid.

~~~~. ~~~
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If the (n+I) (n+2)/2 nodes (v,h) are numbered 1,2,... , (n+l) (n+2) /2
in sane fashion , then the random walk can be expressed as a finite Markov

chain whose transition matrix A consists of the probabilities 
~~ 

of

jumping from node j to node i (A is actually the transpose of the

usual transition matrix; see [4]). To calculate the i-th element of the

vector Aq one need only regard the components of q as the average

number of individuals at the nodes of the grid and use the probabilities

(6.1) and (6.2) to calculate how many individuals will be at node i

after the next transition.

We are interested in the steady state probabilities of the chain,

which is ordinarily the appropriately ~scaled eigenvector corresponding to

the eigenvalue unity. However, if we number the diagonals on the grid

that are parallel to the hypotenuse by 0,1,2,.. . ,n, then an individual

on an even diagonal can only j t.rip to an odd diagonal, and vice versa. This
means that the chain is cyclic with period two. Computationally it means
that A has an eigenvalue of -l as well as +1.

To run the probl’mi on SRRIT, the nodes of the grid were matched with

the components of the ve~tor q in the order (O,0),(l,O),...,(n,0),(0,].),

(l,l),...,(n,l),(0,2) The subroutine that computes AQ is listed
in the appendix. Note that the matrix A is never explicitly used; all
computations- are done in terms of the transition probabilities (6.1) and
(6.2). The use of a coninon block to transmit information from the program

~that called SRRIT is typical.

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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The problem was run for a 30 x 30 grid which means N = 496. We

took M = 6, NV = 4, and El’S = lO~~. The results for each iteration in

which an SRR step was performed are summarized in the following table.

The variables ER and 131 are the real and imaginary parts of the

eigenvalues and RSD is the norm of the corresponding residual. CTR

is the center of the current convergence cluster, AE is the average

value of the eigenvalues in the cluster, and ARSD is the 1~1S average

of the residuals. DSRR is the number of iterations to the next SRR

step and DØRT is the number to the next orthogonalization.

~

-

I

. 

-
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IT = 0

ER .9457+00 - -.9096-01 -.4841-01 .3469-01 .3469-01 -.1921-01
El 0 0 0 .1617-01 -.1617-01 0
RSD .38+00 .60+00 61+00 59+00 .59+00 .63+00
CTR .9457+00
AE . 9457+ 00 DSRR=5 DØRT=l

SARSD .38+00

I T = 5

ER , .1012+01 
- 

-.3912+00 .2400+00 -.1800+00 .1371+00 .3517-01
El 0 - 0 0 0 0 0
RSD .19+00 .84+00 .93+00 .89+00 .91+00 .93+00
CTR .1012+01
AE .1012+01 DSRR=5 DØRT=1

ARSD .19+00
- 

- IT = lO

ER .1017+01 -.5987+00 -.3499+00 .3251+00 .9255-01 .5706-01
El - 0 0 0 0 0 0
RSD .12+00 .75+00 .89+00 .92+00 .95+00 .95+00
CTR .1017+01

AE .1017+01 ‘ DSRR=l0 D0RF=l
ARSD .12k00

IT = 20

ER .1009+01 ‘ -.8751+00 .5175+00 -.5124+00 .3747+00 -.1485+00
El 0 0 0 0 0 0
RSD .58=01 .46+00 .82+00 .84+00 .88+00 .94+00
CTR .1009+01
AE .1009+01 DSSR=20 DØRT=2

ARSD .58-01

IT = 40

ER .1001+01 -.9843+00 .9195+00 -.9144+00 .7946+00 -.5166+00
El 0 0 0 0 0 0

RSD .23-01 .14+00 .37+00 .40+00 .55+00 .95+00
CTR .1001+01

AE .~.00l+0l DSSR—40 DØRT—l
ARSD .23-01

S -

~~~~~~~~~~~~~~~~~~ • 
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I T = 8 0

ER .1000+01 -.9998+00 .9935+00 -.9934+00 .8734+00 .2408+00
El 0 0 0 0 0 0

RSD .74-02 .29-01 .36-01 .78-02 .43+00 .92+00
CTR .1000+01
AE .1991-93 DSRR=80 DØRT=3

ARSD .21-01

IT = 160

ER -.1000+01 .1000+01 .9935+00 -.9935+00 .9470+00 - .2138+00
El 0 0 0 0 0 0

RSD .56-03 .13-02 .38-03 .70-03 .23-03 .94-03
CTR .1000+01
AE -.1304-04 DSRR=l35 DØRT=2

ARSD .10-02

IT = 295

ER -.1000+01 .1000+01 .9935+00 -.9935+00 .9755+00 -.9738+00
El 0 0 0 0 0 0
RSD .30-04 .37-05 .13-05 .12-03 .84-02 .57-01
CTR .1000+01 .9935+00
AE -.1863-06 .1080-06 DSRR=30 D0RT=30

ARSD .21-04 .83-04

IT = 325

ER -.1000+01 .1000+01 .9935+00 -.9935+00 .9755+00 -.9751+00
El 0 0 0 0 0 0
RSD .70- 05 .82-06 .35-06 .34-04 .39-02 .26-01
CTR .1000+01 .9935+00
PE -.4470-07 .7451-07 DSRR=23 DØRT=23

ARSD .50-05 .24-04

IT — 348

ER .9935+00 - .9935+00 .9755+00 - .97 54+00
El 0 0 0 0

RSD .12-06 .12-04 .21-02 .15-01
CTR .9935+00

AE .1118-06
ARSD .88-05

- 
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The course of the iteration is unexceptionable. The program doubles

the interval between SRR steps until it can predict convergence of the

first cluster corresponding to the eigenvalues ±1. The first prediction

falls slightly short, but the second gets it. After a third prediction

the program terminates on the convergence of the second group of two eigen-

values.

It should be noted that the eigenvalue -l has appeared as the

dominant one. A transformation bringing the eigenvector corresponding to

1 can be obtained by calling EXCHNG of [fl] to interchange the eigenvalues

1 and -l (however, in this case the eigenvector corresponding to 1 is

just the absolute value of the eigenvector corresponding to -1) .

Without actually making timing runs , it is difficult to predict how

imzch work is entailed in finding the eigenvalues. For example, runs were

made with M = 2,4,6,8, which gave the following table of iterations

required for the convergence of the first group of two eigenvalues.

m it m•it

2 1737 3474
4 523 2092

- 
- 

- 
‘ 6 325 1950

8 188 1504

As predicted by the convergence theory, the number of iterations decreases

as m increases. However , as m increases we nust also nultiply more

coli.mms of Q by A, and for this part icular problem the iuther m• it is

probably a better measure of the amount of work involved. From the table it

is seen that this measure is also decreasing, although less dramatically than

_____ - 
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the number of iterations. This of course does not include the overhead

generated by SRRIT itself , which increases with m and may be considerable.

The second example shows how SRRIT can be used in conjunction with

the inverse power method to find the smallest eigenvalues of a matrix.

Consider the boundary value problem

S 

y”~~~
2y = O ,

(6.3) y(0) = 0

- y’(0)+~~~’(l)=0 , 0<~~ < l .

S - 
The eigenvalues of this problem are easily seen to be given by

i cosh~~ (-y 1)

which are complex. The following table lists the reciprocals of the first

eight eigenvalues for y = 0.01.
-

S -2 -2
-~ lI.L I

-0.01264 ± 0. 02313i .02636

- 0.004446 ± 0.007308 .008544- 
(6.4)

0.002895 ± 0.002204 .003638

0.001740 ± 0.0008901 .001954

The solution of (6.3) can be approximated by finite difference

techniques as follows. Let y~ denote the approximate solution at the

point x~ — i/ (n+l) (i—0 ,l,...,n+l) . Replacing the derivatives in (6.3)

with three point difference operators , we obtain the following generalized

matrix eigenvalue problem for y = (y1,y2, . .. ,y~~1)T:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_

,
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, 
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- 

- A y +~~
2B y= 0 ,

where

-2 1
1 -2 1

A =  

0~~~~~~~

- 

4 1 0...0 ‘r -4~r 3~r

and B = h2 diag (1,1,... ,l,0). We may recast this problem in the form

where C = A ’B.

To apply SRRIT to this problem, we nust be able to compute z = Cq for

- any vector q. This can be done by solving the linear system

Az Bq ,

- - which is easily done by sparse Gaussian elimination.

The problem was run for n = 300 with M = 6, NV = 4, and El’S = l0~~.
S The results were the following:

~~~ —~~~- -~~~~~~~-S
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I T = 0

ER -.1525+00 .1179-02 .1548-03 .9887-04 .9887-04 .2577-04
El 0 0 0 .5598-04 - .5598-04 0
RSD .15+00 .85-02 .65-02 .15-01 .15-01 .71-02
CTR .1525+00

AE - .1525+00 DSRR=5 DØRT=1
ARSD .15+00 

-

IT= 5

ER - .1264-01 -.1264-01 .4438-02 .4438-02 .3104-02 .3104-02
El .2313-01 -.2313-01 .7323-02 -.7323-02 .2402-02 -.2402-02

RSD .85-07 .85-07 .81-05 .81-05 .20-03 .20-03
~TR .2636-01

AE .1264-01 DSRR=5 DØRT=l
ARSD .85-07

IT = 10

ER -.1264-01 -.1244-01 .4447-02 .4447-02 .2909-02 .2909-02
El .2313-01 -.2313-01 .7308-02 -.7308-02 .2204-02 -.2204-02

RSD .60-08 .60-08 .16-07 .15-07 .93-05 .93-05
CFR .2636-01 .8555-02
AE -.1264-01 .4447-02

ARSD .60- 08 .15-07

f Given the extremely favorable ratios of the eigenvaiues in Table (6.4)

--the absolute value of the ratio of the seventh to the first is about .075

- - it is not surprising that the iteration converges quickly. -Indeed the

. only thing preventing convergence at the fifth iteration is that the first

eigenvalue changed from real in the first iteration to complex in the fifth.

• This -the problem is hardly a fair test of machinery of SRRIT. However, it is

L an excellent example how easy it is to apply SRRIT to a problem with complex

eigenvalues. It also disposes of the notion that large eigenvalue problems

nust always require a large amount of work to solve; the factor that limits

— 
. the size of n is the storage available, not the time required to compute Ax.

,_
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Algorithms
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SUBR OUTINE SRRIT (Q ,AQ ,ATO ,N ,NV ,II ,EPS ,MAX !T,START ,T ,
1 ER ,EI.TYPE ,RSD ,RSDX ,WR ITE)

C
C PARAMETER S IN THE CALLING SEQUENCE
C

INTEGER N ,NV ,M~MAXIT~START ,TYPE(1O ,RSDX (1O
REAL 0 (5OO ,1O),AQ(~ OO ,1O),EPS ,T (1O ,1O),ER (1O) .€I (1O),RSD(1O)
LOGICAL WRITE
EXTERNAL ATO

C
S C SRRIT IS A FORTRAN SUBROUTINE TO COMPUTE A NESTED SEQUENCE

C OF ORTHONORMAL BASES FOR THE DOMINANT INVARIANT SUBSFACES OF
C A REAL MATRIX A OF ORDER N. SPECIFICALLY . THE PROGRAM RETURNS
C AN NXNV MATRIX 0 WITH ORTHONORMAL COLUMNS AND AN NV X NV MATRIX T -•
C SATISFY IN G
C
C A*O • 0*1 + O (EPS).

S C
C THE MATRIX T IS QUA SI—TRIAN GULAR , THAT IS IT IS BLOCK

• C TRIANGULAR WIT H IX 1 AND 2X2 BLOCKS ON ITS DIAGONAL . THE
C EIGENCALUES IN THE 1X 1 BLOCKS ARE REAL . THE 4C THE EIGENVALUES IN THE 2X2 BLOCKS ARE COMPLEX CONJUGATE *
C PAIRS. THE EIGENVALUES E d ) ,  E (2)~~..., E(N) ARE ORDEREDC SO THAT
C
C AB S (E(1))- .GE. AB8 (E (2)) ,GE....,,.GE . ABS(E (NV )),
C
C AND THESE EIGENVALUES APPROXIMATE THE LARGEST EIGENVALUES
C OF A. THESE FACTS HAVE THE FOLLOWING CONSEQUENCES.

C 1. IF E (L) .NE. E (L+1) AND E (L) .NE. CONJ (E (L+ i))~
C THEN COLUMNS 1,2,...,L OF 0 FORM AN APPROXIMATE
C BASIS FOR THE INVARIANT SUBSPACE CORRESPONDING TO
C THE L LARGEST EIGENVALUE S OF A. THE LXL LEADING
C PRINCIPAL SUBMATR IX OF I IS A REPRESENTATION OF S

C A IN THAT SUBSPACE WITH RESPECT TO THE BASIS 0.
— S C
S . C 2. IF Z IS A N EIGENVECTO R OF I CORRESPONDIN G TO E~

C THEN Q*Z IS AN APPROXIMATE EIOEN VECTOR OF A
C CORRESPONDING TO E.S 
c
C THE PROGRAM ACTUALLY ITERATES WITH AN NXM MA TRIX 0
C AND AN M XM MATRIX T. SINCE THE RATE OF CONVERGENCE

- 

- 
C OF THE L— TH COLUMN OF 0 IS ESSENTIALLY LINEAR WITH
C RATIO AB8 (E (M+ 1 /E (L)). IT MAY PAY THE USER TO SET M
C LARGER THAN THE NUM BER S NV~ OF V ECTOR S HE WANTS TO
C COMPUTE .
C
C THE USER MUST FURNISH A SUBROUTINE TO COMPUTE THE
C PRODUCT A*Q . THE CALLING SEQUENCE IS
C
C CALL ATO (Q.AO~L1.L2)
C
C FOR .J.L1,L 1+i....,L2 THE PROGRAM MUST PLACE THE PRODUCT S

C A*Q (*,J) ZN AO ( *,J) .  S

S
t C

• C THE PARAMETERS IN THE CALLING SEQUENCE OF SRRIT ARE
C (STARRED PARAMETERS ARE ALTERED BY THE PROGRAM )
C

S C *0 AN ARRAY THAT ON RETURN CONTAINS THE
S 

- • C ORTHONORMAI. VECTORS DESCRIBED ABOVE. 
- INITIALLY

C 0 MAY CONTAIN A STARTING APPROXIMATION
C (CF. START BELOW).
C *AQ AN ARRAY THAT ON RETURN CONTAINS THE PRODUCT

~ ~~~~~~~~~~~C [ 
~~~~~~~~~~~~~~~ 
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C A*0.
C ATO THE NAME OF A SUBROUTINE TO EVALUATE THE

• C PRODUCT A*Q .
C N THE ORDER OF THE MATRIX A.
C *NV THE NUMBER OF VECTORS TO COMPUTE. ON RETURN.
C NV CONTAINS THE NUMBER OF VECTORS THAT HAVE
C CONVERGED.
C N THE NUMBER OF COLUMNS OF 0 TO ITERATE WITH.
C EPS A CONVERGENCE CRITERION.
C MAX IT AN UPPER BOUND ON THE NUMBER OF ITERATIONS
C THE PROGRAM IS TO EXECUTE.
C START AN INITIALIZING SIGNAL . IF START ,LT . 0,
C 0 IS INITIALIZED BY ORTH000NALIZING A SET OF
C RANDOM VECTORS . IF START .GE. 0 THE COLUMNS
C OF 0 ARE USED AS A STARTING APPROXIMATION AND
C IF START .GE. 1 THEY ARE ALSO ASSUMED TO BE
C ORTHONORMAL.
C *1 ON RETURN T CONTAINS THE REPRE SENTATION OF A
C DESCRIBED ABOVE.
C *ER AN ARRAY THAT ON RETURN CONTAINS THE REAL PARTS
C OF THE EIGENVALUES OF T.
C *EI AN ARRAY THAT ON RETURN CONTAINS THE COMPLEX PARTS
C OF THE EIGENVALUES OF T.
C *TYPE AN INTEGER ARRAY. ON RETURN TYPE (L) CONTAINS
C 0 IF THE L—TH EIGENVALUE IS REAL
C 1 IF THE L—TH EIGENVALUE IS THE FIRST OF
C A COMPLEX CONJUGATE PAIR.
C 2 IF THE L—TH EIGENVALUE IS THE SECOND OF
C A COMPLEX CONJUGATE PAIR.
C — 1 IF THE L-TH EIGENV ALUE WAS NOT CORRECTLY
C DETERMINED.
C
C *RSD AN ARRAY THAT ON RETURN CONTAINS THE 2-NORMS OF
C THE RESIDUAL VECTORS A *Q (*vL) - Q*T(*,L).
C *RSDX AN INTEGER ARRAY THAT ON RETURN CONTAINS
C THE ITERATION S AT WHICH THE RESIDUALS WERE COMPUTED.
C WRITE A LOGICAL PARAMETER THAT , IF TRUE, CAUSES
C INFORMATION ABOUT THE COURSE OF THE ITERATION TO BE
C WR ITED ON UNIT 6.
C
C
C CONTROL PARAMETERS
C

INTEGER INIT .SEED
REAL ALPHA ,BETA . CNVTOL , GRPTOL , ORTTOL ,STPFAC

C
C INTERNAL VARIABLES
C

INTEGER DORT ,DSRR,I,IT .J .L ,NGRP ,NOGRP .NXTORT .
I NXTSRR ,ORSDX (1O)~ OTYPE (1O)
REAL AE ,AOE ,AORSD ,ARSD ,CTR ,OCTR ,OEI (1O) ,OER (1O),ORSDUO)

C
C INITIALIZE CONTROL PARAMETERS
CS 

IN I T — 5
STPF AC — 2.
SEED • 6,
ALPHA - 1.
BETA — 1.1
GRPTOL — .001
CNVTOL — .001
ORTTOL — 2.

C
C INITIALIZE
C

L 1

Si - 
-
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00 10 J 1.M
RSD(J) • 0.

• RSDX(J ) — — 1
TYPE(J) • — i

10 CONTINUE
IF(START .GE. 0) GO TO 40

• DO 30 J 1.M
DO 20 I=1.N

Q(I.J) — RANDOM(SEED )
20 CONTINUE
30 CONTINUE
40 CONTINUE

IF (START .GT. 0) 60 TO 50
CALL ORTH (Q,1 ,M ,N )

50 CONTINUE S

C
C SRR LOOP

• C
.

5- 100 CONTINUE
IF (WR ITE ) WRITE (6,2000) IT.L

2000 FORMAT (/1OH SRR IT .I5.~ H L — ‘13)
CALL SRRSTP (Q,AO ,ATQ ,L .M,N .T .ER .EI,TYPE ,OER ,OEI .OTYPE,

1 WRITE)
CALL RESID(Q.AQ ,T ,RSD ,RSDX .ORSD~ORSOX .L .M.M .N ,ITvTYPE .

1 - WRITE)
C
C TEST FOR CONVERGENCE
C

110 CONTINUE
S 

CALL GROUP(ERpEI ,TYPE.RSD.GRPTOL ,L .M .N .
1 NGRP ,CTR ,AE .ARSD .WRITE )

CALL GROUP (OER ,OEI ,OTYPE .ORSD ,GRPTQL ,L ,M ,N ,
1 NOGRP ,OCTR .AOE .AORSD.WRITE)

IF~N6RP .NE. NOGRP) GO TO 130
IF(N GRP .EQ, 0) GO TO 130
IF (ABS (AE—AOE ) .GT. CTR*CNVTOL *FLOAT (RSDX(L —ORSDX (L) ))

1 GO TO 130
IF( ARSD .61. EPS) GO TO 130
L L + N GRP
IF(L .01. M) GO TO 130

00 10 110
130 CONTINUE

IF (WR ITE ) WRITE (6,2000) IT.L
C
C EXIT IF THE REQUIRED NUMBER OF VECTORS HAVE CONVERGED.
C

S - IF(L .GT. NV) GO TO 300
C
C EXIT IF ITERATI ON COUN T EXCEEDS THE MAX IM UM NUMBER

- C OF ITERATIONS .
C

IF (IT .GE. MAX IT) GO TO 300
p C

S C DETERMINE WHEN THE NEXT SRR STEP IS TO BE TAKEN.
C

NXTSRR — AMAXZ(STPFAC*FLOAT (IT).FLOAT (INIT))
NXTSRR • MINO(MAX IT .NXT SRR )
DSRR • NXTSRR -IT
IF(NGRP .ME . NOGRP) GO TO 150
IF (NGRP .EQ. 0) GO TO 150

IF (ARSD.GE .AOR SD) GO TO 150
DSRR • ALPHA + BETA*FLOAT (ORSDX (L)-RSDX(L ) )*ALOG (ARSD/EPS )/

I ALOG ( ARSD/AORSD )
DSRR • MAXO (1,D SRR)

130 CONTINUE

J
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NXTSRR • M INO (NXT SRR ,IT+DSRR )
C
C DETERMINE THE INTER V AL BETWEEN ORTHOGONAL IZA T IONS
C

DORT — AMAX1 (1. ,0RTTO~/ALO G10 (COND(T,MipWR ITE)) )
NXTORT • MINO (IT+OORT ,NXTSRR )

IF (WRITE ) WR ITE (6,2001) IT ,NXTSRR.NXTORT
2001 FORNAT (/1OH SRR IT — ,I5.10H NXTSRR — .15.1014 NXTORT •,I5)

DO 157 J=L ,M
DO 153 I.1,N

0(I,J) = AO (I,J)
153 CONTINUE
157 CONTINUE

IT • 11+1
C
C ORTHOGONALIZATION LOOP .
C

160 CONTINUE -
C
C POWER LOOP
C

170 CONTINUE -

1F (IT .EQ. NXTORT) GO TO 200
CALL ATQ (Q,AO.L .M)
DO 190 J—L ,M
00 180 I=1.N

Q(I.J) A0(I,J)
180 CONTINUE
190 CONTINUE

IT IT + 1 -

GO TO 170
200 CONTINUE

CALL ORTH (OvL ,M ,N )
NXTORT • M INO (IT+DORT .NXTSRR )

ZF (IT .LT. NXTSRR ) GO TO 160
GO TO 100

300 CONTINUE
NV = L—1
RETURN
END

SUBR OUTINE SRRSTP (Q ,AQ ,ATQ ,L ,M ,N ,T ,ER ,EI ,TYPE ,
1 OER ,OEI ,OTYPE ,WRITE )

C
C PAR AMETERS IN THE CALLING SEQUENCE .
C

INTEGER L ,M.N .TYPE (10),OTYPE(10)
REAL Q (500,10),AO (500,10),T(1O,1O) .ER(10),EI (10).

1 OER (10),OEI (10)
LOGICAL WRITE
EXTERNAL ATQ

C
C SRRSTP PERFOR MS A SCHUR-RAYLEIGH—RITZ REFINEMENT ON
C THE SET OF N ORTHONORNAL N—VECTORS CONTAINED IN
C THE ARRAY 0. FIRST THE SUBROUTINE ATQ IS CALLED
C TO GENERATE THE PRODUC T OF THE M ATRIX A AND THE
C VECTORS 0 IN THE ARRAY 0. THEN THE MATRIX
C T TR (0)*A Q IS REDUCED TO ORDERED QUASI—TRIANGULAR
C FORM BY THE SUBROUTINE OTHES~ ORTRAN AND HQR3 .
C THE REDUCING TRANSFORMATION V IS POSTMULTIPLIED
C INTO 0 AND AG TO GIVE THE REFINDED VECTORS IN U AND
C THEIR PRODUCT WITH A IN AU . IT IS ASSUMENLD THAT IT IS
C NECESSARY TO WORK WITH ONLY COLUMNS L THROUGH II OF T.
C THE INFORMATION CONTAINED IN PO SITIONS L THROUGH N
C OF THE ARRAYS ER , El. AND TYPE IS STORED IN THE

- -

- S .-
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C CORRESPONDING POSITIONS OF THE ARRAYS OER . DEl AND OTYPE.
C

• C INTERN AL VARIABLES
S C

INTEGER I.J.K
REAL AP (1O) ,P (10)~ V (10,1O ,MCHEPS

• . C
IF (WRITE ) WRITE (6,2000) L

2000 FORMAT (/12H SRRSTP L —.15)
MCHEPS • 1.

3 CONTINUE
IF (MCHEPS+1. .EQ. 1.) 60 TO 5
NCHEPS • MCHEPS/2.
GO TO 3

5 CONTINUE
C
C SAVE THE OLD EIGENVALUES .
C

DO 10 J L .N
OER (J) ER (J)
OEI (J) • EI (J)
OTYPE (J) = TYPE (J)

10 CONTINUE
C
C CALCUL ATE THE NEW I. S

C
CALL ATQ (Q.AQ .L ,M )
DO 40 J L.M

DO 30 I l.M
T(I,J) • 0.
DO 20 K.1.N

T(I,J) • T (I.J) + Q(K ,I)*A0 (K.J)
20 CONTINUE
30 CONTINUE
40 CONTINUE

C
C TRIANGULARIZE T
C
C

CALL ORTHES (10.M ,L .M .T.P)
CALL ORTRA N (1OrM ,L ,M. T .P.V
CALL HQR 3 (T ,V.M ,L ,MrMCHEP S,ER .EI,TYPE ,1O ,j0)
IF (.NOT.WRITE) GO TO 48
WRITE (6. 1001)
DO 43 I=1.M

WRITE (6,1000) (T (IpJ) ,J 1.M)
43 CONTINUE

WRITE (6,1002)
00 45 I=1.M

S WRITE (6.1000) (V (I,J),J 1.M )
45 CONTINUE

WRITE (6.1003)
S WRXTE(6.1000) (ER(I) ,I—L .M)

URITE (6.1004)
WR ITE (ov1000) (EI (I).I—1.M)
URITE (6.1005)
WR ITE(6.1100) (TYPE (I).I.1.M)

1000 - FORNAT (/IH .10E12.4)
1001 FORNAT (//2H 1)

S - 1002 FORNAT (//2H V )
1003 FORMAT (//3H ER)
1004 FORMAT (314 El)
1005 FORMAT (//5H TYPE~• 1100 FORPIAT (/IH .10112)

C
48 CONTINUE

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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C
C TRANSFORM 0 AND AG
C

DO 80 I—1.N S

DO 60 J L ,M
P (J) = 0. 5

AP(J) = 0.
DO 50 X 1,M

P (J) P(J) + Q (I.K)*V (K.J)
AP (J) AP(J) + AQ(I .K)*V (K,J)

50 CONTINUE -

60 CONTINUE
DO 70 J L .M

Q (I.J) = P (J)
AQ (I,J) = AP (J)

70 CONTINUE
80 CONTINUE

S RETURN
END

SUBR OUTINE GROUP (ER ,EIpTYPE .RSO.GRPTOL ,L ,M,N .NGRP,CTR ,AE,ARSD .
1 WRITE )

C
C PARAMETERS IN THE CALLING SEQUENCE .
C

INTEGER TYPE (10).L ,M ,N .NGRP
REAL ER( i0) .EI(1O),RSD (10),GRPTDL ,CTR .AE.ARSD
LOGICAL WRITE S

C . -

C GROUP IS A SUBROUTINE TO FIND A CLUSTER OF COMPLEX
C NUMBERS W HOSE REAL PARTS ARE CONTAINED IN THE ARRAY
C ER AND IMAGINARY PARTS ARE CONTAINED IN THE ARRAY El.
C THESE NUMBERS ARE ASSUMED TO DE STORED IN DESCENDING
C ORDER OF MAGNITUDE. NGRP IS DETERMINED AS THE LARGEST
C INTEGER LESS THAN OR EQUAL TO N FOR WHICH THE ABSOLUTE
C VALUE E (J) OF THE NUMBER ER (J)+EI (J)*I SATISFIES
C
C - E (L) — E(L+NGRP— 1) <— GRPTOL / 2.
C
C AND FOR WHICH TYPE (L),TYPE (L+1),...,TYPE (L+NGRP— 1) IS
C NONNEGATIVE. IF NGRP O. THE SUBROUTINE RETURNS
C CTR—AE—ARSD=O. IF NGRP .NE.O , CTR IS SET TO
C (E (L)+E (L+NGRF—1))/2 . AE TO THE AVERAGE OF THE
C NUMBERS ER+EI*I. AND ARSD TO THE RMS AVERAGE OF
C RSD (L) ,RSD(L+1), . . . ,RSD (L+NGRP—1).
C
C
C INTERNAL VARIABLES.
C S

INTEGER J.L1
REAL MOD ,MOOi
NGRP — 0
NOD — SQRT(ER (L)**2 + EI(L)**2)
CTR 0.

10 CONTINUE
L i L + NGRP
IF(L 1.GT.N ,OR . TYPE (L.1).LT.O; GO TO 20
NOD1 — SQRT (ER(L1)$*2 + EI(L1)**2) - 

-

IF(ABS (MOD—MOD 1) .GT . GRPTOL* (MOD+M0019 ) GO TO 20
CTR — (MOD + MODi)/2. - 

-

NGRP • NGRP + TYPECL I) + 1
GO TO 10

20 CONTINUE
* E .O .
ARSD • 0.

~~-~~S S 
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IF (N GRP .EQ. 0) GO TO 40
- S Li — L+NGRP-1

00 30 J L.L1
AE AE + ER(J)
ARSD = ARSD + RSD(J)**2 S

30 CONTINUE
— 

AE — AE/FLOAT (NGRP)
• ARSD — SQRT (ARSD /FLOATCNGRP ))

40 CONTINUE
WRITE (6.2000) NGRP .CTR ,AE ,AR SD

2000 FORMAT (/14H GROUP NGRP = ,I5~7H CTR =.E12.4.6H AE —.E12.4,
i 814 ARSD =~E12.4)
RETUR N
END

SUBROUTINE RESXE I (Q .AQ ,T .RSD.RSDX .ORSD .ORSDX .L1 .L2 ,M ,N. IT .TYPE.
I WRITE )

C
C PARAMETERS IN THE CALLIN G SEQUENCE.
C

2 INTEGER RSDX (iO) .ORSDX(1O),L1.L2 .M .N ,IT .TYPE (iO)
REAL 0(500,10) .AQ (500,10) .1(10.10) ,RSD(i0) .ORSD (10)
LOGICAL WRITE

C
C RESID COMPUTES RESIDUALS CORRESPONDING TO EIGENVALUE S
C Li THROUGH L2 OF THE QUASI—TRIANGULAR MATRIX T OF
C ORDER N. SPECIFICALLY IF T(*.J) IS THE J— TH COLUMN
C OF T. RSD (J) IS SET TO NORM (AQ (*,J)—QT(* .J)). WHERE THE
C NOR M IS THE EUCLIDEAN NORM , THE INDEX RSDX (J) IS SET
C EQUAL TO IT. IF THE J— TH EIGENVALUE IS COMPLEX
C (TYPE (J) = 1) THE RMS AVERAGE OF RSD (J) AND RSD (J+i) S

C IS PLACED IN RSD (J) AND RSD (J+i) . THE INITIAL VALUES OF
C RSD AND RSDX ARE STORED IN ORSD AND ORSDX .
C
C
C INTERNAL VARIABLES
C

INTEGER I,J.K ,KU
REAL S

C
IF (WRITE) WRXTE (6,2000) L1~ L2

2000 FORNAT (/12H RESID Li — .I5.ÔH L2 — .15)
IF (L1 .GT. L2) RETURN
DO 30 JL1.L2

ORSD (J) = RSD(J)
ORSDX (J) = RSDX (J)

KU = MINO (J+1.N)
IF(TYPE (J) ,EQ. 0) KU — J• f - RSDX (J) IT

S 
RSD (J) — 0.
DO 20 I—1 ,N

S — 0.
DO 10 K.1.KU
S • S + Q(I,K)*T(K,J)

iO CONTINUE
RSD (J) • RSD (J) + (AQ(I ,J)-S)**2

20 CONTINUE
30 CONTINUE

• DO 50 J LI.L2
IF (TYPE (J) .NE. 1) 00 TO 40
RSD (J) — (RSD (J) + RSD (J+i))/2 .
RSD(J+1) • RSD (J)

40 CONTINUE
• RSD (J) • SQRT(RSD(J))

50 CONTINUE

~~~~~
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iF (.NOT. WRITE) GO TO 60
WRITE (6. 1000)
WRITE(6.i0O1) (RSD (I)pI—i ,M)

S 
• WRITE (6.1002)

WR ITE (6.1003) (RSDX(I),l•i,$)
1000 FORP*AT (//4H RSD)
1001 FORMAT (/1H .10E12.4)
1002 FORMAT (//5H RSDX )
1003 FORNAT (/IH .10112)

C
60 CONTINUE

RETUR N
END

SUBROUTINE ORTH (Q .LpN,N)
C
C PARAMETERS IN THE CALLING SEQUENCE

INTEGER L .M ,N
REAL 0(500,10)

C
C ORTH ORIHONOR MAL IZES COLUMNS L THROUGH N OF THE ARRAY
C Q WITH RESPECT TO COLUMN 1 THROUGH M . COLUMNS 1
C THROUGH L—1 ARE ASSUMED TO BE ORTHONORMAL . THE METHOD
C IS THE GRAM—SCHMIDT METHOD WITH REORTHOGONCELIZATION.
C A COLUMN IS ACCEPTED WHEN AN ORTH000NALIZAT I ON DOE S
C NOT REDUCE ITS EUCLIDEAN NORM BY A FACTOR OF MORE
C THAN TOL. IF- THIS IS NOT DONE IN MAXTRY ATTEMPTS
C THE PROGRAM 9TOPS. THE PROGRAM ALSO STOPS IF IT
C ENCOUNTER S A ZER~J VECTOR.
C
C INTERN AL CONTR OL PA RAMETERS
C

REAL TOL
INTEGER MAXTR YS 

C
C INTERNAL VARIABLES
C

REAL NORM ,00
INTEGER I.J..JPI1.K.TRY
MAXTR Y • S
TOL - .5
DO 160 J L.M

C
C ORTH000NALIZE THE J—TH VECTOR
C

JN1 s J— 1
TRY — 0

100 CONTINUE
C
C COMPUTE THE NORM OF THE VECTOR.
C

NORM — 0.
DO 110 I—1.N

NORM — NORM + Q(I.J)**2
110 CONTINUE

NORM • SORT (NORM )
C
C ERROR TEST S

C• IF (NORM .EQ. 0.) GO TO 170
C
C SCALE THE VECTOR .
C

DO 120 IaI,N

~~~~~~~~ 
~~~~~
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Q (I,J) • Q (I.J)/NORM

120 CONT iNUE
C

• C TEST TO SEE IF THE J— TH VE CTOR IS ORTHOGONAL .
C

IF (J .EQ. 1) 00 TO 160
IF (TRY .EQ . 0) NORM — 0.

• IF (NORM ,GT. TOL ) GO TO 160
TRY — TRY + 1
IF (TRY .01. MAXTRY ) GO TO 170

C
C PERFORM ONE MODIFIED GRAM—SCHMIDT STEP .
C S

DO 150 K—1 ,JM 1
0 0— 0 .
DO 130 I—1 ’N

GO = QQ + Q (I.K)*Q(I .J)
130 CONTINUE

DO 140 I—i .N
Q(I.J) Q(I ,J) — QQ*Q (I,K)

140 CONTINUE
150 CONTINUE

GO TO 100
160 CONTINUE

RETURN
C

170 CONTINUE
WRITE (6 .2000

2000 FORMAT (/1414 ERROR IN ORTH )
STOP
END

REAL FUNCTION COND (T,M.WRITE)
C
C PARAMETERS IN THE CALLING SEQUEN CE
C

REAL T(iO.10)
INTEGER N
LOGICAL WRITE

C
C CCND IS A FUNCTION THAT RETURN S THE CONDITION
C NUMBER WITH RESPECT TO THE ROW—SUM NORM OF THE UPPER
C HESSENBERG MATRIX T OF ORDER M .
C
C
C INTERNAL VARIABLES
C

REAL MULT (1O) ,NT ,NTR .NTI,NT1R .T1 (10 .10)
INTEGER I.I1,J ,JM1 ,J1 ,K ,PVT (10)

f MNI M— 1
N T — O .
DO 20 1.1,11

II • MAX O (I—l ’l)
NTR O .
DO 10 J—I1.M

T1 (IvJ) — T (IrJ)
S NTR • NTR + ABS (T(I,J))

10 CONTINUE
NT • ANAX1 (NT,NTRJ

20 CONTINUE
DO 60 I—i ,NN1
PVI (I) • 0
MULT (I) — 0.
IF (Ti(I+i.I) .EQ . 0.) GO TO 60
IF (ABS(Ti(Z+1.Z)).LE . AB8 (T1(I.I))) GO TO 40

I
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PVT ( I) — 1
DO 30 J I.M

S — T1 (I.J)
T1( l.J ) — T1 (I+1.J)
T1( I+i ,J ) • S

30 CONTINUE
40 CON ,~~NUE

NULTC1) — T 1 (I+i.I)/T1(I.I)
T1(I+ 1.I) • 0.
Ii — 1+1
DO 50 J .11.M

T1 (I+ i.J) • T1(I+1 ,J) — MULT (I)*T1 (I.J)
50 CONTINUE
60 CONTINUE

DO 110 J—1. M
IF(Ti (J.J) .NE. 0.) 60 TO 70

COND • 1.E8
RETURN

70 CONTI NUE
Ti (J,J) — 1 ./T1 (J ,J)
IF (J .EQ. 1) GO TO 100

JNI — J— i
DO 90 I 1,JM1
S — 0.
DO 80 K 1.JM1

S • S + Ti (I.K)*T1(K ,J)
80 CONTINUE -

T1(I,J) • —S*T1(J ,J)
90 CONTINUE

100 CONTINUE
110 CONTINUE

DO 160 JJ 1,MN1
J • M—JJ
J1 — J+1 -
IF (MUL T (J) .EQ. 0.) GO TO 130

DO 120 I.1.J1
T1 (X.J ) — T1 (I.J) — MULT(J) *T1(I.J+1)

120 CONTINUE
130 CONTINUE

IF(PVT (J) .EQ. 0) GO TO 150
DO 140 I—1.J1 .

S • T1 (I.J)
Ti(I.J) — T1 (1.J+i)
T1 (I,J+i) — S

140 CONTINUE
150 CONTINUE
160 CONTINUE

NT1 • 0.
DO 180 I 1.M

X M l — MAXO (1.I—1)
NTIR — 0.
DO 170 J—IM1 ,M

NTIR — NTIR + ABS (T1 (I,J))
170 CONTINUE

NTI — AMAX I (NT1,N I1R )
180 CONTINUE

COND NT*NTI
IF (WRITE) WRITE (6.2000) NT .NT IPCOND

2000 FORNAT (/1IH CONO NT .E12.4.61l NT 1— ,E12.4,8H COND — .E12.4)
RETURN
END -

FUNCTION RANDOM (SEED)
INTEGER SEED

I C RANDOM IS A FUNCTION THAT PRODUCES A PSEUDO—RANDOM

— 

- 
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C FL OATING POINT NUMBER IN THE INTERVAL FROM ZERO TO ONE .

SEED • MOD (4621*SEED+21l3,10000)
RANDOM — FLOAT(SEED)/i .E4
RETURN
END

SUBROUTINE 140R3 (A .V .N .NLOW ,NUP ,EPS .ER .EI.TYPE ,NA ,NV
C

INTEGER N.NA ,NLOW.NUP .NV .TYPE (N)
REAL A (NA.N).EI (N) .ER(N) .EFS ,V (NV .N)

C
C HQR3 REDUCES THE UPPER HESSENBERG MATRIX A TO QUASI—
C TRIAN GULAR FORM BY UNITAR Y SIMILARITY TRANSFORMATIONS .
C THE EIGENVALUES OF A , WHICH ARE CONTAINED IN THE 1X 1
C AND 2X2 DI AGONAL BLOCKS OF THE REDUCED MATRIX . ARE
C ORDERED IN DESCENDING ORDER OF MAGNITUDE ALONG THE
C DIAGONAL . THE TRANSFORMATIONS ARE ACCUMULATED IN THE
C ARR AY V. HQR3 REQUIRES THE SUBROUTINES EXCHNGj.
C QRSTEP . AND SPLIT. THE PARAMETERS IN THE CALLING
C SEQUENCE ARE (STARRED PARAMETERS ARE ALTERED BY THE
C SUBRDUTINE )
C
C *A AN ARRAY THAT INITIALLY CONTAINS THE N X N
C UPPER HESSENBERG MATRIX TO BE REDUCED . ON
C RETURN A CONTAINS THE REDUCED. QUASI—
C TRIAN GULAR MATRIX.
C *V AN ARRAY THAT CONTAINS A MATRIX INTO WHICH
C THE REDUCING TRANSFORMATIONS ARE TO BE
C MULTIPLIED.
C N THE ORDER OF THE MATRICES A AND V.
C NLOW A (NLOW— 1.NLOW) AND A (NUP.NUP+U) ARE
C NUP ASSUMED TO BE ZERO. AND ONLY ROWS NLOW
C THROUGH NUP AND COLUMNS NLO W THROUGH
C NUP ARE TRANSFORMED . RESULTIN G IN THE
C CALCULATION OF EIGENVALUES NLOW
C THROUGH NUP.
C EPS A CONVERGENCE CRITERION.
C *ER AN ARRAY THAT ON RETURN CONTAINS THE REAL
C PARTS OF THE EIGENVALUES .
C *EI AN ARRAY THAT ON RETURN CONTAINS THE
C IM AGINARY PARTS OF THE EXGENVALUES .
C *TYPE AND INTEGER ARRAY WHOSE I-TH ENTRY IS
C 0 IF THE I—TH EIGENVALUE IS REAL ,
C 1 IF THE I-TH EIGENVALUE IS COMPLEX
C WITH POSITIVE IMAGINARY PART .
C 2 IF THE I—TN EIGENVALUE IS COMPLEX
C WITH NEGATIVE IMAGINARY PART ,
C — 1 IF THE I—TH EIGENVALUE WAS NOT
C CALCULATED SUCCESSFULLY.
C NA THE FIRST DIMENSION OF THE ARRAY A.
C NV THE FIRST DIMENSION OF THE ARRAY V.
C
C INTERNAL VARIABLES
C

INTEGER I.IT .L .MU .NL .NU
REAL E1,E2,P,Q,R ,S.T ,W ,X ,Y ,Z
LOGICAL FAIL

C
S C INITIALIZE .

• C
00 10 t—NLOW ,NU P

TYPE (I) a —
~~

10 CONTINUE
1 — 0 .

C

- ,1 -

~~~ 
it~~T.~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - T ~~~~~~~~~::~~~~ - ~~~~~~~~~~~~~~



-
. 
• - S - - —~

~~ j$ 
•
~~ 

- 
I’XJIS PA~~ 15 B~ST Q1-~AM1”f P C - ~~~~

A p~i~~ ~~z I ft~13~L~
) TO 1)1)0 ~~~~

- 4 0 -

C MAIN LOOP. FIND AND ORDER EIGENVALUES.
C

NU - NUP
100 IF(NU .LT. NLOW ) GO TO 500

I T — 0 -

C
C OR LOOP. FIND NEGLIGABLE ELEMENTS AND PERFORM
C OR STEPS.
C

110 CONTINUE
C -
C SEARCH BACK FOR NEOLIGABLE ELEMENTS.
C -

L •
120 CONTINUE

ZF (L .EO. NLOW ) GO TO 130
IF (ABS (A(L .L— 1)) .LT. EPS* (ABS (A (L—1.L—1) )+AP8 (A (L ,L))))

1 OO TO 130
L — L—1

GO TO 120
130 CONTINUE

C
C TEST TO SEE IF AN EIGENVALUE OR A 2X2 BLOCK
C HAS BEEN FOUND.
C

X = A (NU .NU )
S IF(L ,EO. NU) GO TO 300
S Y • .A (NU—i ,NU— 1)
• W~- A (NU.NU—1 )*A (NU— 1 ,NU )

IF (L .EQ. NU— 1) GO TO 200
C - -

C TEST ITERATION COUNT . IF IT IS 30 QUIT. IF
C 11 19 10 OR 20 SET UP AN AD—HOC SHIFT .
C .

IF (IT .EQ. 30) 00 TO 500
S I IF(IT.NE.1O .AND. IT.NE.20) GO TO 150

- C
C -, AD—HOC SHIFT.

-• C
- T T + X

- 00 1(0 I-NLOW.NU
A d .!) = A (I,I) — X

140 - 
- CONTINUE

S — ABS (A(NU .NU—1 )) + ABS (A (NU— 1.NU—2))
x — 0.75*8

5’
_ Y — X

• / W — —0 .4375*S**2
150 CONTINUE

IT • IT + 1c -

C LOOK FOR TWO CONSECUTIVE SMALL SUB—DIAGONAL
C ELEMENTS.
C

NL .NU-2 
- -

160 CONTINUE
. : Z A (NL.NL ) -

- R . X — Z
S S = Y ~~~Z-

S - P — (R*8—W)/A (NL+1.NL ) + A(NL.NL+1)
S ‘ a — A (NL+1.NL+i) — Z — R — S

R — A(NL+2 ,NL+1)
S — ABS(P) + ABS (Q) + ABS (R)

- 0.0/8
R R/S
IF(NL .tO. L) GO TO 170

• I. 5-
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IF (ABS(A(NL ,NL— 1))* (ABS(0)+ABs(R)) .LE.
I EPS*ABS (P)* (ABS (A (NL— 1,NL—1))+ARS (Z)+ABS (A (NL+1,NL+ 1)n)
2 OO TO I7O

• NL — NL— 1
GO TO 160

170 CONTINUE

I

C
S C PERFORM A OR STEP BETWEEN NL AND NU.S
~~~ C

S CALL QRSTEP(A .V .P .Q .R .NL .NU,N ,NA,NV )
GO TO 110

C
C 2X2 BLO CK FOUND.
C

200 IF (NU .NE. NLOW +1) A NU— 1.NU— 2 ) = 0.
A(NU ,NU) = A(NU ,NU ) + TS 
A (NU— 1 ,NU—1 ) = A (NU—1 ,NU— 1) + T
TYPE(NU) = 0
TYPE(NU— 1) = 0
MU NU

C S

C LOOP TO POSITION 2X2 BLOCK .
C

210 CONTINUE
NL = MU—i

C
C ATTEMPT TO SPLIT THE BLOCK INTO TW O REAL
C EIGENVALUES.
C S

CALL SPLIT (A.V .N .NL .E 1.E2 ,NA .NV )
C
C IF THE SPLIT WAS SUCCESSFUL . GO AND ORDER THE
C REAL EIGENVALUES ,
C

IF(A(MU.MU—1) .EG. 0.) GO TO 310
C• C TEST TO SEE IF THE BLOCK IS PROPERLY POSITIONED.
C AND IF NOT EXCHANGE IT
C

IF (MU .EQ. NUP ) GO TO 400
IF (MU .EQ. NUP— 1) GO TO 220

- S 
- IF(A(MU+2 ,MU+ 1) .EQ. 0.) 60 TO 220

C
C THE NEXT BLOCK IS 2X2 .
C

IF(A (MU— IvMU— 1)*A(MU .MU )—A (MU— 1.MU )*A (MU .MU— 1 )
1 - .GE. A (MU + 1,MU+ 1)*A (MU+2 .MU+2 )—A (MU+1.MU+2 )*

5 
2 A(MU+2,PIU+1))
3 GO TO 400• CALL EXCHNG (A .V ,N ,NL ,2 .2,EPS ,FAIL ,NA .NV )

S IF( .NOT. FAIL) GO TO 215
TYPE (NL) — —1
TYPE(NL+ 1) a —

~~
• TYPE(NL+2) — 1

TYPE(NL+3) — —1
GO TO 500

• 215 CONTINUE
MU — MU+2
GO TO 230

220 CONTINUE
C
C THE NEXT BLOCK IS IX1.
C

XF (A(MU— 1 ,MU— 1 )*A (MU ,NU )—A (NU-1.MU )*A (NU .NU— 1)
• 1 .GE . A ($U+1,MU+1)**2)

2 GO TO 400

* ~~~~~ :
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CALL EXCHNG (A.V ,N .NL ,2 ,1.EPS.FAIL ,NA .NV )
IF (.N OT. FAIL) GO TO 225

TYPE (NL ) • —1
5 - TYPE(NL+ 1) — —1

TYPE(NL+2) — —1
GO TO SOO

225 CONTINUE
MU • NU+1

2-30 CONTINUE
00 10 210

C
C SINGLE EIGENVALUE FOUND.
C
300 N L — 0

A(NU ,NU ) - A (NU ,NU ) + I
IF(NU .NE . NLOW ) A (NU ,NU— I) - 0.
TYPE(NU) • 0 -

MU — NU
C
C LOOP TO POSITION ONE OR TWO REAL EIGENVALUES .
C

310 CONT INUE
C
C 

- 
POSITION THE EIGENVALUE LOCATED AT A (NL .NL).

C
320 CONTINUE -

IF (MU .EQ. NUP ) GO TO 350
- IF (MU .EQ. NUP—1) GO TO 330

IF(A (MIJ+2 .MU+ 1) .E0. 0.) GO TO 330
C •

- C THE NEXT BLOCK IS 2X2.
S C

IF (A(MU .MU)**2 .GE .
I A (NU+1,MU+ 1)*A(MU+2.MU+2)—A(MU+1.14U+2)*A(NU+2 .MU+i))
2. GO TO 400

CALL EXCHNG (~~,V .N ,MU ,l.2,EPS.FAIL .NA .NV )
IF(.NOT. FAIL) 00 TO 325

- S TYPE (NU) — —1

• TYPE (NU+ 1) — —1
TYPE (MU+2) —1
GO TO 500

325 CONTINUE
MU — MU+2
GO TO 340

330 CONTINUE
C
C THE NEXT BLOCK IS lxi.
C

IF (ABS (A(NU .MU)) .GE. ABS(A (MU+ 1,MU+ I)))
- 00 T0 350

• CAL L .EXC HNG(A ,V,N,NU,1,1, EPS.FA IL ,NA,NV)
MU MU+1 -

340 CONTINUE -

00 TO 320
350 CONTINUE

MU • Mt.
NI a 0

IF(NU .ME, 0) 00 TO 310
C
C GO BACK AND GET THE NEXT EIGENVALUE.
C
400 CONTINUE -

MU - 1—1
GO TO 100

C -

C ALL THE EXONVALU ES HAVE BEEN FOUND AND ORDERED.

S I - - 
~~~~~~~~ 

S

t~~ 
_ _ _  ~~~~~~~~



— S .  

-

- - - - 
— ~~~~~~~~~~~~~~~~

C COMPUTE THEIR VALUES AND TYPE.

500 IF(NU .LT. NLOW) 30 TO 507
DO 503 I—l .NU

• A (I,I) = A (I,I) + I
503 CONTINUE
507 CONTINUE

NU — NUP
510 CONTINUE

IF (TYPE(NU ) .NE. — 1) GO TO 515
NU NU— 1
GO TO 540

515 CONTINUE
IF(NU .EQ. NLOW ) GO TO 520
IF(A (NU .NU— 1) .EO. 0.) GO TO 520

C
C 2X2 BLOCK .
C

- CALL SPLIT( A ,V ,N ,NU—i .Ei ,E2 ,NA ,Nv)
IF (A (NU .NU I) .EQ. 0.) GO TO 520
ER(NU) - El
EI(NU— l) = £2
ER (NU— 1) = ER(NU )
EI(NU ) = —E I (NU—1 )
TYPE (NU— l) = 1
TYPE (NU) — 2
NU — NU—2
GO TO 530

520 CONTINUE
C
C SINGLE ROOT. S

C
ER (NU) = A (NL I,NU )
EI(NU) • 0.
NU NU— 1

530 CONTINUE
540 CONTINUE

IF(NU .GE. NLOW) GO TO 510
RETURN
END

SUBR OUTINE EXCHNG (A,V,N ,L ,B1 ,B2 ,EPS ,FAIL ,NA ,NV )
C

INTEGER B1.B2 ,L ,NA ,NV
REAL A (NA .N ).EPS ,V(NV .N)
LOGICAL FAIL

S C
S C GIVEN THE UPPER HESSENBERG MATRIX A WITH CONSECUTIVE

C B1XB1 AND B2XB2 DIAGONAL BLOCKS (B .82 .3E. 2)
C STARTING AT A(L .L) . EXCHNO PRODUCES A UNITAR Y
C SIMILARITY TRANSFORMATION THAT EXCH+SOES THE B36@2S
C ALONG WITH THEIR EIGENVALUES . THE TRANSFORMATION
C IS ACCUMULATED IN V. EXCHNG REQUIRES THE SUBROUTINE
C ORSTEP. THE PARAMETERS IN THE CALLING SEQUENCE ARE
C (STARRED PARAMETERS ARE ALTERED BY THE SUBROUTINE)
C
C tA THE MATRIX WHOSE BLOCKS ARE TO BE
C INTERCHANGED.
C *V THE ARRAY INTO WHIC H THE TRANSFORMATIONS
C . ARE TO BE ACCUMULATED .
C N THE ORDER OF THE MATRIX A.
C L THE POSITION OF THE BLOCKS .
C 81 THE SIZE OF THE FIRST BLOCK .
C 82 THE SIZE OF THE SECOND BLOCK .
C EPS A CONVERGENCE CRITERI ON.

~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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S C *FAIL A LOGICAL VARIABLE WHICH IS FALSE ON A
C NORM AL RETURN . IF THIRTY ITERATIONS WERE
C PERFORMED WITHOUT CONVERGENCE , FAIL IS SET
C TO TRUE AND THE ELEMENT
C A (L+B2 ,L+B2—1) CANNOT BE ASSUMED ZERO.
C NA THE FIRST DIMENSION OF THE ARRAY A.
C NV THE FIRST DIMENSION OF THE ARRAY V.
C
C INTERNAL VARIABLES.
CS 

INTEGER I.IT,J,L1 ,l’$
REAL P,Q.R ,S.W ,X ,Y,Z

C
FAIL • .FALSE.
IF (B1 .E0. 2) GO TO 40

IF (B2 .EO. 2) GO TO 10
C
C INTERCHANGE 1XI AND lxi BLOCKS.
C

Li a

O — A (L+l ,L+1) — A(L ,L)
P —
R = AMAX1(P ,Q)
IF(R .EQ. 0.) RETURN
P - P/R
O -
R = SQRT(P**2 + Q**2)
P— P / R
0 - Q/R
DO 3 J L.N
S — P*A(L .J) + Q*A (L+1,J) S
A (L+ l ,J) = P*A (L+1,J) — Q*A(L ,J)

• A(L ,J) — S
3 CONTINUE

DO 5 I—1.L i
S — P*A (I,L) + 0*A(I,L+1)
A(I,L+1) = P*A(I,L+j) — Q*A(I.L)
A(I ,L) — S

5 CONTINUE
5 DO 7 I—1.N

S • P*U (I,L) + G*V( I,L+i)
V (I.L+1) = P*V( t.L+i) — 0*V(I.L)
V ( I,L) S

7 CONTINUE
A (L+1.L) 0.
RETURN

10 CONTINUE
C
C INTERCHANGE 1X1 AND 2X2 BLOCKS .
C

X • A(L ,L)
P • 1.
o — 1.
R — 1.
CALL QRSTEP (*.V ,P,U ,R ,L ,L+2 .N .NA .NV )
IT • 0

• 20 IT — IT+1
IF(IT .LE. 30) 00 TO 30

FAIL — .TRUE.
RETURN

30 CONTINUE
P • A(L .L) — X
Q — A (L+1.L)

S R — 0 .
CALL ORSTEP(A.V ,P ,O ,R ,L ,L+2pN ,NA ,NV )
IF (ARS (A(L+2 .L+1)) .OT.

S 

- 
- 
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I EPS*(ABS (A(L+j,L+I))+ABS(A (L+2 ,L+2))))
1 GO T O 2O

A(L+2 .L+1) • 0.
RETURN

40 CONTINUE
C
C INTERCHANGE 2X2 AND B2XB2 BLOCKS .
C

M = L + 2
• IF(B ’ EQ 2) M

X = A ( L + Xv L + 1 )
Y = A (L ,L )
W =
P — I .
0 — 1 .
R — 1.
CALL ORSTEP(A ,V ,P ,Q,R ,L ,M ,N ,NA ,NV)
1 1 = 0

• 50 IT = IT+i
30) 60 TO 60

• FAIL = .TRUE.
RETURN

60 CONTINUE
p Z = A ( L , L )

R a X - Z
S — Y — Z
P • (R*S—W )/A(L+1.L) +

• Q— A (L+ 1.L+ 1 — Z — R — S
R = A (L+2,L+1)
S — A BS( P) + ABS(Q ) +

-• 0— 0 / S
R - R/S
CALL QRSTEP (A,V ,P ,0,R ,L ,M ,N ,NA ,Nv )

IF(ABS (A(M— 1 ,M—2 )) .01. EPS* (ABS (A (M—1,M—1)) +ABS(A(M—2,M—2))))
1 00 T0 50

A(M—1 ,F$—2) • 0.
RETURN

CONTINUE
END

SUBROUTINE SPLIT (A,V ,N ,L ,E1,E2 ,NA ,NV )
C

INTEGER L .N ,NA .NV
REAL A ( NA .N) .V ( NV,N)

C
C GIVEN THE UPPER HESSENBERG MATRIX A WITH A 2X2 BLOCK
-C STARTING AT A (L .L). SPLIT DETERMINES IF THE
C CORRESPONDING EIGENVALUES ARE REAL OR COMPLEX. IF THEY
C ARE REAL , A ROTATION IS DETERMINED THAT REDUCES THE
C BLOCK TO UPPER TRIANGULAR FORM WITH THE LIGENVALUE
C OF LARGEST ABSOLUTE VALUE APPEARING FIRST. THE
C ROTATION IS ACCUMULATED IN V. THE EIGENVALUES (REAL
C OR COMPLEX) ARE RETURNED IN El AND E2. THE PARAMETERS
C IN THE CALLING SEQUENCE ARE (STARRED PARAMETERS ARE
C ALTERED BY THE SUBROUTINE )
C
C *A THE UPPER HESSENVERO MATRIX WHOSE 2X2
C BLOCK IS TO BE SPLIT.
C *V THE ARRAY IN WHICH THE S~LITTING TRANS—
C FORMATION IS TO BE ACCUMULATED.
C N THE ORDER OF THE MATRIX A.
C - L THE POSITION OF THE 2X2 BLOCK .
C *E1 ON RETURN IF THE EIGENUALUES ARE COMPLEX

• C *E2 El CONTAINS THEIR COMMON REAL PART AND

~~
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C. 
• 

E2 CONTAINS THE POSITIVE IMAGINAR Y PART .
C IF THE EIGENVALUE S ARE REAL , El CONTAINS
C THE ONE LARGEST IN ABSOLUTE VALUE AND E2
C CONTAINS THE OTHER ONE.
C NA THE FIRST DIMENSION OF THE ARRAY A.
C NV THE FIRST DIMENSION OF THE ARRAY V.
C
C INTERN AL VAR IABLES
C

• INTEGER I,J .Li
• REAL P.Q.R .T .U .W ,X ,Y .Z

C
X = A(L+2.L+l)
Y — A (L ,L)
W =
P = (Y—X)/2.
0 -

= P**2 +
IF (O .GE. 0.)  00 TO 5

C -
C COMPLEX EIGENVALUE .
C

El = P + X
= SORT (-Q)

RETURN
S CONTI NU E

C
C TWO REAL EIGENVALUES . SET UP TRANSFORMATION .

S C
• Z — SORT (Q)

IF (P .LT . 0.) GO TO iO
Z = P + Z
GO TQ 2O S

10 CONTINUE
Z- = P - — Z

20 CONTINUE -
IF (Z .EQ . 0.) GO TO 30

g = — w , z  • -

GO TO 40
30 CONTINUE

R a O .  -

40 CONTINUE
IF (ABS (X+Z ) .GE. ABS (X+R )) Z — R
Y • Y — X —
x — — Z  -

I —
U •

• IF (ABS (Y)+ABS (U) .LE. ABS(T)+ABS (X) ) GO TO 60
0 — U
P = Y
GO TO 70

60 CONTINUE
o = X
P T

70 CONTINUE -
R • SORT (P**2 + 08*2)
IF(R .GT . 0.) 00 TO 80
El - A (L ,L)
E2 — A (L+1.L+1) S

A (L+1.L) • 0.
RETURN

80 CONT INUE
P a P / R
0 • Q/R - - -

S C
C PREMULT~PLY.

H -

-
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PROS O~~1 1’~.l~ L~kf~
) TO DDC

DO 90 J— L.N
Z — A ( L p J )
A (L .J) — P*Z + 0*A (L+1.J)
A(L+I .J) — P*A(L+1,J) — Q*Z

90 CONTINUE
C
C POSTHULTIPLY.
C

Ll — L+I
DO 100 I—l.Ll
Z = A (I.L)
A (I.L = P*Z + O*A (I.L+1)
A (I.L+1) = P*A( I.L+l ) — Q*Z

100 CONTINUE
C
C ACCUMULATE THE TRANSFORMATION IN V.

t C
DO 110 1 1,N

Z — V ( I .L )
V(I.L) = P*Z + Q*V (I,L+1)
V (I.L+1) — P*V( I,L+1) — 0*Z

110 CONTINUE S

A (L+1.L) = 0.
= A (L ,L)

E2 —
RETURN
END

SUBROUTI NE ORSTEP (A .V ,P ,Q,RvNL,NU,N ,NA ,NV )
C

• INTEGER N,NA,NL,NU.NV
REAL A (NA ,N) .P .0.R .V (NV ,N)

C
C ORSTEP PERFORMS ONE IMPLICIT OR STEP ON THE
C UPPER HESSENBERG MATRIX A. THE SHIFT IS DETERMINED
C BY THE NUMBERS P.O. AND R . AND THE STEP IS APPLIED TO
C ROWS AND COLUMNS NL THROUGH NU. THE TRANSFORMATIONS
C ARE ACCUMULATED IN V. THE PARAMETER S IN THE CALLING
C SEQUENCE ARE (STARRED APRAMETERS ARE ALTERED BY THE
C • SUBROUTINE)
C
C *A THE UPPER HESSENBERG MATRIX ON WHICH THE
C OR STEP IS TO BE PERFORMED.
C *V THE ARRAY IN WHICH THE TR A NSFORMATIONS
C AR E TO BE ACCUMULATED
C *P PARAMETERS THAT DETERMINE THE SHXFT.

S C *0
C *R
C ML THE LOWER LIMIT OF THE STEP .
C NU THE UPPER LIMIT OF THE STEP.
C N THE ORDER OF THE MATRIX A.
C NA THE FIRST DIMENSION OF THE ARRAY A.
C NV THE FIRST DIMENSION OF THE ARRAY V.
C 

S

C INTERNAL VARIABLES.
C

INTEGER I,J .K.NL2 ,NL3 .NUM1
• REAL. S.X .Y,Z

LOGICAL LAST

NL2 NL+2
DO 10 I—NL2,NU

A ( I . I—2) — 0.
- 10 CONTINUE

- 
IF(NL2 .EQ . NV ) GO TO 30

s •._ - ~~
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20 CONTINUE
30 CONTINUE

NUM 1 — MU— i
DO 130 K.NL .NUN1

C
C DETERMINE THE TRANSFORMATION.
C

LAST = K .EQ. NUM 1
IF(K .E0. ML) GO TO 40

P — A(K ,K—1 )
a a A(K+1.K— 1)
R — 0.
IF (.NOT.LAST) R — A (K+2 ,K—l ) S

X A BS(P) + ABS (Q) + ABS ( R)
IF(X .EO. 0 . .  GO TO 130
P = P/X
0 -

- R = R/X
40 CONT INUE

S • SQRT (P**2 + Q**2 +
j F~P .LT. 0.) S — —S
IF (K .EQ. ML ) GO TO 50

A(X.K— 1) — —S*X
GO TO 60

50 CONTINUE -

- IF (NL .NE . 1) A (K.K— i) — — A ( IC. K —1 )
60 CONTINUE -

P = P + S
x = P/S
Y~= 0/S -

Z — R / S  -

O -- 0/P
R R/P -

C
C PREMUt.I~ PLY.
C

DO 80 J=K.N -

P = A(K .J) +
IF~LAST) - GO TO 70

S P = P + R*A (K+2 .J)
A(K+2 ,J) a A (K+2 .J) — P*Z

70 CONTINUE
A (K+1.J) — A (K+1,J) — PSY S

A (K,J) — 4(K.J) — .P*X
80 CONTINUE

C
C POSTMULIIPLY .
C

.J — HINO(K+3.NU)
DO 100 I—I..)

P — X*A (t ,K )  + Y*A ( I.K+ l )
IF(LAST) GO TO 90

P — P + Z*A( I,K+2)
A ( I.K+2) — A ( I ,K+2 )  — P*R

~0 CONTINUE -•
A ( I.K+l) — A ( I .K+1) — P80
A ( I.K) • A ( I .K .) — P

100 CONTINUE
C
C ACCUMI* ATE THE TRANSFORMATION IN U.
C

DO 120 I 1.N
— ~C*V( I.IC ) + Y*V ( I.K+ i )

~~~~~~~~~ ~~-~~~~-~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~ - - - :-~~~ :--- _ _ _
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IF (L AST) GO TO 110
P a P + ZBV(I, K+2).
V (I.K+2) — V C~’I,K+2) — P*R

• 110 CONT INUE
V (I,K+1 ) = V( I.K+l) — P80
V(I,K) — V (I.K) — P

120 CONTINUE
130 CONTINUE

RETUR N
END

SUBROUTINE ORTHES (NM~N ,LOW~ IGH ,A .ORT )INTEGER I.J .M ,N .II.JJ ,LA .MP .NM .IGH .KP1.LOW
REAL A (NM .N) ,ORT ( IGH)

S REAL F.G.H.SCALE
L A — I G H — 1

— KP1 L O W + 1
IF(LA .LT . KP1) GO TO 200
DO 180 M .KP1.LA

H = 0.
- - ORT (M) - 0.

SCALE a

DO 90 Ial ,IGH
90 SCALE — SCALE + ABS (A ( I ,M— 1))

IF(SCALE .EO. 0 .)  60 TO 180
MP M + I G H
DO 100 II—M,IGH

l a M P — Il
ORT (I) = A (I.M—i)/SCALE
H = H + ORT ( I)*ORT ( I)

100 CONTINUE
0 — —S IGN (SORT (H) ,ORT (M))
H — H— ORT (M)*G
ORT (M) • ORT(M ) — 6
DO 130 .J.M.N

F — 0.
DO 110 Il— th IGH
I — MP — II
F — F + ORT(I)*A(I,J)

110 CONT INUE
F • F/H
DO 120 I—thIGH

A ( I.J ) — A ( I .J )  — F*ORT (I)
120 CON1INUE
130 CONTINUE

DO 160 I—l.IGH
F — 0.
DO 140 JJ•N.IGH

.1 — NP —
F • F + ORT(J )*A ( I ,J )

140 CONTINUE
F - F/H
DO 150 J—N,IGH
A (I.J) — A (I.J ) — F*ORT (J)

150 CONTINUE
l~ 0 CONTINUE

081(M) • SCALE*ORT(M)
A(PI,M— 1) — SCALE*G

180 CONTINUE
200 RETURN

END

• SUBROUTINE ORTRA N(NM,N,LOW,I0H,A .ORT~ Z)
INTEGER I.J .N.I(L.MN,MP,NM.IGH,LOW,MPI

I ~
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REAL A (NM.IGH).ORT (IGH).Z (NM .N )
REAL G.H
DO 80 I— 1 ,N

DO 60 J—1 ,N
Z (I.J) a 0.

60 CONTINUE
Z ( I . I)  — 1,

80 CONTINUE
KL = IGH — LOW - 1
IF(KL .LT . 1) 30 TO 00
DO 140 MM—1 ,KL

NP = IGH — MN
H — A (MP ,MP—1 )*ORT (MP)
IF(H .E0. 0.)  GO TO 140
MP1 a MP+1
DO 100 I—NP1.IGH

ORT (I) — A (I.MP—1 )
100 CONTINUE

flO 130 J—MP .IGH
-~~ 6 a 0.

DO 110 I—MP ,IGH
G • 0 +

110 CONTINUE
G a G / H
DO 120 I MP ,IGH

Z (I,J) — Z( I .J) + G*ORT (I)
120 CONTINUE
130 CONTINUE
140 CONTINUE
200 RETURN

END
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