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Prefac

The purpose of this research was to examine the effects
of incorrect uses of expected values in strategic missile
: targeting. This topic arose from some research for a class-
room exercise, in which it was found that expected numbers of
weapons are being incorrectly used in some published calcu-
lations for kill probability. I hope that this report will
lead to a more cautious use of expected values in targeting
calculations. 'this has certainly been a true learning ex-
perience for me.
I would like to thank my advisor, Dr. Keith womer, for
allowing me to pick this particular topic and for lending \
/ me some of his expertise. Special thanks goes to my wife
Pat for her love and moral support at critical times. She
typed the report, but, of course, I am solely responsible

for any unnoticed errors.

David K. Roberts
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ABSTRACT

This report examines the incorrect uses of expected values
in kill probability calculations that exist in some strategic
targeting articles and models. Generally stated, the type of
error is the incorrect use of expected numbers of weapons in
probability calculations in place of numbers of weapons that
are actually random variables. The most common example found
was the use of the expected number of reliable missiles or
warheads in kill probability calculations for silo targets.

In Chapter 1II, the results of a general literature search
are given. These results are in the form of classifying
various strategic targeting models. Three alternative class-
ifications are offered -- two from the literature and one
by the author. The author notes a definite lack of targeting )
literature covering missiles that both are unreliable and have
multiple warhead capabilities. Of the targeting models that
were examined, the author found a few articles that make the
type of mistake studied in the report, but these mistakes
are not common.

In Chapter III, a simple missile allocation problem is
examined and a possible expected value error is discussed. For
single-warhead missiles, the incorrect use of the expected
number of reliable missiles in place of the random variable

reliable missiles can lead to highly significant numerical
viii
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errors for some parameter values. The correct kill probability
formula is given and several measures of discrepancy between
the two formulas are given. The discrepancy measures are of
two types -- the ratio of the missile allocations for the two
methods, and the ratio of the respective probabilities of

kill that result from the two allocations. The effects of
changes in parameters such as accuracy and silo hardness, are
proven mathematically. Numerical data on the discrepancy
measures are tabled for various parameter values, and these
data show that the error can be highly significant.

In Chapter 1V, a specific example of an expected value
error is discussed. A series of articles with incorrect kill
probability calculations for MIRVed weapons is examined. The
incorrect articles use the expected number of reliable war-
heads in place of the random number of reliable warheads.

The author offers a corrected formula and numerically compares
the differences based on data values for present and projected
U.S. and Soviet arsenals. Then the author offers a general
kill probability formula for silo targets; the formula is
general enough to include mixed types of multiple-warhead

missiles.
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EXPECTED VALUE ERRORS IN KILL PROBABILITY
FORMULAS IN STRATEGIC MISSILE TARGETING

I. Igtrgductggn

The primary objective of most strategic targeting and
allocation problems can b simply stated. The goal is to
gain the maximum amount of destructive power with the re-
sources that are available. In other words, it is to find
the "best” force mix of strategic weapons and the “"best" tar-
geting structure -- best in terms of military effectiveness.,
The problem may be couched in broader terms, such as "maxi-
mal deterrence”, or "effective equivalence”, but in many
cases the objective can be simplified to one of destructive
power,

Yet, even if the broad objective of a strategic allo-
cation problem is clear, its precise definition may be diffi-
cult. Often, a particular strategic study or model will use
single Measure of Effectiveness (MOE) to define destructive
power. With a group of possible enemy targets, three common
examples of MOE’s used are probability of destroying the tar-
gets, expected number of targets killed, or expected frac-
tional damage of the targets. In computing each of these

MOE‘'s, several factors must be considered. Some common exam-

ples are the accuracy of the weapons systems, their relia-~
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bility, and the number of weapons available.

Problem Statement

In some research for a class exercise involving a stra-
tegic allocation problem, errors were found in some published
strategic studies used for the exercise. In its simplest
and most general form, the mistake was in the use of an ex-
pected value of a random variable in the computation of a
very common MOE -- probability of kill for a group of targets.
The expected value of the random quantity, number of reliable
missiles,was used to represent the variable that should
have been left in its random form in the calculation.

The kill probability calculation is in general a function
of the reliable number of missiles, and the use of the expected
number of reliable missiles as a substitute in this case is
inconsistent with the laws of probability concerning functions
of random variables. As is more fully explained in Chapters
III and IV of this thesis, these incorrect uses of the expected
number of reliable missiles or warheads cannot be justified on
the grounds that they lead to expected value formulas for kill
porbability. The formulas discussed for kill probability are
the types of functions of random variables (for example, the
number of reliable missiles) in which the expected value of
the function is in general not equal to the function of the
expected value.

For example, if R represents the probability that a single-

warhead missile performs without mechanical failure (is reliable),

2




and if X represents the number launched of that type missile,
then the number of reliable missiles per launch is a binomial
random variable with sample size equal to X and binomial para-
meter equal to R. The expected number of reliable missiles
per launch is then R times X, but kill probability formulas
that are based on the number of reliable missiles should not,
in general, substitute the expected value for the random variable.
Other examples of this type of expected value error are ana-
logous =- the use of the expected number of discriminated
decoys and of the expected number of offensive missiles sur-
viving the defenses, in place of their respective random
variables.
Not only are these expected value errors conceptually

( incorrect, but they lead to serious numerical errors for
some parameter values. In computing the number of single-
warhead missiles that are necessary to destroy silo targets,
the incorrect use of the expected number of missiles may lead
to differences of more than 100% in terms of missiles allocated

and effectiveness gained.

hapter Topics
Following this chapter, the results of the literature

search for this thesis are discussed. A general framework for
targeting models is presented, with special considerations
given to the assumptions and applicability of the mocdels. The
literature search determined that there is a definite lack of

targeting models in the open literature that give kill probability

2
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formulas for missiles that both are unreliable and have multiple-
warhead capabilities. The expected value errors of the type
examined in this thesis were not found to be common in the open
literature, but where found, they caused significant numerical
errors. Some examples of expected value errors found are given
in Chapter II, but are not examined in detail.

In Chapter I1I, a simple example of expected value error
is examined in great detail. For single-warhead missiles, using,
perhaps implicitly, the expected number of reliable missiles in
calculations of kill probability against silo targets leads to
serious numerical errors in terms of numbers of missiles allo-
cated and in terms of kill probability gained. In Chapter III,
an incorrect missile allocation method is given and proved to
be incorrect. This allocation method tends to produce a consis-
tent overestimation of kill probability for unreliable missiles
and thus an underestimation of the number of missiles necessary
to obtain any given probability of kill. These two results
are proven mathemdtically along with the examination of effects
of parameter changes. Sample missile allocations and resultant
kill probabilities are calculated for various parameter values
and show highly significant errors resulting from the incorrect
use of the expected number of reliable missiles.

In Chapter IV of this thesis, a series of articles in
published targeting literature is examined. The articles by
Dr. Kosta Tsipis of the Stockholm International Peace Research
Institute contain incorrect formulas for kill probability for

multiple-warhead missiles. These formulas incorrectly use the




expected number of reliable warheads from the same missile in
place of the random variable of reliable warheads. Tsipis’s
formulas lead to overestimation of kill probability, as did
the simpler example presented in Chapter III. A correction of
Tsipis's formula‘is given for multiple-warhead missiles against
silo targets. Comparative calculations of kill probability for
multiple-warhead missiles in present and projected U.S. and
Soviet arsenals are tabled. These tabled values show signi-
ficant numerical errors that arise from Tsipis‘’s formula.
Finally, in Chapter IV, a very general formula for kill
probability for multiple-warhead missiles against point (silo)
targets is presented. This formula is flexible enough to
include cases where warheads from a single missile may be
sent more than one target. The formula is also easily adaptable

to linear programming for optimal missile allocation.

Objectives and Scope

The objectives of this report ars simple. The first one
is to show conceptually that a particular type of error exists
in kill probability calculations, at least in some instances.
Second is to determine how widespread these types of expected
value errors are in the open literature on targeting. When
expected value errors are found in published formulas, the
third objective is to determine the numerical errors caused
by the erroneous formulas. Special emphasis will be focussed
on the most recent studies -- later than 1970.

The scope of this report, due to the size and importance
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of the broad field of strategic allocation, is very limited

in nature. Only strategic allocation problems will be con-
sidered, although many types of calculations are common to
both the strategic and tactical fields. Instead of studying
both missile and bomber allocation, this report will discuss
only missile allocation because it is relatively simpler in
terms of the number of factors to be considered, while the
error can be illustrated in both types of allocation. This
analysis is not intended to be a comprehensive methodological
review of strategic allocation -- it is simply an analysis

of one type of calculation error and its applicability. A
more general topic related to this error is the use of expected
values of random variables in intermediate stages of multi-
stage calculations. This related topic will be discussed in
the report, but only as a peripheral issue. Only the military
effectiveness aspects of strategic allocation problems will

be discussed, ignoring the costing that is the focus of some
allocation problems. This particular report is solely a
mathematical and analytical work, taking as given data on
nuclear effects, guidance systems, targeting, and operational

considerations.
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II. esults of e Literature Search

A wide variety of open literature on missile targeting
has been written since 1970 ~- variety in both applicability
and complexity. The purpose of this report is not to present
a general survey of targeting literature, but a limited
background is necessary for further chapters. Two general
surveys of unclassified material are available that are very
useful.

A general analytical survey was presented by A. Ross
Eckler and Stefan A. Burr in a book sponsored and published
by the Military Operation Research Society (MORS) in 1972
[Eckler, 1972]). This very useful reference provides a very
éolid mathematical background for targeting analysis. Eckler
and Burr seem to organize mathematical targeting models into
two types of classifications. The first is to classify a
given model by its Criterion of Effectiveness, which depends
partly on the assumption and applicability of the model.

The second classification is by the nﬁthenatical solution
technique used by the model.

A general surv;y on missile allocation was presented by
Samuel Matlin in 1970 in Qperations Research [Matlin, 1970:
334-373]. Matlin®s article uses two types of'olaasificntion.
It classifies the submodels involved -- the targeting aspects
that every model must address. It also classifies the
models themselves into four types based on applicability.

7
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Following summaries of the Eckler/Burr and Matlin
classifications, an eight part characterization of missile

targeting literature will be presented.

Methodology
The methodology for this thesis was a simple one. The

research was accomplished in two distinct parts. One phase or
category of reseafch was a literature search to determine where
expected value errors occurred and their prevalence. The
second category of research included analyses of published
articles or models where these types of errors occurred. These
analyses involved the correction of erroneous formulas with
special emphases on the numerical errors caused by the incorrect
formulas. Two analyses of erroneous kill probability formulas
are presented in Chapters III and 1V of this thesis.,

The literature search for the thesis was concentrated
solely in the open published literature -- no classified
material was examined. Only strategic articles and studies
were reviewed -- tactical analysis was ignored. Most of the
articles were centered around kill probability calculations
for point targets like silos, but some of the models included
area targets like cities and industrial complexes. Primarily,
targeting models were studied that included unreliable
missiles -- missiles that have positive probabilities of failure
at some stage of operation.

The articles themselves were mainly found through the

government reports indexes, the Defense Documentation Center,




and the Science Citation Index. Once the Tsipis series of
articles, which are analyzed in Chapter 1V of this thesis, were
found, much of the literature search was centered around
material related to those articles.

Once found, all the targeting models were analyzed with 1
particular emphases on each targeting model’s assumptions and
probability calculations. If the articles or studies were <
found to have erroneous probability formulas, the correct
formulas for these calculations were derived for the same
assumptions. Where possible, extensive sets of probability
values were calculated to determine the numerical seriousness
of any errors. In Chapters III and IV of this thesis, two
analyses of expected value errors are presented. In Chapter \

( III, kill probability formulas for single-warhead missiles
against silo targets are examined; in Chapter IV, kill pro-
bability formulas for multiple-warhead missiles are studied.

Mathematical Models Surve om Eckle d

The MORS work by Eckler and Burr provides a gocd foun-
dation for analysis of targeting. It begins with general
formulas for kill probabilities under a large variety of
assumptions and then discusses specific mathematical models
and their applicability. The book admittedly has defensive
missile optimization as a frame of reference and the models
discussed are generally designed to be used without computer

solutions (although not exclusively so).

Classification By Criterion of Effectiveness. Eckler
9
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and Burr provide a classification of targeting models by

( their effectiveness criteria. For example, if a model’s
} Measure of Effectiveness (MOE) were percentage of targets
destroyed, then a sample criterion would be to pick the
feasible strﬁtegy that would maximize the percentage of targets
destroyed. Criteria of effectiveness for targeting models
are largely determined by the model’s frame of reference
(offense or defense) and by the types of targets. Criteria
of effectiveness given by Eckler and Burr are [Eckler, 1972:
3-6]
l. Maximize (minimize) the expected number of targets
destroyed, for offense (defense).
2. Maximize (minimize) the expected value of the targets
‘ destroyed, for offense (defense).
3. Maximize (minimize) a uniform probability of kill
across a group of targets, for offense (defense).
4, Minimizing the expected surviving number of preferentially 1
ranked targets, ranked by offense, for offense.
5. Maximize the expected surviving number of preferentially
ranked targets, ranked by defense, for defense.
6. Maximize the probability that no targets are destroyed,
| for defense.
7. Maximize the probability that all targets are destroyed,
for offense.
Classification By Mathematical Solution Technigue. A
; second classification scheme used by Eckler and Burr is by
! O the mathematical technique used to solve for the optimal
=] ;
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missile allocation. Some targeting models require the use
of more than one technique from the following [Eckler, 1972:
8-11]: :

1. Assumption of continuity for functions of ‘integral-
valued numbers of missiles.

2, Standard elementary optimization -- optimize a single
objective function with calculus and algebra.

3. Langrangian multiplier optimization.

k. Linear Programming.

5. Game theory.

6. Dynamic Programming.

7. Direct optimization -- for a given proposed solution,
show that the solution satisfies optimality conditions
and is unique.

8. Monte Carlo method.

9. Search techniques.

Eckler and Burr proposed that game theory be used more
frequently, since "game theory can be defined as the mathe-
matical theory of conflict." [Eckler, 1972:11]

sile- tio terature ve 0 i
Samuel Matlin produced a gene?al survey of targeting
literature as an annotated bibliography [Matlin, 1970:334-
373]. Although somewhat outdated at this time, Matlin’s
survey outlines a broad approach of classifying missile -
allocation models. Primarily from an offensive frame of

reference, Matlin provides short abstracts of thirty-nine

11
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articles. Matlin explicitly defines the applicability of
missile-allocation models;
The problem considered is: given an
existing weapon force and a set of targets,
what 1s the optimal allocation of weapons
to target? This is not to be confused
with the force-mix problem, which asks:
what weapon mix should be developed,
under constraints of time and money, to
maximize the damage to the enemy? Target
allocation is actually a submodel of the
latter problem . . . [Matlin, 1970:334]
Matlin has two classification schemes for missile-allocation
models.

Matlin 1ists five types of submodels that are universal
to allocation models. Each model should address the issues
of [Matlin, 1970:337-346]:

l. The weapon system.

2. The targét complex.

3. The engagement.

4, The damage submodel (measures of damage).
5. The solution algorithm.

Matlin classifies the surveyed targeting models into
four types [Matlin, 1970:346-357]. The first two are the
allocation of single weapon types, and, the allocation of
multiple weapon types. The third is a group of game theory
models -- models that involve active strategies by both
attacker and defender. Matlin‘'s fourth model classification
is a group of special-feature models that do not fit into the
three previous classifications. Some "special features*
listed by Matlin are:

1. Targeting in the small -- targeting at a small group

12
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of “local" area targets.

2. Force structuring.

3. Indirect values -- some intrinsically valueless
targets, such as command and control centers, that
contribute to the values of other targets.

L4, Defense orientation.

5. Special optimization criteria -- other than expected

value killed or survived.

An Alternative Characterization of Targeting Models

Based on the literature search for this thesis, an al-
ternative characterization of models may be proposed that more
closely suits the analysis for this report. It is a general
method for characterizing missile models by examining the
aspects of targeting problems. Strategic targeting models
generally seem to address certain common issues and the.
assumptions underlying them. The characterization includes
only the analytical parts of strategic targeting and not
the deterrent or psyghological aspects. The following
characterization borrows some of the information from the .
classification schemes of Eckler and Burr and of Matlin.

Each missile targeting model should explicitly address at
least the follbwing issues:
1. User of the model, or the frame of reference (offense
or defense).
2. Types of targets.

3. Measures of Effectiveness (MOE‘'s).

e
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4, Missile types.

5. Independence of events.

6. Quantity of information.

7. Costs =~ inclusion or omission.

8. Solution techniques for missile allocation.

The types and valués of targets must explicitly be
stated. Targets can roughly be categorized into two types.
Force targets are enemy missile silos and military installations
that could threaten the attacker. Value targets are popu-
lation and industrial centers, and nqn—threatening military
installations. In general, these value targets may be assigned
different values by the attacker (and by the defender), either
in numerical or priority scales. Besides the type of targets,
if the model user is the attacker, he must learn about the
defenses at the targets, if any.

Physical attributes of all possible weapons, such as
accuracy, reliability, size, power, and range, must be con-
sidered. But boyond the parameter descriptions of missiles,
their functions and operations are usually clearly stated.

Some missile operation questions that may affect strategy are
whether or not the missiles are offensive or defensive, land-
based or sea based, single-warhead or multiple-warhead. An
important additional description is the number of distinct
stages of operation -- booster launch, booster flight,
re-entry vehicle (RV) separation, RV flight, and RV detonation.

Related to the description of operation stages is a
clear delineation of which events in a strategic engagement
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are independent. For example, for some strategic targeting
problems, availability of one group of missiles may affect
the availability of others, or missiles launches may not be
independent of one another, or successful detonation of one
warhead may hamper the successful guidance of following re-
entry vehicles (Fratricide). Clear descriptions of events
like these and the assumptions that support them help lead
to a clear understanding of a targeting problem and can
have a marked influence on probability calculations.

Quality of information may be the prime determinant of
strategy and engagement outcomes. There are at least three
types of information that apply to strategic conflict.

First is the quality of information about the physical
parameters of the arsenals of both sides. A strategist

wants to understand how well-defined his eatimateé of, say
accuracy and reliability, are for both himself and his opponent.
A second type of information is prior information about the
strategy of the opponent, if two-sided stragety is considered.
Third, the availability of intermediate information in a
strategic conflict is important. The re-assignment of missiles
to different targets to replace unreliable missiles or to
destroy yet unharmed targets is only possible if intermediate
information is available. Massive strikes at pre-assigned
targets, or one-wave strikes, ignore the value of such
information.

Very few missile targeting models consider the dollar

costs of missiles. Most are missile-allocation models like
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those surveyed by Matlin. Consideration of costs as a cri-
terion by a model is a type of force-structuring.

The 1list of mathematical solution techniques from
Eckler and Burr (repeated above) is a comprehensive one.
Solution techniques can be loosely classified as analytical
(for example, Linear Programming and Lagrangian optimization)
or as based on simulation (for example, game theory and Monte

Carlo theory).

Limited Literature Discussion Of Missile Allocation For
Unreliable Missiles With Multiple Warheads

In the literature search that was centered on kill pro-
babilities for point targets, very little information was found
on kill probabilities for missiles that are unreliable and
have multiple-warhead capability. If it is true that most
future United States Missiles will have at least Multiple
Independently-targeted Re-entry Vehicles (MIRV's), and since
physical missiles always have a positive probability of failure,
there definitely needs to be more allocation techniques in the
open (unclassified and available) literature for these types
of missiles.

The only strategic model that was examined that is used
by the military as a planning tool is the Arsenal Exchange
Model (AEM). The mathematical formulation for the AEM (seventh
revision) was produced in 1973 Bosovich, 1973 . The chapter
on damage functions -- probabilities of kill -- do not contain
any general formulas for kill probabilities for MIRVed weapons,
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although unreliability is included [Bosovich, 1973:IV-B-l--
IV-B=30]. The prototype arsenal examples [Bosovich, 1973:20-21]
used throughout the model consist of single-warhead missiles.

Dr. Kosta 1sipis of the Stockholm International Peace
Research Institute offers a kill probability formula for
unreliable, MIRVed missiles but, as is discussed in Chapter
IV of this report, Tsipis's equations for this type of missile
are wrong. On the thirty-nine annotated references given by
Matlin, only one [Morgan, 1968] considers multiple-warhead
missiles in its damage calculations. But the same article,
according to Matlin, does not directly address the issue of
reliability.

For the single-wave type of missile attack against hard

‘targets that is emphasized in this thesis; no formula for kill

probability was found that is similar to any of Egs. (4.9),
(4.10), and (4.20), which are correct. General formulas like

those seem to be difficult to find in the open literature.

Prevalence of the Type of Errors Discussed In This Report

Strategic targeting models and studies were researched
to determine the prevalence of a type of error found in some
models. Loosely stated, the error consists of using expected
values of weapons in probability calculations when the numbers
of weapons are actuallj random variables. For example, the
number of reliable weapons in any attack wave is actually a
random variable related to the missile‘’s reliability and to

the number launched. Similarly, the number of warheads that
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penetrate enemy area defenses is actually a random variable
related to the number of reliably performing missiles and

the probability of penetration for any given missile. Sub-
stituting the expected values of either of these two random
variables in place of the random variables itself may lead to
serious errors in probability of kill calculations. For
éxample, the fact that seventy percent of missiles launched are
expected to perform reliably is not, in general, a sufficient
reason for assuming that seventy percent of the missiles will
perform reliably each launch. In Chapter III, a simple but
general example of this type of error is examined. For non-
MIRVed missiles, using the expected value of reliable missiles
in kill probability calculations leads to serious errors in
some problems., In Chapter IV, a more complicated, but specific
example from a series of published articles on targeting is
examined. For MIRVed missiles, using the expected number of
reliable re-entry vehicles can lead to serious errors in pro-
babilities of kill.

A simple error of the type discussed in Chapter II1 of
this paper can be found in a Systems An;lysis book published
by the Industrial College of the Armed Forces [ Snyder, 1967:
61-84]. The methodology for this case study advises computing
a necessary missile allocation in two stages -- first, to
compute the number of reliable missiles necessary for a given
kill probability, and, from this result, compute the necessary
number to be launched from the formula relating the number of

missiles launched to the expected number reliable. This
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approach is incorrect and is explained in Chapter III,

The Arsenal Exchange Model (AEM) seems to make an error
of this type in one part of its calculation of kill probability
against defended targets [Bosovich, 1973:1V-B-12--IV-B-15].,

In a complicated attack with decoys and defense, AEM defined

d as the number of decoys per warhead, pp as the probability
that a given warhead is discriminated by the enemy. Then

UFg, defined as the number of undiscriminated objects per
warhead, is computed by AEM to UFf = 1 + (1 - pp)d. In
reality, the number of undiscriminated objects per warjead is
a random variable with expected value E(UFF) =1 + (1 - pp)d.
AEM uses its calculation of UFZ to calculate other quantities
and probabilities throughout the model. The use of this
expected value is of the type discussed above and seems to

be conceptually incorrect. Due to the complexity of the AEM,
it was not determined whether this conceptual mistake leads to
serious numerical errors in the results of the AEM. This could
possibly be a simplifying assumption in the AEM, except that
other similar random variables are included as random variables
and not as expected values.

In the literature researched for the thesis, it was found
that the incorrect use of expected numbers of missiles or
warheads is not a common error. Early research did show some
examples of incorrect usages, and these are explained above.
But the majority of the open articles examined did not make

these types of expected value errors.
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III. oncept Discussio f a
Particular Error

One of the most common Measures of Effectiveness (MOE’s)
used in strategic targeting calculations is the computed
probability of kill, or Probability of Destruction (PD), of
a selected group of targets. For strategic targets classified
as point targets, PD is often easy to compute. Also, the
use of PD is often applicable across broad classes of targets
and thus provides a common MOE for the evaluation of alter-
native allocations of weapons. One possible allocation
plan is to accept some common level of PD for a group of
targets while minimizing the use of resources necessary to
gain that PD level. For instance, decision-makers may con-
clude that it is desirable to have a probability of 0.8 of
destroying a particular‘group of fifty Soviet silos. Then
it might be necessary to find out how many Minuteman III
missiles, for instance, would need to be targeted at the

silos.

Problem Definition

A specific example of the type of errors discussed in
this study will b& examined in this chapter. This type of
strategic problem, while exceedingly simple, is very common
in targeting literature and amply illustrates how an error
of this type can be made. It was the discovery of incorrect

treatments of a similar strategic problem in some published
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targeting articles that caused this question to be researched
in more detail.

Objectives and Assumptions. This targeting problem can
be stated as follows. Suppose that a particular group of
targets are to be destroyed by an allocation of one type of
missile. The targets can be considered point targets, such
as enemy missile silos. Suppose that the targets are to have
an equal probability of being destroyed, and call this
common level of PD the Desired Probability of Destruction
(DPD) for the targets. The objective of this hypothetical
problem is to find the minimum number of missiles per target
that are necessary to obtain this DPD. The targets are con-
sidered equal-valued and therefore the same number of missiles
will be sent to each target. For this simple prodblem,
assume that there is an unlimited number of identical missiles
and that they do not have multiple-warhead capability.

These missiles are to be independently launched and their
detonation can e timed such that no fratricide will occur.

Definitjion of Reliability Parameter R. An important
parameter to consider for this problem is the mechanical
reliability of the missiles. Reliabillity as used here is
meant to include all aspects of missile system operation
except for accurdcy. Important components of total missile
reliability are launch reliability, stage or flight reliabil-
ityi and detonation reliability. This total system Relia-
bility (R) can be considered to represent the overall fraction
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of missiles that will function reliably from countdown

T} through detonation (excluding accuracy). Or equivalently,
this parameter R represents the probability that any par-
ticular missile will perform reliably. Defined in this way,
this parameter R can be used to find, for a group of missiles
targeted, the expected number of missiles that would be suc-
cessful through detonation if the order to launch were given.
That is, the expected value, in a probabilistic sense, of

; the number of reliable missiles can easily be found -- this

expected value is the product of reliability R times the total
number of missiles targeted, or called into action.

Definjtion of Parameter P. One other parameter that
is important in evaluating missile system performance is the
single-shot terminal probability of killing the target. This
probability, P, is a conditional probability, and is condi-
tioned upon the missile system's effectiveness through det-
onation. If the missile’'s warhead is assumed to detonate upon
ground impact, the calculation of P depends on three factors --
the accuracy of the missile, the yield (Y) or megatonnage of
the warhead, and the hardness of the target. The accuracy of
a missile is usually expressed in Circular Error Probable
(CEP), defined as the distance such that a circle of radius
CEP would be expected to contain one-half the landings of
all the missiles targeted for the center of the circle. 1In
the case of silo hard targets, the hardness (H) of a target
is defined as the minimum blast overpressure that would be
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required to render the contents of the silo ineffective. The ;
hardness of a silo is usually measured in pounds per square ?
inch (psi). It is not the purpose of this thesis to examine

nuclear blast effects, but one way to calculate the condi- ‘
tional terminal probability of kill P is given in [Tsipis,

1974:37-38]. If yield Y is expressed in megatons, CEP in

nautical miles, and H in pounds per square inch, then:

v2/3

Aty g v ] 273 '
P = 1 -9 (CEP) (0019 - 0023 H + 00068 H) (3.1) !
Summary Ligt of Problem Aspects. With the assumption

that enemy defenses are incapable of preventing missile attack,
the facts and assumptions of this allocation problems are as
follows: )

1. Equal-valued strategic point targets (silo)

2, Identical single-warhead missiles

3. Well-known parameters of missiles and targets

4, Independently launched missiles and exclusion of

fratricide
5. No enemy defenses

6. Goal of finding minimum number of missiles, given DPFD

irst ut e

One possible approach to the targeting allocation prob-
lem outlined above is found in some of the open literature
on targeting. This method, which shall be called Approach

One or Method One, for lack of a better name, can be summarired
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as follows. By isolating on a single target, the number of
missiles that are necessary to gain some level of Desired
Probability of Destruction (DPD) is denoted by Xy. The
solution Xy is the minimum number of missiles targeted to
each silo. This solution approach begins by solving for the
number of reliable missiles needed, and then proceeds to find
out how many missiles actually need to be targeted at each
silo.

Two Step Approach. The effective, or reliable, number
of missiles that are targeted to a silo is defined as the num-
ber of missiles that actually land and detonate; denote this
general quantity by N. Then, if P is known, it is straight-
foward to calculate the Probability of Destruction (PD) from
any value of N

PD =1 = (1 - p)N | (3.2)

For this problem, PD is desired to be DPD. So, the solution
for any given DPD is:s

in(l - DPD)
Nl *"In(1 -P (3.3)

Thus, Nl reliable missiles must be targeted at each silo to
obtain DPD. Since R represents the average fraction of mis-
sles that are reliable, an expected value approach might
lead one to compute the allocation xl from the parameter R

and from "1' the necessary number of effective weapons.

24

.
b 4 . .
o oS W, B e




B .

FL NS

)

That is,

N
X, = & (3.4)

From this technique, xl missiles need to be targeted at each

silo to obtain a probability equal to DPD of killing the silo.
The solution technique outlined in Eqs. (3.2)=(3.4) can

be synthesized into an equivalent expression for PD for any

general amount of missiles X:

PD =1 - (1 - p)RX (3.5)*

Then, by setting PD equal to the given DPD, the solution for
Xy is equivalent to that of Eqs. (3.2)=(3.4):

in(l - DPD -
x = R, (3.6)

The logic that seems to underlie the two-step approach of
Eqs. (3.2)-(3.4) is based on what can be called "expected
value grounds®, One can easily compute the minimum numbder
of reliable missiles necessary, N,, and for any amount of
targeted missiles X, one can easily compute the expected
value of those that will be reliable. Therefore, it should
follow that these two computations can be combined because
they are individually correct. The implicit assumptions in
this reasoning are that the expected value of PD is all that
is needed, and that Eqs. (3.2)=(3.4) are based on an expected

value calculation of PD.
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Fallacy of First Method. 1In truth, the number of re-

liable missiles needed, N, can be computed from Eq. (3.3).
And the expected number of reliable missiles, E(N), if X
missiles are targeted, is:

E(N) = RX (3.7)

So individually, the two calculations are correct, but their

combination is not. Eq. (3.5) is equivalent to:

PD = 1 - (1 - p)E(N) (3.8)"

This calculation: is invalid, even if based on expected value
terms. The expected value of PD is not given by Eq. (3.8).
In this case, the expected value of N, equal to RX, was used
in the calculation of the expected value of PD. From the
laws of probability, for any function f and random variable
Y, E(£f(Y)) is.in general not equal to f(E(Y)). It is clear
that N, the number of reliable missiles, is in reality a
binomial random variable with parameter equal to the reli-
ability R and sample size equal to the number of missiles
launched X.

Therefore, Eqs. (3.5), (3.6), and (3.8) are incorrect
combinations of individually correct calculations. These
three equations have been labelled with asterisks to prevent
confusion. Thus this solution technique, embodied in Egs.
(3.2)=(3.4), is an incorrect way to approach this simple

strategic problem.
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Second Solution Method
In the preceding paragraphs, a possible approach to

scelving a particular strategic targeting problem has been
shown, and that this approach is invalid. It is probably easier
to show that an alternative approach is correct, and to high-
light the differences between the two methods.

Using the same notation and terminology as before, R
was defined as the probability that a given missile performs
reliably through detonation. The conditional probability P
was defined as the probability that a given missile will
destroy the target, conditioned on successful detonation.
Then it is clear that the single-shot unconditional probability
of destroying the target is RP. Then, if X missiles are tar-
geted at the silo, this multiple shot unconditional prob-
ability of killing the target should be:

PD = 1 - (1 - RP)X (3.9)

If PD is set to the desired level, DPD, then the necessary
number of missiles computed under this method, X5, is found

froms

X, = Hl=DE (3.10)

If the system parameters P and R are well-defined, then the
solution from this second method, given in Eq. (3.10), is

the accurate one.
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First Discrepancy Measure xl/'x2

There is clearly a conceptual mathematical difference
between the two methods, as shown by contrasting the two
solutions given in Eqs. (3.6) and (3.10). Given that the
error committed in Eq. (3.6) is a fairly common one, then an
important consideration is the determination of the empirical
properties of the discrepancy.

Formula For xl/xz Ratio. One possible numerical measure

of the discrepancy between the two methods is the simple
ratio of their two solutions xl and xz. Referring to Eqs.
(3.6) and (3.10), this ratio is:

X
M1 _ anQ@ - RP;

Note that the value of this ratio is independent of the value
of DPD. It can be shown that if the value of the reliability

R is less than one, as it is in all realistic cases, then

this ratio xl/x2 is always less than one. That is, the first
methbd's solution of xl missiles is always less than the
second method's Qolution of X, missiles. Thus, under the
first (incorrect) method, military planners would not get the
level of protection, in terms of Probability of Destruction,
that was sought. The Desired Probability of Destruction
(DPD) would not be gained.

Proof That X,/X, Is Less Than One. The proof that the

ratio xl/'x2 is less than one is based on treating the ratio
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as a function of three variables -- DPD, P, and R. From
Eq. (3.11), it is easily seen that if the reliability R is
equal to 1, then the ratio xl/x2 is equal to one for all
values of P and DPD. And:

o (2) o _Li_(.(T___}nl-RP
1

= l ° -——- J‘- L4 —
Tn(l -p) | M1 =-RP) « 5 +8 * 1T '-'-IR)J-PT]

= o)

X 1
In(I -'P) R® (1 - RP)

=(1 - RP) 1n(l - RP) - (PR ]

=1
R° (1 - RP) 1n(1 - P)

[(1 - RP) 1n(1l - RP) + RP]

(3.12)

X
To derive the sign of 1@% ( i% ) ,» examination of the last term

in Eq. (3.12) shows that the sign is the same as that of

the quantity in the square brackets, (1 - RP)ln(l - RP) + RP.
This latter quantity is zero if R is zero. Taking the partial
derivative of this quantity with respect to R;

<5 [ -re)n1 - re) ¢+ Re |

" [ (1 - RP) Ti-é:E%T + (-P)In(1 - RP) + P ]

= «P 1n(1 = RP) (3-13)

This partial derivative is positive for all P and R both
greater than zero and less than one, that is, for all of
the possible ranges of P and R. Since the bracketed quantity
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in the last term of Eq. (3.12) is zero for R equal to zero
and its partial derivative with respect to R is posi;ive for
all R greater than zero, then the quantity is positive for R
greater than zero. Therefore, the partial derivative of the
discrepancy ratio xl/x2 with respect to R is positive. And
since, for R equal to one, the ratio xl/xz is equal to one,
then xl/x2 is less than one for all R lying in the open in-
terval (0.0, 1.0). That is,

N

R e (0.0, 1.0)
xl/xz =1 forR =1

Xy
135 %) 0 for R< 1

taken together imply:

X, /X5 < 1 (3.14)

Therefore, in all realistic cases where the probability
of successful detonation is less than unity, the minimum
number of missiles computed under the first (incorrect)
method is less than the actual missiles needed. So for
this type of problem, the first method is always biased
towards underprotection, or lower probability of destroying
the targets. A graph of the discrepancy ratio xl/x2 versus
reliability R illustrates the effects of changes in R. Such
a graph is shown in Fig. (1), with P equal to 0.7.
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Figure 1. Discrepancy Ratio xl/x2 Versus Reliability
R with DPD = 008. P = 00?

Second Discrepancy Measure PDl/PD2

Possibly a more important question than the discrepancy

in necessary missiles is the resultant discrepancy in the

Probability of Destruction (PD) due to the first (incorrect)

method. It is clear that if the number of missiles calculated
from the first method is less than the actual number of 1
} - missiles needed, then the actual PD gained from the first '
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method is lower than that being sought.
Formula For PDl/PD2 Ratio. A more useful discrepancy

measure would be the calculation of the ratio of the FD
gained from the first method to the PD gained from the second.
Defining PD1 as the actual PD gained from using xl missiles,
FD, can be calculated by substituting X;» from Eq. (3.6), for
X in Eq. (3.9):

ln(l - DPD)
PD, =1 - (1 - gp)R In{l =P (3.15)

This would be the actual probability of destroying the targets
if Xy missiles were targeted at each one. Since the pro-
bability of destruction obtained from the second method's
solution xz is precisely DPD, then the ratio of PD1 to PD2

iss
1nQ1 - DPD;
piecs WG MRS (& WSS WO 0L (3.16)
FD, ~ DPD

An alternative formulation for PDl/PD2 that is useful for

some analysis is:

1 1-(1e-pm)tintd«?d (3.17)

DPD

K B

This last expression is equivalent to Eq. (3.16) since, for
any general a,b,c:

aP 1n(e) _ b 1n(a)

(3.18)
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Simple Proof that PD;/PDZ Is Less Than One. This dis-

crepancy calculation PDl/PD2 can be viewed as a measure of
error caused by using the first method. This is a useful
measure because it is the ratio of the Measures of Effec-
tiveness that are the actual outputs of the two methods.
Since the true expression for PD given in Eq. (3.9) is an
increasing function of missiles X, and xl is less than X5,
then it follows that PD,y is less than PD, for all parameter

values DPD, P and R between zero and one.

Mathematical Properties of PDl/PD2

In analyzing the discrepancy between these two solution
methods for this'simple strategic problem, it is useful to
examine the mathematical properties of the discrepancy
measure PDl/PD2 and its empirical qualities. For this measure,
the mathematical pfoperties are well-defined and the numer-
ical errors caused by the first method can be significant,
depending upon the values of the three parameters -- P, R,
and DPD. By examining the effects of changes in the indi-
vidual parameters, "worst-case” and “best-case” situations
can be found.

Since, among various strategic problems of this type,
the parameters DPD, P, and R can assume wide ranges of
values between zero and one, the discrepancy measure PDl/PDZ
can be considered a function of three variables. By examining
the partial derivatives of PDl/PD2 with respect to the three

parameters DPD, P, and R, one can determine at which parameter
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values the error is serious.

Proof That PD]/PDg Increases With R. Repeating the

o

alternative expression for PDl/PD2 that is given in Eq. (3.17);

[ PD —Lf-‘%l—-&g}'
s == [ 1. (1-pppR Inll = (3.19)

PD2 DPD

From this expression, it is easily seen that if the reli-

ability R assumes the value one, the ratio PDl/PD2 is equal

to one also because the power to which the quantity (1 - DPD)

is being raised is unity if R is equal to one. That is, there

is no difference in the two methods, regardless of the values

of the other two parameters DPD and P, if R is one -~ there

is no error involved in using the first method in this case.
( So the error only arises when R is loas'thnn one, which

agrees with the earlier result of identity between X, and

X, only if R is one.

~ PFrom Eq. (3.19), the partial derivative of PD, /PD,
with respect to R is:

337 (%) - 55 [‘1'17?0)%]- [ln(l-DPD)]
[ -
* 59D In(l - [(hnpn)ﬁl?H] .
: [1n(1-np)-;§+§u1§%] :
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-1ln(l

i in(l -
= DPD R In(T - P; a
DPD In(l = P (1 - DPD)

fitiral (2o omos]
(3.20)

Careful examination of the last term of Eq. (3.20) shows that,

with all parameters DPD, P, and R greater than zero and less

PD
than one, 33-! (FD%) has the same sign as the last quantity

in the last term: | (1 - RP) In(1 - RP) + RP| . But the
quantity [(1 - RP) 1n(1 ~ RP) + RP] was shown to be positive
for all realistically possible parameter values when the ratio
xl/xz was analyzed (Eq. (3.13)). Therefore, the partial de-
rivative of PDl/PD2 with respect to R is positive. That is,
as the reliability decreases from a maximum value of one, the
discrepancy ratio PDl/PD2 decreases, or equivalently, the error
is greater. As R decreases, the underprotection, which arises
from the first method’'s miscalculation of the necessary
missiles, becomes worse. As R approaches one, the error is
less significant. These effects of changes in reliability R
are shown in Pig. (2), which is a plot of PDl/Pnz versus R
for the parameter values DPD = 0.8, P = 0.7.

Proof That PDl{PDginocroaaos with P. Similar derivations

can give the partial derivative of PDl/sz with respect to P,
From Eq. (3.19) ]
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Figure 2. Discrepancy Ratio F‘D_.l/PD2 Versus Reliability
R With DPD = 0.8, P = 0.7

n -

s ] [ln(l - DPD)]
d -
* 3P [ R ln%I - P; :' (3.21)

PD
From this expression, the sign of %— is the same as

the sign of the last quantity: % ﬁlﬁh__ﬁl} o« And:

- - 555 [(1.- DPD)

36




P

S

» ¥
e %

BLP[Rnn 1,-- P ].% I:ln(l-RP) 1n(1 :lp)] )
* In(I - ﬁiﬂ%f':'RFT ]

- - P) In(1 - P)
In(1 - P) |2 (1 - P) (1 - RP)

(3.22)

Since the denominator of the last term of Eq. (3.22) is
uniformly positive for R and P in the range from zero to one,

the sign of the whole quantity in Eq. (3.22), and thus that

PD
of 333 (P_D;j) » 1s the same as that of the numerator:

(1 =RP) In(1 = RP) + (=R) (1 = P) In(1 - P). If P were gero,
this last quantity would be zero also. And the partial

derivative of this numerator with respect to P is

195 [(1 = RP) In(1 = RP) + (-R) (1 - P) 1n(1 - P)]

= In(1 - RP) (-R) + R 1n(1 - P)
= R [ -1n(1 - RP) + 1n(1 - p)]

=R 1n [T{l:=§§}] (3.23)

Since RP < P < 1, then the last term or Eq. (3.23) is
negative. Therefore, since the numerator of the last term
of Eqe (3.22) is zero for P equal to gero and uniformly
decreases with P for P greater than zero, then this numerator

is negative for all values of positive DPD, P, and R. Then
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each term of Eq. (3.22) is negative, which implies that

PD
-aéF(ﬁﬁ) is negative also.

This analysis shows that as the missile®’s single-shot
conditional probability P of killing the target is increased,
the ratio of probabilities of destruction PDl/PD2 gets
smaller. That is, as P increases, using the first method
solution results in a true probability of destruction that .
is farther from the goal of DPD. This is the opposite effect
of that which occurred for changes in the reliability R.

For P close to zero, the error caused by using the first
solution would be less significant. A representative graph
of PDl/PD2 versus P is given in Fig. (3), with parameter
values DPD = 0.8, R = 0.5, The value of PDl/PDz is undefined
for both P equal to zero and P equal to one. ;

Proof That PDl{fDEf}ncreaaos with DPD. Since the values

of the Desired Probability of Destruciion DPD may vary for
different problems, it is useful to know the effects on the
ratio PDl/PD2 caused by changes in DPD. Referring to Eq.
(3.19), the partial derivative of PD,/PD, with respect to
DPD is:s

3 PD &
3 (DPD S(ﬁt) 3 '(D'JP'D')‘E # ﬁ%‘ﬁ [J'?L%'R n 1.._5&;.1) ;.
-lf-‘h—ﬁﬂ-y' -1
°(1-DPD)[R“ b ] -(-1)]-
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Figure 3. Discrepancy Ratio PD]_/PD;a Versus P With
DPD = 0.8, R = 0.5

in(l - Q;
- [ ‘-12 (1 & DPD)R In(l - P ]

(DPD)Z

iy [DPD 1n(l - RP ] :

=~ -1
°(1-DPD)[R1n - P ]+

+ [(1 - DPD)R gn!i i P] ] -1 (3.24)
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Examination of the last term of Eq. (3.24) shows that

PD
( 3 %PD (?D_l) has the same sign as the quantity in the
2

braces in the last term. This quantity is equal to zero
for DPD equal to zero. And its partial derivative with
respect to DPD is:

1n(1 - RP _1]
+

LD DPD 1n(l - R In(l = P
SOm) ) R ln{i-P§] ‘I'DPD)L
lnil-RP;
in(l - RP In(l - RP .
R_L(—}lnl-P DPD[Rlnl-P ‘1]
[ln(l-RP;_z]
- (1 -ppp) LRIn(1-P (-1) +

+ (1 - DPD)
1ln(l - RP
-—‘—{- i
+ =R (1 - orD) [R il ] (-1) - 0
'R;(%-%{DP 1"1',R£ 1]
-
(1 - DPD) [ ] » (-1)}

(3.25)

By referring to the formula for the missile ratio xl/xz
given in Eq. (3.11);

X .
- - 1 = -l-]_ 0 «26
[ o ] ["z ] i 7

R : 40
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Therefore, the last term in Eq. (3.25) is positive for all
values of DPD, P, and R greater than zero and less than one.

Then the last term of Eq. (3.24) is positive, that is,

( )

DPD, P, and R.

The effect of increasing the chosen value of the Desired
Probability of Destruction is the same as that of increasing
R == it results in increasing the discrepancy ratio PDl/PDz.
That is, as DPD is increased, the error caused by the first

.method is less.significant, if the values of the other two

parameters P and R remain constant. Conversely, if DPD is
decreased, say for solution sensitivity analysis, the ratio
PDl/'PD2 decreases also, or equivalently, the error becomes
more significant. Fig. (4) shows the relationship between
PD,/PD, and DPD for constant P = 0.7, R = 0.5.

Among practical problems, the values of the three
parameters may vary widely. It is then useful to outline
general situations when the first method causes significant
errors. In the preceding discussion, the partial derivatives
of PDl/PD2 with respect to R, P, and DPD were proven to be
positive, negative, and positive, respectively. Then, the
first method's error is most significant in problems with
low R, high P, and low DPD values. That is, the ratio of
probnbilitioa'of kill is lowest in this situation. Conversely,
the error is least significant in problems with high R, low
P, and high DPD values. These two situations identify

b1
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Figure 4. Discrepancy Ratio PDl/PD2 Versus DPD
With P = 0.7, R = 0.5

“worst-case” and “best-case“ conditions.

Effects of Changes of Other Parameters. Two values, R
and P, actually depend on other missile system parameters. The
reliability R is a single composite figure that depends on the
various components of mechanical reliability -- for example,
launch reliability and detonation reliability. If any of these
individual component reliabilities decrease, the overall re-
liability R decreases, and so does the discrepancy ratio PDI/Pnz.

The error caused by the first solution method becomes more

significant for any decrease in an individual component reliability.
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The single-shot conditional probability of kill P, as
computed in Eq. (3.1l), depends upon three other values =--
missile megatonnage Y, missile accuracy CEP, and target hard-
ness He As Y increases, P obviously increases, causing the
ratio PDl/PD2 to decrease. As the accuracy measure CEP
increases (less accuracy), P decreases, and PDl/PD2 in-
creases., As H increases, P decreases, and PDl/PDZ in-
creases. That is, the first method's error is most signi-
ficant for high Y, low CEP, and low H values.

Limit of PDl/PD2 As R Approaches Zero. One final

mathematical result will be presented for this simple three
parameter problem. It is possible to derive a lower limit
for PDl/PD2 for any given problem. Referring to Eq. (3.17),
the limit of PDl/PD2 as R approaches zero is given by:

lim (Pnl) . lim [ o (1 - (1 - peD)® ¥“%1-‘R§;)] .

R—-0 PD, R—-0

1
86%)- 1_(1_DPD)1n(I‘P5 R—-0 L R
(3.27)

The 1imit of the ratio [1n(1 - RP) ]/ R as R approaches
gero would be an undefined quantity -- zero divided by zero.

From L°'Hospital‘’s Rule for limits of ratios:
-1
lim in(l - RP) < 1im =P(1 - RP)
R»O[ R ] R—0 [ ]

lim = -
'R—-O( 1-KP ) P
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lim  [1nQ2 - sz]
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R—0 DPD

This 1imit is not valuable as a realistic value for PD,/FD,
because R never assumes the value zero. But the limit does
provide a lower bound for the discrepancy ratio PDl/PD2 for
any given problem with known P and DPD.

Empirical Results

The mathematical properties of two alternative solution
methods for a simple strategic allocation problem have been
discussed in this chapter. It would also be useful to ex-
amine their empirical properties to determine the numerical
significance of errors caused by the first method. For
practical problems, the Desired Probability of Destruction
(DPD) for point targets is usually high -- greater than 80%
or 0.8. The parameters reliability R and single-shot con-
ditional probability of kill P may assume any values, de-
pending on the individual missile system considered.

Graphs of PDl/PD2 Versus R. One way to examine the nu-

merical errors caused by the first method is to graph the
discrepancy ratio PDl/PD2 for realistic values of the three
parameters DPD, P and R. Such a graph is given in PFig. (5).
In this figure, PDl/PD2 is plotted versus R for eight
combinations of values of DPD and P. These curves illustrate

the mathematical properties of the ratio PDl/'PD2 that were

Ly

e

. PD —(12—)"
lim (ﬁ’%) = _1_[1 s {1 = ppp)inll =P ] (3.29)
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discussed earlier. For any given combination of values of
DPD and P bcth between zero and one, the ratio increases with
R, from a lower limit given by Eq. (3.29) for R equal to
zero, to a high of one for R equal to one. Comparisons of
the curves show that the ratio uniformly decreases with P

for any one combination of values of DPD and R. And the
ratio increases as DPD is increased from 0.8 to 0.9, for

any given combination of R and P.

Besides the effects of changes in parameter values,
overall examination of Fig. (5) gives information about the
magnitude of the error for realistic problems. As the ratio
PDl/PD2 decreases, the first method generally leads to solu-
tions that achieve smaller percentages of the method's
goal -- level of probability of destruction. For instance,
for the realistic situation where the parameters R, P, and
DPD are 0.5, 0.7, and 0.8, respectively, the ratio PDl/PD2
is less than 0.86. That is, the first method achieves only
86% of its goal. FExamination of Fig. (5) shows even more
alarming discrepancies for some of the parameter values.

Definitions of Rounded Measures ii/ié. ?51/?52. and

Fﬁl/DPD. The discrepancy ratios X,/X, and PD,/PD, pre-
viously derived are actually based on the computed numbers

of missiles necessary. In general, these computed amounts

X, and X, will not be integers. Of course, fractions of
missiles cannot be targeted for silos. The number of missiles

must, in real problems, be rounded up to the nearest integer

k6
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to assure a Probability of Destruction greater than or equal
to the desired level DPD. For small numbers of missiles, this
rounding causes relatively large percentage changes in X, and
consequently in PD.

By representing the upward roundings of x1 and X, as
fi and X,, respectively, the two discrepancy ratios can be
re-computed. By separately inserting il and X, into the
true PD calcutation given in Eq. (3.9), the resulting ratio
can be called PD,/PD,. For small values of X, and X,, the
two ratios X,/X, and ?ﬁl/?ﬁé can be significantly different
from the original ratios xl/'x2 and PDl/PDZ. An example is
shown in Fig. (6). The two curves are individual plots of
PD,/PD, and PD,/FD,, both versus R. For both plots, DFD
is equal to 0.8 and P is equal to 0.7. While the PD,/PD,
plot exhibits the same smooth, convex curve charactérised
in Pig. (5), the 551/552 plot exhibits step-like behavior.
This is reasonable since the roundings of X, and X, produce
different effects, depending on how close X, and X, are to
the rounded il and X,. In fact, the 531/?52 function is
discontinuous at the step points. As R increases, the dif-
ference between PDl/PDZ and ﬁﬁl/ﬁﬁé generally increases,
because the numbers of missiles x1 and xz decrease with R,
causing more percentage difference due to rounding. The
effects of changes of parameters DPD, P, and R on FD,/FD,
are generally the same as the effects derived earlier for
PDl/Pnz. Por instance, 551/552 generally increases with R,
though not strictly increasing (due to the step characteristics).
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A third discrepancy measure involving rounded figures,
and possibly the most useful, is the ratio ?ﬁl/ DPD. This
measure is the actual ratio of probability of destruction ob-
tained by using the rounded Yl number of missiles to the
desired probability of kill. This ratio is a true evaluation
of how close the first method comes to reaching its goal of
DPD.

Numerical Comparisons of Rounded and Non-rounded Measures.
To further illustrate the effects of rounding the numbers of
missiles X, and X,, Tables (I)=(VIII) give a comprehensive
comparison of calculations for various values of parameters
DPD, P, and R. Each table corresponds to a single curve from
Fig. (5). Table (I), for instance, gives a listing of cal-
culations based on values of DPD and P equal to 0.8 and 0.5,
respectively, with R varying from 0.1 to 0.9 in 0.1l incre-~
ments. These eight tables fully illustrate the numerical
differences between the two solution methods. In some cases
the rounded, or practical, values of the ratios X,/X, and
551/552 are significantly less than one.

Examination of Tables (I)=(VIII) show that for a few
combinations of values of parameters DPD, P, and R, the value
of Fﬁl is actually greater than the value of DPD. Thus
the discrepancy measure ?ﬁl/bPD is greater than one for these
cases. For example, if DPD = 0,8, P = 0.7, R = 0.6, then
PD, = 0.805 or PD,/DPD = 1,006. In this and other similar
cases, the first method of solution obtains a level of PD

that is greater than its goal of DPD, but this method '
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never obtains a level of PD greater than that gained by the
second method.

Table of Lower Limits for PDl/PDz. As a final numerical

result for this problem, the lower limits of PDl/PD2 for
given combinations of DPD and P are given in Table (IX).

These values represent the limit of PDl/PD2 as R approaches
zero for constant DPD and P, The formula for each limit is
given in Eq. (3.29). The eight lower limits in Table (IX)
correspond to the eight curves given in Fig. (5). These
lower limits are not realistic values of PDl/PDZ, of course,
since R never assumes the value zero. But the limit does give

a lower bound for PDl/PDz for any strategic problem of this

Table IX

Lower Limit of PDl/PD2 As R Approaches Zero
PD

DPD P g -ﬁi
0.8 0.5 0.859
0.8 0.6 0.814
0.8 0.7 0.760
0.8 0.8 0.688
0.9 0.5 0.900
0.9 0.6 0.865
0.9 0.7 0.820
0.9 0.8 0.757
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General Results and Conclusions

Some attempt has been made in this chapter to examine
the differences between two alternative solution techniques
for a particularly simple strategic allocation problem. The
problem involves targeting groups of a single type of missile
at a set of point targets to assure a given probability of
destruction. This simple, but common, problem was chosen
because it highlights the sometimes overuse of what can
be called "expected-value mentality.* This strategic
problem was simple enough to point out mathematical and em-
pirical discrepancies between the two methods and still have
reasonably proveable results. Other more complicated strategic
problems have been empirically examined (for examplé. targeting
various types of missiles with multiple-warhead capability).
The erroneous results of expected value thinking given in
this chapter can in some cases be generalized to these more
complicated situations, and several numerical examples tend
to re-inforce this generalization (for example, see Chapter
Iv).

For this simple problem, the relevant facts and derived
resultssare easily summarized. A list of points defining
the problem ist

1. The targets are equal-valued point targets (silos).
2. There is only one type of missile -- without multiple-
warhead capability.

O
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3. The operating characteristics of the missile are well-
known.

4. The parameters P and R for the missile system are
defined as in pp. (21)-(23) of this report.

5. The objective is to find the minimum number X of missiles
per target necessary to obtain a Desired Probability
of Destruction of the targets.

The results discussed in this chapter are:

l. For two alternative solution methods, the ratio
Xl/x2 was derived and proven to‘be less than one for
all realistic values of R.

2. For the two methods, the ratio of the two (non-
rounded) actual probabilities of destruction, PDl/PDZ,
was derived and proven to be less than one.

3. The ratio PDl/PD2 uniformly increases with R, decreases
with P, and increases with DPD.

4. Low R, high P, and low DPD values cause the first
method‘'s error to be most significant (worst case).

5. High R, low P, and high DPD values cause the error to
be negligible (best case).

6. The lower bounds for PD,/PD, were derived and tabled
for various values of DPD and P.

7. The ratios of rounded results, fl/fz and ?31/532.
produced empirical results similar, but not exactly
so, to their non-rounded counterparts.

8. The first method can in a few situations produce FD,,

based on the rounded X,, to be greater than DFD.
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9. The numerical errors caused by the first method can
be numerically significant for a wide variety of

parameter values.

()
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Iv. E e of a S ous Error

In Published Literature

In this chapter, the analysis contained in a series of
articles by noted atomic physicist Kosta Tsipis will be
examined. Doctor Tsipis was, when the.drticles were written,
the Senior Researcher at the Stockholn‘ihternational Peace
Research Institute (SIPRI) and a Research Associate at the
Center for International Studies at the Massachusetts Institute
of Technology. Three articles by Tsipis will be discussed,
along with three articles by other authors that used or
referred to his analysis. The first article, and primary
reference for this chapter, appeared in the October/November,
1974, issue of Technology Review [Tsipis, 1974:34-47].

The discussion will be centered on an erroneous set of
equations designed to compute probabilities of kill in counter-
silo problems for unreliable missiles that have multiple-
warhead capabilities. For multiple-warhead missiles, the
errors in computing kill probabilities also lead to invalidation
of Tsipis'’s primary measure of merit for missiles -- his *“K*
measure which depends on the missile warhead's accuracy and
its megatonnage. The errors lead to calculations of probability
of silo kill that are higher than the correct results. As
the mechanical reliability of the missile decreases, the errors
in kill probability become more significant. Overestimation
of kill probability for single missiles in turn leads to
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underestimation of the numbers of missiles required to gain
@ given level of kill probability.

In this chapter, Tsipis’s analysis is traced, and then
alternative formulas will be presented that are corrections for
the same assumptions. Then comparative probabilities of kill
will be computed, using mainly his data, to draw attention to
numerical errors caused by his formulas. The errors do not
arise either for perfectly reliable weapons or for single-

warhead missiles.

sile Pre-Allocation Problem
The applicability of this analysis is limited in scope.

Tsipis examines both counterpopulation and counterforce
deterrence, but the discussion here is limited only to counter-
force targeting -- the objective of the problem is to destroy
or cripple the enemy’'s missile force to limit his second-
strike capability. This strategic allocation problem is
generally the same as that discussed in Chapter III, except
that the missiles have multiple-warhead capability.
Assumptions. For this problem, the attacker is trying
to obtain the capability of destroying the defender's land
missile force. The silos that house the missile force can
reasonably be considered to be point targets, with what is
commonly called a “cookie-cutter™ damage function. A ®"cookie-
cutter” damage function is one in which the target is destroyed
if the attack weapon detonates within some given distance of
the target, and the target is unharmed if the weapon detonates
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any further from the target. That is, there is no possibility
of fractional damage. This critical distance from the target
(silo) is usually called the lethal radius of the target.

The attacker is restricted to launching his available
missiles simultaneously, thus ignoring the possible benefits
of sequential targeting. He is forced to analyze his optimal
targeting strategy before launch. In this problem, enemy
defenses are ignored. Tsipis chooses to ignore the bombers
presently in U.S. and Soviet arsenals in his analysis, as will
this chapter. The possibility of warhead fratricide is ignored,
assuming that detonations can be timed to reduce the possibility
of one warhead detonation interfering with another.

Definitions of Variables. Besides the numbers of missiles \

used to target at silos, there are four basic variables in
this problem. Where possible, Tsipis‘’s notation will be

used. Three basic variables relate to the weapons -- missile
accuracy, missile launcher reliability, and warhead yield.
Missile accuracy is measured as in Chapter 1II -- Circular
Error Probable (CEP), in nautical miles. Tsipis only discusses
missile launcher reliability, denoted by p , ignoring re-
entry vehicle reliability for multiple-warhead missiles.

This reliability is the probability of the missile launcher
performing reliably until its release of the re-entry vehicles,
for multiple-warhead missiles. The warhead yield Y is usually
measured in megatons. A fourth basic variable is related

only to the target. The silo hardness H is defined as the

minimum blast overpressure required to render the contents of
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the silo ineffective; H is usually measured in pounds per

square inch (psi).

Calculation of Single-Shot Terminal Probability of Kill, P

An intermediate value will be useful for further analysis.
The single-shot terminal probability of kill, P, was defined
in Chapter III. This probability P is the conditional pro-
bability of a single warhead destroying the target and is
conditioned on two things -- first, the warhead and its
missile delivery system perform reliably through detonation,
and, second, the target has not been destroyed by a previous
warhead. While the second condition may seem trivial, its
realization is important in the formal derivations of later
formulas. For silo point targets, P is then the probability
that the warhead lands closer than the target‘’s lethal radius,
given the two conditions.

Tsipis himself offers a calculation for P, which he calls
Py» in his Eq. (11) (Tsipis, 19743138]. If the warhead landing
error is assumed to follow an independent two-dimensioral
Gaussian (normal) probability distribution centered at the
target, as is commonly assumed, and if the possibility of
missing the target in a given direction is generally the same
as for any other direction, then P can be calculated from

this simplification of Tsipis‘’s Eq. (11)s

1/2 ks A
bRy (CEP)? (0.19- 0.23 HY2 + 0,068 H)Z/2
it -

(4.1)

65

i sfon.

e )

N e N T T




e

()

There is some question as to whether this equation is a valid
formula for P. In a published discussion of this formula,
John Walsh of the Office of the Director of Defense Research
and Engineering, DOD, criticizes the formula and offers an
alternative one [walsh, 1975:1117-1118]:

-l 2/3
(CEP)2 12/3

walsh contends that Tsipis made an error in the use of the

P-Pktl-g[ (4.2)

bivariate Gaussian distribution, while Tsipis believes that
his own use of (CEP)2 as an estimate of the variance of the
distribution for a given weapon produces at most five percent
error [Tsipis, 1975:1119]. Tsipis does seem to have made an
error in the use of the distribution, contradicting other
sources [Eckler, 1972:17]. On the other hand, Walsh's formula
seems to‘use a one-term approximation of Tsipis's formula

relating lethal radius ry to yield Y and silo hardness H:

1/3
; b.3)
s " (0.19 - 0.23 §I75 + 0,068 H)1/3 (43

Walsh’s formula just uses the one-term approximation

(0.0681/3 . HI/B). In any case, most of the debate between the
two seems to center around the nuclear effects on silos. It

is not the purpose of this paper to discuss a proper calculation
of P, since it depends on assumptions about nuclear effects.

The errors that are examined below are in the use of P to
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calculate probability of kill, not in the calculation of P.
For that reason, Tsipis‘’s formula for P given in Eq. (4.1)
will be used for the rest of this chapter, so that any nu-

merical differences that arise will be due to other differences.

Tsipis‘'s Formulas For Multiple-Shot Pk = PD

s

Tsipis gives equations for calculating the unconditional
probability of killing a target, Pk' which was called PD in
Chapter III, for two separate cases. First is the case when
a group of warheads, all from different missiles, are launched
at a single target. Second is the launching of a group of
warheads, all on the same missile launcher, at the single
target. It is Tsipis's calculations for the second case,
which are repeated in other articles, that seem to be in error.
Both cases will be outlined below.

Calculation of P, For Nl Warheads From N1 Different
Missile Launchers. ;; N, wa;heads on N, indi;idual. but iden-

tical, missiles, each with reliability p , are sent to the
same target, then the calculation of P from Eq. (4.1) can

be used to compute the multiple-shot probability of kill.

From Tsipis's Eq. (21), [Tsipis, 1974:39]

Pp( Py Ny) =PD=1=(1-p N (4. 1s)

or equivalently, substituting the formula for P given in
Eq. (4.1) gives:
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y2/3 1
2(CEP)2(0.19 - 0.23 H/2 + H)?/D

=] - l-pP)|1-ce
(4.5)
This last equation is in terms of the four basic variables --

accuracy CEP, yield Y, reliability p, and silo hardness H.
Calculation of Pk For N2 Warheads From Same Missile

Launcher. For missiles with multiple-warhead capability, say
one that has Multiple Independently-targeted Re-entry Vehicles
(MIRV) it seems reasonable that a general formula for multiple-
shot kill probability would have to include cases where some
warheads from the same missile are launched at the same target.
If N, warheads from the same missile launcher that has relia-
bility p are sent to a single target, then Tsipis‘'s Eq. (22),
(Tsipis, 1974:39]), gives the following formula for kill
probability:

Pk(P ’ Nz) =

= PD =

p Y3 1, ]

iienl 2(CEP)2(0.19 - 0.23 H/2 + 0.068 H)%/>

(4.6)"

In terms of the single-shot terminal probability of kill P,
this equivalent to:
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PNz

( Pel P uNp) =PD =1 - (1-P) (4o7)”

A quote from the Technology Review article [Tsipis, 1974:39]
clearly defines when Tsipis feels that Eqs. (4.6) and (4.7)
can be used; *“If n warheads aimed against a silo are carried
by the same missile of reliability p , the kill probability
becomes ¢.¢ "

Fall S. (4 d (4,7). There is aAsinple way
to show that Tsipis’s Eq. (22) for kill probability, which
corresponds to Eqs. (4.6) and (4.7) above, seems to be incorrect.
By examining Eq. (4.6) it is seen that if the equation were
valid, the kill probability could be made arbitrarily close
to one just by loading enough warheads Nz on the launcher.

( This point is even made clearer by referring to Eq. (4.7),

since P is always less:than one in an imperfect world. But

if the single missile launcher system that delivers the war-

heads has at most a probability of p of getting to the target
area, then the kill probability is at most equal to p . That

is, the probability of destroying the target with a single missile
with multiple warheads cannot be any higher than the reliabi-
lity of the missile system delivering those warheads.

If 2 is defined as the number of reliable warheads that
reach the target area, a random variable, then the expected
value of Z, E(Z), for this situation is just the missile
reliability p times the number of warheads per launcher, Ny
That is, Eq. (22) of Tsipis and Eq. (4.7) above are equivalent

-
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P( p o Ny) =PD =1 - (1= p)E(Z) (4.8)"

This is an incorrect use of an expected value in a probability
calculation -- the type of error that was previously discussed
in Chapter III. If p is, for example, equal to 0.7, then
on the long-term average, 70% of the total missiles launched,
and thus 70% of the total warheads launched, would perform
reliably. But for any given missile launch, one of two events
can occur. Either the missile delivery system performs re-
liably and all of the N, warheads are delivered to the target
area, or, the system fails and none of the warheads are de-
livered. The first event has probability of p = 0.7 and the
( second has probability of 1 - p = 0.3. Eqs. (4.6), (4.7),
and (4.8) would be valid only if 70% of the warheads were
certain to be delivered per launch. These latter three
equations are invalid and have been labelled with asterisks

to prevent confusion.

Correct Formulas For Pk = PD For N2 Warheads From Same |

Migsile
If the terminal probability of kill P can be effectively

computed, then a corrected alternative formula for computing
the probability of killing a target with N, warheads from the
same missile is easily obtained. Two forms of this formula
will be presented.
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( If the reliability p is the reliability of the missile,
and if the re-entry vehicles (warheads) are assumed to per-
form reliably (as Tsipis does implicitly in his Eq. (22)),
then the probability of N, warheads from a single missile
destroying the target is:

N2
Pk( p ouz) =PD =p.(1=(1-P)7) (4.9)
Or, using Eq. (4.1), substituting for P gives Pk( p .Nz) in
terms of the four basic variables:
pk( [} oNz) =
= PD = \J

N,Y2/3 |
R T o 273
eo l1-6  L(cEPI*(0.19 - 0,23 /% 4 0.068 W)

(4.10)

Examination of either of these last two formulas shows that
as the number of warheads per missile N, increases, the pro-
bability of kill asymptotically approaches p , not one, as
occurred for Tsipis®s equation. That is, the probability of
kill from a single missile can be no higher than that missile's
reliability, regardless of how many warheads are loaded on the
missile. Neither Eq. (4.9) nor (4.10) involve more difficult
calculations than their incorrect counterparts, Eqs. (4.7) and
(4.6).

The validity of Eq. (4.9), and thus of Eq. (4.10), can
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be easily verified. The terminal probability of kill P

is just the conditional probability of destroying the target
for a single warhead, conditioned on the reliable performance
of the missile. If the N, re-eniry vehicle warheads are
assumed to perform independently after their release from
the missile launcher, then the conditional probability that
the target survives all the warheads is just (1 =- P)“z.

That is, the conditional probability of destroying the target

isl - (1 - P)Nz. Since this last quantity is conditioned
on reliable missile performance, which has probability equal
to the reliability p , then the multiplication of 1 - (1 - p) 2
by p gives the unconditional probability of killing the
target with N, warheads from the same missile of reliability

P o This multiplication gives the result in Eq. (4.9). A
simple diagram, Fig. (7), illustrates the derivation of Eq.
(%.9).

Comparative Calculations Of P! = PD For Different Data

If Tsipis’s Eq. (22), repeated in Eqs. (4.6) and (4.7),
is wrong, then it is important to highlight any numerical
errors that arise from his formula for kill probability for
missiles with multiple-warhead capabilities. Table X is a
set of P, calculations comparing Tsipis®’s formula and Eq. (4.10)
for various U.S. and Soviet missiles, both present and pro-
posed., Only missiles with multiple-warhead capabilities are
considered because it is only for these missiles that Tsipis’s
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' Conditional
‘ Probability Probability
L
1
Survives
Missile
0
(1-p)N2
Missile
Performs
(
Killed
1-(1-p)"2

Figure 7. Event Probability Diagram For N, Warheads
From The Same Missile Of Reliability p F: |

Py formulas are incorrect. Table X lists the compared pro-
babilities of kill if only one missile of the listed type
were sent to the corresponding target.
If m denotes the number of re-entry vehicles per launcher
(RV/L), then N, = m and the tabled probabilities can be cal-
suiated from the four basic variables (CEP, Y, H, and p ) and
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m. The weapons system characteristics come from Tsipis’s
Technology Review article [Tsipis, 1974:40-43] and from
Representative Robert L. Leggett‘'s, (D-CA), article appearing
in the Armed Forces Journal International [Leggett, 1975:30-
32]. Part of this weapons data is repeated by Tsipis in
another article [Tsipis, 1975:394-395]. The silo hardness H
data appears to be in doubt, so all the possible silo hard-
ness mentioned by these sources have been used -- 100 psi,
300 psi, 500 psi, and 1000 psi.

Tsipis does not produce tables for P, using his Eq. (22),
or Eq. (4.6) above, but actually calculates the necessary
numbers of warheads to gain some given level of P,, using
another equation (Eq. (4.5) above) for perfectly reliable
missiles ( p = 1.0). Table X given here uses an arbitrary
missile reliability of p = 0.8. The discrepancy between the
two Pk figures from Tsipis®'s equation and Eq. (4.10) would
depend on the value of p . If missile reliability p is
lower than 0.8, as it may possibly be for older weapons,
then the discrepancy would even be larger. For instance, for
the present Minuteman III against a silo with hardness equal
to 100 psi, if p is 0.8, then the Py from Eq. (4.6) is 0.957
and the P, from Eq. (4.10) is 0.785. But if p were equal to 0.7,
then the two Pk values would have a much larger discrepancy =--
0.937 to 0.686. Even more significant discrepancies would occur
for lower p values. In general, Tsipis's Eq. (22) leads to an
overestimation of Py for missiles with multiple warheads.

(N) This in turn would lead to an understatement of the number of
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those missiles necessary to obtain some given probability of
kill. This is the same result as that discussed in Chapter
III for the simpler type of error.

Discussion of Tsipis®'s Measure of Lethality, K

Dr. Tsipis proposes a general measure to evaluate the
counterforce strength of a strategic missile. This measure,
a parameter called K, is calculated frpm two of the four basic
variables of this counterforce problem, accuracy CEP and yield

Y:

B 1.

K =_—7 uol
(CEP) , il

Most of Tsipis‘’s equations for kill probability are actually

in terms of this lethality measure K, rather than CEP and Y.
For the case with perfectly reliable missiles (p= 1.0),
Tsipis's Eq. (21), repeated here as Eq. (4.5), reduces tos

- v2/3y
2(0.19 - 0.23 HI7%_¥ 0.068#)2/7

P(psN)=1-6 [ 2(CEP)

- K N,
M [ 2(0.19 - 0.23 HY/Z + 0,068 H)?/> ] (4.18)

This is his Eq. (14), [ Tsipis, 1974:38] . Then for any de-
sired probability of kill, called DPD in Chapter III, the

necessary value of KNl can be solved for:

KN, = -2(0.19 - 0.23 K2 + 0,068 K)?/3 « 1n(1 - DPD)
(4.19)
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( This is equivalent to his Eq. (17), [Tsipis, 1974:38]. Re-

verting to Tsipis's notation n for the number of warheads,

——

then for any desired kill probability and each silo type, the
value of K * n necessary to destroy one silo of that tyee can

be computed. Then the number of warheads necessary can be
computed using the warhead's K value. For instance, a Poseidon
warhead (Y = 0,05 mt, CEP = 0,3 nm) has a K value of 1.5.

And a silo with H = 300 psi requires a K * n value approximately
equal to 30 to destroy it with probability 0.9. Thus it

would take about 20 perfectly reliable Poseidon warheads to
destroy a 300 psi silo with probability 90%.

The usefulness of the K measure of lethality for the un-
reliable case seems questionable, even using Tsipis‘’s equations. ‘
For unreliable missiles, he offers his Eqs. (21) and (22) or
Eqs. (4.5) and (4.6), for computing kill probability. But
unlike his Eq. (14), the necessary value of K * n, for a given

silo and desired kill probability, cannot easily be solved for
in closed form from Eq. (4.5), that is, from his Eq. (21).

In Eq. (4.10), the correct formula for kill probability for
multiple-warhead missiles, the solution for K  n would in-
volve reliability p and would not be the same as Tsipis's
solution for K « n given in Eq. (4.19). In any case, for
unreliable missiles, the necessary K * n value per silo cannot
be computed from Eq. (4.19), since Eq. (4.19) applies only to
perfectly reliable missiles. That K * n value cannot be

used to compute the number of warheads necessary for unreliable

missiles. ‘
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Published Discussion of Tsipis Analysis

There has been substantial comment on and use of Tsipis‘s

oo

analysis in published articles subsequent to his 1974 Technology !
Review article, but no corrections of his Eq. (22), repeated j
in two forms in Eqs. (4.6) and (4.7), were found. Tsipis
himself repeats the analysis in an article in the 7 February
issue of Science, [Tsipis, 1975a:1393-397], except that he does
not offer data projected into the future as he did in Technology
Review. As mentioned earlier, there was a discussion between
Tsipis and John walsh on the proper calculation of the ter-
minal probability of kill P, published in Science [Walsh,
1975:1118-1119], but Tsipis®s Eq. (22) is not mentioned.
Congressman Leggett [Leggett, 1975:30-32] uses Tsipis’s K \
measure and more recent data to justify his Congressional
debate that the U.S. has a marked advantage over the Soviet
Union in countersilo capability. Several other articles by
Tsipis, while of a less analytical nature than the 1974
Techrology Review article, use the K measure as a valid

general measure of merit for strategic missiles.

In a paper for the Center for Naval Analysis (CNA),
Michael L. Squires [Squires, 1976] draws comparisons between
Tsipis‘®’s K measure dr merit and the results of a computer
simulation model. The ninth version of the Arsenal Exchange
Model (AEM) was used to compute three Measures of Effectiveness
(MOE*s) for U.S. and Soviet countersilo attacks. The three
MOE's were the number of U.S. (Soviet) ICBM's surviving, the
number of U.S. (Soviet) warheads surviving, and the number of

U.S. (Soviet) equivalent megatons surviving.
80
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( Squires uses Tsipis‘’s data for U.S. and Soviet silo hardness,
and Congressman Leggett's data on weapons characteristics.
while Tsipis concludes that the United States maintains (and
will continue to maintain through the 1980°s) a strategic
arsenal vastly superior to that of the Soviet Union, based on
total K values, Squires concludes that with given future pro-
jections, The Soviet Union will be essentially equivalent in
offensive capability, based on the model‘’s three MOE‘’s, through
the 1980°'s. Squires criticizes Tsipis®'s K measure as an over-
simplification, but does not offer to explain why the Tsipis
measure is invalid. Squires seems to base his belief about
the invalidity of the K measure only on the fact that the
measure produces different results from the AEM simulation runs. \

( His reasoning, of course, implicitly assumes the correctness
of the Arsenal Exchange Model. Squires does not explicitly
refute any of Tsipis‘’s probability calculations.

t -Warhead
Arsenals
In this chapter, formulas for kill probabilities have
been given for single types of single-warhead and multiple-
warhead missiles with reliability p . It would be useful
to give a general formula for kill probability for different
types of missiles launched at a single target. This formula
assumes that a correct terminal probability of kill can be
calculated, with P defined as before. This terminal probability
(') of kill P is a conditional probability that is related both
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to the type of missile and the type of target.

If an attacker’s missile arsenal has I different types
of missiles, these missiles can be subscripted i = 1 to I.
Then, for a given target type, let Py be the terminal proba-
bility of kill for that missile type i. Let py be the
missile delivery system reliability as before, and let Ry
be the re-entry vehicle (warhead) reliability for missile
system i. This is necessary because there are actually at
least two phases of operation for a multiple warhead system --
missile system operation to re-entry vehicle separation, and
re-entry vehicle operation after separation. Let m; be the
number of re-entry vehicles carried per missile for type i,
and define a full warhead group to be a group of my warheads
from a single missile. If full warhead groups can be divided
and targeted to more than one target, then a general formula
for kill probability needs to include cases where, for a
single target, less than m; warheads from a single missile
can be used to destroy the single target. For example, for
the present U.S. Minuteman III, the number of warheads per
missile is m = 3. Then a general targeting strategy would
allow the number of warheads sent to the target from a single
missile to be less than 3, with the missile’s remaining
warheads allocated to other targets. Then a general formula
for kill probability for multiple-warhead missiles would be:

I n
Pk-l-n ﬁ
i=] j=4

M
1-p [1 - -RiPi)]
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The only unknown variables in Eq. (4.20) are the xij.
which are the number of warhead groups from missile type i
that have j warheads in them. When silo targets are clustered
close together geographically, it may be more efficient for
the attacker to split his MIRVed warhead groups between targets,
at least in some targeting strategies. That is, in practical
targeting allocations, the attacker may get a higher target
destruction by splitting up his multiple-warhead weapons, if
the constraints of the allocation problem permit. For example,
the present U.S. Minuteman III has the number of warheads per
missile m = 3. If possible, it is more efficient to send two
warheads from one missile and one warhead from a separate
missile, than it is to send three warheads from the same
Minuteman III. If p; = 0.7, R; = 0.9, and P; = 0.7, then
sending two warheads from one missile and one warhead from
another results in a kill probability of Pk = 0.779. This can
be computed directly from Eq. (4.20) with I =1, X3, = 1,
xiz =1, x13 = 0, But if three warheads were sent from one
single Minuteman III missile, then the resulting kill probability
would be only P, = 0,665. This P, value is from Eq. (4.20) with
I=], xil- o, xiz = 0, xiB = 1, Of course, this targeting
strategy of splitting the warhead groups would only be possible
if some of the targets were close enough to allow different
warheads from the same missile to be targeted to separate
targets.

The formula for kill probability given in Eq. (4.20) is
general enough to include this strategy of splitting the warhead

83

e —

-, 1% 48 ;-; .”T‘ i b 1 POy ot P S S 2 g
N e SR LR o o




( groups to achieve optimal targeting. For a given target, then,

the total number of warheads sent to each target would be the

{
(3

total sum of the products of the number of warheads per split
warhead group, j, times the number of those groups, xij. That

is, for a given target, the total number of warheads sent to

I m
target would be the double sum EZ: J . xij' The formula ]
=1 )=l ? ,

for kill probability given in Eq. (4.20) is a general method
for computing kill probability, assuming that all the parameters,
especially the P;, are known., Eq. (4.20) is just a direct
extension of Eq. (4.9), with N, in Eq. (4.9) assuming the
values of j in Eq. (4.20). For single-warhead missiles, like
the present U.S. Titan, m, = l. Individual missiles are assumed
to operate independently, and a group of warheads from a

single missile is assumed to operate independently of warhead
groups from other missiles. The use of Eq. (4.20) ignores

the problem of fratricide, or equivalently, presumes that
warhead detonations can be properly sequenced to reduce
fratricide.

One useful feature of Eq. (4.20) is that it can easily be
adapted for use in a linear (or integer) program to obtain
optimal allocations of missiles. This is easily done because,
for a given target, the logarithm of the survival probability
Pgs» that is, of 1 - Py, is linear in the unknown variables

xijl

ln(Ps) = 1n(l - Pk) =
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Assuming that all the system parameters are well-=known ( Py
Ri' Pi)' then Eqs. (4.20) and (4.21) provide an extremely
useful tool for optimally allocating multiple-warhead missiles.
Eq. (4.20) highlights a general point about probability

calculations of this type. Events for multiple-warhead
missiles may not be independent. The title Multiple In-
dependently-Targeted Re-entry Vehicle may be a misnomer,
because events for re-entry vehicles (warheads) from the
same missile are not necessarily independent. When probabil-
ities of multistage events like the successful operation of

( a MIRVed missile are expressed in conditional terms,then
events may not be independent. For instance, the probability
that a target survives one warhead from an unreliable missile

is easily calculated:
Ps(l) =] - Pk(l) =] - piRiPi (hao22)

But the probability that the target survives two warheads from
the same missile is not equal to the product of the two in-
dividual probabilities because the events of targets surviving

the individual warheads are not independent. That is;

Pg(2) #[P (1)]% = [1 - pyR;P,]° (4.23)
| m
(ﬁ) And for the above case of sf:i J e xid warheads, the x
- =] :
1
y 85
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. probability that the target survives the E J-xg j war-
L j=1

heads from missiles of type i is not equal to 1 - piRipi

o
raised to the Z
35

408 xij power.
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V. Conclusions

In this report, a specific type of error in strategic
targeting was examined. In probability calculations, some
weapons quantities are actually random variables and their
expected values should not be used in place of the random
quantities themselves. Mistakes of this type were examined
in this report.

As a foundation for analysis, a general discussion of
strategic targeting and missile allocation was presented in
Chapter II. Two classifications of strategic targeting
models found in published articles were presented. Then a
classification of targeting models was proposed that was use-
ful for the analysis for this report. The three classifications
were generally based on model applicability, assumptions, and
solution technique.

Two general results from the literature search were
presented. One was that, although literature on targeting
abounds and is available, very few available articles dis-
cussed kill probability calculations for missiles that both
were unreliable and possessed multiple-warhead capabilities.
Second, the type of errors discussed in this report were not
common in the literature examined, although some errors existed.

In Chapter III, a simple missile allocation problem was
examined and possible errors for the problem were discussed.
For a problem of allocating identical single-warhead missiles
among a group of identical silo targets in order to achieve
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some common desired kill probability, two methods of solution
were examined. The first method involved the incorrect use
of the expected number of reliable weapons in a calculation
of kill probability. A second method for allocating the
missiles was given that corrects the first. The first method
was shown to generally underestimate the number of missiles
necessary to gain the desired probability of kill, and therefore,
to overestimate the resulting true probability of kill.
Several measures of discrepancy between the two methods were
proposed, two of them based on the non-rounded numbers of
missiles and three based on rounded missile allocations. In-
dicated by the two discrepancy measures that were based on
non-rounded allocations, the significance of errors caused by
the first method was shown to be:

l., greater as missile reliability decreased

2. greater as warhead yield in megatons increased

3. greater as accuracy increased (lower circular error

probable)

4. greater as target hardness decreased

5. greater as the desired kill probability decreased
The discrepancy measures based on rounded missile allocations
cannot be said to strictly follow these five above trends
because of discontinuities, but the trends are generally the
same for both types of discrepancy measures, depending on the
parameter values., Different missile allocations and discrepancy
measures were evaluated for various values of the parameters

missile reliability, warhead yield, missile accuracy, target




@

hardness, and desired kill probability, and these data were
tabled. The numerical results show that, at least for some
parameter values, the numerical errors caused by the first
method are significant when compared to the first method.

In Chapter 1V, a specific method from published targeting
literature was examined. A series of articles by Dr. Kosta
Tsipis contain a formula for kill probability that is incorrect.
For unreliable missiles with MIRV capability, Dr. Tsipis
offers a formula for kill probability that involves an incorrect
use of the expected number of reliable missile launchers. An
alternative formula for the same kill probability calculation
was given in Chapter IV. Dr. Tsipis‘'s calculation of kill
probability for a single missile approaches the value of one
as the number of warheads increases, while the corrected
calculation of kill probability can never be higher than
the missile reliability (if only one missile is launched
to the target). This result invalidates Tsipis®s conclusion
that strategic arsenal strength depends on the number of war-
heads, and not on the number of missile launchers. This é
difference between the two formulas can lead to large numerical
discrepancies. For data on present and projected U.S. and
Soviet arsenals that were obtained from Tsipis and other
sources, comparative calculations from the two formulas were
tabled and show significant differences.

A general formula for the probability of killing a silo
target was presented. The formula is general enough to
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include mixed types of multiple-warhead missiles at a single
target.

The general conclusion of this report is that anyone
interested in strategic targeting analysis should be cautious
about the use of expected weapons numbers in kill probability
calculations. In some cases, incorrect used of expected value
assumptions may lead to serious numerical errors that are quite
separate from the resulting conceptual errors. The use of

expected values based on simplifying assumptions should be

cautiously made.
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