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The purpose of this research was to examine the effects

of incorrect uses of expected values in strategic missile

targeting. This iopic arose from some research for a class-

room exercise, in which it was found that expected numbers of

weapons are being incorrectly used in some published calcu—

lations for kill probability. I hope that this report will

lead to a more cautious use of expected values in targeting

calculations. This has certainly been a true learning ex—

perience for me.

I would like to thank my advisor, Dr. Keith Womer, for

allowing me to pick this particular topic and for lending

( a. some of his expertise. Special thanks goes to my wife

Pat for her love and moral support at critical times. She

typed the report, but, of course, I am solely responsible

for any unnoticed errors.

David K. Roberts

I L

~

ii -
~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~



CONTENTS

Page

Preface. . . . . . . . . . . . . . . . . . . . . . . . . iiList of Figures. . . . . . . . . . . . . . . . . . . . . viList of Tables . . . . . . . . . . . . . . . . . . . . . vi iAbstract . . . . . . . . . . . . . . . . . . . . . . . . viii
I • INTRODUCTION. . . . . . . . . . . . . . . • . . . 1

Problem Statement. . . . . . . . . . . . . . . 2
Chapter Top ics. ............... 3
Objectives and Scope . . . . . . . . . . • . . 5

II. RESULTS OF THE LITERATURE SEARCH. . . . . . . . . 7

Methodology. . . . . . . . . . . • . . . . . . 8
Mathematical Models Survey From Eckler

and Burr. . . . . . . . . . . . . . . . . . 9
( Classification By Criterion of

Effectiveness. . . . . . . . . . . . . 9
Classification By Mathematical

Solution Technique . . . . . . . . . . 10
Missile—Allocation Literature Survey

From Matlin . . . . . . . . . . . . . . . . 11
An Alternative Characterization of

Targeting Models. . . . . . . • . . . • . . 13
Limited Literature Discussion of

Missile Allocation For Unreliable
Missiles With Multiple Warheads . . . . . . 16

Prevalence of the Types of Errors
Discussed In This Report. . . . . . . . . . 17

III. CONCEPTUAL DISCUSSION OF A PARTICULAR ERROR . . . 20

Problem Definition . . . . . . • . . • . . . . 20
Objectives and Assumptions. . • . . . . . 21
Definition of Reliability

Paraineter R.............. 21
Definition of Parameter P . . . . . . . • 22
S’i~~~r~’ List of Problem Aspects . . . . . 23

First Solution Method. . . . • . . . . . . • . 2
Two Step Approaoh....... ..... 2
Fallacy of First Method . . • • . . . . . 26



Page

Second Solution Method. . . . . • . • . . . • 27
First Discrepancy Measure X1/X2 . . . . . . . 28

Formula For X1/X2 Ratio. • . • • • • . . 28
Proof that X1/X2 Is Less Than One. . . . 213

Second Discrepancy Measure PD1/PD2. . . . . . 31
Formula For PD1/PD2 Ratio. . . . . . . • 32
Simple Proof That PD1/PD2 Is Less

Than One. • . • . • . • . • . • . . . 33
Mathematical Properties of PD1/PD2. . • . . • 33

Proof That PD1/PD2 Increases With R. . . 34
Proof That PD1/PD2 Decreases With P. . . 35
Proof That PD1/PD2 Increases

With DPD. . . . . • . . . . . . . . . 38
Effects of Changes of Other

Parameters.......... ,,.. 11.2
Limit of PD1/PD2 As R Approaches

Zero. . . . . . . . . . • . . . • . . 43
Empirioal Results.............. l~4

Graphs of PD1/PD2 VersusR. . . . . • . 45
Definitions of Rounded Measures

and P~1/DPD. . . . . . . . . 46
Numerical Comparisons of Rounded and

lion—rounded Measures. . . . . . . . . 49
Table of Lower Limits For PD1/PD2... . . 58

General Results and Conclusions . . . . . . . 59

IV. AN EXAMPLE OF A SERIOUS ERROR IN
PUBLISI{ED L I T E R A T U R E . . . . . . . . . . . . .  62

Missile Pre—Allocation Problem. • . . . . . . 63Assumption.. . . . . . . . . . . . . . . 6
Definitions of Variables • . . . . . • . 6

Calculation of Single—Shot Terminal
Probability of Kill,P. • 1 ~~~~~~~~ • • . . . 65

Teipis ’s Formulae For *ultipls~Shot1’D. . . .  • . . . . • • . . • . . . . 67
Calculation of Pk For Warheads

From N1 Different Missile
Launoh•ra . . • . . . . . . . • . . . 67

Calculation of For N2 Warheads
From Same Missile Launcher. • . . . . 68

0 Fallacy of Eqs. (4.6) and (4.7). . . . . 69

lv

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

- 

~~~~~~~~~~~~~~~~~



Correct Formulae For - PD For N2
Warh.ade From Same kieeile . . . . . . . . 70

Comparative Calculations of - PD
For Differsnt Data • . . . . • . • .  . . . 72

Discussion of Teipie ’s Measure of
Lethality, K • . • . . . . . . . . . . • • 7~Published Discussion of Teipie Analysis . . . 80

General Formula For Kill Probability
For Multipls—Warhsad Arsenals. • . . • . •

V. CONCLUSIONS. . . . . . . • . . . . . . . • • • • 87

Bibliography. • . • . • • • • • • • • • • • • • • • . • 91

Vita. . . . . . • . . . . . . . . • . . . . . . • • . . 93

I,

1.

V

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



LIST OP FIGURES

Figure Pane

1. Discrepancy Ratio X1/X2 versus Reliability
R with DPD O.8,P 0.? . . • . . . . . . . 31

2. Discrepancy Ratio PD1/PD2 Versus Reliability

R with DPD 0.8, P - 0.7 . . . . . . . . . . 36

3. Discrepancy Ratio PD1/PD2 Versus P with
DPD — 0.8, R — 0.5. . . . . . . . . . . . . . 39

4. Discrepancy Ratio PD1/PD2 Versus DPD with
P • 0.7, R • 0.5. . • . • . . . . • . . . . . 42

5. Comparative Plots of Discrepancy Ratio

PD1/PD2 Versus Reliability R. . . . . . . . . 45
6. Comparison of Ratios PD1/PD2 and

Both Versus R, DPD • 0.8, P - 0.7 . . . . . . 48

7. Event Probability Diagram For N2 Warheads
From the Same Missile of Reliability p . . . 73

0

.79 03 12 052



LIST Qi TABLES

Table Pate

I. Comparative Calculations Between Two
Methods, With DPD • 0.8, P • 0.5. . . . . • • 50

II. Comparative Calculations Between Two
Methods, With DPD • 0.8, P = 0.6. . . . . . .

III. Comparative Calculations Between Two
Methods, With DPD • 0.8, P • 0.7. . . . . . . 52

IV. Comparative Calculations Between Two
Methods, With DPD • 0.8, P • 0.8. . . . . . . 53

V. Comparative Calculations Between Two
Methods, With DPD • 0.9, P • 0.5. . . . . . . 511.

VI. Comparative Calculations Between Two
Methods, With DPD • 0.9, P • 0.6. . . . . . .

VII. Comparative Calculations Between Two
Methods, With DPD • 0.9, P 0.7. . . . . . . 56

VIII. Comparative Calculations Between Two
Methods, With DPD • 0.9, P • 0.8. . . . . . .

IX. Lower Limit of PD1/PD2 As R ApproachesZero . . . . . . . . . . . . . . . . . . . . .
X. Comparison of Calculated From Eq. (4.10)

and Tsipie Eq. (22) 
~~~~ 

For Single
Missiles From U.S. and Soviet MIRVed
Missile Force................ 74

vii
j



AFIT/GOR/SM/78S-l

• 1

ABSTRACT

This report examines the incorrect uses of expected values

in kill probability calculations that exist in some strategic

targeting articles and models. Generally stated, the type of

error is the incorrect use of expected numbers of weapons in

probability calculations in place of numbers of weapons that

are actually random variables. The most common example found

was the use of the expected number of reliable missiles or

warheads in kill probability calculations for silo targets.

In Chapter II . the results, of a general literature search

are given. These results are in the form of classifying

various strategic targeting models. Three alternative class-

ifications are offered —— two from the literature and one
by the author. The author notes a definite lack of targeting

literature cov.ring missile. that both are unreliable and have

multiple warhead capabilities. Of the targeting nodsis that

were examined, the author found a few articles that make the

type of mistake studied in the report, but these mistakes
are not common.

In Chapter III, a simple missil, allocation problem is

•xamined and a possible expected value •rror is discussed. For

singis—warhead missiles, the incorrect use c~f the expected

numbsr of reliable missiles in place of the random variable

reliable missiles can lead to highly significant numerical
viii
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errors for some parameter values. The correct kill probability

formula is given and severa l measures of discre pancy between

the two formulas are given. The discrepancy measures are of

two types —— the ratio of the missile allocations for the two
methods, and the ratio of the respective probabilities of

kill that result from the two allocations. The effects of

changes in parameters such as accuracy and silo hardness, are

proven mathematically. Numerical data on the discrepancy

measure s are tabled for variou s parameter values, and these

data show that the error can be highly significant.

In Chapter IV, a specific example of an expected value

error is discussed. A series of articles with incorrect kill

probability calculations for MIRVed weapons is examined. The

incorrect articles use the expected number of reliable war-

heads in place of the random number of reliable warheads.

The author offers a corrected formula and numerically compares

the differences based on data values for present and projected

U.S. and Soviet arsenals. Then the author offers a general

kill probability formula for silo targets p the formula is

general enough to include mixed types of multiple—warhead

missiles.

C)

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~p ~ ~~~~~ ~~~~~ ~~~ ~~~~~~~~~~~ 
~~~c,-



EXPECTED VALUE ERR ORS IN KILL PR OBABILITY

FORMULAS IN STRATEGIC MISSILE TARGETING

I. Introduction

The primary objective of most strategic targeting and

allocation problems ca~ ~~ simply stated. The goal is to

gain the maximum amount of destructive power with the re-

sources that are available, In other words, it is to find

the “beet ” force mix of strategic weapons and the “best ” tar-

geting structure —— best in terms of military effectiveness.
The problem may be couched in broader terms, such as “maxi-

mal deterrence ”, or “effective equivalence”, but in many

cases the objective can be simplified to one of destructive

power.

Yet, even if the bread objective of a strategic allo-

cation problem is clear , its precise definition may be diffi-

cult. Often, a particular strategic study or model will use a

single Measure of Effectiveness (MOE) to define destruc tive

power. With a group of possible enemy targets, three common

examples of MOE’s used are probability of destroying the tar-

gets , expected number of targets killed, or expected frac-

tional damage of the targets. In computing each of these

MOE ’s, several factors must be considered. Some common exam—

pies are the accuracy of the weapons systems, their relia-.
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bility, and the number of weapons available.

Problem Statement

In some research for a class exercise involving a stra-

tegic allocation problem, errors were found in some published

strategic studies used for the exercise. In its simplest

and most general form, the mistake was in the use of’ an ex-

pected value of a random variable in the computation of a

very common MOE -- probability of kill for a group of targets.
The expected value of the random quantity, number of reliable

missiles,was used to represent the variable that should

have been left in its random form in the calculation.

The kill probability calculation is in general a function

of the reliable number of’ missiles , and the use of the expected

number of reliable missiles as a substitute in this case is

inconsistent with the laws of probability conc ernin g functions

of random variables. As is more fully explained in Chapters

III and IV of this thesis, these incorrect uses of the expected

number of reliable missiles or warheads cannot be justified on

the grounds that they lead to expected value formulas for kill

porbability. The formulas discussed for kill probability are

the types of function s of ran dom varia bles (for example, the

number of reliable missiles) in which the expected value of

the function is in general not equal to the function of the

expected value.

For example, if R represents the probability that a single-

warhead missile performs without mechanical failure (is reliable),

2 
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and if X re presen ts the number launc hed of that type missile,

then the number of reliable missiles per lat1nch is a binomial

random variable with sample size equal to X and binomial para-

meter equal to R. The expected number of reliable missiles

per launch is then R times X, but kill probability formulas

that are base d on the number of re liable missiles should not,
i.n general, substitute the expected value for the random variable.

Other examples of this type of expected value error are ana-

logous —— the use of the expected number of discriminated
decoys and of the expected number of offensive missiles sur-

viving the defenses, in place of their respective ran dom

variables.

Not only are these expected value errors conceptually

incorrec t, but they lead to seriou s numerica l error s for

some parameter values. In computing the number of single-

war head missiles that are necessar y to destroy silo tar gets ,

the incorrec t use of the expecte d number of missiles may lead

to differences of more than 100% in terms of missiles allocated

and effectiveness gained.

Chapter Topics

Following this chapter, the results of the literature

search for this thesis are discussed. A general framework for

targeting models is presented, with special consi derations

given to the assumptions and applicability of the models. The

literature search determined that there is a definite lack of’

i ( targeting models in the open literature that give kill probability

3
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( formulas for missiles that both are unreliable and have multiple—

warhead capabilities. The expected value errors of the type

examined in ‘this thesis were not found to be common in the open

literature , but where found , they caused significant numerical

errors. Some examples of expected value errors found are given

in Chapter II, but are not examined in detail.

In Chapter III, a simple example of expected value error

is examined in great detail. For single—warhead missiles, using,

perhaps implicitly, the expected number of relia ble missiles in

calculations of kill probability against silo targets leads to

serious numerical errors in terms of numbers of missiles aUo—

cated and in terms of kill probability gained. In Chapter Ifl,

an incorrect missile allocation method is given and proved to

( be incorrect. This allocation method tends to produce a consis-

tent overestimation of kill probability for unre liable missiles

and thus an underestimation of the number of missiles necessary

to obtain any given probability of’ kill. These two results

are proven mathematically along with the examination of effects

of parameter changes. Sample missile allocations and resultant

kill probabilities are calculated for various parameter values

and show highly significant errors resulting from the incorrect

use of the expected number of reliable missiles.

In Chapter IV of this thesis, a series of articles in

published targeting literature is examined. The articles by

Dr. Kosta Tsipis of the Stockholm International Peace Research

Institute contain incorrect formulas for kill probability for
I . ( : multiple—warhead missiles. These formulas incorrectly use the

11
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expected number of reliable warheads from the same missile in

place of the random variable of reliable warheads. Tsipis’s

formulas lead to overestimation of kill probability, as did

the simpler example presented in Chapter III. A correction of

Taipis ’s formula is given for multiple—warhead missiles against

silo targets. Comparative calculations of kill probability for

multiple—warhead missiles in present and projected U.S. and

Soviet arsenals are tabled. These tabled values show signi—

ficant numerical errors that arise from Tsipis ’s formula.

Finally, in Chapter IV, a very general formula for kill

probability for multiple—warhead missiles against point (silo)

targets is presented. This formula is flexible enough to

include cases where warheads from a single missile may be

( sent more than one target. The formula is also easily adaptable

to linear programming for optimal missile allocation.

Objectives and Scope

The objectives of this report are simple. The first one

is to show conceptually that a particular type of error exists

in kill probability calculations, at least in some instances.

Second is to determine how widesprea d these types of expecte d

value errors are in the open literature on targeting. When

expected value errors are found in published formulas, the

third objective is to determine the numerical errors caused

by the erroneous formulas. Special emphasis will be focussed

on the most recent studies —— later than 1970.

The scope of this report, due to the size and importance

5
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of the broad field of’ strategic all ocation , is very limited

in nature. Only strategic allocation problems will be con—

sidere d, although many types of calculations are common to

both the strategic and tactical fields. Instead of studying

both missile and b~mber allocation, this report will discuss

only missile allocation because it is rela tively simpler in

terms of the number of factors to be considere d, while the

error can be illustrated in both types of allocation. This

analysis is not inten ded to be a comprehensive methodological

revie w of stra tegic allocati on —— it is simply an analysis

of one type of calculation error and its applicability. A

more general topic related to this error is the use of expected

values of random variables in intermediate stages of multi-

( stage calculations. This related topic will be discussed in

the re port , but only as a peripheral issue. Only the military

effectiveness aspects of strategic allocation problems will

be discussed , ignoring the costing that is the focus of some

allocation pro ble~ns. This particular report is solely a

mathematical and analytical work, taking as given data on

nuc lear effects, guidance systems , targe ting, and opera tional

considerations.

• ~~ 6



II. Results of the Literature Search

A wide variety of open literature on missile targeting

has been written since 1970 -- variety in both applicability
and complexity. The purpose of this report is not to present

a general survey of targeting literature, but a limited

background is necessary for further chapters. Two general

surveys of unclassified material are available that are very

useful.

A general analytical survey was presented by A. Ross

Eckler and Stefan A. Burr in a book sponsored and published

by the Military Operation Research Society (MORS) in 1972

LEckler , 1972] . This very useful reference provides a very

( solid mathematical background for targeting analysis. Eckler

and Burr seem to organize mathematical targeting models into

two types of classifications. The first is to classify a

given model by its Criterion of Effectiveness, which depends

partly on the assumption and applicability of the model.

The second classification is by the mathematical solution

technique used by the model.

A general survey on missile allocation was presented by

Samuel Matlin in 1970 in ODeratione Bt~~i~h 
LMatlin, 1970 s

3311—373]. Mat lin’e article uses two types of classification.

It classifies the submodels involved —— the targeting aspects

that every model must address. It also classifies the

models themselves into four types based on applicability.

C) 7



• ( Following summaries of the Eckler/Burr and Matlin

classifications, an eight part characterization of missile

targeting literature will be presented.

Methodology

The methodology for this thesis was a simple one. The

research was accomplished in two distinct parts. One phase or

category of’ research was a literature search to determine where

expected value errors occurred and their prevalence. The

second category of research included analyses of published

articles or models where these types of errors occurred. These

analyses involved the correction of erroneous formulas with

special emphases on the numerical errors caused by the incorrect

formulas. Two analyses of erroneous kill probability formulas

are presented in Chapters III and IV of this thesis.

The literature search for the thesis was concentrated

solely in the open published literature —— no classified
material was examined. Only strategic articles and studies

were reviewe d —— tac tical anal ysis was ignored. Most of the

articles were centered around kill probability calculations

for point targets like silos, but some of the models included

area targets like cities and industrial complexes. Primarily,

targeting models were studied that included unreliable

missiles —— missiles that have positive probabilities of failure

at some stage of operation.

The articles themselves were mainly found through the

C) government reports indexes, the Defense Documentation Center,

- 
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and the Science Citation Index. Once the Teipis series of

articles , which are analyzed in Chapter IV of this thesis, were

found, much of the literature search was centered around

material related to those articles.

Once found, all the targeting models were analyzed with

particular emphases on each targeting model’s assumptions and

probability calculations. If the articles or studies were

found to have erroneous probability formulas, the correct

formulas for these calculations were derived for the same

assumptions. Where possible, extensive sets of’ probability

values were calculated to determine the numerical seriousness

of any errors. In Chapters III and IV of this thesis, two

analyses of expected value errors are presented. In Chapter

( III , kill probability formulas for single—warhead missiles

against silo targets are examined p in Chapter IV, kill pro-

bability formulas for multiple—warhead missiles are studied.

Mathematical Models Survey From Eckler and Burr’

The MORS work by Eck].er and Burr provides a good foun-

dation for analysis of targeting. It begins with general

formulas for kill probabilities under a large variety of

assumptions and then discusses specific mathematical models

and their applicability. The book admittedly has defensive

missile optimization as a frame of reference and the models

discussed are generally designed to be used without computer

solutions (although not exclusively so).

Classification BY Criterion of Effectiveness. Eckler

L.T~ 
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and Burr provi de a classification of tar geting models by

their effectiveness criteria. For example, if a model’s

Measure of Effectiveness (MOE) were percenta ge of tar gets

destroyed, then a sample criterion would be to pick the

feas ible stra tegy that would maximize the percenta ge of targets

destroyed. criteria of effectiveness for targeting models

are largely determined by the model’s frame of reference

(offense or defense) and by the types of targets. Criteria

of effectiveness given by Ecicler and Burr are LEckler, l972~

3—6j

1. Maximize (minimize) the expected number of targets

destroyed, for offense (defense),

2. Maximize (minimize) the expected value of the targets

destroyed, for offense (defense).

3. Maximize (minimize) a uniform probability of kill

across a group of targets, for offense (defense).

k. Minimizing the expected surviving number of preferentially

ran ked target s, ranked by offense, for offense.

5. Maximize the expected surviving number of preferentially

ranked targets, ranked by defense , for defense.

6. Maximize the probability that no targets are destroyed ,

for defense.

7. Maximize the probability tha t all tar gets are destro yed,

for offense.

Classification B~ Mathematical Solution Techniaue. A

second classification scheme used by Eckler and Burr is by

i (
~) the mathematical technique used to solve for the optimal

10
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missile allocation. Some targeting models require the use

of more than one technique from the following CEckler, 1972:

8—11]~ 
-

1. Assumption of continuity for functions of integral—

valued numbers of missiles.

2. Standard elementary optimization —— optimize a single

objective function with calculus and algebra.

3. Langrangian multiplier optimization.

4. Linear Programming.

5. Game theory.

6. Dynamic Programming.

7. Direct optimization —— for a given proposed solution,
show that the solution satisfies optimality conditions

and is unique.

8. Monte Carlo method.

9. Search techniques.

Eckler and Burr proposed that game theory be used more

frequently, since “game theory can be defined as the mathe-

matical theory of conflict. ” CEckler , 1972 :11]

Missile—Allocation Literature Survey Fr om )Iatlin

Samuel Matlin produced a general survey of targeting

literature es an annotated bibliography [.Matlin, 1970 s331~-

373]. Although somewhat outdated at this time, Matlin ’s

survey outlines a broad approach of classifying miesi]e-

allocation models. Primarily from an offensive frame of

reference, Matlin provides short abstracts of thirty-nine

11
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articles. Matlin explicitly defines the applicability of’

missile—allocation models p

The problem considered is: given an
existing weapon force and a set of targets,
what is the optimal allocation of weapons
to target? This is not to be confused
with the force-mix problem, which asks:
what weapon mix should be developed ,
under constraints of time and money, to
maximize the damage to the enemy? Target
allocation is actually a submodel of the
latter problem . . . ~Matlin, l970s334]

Matlin has two classification schemes for missile—allocation

models.

Matlin lists five types of subaodels that are universal

to a].looation models. Each model should address the issues

of (Matlin , 1970:337—346]:

1. The weapon system.

2. The target complex .

3. The engagement.

4. The damage submodel (measures of damage).

5. The solution algorithm.

Matlin classifies the surveyed targeting models into

four types LMat].in, 1970~346—357]. The first two are the

allocation of single weapon types, and , the allocation of

multiple weapon types. The third is a group of game theary

models —— models that involve active strategies by both

attacker and defender. Matlin’s fourth model classification

is a group of special—feature models that do not fit into the

three previous classifications. Some “special features”

( listed by Matlin are:

1,. Targeting in the email —— targeting at a small group
12
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of “local” area targets.

2. Force structuring.

3. Indirect values —— some intrinsically valueless

targets, such as command and control centers, that

contribute to the values of other targets.

4. Defense orientation.

5. Special optimization criteria —— other than expected
value killed or survived.

An Alternative Characterization of Targetin~ i~1ode1s

Based on the literature search for this thesis, an al-

ternative characterization of models may be proposed that more

closely suits the analysis for this report. It is a general

method for characterizing missile models by examining the

aspects of targeting problems. Strategic targeting models

generally seem to address certain common issues and the .

assumptions underlying them. The characterization includes

only the analytical parts of’ strategic targeting and not

the deterrent or psychological aspects. The following

characterization borrows some of the information from the

classification schemes of Eckler and Burr and of Matlin.

• Each missile targeting model should explicitly address at

least the following issues:

1. User of the model, or the frame of reference (offense

or defense).

2. Types of targets.

() 3.. Measures of Effectiveness (MOE’s). )

jj 
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4. Missile types.

5. Independence of events.

6. Quantity of information.

7. Costs —— inclusion or omission.
8. Solution techniques for missile allocation.

The types and valuea of targets must explicitly be

stated. Targets can roughly be categorized into two types.

Force targets are enemy missile silos and military installations

that could threaten the attacker. Value targets are popu-

lation and industrial centers, and non—threatening military

installations. In general, these value targets may be assigned

different values by the attacker (and by the defender), either

in numerical or priority scales. Besides the type of targets,

if the model user is the attacker , he must learn about the

defenses at the targets, if any.

Physical attributes of all possible weapons, such as

accuracy, reliability, size, power, and range, must be con-

sidered. But b4,yond the parameter descriptions of missiles,

their functions and operations are usually clearly stated.

Some missile operation questions that may affect strategy are

whether or not the missiles are offensive or defensive, land—

based or sea based, single—warhead or multiple—warhead. An

important additional description is the number of distinct

stages of operation —— booster launch, booster flight ,

re—entry vehicle (RV) separation, RV flight, and RV detonation.

Related to the description of operation stages is a

( clear delineation of which events in a strategic engagement

14
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are independent. For example, for some strategic targeting

problems, availability of one group of’ missiles may affect

the availability of’ others , or missiles launches may not be

independent of one another, or successful detonation of one

warhead may hamper the successful. guidance of following re-

entry vehicles (Fratricide). Clear descriptions of events

like these and the assumptions that support them help lead

to a clear understanding of a targeting problem and can

have a marked influence on probability calculations.

Quality of information may be the prime determinant of

strategy and engagement outcomes. There are at least three

types of information that apply to strategic conflict.

First is the quality of information about the physical

parameters of the arsenals of both sides. A strategist

wants to understand how well—defined his estimates of, say

accuracy and reliability, are for both himself and his opponent.

A second type of information is prior information about the

strategy of the opponent, if two—sided stragety is considered.

Third , the availability of’ intermediate information in a

strategic conflict is important . The re—assignment of’ missiles

to different targets to replace unreliable missiles or to

destroy yet unharmed targets is only possible if intermediate

information is available . Massive strikes at pre—assigned

targets, or one—wave strikes, ignore the value of such

information.

Very few missile targeting models consider the dollar

costs of missiles. Most are missile—allocation models like

15
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those surveyed by Matlin. Consideration of costs as a cri—

ten on by a model is a type of force-structuring.

The list of mathematical solution techniques from

Eckler and Burr (repeated above) is a comprehensive one.

Solution techniques can be loosely classified as analytical

(for example , Linear Programming and Lagrangian optimization )

or as based on simulation (for example , game theory and Monte

Carlo theory).

Limited Literature Discussion Of Missile Allocation For

Unreliable Missiles With Multiple Warheads

In the literature search that was centered on kill pro-

babilities for point targets, very little information was found

on kill, probabilities for missiles that are unreliable and
( have multiple-warhead capability. If it is true that most

future United States Missiles will have at least Multiple

Independently—targeted Re—entry Vehicles (MIRV’s), and since

physical missiles always have a positive probability of’ failure,

there definitely needs to be more allocation techniques in the

open (unclassified and available) literature for these types

of missiles.

The only strategic model that was examined that is used

by the military as a planning tool is the Arsenal Exchange

Model (AEM). The mathematical formulation for the AEM (seventh

revision ) was produced in 1973 Bosovich , 1973 • The chapter

on damage functions —- probabilities of kill —— do not contain
• any general formulas for kill probabilities for MIRVed weapons ,

16
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although unreliability is included tliosovich, 1973s1V—13—l——

IV—B—30]. The prototype arsenal examples [Bosovich , 1973:20—21]

used throughout the model consist of single—warhead missiles.

Dr. itosta rsipis of the Stockholm International Peace

Research Institute offers a kill probability formula for

unreliable, MIRVed missiles but, as is discussed in Chapter

IV of this report, Tsipis’s equations for this type of missile

are wrong. On the thirty—nine annotated references given by

Matlin, only one [Morgan , 1968] considers multiple—warhead
missiles in its damage calculations. But the same article,

according to Matlin, does not directly address the issue of

reliability.

For the single—wave type of missile attack against hard

( targets that is emphasized in this thesis, no formula for kill

probability was found that is similar to any of Eqs . (11.9),

(4.10), and (11.20), which are correct. General formulas like

those seem to be difficult to find in the open literature.

Prevalence of the T~~e of Errors Discussed In This ReDoI~
Strategic targeting models and studies were researched

to determine the prevalence of a type of error found in some

models. Loosely stated, the error consists of’ using expected

values of weapons in probability calculations when the numbers

of weapons are actually random variables. For example , the

number of reliable weapons in any attack wave is actually a

random variable related to the missile’s reliability and to

the number launched. Similarly, the number of warheads that

17
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penetrate enemy area defenses is actually a random variable

related to the number of reliably performing missiles and

the probability of penetration for any given missile. Sub-

stituting the expected values of either of these two random

variables in place of the random variables itself’ may lead to

serious errors in probability of kill calculations. For

example , the fact that seventy percent of missiles launched are

expected to perform reliably is not, in general, a sufficient

reason for assuming that seventy percent of the missiles will

perform reliably each launch. In Chapter III, a simple but

general example of this type of error is examined. For non-

MIRVed missiles, using the expected value of reliable missiles

in kill probability calculations leads to serious errors in

( ~ some problems. In Chapter IV, a more complicated, but specific

example from a series of published articles on targeting is

examined. For MIRVed missiles, using the expected number of

reliable re—entry vehicles can lead to serious errors in pro—

babilities of kill.

A simple error of the type discussed in Chapter Ill of

this paper can be found in a Systems Analysis book published

by the Industrial College of the Armed Forces tsnyder, 1967~
61—84] . The methodology for this case study advises computing

a necessary missile allocation in two stages —— first, to

compute the number of reliable missiles necessary for a given

kill probability, and, from this result, compute the necessary
number to be launched from the formula relating the number of

1) missiles launched to the expected number reliable. This

18
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approach is incorrect and is explained in Chapter III,

The Arsenal Exchange Model (AEM ) seems to make an error

of this type in one part of its calculation of kill probability

against defended targets [Bosovich, l973s1V—B—12——IV—B—15].

In a complicated attack with decoys and defense, AEM defined

d as the number of’ decoys per warhead, 
~D as the probability

that a given warhead is discriminated by the enemy. Then

UFØ, defined as the number of undiscriininated objects per

warhead , is computed by AEM to UF~ 1 + (1 - pD)d. In

reality, the number of undiscriminated objects per warjead is

a random variable with expected value E(UFØ) 1 + (1 — p~)d.

AEM uses its calculation of UFØ to calculate other quantities

and probabilities throughout the model. The use of this

( expected value is of the type discussed above and seems to

be conceptually incorrect. Due to the complexity of the AEM,

it was not determined whether this conceptual mistake leads to

serious numerical errors in the results of the AEM. This could

possibly be a simplifying assumption in the AEM, except that

other similar random variables are included as random variables

and not as expected values.

In the literature researched for the thesis, it was found

that the incorrect use of expected numbers of missiles or

warheads is not a common error. Early research did show some

examples of incorrect usages, and these are explained above.

But the majority of the open articles examined did not make

these types of expected value errors.

C)
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III. Conce~ tua3. Discussion of a

Particular Error

One of the most common Measures of Effectiveness (MOE’s)

used in strategic targeting calculations is the computed

probability of kill, or Probability of Destruction (PD), of

a selected group of targets. For strategic targets classified

as point targets, PD is often easy to compute. Also, the

use of PD is often applicable across broad classes of targets

and thus provides a common MOE for the evaluation of alter-

native allocations of weapons. One possible allocation

plan is to accept some common level of PD for a group of

targets while minimising the use of’ resources necessary to

( gain that PD level. For instance, decision—makers may con-

clude that it is desirable to have a probability of 0.8 of

destroying a particular group of fifty Soviet silos. Then

it might be necessary to find out how many Minuteman III

missiles, for inst.r~oe, would need to be targeted at the

silos.

Problem Definition

A specific example of the type of errors discussed in

this study will be’ examined in this chapter. This type of

strategic problem, while exceedingly simple, is very common

in targeting literature and amply illustrates how an error

of this type can be made. It was the discovery of incorrect

treatments of a similar strategic problem in some published
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targeting articles that caused this question to be researched

in more detail.

Obiectives and AssumDtions. This targeting problem can

be stated as follows. Suppose that a particular group of

targets are to be destroyed by an allocation of one type of

missile. The targets can be considered point targets, such

as enemy missile silos. Suppose that the targets are to have

an equal probability of being destroyed, and call this

common level of PD the Desired Probability of Destruction

(DPD) for the targets. The objective of this hypothetical

problem is ‘to find the minimum number of missiles per target

that are necessary to obtain this DPD. The targets are con-

sidered equal—valued and therefore the same number of missiles

( will be sent to each target. For this simple problem,

assume that there is an unlimited number of identical missiles

and that they do not have multiple—warhead capability.

These missiles are to be independently launched and their

detonation can be timed such that no fratricide will occur.

Definition of Reliability Parameter R. An important

parameter to consider for this problem is the mechanical

reliability of the missiles. Reliability as used here is

meant to include all aspects of missile system operation

except for accuracy. Important components of total missile

reliability are launch reliability, stage or flight reliabil—

ity~ and detonation reliability. This total system Relia-

bility (R) can be considered to represent the overall fraction

21
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( of missiles that will function reliably from countdown

through detonation (excluding accuracy). Or equivalently,

this parameter R represents the probability that any par-

ticular missile will perform reliably. Defined in this way,

this parameter R can be used to fini, for a group of missiles

targeted, the expected number of missiles that would be suc-

cessful through detonation if the order to launch were given.

That is, the expected value, in a probabilistic sense, of

the number of reliable missiles can easily be found —— this
expected value is the product of reliability R times the total

number of missiles targeted, or called into action.

Definition of Parameter P. One other parameter that

is important in evaluating missile system performance is the

( single—shot terminal probability of killing the target. This

probability, P, is a conditional probability, and is condi—

tioned upon the missile system’s effectiveness through det—

onation. If the missile’s warhead is assumed to detonate upon

ground impact, the calculation of P depends on three factors -—
the accuracy of the missile, the yield (Y) or megatonnage of

the warhead, and the hardness of the target. The accuracy of

a missile is usually expressed in Circular Error Probable

(CEP), defined as the distance such that a circle of radius

CEP would be exp ctsd to contain one—half the landings of

all the missiles targeted for the center of the circle. In

the case of silo hard targets, the hardness (H) of a target

is define d as the minimum blast overpreseure that would be
(•
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( 
required to render the contents of the silo ineffective. The

hardness of a silo is usually measured in pounds per square

inch (psi). It is not the purpose of this thesis to examine

nuclear blast effects, but one way to calculate the condi-

tional terminal probability of kill P is given in [Taipis,

1974,37—38]. If yield Y is expressed in megatons, CEP in

nautical miles, and H in pounds per square inch. ‘then:

/ Y2/3

P 1 — e (CEP) (0.19 — 0.23 H + 0.068 H) (3.1)

SUM~~rY List of Problem Aspects. With the assumption

that enemy defenses are incapable of preventing missile attack,

the facts and assumptions of this allocation problems are as
• ( follows:

1. Equal—valued strategic point targets (silo)

• 2. Identical single—warhead missiles

3. Well—known parameters of missiles and targets

4. Independently launched missiles and exclusion of

• • 
fratricide

• 5. No enemy defenses

6. Goal of finding minimum number of missiles, given DPD

First Solution Method

One possible approach to the targeting allocation prob-

lem outlined above is found in some of the open literature

on targeting. This method , which shall be called Approach

fl One or Method One, for lack of a better name, can be su~~~riaed

_
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( as follows. By isolating on a single target, the numb.r of

• missiles that are necessary to gain some level of Desired

Probability of Destruction (DPD) is denoted by X1. The

solution X1 is the minimum number of missiles targeted to

each silo. This so’ution approach begins by solving for the

number of reliable missiles needed, and then proceeds to find

out how many missiles actually need to be targeted at each

silo.

Two Step Approach. The effective, or reliable, number

of missiles that are targeted to a silo is defined as the num-

ber of niseiles that actually land and detonate; denote this

general quantity by N. Then, if P is known, it is straight-

foward to calculate the Probability of Destruction (PD ) from

any value of N:

PD 1 — (1 — p)N (3.2)

For this problem, PD is desired to be DPD. So, the solution

for any given DYD is.

N _ ln(l-DPD)
1 lntl — P) (3.3)

Thus, N
~ 
reliable missiles must be targeted at each silo to

obtain DPD. Since R represents the average fraction of mis-

sic. that ar. reliable, an expected value approach might

lead one to compute the allocation from the para meter R

and from N1, th• necessary number of effective weapons.

• 1 
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That is,

N
~~ —

~~~~ (3.11)

From this technique, X1 missiles need to be targeted at each

silo to obtain a probability equal to DPD of killing the silo.

The solution technique outlined in Eqs. (3 .2)— (3 .4) can

be synthesized into an equivalent expression for PD for any

general amount of missiles X:

PD - 1 — (1 — P)~~ (3.5)

Then, by setting PD equal to the given DPD, the solution for

is equivalent to that of Eqs. (3 .2)— (3 .4 ) :

• 
*

1 R ln(l— P)

The logic that seem. to underlie the two—step approach of

• • Eqs. (3.2)-(3.4) is based on what can be called 0expected

value grounds . One can easily compute the minimum number

of reliable missiles necessary, N1, and for any amount of

targeted missiles X , one can easily compute the expected

value of those that will be reliable. Therefore, it should

follow that these two computations can be combined because

th.y are individually correct. The implicit assumptions in

this reasoni ng are that the expected value of PD is all that

is needed , and that Eqs. (3 .2)— (3 .4) are based on an exp cted

r 
value calculation of PD.
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( 
Fallacy of First Method. In truth, the number of re-

liable missiles needed, N1, can be computed from Eq. (3.3) .
And the expected number of reliable missiles, E(N), if X

missiles are targeted , is:

E (N)  EX (3.7)

So individually, the two calculations are correct , but their

combination is not. Eq. (3.5) is equivalent to:

PD - 1 — (1 — p)E(N) (3.8,*

This calculation~is invalid, even if based on expected value

terms. The expected value of PD is not given by Eq. (3.8).

In this case, the expected value of N, equal to RX, was used

C in the calculation of the expected valu, of PD. From the

laws of probability, for any function f and random variable

Y, E(f(Y)) is- in general not equal to f ( E ( Y) ) .  It is clear

that N, the number of reliable missiles, is in reality a

binomial random variable with parameter equal to the reli-

ability R and sample size equal to the number of missiles
launched X.

Therefore, Eqs. (3.5), (3.6), and (3.8) are incorrect
combin ation , of individually correct calculations. These

three equations have been labelled with asterisks to prevent

confusion. Thus this solution technique, embodied in Eqs.

(3.2)—(3.4), is an incorrect way to approach this simple

strate gic pro blem.
(I
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Second Solution Method

In the preceding paragraphs, a possible approach to

solving a particular strategic targeting problem has been

shown, and that this approach is invalid. It is probably easier

to show that an alternative approach is correct, and to high-

light the differences between the two methods.

Using the same notation and terminology as before, R

was defined as the probability that a given missile performs

reliably through detonation. The conditional probability P

was defined as the probability that a given missile will

destroy the target, conditioned on successful detonation.

Then it is clear that the single—shot unconditional probability

of destroying the target is RP. Then, if X missiles are tar—

geted at the silo, this multiple shot unconditional prob-

ability of killing the target should be:

PD - 1 — (1 — Rp)X (3~~~~)

If PD is set to the desired level, DPD , then the necessary

number of missiles computed under this method , X2, is found

from:

- 1ç 1— _~ 3 (3.10)

If the system parameters P and R are well—defined , then the

solution from this second method, giien in Eq. (3.10), is

the accurate one.

1) 27
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( First Discrepancy Measure

There is clearly a conceptual mathematical difference

between the two methods, as shown by contrasting the two

solutions given in Eqs. (3.6) and (3.10). Given that the

error committed in Eq. (3.6) is a fairly common one , then an

important consideration is the determination of the empirical

properties of the discrepancy.

Formula For X1/X2 Ratio. One possible numerical measure

of the discrepancy between the two methods is the simple

ratio of their two solutions X1 and X2. Referring to Eqs.

(3.6) and (3.10), this ratio is:

ln(l— RP )
ç R ln(l — p) ~3.ll

(
Note that the value of this ratio is independent of the value

of DPD. It can be shown that if the value of the reliability

.R is less than one, as it is in all realistic cases , then

this ratio X1/X2 is always less than one. That is , the first

method ’s solution of missiles is always less than the

second method ’s solution of missiles. Thus, under the

first (incorrect) method , military planners would not get the

• level of protection, in terms of Probability of Destruction,

that was sought . The Desired Probability of Destruction

(DPD ) would not be gained.

Proof That X1/X2 Is Less Than One. The proof that the

ratio X1/X2 is less than one is based on treating the ratio

28
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• as a function of three variables —- DPD, P, and R. From

Eq. (3.11), it is easily seen that if the reliability R is

equal to 1, then the ratio X1/X2 is equal to one for all

values of P and DPD. And:

..~~~~~~~. i l~ (l -
~R\X2[ 

è R L R ln(l - P

ln(1 - P) 
[
ln (l_RP ) 

~~~~
1 1 — ( 1  — RP) ~.n(l — RP) — (PR )

ln(1 — P) L R~~ ( l — RP)

= 
2 

—l [ 1 _ ~~p 1 n 1 _ R P + RP ]R (l— RP )ln(l— P )
(3.12)

• ~~ f x 1\To derive the sign of -
~~~
-

~~~ 
( — I , examination of the last term

• 
~~~~~~ I

in Eq. (3.12) shows that the sign is the same as that of

the quantity in the square brackets, (1 — RP)ln(l — RP) + RP.

This latter quantity is zero if R is zero . Taking the partial

derivative of this quantity with respect to Ri

-
~~~~~~~ [ ( l _ I ~P ) l n ( l _ R P ) + R P ]

— 
[ l  

— RP) (1 !)~~ 
+ (—P)ln(l — RP) + P]

- —P ln(l  — RP) (3.13)

This partial derivative is positive for all P and R both

greater than zero and less than one, that is, for all of

the possible ranges of P and R. Since the bracketed quantity

.
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( in the last term of Eq. (3.12 ) is zero for R equal to zero

and its partial derivative with respect to R is positive for

all R greater than zero, then the quantity is positive for R

greater than zero. Therefore, the partial derivative of the

discrepancy ratio with respect to R is positive. And

since , for R equal to one , the ratio X1/X2 is equal to one,
then X1/X2 is less than one for all R lying in the open in-

terval (0.0, 1.0). That is,

R ~ (0.0 , 1.0)

x1/x2 = 1 for R = 1

-

~~~~~~~ 
~~~

— > O f o r R < 1

taken together imply.

X1/X2 < 1 (3.14 )

• Therefore , in all realistic cases where the probability
P 

of successful detonation is less than unity, the minimum

number of missiles computed under the first (incorrect)

method is less than the actual missiles needed. So for

this type of problem, the first method is always biased

towards underprotection, or lower probability of destroying

the targets. A graph of the discrepancy ratio X1/X2 versus

reliability R illustrates the effects of changes in R. Such

a graph is shown in Fig. (1), with P equal to 0.7.
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Xl/X2 /

/

0.0 0.2 O. li. 0.6 0.8 1.0
R

Figure 1. Discrepancy Ratio X1/X2 Versus Reliability

R With DPD - 0.8, P - 0.7

Second Discrepancy Measure PD1/PD2

Possibly a more important question than the discrepancy

in necessary missiles is the resultant discrepancy in the

Probability of Destruction (PD ) due to the first (incorrect)

method. It is clear that if’ the number of missiles calculated

from the first method is less than the actual number of
• missiles needed, then the actual PD gained from the first

(~~~ 
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( 
method is lower than that being sought.

Formula For PD1/PD2 Ratio. A more useful discrepancy

measure would be the calculation of the ratio of the PD

gained from the first method to the PD gained from the second .

Defining PD1 as the actual PD gained from using X1 missiles,

PD1 can be calculated by substituting X1, from Eq. (3.6), for

X in Eq. (3.9):

ln(l — DPD)
PD1 1 — (1 — RP)R ln(l — P) (3.15)

This would be the actual probability of destroying the targets

if X1 missiles were targeted at each one. Since the pro-

bability of destruction obtained from the second method ’s

solution X2 is precisely DPD, then the ratio of PD1 to PD2
is:

/ lnl-DPD) \_L ( 1 — (1 — RP)R ln(l — P) ) (3.16)
PD2 DPD /

An alternative formulation for PD1/PD2 that is useful for • 

-

some analysis is:

/ ln (l—RPJ \

- ...~~~~~ 
( 1 — (1 — DPD)R ln( 1 — P) 

(3.17)
PD2 DPD

This last expression is equivalent to Eq. (3.16) since, for

any general a,b,ct

ab ln(c) — 0b ln(a) (3.18)
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Simple Proof that PD1/PD2 Is Less Than One. This dis—

ore pancy calculation PD1/PD2 can be viewed as a measure of

error caused by using the first method. This is a useful

measure because it is the ratio of the Measures of Effec-

tiveness that are the actual outputs of the two methods.

Since the true expression for PD given in Eq. (3.9) is an

increasing function of missiles X, and is less than

then it follows that PD1 is less than PD2 for all parameter :
values DPD, P and R between zero and one.

Mathematical Properties of PD1/PD2
In analyzing the discrepancy between these two solution

methods for this simple strategic problem, it is useful to

examine the mathematical properties of the discrepancy

measure PD1/PD2 and its empirical qualities. For this measure,

the mathematical properties are well—defined and the numer-

ical errors caused by the first method can be significant,

depending upon the values of the three parameters -— P, R,
and DPD. By examining the effects of changes in the m di— -

•

vidual parameters, “worst—case” and “best—case” situations

can be found .

Since, among various strategic problems of this type,

the parameters DPD, P, and R can assume wide ranges of

values between zero and one, the discrepancy measure P1)1/PD2
can be considered a function of three variables • By examining

• the partial derivatives of PD1/PD2 with respect to the three

parameters DPD. P, and R, one can determine at which parameter( )
33
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values the error is serious.

Proof That PD1/PD2 Increases With R. Repeating the

alternative expression for PD1/PD2 that is given in Eq. (3.l7)i

- 
~~~~~~~ ( 1 — (1 — DPD )~~~~~~~~~~~ ) (3.19)

From this expression, it is easily seen that if the reli-

ability R assumes the value one, the ratio PD1/PD2 is equal
to one also because the power to which the quantity Cl — DPD )

is being raised is unity if R is equal to one. That is, there

is no difference in the two methods, regardless of the values

of the other two parameters DPD and P, if R is one -— there
is no error involved in using the first method in this case.

So the error only arises when R is less than one, which
agrees with the earlier result of identity between and

• X2 only if R is one.

From Eq. (3.19), the partial derivative of PD1/PD2
with respect to R is:

-

~~~~~~ 
(

~~~ i) - 
~~~~~~~~ 

1 — DPD )R~~fl~
1_

~~ 3] . [ln(l — DPD)]

~~~ [R~~~~l
-_

~~ 1] -

• 

I l p( 1— R P) 1

DP~
’L(1 ~~~ [ 1  

— DPD)R ln(l — P)j

. 

[

ln ( l_ R P ) _ _ 4 + k ( l :
P~.p,

] 

-

0

34

~~
‘r

~~~:;:~~~~~ 
-
~~~~~~~ ~~~~~~~~~~~~ 

‘~: ~~~



I

I ln (l—RP)1
—ln(1 — DPD) 1 (1 DPD)R ln(l — P) I

DPD 1n(l — P) L i• 1 1(1 — RP) ln(l — RP) + RP
[(l — I ~p) R2] L

(3.20)

Careful examination of the last term of Eq. (3.20 ) shows that ,

with all parameters DPD, P. and R greater than zero and less

~ fPD1\than one, -
~~~~~~~ ~

p
~

— ) has the same sign as the last quantity

in the last terms [(1 — RP) ln(]. — RP) + RP] . But the

quantity [(1 — RP) ln(l — RP) + RP] was shown to be positive

for all realistically possible parameter values when the ratio

was analyzed (Eq. (3.13)). Therefore, the partial de-

rivative of PD1/PD2 with respect to R is positive. That is,

as the reliability decreases from a maximum value of one, the
discrepancy ratio PD1/PD2 decreases, or equivalently, the error
is greater. As R decreases, the underprotection, which arises

from the first method’s miscalculation of the necessary

missiles , becomes worse. As R approaches one, the error is
less significant. These effects of changes in reliability R

are shown in Fig. (2), which is a plot of PD1/PD2 versus R
for the parameter values DPD - 0.8, P - 0.7.

Proof That PD1/PD2 Decreases With P. Similar derivations

can give the partial derivative of’ PD1/PD2 with respect to P.

From Eq. (3.19):
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Figure 2. Discrepancy Ratio PD1/PD2 Versus Reliability

R With DPD - 0.8, P = 0.7

I ln(~~— R ~)1
- — ~~~ [Cl — DPD)R m C i — 1))] [ln l — DPD )]

~~~ [ R 1n~l— P 3  ] (3.21)

From this expression, the sign of .~~~~~~~~ 

(~~~~1) is the same as

the sign of the last quantity. 
~~p ~~~~~~~~~~ 

. And :
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[R~~~~1
1
~~1 ]z w 2

- 1 1 ln(l — ~~~ + C—R I
! 

L {1n
~ 

— i’)] 2 
(]  — p) ln(l — P) Cl — RP)

- ~ F 1  — RI’) ln(l — RP~ + (—R) (1 — P) ln(1 — p)

L [ ln(l — P)]2 (1 — 1’) ( 1 —  RP)

(3.22)

Since the denominator of the last term of Eq. (3.22) is

uniformly positive for R and P in the range from zero to one ,

the sign of the whole quantity in Eq. (3.22), and thus that
• ~ IPD1\of -

~~~
-

~~~ ~ , is the same as that of the numerators
‘ 2’

• ( (1 — RP ) ln(l — RP) + (— R I (1 — P) ln(l — P). If P were zero,

this last quantity would be zero also. And the partial

• derivative of this numerator with respect to P is

- 

-
~~~~~~~ 

[ci — RP ln(l — RI’) + (—R ) (1 — p~ m Ci. — P)]

- ln(l — RP) (—R ) + R ln(l — P)
- R  
[
_ln (1_RP)+ 1n(l _ P)

- R in 
[

~~I1...
_

~~~
3]  

(3.23)

Since RP < P < 1, then the last term of Eq. (3.23 ) is

negative. Therefore , since the numerator of the last term

of Eq. (3.22) is zero for P equal to zero and uniformly

decreases with P for P greater than zero , then this numerator

() is negative for all values of positive DPD , P, and R. Then
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4 . each term of’ Eq. (3.22) is negative, which implies that

is negative also.

This analysis shows that as the missile s single—shot

conditional probability P of killing the target is increased,

the ratio of probabilities of destruction PD1/PD2 gets

smaller. That is, as P increases , using the first method

solution results in a true probability of destruction that

is farther from the goal of DPD. This is the opposite effect

of that which occurred for changes in the reliability R.

For P close to zero, the error caused by using the first

solution would be less significant. A representative graph

of PD1/PD2 versus P is given in Fig. (3), with parameter

values DPD - 0.8, R - 0.5. The value of PD1/PD2 is undefined
t for both P equal to zero and P equal to one.

Proof That PD1/PD2 Increases With DPD. Since the values

of the Desired Probability of Destruction DPD may vary for

different problems, it is useful to know the effects o.i the

ratio PD1/PD2 caused by changes in DPD. Referri ng to Eq.

(3.19), the partial derivative of PD1/PD2 with respect to

DPD is.

~ (DPD) (;~) - - 

~~~~~~~~ [R W i -P ~

ip~~- RP) 1
• (1 — DPD) 1n( — J . (—1) —

¼~
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Figure 3. Discrepancy Ratio PD1/PD2 Versus P With

DPD O.8, R 0.5

I L n ( 1— R P
— I (—1) (1 — DPD)R ln(l — P

L (DPD) ,

= 

(DPD)2f[ R In~~ 
:~~J •

~~• 
• (i_DpD) [Rcn ~

1-
~’~ I +

I ln(Jr - RP) 1
• + [(1 — DPD)R ln(l — P) ] — lJ~ (3.211)

(
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Examination of the last term of Eq. (3.24) shows that

_ _ _ _  

/ P D \

~ (DPD) 
~ has the same sign as -the quantity in the

braces in the last term. This quantity is equal to zero

for DPD equal to zero. And its partial derivative with

respect to DPD is:

( r ln(l - R P
_ _ _ _ _ _  J DPD ln(l— R )~~ 1 D )LR ln (l— P — 1  

+
~ (DPD) R ln(l - P) - PD

I- ln( 1 — ap)1
+ ~ l_ D P D )

R l ]
~~~~~~j - l

= R 1n (1-P~ f
DPD 

[R
i ~~

_ R
~
3 

-

fln (1— R P ) 21
• (1— DPD) IR ln(i — P) — J (—1 ) +

I ln(l — RI’) l11
+ (l— DPD ) LR hr’

~
(l _ P) J +

I ln (l—RP
+ ln(l — RI’) ‘1 ~~~~~ L R ln(1 — P

R ln(l — P) ‘ 
~~~~~~~

‘
~~~~~

“

- R~~n~l_ 4~ { DPD [R
l
~~ l_ .1

~ 1 1]

(1 — DPD) [R
l
~ ~

_‘~3 — 2 ] (— 1) }
(3.25)

By referring to the formula for the missile ratio

• given in Eq. (3.ll)s

— 1] - [
~ 

— 1] 
IC 0 

• 

(3.26)
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• 

Therefore, the last term in Eq. (3.25 ) is positive for all

1• values of DPD, P, and R greater than zero and less than one.

Then the last term of Eq. (3.24) is positive, that is,

~ (DPD ) ~
p
~
— ) is positive for the realistic values of

DPD, P, and R. -

The effect of increasing the chosen value of the Desired

Probability of Destruction is the same as that of increasing

R —— it results in increasing the discrepancy ratio PD1/PD2.
That is , as DPD is increased, the error caused by the first

- 

>
... method is less significant, if the values of the other two

parameters P and R remain constant. Conversely, if DPD is

decreased, say for solution sensitivity analysis, the ratio

PD1/PD2 decreases also, or equivalently, the error becomes

more significant. Fig. (4) shows the relationship between

PD1/PD2 and DPD for constant P = 0.7, R - 0.5.

Among practical problems, the values of the three

parameters may vary widely. It is then useful to outline

general situations when the first method causes significant

errors. In the preceding discussion, the partial derivatives

of PD1/PD2 with respect to R, P, and DPD were proven to be

positive, negative, and positive, respectively. Then, the

first method’s error is most significant in problems with

low R, high P, and low DPD values. That is, the ratio of

probabilities of kill is lowest in this situation. Conversely,

the error is least significant in problems with high R, low

P, and high DPD values. These two situations identify
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Figure 11.. Discrepancy Ratio PD1/PD2 Versus DPD

• With P - 0.7, R = 0.5

worst—case” and “best—case” conditions,

Effects of Ch*maes of’ Other Parameters. Two values, R

and P, actually depend on other missile system parameters. The

• reliability R is a single composite figure that depends on the

various components of mechanical reliability —— for example,
launch reliability and detonation reliabilit y. If any of these

individual component reliabilities decrease, the overall re—

liability R decreases, and so does the discrepancy ratio PD1/PD2.

( 
The error caused by the first solution method becomes more

significant for any decrease in an individual component reliability.
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( The single—shot conditional probability of kill P, as

4 
computed in Eq. (3.1), depends upon three other values ——
missile megatormage Y, missile accuracy CEP, and target hard-

ness H. As Y increases, P obviously increases, causing the

ratio PD1/PD2 to decrease. As the accuracy measure CEP

increases (less accuracy), P decreases, and PD1/PD2 in-

creases. As H increases, P decreases, and PD1/PD2 in-

creases. That is, the first method ’s error is most signi-

ficant for high Y, low CEP, and low H values.

Limit of PD1/PD2 As R Approaches Zero. One final

mathematical result will be presented for this simple three

parameter problem. It is possible to derive a lower limit

for PD1/PD2 for any given problem. Referring to Eq. (3.17),

• ( the limit of PD1/PD2 as R approaches zero is given by:

~~~~~~~ 
(
~

) - 

~
i
~0 [ j5~5 (1 - (1 - DPD)R h P 1

)]
- • 

1 1 lim Ilnhl-RP)

‘~~ tl~~~~~~~
D P D ) _ R  L R

(3.27)

The limit of the ratio [ln(l — RP)] / R as R approaches
zero would be an undefined quantity —- zero divided by zero.

From L’Hospital’s Rule for limits of ratios.

h a  I ln(l — RI’) 1 - h a  I —P11 —
R -O L R J R— 0 L 1

h a  I —P -C) • R - 0  (1 — RI’)
(3.28)
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( Then.

~~~ 
(~) = 

~~~~
[l — (1 — DpD)lT~ l~~ P)] (3.29)

This limit is not valuable as a realistic value for PD1/PD2
because R never assumes the value zero. But the limit does

provide a lower bound for the discrepancy z%tio PD1/PD2 for

a.ny given problem with known P and DPD.

Em~irioal Results

The mathematical properties of two alternative solution

methods for a simple strategic allocation problem have been

discussed in this chapter. It would also be useful to ex-

amine their empirical properties to determine the numerical

significance of errors caused by the first method. For

practical problems, the Desired Probability of Destruction

(DPD) for point targets is usually high -- greater than 80%
or 0.8. The parameters reliability R and single—shot con—

ditional probability of kill P may assume any values, de-

pending on the individual missile system considered. •

Graphs of PD1/PD2 Versus R. One way to examine the nu—

asrical errors caused by the first method is to graph the

discrepancy ratio PD1/PD2 for realistic values of the three

parameters DPD, P and R. Such a graph is given in Fig. (5).

In this figure, PD1/PD2 is plotted versus R f’or eight

combinations of values of DPD and P. These curves illustrate

the mathematical properties of the ratio Pt)1/PD2 that were
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• H discussed earlier. For any given combination of values of

DPD and P both between zero and one, the ratio increases with

R , from a lower limit given by Eq. (3.29) for R equal to

zero, to a high of one for R equal to one. Comparisons of

the curves show that the ratio uniformly decreases with P

for any one combination of values of DPD and R. And the

ratio increases as DPD is increased from 0.8 to 0.9, for

any given combination of R and P.

Besides the effects of changes in parameter values ,
overall examination of Fig. (5) gives information about the

magnitude of the error for realistic problems. As the ratio

PD1/PD2 decreases, the first method generally leads to solu-

tions that achieve smaller percentages of the method ’s

goal —— level of probability of destruction. For instance,

for the realistic situation where the parameters R, P, and

DPD are 0.5, 0.7, and 0.8, respectively, the ratio PD1/PD2
is less than 0.86. That is, the first method achieves Only

86% of its goal. Examination of Fig. (5) shows even more

alarming discrepancies for some of the parameter values.

Definitions of Rounded Measures x1/12, I1)h/~~2~ and

~~~1/DPD. The discrepancy ratios X1/X2 and PD1/PD2 pre-

viously derived are actually based on the computed numbers

of’ missiles necessary . In general , these computed amounts

and X2 will not be integers. Of course, fractions of

missiles cannot be targeted for silos. The number of missiles

must, in real problems, be rounded up to the nearest integer

46
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I

• ( to assure a Probability of Destruction greater than or equal

to the desired level DPD. For small numbers of missiles, this

rounding causes relatively large percentage changes in X, and

consequently in PD.

By representing the upward round ings of X1 and X2 as

and X2, respectively, the two discrepancy ratios can be

re—computed . By separately inserting i~~ and into the

true PD calculation given in Eq. (3 .9), the resulting ratio

can be called ~~1/P~2. For small values of X1 and X2, the

two ratios x1’12 and PD1/P~2 can be significantly different

from the original ratios X1/X2 and PD1/PD2. An example is

shown in Fig. (6). The two curves are individual plots of

PD1/PD2 and both versus R. For both plots, DPD

( is equal to 0.8 and P is equal to 0.7. While the PI)1/PD2
plot exhibits the same smooth, convex curve characterized

in Fig. (5),  the ~~1/P~2 plot exhibits step—like behavior.
This is reasonable since the roundings of X1 and Xe produce

different effects, depending on how close X1 and X2 are to

the rounded and 
~z. In fact, the P51/~~ 2 function is

discontinuous at the step points. As R increases , the dif-

ference between PD1/PD2 and ~~~~ 
generally increases,

because the numbers of missiles X1 and decrease with R,

causing more percentage difference due to rounding. The

effects of changes of parameters DPD, P. and R ~~
are generally the same as the effects derived earlier for

PD1/PD2. For instance, PD1/~~2 generally increases with R,

• (
~ though not strictly increasing (due to the step characteristics).
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- I
A third discrepancy measure involving rounded figures,

1 • and possibly the most useful, is the ratio P~~/ DPD. This

measure is the actual ratio of probability of destruction ob-

tained by using the rounded number of missiles to the

desired probability of kill. This ratio is a true evaluation

of how close the first method comes to reaching its goal of

DPD.

Numerical Comt*risons of Rounded and Non-rounded Measures.

To further illustrate the effects of rounding the numbers of

missiles X1 and X2, Tables (I)— (vIII) give a comprehensive

comparison of calculations for various values of parameters

DPD, P, and R. Each table corresponds to a single curve from j

Fig. (5). Table (I), for instance, gives a listing of cal—

culations based on values of DPD and P equal to 0.8 and 0.5,

respectively, with R varying from 0.1 to 0.9 in 0.1 incre—

ments. These eight tables fully illustrate the numerical

differences between the two solution methods. In some cases

the rounded , or practical, values of the ratios and

are significantly less than one.

Examination of Tables (I)-(VIII) show that for a few

combinations of values of parameters DPD, P, and R, the value

of is actually greater than the value of DPD. Thus

the discrepancy measure ~51/DPD is greater than one for these

cases. For example , if DPD = 0.8, P = 0.7, R = 0.6, then

= 0.805 or ~51/DPD = 1.006. In this and other similar

cases, the first method of solution obtains a level of PD
(_
~ that is greater than its goal of DPD, but this method

49
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• 

• 

never obtains a level of PD greater than that gained by the

second method.

Table of Lower Limits for PD1/PD2. As a final numerical

result for this problem, the lower limits of PD1/PD2 for

given combinations of DPD and P are given in Table (IX).

These values represent the limit of PD1/PD2 as R approaches
zero for constant DPD and P. The formula for each limit is

given in Eq. (3.29). The eight lower limits in Table (IX)

correspond to the eight curves given in Fig. (5). These

lower limits are not realistic values of PD1/PD2, of course,
since R never assumes the value zero. But the limit does give

a lower bound for PD1/PD2 for any strategic problem of this

• ( Table IX

-

• 
Lower Limit of PD1/PD2 As R Approaches Zero

PD
D~D 

u r n  1
R - - 0  PD2

0.8 0.5 0.859

0.8 0.6 0.814

0.8 0.7 0.760

0.8 0.8 0.688

0.9 0.5 0.900

0.9 0.6 0.865

0.9 0.7 0.820

0.9 0.8 0.757
1;)
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General Results and Conc1usi~ns
Some attempt has been made in this chapter to examine

the differences between two alternative solution techniques
for a particularly simple strategic allocation problem. The

problem involves targeting groups of a single type of missile

at a set of point targets to assure a given probability of

destruction. This simple, but common, problem was chosen

because it highlights the sometimes overuse of what can

be called expected—value mentality.” This strategic

problem was simple enough to point out mathematical and em-

pirical discrepancies between the two methods and still have

reasonably proveable results. Other more complicated strategic

problems have been empirically examined (for example, targeting

various types of missiles with multiple—warhead capability).

The erroneous results of expected value thinking given in

this chapter can in some cases be gene?alized to these more

complicated situations, and several numerical’ examples tend

to re—inforce this generalization (for example, see Chapter

IV).

For this simple problem, the relevant facts and derived

results~’are easily sun~rized. A list of points defining

the problem is,

1. The targets are equal—valued point targ.ts (silos).

2. There is only one type of missile —— without multiple—
( 

warhsad capability.
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- ( 3. The operating characteristics of the missile are well—

known.

Li.. The parameters P and R for the missile system are

defined as in pp. (2 1)—(23 ) of this report.

5. The objective is to find the minimum number X of’ missiles
per target necessary to obtain a Desired Probability

of Destruction of the targets.

The results discussed in this chapter ares

1. For two alternative solution methods, the ratio -

X1/X2 was derived and proven to be less than one for

all realistic values of R.

2. For the two methods , the ratio of the two (non—

rounded) actual probabilities of destruction, PD1/PD2,
( was derived and proven to be less than one .

3. The ratio PD1/PD2 uniformly increases with R, decreases

with P. and increase8 with DPD.
• Li.. Low R , high P, and low DPD values cause the first

method ’s error to be most significant (worst case).

SS High R, low P, and high DPD values cause the error to

be negligible (best case).

6. The lower bounds for PD1/PD2 were derived and tabled

for various values of DPD and P.

7. The ratios of rounded results, and

produced empirical results similar, but not exactly

so, to their non—rounded counterparts.

8. The first method can in a few situations produce P51,
( based on the rounded to be greater than DPD.

- 

• 
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- ,  9. The numerical errors caused by the first method can

be numerically significant for a wide variety of
L 

parameter values.

I
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• ( IV. An Example of a Serious Error

In Published Literature

In this chapter, the analysis contained in a series of

articles by noted atomic physicist Kosta Psipis will be

examined. Doctor Tsipis was , when the irticles were written,

the Senior Researcher at the Stockholm International Peace

Research Institute (SIPRI ) and a Research Associate at the

Center for International Studies at the Massachusetts Institute

of Technology. Three articles by Teipis will be discussed,

along with three articles by other authors that used or

referred to his analysis. The first article, and primary

reference for this chapter, appeared in the October/November,

( 1974, issue of’ Technolo~v Review ~Tsipis, l974s 34—il?].

- The discussion will be centered on an erroneous set of

equations d.signed to compute probabilities of kill in counter—

silo problems for unreliable missiles that have multi ple—

warhead capabilities. For multiple—warhead Missiles, the

• - errors in computing kill probabilities, also lead to invalidation

of Tsipis’s primary measure of merit for missile. —— his 1(

measure which depends on the missile warhead’s accuracy and

its megatorinage. The errors lead to calculations of probability

of silo kill that are higher than the correct results. As

• the mechanical reliability of the missile decreases, th. errors

in kill probability becom. more significant. Ov.reetiaation

of kill probability for single aissilsa in turn leads to

62
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underestimation of the numbers of missiles required to gain

it given level of kill probability.

In this chapter , Tsipis ’s analysis is traced , and then

alternative formulas will be presented that are corrections for

the same assumptions. Then comparative probabilities of kill

will be computed , using mainly his data , to draw attention to

numerical errors caused by his formulas. The errors do not

arise either for perfectly reliable weapons or for single—

warhead missiles.

Missile Pre—Allocation Problem

The applicability of this analysis is limited in scope.

Teipis examines both counterpopulation and counterforce

deterrence, but the discussion here is limited only to counter—

force targeting —— the objective of the problem is to destroy

or cripple the enemy’s missile force to limit his second—

strike capability. This strategic allocation problem is

generally the same as that discussed in Chapter III, except •

that the missiles have multiple—warhead capability.

Assumptions. For this problem, the attacker is trying

to obtain the capability of destroying the defender’s land

missile force. The silos that house the missile force can

reasonably be considered to be point targets, with what is

commonly called a “cookie—cutter ” damage function. A “cookie—

cutter ” damage function is one in which the target is destroyed

if the attack weapon detonates within some given distance of

the target, and the target is unharmed if the weapon detonates

63
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any- further from the target. That is, there is no possibility

of fractional damage. This critical distance from the target

(silo) is usually called the lethal radius of the target.

The attacker is restricted to launching his available

missiles simultaneously, thus ignoring the possible benefits

of sequential targeting. He is forced to analyze his optimal

targeting strategy before launch. In this problem, enemy
defenses are ignored. Teipis chooses to ignore the bombers

presently in U.S. and Soviet arsenals in his analysis , as will

this chapter. The possibility of warhead fratricide is ignored ,

assuming that detonations can be timed to reduce the possibility

of one warhead detonation interfering with another.
- 

Definitions of Variables. Besides the numbers of missiles

• 

- ( used to target at silos, there are four basic variables in
this problem. Where possible, Tsipis’s notation will be

used. Three basic variables relate to the weapons —— missile
accuracy, missile launcher reliability, and warhead yield.

Missile accuracy is measured as in Chapter ill —— Circular
Error Probable (CEP), in nautical miles . Tsipis only discusses

missile launcher reliabil ity, denoted by p , ignoring re-

entry vehicle reliability for multiple—warhead missiles.

This reliability is the probability of the missile launcher

performing reliably until it. release of the re—entry vehicles ,

I for multiple—warhead missiles. The warhead yield Y is usually

measured in megatons. A fourth basic variable is related

• • only to the target. The silo hardness H is defined as the

- 
• • 

C minimum blast overpressure required to render the contents of

0~ 
64

- 

~~~~~~~~~~~~~~~ ~~ T _ _



( the silo ineffective; H is usually measured in pounds per

• square inch (psi) .

Calculation of Sinale—Shot Terminal Probability of Kill. P

An intermediate value will be useful for further analysis.

The single—shot terminal probability of kill , P, was defined

in Chapter III. This prâbability P is the conditional pro-

bability of a single warhead destroying the target and i.

conditioned on two things ~~ — first, the warhead and its

missile delivery system perform reliably through detonation.

and, second, the target has not been destroyed by a previous
warhead. While the second condition may seem trivial, its

realization is important in the formal derivations of later

formulas. For silo point targets , P is then the probability

that the warhead lands closer than the target ’s lethal radius,

given the two conditions.

Tsipis himself offers a calculation for P, which he calls

in his Eq. (11) [Tsipis, 1974s38] . If the warhead landing

error is assumed to follow an independent two—dimensioral

Gaussian (normal) probability distribution centered at the

target , as is commonly assumed , and if the possibility of

missing the target in a given direction is generally the same

as for any other direction, then P can be calculated from

this simplification of Tsipis’s Eq. (ll)s

/ I ~2/3

p a p  - 1 — c  ~~(~~~) (O.l9 O.23 R
,r 

+ 0.068 K)’
- k 

(4.1)
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There is some question as to whether this equation is a valid

formula for P. In a published discussion of this formula,

John Walsh of the Office of the Director of Defense Research

and Engineering, DOD, criticizes the formula and offers an

alternative one [Walsh, l975sl1l7—lll8]:

I —4.1? x2/3
I CEP)2 a2”3

P P k l
~~~

e L (4.2)

Walsh contends that Tsipis made an error in the use of the

bivariate Gaussian distribution, while Tsipis believes that

his own use of ( CEP ) 2 as an estimate of the variance of’ the

distribution for a given weapon produces at most five percent

error [Tsipis, 1975sl1l9]. Tsipis does seem to have made an

( error in the use of the distribution, contradicting other

sources [Eckler, 1972z17]. On the other hand, Walsh’s formula

seems to use a one—term approximation of Tsipis ’s formula

relating lethal radius r3 to yield Y and silo hardness Hz

- 
~l/3
1/2 1/3 (.3)

~ (0.19 — 0.23 H + 0.068 H)

Walsh’s formula just uses the one-term approximation

(0.06&”~ 
. ffl1~)~ In any case, most of the debate between the

two seems to center around the nuclear effects on silos. It

is not the purpose of this paper to discuss a proper calculation

of P, since it depends on assumptions about nuclear effects.

The errors that are examined below are in the use of P to
(Th -
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calculate probabili ty of kil l, not in the calculation of P.

For that reason, Teipis ’s formula for P given in Eq. (4.1)

will be used for the rest of this chapter, so that any nu-

merical differences that arise will be due to other differences.

Tsipis’s Formulas For Multiple-Shot 
~k = PD

Tsipis gives equations for calculating the unconditional

probability of killing a target, 
~k’ which was called PD in

Chapter III, for two separate cases. First is the case when
a group of warheads, all from different missiles, are launched

at a single target. Second is the launching of a group of

warheads, all on the same missile launcher, at the single

target. It is Tsipis ’s calculations for the second case,
which are repeated in other articles, that seem to be in error.

Both cases will be outlined below.

Calculation of For N1 Warheads From N1 Different

Missile Launchers. If N1 warheads on N1 individual, but iden—

tical, missiles , each with reliability p , are sent to the -

same target , then the calculation of P from Eq. (4.1) can

be used to compute the multiple—shot probability of kill.

From Teipis’s Eq. (21), ~Tsipis, 1974~39] ;

(4.4)

or equivalently, substituting the formula for P given in

Eq. (4.1) giv.ss
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,N 1)”

PD

I F ~2/3 ilr’
- 1 — 1 — P ~~~ 

- e L2(~~1’)2 (0
~l9 — 0.23 H172 + H) 2T3]

IJ
(4 . 5)

This last equation is in terms of the four basic variables ——
accuracy CEP , yield Y, reliability p, and silo hardness H.

Calculation of For N2 Warheads From Same Missile

Launcher. For missiles with multiple-warhead capability, say

one that has Multiple Independently-targeted Re—entry Vehicles

(MIRY) it seems reasonable that a general formula for multiple-

shot kill probability would have to include cases where some

( warheads from the same missile are launched at the same target.

If N2 warheads from the same missile launcher that has relia-

bility p are sent to a single target, then Tsipis’s Eq. (22),

[Tsipis, l974~ 39] , gives the following formula for kill

probabilitys

I
• ~k~~” 

,N2) ”

I p Y 2”3 N2 (
- 1 — • [  2(CEP )2(0.l9 — 0.23 H’12 + 0.068 11)2/3

• 
(ii.6)

In terms of the single—shot terminal probability of kill P.

- 
- 

this equivalent tos
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p N
~~ 

- PD - 1 — (1 — p) 2 (4 .7)

A quote from the Technolo~~ Review article [Tsipis , l974~39]
clearly defines when Tsipis feels that Eqs. (4.6) and (4.7)

can be used i “If n warheads aimed against a silo are carried

by the same missile of reliability p , the kill probability

becomes ...“

Fa1lac~ of Eas. (4.6) and (4.7). There is a simple way

to show that Tsipis’s Eq. (22 ) for kill probability, which

corresponds to Eqs. (4 .6) and (4.7) above , seems to be incorrect .

By examining Eq. (4.6) it is seen that if the equation were

valid, the kill probability could be made arbitrarily close

to one just by loading enough warheads N2 on the launcher.

• ( This point is even made clearer by referring to Eq. (4.7),

since P is always less ;than one in an imperfect world. But

if the single missile launcher system that delivers the war-

heads has at most a probability of p of getting to the target

area , then the kill probability is at most equal to p • That

is, the probability of destroying the target with a single missile

with multiple warheads cannot be any higher than the reliabi-

lity of the missile system delivering those warheads.

If Z is defined as the number of reliable warheads that

reach the target area, a random variable, then the expected

value of Z, E(Z), for this situation is Just the missile

reliabilit y p times the number of warheads per launcher, N2.
That is, Eq. (22) of Tsipis and Eq. (4.7) above are equivalent- c 69



tos

p , N2) - PD - 1 — (1 — p )E(z)

This is an incorrect use of’ an expected value in a probabilitycalculation —— the type of error that was previously discus8ed

in Chapter III. If p is, for example, equal to 0.7, then

on the long—term average, 70% of the total missiles launched,

and thus 70% of the total warheads launched, would perform

reliably. But for any given missile launch, one of two events

can occur. Either the missile delivery system performs re-

liably and all of the N2 warheads are delivered to the target

area , or. the system fails and none of the warheads are de-

livered. The first event has probability of p = 0.7 and the

second has probability of 1 — p - 0.3. Eqs. (4.6) , (11.7),

and (4.8) would be valid only if 70% of the warheads were

certain to be delivered per launch. These latter three

equations are invalid and have been labelled with asterisks

to prevent contusion.

Correct Formulas For - PD For N2 Warheads From Same

Missile

If the terminal probability of kill P can be effectively

computed , then a corrected alternative formula for computing

the probability of killing a target with N2 warheads from the

same missile is easily obtained. Two forms of this formula

will be presented.
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If the reliability p is the reliability of the missile,

and if the re—entry vehicles (warheads) are assumed to per-

form reliably (as Taipis does implicitly in his Eq. (22)),

then the probability of N2 warheads from a single missile

destroying the target is,

N21’k~ 
p ,N2 ) - PD - p • (1 — (1 — P) )  (4.9)

Or, using Eq. (4.1), substituting for P gives 
~~ 

p ,N2) in

terms of the four basic variabless

~
‘k~ 

p ,N 2)

PD

I N Y 2’3 1

p 1 — e L~~
,)2(0~~9 0,23 &~‘2 + 0.068 n) 213]

(4.1 )

I
Examination of either of these last two foraula~ shows that

as the number of warheads per missile N2 increases, the pr o-

bability of kill asymptot ically approaches p , not one , as

occurred for Tsipis ’s equation . That is. the probability of

kill from a singl, mi..il. can be no higher than that missile’s

reliability, regardless of how many warheads are loaded on the

missile. Neither Eq. (4.9) nor (4.10) involve more difficult

calculations than their incorrect counterparts, Eqs. (4.7) and

(4.6).

( 
The validity of Eq. (4.9), and thus of Eq. (4.10). can
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be easily verified. The terminal probability of kill P

is just the conditional probability of destroying the target

for a single warhead, conditioned on the reliable performance

of the missile. If the N2 re—entry vehicle warheads are

assumed to perform independently after their release from

the missile launcher, then the conditional probability that
N2the target survives all the warheads is just (1 — P)

That is. the conditional probability of destroying the target
N

is 1 — (1 — P) 2 Since this last quantity is conditioned

on reliable missile performanc e , which has probability equal
l4~to the reliability p • then the multiplication of 1 — (1 — P)

by p gives the unconditional probability of killing the

target with N2 warheads from the same missile of reliability
( p • This multiplication gives the result in Eq. (11.9). A

simple diagram, Fig. (7), illustrates the derivation of Eq.

(11.9).

Comparative Calculations Of - PD For Different Data

If Tsipis ’s Eq. (22) . rspeated in Eqs. (4.6) and (4.7),

• is wrong, then it is important to highlight any numerical

errors that arise from his formula for kill probability for 
S

-

• 
missiles with multiple-warhead capabilities . Table X is a

set of calculations comparing Teipis’s formula and Eq. (4.10)

for various U.S. and Soviet missiles , both present and pro-
posed. Only missiles with multiple—warhead capabilities are

consider ed because it is only for these ..t..il.. that Teipis ‘s
*
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• ( Conditional
Probability Probability

1
Survives

Missile /
Fails / Killed

0

(1_p)N2

~ \ 
Survive>

~~~~~

p

Killed

Figure 7. Event Probability Diagram For N2 Warheads

From The Same Missile Of Reliability p

- 

~k formulas are incorrect. Table X lists the compared pro—

babilitiss of kill if only one missile of the listed type

were sent to the corresponding target.

If a denotes the number of re—entry vehicles per launcher

( RI/i.), thin N2 • a and th. tabled probabilities can be cal—

~mAa tid fr.s thi four basic variables ( CEP, Y, H, and p )  and
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( m. The weapons system characteristics come from Tsipis ’s

Technolo~~ Review article [Tsipis , l971+s 4O~i4 3] and from

Representative Robert L. Leggett’s, (D—CA), article appearing

in the Armed ~‘orces Journal International [Leggett, 1975 s 30—

32]. Part of this weapons data is repeated by Tsipis in

another article [Tsipis , l975s39LI.—395). The silo hardness H

data appears to be in doubt, so all the possible silo hard-

ness mentioned by these sources have been used —— 100 psi ,

300 psi, 500 psi, and 1000 psi.

Tsipis does not produce tables for 
~k 

using his Eq. (22),

or Eq. (4 .6) above , but actually calculates the necessary

numbers of warheads to gain some given level of 
~k’ 

using

another equation (Eq. (4 . 5)  above) for perfectly reliable

( missiles ( p 1.0). Table X given here uses an arbitrary

missile reliability of p 0.8. The discrepancy between the

two 
~k 

figures from Tsipie s equation and Eq. (4.10) would

depend on the value of p • If missile reliability P is

lower than 0.8, as it may possibly be for older weapons,

then the discrepancy would even be larger. For instance, for

the present Minuteman III against a silo with hardness equal

to 100 psi , if p is 0.8, then the from Eq. (4 .6) is 0.957

and the 
~k 

from Eq. (4.10) is 0.785. But if p were equal to 0.7,

then the two 
~k 

values would have a much larger discrepancy --
0.937 to 0.686. Even more significant discrepancies would occur

for lower p values. In general , Tsipis s Eq. (22 ) leads to an

overestimation of for missiles with multiple warheads.

( )  This in turn would lead to an underitatement of the number of
-‘
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( 
those missiles necessary to obtain some given probability of

kill . This is the same result as that discussed in Chapter

III for the simpler type of error.

Discussion of Tsipis’s Measure of Lethality, K

Dr. Teipis proposes a general measure to evaluate the

counterforce strength of a strategic missile. This measure ,

a parameter called K, is calculated from two of the four basic

variables of this counterforce problem, accuracy CEP and yield

~2/3
K~~ ~ (4.17)

(CEP )~

Most of Tsipis’s equations for kill probability are actually

in terms of this lethality measure K, rather than CEP and Y.

For the case with perfectly reliable missiles ( p  ~ 1.0),

Taipis’s Eq. (21), repeated here as Eq. (4.5), reduces to s

I _ y 2/3N

~~ 
p , N1) 1 - e ~ 2(CEP )2(0.19 0.23 HIA + o.o68x)213

I — K N 1 1
- e [ 2(0.19 — 0.23 + 0.068 x) 2/’3j  (4.18)

This is his Eq. (14), LTsipie , 1974.38] . Then for any do-

sired probability of kill , called DPD in Chapter III, the

necessary value of KN1 can be solved for.

KN1 - —2(0.19 — 0.23 K112 + 0.068 11)2/3 • in~ 1. — DPD )
(4.19)
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This is equivalent to his Eq. ( 17), [Tsipis, 1974 .38J . Re-

verting to Tsipis ’s notation n for the number of warheads,

then for any desired kill probability and each silo type, the

value of K • n necessary to destroy one silo of that tyee can

be computed . Then the number of warheads necessary can be

computed using the warhead ’s K value. For instance, a Poseidon

warhead (Y - 0.05 mt, CE? - 0.3 nm) has a K value of 1.5.

And a silo with H 300 psi requires a K - n value approximately

equal -to 30 to destroy it with probability 0.9. Thus it

would take about 20 perfectly reliable Poseidon warheads to

destroy a 300 psi silo with probability 90%.

The usefulness of the K measure of lethality for the Un- - 
-

reliable case seems questionable , even using Tsipis ’s equations.

For unreliable missiles, he offers his Eqs. (21) and (22 ) or

Eqs. (4.5) and (4 .6), for computing kill probability. But j
unlike his Eq. (14), the necessary value of K • n, for a given

silo and desired kill probability, cannot easily be solved for

in closed form fro, Eq. (4.5), that is, from his Eq. (21).

In Eq. (4.10), the correct formula for kill probability for

multiple—warhead missiles , the solution for K • n would in-

volve reliability p and would not be the same as Tsipis ’s

solution for K • n given in Eq. (4.19). In any case, for

unr’.liabl. missiles, the necessary K • n value per silo cannot
be computed from Eq. (4.19), since Eq. (4.19 ) applies only to

perfectly reliable missiles. That K • n val~ze cannot be

used to compute the number of warheads necessary for unreliable - -

() missile..

- -  
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Published Discussion of TsiDis Analysis

There has been substantial comment on and use of Tsipis’s

analysis in published articles subsequent to his 1974. Technology

Review article, but no corrections of his Eq. (22),  repeated

in two forms in Eqs. (4 .6) and (4.7), were found. Tsipia

himself repeats the analysis in an article in the 7 February

issue of Science, (Taipis , 1975as393—397J, except that he does

not offer data projected into the future as he did in Techno1o~~

~~~~~~~~ 
As mentioned earlier, there was a discussion between

Tsipis and John Walsh on the proper calculation of the ter-

minal probability of kill P, published in Science (Walsh,

1975.1118—1119], but Tsipis’s Eq. (22) is not mentioned .

Congressman Leggett (Leggett , 1975.30—32] uses Tsipis’s K

measure and more recent data to justify his Congressional

debate that the U.S. has a marked advantage over the Soviet

Union in countersilo capability. Several other articles by

Tsipis, while of a less analytical nature than the 1974

Technology Review article, use the K measure as a valid

general measure of merit for strategic missiles .

In a paper for the Center for Naval Analysis (CNA),

Michael L. Squires (Squires, 1976] draws comparisons between

Tsipis’s K measure of merit and the results of a computer

simulation model. The ninth version of the Arsenal Exchange

Model (AEM ) was used to compute three Measures of Effectiveness

(MOE’s) for U.S. and Soviet oountereilo attacks. The three

MOE’s were the number of U.S. (Soviet) ICBM’e surviving, the

() number of U.S. (Soviet) warheads surviving, and the number of

U.S. (Soviet) equivalent megatons surviving.
80
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Squires uses Tsipie’s data for U.S. and Soviet silo hardness,

and Congressman Leggstt ’s data on weapons characteristics.

While Taipis concludes that the United States maintains (and

will continue to maintain through the 1980’s) a strategic

arsenal vastly superior to that of the Soviet Union, based on

total K values, Squires concludes that with given future pro-

jections, The Soviet Union will be essentially equivalent in

offensive capability, based on the model’s three MOE ’s, through

the 1980’s. Squires criticizes Tsipis’s K measure as an over-

simplification, but does not offer to explain why the Tsipie

measure is invalid. Squires seems to base his belief about

the invalidity of the K measure only on the fact that the

measure produces different results from the AEM simulation runs.

( His reasoning, of course, implicitly assumes the correctness

of the Arsenal Exchange Model. Squires does not explicitly

refute any of Tsipis ’s probability calculations.

General Formula For Kill Probability For MultiDle-Warhead

Arsenal s

In this chapter, formulas for kill probabilities have

been given for single types of single-warhead and multiple-

warhsad missiles with reliability p • It would be useful

• to give a general formula for kill probability for different

• types of missiles launched at a single target. This formula

assumes that a correct terminal probability of kill can be

calculated , with P defined as before. This terminal probability

of kill P is a conditional probability that is related both

81 •
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( to the type of missile and the type of target.
~

If an attacker’s missile arsenal has I different types
L of missiles, these missiles can be subscripted i 1 to I.

Then, for a given target type, let Pj be the terminal proba-

bility of kill for that missile type i. Let P j be the

missile delivery system reliability as before, and let Ri
be the re—entry vehicle (warhead) reliability for missile

system i. This is necessary because there are actually at

least two phases of operation for a multiple warhead system —-
missile system operation to re—entry vehicle separation, and

re—entry vehicle operation after separation. Let mi be the

number of re—entry vehicles carried per missile for type i,

and define a full warhead group to be a group of mi warheads

( from a single missile. If full warhead groups can be divided

and targeted to more than one target, then a general formula

for kill probability needs to include cadee-where, for a

single targ.t, less than mj warheads from a single missile I -

can be used to destroy the single target. For example, for

the present U.S. Minuteman III, the number of warheads per

missile is - 3. Then a general targeting strate~~ would

allow the number of warheads sent to the target from a single

missile to be less than 3, with the missile’s remaining
warheads allocated to other targets. Then a general formula

for kill probability for multiple—warhead missiles would be.

I a
11 f St l — P j  I 1 _ ( 1 _ RjPj)ii—i i—i L0 (4.20)
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The only unknown variables in Eq. (4.20) are the Xjj.
which are the number of warhead groups from missile type I

that have j warheads in them. When silo targets are clustered

close together geographically, it may be more efficient for

the attacker to split his MIRVed warhead groups between targets,

at least in some targeting strategies. That is, in practical

targeting allocations, the attacker may get a higher target

destruction by splitting up his multiple-warhead weapons, if

the constraints of the allocation problem permit. For example,

the present U.S. Minuteman III has the number of warheads per

missile m
1 

- 3. If possible, it is more efficient to send two

warheads from one missile and one warhead from a separate

missile, than it is to send three warheads from the same

( Minuteman III. If p1 = 0.7, R1 = 0.9, and P~ = 0.7, then

sending two warheads from one missile and one warhead from

another results in a kill probability of = 0.779. This can

be computed directly from Eq. (4.20) with I = 1, X11 - 1,

- 1. X~3 = 0. But if three warheads were sent from one

single Minuteman III missile, then the resulting kill probability

would be only 
~k = 0.665. This 

~k 
value is from Eq. (4.20) with

I - 1, X11- 0, X12 - 0, 1. Of course, this targeting

strategy of splitting the warhead groups would only be possible

if some of the targets were close enough to allow different

warheads from the same missile to be targeted to separate

targets.

The formula for kill probability given in Eq. (4.20 ) is

() general enough to include this strategy of splitting the warhead
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H groups to achieve optimal targeting. For a given target, then.

the total number of warheads sent to each target would be the

total sum of the products of the number of warheads per split

warhead group, j, times the number of those groups, Xj~. That

is, for a given target, the total number of warheads sent to

target would be the double sum ~~ L~ j X~ .. The formula
i1 j].

for kill probability given in Eq. (4 .20 ) is a general method

for computing kill probability, assuming that all the parameters.

especially the P~ , are known. Eq. (4.20 ) is just a direct

extension of Eq. (4.9), with N2 in Eq. (4.9) assuming the

values of j in Eq. (4 .20). For single—warhead missiles, like

the present U.S. Titan, mj= 1. Individual missiles are assumed

to operate independently, and a group of warheads from a

single missile is assumed to operate independently of warhead

groups from other missiles. The use of Eq. (4.20) ignores

the problem of fratricide, or equivalently, presumes that

warhead detonations can be properly sequenced to reduce

fratricide.

One useful feature of Eq. (4.20) is that it can easily be

adapted for use in a linear (or integer) program to obtain

optimal allocations of missiles. This is easily done because.

for a given target , the logarithm of the survival probability

P5. that is, of 1 — 

~k’ 
is linear in the unknown variables

Xjj :

ln(P)-ln (l— P)

- 

~~~~~~~~ ~~~~~~~~~~~~~ 
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( _ 
= X~~ ln{1 - ~~~ 

- (1 -

Assuming that all the system parameters are well—known ( p~ ,

Rj. Ps ), then Eqs. (4.20) and (4.21) provide an extremely

useful tool for optimally allocating multiple—warhead missiles.

Eq. (4.20) highlights a general point about probability

calculations of this type. Events for multiple-warhead

missiles may not be independent. The title Multiple In-

dependently-Targeted Re—entry Vehicle may be a misnomer,

because events for re-entry vehicles (warheads) from the

same missile are not necessarily independent. When probabil—

i-ties of multistage events like the successful operation of

( a MIRVed missile are expressed in conditional terms,then

events may not be independent. For instance, the probability

that a target survives one warhead from an unreliable missile

is easily calculated.

P~(l) = — 

~~~~ 
= — P1RiPi (~4 .22)

But the probability that the target survives two warheads from

the same missile is not equal to the product of the two in—

dividual probabilities because the events of targets surviving

the individual warheads are not independent. That is;

P5(2) *[P~(l)]
2 

= — PiRiPi]
2 (4.23)

And for the above case of L j . X~ 4 warheads, the
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probability that the target survives the 
~~ 

• war-
j=l

heads from missiles of type I is not equal to 1 — P j Rj P 1

raised to the ~~ j power.

(

1)
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V. Conclusio~~

In this report, a specific type of error in strategic

targeting was examined. In probability calculations, some

weapons quantities are actually random variables and their

expected values should not be used in place of the random

quantities themselves. Mistakes of this type were examined

in this report.

As a foundation for analysis, a general discussion of

strategic targeting and missile allocation was presented in

Chapter II. Two classifications of strategic targeting

models found in published articles were presented. Then a

classification of targeting models was proposed that was use-.

£ ful for the analysis for this report. The three classifications

were generally based on model applicability, assumptions, and

s~].ution technique.

Two general results from the literature search were

presented. One was that, although literature on targeting

abounds and is available, very few available articles dis-

cussed kill probability calculations for missiles that both

were unreliable and possessed multiple—warhead capabilities.

Second, the type of errors discussed in this report were not

common in the literature examined, although some errors existed.

In Chapter III, a simple missile allocation problem was

examined and possible errors for the problem were discussed.

For a problem of allocating identical single—warhead missiles

( )  among a group of identical silo targets in order to achieve

L~i.  87
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some common desired kill probability, two methods of solution

were examined. The first method involved the incorrect use
t j  of the expected number of reliable weapons in a calculation

of kill probability. A second method for allocating the

missiles was given that corrects the first. The first method

was shown to generally underestimate the number of missiles

necessary to gain the desired probability of kill, and therefore,

to overestimate the resulting true probability of kill.

Several measures of discrepancy between the two methods were

proposed, two of them based on the non—rounded numbers of

missiles and three based on rounded missile allocations. In—
I

dicated by the two discrepancy measures that were based on

non—rounded allocations, the significance of errors caused by

( the first method was shown to bes

1. greater as missile reliability decreased

2. greater as warhead yield in megatons increased

3. greater as accuracy increased (lower circular error

probable)

li. greater as target hardness decreased

5. greater as the desired kill probability decreased

The discrepancy measures based on rounded missile allocations

cannot be said to strictly follow these five above trends

becaus. of discontinuities. but the trends are generally the

same for both types of discrepancy measures, depending on the

parameter values. Different missile allocations and discrepancy

measures were evaluated for various values of the parameters

C) missile reliability, warhead yield, missile accuracy, target

88
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( 
hardness, and desired kill probability, and these data were

tabled. The numerical results show that, at least for some

parameter values, the numerical errors caused by the first

method are significant when compared to the first method.

In Chapter IV, a specific method from published targeting

literature was examined. A series of articles by Dr. Kosta

Tsipis contain a formula for kill probability that is incorrect.

For unreliable missiles with MIRV capability, Dr. Tsipis

offers a formula for kill probability that involves an incorrect

use of the expected number of reliable missile launchers. An

alternative formula for the same kill probability calculation

was given in Chapter IV. Dr. Taipis’s calculation of kill

probability for a single missile approaches the value of one

as the number of warheads increases, while the corrected

calculation of kill probability can never be higher than

the missile reliability (if only one missile is launched

to the target). This result invalidates Teipie’s conclusion

that strategic arsenal strength depends on the number of war-

heads, and not on the number of missile launchers. This

difference between the two formulas can lead to large numerical

discrepancies. For data on present and projected U.S. and

Sovi.t arsenals that were obtained from Tsipis and other

sources, comparative calculations from the two formulas were

tabl.d and show significant differences.

A gen.rsl formula for the probability of killing a silo

target was pr.s.nted. The formula is general •nough to

1) 89
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( 
include mixed types of multiple—warhead missiles at a single

target.

The general conclusion of this report is that anyone

interested in strategic targeting analysis should be cautious

about the use of expected weapons numbers in kill probability

calculations. In some cases, incorrect used of expected value

assumptions may lead to serious numerical errors that are quite

separate from the resulting conceptual errors . The use of

I expected values based on simplifying assumptions should be

cautiously made.

I(

I
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