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\/lrblark-adapted,a()fservers,/ﬁr?l'\;g in numbe??’perfoﬁmﬁéJa continuous com-
pensatory tracking task and monitored their performance by attending to a
tracking display positioned along the line of sight at Y4 eccentricity. After a
few seconds of tracking, a self-luminous, 5-segment digit appeared at one of
six peripheral locations. Observer indicated detection of the peripheral signal, .
by a button press and identification of the digit by naming the number displayed \, !
Reaction time between signal onset and button press was counted in milli- '
seconds and used as a measure of detection performance; percent of the twelve :
observers accurately identifying the displayed digit for a given combination of !
display variables was the measure of identification performance. Maximum :
duration of the display was three seconds.

i
nt—

~ Green display golor was significantly more effective than JKed in per-
ipheral effectiveness for the detection task in both turbidity conditions. Color
differences were relatively unimportant to peripheral identification, although
Green was consistently equal or superior to Red.. The identification task was
sensitive to differences in Console Distance; a Cpnsole Distance of 35 cm
supported a wider useful periphery than either the| 25 cm or the 45 cm distances.
In the 'Harbor' turbidity environment, a 1/2 log reduction in display luminance
substantially reduced the peripheral effectiveness$ of Red relative to Green for
both visual tasks. The optimally effective combihation of display character-
istics, in both 'Ocean' and 'Harbor' turbidity environments, was a high in-
tensity, green display viewed at an eye-to-console distance of 35 cm (14
inches). Given these design conditions, detectioh was within 500 msec
reaction time to a peripheral location 37 .5 cm (14.75 inches) from line of sight;
identification was at least 90% accurate within 21.6 cm (8.5 inches) of console
center.
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PERIPHERAL DETECTION AND IDENTIFICATION OF SELF-LUMINOUS
DISPLAY VARIATIONS IN 'OCEAN' AND 'HARBOR' VIEWING ENVIRONMENTS

I. INTRODUCTION

Because the design of the human eye has evolved to process light
travelling throuch an air medium, focused vision underwater requires that the
diver wear some form of facemask. One potential disadvantage of this re-
quirement is the restricted usefulness of peripheral visual fields underwater
vis-a-vis normal, in-air, task environments. In normal viewing environments,
peripheral visual fields are limited by the anatomical features of the face;
underwater peripheral field limits are determined by the design of the particular
mask. These limits are documented by several perimetry studies of observers
in air environments (Taylor, 1972, presents summaries), and by one study
underwater (Weltman, et al, 1965). The in-air perimetry studies account for a
range of variations in permissible head and eye movements; the underwater
perimetry study used the head-fixed, eyes-free-to-move viewing condition and
assessed three masks with dark-adapted observers and a white light stimulus,
two masks with light-adapted observers and a pencil point stimulus. In
general, facial features restrict the peripheral areas of the visual field lying
above the horizontal meridian (270°-90°), and permit greatest range of vision
along the horizontal meridian and those meridians adjacent to the horizontal.
Facemasks tend to be most restrictive in the lower half of the visual field,
i.e., along all meridians below the horizontal.

Additional in-air studies of peripheral response characteristics have in-
cluded visual tasks other than detection, and variations in signal luminance
and wavelength. These studies used reaction time as a measure of peripheral
sensitivity and yielded functional relationships with peripheral angle rather than

limits based on detect/non-detect response alternatives. In general, reaction




time to visual signals is fastest at the fovea and becomes progressively
slower as peripheral angle increases. However, with a dark-adapted eye and
low intensity, small-size stimuli, reaction time tends to correspond to the
density distribution of rod receptors in the retina, i.e., fastest at 20° ec~-
centricity and slower at both smaller or larger angles (Rains, 1963). At
photopic levels of signal luminance, reaction time is faster to the higher
luminance signals (Rains, 1963; Bartlett, et al, 1968).

Color or wavelength of the light makes a difference to peripheral re-
sponsiveness. Haines, et al, 1974, showed that red light (632 nm) at .025 ft-L
luminance yielded slower reaction times than blue (464 nm) or green (526 nm)
light at .025 ft-L at all peripheral locations tested. Further, as peripheral
angle increased, the rate of increase in reaction time was significantly greater
for red than for blue or green light. In a later study, Haines, et al, 1975,
found a rapid increase in the percent of 'No Response' to red light at 60°
eccentricity and beyond. No departure from normal 1-5% 'No Response’
occurred with blue or green light to a limit of 90°.

Utility of peripheral areas of the eye differ according to the visual task
required. Edwards and Goolkasian, 1974, presented electroluminescent letter
displays at 10°, 15°, 25° and 58° along the horizontal meridian and required
four kinds of visual tasks: detection, recognition, identification and cate-
gorization. At any given peripheral angle, reaction time was longer and
response accuracy decreased as the task was more complex. MacLeod, 1977,
required choice-reaction time and letter identification tasks in response to
peripherally displayed letters along eight meridians. Response time and
identification accuracy did not vary with peripheral angle within 24° eccentricity
along the horizontal meridians (270° and 90°). Significant differences in
visual responses were found for the vertical and oblique meridians.

Comparable kinds of information about the relative usefulness of peripheral

visual fields is not available for underwater viewing environments. Water
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effects and suspended particle effects need to be accounted for in assessing
the utility of the visual periphery for information display in underwater
vehicles and other diver support systems. Vaughan, et al, 1977, simulated
naturally turbid waters with selected corncentrations of latex particles of
known diameters and densities. They used simulations of 'Ocean' vs 'Harbor’
turbidity conditions as viewing environments for assessing legibility require~-
ments for underwater displays. Varjations in turbidity accounted for large
proportions of legibility responses when luminance, color, size and viewing
distance were varied. In their experiments, numeric displays were presented
at zero eccentricity and the observer's response was number identification.

The present study was conducted in order to extend knowledge of under-
water display optimization to include peripheral visual fields and both
detection and identification tasks.
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II. METHOD

A, Turbid Water Simulations

Natural underwater viewing environments include suspended materials

which scatter light. The effects of the scattering which are of consequence to
display design are first, the reduction of brightness contrast between the
lighted display and the bacground against which the display must be discrimin-
ated, and second the reduction of total light energy reaching the eye. Both of
these phenomena are interactive functions of the sizes and concentrations of
suspended particles, and the wavelength, size and intensity of the display. One
of the main objectives of the present research was to quantitatively assess the
effects of turbidity variations as determinants of display design optimization.

Two levels of natural water turbidity were represented in this experiment:
one simulated ocean water, the second simulated harbor water. The two simula-
tions considered the sizes and concentrations of naturally occurring suspensoids
as reported in the literature of physical oceanography. Particle sizes were se-
lected to represent the median value of ocean and harbor suspensoids; concen-
trations were selected to represent typical numbers of scatterers per cubic
centimeter of water. 'Ocean' turbidity was defined by relatively large-sized
suspensoids at very low concentration; 'Harbor' turbidity by very small-sized
particles in relatively high concentration. Quantitatively the two simulations
were defined by particle diameters and numbers of scatterers per cubic centimeter
as presented in Table 1. Additional details concerning the artificial materials, and
the formulas which account for density differences between the artificial particles
and the naturally occurring suspensoids are reported in Vaughan, et al, 1977.

The 'Ocean' and 'Harbor' simulations were based on physical character-
istics of the naturally occurring suspensoids in real-world oceans and harbors.
As a test of the adequacy of the physical simulations, optical characteristics of
the artificially turbid waters were measured and compared to real-world values.

Furthermore, several samples of each water type were taken during the conduct
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Table 1. Particle Sizes and Numbers Defining 'Ocean’
and 'Harbor' Turbidity Simulations

Particle Diameter Number of Scatterers
and Standard Deviation per cm3
'Ocean' X=25.7x10"6m 4,64 x 102
c=10.0x10"%m
'Harbor' X=1.091x10"6m 7.20 x 10°
0=0.0082 x 10-6m

of the experiment as a check on the relative consistency of the viewing en-
vironment used as a test medium., Also of interest was the extent to which
samples of 'Harbor' and 'Ocean' waters produced for the current experiment
compared to those same simulations used in experiments conducted the pre-
vious year. Optical density of the water samples according to wavelength was
the characteristic by which the above comparisons were made.

Transparency of the water was measured using a Beckman model DK
Spectrophotometer. This device is a common laboratory instrument used typically
by chemists for the determination of absorptance of colored liquids. It has the
advantages of being easy to use, only requiring a 10 ml sample, and producing
a continuous output of transmittance vs wavelength throughout the entire visible
spectrum. Unfortunately spectrophotometers are designed primarily for use
with non-scattering fluids, so that the measured transparency of a sample con-
taining suspended material is some undefined combination of the effects of
absorption and scattering and is not directly related to the relative irradiance
loss coefficient (k) or the narrow beam attenuance coefficient (). Since it was
desired to reproduce as closely as possible the transparency of natural water
in these experiments, the optical measurement chosen was one that would sat-
isfactorily compare naturally with artificially turbid water. The reported values
of optical density should therefore be considered only in the context of compar-
ing the artificial and natural waters.
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Since Optical Density (OD) is defined as:

0
L

OD = ——=2—

where L is the path length, this OD may be converted to the OD for any path
length by simply multiplying by one-tenth the desired path length in cms.
Thus, if the OD for a 10 cm path is reported as 0.5, the OD for a 1 cm path
length would be (0.5) (1/10) = 0.05, that for L = 30 ¢cm would be (0.5)
(30/10) = 1.5, and that for a 1 meter path would be (0.5) (100/10) = 5.0.

If it is desired to convert to a measure more comparable to the attenuation

coefficients commonly used in the oceanographic literature, we note:

g loge (%,I-?-
L
so that we simply convert from logj g to loge by multiplying by the constant 2,3:
4 =2.3 (OD)

Thus, for a reported transmittance of 80% for a 10 cm cell, we would get:

ob = & igo 80 'Oli()? = .,0097 cm~! = .97m-1 and

4 =2.3 (OD) = .022 cm~! = 2.2m"!

The Spectrophotometer records transparency with respect to some standard,
in this case distilled water, so that the measured optical density is descriptive
of the sample material in addition to pure water and does not include the water
itself. If the total optical density (OD) or attenuation coefficent (a ) is de-

sired, the additive properties of these two parameters may be used, i.e.:

’ 7 <
S ODtotal oD suspensoids ODwater
= +
"total "suspensoids ‘water
]
,f v
b7 ﬂ
\? | 35’» :
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Four samples of 'Ocean' water and four of 'Harbor' were taken during the
conduct of the present experiment. Figure 1 shows the mean optical density
values of the 'Ocean' and 'Harbor' samples. Characteristically, tﬁe optical
effects of the small-sized scatterers in large numbers ('Harbor') was to reduce
the transmission of light as an inverse function of wavelength. The 'Ocean'
simulation of large-sized particles in small numbers produced a highly trans-
missive environment indifferent to wavelength. Figure 1 also includes the
regression equation for optical density (y) as a function of wavelength (x) .

Additional analyses of the optical density functions as well as the basic
data tables are presented in Appendix A.

B. Apparatus
The artificially turbid water was contained in a 70 gallon tank of the

following dimensions: Length, 91.4 cm; width, 78.7 cm; height, 55.9 cm.

Particles were kept in suspension by a pumping system. Two small sub-
mersible pumps were placed on the bottom at opposite ends of the tank. The
output - of each of these pumps was attached to a diffuser consisting of a
plece of pipe with 1/8" holes spaced every two inches along the length. These
holes were oriented so that the pump output was directed along the bottom
toward the center. In this manner it was hoped that the water would be sucked
in at each end of the bottom, move toward the center horizontally, rise to the
surface in the tank's central region, move toward the ends at the surface then
sink . This motion was designed to produce maximum turbulence in order to
keep the particles in suspension.

A drywell was constructed within the tank perpendicular to the line of sight
of a facemask mour_xted at one end of the tank. The drywell was capable of
movement along the longitudinal axis of the tank and could be positioned at
any distance from the faceplate between S and 64 cm (2 and 25 inches). This
drywell-within-a-wet-tank apparatus avoided the need to waterproof ex-
perimental displays and yet required the displays to be viewed through a water

column.
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Figure 1. Optical Density per Wavelength

for 'Ocean' and 'Harbor' Turbidity Simulations
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The display module designed for the peripheral experiment consisted of a

i
tracking display in line with the facemask,and six display locations to the left i

-

of the tracking display. Each of the six locations was (2.125 inches) 5.397 cm
distance from the adjacent position. Each location included a single digit i
display and a mounting platform for holding, in front of the digit, combinations
of color and neutral density filters. The tracking display had a control element )
by which a randomly moving needle could be made to track a target spot. The . ‘:
tracking control included a button which the observer pressed to indicate de- {
tection of a peripheral signal. }
The tracking display was a 1.75 x 1.5 inch (4.45 x 3.81 cm) edge-lighted : 1‘
meter with a small target spot and tracking needle painted a fluorescent white;
display background was a flat black. Neutral density filters were used to ad- ‘
just the luminance of this display appropriately for the 'Ocean' and 'Harbor'

———

viewing environments. Measurements were taken from the tracking needle \i
and target spot and from the display background using a Spectra Pritchard
Photometer, Model 1980. In the 'Ocean' condition, the spot and needle
luminance was 0.190 ft-L (.651 cd/m2) against a background of 0.012 ft-L )
(.041 cd/m?). In the 'Harbor' condition these values were 19.0 ft-L (65.094 ‘
cd/m?) and 1.15 ft-L (3.941 cd/m?).

The experimenter had a control box by which to select peripheral display
locations 1-6,to select the digit to be displayed at the location and to activate B
the display. Display activation also started a digital timer which was stopped
by the observer pressing the button on the tracking control. The several )

components of the display/control apparatus are shown in Figure 2.

C. Observer Characteristics and Tasks {
Twelve of fourteen observers completed the full experimental design.

)
They were officer and enlisted personnel of Underwater Demolition Team-21, {
identified in Appendix B, Their average age was 24 years, range was 20-34

years. All had normal color vision and 20/20 near acuity. Their average

[
——t

accommodation near-point was 12,6 cm, range was 9-17 cm,
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Their task was abstracted from those characteristic of the operator of a
submersible vehicle. They attended to a compensatory tracking task as
in holding a compass needle to a prescribed heading. The tracking display
was directly in the center of the visual field and consisted of a target dot and
a controllable pointer, which continuously and randomly drifted away from the
target. The tracking control enabled the observer to continuously work at the
error-nulling task typical of compensatory tracking. Upon detection of a
peripheral light stimulus the observer pressed the button on the tracking con-
trol, then attempted to identify the digit being displayed. The display was
turned off after three seconds. ‘

.The observers were dark adapted; all trials were in a darkened room. The
observer's head was fixed by the location and constraints of the facemask; he
was instructed to use maximum eye movement in attempting to read the periph-

erally displayed digit.

D. Dependent Variables
The performances of interest were detection and identification of peripheral

displays under the several conditions of viewing environment and display char-
acteristics. Detection was measured by reaction time in milliseconds from
onset of the peripheral display to the button press response of the observer.
Response times were recorded to a limit of three seconds after which time 'No
Response' was recorded. Identification was measured as a percent of the
twelve observers who correctly identified the displayed digit under the given
experimental conditions.

No data were recorded from the tracking task.

E. Display Variations
The basic light source was a seven-segment, incandescent-filament,

digital display commercially available as Pinkitet DIP 640 from Refac Electronics
Corporation. The height x width dimensions were 8 x 4 mm. The individual

12
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filament segments averaged 2300 ft-1L (7980 cd/mz) in luminance when measure- -

ments were taken from the center of the filament with a photopically calibrated
Spectra Pritchard Photometer, Model 1980, using an MS-80 lens and a 6-
minute spot.
1. Color
Variations in display color were produced by placing wavelength-
selective filters in front of the basic display. Two colors were used, red and
green, corresponding to Kodak Wratten filters #26 and #65.

2, Luminance

Levels of display luminance were selected independently for each of
the two turbidity conditions. Superthreshold values were chosen based on
the previous study of display legibility for comparable wavelengths (Vaughan,
et al, 1977). A display luminance of 100 ft-L (343 cd/mz) was selected for
the  Harbor' turbidity condition and 0.1 ft-L (.343 cd/mz) for 'Ocean'. Green
and red display colors were made equivalent in luminance by use of appropriate
combinations of neutral density filters., As a test for potential effects of
luminance on peripheral visual performance each of the superthreshold levels
was reduced by 1/2 log unit, i.e., 30 ft-L (102.78 cd/m2) for the 'Harbor'
viewing environment and 0.03 ft-L (.103 cd/mz)‘ifor the 'Ocean’'.

In order to control total light energy emitted per trial, the selection of
digits to be displayed was restricted to those made up of five segmerits, i.e.,
2,3,5,6and 9.

3. Console Distance

Eye-to-console distance was varied at three levels: 25, 35 and
45 cm. Twenty-five centimeters was chosen as an inner boundary condition
for long-duration performance of visual tasks characteristic of submersible
operations. (The range of accommodation limits among the UDT personnel
tested has been between 9 and 20 centimeters.) The outer boundary of 45 cm
console distance was based on the threshold data of the previous experiments
for the selected display luminances.

13




Since the physical dimensions of the basic display were not modified,
display size was confounded with viewing distance as a determinant of
peripheral task performance. As console distance increased from 25 to 35 to
45 cm, size, in terms of visual angle of the display at the eye, decreased from
110" to 78' to 61' of arc (based on the 8 mm height dimension). Any performance
effects of viewing distance are, therefore, attributable to a distance/size
interaction.

4. Peripheral Angle

Since the locations of the six peripherally placed digits were fixed
distances from the tracking display, the peripheral angle of each location
varied as console distance was varied. Therefore, the six peripheral locations
could be compared only within the console distances. However, four peripheral
angles occurred at each of the three console distances which were within a few
degrees of each other. These four angles were defined by their mean values
and used in analyses across console distances. Table 2 presents these se-
lected angle-by-console distance combinations.

As is the case for operational display consoles in submersible vehicles,
the experimental 'console' face was a flat surface and not a concave arc.
Therefore, unlike classical perimetry, the light path from the display to the

eye lengthened with increased peripheral angle at any given console distance.

Table 2. Four Peripheral Angles Compared Across Console Distances

Console Distance
25 cm 35 cm 45 cm X
12 9e i - ot
23° 25° 26° 25°
33° 32° 33° 33°
41° 40° - 40° 1 40°
14
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The complete set of angular and linear data characterizing the six peripheral

display locations relative to the eye is shown in Table 3.

F. Experimental Design and Procedure

The experiment was conducted as a 6 x 2 x 3 x 2 factorial design with one
nested variable; two levels of display luminance were nested within one level
of console distance. The design was first implemented with the 'Ocean' tur-
bidity condition, then repeated with the 'Harbor' viewing environment. Any
practice effects, therefore, will benefit the more difficult conditions rather
than spuriously creating poorer performances. Since each of the twelve ob-
servers contributed data to each cell of the design in both the 'Ocean' and
'Harbor' conditions, individual differences do not contribute to error terms in
the analysis of variance. Table 4 is an outline of the design as applied to
both 'Ocean' and 'Harbor' underwater viewing environments.

The twelve observers were assigned to trial sequences so as to balance
order effects of display color and console distance. Within a block of trials
defined by a Display Color and a Console Distance, peripheral locations,
digits presented and stimulus onset delay times were independently randomized
for each observer. Overall, the design was modeled after repeated measure-
ments designs as described by Weiner, 1962, and by Myers, 1972.

Procedurally the observer was shown the apparatus and briefed about the
purpose of the experiment and about the tasks he was to perform. Then the
observer was screened for visual requirements: normal color vision (American
Optical Corporation's Pseudo-Isochromatic Color Plates), 20/20 near acuity
and accommodation near-point less than 25 cm. With the test room at high
ambient luminance, the observer was given 12 practice trials (two at each of the
six peripheral locations). Observers tended to work the tracking control with
their preferred hand and to press the timer-stopping button with the index
finger.

15
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Table 4. Experimental Design Outline

Green Display Red Display
PZ?:lh- Console Distance (cm)/ Console Distance (cm)/
Sttt Display Luminance (1 & 2) Display Luminance (1 & 2)
25/1L1| 35/L1 | 35/12 | 45/L1 } 25/11 | 35/L1 | 35/12 | 45/L1

1

2

3

4

5

6

The test room was made dark and observer was dark adapted 20 minutes,

during which time the procedures were verbally rehearsed. An additional six

practice trials were run following dark adaptation according to the following

steps.

Experimenter sets up condition of trial and says 'Ready’.

Observer places face in facemask and begins the compensatory
tracking task.

Experimenter delays 2-8 counts and initiates peripheral display.

Observer stops timer and reports which digit he saw or that he
could not identify the digit.

Experimenter records reaction time and digit named.

Observer withdraws face from mask and waits for next trial.

G. Summary of the Experimental Conditions
An overview of the variables included in the present experiment is pre-
sented in Table 5.
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III. RESULTS

A. Detection of A Peripheral Display*
1. Peripheral Detection in An 'Ocean' Viewing Environment

Two analyses were made of the reaction time data: one for the con-
dition of high (0.1 ft-1L) display luminance across variations in peripheral angle,
console distance and display color; a second for the condition within the 35 cm
console distance and across variations in peripheral angle, display luminance
and color. Table 6 presents analysis of variance summary tables for these
two conditions. A 1% level of risk was selected as a criterion defining
"significance” of a given effect; and an estimate of proportion-of-response
variance-accounted-for, &2, was computed for each significant effect (Hays,
1973). These statistical steps were taken as compensations for the efficiency
of repeated measures designs in detecting small differences as significant.

Table 6 suggests Display Color as a significant factor in detecting periph-
eral signals in an 'Ocean' environment. At high luminance (0.1 ft-L), reaction
time to a red signal was consistently slower than to a green at comparable
peripheral angles. Figure 3 is a plot of the reaction time data describing
this effect. Between 9 and 33 degrees peripheral angle, the reaction time to
a red light was about 50 msec slower than to a green light. At 40°, this dif-
ference doubled to 100 msec (1/10 of a second), but neither angle ncr the
Angle x Color interaction was significant and the main effect of Color accounted
for only 10% of the total response variance. Even at low display luminance
(0,03 ft-L) the effects, though statistically significant, were of small practical
consequence. The ANOVA table shows Color, Luminance and the Color x
Luminance interaction accounting for 25% of the total response variance. The

magnitude of the differences, however, was on the order of 200 msec as can

*Reaction Time data tables are presented in Appendix C
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Table 6. ANOVA Summary Tables for Detection Differences
in 'Ocean' Turbidity

A, 0.1 ft-1 Display: 4 Peripheral Angles, 3 Console Distances and 2 Colors

Source (Sglfrce & MS./MS, F p 82
Error)

Angle 3,33 22291/4825 4.62 N.S. -

Distance 2, 22 38533/9898 3.89 N.S. -

Color L 11 283191/12223 23.17 < .001 .mﬁ
AxD 6, 66 5981/2650 2,26 N.S. -
AxC 3, 33 10307/4960 2.08 N.S. -
DxC 2,.22 5674/3788 1.50 N.S. -

B. Within the 35 cm Console Distance: 6 Peripheral Angles, 2 Colors and
2 Levels of Display Luminance

df _ A7
Source (Source, MS¢/MS, F P W
Error)

Angle 5, 55 120917/7334 16.49 | < .001 | .08
Luminance | 1, 11 386101/32758 11.79 < .01 .05
Color 1, 11 1245174/37597 33.12 | < .001 | .17
AxL 5, 55 14189/6280 2.28 | N.S. -
AxC 5, 55 26999/9019 - 2.99 N.S. -
LxC 1, 11 256984/19254 13.35 | < .01 .03
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be seen in Figure 4. Of theoretical interest is the occurrence of reaction time
minima for both Red and Green peripheral signals at 25° eccentricity; a result
in general accord with data reported by Rains (1963) and accounted for by the

density distribution of rod receptors across the retina.

2. Peripheral Detection in A 'Harbor' Viewing Environment
The analyses of the reaction time data in the 'Harbor' followed the

identical format of the 'Ocean' data analyses. Summary ANOVA tables are
presented as Table 7. Tests of each main effect and interaction were all

significant beyond a reasonable risk. Hays' statistic, 6\)2

, was used as a
basis for highlighting the factors accounting for the majority of the response
variance: Console Distance and Color where display luminance was held
constant; Color and Luminance where console distance was a constant. When
a 100 ft-L signal was used, variations in Color, Distance and the C x D inter-
action accounted for 61% of the total variance in the reaction time data.
Similarly, when display luminance variations were included at the 35 cm
console distance, Color, Luminance and the C x L interaction accounted for
62% of the total variance.

Figure 5 illustrates both the effects of variation in display color and of
the Color-by-Angle interaction. The red display consistently was responded
to more slowly than the green; and the difference in reaction time between the
two colors increased as peripheral angle increased.

Figure 6 illustrates both the effects of Console Distance and the Distance-
by-Angle interaction. Reaction time was slower as Console Distance increased
and the magnitude of the difference increased as peripheral angle increased.

Figure 7 shows the triple interaction of Color x Console Distance x Angle
which suggests the main contributors to significant effects on reaction time
as red display at far console distances and at wide peripheral angles.

Where display luminance was varied to include a 30 ft-L condition, the red

display color was off scale beyond 17° peripheral angle at the 35 cm console
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Table 7. ANOVA Summary Tables for Detection Differences
in 'Harbor' Turbidity

A. 100 ft-L Display: 4 Peripheral Angles, 3 Console Distances and 2 Colors

Source (So?:frce, MS./ MSg F p &2
Error)

Aigle 3, 33 336461/7457 45.12 .001 .06 i
' Distance 2, 22 1881600/11091 169.65 .001 .24 |
Color I, 11 3557778/30207 117.78 .001 .23 i
AxD 6, 66 100776/6255 16.11 .001 .04 J
AxC 3, 33 180298/5778 31.20 .001 .03 ;
DxC 2, 22 1063308/15339 69 .32 .001 .14 \3
«l
B. Within the 35 cm Console Distance: 6 Peripheral Angles, 2 Colors and ‘
2 Levels of Display Luminance ;
a |
Source (Source, MS s/ MS, F P 4 2 '1
Error) i
Angle 5, §§ 445499/8003 55.67 .001 .11 {
Luminance | 1, 11 2210603/12187 181.39 .001 11 1
Color 1,11 9549390/45179 211.37 .001 .46 1
AxL 5, 55 89312/8731 10.23 .001 .02 "
AxC 5, 55 201036/9504 21.15 .001 .05
LxC 1,11 1043773/21347 48 .90 .001 .05 |
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distance. Reaction time to the green display under these same conditions
was relatively uneffected by the 1/2 log reduction in display luminance.

Figure 8 shows the data for the low display luminance condition.

3. 'No Response' Data for the 'Ocean' and 'Harbor' Viewing Environ-
ments

A stimulus duration of three seconds (3000 msec) was the limit of
the observers' exposure to the peripheral light per trial. Analysis of the
reaction time data from the 'Ocean' turbidity condition showed only four of
576 trials (0.7%) as undetected within this limit and only 10 of 576 trials
(1.7%) as detected in excess of one second (1000 msec). All data entries
of 'No Response' and those reaction times in excess of 1000 msec were
included in the variance analyses as scores of 1000 msec.

The frequency of 'No Response' and of those detections in excess of
1000 msec in the 'Harbor' turbidity condition were substantially higher:
18.2% (105/576) and 4.7% (27/576) respectively. The 105 'No Response'
entries were accounted for according to the data presented in Table 8.

The data of Table 8 are another way of illustrating the relative effectiveness
of Green vs Red light in peripheral detection under 'Harbor' turbidity con-
ditions. The analysis of variance for the 'Harbor' condition included only
those cells asterisked, which at the 100 ft-L level of display luminance
tended to underestimate the relative advantage of Green over Red light.

For example, at the most peripheral angle for each console distance (56°
at 25 cm, 47° at 35 cm,and 40° at 45 cm) none of the twelve observers saw
the Red light within three seconds while all of the observers detected the
Green. The sensitivity of peripheral detection to the Color x Luminance
interaction is also apparent in the No-Response percentages shown in Part B
of Table 8.
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A. Display Luminance of 100 ft-L

Table 8. Percent 'No Response' to Peripheral Displays
in Harbor Turbidity (N = 12)

Display At 25 cm At 35 cm At 45 cm
Lamtion Red Green Red Green Red Green
1 * * * * * *
2 * * 08
3 * * * * 25
4 * * * * 42* *
5 33 50* * 83* *
6 100 100 100* *
B, . Display Luminance of 30 ft-L
Peripheral At 35-om
Aligie Red Green
9° 8* * -.
17° 17% *
25° 42* *
32° 67* *
40° 100* *
47° 100* *
30
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B. Identification of A Peripherally Displayed Digit*

Having detected the onset of a perpheral light, the observer's task was
to identify the digit being displayed. Observer was instructed to use maximum
eye movement in his attempt to read the display accurately. Responses were
scored as either "correct” or "incorrect” so that the aggregate data consisted
of frequencies of 'yes' vs 'n¢' responses distributed over discrete categories
of display characteristics: colors, distances, angles, luminances. Selection
of a statistical test for identifying significant effects required a compromise
since no test was completely appropriate to these data. The basic problem was
that comparisons of interest require the use of data taken from the same ob-
servers. While this is an efficient procedure for the experimental design and
parametric tests of the reaction time data, no non-parametric analysis model
is entirely appropriate to a repeated measures design with multiple categories
of effects, i.e., 2 x k data tables (Siegel, 1956). The choice was between
doing hundreds of two cell comparisons using a test of differences between
correlated proportions, vs making a few tests of 2 x k and r x k tables for
independent samples, i.e., the Chi Square test. The Chi Square test altern-
ative was chosen since the consequence was to reduce the chances of reporting
a significant effect where none exists. Statistically, the effect was to re-
duce errors of Type I ir. two ways: first, the multiple comparisons possible with
the Chi Square test reduced the number of tests to be made; second, the effect
of correlation between the sets of frequency distributions tested enlarged the
error term of the Chi Square test and made the detection of a significant dif-
ference more stringent. (For elaboration regarding the effects of correlation on
the Chi Square test see Edwards, 1950, p. 91.)

*Tables of identification error data are presented in Appendix D.
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1. Peripheral Identification in An 'Ocean' Viewing Environment

Table 9 is a summary of the significance tests made in the ‘Ocean’
turbidity condition. When the high luminance display was the stimulus, Console
Distance and peripheral Angle had significant effects on identification accuracy.
With distance held constant at 35 cm and display luminance varied,only Angle
was a significant factor. These relationships are shown in Figures 9 and 10.
Figure 9 suggests an outer limit of 33° peripheral angle for accurate identifica-
tion over a range of viewing distances and Figure 10 shows accurate identifica-
tion of greater than 90% to a limit of 32° peripheral angle over variations in
display luminance. In the 'Ocean' viewing environment, variations in display
color and luminance were not significant determinants of identification accuracy.

2. Peripheral Identification in A 'Harbor' Viewing Environment

Table 10 is a summary of the significance tests conducted for the

'Harbor' turbidity condition. At high display luminance, 100 ft-L, Console

~ Distance and peripheral Angle were significant determiners of identification

accuracy. When display luminance was reduced at the 35 cm Console Distance,{
both display Luminance and Color made significant differences in observers'
ability to correctly identify a peripherally displayed digit.

Figure 11 shows the importance of Console Distance. At 45 cm, identifica-
tion performance was inadequate at all peripheral angles; at 9° only 42% of the
judgments were cofrect. At 35 cm console distance,identification per‘crmance
was maintained at greater than 90% accuracy to a limit of 33° peripheral angle;
at 25 cm, identification accuracy was 100% at 40° (but fell to 50% at 50° periph-
eral angle).

When display luminance was varied at 35 cm, both Color and Luminance had
significant impact on accuracy of peripheral identification. These effects are
illustrated in Figure 12. At 30 ft-L display luminance an identification accuracy
greater than 90% was possible only at 9° peripheral angle for a Red display;
the Green display was accurately identified beyond 90% to a limit of 25°
peripheral angle.
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Table 9. Summary of Significance Tests
of Factors Affecting Peripheral Identification Accuracy
in An 'Ocean' Viewing Environment

A. 0.1 ft-1L Display: 4 Peripheral Angles, 3 Console Distances and 2 Colors

Source x2 df P
Angle 80.930 3 < .001
Distance 12,116 2 < .01
Color .265 1 N.S.
AxD 2.000 6 N.S.
AxC .250 3 N.S.
DxC .103 2 N.S.

2 levels of Display Luminance

B, Within the 35 cm Console Distance: 5 Perigheral Angles, 2 Colors and

Source 7(2 df ! )
Angle 205.714 5 < .001
Luminance 4,288 1 N.S.
Color 934 i N.S.

AxL 8.7 4 N.S.
AxC .511 4 N.S.
LxC .138 1 I N.S.
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Effects of Peripheral Angle on the Identification
of A Display: 'Ocean' Turbidity

Figure 10.
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Table 10. Summary of Significance Tests
of Factors Affecting Peripheral Identification Accuracy
in A 'Harbor' Viewing Environment

A, 100 ft-L Display: 4 Peripheral Angles, 3 Console Distances and 2 Colors

Source x2 df P
Angle 17.751 3 < .001
Distance 193.000 2 < .001
Color .137 1 | N.S.
AxD 7.328 3 N.S.
AxC .510 3 N.S.
DxC .690 2 N.S.

B. Within the 35 cm Console Distance: 6 Peripheral Angles, 2 Colors, and
2 Levels of Display Luminance

£

Source .)LZ df p
Angle 169.965 5 < .001
Luminance 8.824 1 < .01
Color 8.824 1 < .01

AxL 3 .131 4 N.S.
AxC 4,322 4 N.S.
LxC 1.249 1 N.S.




37

Effects of Console Distance on Identification

of A Peripheral Display: 'Harbor' Turbidity

¥
-
. 4
4 {
~t
|
: b
= ¢
B .\.
93
.3
]
2
£
%
W
K
%
5
A




Effects of Color at Low Luminance an Identification

of A Peripheral Display: 'Harbor' Turbidity

Figure 12,
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C. Relative Utility of the Peripheral Visual Field for Detection and Identi- ]
fication Tasks

1. Peripheral Detection vs Identification in an 'Ocean' Viewing Environ-
ment

- ey e e

Figures 13 through 16 are simultaneous plots of identification ac-
curacy (%) and reaction time (msec) for the six peripheral angles included in
the experimental trials at 35 cm Console Distance. The figures are in J
descending order of peripheral effectiveness for combinations of display Color
and Luminance. Figures 13 and 14 show that Green light displays at either
the 0.1 or 0.03 ft-L luminance adequately supported detection of peripheral
signals within 500 msec to 45° peripheral angle, and identification accuracy
>90% to 32° peripheral angle. All Red light displays resulted in less effective 1
performances of the two visual tasks. Figure 15 shows that Red light at high {
luminance (0.1 ft-L) enabled peripheral performance of the identification task

at levels comparable to Green, but detection was limited to 40° peripheral \;

angle. Figure 16 shows the effect of a reduced lumlnénce Red light. Identi-
fication accuracy was >90% to a limit of 25° peripheral angle and detection
| l was longer than 500 msec at all peripheral angles.

2. Peripheral Detection vs Identification in a 'Harbor' Viewing Environ-
ment

Comparative analyses of the detection and identification functions
with peripheral angle 1‘n‘ 'Harbor' turbidity paralleled the findings for the
'Ocean’ condition. Green light at high luminance (100 ft-L) was superior to
all other conditions and Green light at 1/2 log lower luminance was at least
as good as Red at high luminance. Red at low luminance was unable to sup-
port criterion levels of detection performance at any peripheral angle, and ‘
identification performance at any angle beyond 9°. Figures 17 through 20 |
illustrate these relationships.
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IV. GENERALIZATIONS AND IMPLICATIONS
FOR CONSOLE DESIGN

The results of this experiment were intended to provide guidance to de-
signers of displays for underwater applications. The scope of the design
problem area investigated was the utility of the peripheral visual field for
detection and identification tasks in 'Ocean’ and 'Harbor' viewing environ-
ments. The context within which. these problem areas were addressed involved
a dark-adapted observer, engaged in a continuous tracking task which main-
tained his attention on a céntrally located display. The results of the experi-
ments were expected to provide two kinds of guidance: relative advantages
of variations in display characteristics, and absolute limi';s on peripheral
usefulness for 'best case' combinations of characteristics within the range of
values included in the experiment. Of particular concern was the effect of
variations in turbidity characterizing the viewing environments represented
as 'Ocean' and 'Harbor'.

From the complex sets of interactions among viewing environments, visual
tasks and display characteristics presented in the preceding section, certain
regularities emerge as generalizations; and since this section of the report is
intended principally as an aid to a display designer, the generalizations are

organized from the perspective of a designer's options.

A. Generalizations About Display Characteristics
1. Display Color

The principal effect of Red vs Green variations in display color was
on the peripheral detection task. Display color made small but consistent
differences in the 'Ocean' and large consistent differences in the 'Harbor'
viewing environments; always in favor of Green, and only when the detection

task was examined.




2. Console Distance

The principal effect of variations in eye-to-console distance as a t
determinant of peripheral effectiveness was on the identification task. Again,
in the 'Ocean', identification accuracy decreased by small percentages and I
in the 'Harbor' by large percentages as console distance increased. At high
display luminance and with data aggregated over angles and colors, identi- {
fication accuracy decreased 100%, 95%, 88% in the 'Ocean' and 100%, 84%,
10% in the 'Harbor' at console distances of 25, 35 and 45 cm. {

3. Display Luminance

Luminance requirements for superthreshold foveal identification in
'Ocean’' vs 'Harbor' turbidity conditions are magnitudes apart; 0.1 ft-L is an
adequate stimulus in the 'Ocean', 100 ft-L in the 'Harbor' simulations. The
principal generalization regarding display luminance from the results of this

experiment is the significant reduction of peripheral effectiveness when red
light is made less bright in 'Harbor' turbidity. In the relatively clear water —
of the 'Ocean' simulation, reduced luminance had no effect on the identification ]
task, but red was consistently less effective than green for peripheral de-~
tection.

Reducing display luminance in the turbid 'Harbor' environment, however,
had a dramatic impact on the relative effectivness of Red vs Green display
colors for both visual tasks. For example, at 30 ft-L display luminance, 56%
of all peripheral presentations of red light resulted in a 'No Response';
peripheral presentations of green light at 30 ft-L not only resulted in zero
'No Response’ trials but the overall mean reaction times were comparable to
those obtained at 100 ft-L (435 vs 380 msec).

B. Console Design Recommendations
Within the limits of the variables included in the experiment, peripheral _ ]

utility was maximized by high-luminance, green displays. In no case was

-

low luminance an improvement over high, and in no case was red color an i
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improvement over green. The issue regarding console distance was not so
clear cut, far distances favored by the 'Ocean' data, near distances by the
'Harbor'., As an aid to this design decision involving compromise among
conflicting maximizing principles, Table 11 was constructed. Table 11 includes
only data from the High Luminance, Green Color display combination since
these were optimal design choices. The table shows those peripheral angles,
and their corresponding linear distances along the horizontal axis of the con-
sole, at which criterion levels of performance were maintained. Performance
criteria were selected as a reaction time of less than 500 msec for the detection
task, and an accuracy of 90% or greater for the identification task. The three
console distances and the two viewing environments are included as the
columns and rows of the table.

Peripheral angles were translated into linear distance from line-of-sight
for a given ancle at a given console distance. The designer's goal is as-
sumed to be to choose a console distance which yields the widest effective
console; thereby enabling him to place more displays within the effective
visual field. Since the lateral distance from the tracking display varied with
peripheral angle as eye-to-console distance increased, the lateral distance
value was used as the basis for evaluating Console Distance. Figure 21
shows the lateral distarices along the console face for combinations of
peripheral angle and eye-to-console distance.

Examination of the lateral distance data in Table 11, leads to the choice
of 35 cm as the optimal Console Distance. The shorter Console Distance,

25 cm, narrows the useful console space to 11-5/8" vs 14-3/4+" for either

35 or 45 cm. (The '+' sign indicates criterion level performance to the limits
of the variable included in the experiment. Presumably the true peripheral
limit is in excess of 14-3/4" at 35 cm console distance.) The further Console
Distance, 45 cm, practically eliminates the peripheral utility for the identifi-
cation task in the 'Harbor'.




Given the combination of High Luminance, Green Color displays at a
Console Distance of 35 cm,peripheral signals will be detected if placed

within 14-3/4" of the central display. Digital displays can be accurately
read if placed within 8>1/2" of the central display of the console. The effective

lateral dimension of the console (assuming the central display in the center ;
of the console) is 29-1/2". ) i
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Measurements, of optical density as a function of wavelength for samples
of 'Ocean' and 'Harbor' turbidity simulations are tabled in Tables A-1 and A-2.
Four samples of the experimental viewing environments were taken during the
data collection interval: 13-21 June 1977 for the 'Ocean' trials and 27 June-
12 July 1977 for the '"Harbor'. Figures A-1 and A-2 are plots of the optical
density x wavelength functions. Each of the viewing environments were
fairly consistent in optical properties over the testing interval with the ex-
ception of one day's sample: 13 June for the 'Ocean' condition and 29 July
for the 'Harbor'. The average standard duration of the optical density measures
for the the eleven wavelengths was .076 in the 'Ocean' which was 18% of the
mean. In the "Harbor' condition, the average standard deviation was .170 or
25% of the mean of the optical density measurements.

Tables A-3 and A-4 compare the optical properties of the 'Ocean' and
'Harbor' waters used as experimental viewing environments in 1977 with those
prepared for the 1976 legibility experiments. Both comparisons show the 1977
samples to be approximately .05 units less dense than the artificially turbid
water samples of 1976 and could easily be accounted for by variations in the

tap water at the test site from one year to the next.
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Figure A-1. Optical Density vs Wavelength for Four Samples
of 'Ocean' Turbidity
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Table A-3. Mean Optical Density at Selected Wavelengths for Samples
of Artificially Turbid "Ocean' Water Prepared in 1976 and 1977 - t

[,

Wav(:l;;"gth i Differences |
1977 1976 ;
500 . .087 .152 .065 |
510 .084 .146 .062 1
520 .082 .140 .058
530 .079 .134 .055 | ¥
540 .077 .131 .061 %
550 .075 .124 .049 | i
560 .073 .120 .047 | q
570 .072 .115 .043 |
& 580 .070 112 .042
590 .068 .109 .041 |
600 .067 .104 .037 |
X = .051 |
1
A-8 i
f
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Table A-4. Mean Optical Density at Selected Wavelengths for Samples
of Artificially Turbid 'Harbor' Water Prepared in 1976 and 1977

Wav&l:‘;'lgth e Differences
1977 1976

500 .696 .748 ' .052
510 .691 739 .048
520 .686 .735 .049
530 .680 .726 .046
540 .669 7121 .052
550 .660 711 .051
560 .650 .700 -050 \
570 .642 .688 .046
580 .633 .682 .049
590 .621 .670 -049
600 .610 .661 .051

X = .049
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APPENDIX B

. TEST PARTICIPANTS

— [o—— [

e A b 5 t5 CMe  G0




T Name Rank/Rate
Foreman, David E. LT(jg)
Hall, John F. BT2
Hawkins, Thomas L. LCDR
Hersh, Daniel W, QMSN
Jaquith, Greg E. EM3
Klingensmith, James M. QM3
May, Rick A. AE2
Mitchell, Robert A. ABFAN
Peterman, Robert C. ENS
Rohling, Henry J. LT(jq)
Sayre, Donald L. GMG2
Shoulders, Thomas M. QMC
Springer, Theodis YN3
Warner, Ronald H. AE3
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APPENDIX C

= BASIC DATA TABLES FOR DETECTION SPEED

; Cell entries are simple reaction
times in msec.
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APPENDIX D

BASIC DATA TABLES FOR IDENTIFICATION ERROR

Blank cells are correct responses;
error data are coded as NS, not
seen within 3000 msec; NR, seen
but no attempt at identification;
RE, incorrect identification.
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