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I. INTRODUCTION

An approximate asymptotic high frequency result is developed in this
paper for describing the electromagnetic field in the immediate vicinity
of a smooth, perfectly-conducting convex surface which is excited either by
an infinitesimal electric current source located in the immediate vicinity
of the surface, or by an infinitesimal magnetic current source located
directly on the surface. The orientation of the electric current source is
assumed to be along the surface normal; whereas, the orientation of the mag-
netic current source is assumed to be along the surface tangent. Thus, this
result essentially constitutes an asymptotic approximation to the electric
or magnetic type dyadic surface Green's function or its appropriate spatial
derivatives, for the above orientations of the infinitesimal electric and
magnetic current sources. One may therefore calculate the electromagnetic
field in the immediate vicinity of a smooth, convex, conducting surface
which is excited either by an aperture, or a thin short stub (monopole)
antenna located on that surface by integrating this asymptotic dyadic surface
Green's function (or it's appropriate derivatives) over the source distri-
bution either in the aperture, or along the length of the stub, respectively.
The source distribution in these cases may be defined in terms of an equivalent
tangential magnetic current distribution in the aperture [1], or in terms
of an equivalent electric current distribution along the stub, both of which
are assumed known. This result for the electromagnetic field generated by
an aperture or stub antenna on a convex, conducting surface may be employed
to calculate the mutual coupling between a pair of aperture or stub antennas
located on that surface via a procedure based on the reaction theorem [2].
The details of such an analysis of the mutual coupling between a pair of
radiating elements on a smooth, convex conducting surface are presented in
this paper for the case in which one of the radiating elements is an aperture
with the other element being either an aperture, or a stub; and also for
the case in which both of the radiating elements are stubs. These radi-
ating elements are assumed to be short and thin for reasons that will be
indicated later in Section V; in particular, the aperture is assumed to be
a thin rectangular slot which is less than a half wavelenqth long, and the
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stub (or monopole) is assumed to be a thin wire which is less than a quarter
wavelength Tong. The problem of mutual coupling is of interest in the
following way. A knowledge of the mutual coupling between antennas on a
smooth convex surface is essential, for example, in the design of conformal
arrays, or in estimating the electromagnetic compatibility of various
multi-function antennas that are located on such a surface. In the present
context, the smooth convex surface could locally model the region of an
aircraft or spacecraft fuselage on which the conformal array, or a pair of
multi-function antennas may be located.

In the present asymptotic solution the surface field due to an

infinitesimal current source which is placed on a convex surface is associated

with Keller's surface rays [3,4,5] vwhich traverse geodesic paths on the
surface between the source and the field points, respectively. In
particular, the field of these surface rays is expressed in terms of Fock
type integrals, and this field representation is uniform in the sense that
it remains valid in the neighborhood of the source and within the shadow
boundary transition (or penumbra) region; whereas, sufficiently far from
the source it can be transformed via Cauchy's residue theorem into a rapidly
converging series representation which is commonly referred to as the
creeping wave modal series. Furthermore, as the curvature of the surface
becomes vanishingly small, this result in terms of the Fock type integrals
recovers the known, exact solution for the planar surface. Basically, this
asymptotic result is valid provided that the surface curvature is neither
large, nor rapidly varying. When the source and the field points are not
directly on the surface, but are in the immediate vicinity of the surface,
the field is expressed in terms of a Taylor expansion which involves the
"soft" and "hard" type* Fock integrals for the surface field and its

*The "soft" and "hard" terminology employed here refers to the soft (or
Dirichlet) and hard (or Neumann) boundary conditions encountered in
acoustics. The application of these boundary conditions leads to the
acoustic (or scalar) wave solutions of the soft and hard types.
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derivatives. The soft and hard type Fock integrals denoted by u(g) and
v(g) which appear in all of the field expressions developed here are
tabulated by Logan [6], and their derivatives can be calculated numerically
in an accurate manner. Thus, the present result not only imparts a simple
physical interpretation in terms of surface rays, but it is also in a

form which is convenient for engineering applications.

It is noted that several other asymptotic solutions for the surface
currents excited by a tangential magnetic current moment on a convex
conducting surface have been obtained previously by various authors.
Hasserjian and Ishimaru presented an asymptotic solution pertaining to the
convex cylinder geometry [7]; they obtained terms to lowest order in
E%;-and %ga where s is the arc length of the geodesic ray path on the surface

from the source to the observation point, Pg is the radius of curvature of
the surface along the ray direction, and k is the free space wavenumber.
The nature of their solution is quite similar to that given earlier by

Wait [8] for a large conducting sphere excited by a stub (or a short
monopole) antenna. Later, Hwang and Kouyoumjian [9] constructed an
asymptotic solution for the convex cylinder case within the systematic frame-
work of the geometrical theory of diffraction (GTD) [3,4,5]. In order to
perform this extension of the GTD, they introduced the modal launching and
attachment coefficients for torsional surface rays. The launching and
attachment coefficients are proportional to Keller's surface ray modal dif-
fraction coefficients [4,5]; these launching and attachment coefficients were
introduced earlier in [1] for the case of non-torsional surface rays. The
result developed in [9] has been used in [10] for analyzing a simple,
conformal, cylindrical array problem, 1In [9], the vector nature of the
surface current (or the tangential surface magnetic field) is expressed
rather compactly in a dyadic form by employing the unit tangent and
binormal vectors fixed in the local surface ray coordinates at the source
and the field points, respectively. As a result, this GTD formulation in
[9] provides a simple physical interpretation for the manner in which the
surface magnetic field is excited by a tangential magnetic current source
on a convex cylindrical surface. As the field point approaches the
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neighborhood of the source, the creeping wave modal series representation;
i.e., the GTD representation in terms of the modal launching and attachment
coefficients becomes slowly convergent, and it is then transformed in [9]
into the same Fock type integrals as those employed in [7,8] and in this
paper. Such a procedure was mentioned earlier where it was noted that these
Fock type integrals can be transformed via the Cauchy residue theorem into
the creeping wave residue (or modal) series which are rapidly convergent

for large ks. In conformal array applications, the radiating elements are
not necessarily far apart so that in the calculation of the mutual coupling
between two closely spaced array elements it becomes necessary to evaluate
the surface field for small values of ks. In the latter case, higher order
terms in 1/ks become significant in the surface field calculation, and they
therefore must be included for accuracy; these higher order terms in 1/ks are
not present in [7], [8] and [9]. Also, the result in [9] and [10] based on
the GTD indicates that the component of the surface magnetic field along the
tangent to the ray path may be expressed only in terms of the acoustic soft
type surface ray field, and likewise the component along the binormal
direction to the ray may be expressed only in terms of the acoustic hard
type surface ray field; however, such a simplified field decomposition

does not appear to provide a sufficiently complete field description as
indicated in some of the more recent analyses [11,12]. The GTD analysis of
[9] which represents an asymptotic approximation only to first order
nevertheless presents very useful and important concepts. In [11], Chan et.
al. obtain asymptotic expressions for the surface fields on a convex
cylinder, and also on a semi-infinite cone. The solution* in [11] is
expressed in the local surface ray coordinates as in [9], and it contains
terms (involving the Fock type integrals) to lowest order in 1/kpg and to
two orders in 1/(ks). As the curvature of the convex surface becomes
vanishingly small, the solution in [11] thus recovers the exact solution

*Three different solutions are presented in [11]; here we refer to their
solution which is desfgnated as Full Formula (and it's variant for the
circumferential current element).
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for the planar surface only to terms in 1/(ks)2, but not to terms in 1/(ks)3.
The solutions in [7], [9] and [11] for the convex cylindrical surface are
obtained via a generalization of their respective asymptotic solutions

which were developed first for the simpler, canonical circular cylinder
geometry. Such a generalization of the canonical solutions is based on the
principle of locality of wave propagation at high frequencies as employed in
the GTD procedure. Further generalizations to conical surfaces as in [11],
or to arbitrary convex surfaces may be performed heuristically in a similar
fashion. More recently, Lee [12] has presented an approximate asymptotic
solution for an arbitrary convex surface such that it recovers the exact
planar result, i.e., up to terms in 1/(ks)3, as the surface curvature becomes
vanishingly small. The solution in [12] is also expressed in terms of the
unit vectors fixed in the surface ray coordinates of [9]. The solution in
[12] is obtained by first modifying an asymptotic solution pertaining to

the canonical sphere geometry; this "modified" sphere solution is then sub-
sequently generalized heuristically to treat an arbitrary convex surface

via the principle of locality of high frequency wave propagation. In
particular, an additive type term is introduced into the solution for the
sphere problem in [12] in an ad hoc fashion, to construct that "modified"
sphere solution. As indicated in [12], the only justification for including
this "ad hoc" term is that it is essential for the purposes of obtaining
accurate results when the "modified" sphere solution is applied to the
circular cylinder geometry; furthermore, when this modified solution

is applied back to the sphere geometry, it does not yield numerical values
which are significantly different from those based on the un-modified

sphere solution. Due to the fact that the solution for the arbitrary

convex surface, and hence for the convex cylinder case in [12] is based

on the sphere solution to begin with, it therefore always contains both,

the acoustic "hard" and "soft" type Fock integrals corresponding to the

two types of scalar potentials from which the sphere solution is con-
structed. However, it is well known that for an axially directed magnetic
current source on a perfectly-conducting cylinder, only the scalar potential
corresponding to the acoustic "hard" function is required to completely
describe the electromagnetic field which is generated by that source.

I T
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It is noted that the field solutions in [7], [9],and [11], contain only the
acoustic hard type potential for the case of an axial magnetic current
source on a convex cylinder. An interesting difference between the
cylinder result in [11] and the result in [12] is that a "cross term"
exists in the dyadic representation for the surface field of [11]; whereas,
it is absent in [12] since the latter solution is based on the sphere
solution. Such a cross term which involves higher order range (or (ks)'z)
dependent terms is also absent in [7] and [9], because the cylinder
solutions in {7] and [9] do not contain these higher order range terms.

In this paper, an asymptotic result for the surface fields on an
arbitrary, convex, perfectly-conducting convex surface is obtained by
generalizing asymptotic solutions which are first constructed in Appendices
I and II for the surface fields on canonical, perfectly-conducting,
circular cylinder and spherical geometries, respectively. The solution
for the sphere problem in Appendix II is essentially based on the method

employed by Fock [13]. The excitation for these canonical circular cylinder

and sphere problems analyzed in Appendices I and II includes not only a
magnetic current source, but also an eiectric current source. On the other
hand, only the case corresponding to the magnetic current source excitation
is considered in [7,9,11,12]. The canonical solutions developed in the
Appendices are summarized in a dyadic form similar to that in [9,11,12]

in terms of the surface ray tangent and binormal vectors. It is noted that
the dyadic surface field representation for the canenical cylinder geometry
contains a cross term similar to that present in [11], but the form of this
cross term is not identical to that in [11]. Furthermore, the solution

for the axial’y directed magnetic current on the cylinder contains only

the acoustic hard type potential as in [7,9,11]. The case of magnetic
current source excitation is summarized in Section II, and likewise the
electric current source excitation case is summarized in Section III.

Based on the information present in the results for both, the canonical
cylinder geometry and the canonical sphere geometry, these results are in
turn heuristically generalized with the aid of the local properties of

high frequency wave propagation, to treat an arbitrary convex surface

6
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geometry as indicated in Section IV. Only terms to lowest order in F%

are retained in this analysis. The effect of torsion associated with
the surface rays is clearly identified in this solution through the
presence of a factor T/x, where T is the surface ray torsion and
n=(pg)']. As the surface curvature becomes vanishingly small, the
present solution recovers all terms in the known, exact solution

for the planar geometry. Expressions for mutual coupling between slots
and/or stubs (monopoles) are presented in Section V in terms of the
results obtained earlier in Section IV. Some preliminary numerical cal-
culations indicating the accuracy of the results developed in this

paper are also shown ir Section V.

II.  SUMMARY OF ASYMPTOTIC SOLUTIONS TO THE CANONICAL
PROBLEMS FOR THE MAGNETIC CURRENT SOURCE CASE

As mentioned earlier, the problems involving the electric and magnetic
current source excitation of the circular cylinder and sphere geometries
which have been analyzed in Appendices I and II, respectively, serve as
canonical problems in the sense that their solutions are instrumental to
the development of a solution for an arbitrary convex surface, as indicated in
Section IV. Hence, the results obtained in Appendices I and II are
summarized in this section for the case of magnetic current source exci-
tation; whereas, corresponding results for the electric current source
excitation are summarized in Section III.

The results for the circular cylinder are summarized in part A of this
section, and the results for the sphere case are summarized in part B.
These results are expressed below in an invariant form in terms of the
local surface ray coordinates as in [9].

A. Asymptotic Results for the Canonical
Circular Cylinder Problem

The circular cylinder geometry of interest is illustrated in Figure 1.
The infinitesimal magnetic current source, M which excites the circular
cylinder may be represented in terms of the Dirac delta function by

7




i =p, s(lr-r]). (1)

The source M is assumed to be placed at P& on the surface of the
cylinder and it is oriented tangential to the surface. The quantity P
refers to the strength of the infinitesimal magnetic current (or current
moment), and ¥ is an arbitrary position vector; whereas, r' is the position
vector at the source location P& on the circular cylinder.

First, expressions for the electric and magnetic fields are given
for the case when the field point is located at a point Py which is
on the surface. Next, an expression is given for the normal component of
the electric field when the field point is moved from Py to the point P
which lies above but in the close vicinity of the surface.

From the details of the analysis in Appendix I, it is observed that
the field may be interpreted to arrive at PN from the source point at Pﬁ
via a geodesic ray propagation path on the surface. It is noted that in
the case of the cylinder, the geodesic surface ray paths are helices. The
vector nature of this field at PN may be expressed compactly in terms of a
triad of unit vectors fixed in the surface ray coordinates at Ph and PN.
These unit vectors are defined as follows. Let n and n' denote the unit
outward normal vsctors to the surface at PN and Pﬁ, respectively; likewise,
let t at PN and t' at Pﬁ denote the unit vectors which are oriented along
the forward tangent to the geodesic surface ray path from Pﬁ to Py. Then
the unit binormal vectors at PN and P& asEOCiEtedAwith Ehe gsodesjc ray
path between these points are defined by b = t x nand b' = t' x n’,
respectively. These unit tangent, normal, and binormal vectors constitute
the triad of unit vectors associated with a surface ray. The surface ray

geodesic path between Pﬁ and PN, and the associated triad of unit vectors

at these end points are illustrated in Figure 1. In addition, the pair of
unit vectors (?i,?é) and (%1,?2) along the principal directions on the
cylinder surface at P& and PN are also illustrated in Figure 1. It is noted
that the following relationships exist between the various unit vectors.
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cosé = t"ri ré~b' = t'r] = 12'5 ’ (2a)

sins - (x}+b') = - (34°B) = %7, (2b)

"
(2
.
~
N
"

Referring to (2a;2b), and (A-34) of Appendix I, one may now express the
tangential magnetic field H? at PN on the surface due to the source M at
Pﬁ in terms of the unit vectors defined above as follows.

ey i (- ds0- i ot ffo- 5] veal
+ %525-@'5 - (1 {;] V(e (F) = [u(e)-v(e)]) +

+ £ [%3—(1— {;}Iv(s)ﬂf) E;[u(a)-v(e)]) G(ks)  (3)

where a = radius of the circular cylinder,

2

k Y0 e-jks
G(ks) = =7 Tk (4)
ke, 1/3
X . 2
E = .':_S. ; withm-= (—?-9-) and pg = a/sin“6. (5)

9

The factor f is defined as 1/sins in (A-27b) of Appendix I.

The quantity Y0 is the free space admittance. The quantities k and s refer
to the free space wavenumber and the length of the surface ray geodesic
path from P& to PN; whereas, o, denotes the radius of curvature of the
surface along the ray (or t) direction, as indicated previously in

Section I. The result in Equation (3) represents H? along a given geodesic
ray path from Pﬁ to PN. In the circular cylinder problem, there are two,
dominant, helical geodesic paths from Pﬁ to PN, and only one such path is
indicated in Figure 1; the other geodesic path (not indicated) encircles

the cylinder in the opposite sense with respect to the one shown in Figure 1.

9
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The total field is then the sum of the fields of each of these rays. The
result in Equation (3) also applies to the other geodesic path provided

that the unit vectors E',B',%,B,ﬁ, and the quantities s, and £ are now
associated with this other ray path. In addition, infinitely many

geodesic surface ray paths corresponding to multiple encirclements of the
cylinder (before reaching the field point) do exist; however, their con-
tribution is negligible for large ka. The functiuns u(g) and v(£) refer to
the "soft" and "hard" Fock type integrals which are defined in Equations
(A-22a) and (A-29) of Appendix 1. As mentioned earlier, Logan has provided
tabulated values of the Fock integrals u(&) and v(&); in addition, he has
also given rapidly convergent series expansions to accurately represent these
functions [6]. The series expansions for u(g) and v(g) are also indicated
in [11,12]. Although the series expansions in u{g) and v(&) are available
in [6,11,12], they are presented in Appendix V for the sake of completeness;
it is noted that separate expansions exist for large and small values of

g, and these separate expansions provide numerical values which do overlap
for moderate values of & as shown in [11]. The result in Equation (3) is
therefore in terms of functions which can be computed rather easily. One
may express this result in Equation (3) more compactly as

LA G'BE. Q- fgj v(g)+£-£[:%}(1- %—s-] v(% G(ks)

+ P 157y (F) ﬁ;IZU(E)-V(E)])G(kS) . (6)
since §i§i + §é?é = Ts’ where Ts denotes an identity dyad on a surface so
that Bh-fs=ﬁh, and (75-5')b + (75-')E = t,. Even though the result in

Equation (6) is more compact than the one in Equation (3), the expression
in Equation (3) indicates more directly the fact that the field H? which is
produced by the axial or the Qi-component of the source Bﬁ is substa?tially
different from that which is produced by the circumferential or the ré-
component of Bﬁ. In particular, the %i or the axial component of Eh
generates a field ﬁ? which contains only the hard type Fock integral v(:)

10




as expected; whereas, the ?é-component of 5& generates both, u(&) and

v(g) type terms. That the ?i component of B, generates only a v(§) type
term is in agreement with the results in [7,9,11]; on the other hand, the
result in [12] indicates that this axial component of Bh generates both,
u(g) and v(g) type functions in the cylinder problem. Also, the “"cross"
term of the type Eh-%é%z(---)e(ks) in Equation (6) is also present in [11],
except that the functional form of this term in [11] is somewhat different
from that in Equation (6). Such a “"cross term" is not present in the
result of [12]. Furthermore, except for the important difference which
exists in the functional form of this "cross term", the result given in [11]
otherwise agrees with that of Equation (6) up to terms in 1/ks and

l/(ks)z. It is noted that terms of order 'l/(ks)3 are present in Equation
(6), but they are not present in [11].

From Equation (A-36b) of Appendix I, and the relationships in Equation
(2a;b), one may similarly express the component of the electric field Eﬂ
which is normal to the surface at PN’ and which is excited by the source M
at P&, in terms of the surface ray coordinates as follows.

E',’,'(PN)~(Y0)']E,,,'(B'6[1- EIv(E)+ey coss i f %[u(c)-v(a)»e(ks). (7)

As before, Equation (7) represents the field of a "typical" surface ray path
from Pﬁ to PN; there are cf course, two such dominant ray paths and the field
of both of these rays must be included to obtain the total field.

The results in Equation (7) may now be generalized such that the field
—'n

En is evaluated not on the surface at PN' but is instead evaluated at a
point P which lies above the surface. It is assumed that the point P lies
in the immediate neighborhood of the surface. In particular, the point

PN on the surface represents the projection of the point P along the normal
to the surface, and the height of the point P above PN is denoted by d
as shown in Figures 1 and 2, Thus,

2
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Figure 1. Circular cylinder geometry.

Figure 2. Cross sectional view indicating the heights
dy and d2 of the points p' and P above the
surface,




PP = [PyPlIn = dph. (8)

From the comments at the end of Appendix I, it is seen that the results for
Eﬁ(P) is the same as that in Equation (7) with the exception that the
functions u(&) and v(&) must now be replaced by the more general Fock
functions F (£,y,,y,) and Fh(E.y],yz). respectively, which are defined

in Equation (A-139) and Equation (A-138) of Appendix V. Hence,

Eﬂ(P)W(YO)-]Eh'(?'ﬁ E} ﬁé]Fh(E,O.y2)+?é coss N f Eg{FS(6.0.y2)-Fh(E.0.¥21)-
-G(ks)
(9a)

The quantities 2 and y, can be shown to be related to d] and d2 as follows.

1 1

= m kd, = 0 (since M is at Pﬁ); ¥y = m kd, . (9b39c¢)
Since kd2 is assumed to be much smaller than ka in the present case (i.e.,

P is in the immediate neighborhood of the surface), a Taylor series approxi-
mation for the functions FS(E,y],yZ) and Fh(g,y],yz) may be employed as
indicated in Equations (A-146) and (A-145) of Appendix V. Such an
approximation appears to be valid only if the value of £ is not too close to
zero; however, it has the advantage that for sufficiently small ky] and kyz,

the functions FS, and Fh may be evaluated in terms of the derivatives of

the functions -jl—ig u(e), and |§%~v(e), respectively; these derivatives
J

with respect to the argument £ may be easily computed numerically in an
accurate fashion; on the other hand, accurate approximations for these
functions and their derivatives are available (see Appendix V).

B. Asymptotic Results for the Canonical
Sphere Problem

The sphere geometry is illustrated in Figure 3. The infinitesimal
magnetic current source M is located at Pﬁ on the sphere and it has been

13
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Figure 3. Sphere geometry,

defined previously in Equation (1). Following the development in Part A
for the circular cylinder, the tangential magnetic field H? at PN on a
perfectly-conducting spherical surface which is excited by M may also be
expressed in terms of the local, geodesic surface ray coordinates as -
follows. Firstly, it is noted that the geodesic surface ray paths on the
sphere are great circles. The triad of unit vectors, (f',n',b') at Pﬁ,
and (E,ﬁ,b) at Py, which are associated with a geodesic (great circle)
path that connects these points are illustrated in Figure 3. Secondly,
the following relationships exist between the unit vector triad associated
with a surface ray path, and the usual triad of unit vectors (r,8,4)
associated with the spherical coordinates.

8=t ;3 ¢=-b ;3 r=n . (10a)5(10b); (10c)
Also, 0<e<m
Pp -t =cose Py b' = - sin ¢ . (10d); (10e)
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When Equations (10a-10e) above are incorporated into Equations (A-104a;b;c)
of Appendix II, one obtains

(P )V - @'B E- i;)v(a)wz(ﬁ-s-)zu(a] +£'EE2 Lo+ - %)u(z])o-s(ks).

(1)
where
.r_s_
D= SIng * @ quantity which is related to the surface ray
Y divergence factor, (12)
and
£=22, withs = ao. (13)

As in Equation (6), the above result in Equation (11) is associated with
only one geodesic (great circle) path between PN and PN as shown in

Figure 3. A second geodesic (great circle) path also exists between Pﬁ

and PN; this path is not shown in Figure 3, and it corresponds to the one
which arrives at PN after being launched at PN in a direction opposite to
the path shown in Figure 3. The result in Equation (11) app11es also to

the other geodesic path provided the unit vectors, t! b t b and n,

and the quantities, s, 6, D and & are now associated with this other ray
path, The contribution from additional, multiply encircling surface rays

is negligible for large ka. Except for the factor 02 which appears with

the square brackets in Equation (11), this result agrees with the one obtained
by Lee [12]. It appears that b has been approximated by unity in [12]. It
is noted that 6 = =, or ks = kar is the position of a focal caustic of the
surface rays on a sphere. At 6 =, D is unbounded, and the result in
Equation (11) must be modified as 1nd1cated in Appendix III. In particular,
the total surface magnetic field, Hm tota])’ i.e., the sum of the fields Hm
associated with "both" of the great circle geodesic paths from PN to PN

must be replaced by
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(total) o j t'e|] .
i ?P:) v -Fm.(.q’[(zl_ ﬁg)‘/(é] -t'e[%(]- %)U(€]> Td
PN in the close

neighborhood
of o=n

S G [ R [ T | T

where the caustic correction factors Tc] and Tc3 are given in Equations (A-128)
and (A-130) of Appendix III. Away from 6=, the result in Equation (14)
accurately approximates the sum of the field associated with each of the

two geodesic (great circle) ray paths from Pﬁ to PN in which the field of
either one of these rays is typically given by Equation (11).

From Equation (10), and Equation (A-109) of Appendix II, one may also
write the normal component of the electric field Eﬂ, at PN due to the
source M at P&, in terms of the surface ray coordinates associated with a
typical geodesic surface ray path between Pﬁ and Py as follows.

E’,‘,‘(pN)nv(vo)";m-G-ﬁE-_ f'(-s-]v(;)o G(ks). (15)

Actually, the total field at PN is the sum of the fields associated with
the two dominant geodesic (great circle) paths which exist between the
points P& and P on the sphere; the form of the field along each of these
paths is as in Equation (15).

The result in Equation (15) may be generalized to include the case
in which the field point is no longer on the surface at PN, but is moved
to a point P which lies above the surface; it is assumed in this generali-
zation however, that P is in the close neighborhood of the surface. As
before, PN is the normal projection on the surface of the Point P which
is located a distance, d2 above the surface. The relationship between 1
PN and P is as given in Equation (8). From the discussion at the end of

16




Appendix II, it is seen that when d,f£0, the v(€) in Equation (15) must be
replaced by Fh(E,y],yz) of Equation (A-138) with y1=0. The quantities 2
and y, are as in Equations (9b) and (9c), respectively. Since kd, is
assumed to be much smaller than ka, Fh(E,y1,y2) may be approximated by a
Taylor series for small Yo as in Equation (A-145) provided that £ is not
allowed to approach too close to zero. As 6-m, D>, and the total surface
electric field Eﬂ(tOta]) s i.e., the sum of the fields Eﬁ associated with
"both" of the great circle geodesic paths from P& to PN must be replaced by

n (Yo)']Hm~G'aE- %EJV(E»TCZ (16)

where the caustic correction factor Tc2 is given in Equation (A-129) of
Appendix III. If Py is changed to P in Equation (16), then v(&) must be
replaced by Fh(e,yl,yz) with y,=0.

RN

ITI. SUMMARY OF ASYMPTOTIC SOLUTIONS TO THE
CANONICAL PROBLEMS FOR THE ELECTRIC
CURRENT SOURCE CASE

In this section, asymptotic solutions for the fields in the immediate
vicinity of the canonical perfectly-conducting circular cylindrical, and
spherical geometries are summarized for the case when they are excited by
an infinitesimal electric current source. The electric current source is
placed in the close neighborhood of the cylindrical and spherical geometries,
and the orientation of this source is assumed to be along the surface
normal. As mentioned previously, the asymptotic solutions to these
canonical problems are developed in detail in Appendices I and II for the
circular cylindrical and spherical geometries, respectively. The results
for the circular cylinder case are presented in Part A of this section,
and corresponding results for the spherical case are presented
subsequently in part B.

17
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A. Asymptotic Results for the Canonical
CircuYar Cylinder Problem

The circular cylinder geometry is illustrated as before in Figure 1.
The source and the field points are initially chosen to lie at P& and Py
on the surface. The electric current source J is defined as

T = B sUFF D). a7

aes L AAATeY AT

e e g sy

It is noted that r' is the position vector of the source at Pﬁ on the
cylinder surface, and the quantity Pe represents the strength of the
infinitesimal electric current (or current moment). From Equation
(A-39) of Appendix I, the tangential magnetic field Hﬁ at Py due to J at
Pﬁ propagates along a typical geodesic surface ray path as shown in
Figure 1. This field may be expressed in terms of the unit vectors

t',n',b' and t,n,b fixed in the surface ray as,

~

Fli(PN)m(vo)"Ee-(n'B[T_- {-_;]v(wﬁ' coss T, %[u(&)-v(&))ﬁ(ks).
(18)

There are of course two dominant geodesic surface ray paths as mentioned
earlier; only one such path is shown in Figure 1. The field of either of
these rays is given by Equation (18).

If the source at P& is now raised a distance d1 above the surface
to the point P' as shown in Figure 1, where P' is in the close vicinity of ]

? the surface, then the result in Equation (18) must be replaced as before
b by
-]_ ~ ~ s ~ ~ -
A (P (¥,) pe'G'bE- ¥ Fr(Esyqs00n coss v, £ LIF (5., ,0)-Fh(€.y],0)])
G(ks) (19)

1

It is noted that y, = m kdy, = 0 in Fs(s,yl,yz) which appears in Equation
h
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(19) since PN ijs on the surface. Only Y= m'lkd] may be non-zero. Further-
more, FﬁF'=lPﬁP'|n' =dpn'. As before, the FS(E.y],O) functions may be

approximated by a Taylor series valid for sufpiciently small kd] (kd]<<ka)
and for £ not too close to zero, as indicated in Equations (A-145) and
(A-146) of Appendix V.

From Equation (A-42) of Appendix I, the component of the electric
field Eﬁ, which is normal to the surface at Py, due to J at Py may be
expressed in terms of the surface ray coordinates associated with a
"typical" geodesic surface ray path between Pﬁ and Py as follows.

Eﬁ(PN)~-<v°)'2‘5e-ﬁ-ﬁ(E- L0- L) ve ¢ gz ue-vi-

- (- Rru@-v@lsws), (20)

or
Eﬁ(PN)N'(Yo)-ZFe'ﬁ'aG(E)' - Pule)+ f %{um-v(a))e(ks) (20b)

One notes that if source and observation points at P& and PN are both moved
to the points P' and P, respectively which 1ie above the surface such that
FEF' = d]ﬁ' with kd]<<ka, and FEF = dzﬁ with kd2<<ka, then the u(¢) and
v(€) in Equation (20) must be replaced by F.(£,y;,y,) and Fh(E.y1.y2).
respectively. Thus,

Eeﬁ(P)”'(Yo)-ZFe';"a(E‘ (- kﬂ Fulayy p)t £ RHF(Ey103,) -

- Fh(E).Y]'.yZ)]' 'J:(]' %)[Fs(ety]oyz)'Fh(Ea.Y] ’.Yz))G(kS)g

(21)

with y} = m'lkda.




B. Asymptotic Results for the Canonical

Sphere Problem

The geometry of the sphere problem is illustrated in Figure 3. The
source J as defined in Equation (17) is initially located at Py on the
spherical surface. From Equations (10a-10e), and (A-110) of Appendix II,
the tangential magnetic field Hi at PN on the sphere due to the source J
at Pﬁ may be expressed in terms of the surface ray coordinates associated
with a typical geodesic great circle ray path between P& and PN as
indicated below.

Hﬁ(PN)N-(YO)']Ee-G'BE- fg]v(sbo G(ks) . (22)

As before, the total field at PN is the sum of the fields associated with
the two dominant geodesic surface ray paths which exist between the points

Pﬁ and PN on the sphere; the form of the field along each of these paths is
given by Equation (22). As 6+, Py approaches the focal caustic of the

ﬁe(total)’ j.e., the

o SR e g+ 5 o s o e

surface rays; hence, the total surface magnetic field t
sum of the fields ﬁi associated with "both" of the great circle surface ray

paths from Pﬁ to PN must be replaced by:

(total . .
rr: ?PN))I:«:(Y )" (n'ch— ]Jg]v(g)Tcz . (23)
0

The factor T 2 is defined in Equat1on (A-129) of Appendix III. Also, if
PN is moved to P' with FT-“-d n', and kd]<<ka as before, then v(&) in
Equation (22) must be rep]aced by F (g,y],yz) with y,=0.

From Equations (10a-10e), and (A-112) of Appendix II, the normal

component of the electric field, Eﬁ at PN due to J at P& is expressed as
follows
Eﬁ(PN)~-(v )‘Zb'e n n(l: 1- J—- v(g))D G(ks). (24)
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Again, the result in Equation (24) represents the field associated with a
"typical" geodesic surface ray path between the points Pﬁ and Py on a

sphere. If the source and observation points at Pﬁ and PN are both moved

to the points P' and P, respectively which 1ie above the surface such that
FﬁF'=d]ﬁ' with kd,<<ka, and NP=dzﬁ with kd,<<ka, then v(€) in Equation

(24) must be replaced by Fh(e,y],yz). Finally, if e+, the reéu1t in
Equation (24) becomes singular, and the total electric field Eh(tota]); i.e.,
the sum of the fields Eﬁ associated with "both" of the great circle paths

between Pt and Py must be replaced by y

e(total) R . :
E(P) ~_(y0)-23e.6-n[z- fg (1- %;}]v(;) Teps (25)

where the caustic correction factors Tc] is as given by Equation (A-128)
of Appendix III.

RO A v e o b

IV. GENERALIZATION TO ARBITRARY CONVEX SURFACES

In this section, the results which were presented in Sections Il and
ITI for the canonical circular cylinder and spherical geometries will be
generalized to the arbitrary convex surface case. In particular, the
results pertaining to the surface fields which are excited by infinitesimal
electric or magnetic current sources located on a smooth, perfectly-
conducting convex surface of arbitrary shape will be developed in this
section.

The generalization of the canonical solutions to treat the arbitrary
convex surface case is based on the locality of high frequency wave propa-
gation as employed in the GTD procedure. Thus, the results pertaining to
the canonical circular cylinder geometry which were presented in Sections
II-A and III-A for the magnetic and electric source excitations, respectively
may be generalized via the GTD procedure to treat the arbitrary convex
cylinder with a slowly varying curvature, by assuming that the neighborhood
of each point on the convex cylinder can be approximated by a circular
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cylinder of the same local radius of curvature as the convex cylinder.
While such a generalization to the convex cylindrical surface of variable
curvature is fairly direct, an analogous generalization presented here to
treat a smooth convex surface of any shape is somewhat less direct, and
more heuristic in nature for the following reasons. The circular cylinder
constitutes a "developable" surface; thus, it possesses an infinite radius
of curvature along its "generator" which also constitutes one of the
"principal directions" on the surface. In addition, the surface geodesics
are always straight lines on the "developed" surface. The arbitrary convex
cylinder and the cone also belong to the class of developable surfaces;
hence, they possess all of the properties of developable surfaces mentioned
above in connection with the circular cylinder geometry. As a result of
these common geometrical properties which characterize the cylinder and
cone, it is therefore reasonable to conjecture that a GTD type generalization
of the results pertaining to the canonical circular cylinder geometry would
be accurate for treating not only the convex cylinder, but also the cone
geometry. This conjecture has of course been verified by Keller [4] in

the case of the GTD analysis of the scattering of waves by a smooth convex
cylinder wherein the GTD solution based on the generalization of the
corresponding canonical circular cylinder solution was found to agree with
the rigorous asymptotic high frequency solutions to the problem of scattering
of waves by elliptic, and parabolic cylinder geometries. Recently, Chan
et. al. [11] have indicated that they are indeed able to verify that the
GTD prescription for the surface ray field on a cone which is based on a
generalization of the canonical circular cylinder result, is in agreement
with the corresponding rigorous asymptotic high frequency solution for the
surface field on a cone; this verification in [11] pertains to a cone

with an acoustic hard (or the Neumann) boundary condition. On the other
hand, a convex surface with an arbitrary shape is in general neither a
surface of revolution, nor a developable surface; hence, a generalization
of only the results for the canonical circular cylinder geometry is
expected to be inaccurate to treat an arbitrary convex surface; clearly,
additional information is required in order to construct an asymptotic
result which is useful for treating this case since one notes that the two
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principal radii of curvatures on an arbitrary convex surface are in general
different and finite. In addition, the torsion associated with the geodesics
on an arbitrary convex surface is generally not a constant. In contrast,

the canonical circular cylinder geometry possesses a constant principal
radius of curvature along the circumferential direction on the surface;
whereas, it exhibits an infinite radius of curvature along the other (or

the axial) principal direction. Furthermore, the torsion is constant along

a given geodesic path on a circular cylinder. Of course, a simple canonical
geometry for which both principal radii of curvatures are finite is the
sphere. The canonical problem of the radiation by an infinitesimal

electric or a magnetic current source on a perfectly-conducting sphere has
been treated in Appendix II as mentioned earlier. However, the sphere has fj
a constant curvature, and hence the surface geodesics on a sphere are great

circle paths which possess no torsion. A third canonical problem for which

a well known, exact solution is available is the problem of the radiation

by an infinitesimal electric or a magnetic current source on a perfectly-
conducting planar surface of infinite extent. The planar geometry has zero
curvature; and the surface geodesics for this case are straight 1ines which
are obviously torsionless. Even though the convex cylinder, and the

canonical sphere geometries do not possess all of the general properties
associated with a convex surface of an arbitrary shape, the asymptotic
solutions pertaining to these geometries including the exact solution for

the planar case nevertheless do provide some useful information based on

which an approximate asymptotic solution may be constructed for the

arbitrary smooth convex surface. Thus, an asymptotic solution for the surface
fields excited by infinitesimal electric or magnetic currents located on a
smooth, perfectly-conducting convex surface of any shape is developed here

on the basis of certain assumptions. Some of these assumptions are com-
pletely heuristic in nature. In particular, the development of this )
asymptotic solution is based on the following properties and assumptions:

(a) An asymptotic solution for the arbitrary convex surface should
be expected to recover the solutions pertaining to the canonical circular
cylinder and sphere geometries when it is specialized to the latter cases,
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; g respectively. This solution should also be expected to reduce to the well
}'§ known result for the planar surface in the limit as the curvature of the
‘ convex surface becomes vanishingly small.

(b) Since the sphere geometry exhibits uniform (or isotropic) surface
properties along different directions on the surface that correspond to
the different geodesic paths which originate from a source on the sphere, the
scalar components of the dyadic transfer function relating the surface field
at the receiving (or observation) point to the launching (or source) point
are also independent of these directions as seen from the canonical sphere
results of Sections II-B and III-B, respectively. On the other hand, the
circular cylinder exhibits non-uniform (or non-isotropic) surface properties
along the different directions that again correspond to the different
geodesic paths originating from a source on this surface. As a result, the
scalar components of the dyadic transfer function for the surface field on
a circular cylinder in general are a function of the launching/receiving
direction on the surface. It is easily seen from the canonical circular
cylinder geometry that this non-uniform surface property results directly
from the variation of the geodesic radius of curvature, Pg S the
launching/receiving direction of this geodesic path is changed at the
source/receiver location. Thus, as the launching direction of the geodesic
ray path is changed at the source (launch) point on a circular cylinder,
from the principal direction along the circumference to the other principal
direction along the generator (axial direction), the radius of curvature
Pq in the direction of the geodesic path increases monotonically from
pg=a to pg*~. As a result of the change in Pgs the torsion associated
with the geodesic path also increases from zero to a maximum value as Pq
increases from a to 2a. As expected, however, the torsion then decreases
back to zero as p_ increases from 2a to infinity, since the geodesics along
the principal directions on a convex surface must be torsionless. Referring
to the results for the surface fields on a circular cylinder as given in
Sections II-A and III-A, one notes that the dependence of the scalar com-
ponents of the surface field dyadic transfer function upon variations in

p., resulting from a change in the launching direction of the geodesic

9

24

IR NN




path at the source can be identified more definitely if the unit vectors %é
and 12 in Equations (6) (7) (18), and (20a) are expressed in terms of the
unit vectors t‘, b', t and b fixed in the surface rays. The corresponding
results in Equations (11), (15), (22), and (24) for the sphere case have been
completely expressed in the surface ray coordinates. Once the cylinder re-
sults are also completely expressed in an invariant form in terms of the same
surface ray coordinates, the precise differences between the cylinder and
sphere solutions should become apparent. Since the goedesic surface ray
paths in general posses non-zero torsion in the case of the cylinder; whereas,
they are torsionless in the case of the sphere, it is therefore also reason-
able to expect that any differences between the cylinder and sphere solutions
may be primarily caused by the effects of torsion associated with the surface
rays on a cylinder.

In order to express Equations (6), (7), (18), and (20a) completely in
terms of the surface ray coordinates, one makes use of the following relation-
ships.

?i = cosét'-sinsb’ ; ;1 = cosét-sinsb (26a;26b)
?é = sinst'+cossb’ ; ;2 = sinst+cossb (26¢;26d)
%é;z = sinZst' t+cos2eb’ bsinscoss(t'b+b't) (26e)

Incorporating Equation (26e) into Equation (6) yields
P T s 2 .
ey, (618 [0 viero?de vion2 frute)ven] +
. . . 2
+ 'E"E[Dz L vig)Hs ule)-2) v(&)] +
+ [ErbebriaT oL {u(E)-v(g)})D 6(ks) . (27)

The factor D which is related to the surface ray divergence factor is unity
for the circular cylinder; however, it is introduced symbolically in Equation
(27) above to facilitate a direct comparison with the sphere results. The
factor T°(=cot6) is identified as a ratio of the surface ray torsion T and
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) along the ray direction. It is easily verified

the surface curvature «(=1/p
that for a given helical geogesic surface ray path on a circular cylinder,

sin2s . _ -1 sinzc (28a;28b;28¢)
,K(D) -

T =cots= T/ T %a L a

o

Thus, the quantity To is a constant for a given helical surface ray on the
cylinder, and indeed, it serves to uniquely specify that helical geodesic

path. When T (and hence T ) is allowed to vanish as in the case of the sphere,
the above result in Equatlon (27) for the cylinder reduces exactly to the
result in Equation (11) for the sphere, except for the (J-Q v(£)G(ks) term
which is different from the (%EJ u(£)G(ks) present in the sphere case. As
expected, the significant differences between Equations (27) and (11) are

thus attributed to the presence of the torsion factor T°=T/K. Proceeding

next to rewrite Equation (7) completely in terms of the surface ray coordi-
nates, one obtains

B )n(Y,) TR, (B r“n[[u{;]v(s)wﬁ {;[u(a)-v(a)]} ‘

~

ctn 1 L D)o elks) (29)

As in Equation (27), it is noted that D in Equation (29) is unity for the
cylinder. When the torsion T is allowed to vanish, the above result in
Equation (29) for the cylinder also reduces exactly to the corresponding
result in Equation (15) for the sphere. One may next rewrite Equation (18)
in the same way that Equation (7) was rewritten to obtain (29). Thus

RE(Pn=(Y) 15, (ﬁ's{O- Dvter? L (u(e)-v(s))}

o ks

+ 00 t1 L [u(e)- v(;)])o 6(ks). (30)

o ks

Finally, Equation (20a) may be rewritten as

B (R (Y,) %P, ﬁn([v(s) L v(e) ) u(E)}+T° L [u(s)-v(s)])nigs),
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after noting that f-l=T§ for the circular cylinder. Again the factor D in

Equations' (30) and (31) is unity for the circular cylinder and it is introduced
symbolically in the above equations to facilitate a direct comparison between
the cylinder and the sphere solutions. Clearly, Equation (30) reduces directly
to the sphere result of Equation (22) when the torsion is allowed to vanish; on
the other hand Equation (31) reduces exactly to the sphere result of Equation
(24) if T (and hence T, ) is set equal to zero except for the term (J-Q u(£)G(ks)
which is different from the term ( ) v(g)G(ks) present in the sphere result.
However, the dominant differences between the sphere and the cylinder solutions
are clearly attributed to the presence of torsion associated with the surface
rays. The only other differences that exist between the cylinder and sphere
solutions involve terms with different Fock functions; i.e., they involve terms
of the type (J—QZU(E)G(ks) and (l—)zv(g)ﬁ(ks) One of these terms occurs in
the sphere so]ut10n, whereas, only the other occurs in the cy11nder solution,
and vice versa. .Notice that both, ( ) u(g)G(ks) and (3 ) v(g)G(ks) behave
essent1a11y as ( ) G(ks) when ks is smal], furthermore, these terms of order
( ) are 1mportant only for very small ks values. Consequently, the failure
of the cylinder solution to exactly reduce to the sphere solution to terms in
(k ) » when T is set to zero, is not a serious problem from the point of view
of being able to generalize these canonical solutions to the arbitrary convex
surface. The following heuristic procedure is proposed for generalizing the
cylinder results in Equations (27), (29), (30), and (31), and the corresponding
sphere results in Equations (11), (15), (22), (24) to treat the arbitrary
convex surface. The results in Equations (27), (29), (30), and (31) for the
cylinder may be assumed to be applicable for treating an arbitrary convex
surface as well via the local properties of propagation and diffraction at

high frequencies,provided the geometrical properties of the arbitrary surface
are slowly varying with respect to the wavelength. The geodesic ray paths

on an arbitrary convex surface in general possess non-zero torsion. The
effects of torsion on the surface ray field are then accounted for by the
factor To present in Equations (27), (29), (30), and (31). The torsion T

and curvature « appearing in To of Equatien (28a) are given by Equations

(28b) and (28c), respectively for a circular cylinder. For an arbitrary
convex surface one may write

L e = ——
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T° = {E— ;) T = EIEZE(KZ'K]) 3y K= coszdx1+sin26x2 (32a;32b;32c)
with
i-fl = coss f-fz = sins s (32d;32e)

in which %1 and %2 are now the principal directions at any point on an
arbitrary convex surface, and Ky and Ky are the principal surface curvatures.
It will be assumed for the sake of definiteness that

ok, 3 4x120 . (32f)
KZZ_O

The result for torsion (or T) in Equation (32b) which applies to a geodesic
surface ray path on an arbitrary convex surface has been obtained in a simple
manner through the use of differential geometry; whereas, the result in
Equation (32c) for the curvature (or K=]/pg) is simply a statement of Euler's
theorem. For surfaces with slowly varying geometrical properties, one may
symmetrically split the factor T0 between the launch (or source) point and
the receiving (or field) point on the surface to represent an averaging

type effect. Such a symmetrical split is also essential for preserving
reciprocity. Thus*

JTTCPRIT-TT(Py

To= £ Tx P TR (33)

Next, one introduces the dimensionless shape factors AS and A to appropriately
weight the (%g) u(g) G(ks), and the %%g) v(z)G(ks) type terms, such that only
one or the other type term is correctly present when the results for the
arbitrary convex surface are specialized to either the circular cylinder or

the sphere. In particular, this would require that As and Ac have the follow-
ing properties:

* The - sign is chosen in (33) if — T is negative at Py and/or Py; otherwise
the + sign is chosen
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AgHA = 1 (34a)
1, sphere

As i 0, cylinder (34b)
1, cylinder

A = (34¢)
0, sphere

As will be seen later, the property in Equation (34a) is also essential for
recovering the planar surface result as «+0. A simple choice of Ag would
be to define it as the ratio of the principal curvatures; thus,

K1 1, for a sphere (since ky=«p)
AS = = = (34d)
2 0, for a cylinder (since «;=0)
From Equation (34a), A, must then be defined as
Kp=K9 1, for a cylinder (since «1=0)
A= = . _ (34e)
C ok 0, for a sphere (since «y=x3)

Furthermore, the above A and Ac will also be symmetrically split between
the launching and receiving points to preserve reciprocity and to represent
an averaging type effect for surfaces with slowly varying geometrical pro-
perties. It follows that,

[l ey
s “V ST S

A 3 Ac=1-As (with Ag as in Equation (35a)

(35a;35b)

The shape factors Ag and Al essentially serve to smoothly interpolate between
the cylinder and sphere solutions; this role of the shape factors together
with the relation in Equation (35a) guarantees that the conditions set forth
in part (a) are satisfied by the solution for the arbitrary convex surface.
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As is evident from the cylinder and the sphere solutions, the variation
of the surface field between the launching and receiving points is primarily
governed by the Fock type functions u(g) and v(¢). In the case of the cylinder,

the Fock parameter ¢ = gi = msk; whereas, £ = g§-for the sphere. This Fock

parameter £ may be readily generalized in the usual manner to treat the
arbitrary convex surface case by employing the local properties of wave pro-
pagation at high frequencies as follows.

1/3 H

a3

in which the integral is evaluated over the geodesic surface ray path from

Pﬁ to PN. It is assumed in the development of the result in Equation (36)
that m and hence Py vary slowly with a change in the geodesic arc length;
i.e., the surface properties are slowly varying. Besides the dependence on

Pg (or 1/x), the variation of the surface field between Pﬁ and PN also depends

upon the surface radius of curvature, ptn=(K]Sin26+K2C0526)-] in the bi-

normal direction to the surface ray path; this dependence occurs through the
presence of the spatial factor, D which is related to the surface ray divergence
factor. For an arbitrary convex surface, it can be shown that

dwo ;

D = 5:35 , (37)

where dwo is the angle extended by the surface ray tube at the launching
point Pﬁ, and likewise, dy is the angle extended by the same ray tube
(or pencil) at the receiving point Py as shown in Figure 4. Also
j1lustrated in Figure 4 is the caustic distance, Pe of the wavefront
associated with the surface ray tube. The caustic distance Pe is the
geodesic (or tangent) radius of curvature of the geodesic circle at Py
It can be shown through the use of differential geometry that,

miiaiuile
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(o)™ = 222, (38)

where E, F and G are the usual "first fundamental coefficients" which
arise in the development of the first fundamental form associated with
the differential arc length along a curve on a surface. It is easily

verified that p.=S on a cylinder and also on a plane; whereas pc=atane=atan(§?

5 for a sphere (see Figure 3). This concludes the discussion corresponding
to the assumptions and postulates of part (b).

S = ARC LENGTH

| ’
N FROM PN TO PN

p.= CAUSTIC DISTANCE
FROM Pc TO Py !

Figure 4, Caustic distance associated wit the spreading 1
of the surface ray field.
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A. Surface Fields of an Infinitesimal Magnetic
Current Source on a Convex Surface

In this section, an asymptotic solution is presented for the field on
an arbitrary convex surface excited by an infinitesimal magnetic current source.
The construction of this solution is heuristic in nature, and it follows
directly via the postulates and assumptions outlined in parts (a) and (b) above.
An analogous solution for the field on an arbitrary convex surface excited by
an infinitesimal electric current source will be presented later in Section B.
Thus, the field, ﬁ? for an arbitrary convex surface becomes via Equations (11),
(27), and the postualtes in parts (a) and (b), the following,

RR(Py) ~ am-im ’ (39a)
where the dyadic ?% is given by
o [~ . .2 .
Yy = (b'b{Ill- Ever0? () Tagu(e)+a v(e) J+72 ﬁ—S{U(E)-V(s)J} +
S . : .2
+t't {Dz i V(e §5 ule)-2(59) [Asu(a)ﬂ\cv(e)]} +
+ (t'beb't) {To Jk-s- [u(z)-v(a)]}) D G{ks) . (39b)

The quantities &, D, A, A s T, and G(ks) are as defined in Equations (36),
(37), (35a), (35b), (33), and (4), respectively. One similarly obtains E7
for an arbitrary convex surface as

By v B Dy (402)

where the dyadic T; is given by

Tm = (YO)J(B!;. {[1- i?]v(g)ﬂs % [U(E)-V(E)]} +

+t'n {To {-s- [u(e)-v(a)l})o G(ks) . (40b)

It is easily verified that Equation (39) reduces to Equation (27) for a
circular cylinder when n]-O and xz-l/a (a=radfus), and it reduces to Equation
(11) for a sphere when k1=xp=1/a and TO-O. Likewise Equation (40) reduces to
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Equation (29) when it is specialized to the circular cylinder case, and it
reduces to Equation (15) when it is specialized to the sphere case. Further-
more, both Equations (39) and (40) properly reduce to the corresponding results
for a planar surface when 0.
B. Surface Fields of an Infinitesimal Electric Current

Source on a Convex Surface

The field ﬁ: for an arbitrary convex surface becomes via Equations (22)
and (30), and the postulates in parts (a) and (b), the following,

By ~ T, (412)

where the dyadic T; is given by
L= - (vo)"(ﬁ-s{n- Elviets L [u(z)-V(s)]} +

n't {ro = [u(s)-v(en}) D G(ks) . (41b)

Likewise, the field Eﬁ for an arbitrary convex surface is
—e — =
En(pN) " Pely . (42a)
where the dyadic 7; is given by
7, = - (Y,)2 ara(Lv(e)- J'—v(e)]+(ﬁ—)2u v(g)+a u(g)] +
e 0 nn ks S sVIEIHALULE

¢ 72 e L)) Dotks) (42)

Again, it is easily verified that Equation (41) reduces to Equation (30) when
it is specialized to the circular cylinder case, and it reduces to Equation
(22) when it is specialized to the sphere case. Also, Equation (42) reduces
to Equation (31) when specialized to the circular cylinder case, and it reduces
to Equation (24) when specialized to the sphere case. Finally, both Equations
(41) and (42) reduce to the corresponding results for a planar surface as «»0.
It is noted that for a convex surface of revolution in which the source
E; or Bh on the surface is located on the axis of revolution, there exists a
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caustic of the surface rays at a point which is antipodal to the source point.

In this case, the caustic matching functions Tc], Tc2 and Tc3 must be intro-
duced in the results of Equations (39), (40), (41), and (42), in exactly the

same fashion as done in Sections II-B and III-B for the canonical sphere geo-
metry. Also, in the case that the field point is raised from PN on the surface
to the point P which is a small distance above the surface, the functions u(g)
and v(&) in Equations (39), (40), (41), and (42) must be replaced by Fs(g,o,yz)
and Fh(s,o,yz), respectively. In addition, if the source E; at Ph on the surface
is also raised slightly above the surface to the point P', then Fs(g,yl,yz) and
Fh(E,y].yz) must be used instead, as indicated previously.

Finally, if the surface changes continuously but not sufficiently slowly
from an almost spherical surface at one point on a geodesic surface ray path to
an almost cylindrical surface at another point on that geodesic path, then the
results given in Equations (39), (40), (41), and (42) may not be valid because
the GTD procedure upon which they are based is not strictly valid for rapidly
varying surface properties. However, if the change in surface properties is
not too rapid, then it would be interesting to study if one could heuristically
take such moderately rapid changes into account by allowing the factors To’ Ags
and A, to also change continuously along the geodesic path. Thus, one may
conjecture that

1 PN ] PN
T = "I (T/e)ds 5 A== I (kq/x,)ds (43a;43b)
N N
and
no= 1IN (oG e (43c)
c s P| - K] Kz S .
N

It is noted that the results in Equations (39), (40), (41), and (42) appear
to be accurate, but they still are being tested carefully; as such, they may
be subject to further improvements or modifications in the future. Equations
(43a;b;c) are added simply as something of interest to study in the future,
and it is not recommended that they be used until sufficient tests on their
validity have been completed.
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V. NUMERICAL RESULTS AND DISCUSSION

D et Ty sy ———

In this section, general expressions will be indicated for the mutual : é
coupling between a pair of antennas located on a smooth, perfectly-conducting
convex surface of any shape. These expressions will of course make use
of the results developed in Section IV. The type of antennas considered in
this paper are thin, rectangular slots which are less than half a wavelength
long, and thin stubs which are less than a quarter wavelength long. The
reason for selecting such short and thin slot, or stub antennas is that
the shape of the field distribution in the slot or the current distribution
along the stub may then be assumed to be that of the dominant mode.
Furthermore, a short circuit placed in a waveguide feeding the slot such
that it is an integral number of "dominant mode" half wavelengths from the
slot aperture would effectively produce a short circuit at the aperture.
Thus, a surface field which propagates along a geodesic surface ray path
b over such a short circuited aperture would for all practical purposes be
unaltered by the presence of the slot since the scattering of the surface
field by the short circuited slot would then be vanishingly small. This
fact is particularly useful if one is interested in the calculation of the
mutual admittance between a pair of slots in a slot array environment. A
similar simplification results in the calculation of the mutual impedance
between a pair of thin and short stub (or ﬁonopo]e) antennas in a stub
array environment since such an open circuited stub, placed in the path of
p the surface field would perturb this field negligibly. It is noted that
' the conditions imposed by the above assumptions on the size of the radiating
elements are not stringent; in fact, these conditions are commonly met in
practice. The calculation of the mutual coupling between a pair of slot or
wire type radiating elements on a convex surface which do not satisfy the
above assumptions and conditions can still be performed on the basis of
the resuits developed in Section IV provided the aperture field distribution
(for the case when the radiating element is a slot antenna which may not be f
sufficiently small) and the current distribution along a wire (for the case
of a stub antenna which may not be sufficiently short and thin) is known in
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the coupled environment. In the latter cases, one could employ measurements,
or numerical techniques (such as the method of moments) for solving the

coupled integral equations for these problems in order to obtain the field

or current distributions on these radiating elements. These integral equations
could be simplified so that the only unknowns are the fields on the antennas
and not on the electrically large structure upon which the antennas are
located, by appropriately employing the surface field dyadics introduced in
Section IV, in the construction of these integral equations. These dyadics
would actually constitute asymptotic approximations to the appropriate
surface dyadic Green's functions or their spatial derivatives which con-
stitute the kernels of these integral equations.

Some numerical results will be presented in this section for the
calculation of the mutual admittance between a pair of rectangular slots in
a perfectly-conducting circular cylinder; both, axial and circumferential
slots will be considered. These numerical results which are based on the
development in Section IV, will be compared with the corresponding numerical
results obtained by others [11,12].

The general expressions for the mutual coupling between a pair of
radiating elements on a smooth, perfectly-conducting convex surface are
presented in the following discussion. In particular, let antennas
designated (:) and (:) constitute a pair of radiating elements on a convex
surface. The mutual coupling between these antennas may be calculated via
an application of the reaction theorem [2]. Thus, if antenna (@ is an
aperture (or slot), the dominant mode current 12] induced in this aperture
by antenna (1) when antenna (@ is short circuited is given by [2]

| Hdsz Hy My
.2

I

= (44)
21 Voo ’
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where M, = Eé X 52, and Eé is the dominant mode electric field distribution ;
in the aperture of the slot antenna (:) with 52 being the unit outward d
normal vector to the surface of the aperture of antenna (:). The inte-
gration in Equation (44) is over the surface area s, of the aperture
corresponding to slot antenna (:). Furthermore,

T:'2 = VZZE = vzzay l%—l- cos({- ux) . (a5)

In Equation (45) above, Voo is the dominant mode voltage associated with
the dominant vector mode function e for a rectangular slot. The local,

orthogonal coordinates u, and u, whose origin is at the center of the slot ;
are indicated in Figure 5 together with the slot dimensions d and %, ;

Y

uy SLOT ANTENNA

Uy

\)/ ) lugls Y%

SLOT DIMENSIONS:{luyl s ¥/2

O\

Figure 5. Local coordinates associated with
the slot antenna.

respectively. The field Hé] is the magnetic field at antenna (:), which
is produced by antenna (:) with antenna (:) short circuited, From the
development in Section IV, it is easily seen that when antenna Q1) is

also a slot, then Hél = J]- ds] Fﬁ';h’ where the integration is over the
S
1 =
surface $1 of the aperture corresponding to slot antenna (:), with Y @S
given in Equation (39b), and M} = E} X ﬁ]. Of course, n; is the outward
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unit normal vector to the surface area $ of the aperture corresponding
to slot antenna (), and

'E'] = V3 e . (46)

23 is the dominant mode voltage associated with slot antenna (D On the '

other hand, if antenna CD is a stub, then Ffz] = jfj dv] :T]'Le, where the ;
v
1 -

integration is on volume i just encapsulating stub CD, with Le as given in
Equation (41b), and

)= I = U8 (0 )8 (u)) (u,) / (47a)

In Equation (47a) above, Iy7 1s the mode current on the stub, which is
associated with the vector mode function h for the stub. The vector R
involves the 2-D Dirac delta function s(ux)S(uy) and a distribution I(uz) ‘J
which is generally assumed to be

. sin{k(4-]u,|)]
W) = —rmay— O<u, <& . (47b)

The local orthogonal coordinates (ux,uy,uz) whose origin is at the base
(or feed point) of the stub are illustrated in Figure 6. From the above
discussion, it follows that

ff ds, J’J’ ds, ﬂ']-ym'ﬂz
5

S
. 2 .

I = - if antenna
21 Slot @ Voo ’ is also
Short a slot,
Circuited,
or V2-|=0

(48)
and
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Figure 6. Local coordinates associated with
the stub antenna.

H ds, JH dv, ;L.
S2 Vi

I = - . if antenna (49)
2 s10t @ V22 @ is a stub.
Short
Circuited,
or Vo, =0

It follows from Equation (48), that the mutual admittance Y21 between a pair
of slots (slot antenna (@) and slot antenna (@)) is given by I5/vyy with

V120, or
J-J'ds2 II dsy M-y, W,
%2 5

Y - H You =Y
21 V11Yo2 21 12

(50)

A similar set of results may be obtained if antenna (@) is a stub.
Thus, the mode voltage Vo jnduced in stub antenna @ by antenna @ when
antenna @ is open circuited is given as [2]
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2
v s - s (5])
21 122

where vy is the volume just encapsulating stub antenna @, and 3'2 = Iy h
on this stub. F21 is the electric field at stub antenna (@), which is
produced by antenna (D when antenna @ is open circuited. It follows

from the development in Section IV that EZ] = J] ds, W]°L if antenna ()
51
is a slot, and E,, J-J’J' dvq J, Z if antenna (1) is also a stub. The

dyadics L and Z are gwen in Equations (40b) and (42b). Summarizing the
results for the open circuit voltage v,, at stub antenna @, one has

dev Hds Ly,

Va1 = , if antenna @
Stub (2? 22 is a slot,
Open Circuited,
or 1,,=0 (52)

21
and

) = ,» if antenna @

2stub @ 122 is also a stub.
Open Circuited,
or 12]=0 (53)

It is evident from Equation (53), that the mutual impedance 22] between
a pair of stubs (monopoles) is given by VZI/IH with 12]=0, or

40

aiem

o s 2kl G e o8 21 < M

RSP
"

RIS

P USSP




et SEpa A b e el i D L

e e

T 1

Z
29 2

=17

. (54)
21 In 12

Some numerical results are indicated below for le between a pair
of identical rectangular slots in a perfectly-conducting circular cylinder,
{ ; In particular, Figures 7 and 8 indicate the surface field on a circular
cylinder due to an infinitesimal circumferential slot; whereas Figures 9

and 10 indicate the isolation, $12 (related to Y12) between a pair of

axial slots. These numerical results are marked as OSU on the plots.
Furthermore, these results are compared with the exact (modal) results

as well as those in [11,12]; in particular, the results of [11] are marked
as PINY in these figures; whereas, those of [12] are marked as Ul results.
Additional comparison between the 0SU, PINY, and UI results for Y]2 are
indicated in Tables I and II for the circumferential slots. It is seen
from these comparisons that firstly the OSU results agree very well with
the results based on the exact (modal) solution given in [12], which also
contains the Hughes modal solution. Secondly, it appears that the results
based on all three asymptotic solutions; namely those based on the OSU,
PINY and UI solutions are for all practical purposes quite accurate and not
noticeably different except when ks becomes small, and/or the pair of slots
are in each other's paraxial regions for the case of circumferential type
slots. Thus, when ks becomes very small, the PINY solution becomes

inaccurate because only terms up to and including 'l"TZ appear in that
ks
i solution; whereas, the OSU and UI results which include the effects of

; (%303 terms remain accurate even for ks very small, The 0SU and PINY
asymptotic solutions for the circular cylinder are not strictly valid within
paraxial regions since the approximation for the field in terms of Fock

type Airy functions cannot be completely justified in these regions. On the
other hand, the UI solution bypasses tuis difficulty by conjecturing an
asymptotic solution for the circular cylinder via a heuristic modification
of an asymptotic solution for the sphere geometry. As mentioned previously

PR JY
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TABLE 1

Y12 Between a Pair of Circumferential Slots in a Circular
Cylinder of Radius, a=1.991"; frequency=9 GHz, and §=0 (E-plane)
Modal Solutions Asymptotic Solutions
Planar
(Inches) Hughes Ul ul 0suU PINY a=e
.5 - 7.27 dB - 7.27 - 7.31 - 7.86 - 6.46 - 8.16
-72° -72° -77.77° | -69.71° | -68.17°| -66.85°
2 -16.52 -16.43 -16.36 -17.56 -15.66 -18.10
-117° -117° -115.67° | -110.08° | -117,88°] -105,84°
8 -26.95 -26.49 -26.54 -28.78 -25.51 -28.97
33° 34° 36.77° 46.20° 33.60° 53.6°
16 -31.13 -31.31 -34,28 -30.04 -35.98
-4° -.9° 10.19° | -4,2° 19.96°
40 -36.60 -37.17 -41.29 -35.58 -43,93
-115° -109.44° | -96.97° | -112.59°| -83.17°

e e T ——— . YU = W ¥ Tam W E .
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TABLE I1

Y12 Between a Pair of Circumferential Slots in a Circular
Cylinder of Radius a=1,991"; Frequency=3 GHz and
for 6=n/2; z =0 (H-PTane)

Modal Asymptotic Solutions
Degree Hughes Ul 0osu PINY
30° -25.98 dB -25.98 -26.07 -77.93
-77° -76.77°| -75.73°| -64.81°
40° -34.52 ~34.63 -34.67 -35,72
108° 169.58°| 170.07 179.40
50° -40,96 -41,32 -41.76 -42.03
' 58° 59,88° 60, 33° 68.31°
' 60° -46.62 -47.08 -46.92 -47.55
; -49° -47.,85°| -47.55°| -40.48°
_ 2
]
£ =0.9"
d =0.4"

A
?
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Figure 9. Isolation of axial slots on a conducting cylinder

a =1.991"; Z, = 1.50"; Frequency = 9 GHz.
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(Section I), this modification of the sphere solution in [12] results from the
introduction of an extra term via an ad hoc procedure. This extra term improves
the accuracy of the modified sphere result when it is specialized to the circular
cylinder case; and the improvement is especially noticeable in the paraxial
regions of the cylinder. As a result, the Ul solution appears to be quite ac-
curate even in the paraxial regions, i.e., in the immediate vicinity of the

axial direction on a circular cylinder for the circumferential slot case,
Although the 0SU and PINY solutions for the circular cylinder are not strictly
valid within te paraxial regions, they still provide accurate results for the
axial slot case, and they are reasonably accurate even for the circumferential
slot case; thus, these solutions may be employed even within the paraxial regions.
Actually, the OSU results for the paraxial regions corresponding to the circum-
ferential slot case differs from the exact (modal) results by less than 10% in
amplitude, and by less than 5% in phase.*

It is evident from the results in Sections II and III, that the asymp-
totic solutions for the cylinder are somewhat different from those for the
sphere as one might expect, since the two geometries are different. Also, it
is noted that the OSU solution for the circular cylinder case (as presented in
Section II-A) is actually identical to the corresponding PINY solution to terms
in %g-and fﬁ?;z’ except for the cross term (i.e., the ?é?a type term) whose

functional form is different in the OSU and PINY solutions. A cross term of
this type is absent in the UI solution. Furthermore, it is this cross term
which dominates the solution in the paraxial regions for the circumferential
slot case. Thus, the numerical results based on the OSU and PINY solutions

are slightly different in the paraxial regions for the circumferential slot
case. While the Ul solution surprisingly yields good accuracy for the circular
cylinder case, it raises some interesting questions which were also indicated
previously in Section I. In particular, the Ul solution when specialized

to the circular cylinder geometry excited by an axial slot will contain

both, the soft and hard type Fock functions u(g) and v(g), respectively.

*It is expected that further improvements in the paraxial region field calcu-

lations are possible if higher order terms in E%—-are included in the analysis.

9
However, as indicated above, the leading (or lowest order) terms in E%—-which
g

are the only ones that have been retained in this analysis are sufficiently
accurate even for paraxial region calculations.
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However, it is well known, that only the potential corresponding to the
"hard" or v(&) type function is required to completely describe the fields

of an axial slot in a circular cylinder. Secondly, the "ad hoc" procedure
employed to modify the asymptotic solution for the sphere in order to

obtain an asymptotic solution for the circular cylinder geometry may need
further justification, In this sense, the present approximate (0SU)
asymptotic solution for the circular cylinder is not based on a heuristic
procedure as the one in [12],* and it may be viewed as an extension of the
approximate PINY asymptotic solution [11] and the previous OSU solution [9].
It is noted that the OSU asymptotic solution for the circular cylinder

could be improved even further in the paraxial regions for the circumferential
slot case by employing a different asymptotic evaluation which would be

more accurate in these regions; however, this analysis will not be pursued

at the present time since the solution derived in this paper appears to be
sufficiently accurate even for this special case.

It is noted that in addition to the asymptotic solutions pertaining
to the surface fields on the canonical circular cylinder and the sphere
geometries, an approximate asymptotic solution is also heuristically
constructed in this paper for the arbitrary smooth convex surface. Also,
the effect of torsion associated with the surface rays is clearly
identified in this solution through the presence of the factor T/«.
Furthermore, the excitation of this convex surface by both infinitesimal
electric and magnetic type current moments are considered in this paper.
Numerical results for both the electric and magnetic type source
excitation of spheroidal geometries will hopefully be presented in the
near future along with experimental results for comparison in order
to test the validity of the present asymptotic solution for the arbitrary
convex surface.

#uring the editing of the final version of this paper, we have received from
Professor S. W. Lee (at University of I11inois) a set of handwritten notes by
Professor J. Boersma which deal with a new and more rigorous asymptotic
solution (that is valid within the paraxial regions) for the surface fields of
slots on cylinders. These notes are soon expected to be published as a UI
report [16]. It is interesting to note that the solution in our paper agrees
exactly with the one in Professor Boersma's notes to all orders in

(%g) and to leading terms in (E%—J, even though it is derived via a different

asymptotic procedure. The effect of torsion associated with the surface rays
has not been specifically identified in Prof. Boersma's notes.
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APPENDIX 1

ASYMPTOTIC ANALYSIS OF THE SURFACE FIELDS EXCITED BY
INFINITESIMAL ELECTRIC OR MAGNETIC CURRENT SOURCES
ON A PERFECTLY-CONDUCTING CIRCULAR CYLINDER

The geometry of this canonical problem is illustrated in Figure 1.
The case of a tangential magnetic current source at Pﬁ will be analyzed
first; the analysis for a radial electric current source at Pﬁ will be

performed subsequently.

Let a magnetic current source M generate the surface fields Eﬂ and
ﬁ? on the surface, where Eﬁ is the radial component of the electric field,

and H? is the tangential component of the magnetic field. The source N is
defined as

e By s(F =71 (A-1)

where ¥' is the position vector of Pﬁ and r is an arbitrary position
vector. The quantity P is the strength of the infinitesimal magnetic

current moment which is oriented tangential to the surface.

The fields Eﬂ and ﬁ? can be constructed from a suitable set of electric
and magnetic vector potentials F and A, respectively [14]. Following the
development in [14] for an eJ®t
pressed, one obtains,

time dependence which is assumed and sup-

K=22] ej"‘*’j a (n) 18 (k0)e?"2 an = A2, (A-2)
and
Fe2)-] &M J b, (h) L) (ko )ed"? an = F 3, (A-3)
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where ng)(ktp) is the Hankel function of the second kind and of order n.

The kt appearing in the argument of this Hankel function is defined by

k2= k2l (A-4)
The unknown coefficients an(h) and bn(h) in the above expansions may be
obtained by an application of the electromagnetic boundary conditions on

the surface. From the usual relationships between the vector potentials
and the electromagnetic fields, one obtains [14]

H, = - (az + k8) F (A-5)
z  jkz 3 2 z
0 z
2
3A 3° F
_ Z 1 Z
Ho=-=* Jkzp 993z (A-6)
2
3°A oF
= —z_ 1 _z -
Ep JEVO pdz p 3¢ (A-7)
In the above equations, z_ = free space impedance, and Y l/zo.

Then, Fy = Hyb + Mz and B =5 E,- In Equations (A 5), (A-6) and
(A-7), the fields are not necessari]y on the surface. For convenience
of analysis, Bﬁ is decomposed as follows.

=2z at Pﬁ

a4

~ D>
Ne —i=
}

- (A-8)
= ¢ at Pﬁ

From the boundary condition Mxn=Nat p = a, where " is the total
electric field and M is as in Equation (A-1), it can be shown that

(2)
K=A ‘=Z 2 et ;k: p] el gihe g, (A-9)
m




-r‘
]
-
N>
]
N>

(2)
" H (k,p) .
= > Jn¢ t jhz
: " "'e E"kJ (2) (kea) -

(2)
oy H "/ (k.p) .
)y Jn¢ n . t jhz dh . A-10
L J lZ"k3 l“,(,z) (ko) e (A-10)

In order to evaluate Equations (A-5), (A-6) and (A-7) asymptotically for
large k.a, one begins by employing the usual Watson transformation [5] to
Equations (A-9) and (A-10). Thus,

P C_IH( Yko) (=, . . .
F3A = Z J. d th |? t v [a-ive, ~jv(2m-9)) -i2niv
zAZ '3 he (2)(kta) zio(e +e )

r=?1N>

-0 -&_Je
(A-11)
and
. F L rde oy e .
F=2F = Z j' dheth v ot G-Jv¢+e-Jv(2w-¢))e-JZ1r%v
z In ) -“_JE m H\()Z) (k) zzo
. ©-je (2) -
+ %"’ J' dhe th |: H\,Z fktp) Z (e-jv¢+e-jv(2n-¢)>e-j2nﬂ
" e °°'Je 2rka’ H\() ) (kya) (£=0
(A-12)

It is assumed that ka is sufficiently large so that one may retain only

the £=0 term in Equations (A-11) and (A-12), as the £>0 terms correspond to
the field which multiply encircles the cylinder and contributes insignifi-
cantly for large ka. The contours of integration in the complex h and v
planes are shown in Figures A-I, and A-II, respectively. The dominant
contribution to the v integrals in Equations (A-11) and (A-12) will occur
for v«O(kta) in the deep shadow region and also in the shadow boundary
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Figure A-II. Contour of integration in the complex v plane.
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transition region. Since the surface fields are of interest, and M lies
on the cylinder, the field point is always in the shadow region. Thus,
one may approximate the Hankel functions by the Fock type Airy functions
[6,15] for v~0(kta) as follows.

H2 (ka) ~ f/-_; (") () (A-13)
H\()Z)'(kta) n :/i_. (m:2) W(x) (A-14)
with
kea 1/3
= kta meT m, = ('7T') . (A-15a;A-15b)

It is noted that Né(r) is the derivative of Nz(r) with respect to the
argument t. The functions w1(r), Nz(r) and their derivatives are discussed
in Appendix V. Introducing the transformation of Equation (A-15a) into
Equations (A-11) and (A-12) together with the approximations in Equations
(A-13) and (A-14), one obtains,

+ . c - » . .
3A kY. p. jhz Wi(t) ~jk,a¢~-jm t¢
== v g J dh E— f dv Ty e T Ot (A-16)
% Josa T arfa ), t J, A9
and ’
- +p; ah edhz | o Nz(r) -jkyad-jm, ¢
Y —5 T WY +
o=a ~ 4% j t "t & WZT ¢
-9 -t
, -p; j? " ejhz h ) J, ) (k ) Nz(r) -jkgas-jm, v
-7 T m T a+m T "r'(—)' e
4r"a kia t 2

(A-17)

The superscript "+" on A and F in Equations (A-16) and (A-17) signifies
that only the term correspond1ng to e -jve in Equations (A-11) and (A-12) are
considered for convenience; the expressions for the e -jv(2n-¢) terms are
similar and may be designated by A; and F; with the understanding that
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A=A +A 3 F,=F, +F, . (A-18a;A-18b)

In order to evaluate the integrals with respect to the variable h,
it is convenient to introduce the usual polar transformations given by,

h = ksina, kt =+ kcosa; d= a¢=scosy; 2z =s siny. (A-19a3;A-19b
A=19c;A-19d)

Thus, Equation (A-16) becomes the following via Equation (A-19).

o

+ . C «° ' .
3A jkY p . Wi(t) -jm t¢

Z o'm ~jkscos (a-y) J' 2 t
— - — do e dt T e . (A-20)
% p=a 4r"a ¢ Zeo 2\t

o

The contour of integration, Cu is indicated in Figure A-III. The dominant

ImaQ ' :
1 1

" Qg IS THE SADDLE POINT
LOCATION

]
‘
'
Figure A-III. Contours C_ and CSDP in the complex a plane. |

contribution to the integral over o occurs for a = ag = for large ks where
ag is the saddle point in the complex o plane. The integral over t yields i
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a slowly varying function of a in the neighborhood of ac. The contour

C, may be continuously deformed into the steepest descent path CSDP since
no singularities are enclosed (for y < m/2), and the contributions from the
paths connecting Ccl with CSDP are vanishingly small. Therefore, Equation
(A-20) becomes

+ . c .3
3A Jjky p -Jr . .
2z o'm -3/2 -jkscos(a-y); (A-21)
%0 oea & - —4':2'3—' u(e) e E v f dae
c

Sbp

where the Fock type function u(g) is discussed in Appéndix V; it is defined
as,

ng 3/2 'I 3 Wé(‘t) _.E
u(g) = e E 7_- S dt w—z-ﬁ-)- e Jst H (A-22a)
w { ]
with
ke . 1/3
£ =B p=(md) ; o= -3L1?- . (A-22b;A-22c;A-22d)
Pg 79. 9 cos‘y

The geometrical interpretation of the angle y is illustrated in Figure 1
in terms of the angle § where

§ = % -y = % - cos’](i\:'.;é . (A-23)

It can be shown that the leading term in the steepest descent approximation
for large ks yields the following relationship for the CSDP integral in
Equation (A-21).

. : '.kS
1 IZchosyg -jkscos(a-y) . e
23V nd f do e A I (A-24)
Cspp

It is interesting to note that the left hand side of Equation (A-24) is
directly related to another integral as follows




g
H
:
3
¥

%3' f dh H(()Z)(ktd) eIhZ & %‘j’ lﬁlfﬁfﬂ c[ do e-Jkscosla-v) - (p oy

=" SDP
for Iktd|>>1

with k. = Jé-n2,
Furthermore, it is well known that the left hand side of Equation (A-25a)
is exactly given by

. -jks
%3- I dh H(()Z)(ktd)e']hz - — ;s JeZ | (A-25b)

Now the approximation arrived at on the right hand side of Equation (A-24)

js identical to the result on the right hand side of Equation (A-25b). Thus,
the leading term of the asymptotic approximation to the CSDP integral in
Equation (A-25a) is identical to the exact result in Equation (A-25b).

Based on these observations, it would appear that the final result in
Equation (A-24) is therefore valid even for ks small. Equation (A-21) may
now be written as,

ant !
Z C !
% |40 Wopr f o u(g) Glks) (A-26)
with
2 X
KEY  -jks
- 0 e
G(kS) = Z’T X (A-27a)
and
£ = 1/cos2y = 1/sins . (A-27b)

Similarly, one can show that Equation (A-17) becomes




P 2 .
+ n m_om° 4T . -jkscos(a-y)
F, N 4—71. . IjE v(e) f doe
Cspp

e

©
f

[+

pe l c o Wy(v) W (r
m kcots 2 -jEt cosec 25 2 e~JET
- -8:2- —m-— J d'l' ‘2 T e + J—z—— r [ .

f da e-j kscos (a-y) , (A-28)
Cspp

where the Fock type function v(£) is discussed in Appendix V; it is also
defined below.

v(e) = J_J wZ(T AL (A-29)

The third term on the right hand side of Equation (A-28) is of higher order
in ]](— as compared to the other two terms, hence, this term will be discarded
as only the lowest order terms in k_ are retained in this analysis. Con-
sequently, Equation (A-28) may be written as

PR 2 -
g "'._Ii‘zr. f -jkscos(a-y)
F, -a ;:2' Pq JE v(g) dae
¢
SDP

+

N STAGYIIRAATEtS B N R

o

c
P .

= dke i .l"‘g'e' V(&) f dog™3kscoslo-¥) (A-30)
T

From Equation (A-24), and Equation (A-30), one obtains

Pa
F v(g) &
;|o-a 7

C

2—— cots v(g) &

-jks -J ks

(A-31)
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From Equations (A-5), (A-6), (A-26) and (A-31),

Hm( ) 2 + ~ 3A; 1 BZF;
P.Y N 2 + k F + ¢|- + o
N iE 2 b3 o=a 9p szop 9¢92Z o=a
(A-32)

with the understand1ng that Hm(PN) in Equation (A-32) is associated only
with the A and F terms; the total FF(PN) must be obtained from (A +Az)

and (F +F ) However, the form of Hm(PN) associated w1th the (A z)
tems w111 be jdentical to that associated with (A F ) In order to
simplify the derivatives in Equation (A-32) one emp]oys the following
relationships.

3s 3

3z

Y

=M . 35 _ Gips. 26 .
=5 cosé; d siné; 3d

9 9

IB

= cosé = siny;

siné.

L%
Pl

Z

©

(A-33a);(A-33b)
(A-33c); (A-33d)

Employing Equation (A-33) into (A-32), and retaining only terms to lowest
order in &53 one obtains

H':(PN) N Fm.;i;] E1'n26+ ]{?(1- %)(2-351n26jv(£)(5(ks)
+ Em-¥é¥1|2cosssins 1- %;'-(1- %}]V(E)G(ks) +
+ B %]'%zEsinscosa 1- 301- \l@}] v(£)G(ks)
+ Fm';é;Z{E)SZM ‘;Ls(l- %)(2-3cos26j v(&)
+ [U(E)-V(E)E}G(ks) : (A-34)

The above result has the interpretation that the field Hg propagates along
the helical geodesic surface ray path from Pﬁ to Py as shown in Figure 1.
A second helical geodesic ray path (not shown in Figure 1) which traverses
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the cylinder surface in a sense opposite to that shown in Figure 1 also
contributes to the total field at PN; the latter contribution results from
the (A;,F'z') terms, and it is identical in form to that in Equation (A-34),
except that s, a and £ are now associated with this second path. It is
noted that 21' and ?1 correspond to 2|P' and 2|PN. respectively; whereas,

?é and '%2 correspond to ;13",'.q and $|PN, respectively.

Next, one may evaluate Ep due to M via Equations (A-7), (A-26)
and (A-31) as follows.

kpS o-dks o-iks
E A MmO v(e)cotsSr—
" 2nj 9z [ kss1ne :l [

kpa 5 -jks
-2—— 3 v(E)—-k—- (A-35)

where d=a¢. One may simplify Equation (A-35) by employing the relations
in Equation (A-33); thus, retaining terms to lowest order in 1/ka,

~-jks
g—z [(E) —Hk J—lz- 'L'Z_- k. e 3k coss,

ssiné) (ks)® sin
and
-jks . -jks
3d E(E) gj@] = - jk(1- f(-s-) g—Es_' v(E)sins .
Therefore
k2pc .
E,(Py) = 7= | (1- 9—-)—-.-(-— v(€)coss+ J—[{(s)-v(e} °°556 'Jﬂ
s1n
2 a .
kK™p . =jks
-t |0- S v(s)sia : (A-36a)

or in the vector notation of Section II,
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E’,’,‘(PN)’“(YO)-]Fm'{[-;isin“?écos&]ﬁ(l- %;—)v(a)

+ Tpcossh LLu(e)-v(E)] £ ) 6(ks). (A-36b)

TS e ————

One may now develop similar expressions for the electromagnetic
surface fields of a radial electric current J on a perfectly-conducting
circular cylinder. One defines J in a manner anologous to that in Equation

(A-1),

J = ps(|r-r}). (A-37)

It is noted that Pe is the strength of the infinitesimal electric current
moment which is oriented normal to the surface at r'. The tangential magnetic
field 'ﬂi(PN) due to J may be simply obtained by employing the reciprocity
theorem to the fields of M and J; namely,

n:.pm o= ].:‘r"'.pe ) (A-38)
at Pm at Pe
Consequently, from Equations (A-36b) and (A-38), one obtains
Hﬁ(pN)m-(yo)']Ee-é'[-?]sinéﬁzcosél(]- ]%)V(E)
+n'cosé ?2 f(-s-[u(E)-v(E)] f YG(ks). (A-39)

The radially directed electric field, Eﬁ(PN); i.e., the electric field
component normal to the surface at PN, which is generated by the source J
may be obtained from Equation (A-39) via the equation of continuity. Thus,

9 ﬂ;vs - [RE(P)] = 7+ EB(P), (A-40)

where [VS-] is the surface divergence operator. The above equation simplifies
to




BN R o

ES(py) = ﬁ(ﬁ'g) l: 3z, A+ §7<¥2-H§E] : (A-41)

which in turn may be evaluated via Equation (A-33). Without going through
the details of the evaluation of Equation (A-41), the final expression for
Eﬁ(PN) which contains terms only to lowest order in %E is given below.

EE (P )n-(Y,) Zp {[1- L0 D vier () Llu(e)-v(e)]

- 01 %S-)[u(e)-v(s)]}G(ks). (A-42)

It is noted that u(&) and v(g) are special cases of the more general
functions Fs(s,y],yz) and Fh(z,y],yz) which are indicated in Appendix V.
It can be shown that if the height of the observation point P above the
surface is d, (i.e., \?ﬁ51=d2 of Figures 1 and 2) and d,>0, then the
functions u(g) and v(g) in Equations (A-34), (A-36b), (A-39) and (A-42)
may be replaced by Fs(s,O,yz) and Fh(z,o,yz), respectively with y]=0 and
y2=m']kd2, provided kd2<<kpg(PN). Furthermore, if the source J of Equation
(A-37) is also raised above the surface from Py to P (i.e., lP,:]P‘l=d1 of
Figures 1 and 2) when PN is raised to P above the surface, then the u(f) and
v(g) in Equation (A-39) and Equation (A-42) must then be replaced by
FS(E,y].yz) and Fh(E,y],yz), respectively with y]=m'1kd] and y2=m'1kd2, for
kd]<<kpg(Pﬁ) and kd2<<kpg(PN). An approximation based on Taylor series
is given in Appendix V for Fs’h(E,y],yz) when h;, and h, are sufficiently
small and when £#0 (also & must not be close te zero).




APPENDIX II

ASYMPTOTIC ANALYSIS OF THE SURFACE FIELDS EXCITED BY
INFINITESIMAL ELECTRIC OR MAGNETIC CURRENT
SOURCES ON A PERFECTLY~-CONDUCTING SPHERE

M

3 B AP R R AT

The geometry of this canonical problem is illustrated in Figure 3,
The case of an infinitesimal tangential magnetic current source at P& will
be treated first; a corresponding treatment will be subsequently presented
for the case of an infinitesimal radial electric current source at Pﬁ.

. The notation employed in this Appendix for the fields Eﬂ, H? due to
the source M has the same meaning as that in Section II, and Appendix I,
respectively. Let the source M be x-directed in Figure 3; then the vector
potential F; associated with the source ﬁéipma(FlF“) in free space (i.e.,

in the absence of the sphere) is given by [14]

p. . -jk|r-r'|
Fogme "7 (A-43a)
) .= Ir- |
or
~ ke @ (2) —( =
Fb = Xy n20(2n+])h" (kr')jn(kr)Pn(cose); I¥l<{v' 1, (A-43b)

where jn, héz) and Pn are the usual spherical Bessel, Hankel and Legendre
functions. Let

o= (a+d])2 = bz, (A-44)

TR MM e, v e TIe S e U e R ety | Rt e e e e

e i -

It is convenient to introduce a new set of potentials 7°r and ="r which
satisfy the following differential equation and the field relations [14].

e i
(v + k) /T 0 ; rf0 . (A-45) ;
'rrm/r‘ i
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x
1 {9 2\ e
E. = o + k)'ﬂ' (A-46)
r kY, (a—r'f
2 e
- =] anm 1 9w
EG " rsine 3¢ + jkYor 3rap (A-47)
2e
2] " 1 9 T
T T JKY rsine  3rdg (A-48)
AN (I k2\ m (A-49)
r Jkz_\. 2 m
0 \9r
2m
1t 1 3%
He = Tsine 3% Jkz r 3ree (A-50)
2m
| ant 1 3w
H¢ B T Jkz rsine roe (A-51)

where Er, Ee’ and E¢ are the F, 8 and @ components of the electric field,
E which are respectively generated by the potentials 7% and 7. Likewise
H.» Hg and H, are the r, 6 and ¢ components of the magnetic field, H which
are respectively generated by 7% and ™. Let ns and ng denote the value
of the potentials 7% and «" which are associated with the source M in

free space. Let the fields associated with these potentials ng and wg be

denoted by E(o) and ﬁ(o). From [14],

. 2F
. _ VxVbu _ V(VOF;)-V Fo
’ jkz0 Jjkz

glo) . _ WF, (A-52a3A-52b)

0
Without going through the details, the following expressions are obtained
via (A-43, A-52a;A-52b).

aFo

FEO) o ppE(0) o pgl0) L ging 20 (A-53)




3F. °F
rATCHRENER () rHio) = ggiz Eg( ag + _g.}] (A-54)

A useful procedure given by Fock in his development of a modal expansion
for the fields of an electric current moment over a dielectric sphere [13]
is employed in order to obtain the form in Equations (A-53) and (A-54).
The following relations are helpful in arriving at Equations (A-53) and
(A-54).

FO = x 1-:1 LF_ : R =|vr-v" lz = b2+r2-2brcose. (A-55)
oF oF oF
0 _ 0\ 3R . aF _ 01]393R .
r - (—aTz') r ; 35 '(‘5]?) 39 . (A-SGa,A-SGb)
% = r_‘tch_O_S_g ; ?Tg— = P%_i!ﬁ : .g% = b_".'ﬁﬁﬂ . (A-573;A-57b;A'57C)
. aF oF aF
0 siné 0 _ 0 aR _ 0
CS® 5+ -5 3% " "R - "3 (A-58)
oF oF aF
. 0 , cose o_1 "0 3R_1 "o
S = *% % PR % -b 75 ° (A-59)
From Equations (A-46), (A-47), (A-53) and (A-54), it can be seen that
oF 1re
. o _ -1 * "0
sing —a—e- = EWO A (r—) s (A—GO)

and

FF .
cos¢%(;%+—%)]= a (r—°-) . (A-61)

where the operator a” is as defined by Fock [13].

8% = 2 (sine &) + s (A-62)
sine 36 36 sinze ;;?' . =
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In order to solve for ﬂg,m in terms of Fo via Equations (A-60) and (A-61),
respectively, it is convenient to introduce the following expressions as
done previously by Fock [13].

aAo 17':; 380
= - sin¢ 36 H -+ = - CO0S¢ 55 * (A-63);(A-64)

slo™o

Incorporating Equations (A-63) and (A-64) into Equations (A-60) and (A-61),
with F  as in Equation (A-43b), it follows that

ey ————

A, = - kv, ( o Z 2y 08 ke, (ke )P (coso) (A-65)

and

2 e V4n(2) (e
kpe\ 2 on+l keth €0 (ke )+h “Iket) |
0" ( T 1 ﬁ%%TTT . 7 f Jn(kr) Pn(cose) (A-66)

where r' = b = a+d1.

Using the definitions [13,15]
céz)(kr) = krhéz)(kr) : wn(kr) = krjn(kr) (A-67);(A-68)

one obtains

kp w
A = - 3kY (z';) X0 I T 2 (ko)y, (k)P (cose)  (A-69)

kp ,
Bo'<ﬁrj"')'m,")<'(m 2 ﬁnﬂ C,(,Z) (kb)y, (kr)P (cos8) . (A-70)

From the relationships in Equations (A-63) and (A- 64), and the results in
Equations (A-69) and (A-70), the expressions for "o and n are completely

determined. The relationship F‘ P (cose) = - pl (cose) may be employed in

BAO BBO

evaluating T and in Equations (A-63) and (A-64), respectively.
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The potentials s

source M in free space; consequently one may introduce "s and n to denote

the potentials resulting from the presence of the conducting sphere such

o and n are the potentials associated with the

that the total potentials 7€ and " associated with M in the presence of

the sphere are obtained via the following superposition.
= n(e) + ni 5 = w'g + 1121 . (A-71); (A-72)
Let AS and BS be introduced as follows,

BAS “r: 3BS
- sin¢ 55 5 ¢ - Cos¢ 35— . (A-73);(A-74)

=2
=S| o

Equations (A-73) and (A-74) have been chosen to possess the same form as
Equations (A-63) and (A-64), respectively. It follows from Equations
(A-69) and (A-70), that

kp © n
A = - KD w1 2y 2 (k0B (kr)P (cose),  (A-T5)
kp ® '
B, = (z0) an s 28 (ko)k (ke )P (cose) (A-76)

N
where the coefficients ﬁn(kr) and An(kr) must be found by enforcing the

boundary condition that ﬁx[E(°)+E(s)] =0 on the spherical surface at r-a,
here, E(S is the e]ectr1c field produced by the potentials n and n The
total electric field E"= E'° +E{S is produced by M in the presence of the
sphere. Also, rr-Em=Eﬂ of the earlier notation. It is easily verified that

y (ka)

- n (2)
Kn(kr) = g, (kr) - ZEETIEA) % (kr) (A-77)
and
Bn(kr) = wn(kr) - 2127112;7 Ty (kr) . (A-78)
n
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Let A™ denote the total magnetic field of M in the presence of the sphere.
Then, from Equations (A-63), (A-64), (A-65), (A-66), (A-71), (A-72), (A-73),

] g»
B
¢
i
5

4 (A-74), (A-75), (A-76), (A-46) and (A-49), it may be seen that
i -k (2) B (k )
; rEN=E ( I 2 (2n+1)z 4’ (kb) (“ 7 Py (cos6) (A-79)
: kr
. and
" kp -jkY cos¢ = 2) K (kr) 1
0= (=) [—5—] n§0(2n+]);’(‘ ) (kb) -%k—r)? Pl (cose), (A-80)

the sum over n in Equations (A-79) and (A-80) starts from n=0 instead of
n=1 for convenience since Pl(cose)=0. In order to evaluate Equations
(A-79) and (A-80) asymptotically for large ka, it is convenient at this
juncture to employ the Watson transform to these equations [5]. As a first
step, one may write Equations (A-79) and (A-80) more compactly for later

convenience,
rE" kp, (-ksin¢)12 (4-81)
: . = (1;5) *
A" (-3kY cose)Tp
where
(2 (kb) B_(kr)/ (kr)2 (kD)
T (2n41) n f ) Bylke)/ (ke ;(cose) . (A-82)
‘ h =0 e{2) " (kb) R (ke )/ (kr)?(kb) !

Employing the Watson transform to Equation (A-82), one obtains

(2) (kp)¥ (kr)/(kr)2(Kb)
Ty § o o [EOREIT
i h o 22 (k)X (ke )/ (k) (kD)
v (A-83)
Contours C: are shown in Figure A-IV.
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Figure A-IV. Contour of integration in the complex v plane.

Employing the relationship (- 1)“P (cose) = v(v+1)P (-cose), and replacing
v by -v-1 in the integration over C » one obtains

= je e\2) (ko) (kr)/ (ke )2 (kb)
Z%Tf d\)(smv )(2v+1)v(v+1) P;] (-cose),

o je ;52)'(kb)xv(kr)/(kr)z(kb)

m
Ie
h

(A-84)

where ¢ is a positive number however small. In arriving at (A-84), use is
made of the following relationships.

-1 _ p-1
P_v_1(-cose) = P (-coss), (A-85)

~ m(kb)ﬁ (kr) -\l" o H(21)/2("") Joepy2lkr)- _\(’%'/2__ +1/2(”

+1/2

(A-86)

2 (k)X (kr) = 0l 2) (ko) |0, (K- —‘(’;-}Lz——)—ﬂﬁ])/z(k J?'W
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kb=kr'

a = 2;'('— (g)-‘- + %)—(-) : X = 'zr“ . (A-88)
r
and the circuit relationships for the cylindrical Bessel and Hankel
]
2

functions, Jv+]/2(x) and Hv+]/2(x), respectively. Furthermore, one may
employ the following relationships in Equation (A-84); namely

ﬁv(kr)/(kr)z (82 kZ)[ 1 ] a\)(kr) (A-89)
= —E + T_—' ’ -
X (k) (k)2 ar KO R (k)

in order to obtain integra] representat1ons for «° and " , since E and
H are simply related to 7 and 1" via Equations (A-46) and (A- 47),
respectively. Thus, from Equations (A-46), (A-47), (A-81), (A-84) and
(A'sg)s

-jY sin¢ w-je
"t = (m)(-—J—E;-]—n—) 30 J dv (g (2v+ 1);(2)(kb)§ (kr)P] 1(-cose)
_u-je
(A-90)
and
®_je
" = "‘)(—Ef;#’?) S dolr) (2v1)el2) (k) (k)P (-cose).
T (A-91)

=5 is next evaluated for the special case of interest; namely r'=b=a
(i.e., for d1=0) and r=a as follows. Let u=v+1/2; then,

-JY sin¢ =-Je 2

= e L 0 egimmd® e, p0erl plecose).

-u-jg

(A-92)
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In the shadow boundary transition region (i.e., the penumbra region) and in
the deep shadow region, both of which are of interest in this study, the
dominant contribution to the integral in Equation (A-92) occurs when

w0(ka). Thus, in this region, one introduces the usual transformation
]

u=ka+mr to approximate the cylindrical functions ¢u-1/2 and 5u€1/2 by the
Fock type Airy functions. In particular [15],

1/3
v,_1/2(k@) 'J“ (W, (1)-Up(7)) 3 u=ka+mr 3 m-( ay . (A-93)
(] ] ]

Y - -Hy()). (A-94)

(1)

;ﬁ ])/z(ka) ~ i/ w;(r). (A-95)

2}

gy_q/2(ka) v wiq). (A-96)
-1/2 W ;_

Noting that cos] = 2j e"j(“']/z)1T ) e'j("']/z)(z"z) in Equation (A-92),

one may retain only the 2=0 term for large ka as the terms corresponding

to 2#0 contribute to the multiply encircling field paths around the sphere;
these terms (2#0) contribute negligibly for large ka. Also, P;11/2(-cose)
may be approximated for large ka, 6#m, and w»0(ka) as follows [15],

=312 -iF s s (e
Pl atecose) v o R o7 BT E Jue_jemdnlr ﬂ . (a9
Let
= ﬂs + oo . (A-98)

where the n term is associated with the e -jue term in Equation (A-97);
and 7° is associated with the term e~J¥(2™-8) torm in Equation (A-97).
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Thus, one may write W$ as:

+: T
t 7 kYo sing f Wp(<) | -jkae
m_Ate . T-— dt eV
e (ka) W ( ) ws1ne

(A-99a)
with
+ ¥ t 6
£ =mo 3 8 = . (A-99b;A-99c)
2n-9
Simplifying the expression in Equation (A-99a) yields
p 1 * *
my vt B v(E") sined” G(ks”) (A-99d)
where v(g) is defined in Equation (A-29); it is also discussed in
Appendix V. Also, G(ks) is defined in Equation (A-27). Here,
(8
+ ae + 8 + et JsTne
s = s € =m s D=l 2 = . (A-100)
a(2n-0) 27-6 sine” Pme0
S1nl2ﬂ—6;

Clearly G(ks+) corresponds to the field propagation along a great circle
(geodesic) ray path corresponding to st=ae; whereas, G(ks) corresponds to
propagation along the ray path s=a(2n-8) along the same great circle
(geodesic) but in a direction opposite to st. In this analysis, 0<o<n;

2m=0 JZn-e
sm!Zn-e ,

ST -6y - J ; the factor j

outside the radical is the same as that in front of the term e'j"(z"'e)

in Equation (A-97), and it results from the crossing of a caustic of the
great circle ray paths as they traverse the spherical surface. This

caustic occurs at e=r. The asymptotic approximation in Equation (A-99) must
be modified near e=x; a simple modification of Equation (A-99) for 6 at

and near » is discussed in Appendix III on caustic corrections.

hence, it is noted that, D~ = J
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Without going through the details, it can be similarly shown that
3 =T
1 -JI o
? ~Pp® t, 4 t ' Wy (1) *
» m m : 3 1 -Jj€t
" 6(ks )0 cos¢{ | J' dehd (<) {Wy (t-y,) - Wy (t-y,)| e
b Ik'nWo v ) 2 1 2 ﬁzhi 2 2 %
Y (A-101) f
0 i
! for r'=b=a (i.e., d,=0), and ;
; {
_.= vy Tk(r-a)inlkdy; ra (A-102) 1
The subscripts * on =y have the same meaning as that in ni; i.e., ! ,
| LT A A (A-103) f !
i -
' From Equations (A-50), (A-51), (A-98), (A-99d), (A-101), and (A-103), |
one obtains the following surface magnetic field associated with “i and nT

(the field corresponding to nf and TrT is obtained by simply replacing s
by s”, and by replacing E+ by &, etc. in the fields corresponding to )
€ and wT). Here, the subscript (+) is dropped for convenience. 4

b
o tf = pmcos¢@-(1- %g—)u(a)mz i—sv(ﬂ DG (ks) (A-104a)
H¢ - B-Fl':-pmsin¢ |§- f;?)v(z)n‘zbz %Ef—)g-lm(ks). (A-104b)

Ap(py) ~ t(t-A) + b(b-M). (A-104c) § |

I
1]

In obtaining Equations (A-104a;A-104b) use is made of the following

relationships.
1 t
-jks -jks -jks + 8
3 e 2 e e s 1
—— =3 —p g = 2m ['J' ];9 = .(A_]OSa)
aer ke as> ks~ kst kss ) 2r-0
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+ + +
3 -JE . 9 (ot -JE T SJE Tt .y -iET
—De —(D"e )=m e +D7(=jt)e . (A-105b)
2t Y [:;e—f

As before, only terms to lowest order in Es-are retained in Equations
(A-104a;A-104b).

In order to obtain Eﬂ(PN), i.e., E} due to M, it is convenient to
rewrite Equation (A-26) as

E, WA £ . (A-106)
JkY r

It is noted that A" is as in Equation (A-62), and

2 4.2 2 4
A _D°3 (s 3 D* 3 3¢ 413 D }
Z| vnGR Iz E w2 (A-107)
r D s- 3¢ 3s S
r=a
82 e,m 1
since — -1 (due to sin¢ or cos¢ variation of = &My an d ( 2) is
¢ D

neglected as it contributes to terms which are higher order in %E' One may

rewrite Equation (A-106) via Equation (A-107) as follows after operating

e .. ) )
on = with the sg-and ;;?-operators.

te -jp . -jks -jks
27 zl = > |- (- b)) S+ K2(1-0%) = ov(&). (A-108)
JkYor I (ks)

r=a

One may conveniently neglect the term involving (l-D4) in Equation (A-108)
which contains a -l-1; dependence as it is vanishingly small for (ks) small
ks

(where D*1) and it is also small in comparison to the first two terms for
(ks) large. Thus, ?-EEEF=E2 becomes

o

-
=

~ =P . =jks p
(e (1 ) S - D v(e)(-sing)i{ " . (a109)

-sin¢g Pm




As before, the field in Equation (A-109) is associated with ni with the
subscript (+) dropped for convenience. The term corresponding to nf is the
same as in Equation (A-109) except that st and £ are now replaced by s~
and £, respectively for the nf case.

One may next develop similar expressions for the electromagnetic
surface fields of a radial electric current J on a perfectly-conducting
sphere. The source J%EQG(FZF“) as in Equation (A-37). Since B;=peﬁ at Py,
the tangential magnetic field Hﬁ(PN) due to J may be simply obtained from
Eﬁ(PN) due to M via reciprocity as indicated in Equation (A-38). Thus,

RE(PIN-(vy)™! By (R'BL1- Ldv(£))D Giks). (A-110)

One may next compute the normal (radial) electric field Eﬁ(PN) due to J
via the equation of continuity (see Equation (A-40)) and Equation (A-110)
with the understanding that B=-¢ in Equation (A-110). Thus,

aHi :
. o ¢ —— —n— -
VorInxH ] v —2 + < (A-111)

after neglecting %; (120 as before. Then from Equation (A-40),
D
<2 - .“l“’ j J \
E (P IN-(1) 2 Byt (D1- - 2 1v(0)0 a(ks). (A-112)

Once again, referring to Figure 3, it is noted that if d2>0, then u(&)
and v(£) in Equations (A-104), (A-109), (A-110) and (A-112) must be replaced
by FS(E,O,yz) and Fh(E.O,yZ) of Equations (A-139) and (A-138) for kdy<<ka.

On the other hand, if d;>0 and d,>0 in Equation (A-110) and Equation (A-112);
then one must replace u(g) by FS(E,y],yz) and v(&) by Fh(E,y],yz) in these
equations when kd]’2<<ka. The functions Fs’h(g,y1,y2) are discussed in
Appendix V along with an approximation for these functions based on a

Taylor expansion which is valid for kd],2 sufficiently small and &£40.

Finally, it is once again noted that the results in Equations (A-104),

(A-109), (A-110) and (A-112) are not valid at and near 6=x. For &,

these results must be modified as shown in Appendix III on caustic corrections.
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APPENDIX III

- CAUSTIC CORRECTIONS FOR THE SURFACE FIELDS ON
? THE SPHERE

-

As pointed out at the end of Appendix II, the expressions for the
surface field on a sphere . due to a source at P& on the same sphere 1
(see Figure 3) as given in Equations (A-104), (A-109), (A-110) and (A-112) 1Y
are not valid at é=m because D»= as 6+n. The point PN on the surface
corresponding to 6=r is a caustic of the surface rays since at 6=n, every
great circle path.is now a geodesic between the diametrically opposite
source and field points, Pﬁ and PN’ respectively., Such a continuum of
geodesic surface ray paths intersect at PN’ thereby producing a point
caustic at PN for 6=n. In order to obtain an asymp;otic approximation
for the surface field which is valid at and near the caustic at o=r, one
begins by noting that the approximation in Equation (A-97) is responsible
for the singular behavior of D at 6=n, Thus, to remedy this singular behavior
of D at o=n, one may employ an asymptotic approximation for the Legendre
function which is different from that in Equation (A-97) when é+w; such
an approximation is indicated in [15]. Alternatively, one may employ an
approximation in Equations (A-104), (A-109), (A-110) and (A-112) for e-+n
which is based on the following physical considerations. Firstly,
whenever 6#w, there are two great circle geodesic surface ray paths between
the points P& and PN; these paths are associated with the potentials ni’m
and nf’m, respectively as indicated earlier in Appendix II. Furthermore,
the total field is constructed from the sum of these =«

&,m potentials as
indicated in Appendix II, i.e., from =5*™ with

t

+ 75M (A-113)

The electromagnetic surface fields resulting from wi‘m are given in

Equation (A-104) or (11) and in Equation (A-109) or (15) for the case of the
magnetic current source M on a sphere; and they are given in Equation (A-110)
or (22) and Equation (A-112) or (24) for the electric current source J on a

L By - 3 TR PPN Gl R SR S
=
(1]
-
3
i
E ]
+m
-
3
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sphere. From (11) it is noted that the total H? field, (i.e., including

the nf‘m contribution) contains the following combination of D G(ks) type
terms.

Top = 0 Glks™) + D7 GlksT), (A-118)
and
T3 = [0 1% (ks*) + [0 %6 (ks"). (A-115)
t
Simplifying T (ks*p0* let g griks
implifying and T , via G(ks )D = - yields,
cl c3 sine” 2™ kso
2 .t ., -
) k Y0 e+ e-JkS 6~ e-JkS
Te1 = 73 e T e — | (A-116)
\Nsine ks Ysino ks
and

-~

2 3 .+ J o, S

Kol 1ot e-Jks 6" endks | (A-117)
Tez = + 7 F - -

™J sine ks sing ks

with the understanding that:

t

ot=o s st=ag ; 67=2r-0 s =a(2n-0). (A-118a;A-118b;

A-118c;A-118d)

Since 0<e<r is understood in the present development, it is clear that
sine <0. Furthermore,

‘6- _ |2n-6 _ . |2n-6
Nsine-  V-sTne ~ J Jsine : O<t<r . (A-119)

Neer the caustic, e»n; hence, Equations (A-116) and (A-117) may be
spproximated as




2

kY . jka(n-8) -jka(r-6)
1,\‘2_,__,/--Jka1r<e_____+\].e ) ]+;e+1x ,
Vr-9 V-8 ks

(A-120)
and
S
Tc3 " sinb Tc2 ’ (A-121)
1
where
; J}'a(n 6) -Jka(n-e))
: Jkan
r ’\J 2'-" - J H 6->m . (A-]ZZ)
C2 [ Yr-6 kS+

In the above approximations, sine = sin(r-6)" =-6 has been used for 6-+n;
also ]——'«‘: ]—+ is used for ¢»r. One may now rewrite Equation (A-120) and

ks~ ks
(A-122) in terms of trigonometric functions as:
B )]
kZY me/2 e':j‘?Trm3 | g cos(ka(n-8)- &) zeJI (A-123)
1 & 2r3 |" mKa (7=6) T 3 kS+
S
and
'Yl
;; T n k2Y0 [_m3/2 e-j2'nm3 2 : (k ( _e)_ TT) ZeJI (A-]24)
: 273 |" Vrka(nogy STMAAT=2/= 1=
b
with —
(79-) , and Pg =a for the sphere. (A-125)

It is noted that sin(ka(r-6)- {—) = cos(ka(n-8)- ﬁ-- g—) in Equation (A-124).
Furthermore, one also notes that for ka(r-6)>>1 the trigonometric functions
in Equations (A-123) and (A-124) are asymptotic approximations of cylindrical

Bessel functions as indicated below,




3 et Aot A A

3 (ka(n-8)) |;Ea-(-2"-ﬂ- cos(ka(r-6)- J)} (A-126)
and
J-I (ka(n-e)) N lm COS(ka(Tr-G)- %- - "2-) (A-]27)

For small ka(n-6), one may therefore replace the trigonometric functions
in Equations (A-123) and (A-124) by the Bessel functions in Equations
(A-126) and (A-127), respectively, thereby making Tc] and Tc2 (and hence
Tc3) valid for 6+n. This procedure is similar to that employed earlier by
keller [3] in his study of the diffraction by a circular aperture.

Thus, for 6»n, one may employ the following expressions for Tcl’
Teo and Tc3 instead of those in Equations (A-120), (A-122) and (A-121),
respectively.

Yo T 32 gomnd 3 2t 3
T ¥gg | e J Jo(2m~(n-0)) P 3 2m™>>1; e, (A-128)
2 — j"T
K2y 3 T
Tep & gy >/ ZendZm J](2m3(n-e):)]-i—:-+— 5 2me1; e, (A-129)
SN (2n3(n-0))] .37
k“Y in 3 Jq(2m (n-0
2 972 -jenm® 9 2t 3
Toa & 52 |2n°m” e s 2mo>>1; 6o, (A-130)
SR 2m3(n-e):lks+

and m = (;341/3 as noted previously.
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From Equations (15) and (22) it is noted that the total 'E':“ and the
ﬂ: fields (i.e., including the pSom contribution) respectively contain only
the Tc2 type term; whereas, the total Eﬁ field corresponding to Equation
(24) contains only the Tc] type term. Hence, Equations (15) and (22) may be
modified for é-n by employing Tc2 of Equation (A-129) in place of
Equation (A-122); likewise Equation (24) may be modified for e+r by employing
T.q of Equation (A-128) in place of Equation (A-120).
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APPENDIX IV

NUMERICAL TECHNIQUES FOR EVALUATING THE MULTIPLE
SURFACE INTEGRALS ASSOCIATED WITH THE MUTUAL
ADMITTANCE BETWEEN TVO IDENTICAL SLOTS
ON A CIRCULAR CYLINDER

Consider two identical circumferential slots on the surface of a
circular cylinder. Under the "dominant mode" approximation of the aperture
fields in the slots, the mutual admittance between the two slots can be
expressed as follows:

2/2a d/ ¢o+z/2a zo+d/2

2

c _ -2a
Y2 = Sd [ déy dz, dé, dz,
¢]=-z/2a z]=-d/2 $7=6,-%/2a zz=z°-d/2

mady m c
cos[—=] cos[Tale,-¢.)]1 g, (s.0) . (A-131)

In the above expression, a is the radius of the circular cylinder, d and 2
are the slot dimensions; and % and z, are the angular and axial separation
of the centers of the two slots, respectively. These parameters are
illustrated in Figure A-5. The Green's function g:(s,e) represents the
surface field %2'H? at (¢2,22) due to a unit-strength, %é-directed

magnetic dipole at (¢],z]). The variable "s" is the arc length along the
geodesic path joining the source location (¢1,z]) and the field point
location (¢2,zz); and the variable "e" is the pitch angle associated with
the geodesic helix as shown in Figure A-5, It has been shown in Section II
that the surface field ?2-9? is indeed only a function of the arc length
"s" and the pitch angle "8". It is noted that both "s" and "s" depend

upon the relative distance of |22-21l and |¢2-¢1I. The feature that

%2-H$ depends upon only the relative axial and angular separation between
the source and field locations suggests an efficient way to perform the
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Figure A-V. Slot dimensions and the cylinder geometry.

double surface integration required for the evaluation of the mutual § ]
coupling between the slots. In fact, the double surface integration can be
reduced to a double line integration via a suitable coordinate transformation.

Equation (A-131) can be rewritten as follows: i
2 4
Cc - -a '
Yio = 4% izl I (A-132a) 3
i
where
- cos(2L ma, c -
I, = cos(5; ¢o) JIJJ cos[z (¢2+¢.|)]g¢(s,e)dz]dzzd¢]d¢2 (A-132b)
992512
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1, = cos(:—" 4) cos[;—i(q>2-¢])]gg(s,e)dz]d22d¢]d¢2 (A-132¢)
9192212,
I = sin(3* o) ‘[' sin[3™(¢,+¢)1g5 (5,0)dz,dz,de, do, (A-132d)
9192212
I = sin(%ﬂ-¢o) ‘I. sin[%3{¢2-¢])]gg(s,e)dz]dz2d¢]d¢2 (A-132e)
9192212,
and
J ” 2 2
S =y 2 (¢2‘¢~|) + (22"2]) (A']33a)
o = tan) | 2211 (A-133b)
a(¢2'¢])

It is observed that all four integrals in Equations (A-132bjA-132c;A-132d;
A-132e) are similar in form. This appendix is devoted to the discussion

of the numerical techniques used to perform only the double surface
integration appearing in Equation (A-132b). Similar analysis can be

carried out for the rest of the integrals in Equations (A-132c;A-132d;A-132e).

Let us introduce the following coordinate transformations.

v = %E (49-6;) (A-134a)

U= .;‘,_2_ (¢2+¢]) (A-134b)
1

t = — (z,-z,) (A-134c¢)
s 2 1
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O

W= %E (zz+z]) . (A-134d)

It can be shown that the integral I, given in Equation (A-132b), via the
transformation defined in Equations (A-134a;A-134b;A-134c;A-134d), can be
expressed as follows:

v uz(t) t wz(t)
I = cos(-:—"%) Jz f f I cos[:—a/Zu]gg(v,t)dtdw dudv.
2 u](t) t] w](t)
(A-135)

The regions of integration in the (t,w) plane and (u,v) plane correspond
to the shaded areas illustrated in Figure A-6. The u-integration and
w-integration in Equation (A-135) can be readily integrated in closed
form and leads to the following expression.

V2= ']/—2—_(¢0+2/a) tz-

[l
I
N
o
3
~—

1 - av at R [Flup)-F(u)] g vat)
V= ]E(%-z/a) t,= J;Z_—(zo-d)
(A-136a)
where
Z
2t - VZ(z-d) 3 t<—
F(t) = "z
Z
. %o
2 (z +d)-2t t > y- (A-136b)

and
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to-----=

\ w-1: /7 ($)
'g_zl.

2

w-t:-ﬁ(%) w(t) wy(t) w+t=f2-(z°+-g-)
\ L) dalniiy
i
/ wtt=VZ (25-%)

Figure A-VIa. Region of integration in the (t,w) plane.

Figure A-VIb. Region of integration in the (u,v) plane.
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Flu) = — e (A-136¢)
)
Y0
v - /2 2/2 V> —
VZ
u = (A-136d)
%
/2(¢0-z/2a)-v v iE
i 726 +1/2a) i:
i + a)=v v i_—
: ’ "z
Un = (A-136e)
2 %
v + vZ(2/2a) V<—
V2
From Equations (A-132b) and (A-135), one concludes that
3
2/2a d/2 ¢o+z/2a zo+d/2
do, dz, do, dz,  cos[He,+4;)1gy(s.0)
]=-2/2a z]=-d/2 ¢2=¢0-2/2a 22=zo-d/2
L(¢°+z/a) ]-(zo+d) ‘
2 Z c j
= dv dt F(t)[F(uz)-F(ul)]g¢(V,t) (A-137)

T g/a) E (z-d)

The above equation indicates that the double surface integration in Equation
(A-132b) can be reduced to a double line integration via a set of
suitable coordinate transformations. ;

It should be noted that the discussion in this appendix is also
valid for the case of two axial slots on the circular cylinder.
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APPENDIX V
ON THE SURFACE TYPE FOCK FUNCTIONS

In this appendix we define and list some useful formulas of the Fock
functions: F (£,y7.5,)s FolEayq0y5)s v(E), ule), vi(8), v'(g), u'(g), and
the Airy functions w](t) and wz(t). For a complex t and real £, we define
the above functions as follows.

R
11 T vy
FolEsy oY) = — e 7 g%
h 1372 23 JEr
_Wi () _jer
dr wz(T".Y])[w] (T'.Yz) - W'!TT')‘ wz(T'.Vz)]e 3
r 2 1 2 1
Y1 > Yo (A-138)
2 1
H
FS(E,y]yZ) = - %'e 53/2 L J— dt Né('l'-y-l)'
/T
P] 2
N T Wy (1) iy
1 2 1

where y. and y, are defined in Sections II and III. For y,=y,=0:
1 2 172

+T

J W,(t) .
Fa(6:0,0) = v(g) = Je 7 ¢'/2 j/_"' f dr wﬁm e-dET (A-140)
T

N
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j%l wé(T) -jgt
F(£,0,0) = u(g) = g3/2 1 J. dr W0y @ (A-141)
VT
N
3n
W, (1) .
3 .3/2 1 2 -jEt
V-I(E) =e g€ 71_'-_ ) dr W{F)-T e (A-]42)
1
1 23
wlt) = — dz exp(tz- 5-) ‘ (A-143)
3
I‘] i
1 z3
Wy(t) = — dz exp(rz- 3-) (A-144)
VT T,

where 1ntegrat1on contour T (rz) goes from = to O along the line
arg(z) = 3—-(+21r/3) and from 0 to = along the real axis.

For £#0, and ¥1:Y2 small, one may approximate FS and Fh of Equations
(A-139) and (A-138) by a Taylor series expansion as follows.

FalEsygavp) 2 v(E) - § 7T v EIonE ek (A-145)

Folewyyayp) R ule) + § [u'(e)- 3 £ u(e)] [vinlls  &r0 (A-146)

For £ large and positive, one may employ a rapidly converging residue series
representation for the Fock functions as follows [6,11,12]

M
-J o -jgr;
vig) = e ¥ /7 gl/2 Z] (r;,)'] e (A-147)
n=

it e LRI oy




=T .
j ®  -jET
f u(g) = e I.Z/F 53/2 ] e n (A-148)
i n=1
j °  -jEt
vi(e) = e Py L Z] e M (A-149)
n=
-jl 0 -jET' )J
v'(g) = ]Ze b mgti/? 2 (l-jZe;r;‘)(r;‘)" e " (A-150) ¢
n=] ;
] iz w -j&t N
~: w'(e) = e 7 3 g2 5 (1-3%7 e " (A-151) i
n=

where Tn and Tﬁ are zeros of wz(r) and wé(r), respectively, and they are

tabulated in Table A-I.

TABLE A-I
Zeros of WZ(T) and wé(r)

- 'j'"/3 v -j‘n/3
T, = |tn| e and t, = ITAI e

T T

5

n

1 2,33811 1.01879
2 4,08795 3.24819
3 5.52056 4,82010
4 6.78661 6.16331
5 7.94413 7.37218
6 9.02265 8.48849
7 10,0402 9.53545 ;
8 11.0085 10.5277
9 11.9300 11,4751
10 12,8288 12,3848

On the other hand, if £ is small and positive, one may employ a small
argument asymptotic expansion for the Fock functions as follows [6,11,12].




¥ 32 75 3
vie- JE e 2 TS T SR (A-152)

<M T
J : -J
u(g)1- ZZ; e 32, ?—%{3+ %—-’-’- e 1'59/2__“

(A-153) ;

i

v J-Tr . -j'ﬂ' {
vle)s G Y2 TS T T2 (A-154) |
_J.31r ) _J-TI’ :
v'(g) %’i e 71’g]/2+ 13.2, % e zr5;7/2---' (A-155) K
E
’: _j3'll' . _J.TI‘ 3
u'(z)«%ﬁ e Ta‘/2+ 3j 2, -‘,‘g{-—“— e 157/2“-- (A-156) g

For €28 the residue series representation with the first ten terms in the
summation may be used. For E<Ey» the small argument asymptotic expression
with the first three terms may be used, In the present study go is set

to be 0.6 as shown in [11,12].
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