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I. INTRODUCTION

An approximate asymptotic high frequency result is developed in this

paper for describing the electromagnetic field in the immediate vicinity

of a smooth, perfectly-conducting convex surface which is excited either by

an infinitesimal electric current source located in the immediate vicinity

of the surface, or by an infinitesimal magnetic current source located

directly on the surface. The orientation of the electric current source is

assumed to be along the surface normal; whereas, the orientation of the mag-

netic current source is assumed to be along the surface tangent. Thus, this

result essentially constitutes an asymptotic approximation to the electric

or magnetic type dyadic surface Green's function or its appropriate spatial

derivatives, for the above orientations of the infinitesimal electric and

magnetic current sources. One may therefore calculate the electromagnetic

field in the immediate vicinity of a smooth, convex, conducting surface

which is excited either by an aperture, or a thin short stub (monopole)

antenna located on that surface by integrating this asymptotic dyadic surface

Green's function (or it's appropriate derivatives) over the source distri-

bution either in the aperture, or along the length of the stub, respectively.

The source distribution in these cases may be defined in terms of an equivalent

tangential magnetic current distribution in the aperture [l], or in terms

of an equivalent electric current distribution along the stub, both of which

are assumed known. This result for the electromagnetic field generated by

an aperture or stub antenna on a convex, conducting surface may be employed

to calculate the mutual coupling between a pair of aperture or stub antennas

located on that surface via a procedure based on the reaction theorem [2].

The details of such an analysis of the mutual coupling between a pair of

radiating elements on a smooth, convex conducting surface are presented in

this paper for the case in which one of the radiating elements is an aperture

with the other element being either an aperture, or a stub; and also for

the case in which both of the radiating elements are stubs. These radi-

ating elements are assumed to be short and thin for reasons that will be

indicated later in Section V; in particular, the aperture is assumed to be

a thin rectangular slot which is less than a half wavelength long, and the



stub (or monopole) is assumed to be a thin wire which is less than a quarter

wavelength long. The problem of mutual coupling is of interest in the

following way. A knowledge of the mutual coupling between antennas on a

smooth convex surface is essential, for example, in the design of conformal

arrays, or in estimating the electromagnetic compatibility of various

multi-function antennas that are located on such a surface. In the present

context, the smooth convex surface could locally model the region of an

aircraft or spacecraft fuselage on which the conformal array, or a pair of

multi-function antennas may be located.

In the present asymptotic solution the surface field due to an

infinitesimal current source which is placed on a convex surface is associated

with Keller's surface rays [3,4,5] which traverse geodesic paths on the

surface between the source and the field points, respectively. In

particular, the field of these surface rays is expressed in terms of Fock

type integrals, and this field representation is uniform in the sense that

it remains valid in the neighborhood of the source and within the shadow

boundary transition (or penumbra) region; whereas, sufficiently far from

the source it can be transformed via Cauchy's residue theorem into a rapidly

converging series representation which is commonly referred to as the

creeping wave modal series. Furthermore, as the curvature of the surface

becomes vanishingly small, this result in terms of the Fock type integrals

recovers the known, exact solution for the planar surface. Basically, this

asymptotic result is valid provided that the surface curvature is neither

large, nor rapidly varying. When the source and the field points are not

directly on the surface, but are in the immediate vicinity of the surface,

the field is expressed in terms of a Taylor expansion which involves the

"soft" and "hard" type* Fock integrals for the surface field and its

*The "soft" and "hard" terminology employed here refers to the soft (or

Dirichlet) and hard (or Neumann) boundary conditions encountered in

acoustics. The application of these boundary conditions leads to the

acoustic (or scalar) wave solutions of the soft and hard types.
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derivatives. The soft and hard type Fock integrals denoted by u(W) and

v(9) which appear in all of the field expressions developed here are

tabulated by Logan [6], and their derivatives can be calculated numerically

in an accurate manner. Thus, the present result not only imparts a simple

physical interpretation in terms of surface rays, but it is also in a

form which is convenient for engineering applications.

It is noted that several other asymptotic solutions for the surface

currents excited by a tangential magnetic current moment on a convex

conducting surface have been obtained previously by various authors.

Hasserjian and Ishimaru presented an asymptotic solution pertaining to the

convex cylinder geometry [7]; they obtained terms to lowest order in
S Land where s is the arc length of the geodesic ray path on the surface

from the source to the observation point, pg is the radius of curvature of

the surface along the ray direction, and k is the free space wavenumber.

The nature of their solution is quite similar to that given earlier by

Wait [8) for a large conducting sphere excited by a stub (or a short

monopole) antenna. Later, Hwang and Kouyoumjian [9] constructed an

asymptotic solution for the convex cylinder case within the systematic frame-

work of the geometrical theory of diffraction (GTD) [3,4,5]. In order to

perform this extension of the GTD, they introduced the modal launching and

attachment coefficients for torsional surface rays. The launching and

attachment coefficients are proportional to Keller's surface ray modal dif-

fraction coefficients [4,5]; these launching and attachment coefficients were

introduced earlier in [1] for the case of non-torsional surface rays. The

result developed in [9] has been used in [10] for analyzing a simple,

conformal, cylindrical array problem. In [9], the vector nature of the

surface current (or the tangential surface magnetic field) is expressed

rather compactly in a dyadic form by employing the unit tangent and

binormal vectors fixed in the local surface ray coordinates at the source

and the field points, respectively. As a result, this GTD formulation in

[9] provides a simple physical interpretation for the manner in which the

surface magnetic field is excited by a tangential magnetic current source

on a convex cylindrical surface. As the field point approaches the
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neighborhood of the source, the creeping wave modal series representation;

i.e., the GTD representation in terms of the modal launching and attachment

coefficients becomes slowly convergent, and it is then transformed in [9]

into the same Fock type integrals as those employed in [7,8] and in this

paper. Such a procedure was mentioned earlier where it was noted that these

Fock type integrals can be transformed via the Cauchy residue theorem into

the creeping wave residue (or modal) series which are rapidly convergent

for large ks. In conformal array applications, the radiating elements are

not necessarily far apart so that in the calculation of the mutual coupling

between two closely spaced array elements it becomes necessary to evaluate

the surface field for small values of ks. In the latter case, higher order

terms in 1/ks become significant in the surface field calculation, and they

therefore must be included for accuracy; these higher order terms in l/ks are

not present in [7], (8] and [9]. Also, the result in [9] and [10] based on

the GTD indicates that the component of the surface magnetic field along the

tangent to the ray path may be expressed only in terms of the acoustic soft

type surface ray field, and likewise the component along the binormal

direction to the ray may be expressed only in terms of the acoustic hard

type surface ray field; however, such a simplified field decomposition

does not appear to provide a sufficiently complete field description as

indicated in some of the more recent analyses [11,12]. The GTD analysis of

[9] which represents an asymptotic approximation only to first order

nevertheless presents very useful and important concepts. In [11), Chan et.

al. obtain asymptotic expressions for the surface fields on a convex

cylinder, and also on a semi-infinite cone. The solution* in [11] is

expressed in the local surface ray coordinates as in [9), and it contains

terms (involving the Fock type integrals) to lowest order in l/kp g and to

two orders in /(ks). As the curvature of the convex surface becomes

vanishingly small, the solution in [11] thus recovers the exact solution

*Three different solutions are presented in [11]; here we refer to their

solution which is designated as Full Formula (and it's variant for the

circumferential current element).

4



for the planar surface only to terms in l/(ks) 2, but not to terms in I/(ks) 3 .

The solutions in [7], [9] and [11] for the convex cylindrical surface are

obtained via a generalization of their respective asymptotic solutions

which were developed first for the simpler, canonical circular cylinder

geometry. Such a generalization of the canonical solutions is based on the
principle of locality of wave propagation at high frequencies as employed in

the GTD procedure. Further generalizations to conical surfaces as in [11],

or to arbitrary convex surfaces may be performed heuristically in a similar

fashion. More recently, Lee [12] has presented an approximate asymptotic

solution for an arbitrary convex surface such that it recovers the exact

planar result, i.e., up to terms in I/(ks)3 , as the surface curvature becomes

vanishingly small. The solution in [12) is also expressed in terms of the

unit vectors fixed in the surface ray coordinates of [9]. The solution in

[12] is obtained by first modifying an asymptotic solution pertaining to

the canonical sphere geometry; this "modified" sphere solution is then sub-

sequently generalized heuristically to treat an arbitrary convex surface

via the principle of locality of high frequency wave propagation. In

particular, an additive type term is introduced into the solution for the

sphere problem in [123 in an ad hoc fashion, to construct that "modified"

sphere solution. As indicated in [12], the only justification for including

this "ad hoc" term is that it is essential for the purposes of obtaining

accurate results when the "modified" sphere solution is applied to the

circular cylinder geometry; furthermore, when this modified solution

is applied back to the sphere geometry, it does not yield numerical values

which are significantly different from those based on the un-modified

sphere solution. Due to the fact that the solution for the arbitrary

convex surface, and hence for the convex cylinder case in [12] is based

on the sphere solution to begin with, it therefore always contains both,

the acoustic "hard" and "soft" type Fock integrals corresponding to the

two types of scalar potentials from which the sphere solution is con-

structed. However, it is well known that for an axially directed magnetic

current source on a perfectly-conducting cylinder, only the scalar potential

corresponding to the acoustic "hard" function is required to completely

describe the electromagnetic field which is generated by that source.
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It is noted that the field solutions in (7], [91,and [11J, contain only the

acoustic hard type potential for the case of an axial magnetic current

source on a convex cylinder. An interesting difference between the

cylinder result in [11] and the result in [12] is that a "cross term"

exists in the dyadic representation for the surface field of [11]; whereas,

it is absent in [12) since the latter solution is based on the sphere

solution. Such a cross term which involves higher order range (or (ks)
-2 )

dependent terms is also absent in [7) and [9), because the cylinder

solutions in [7) and [9] do not contain these higher order range terms.

In this paper, an asymptotic result for the surface fields on an

arbitrary, convex, perfectly-conducting convex surface is obtained by

generalizing asymptotic solutions which are first constructed in Appendices

I and II for the surface fields on canonical, perfectly-conducting,

circular cylinder and spherical geometries, respectively. The solution

for the sphere problem in Appendix II is essentially based on the method

employed by Fock [13]. The excitation for these canonical circular cylinder

and sphere problems analyzed in Appendices I and II includes not only a

magnetic current source, but also an electric current source. On the other

hand, only the case corresponding to the magnetic current source excitation

is considered in [7,9,11,12]. The canonical solutions developed in the

Appendices are summarized in a dyadic form similar to that in [9,11,12]

in terms of the surface ray tangent and binormal vectors. It is noted that

the dyadic surface field representation for the canonical cylinder qeometry

contains a cross term similar to that present in [11], but the form of this

cross term is not identical to that in [11]. Furthermore, the solution

for the axially directed magnetic current on the cylinder contains only

the acoustic hard type potential as in (7,9,11]. The case of magnetic

current source excitation is summarized in Section II, and likewise the

electric current source excitation case is summarized in Section III.

Based on the information present in the results for both, the canonical

cylinder geometry and the canonical sphere geometry, these results are in

turn heuristically generalized with the aid of the local properties of

high frequency wave propagation, to treat an arbitrary convex surface
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geometry as indicated in Section IV. Only terms to lowest order in -

are retained in this analysis. The effect of torsion associated with
the surface rays is clearly identified in this solution through the

presence of a factor T/K, where T is the surface ray torsion and

K=(pg) " . As the surface curvature becomes vanishingly small, the

present solution recovers all terms in the known, exact solution

for the planar geometry. Expressions for mutual coupling between slots

and/or stubs (monopoles) are presented in Section V in terms of the

results obtained earlier in Section IV. Some preliminary numerical cal-

culations indicating the accuracy of the results developed in this

paper are also shown ir Section V.

II. SUMMARY OF ASYMPTOTIC SOLUTIONS TO THE CANONICAL
PROBLEMS FOR THE MAGNETIC CURRENT SOURCE CASE

As mentioned earlier, the problems involving the electric and magnetic

current source excitation of the circular cylinder and sphere geometries

which have been analyzed in Appendices I and II, respectively, serve as

canonical problems in the sense that their solutions are instrumental to

the development of a solution for an arbitrary convex surface, as indicated in

Section IV. Hence, the results obtained in Appendices I and II are

summarized in this section for the case of magnetic current source exci-

tation; whereas, corresponding results for the electric current source

excitation are summarized in Section III.

The results for the circular cylinder are summarized in part A of this

section, and the results for the sphere case are summarized in part B.

These results are expressed below in an invariant form in terms of the

local surface ray coordinates as in [9].

A. Asymptotic Results for the Canonical
Circular Cylinder Problem

The circular cylinder geometry of interest is illustrated in Figure 1.

The infinitesimal magnetic current source, N which excites the circular

cylinder may be represented in terms of the Dirac delta function by
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m

The source T is assumed to be placed at P on the surface of the

cylinder and it is oriented tangential to the surface. The quantity pm

refers to the strength of the infinitesimal magnetic current (or current

moment), and " is an arbitrary position vector; whereas, T' is the position

vector at the source location N on the circular cylinder.

First, expressions for the electric and magnetic fields are given

for the case when the field point is located at a point PN which is

on the surface. Next, an expression is given for the normal component of

the electric field when the field point is moved from PN to the point P

which lies above but in the close vicinity of the surface.

From the details of the analysis in Appendix I, it is observed that

the field may be interpreted to arrive at PN from the source point at P;

via a geodesic ray propagation path on the surface. It is noted that in

the case of the cylinder, the geodesic surface ray paths are helices. The

vector nature of this field at PN may be expressed compactly in terms of a

triad of unit vectors fixed in the surface ray coordinates at P and PN'

These unit vectors are defined as follows. Let A and ;' denote the unit

outward normal vectors to the surface at PN and P;, respectively; likewise,

let t at P and t' at P,, denote the unit vectors which are oriented along

the forward tangent to the geodesic surface ray path from P; to PN" Then

the unit binormal vectors at PN and P; associated with the geodesic ray

path between these points are defined by b = t x n and b' = t' x n',

respectively. These unit tangent, normal, and binormal vectors constitute

the triad of unit vectors associated with a surface ray. The surface ray

geodesic path between PA and PN' and the associated triad of unit vectors

at these end points are illustrated in Figure 1. In addition, the pair of

unit vectors (Tj,'2) and ( 1,' 2 ) along the principal directions on the

cylinder surface at P and PN are also illustrated in Figure 1. It is noted

that the following relationships exist between the various unit vectors.

8



CoS6 = t"T T"b' = T= 2
, (2a)

sin6 = tc =- (tigb') -b) = ' 2  (2b)

Referring to (2a;2b), and (A-34) of Appendix I, one may now express the

tangential magnetic field 1 t at PN on the surface due to the source 9 at

PA in terms of the unit vectors defined above as follows.

+ '6t i-- ] v(l)+(f). [u(m)-v() +

+ (l -- L v(w*() s[u(&)-v(&)] G(ks) (3)

where a = radius of the circular cylinder,

k2Y e -jks
G(ks)= =j , (4)

gms; with m= kp 1/3 and pg = a/sin 26. (5)

Pg()

The factor f is defined as I/sin 2s in (A-27b) of Appendix I.

The quantity Y. is the free space admittance. The quantities k and s refer

to the free space wavenumber and the length of the surface ray geodesic

path from P to PN; whereas, pg denotes the radius of curvature of the
surface along the ray (or t) direction, as indicated previously in

Section I. The result in Equation (3) represents H1t along a given geodesic

ray path from Pto In the circular cylinder problem, there are two,

dominant, helical geodesic paths from P; to PN' and only one such path is

indicated in Figure 1; the other geodesic path (not indicated) encircles

the cylinder in the opposite sense with respect to the one shown in Figure 1.

9



The total field is then the sum of the fields of each of these rays. The

result in Equation (3) also applies to the other geodesic path provided

that the unit vectors t',b',t,b,n, and the quantities s, and E are now

associated with this other ray path. In addition, infinitely many

geodesic surface ray paths corresponding to multiple encirclements of the

cylinder (before reaching the field point) do exist; however, their con-

tribution is negligible for large ka. The functions u(E) and v(E) refer to

the "soft" and "hard" Fock type integrals which are defined in Equations

(A-22a) and (A-29) of Appendix I. As mentioned earlier, Logan has provided

tabulated values of the Fock integrals u(E) and v(E); in addition, he has

also given rapidly convergent series expansions to accurately represent these

functions [6]. The series expansions for u(E) and v(E) are also indicated

in [11,12]. Although the series expansions in u(E) and v(C) are available

in [6,11,12], they are presented in Appendix V for the sake of completeness;

it is noted that separate expansions exist for large and small values of

4, and these separate expansions provide numerical values which do overlap

for moderate values of E as shown in [11). The result in Equation (3) is

therefore in terms of functions which can be computed rather easily. One

may express this result in Equation (3) more compactly as

t (PN) 'b l--(l- s v()+t' s-(l- -s v() G(ks)

+ Pm' 2T2 (f) iCuWs()'v()])G(ks) (6)

since T + T^T^ = Is, where Is denotes an identity dyad on a surface so

that Pm*ls=Pm , and (T-B')B + (j.t'^)i = T2 . Even though the result in

Equation (6) is more compact than the one in Equation (3), the expression

in Equation (3) indicates more directly the fact that the field It which ist
produced by the axial or the Ti-component of the source Pm is substantially

different from that which is produced by the circumferential or the T-

component of pm. In particular, the T' or the axial component of

generates a field IT which contains only the hard type Fock integral v(&)
t

10



as expected; whereas, the Ti-component of Pm generates both, u(9) and

v() type terms. That the Tj component of Tm generates only a v(t) type
term is in agreement with the results in [7,9,11]; on the other hand, the

result in [12] indicates that this axial component of Tm generates both,
u(c) and v(t) type functions in the cylinder problem. Also, the "cross"

term of the type -m.;2(---)G(ks) in Equation (6) is also present in [11],

except that the functional form of this term in [11] is somewhat different

from that in Equation (6). Such a "cross term" is not present in the

result of [12]. Furthermore, except for the important difference which

exists in the functional form of this "cross term", the result given in [11]

otherwise agrees with that of Equation (6) up to terms in 1/ks and
1/(ks)2 . It is noted that terms of order I/(ks)3 are present in Equation

(6), but they are not present in [11).

From Equation (A-36b) of Appendix I, and the relationships in Equation
(2a;b), one may similarly express the component of the electric field m

n
which is normal to the surface at PN' and which is excited by the source R"

at P, in terms of the surface ray coordinates as follows.

nn(PNMYo)-lm 'n lsV +; coss; f s[U(O-v(O)G(ks). (7)

As before, Equation (7) represents the field of a "typical" surface ray path

from P; to P.; there are of course, two such dominant ray paths and the field

of both of these rays must be included to obtain the total field.

The results in Equation (7) may now be generalized such that the field

En is evaluated not on the surface at N1 but is instead evaluated at a

point P which lies above the surface. It is assumed that the point P lies
in the immediate neighborhood of the surface. In particular, the point

P on the surface represents the projection of the point P along the normal
to the surface, and the height of the point P above PN is denoted by d2
as shown in Figures 1 and 2. Thus,

11I
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= IP. = d2 . (8)

From the comments at the end of Appendix I, it is seen that the results for

Em(P) is the same as that in Equation (7) with the exception that the

functions u(E) and v(E) must now be replaced by the more general Fock

functions Fs(E,yly 2) and Fh(,yl,y2), respectively, which are defined

in Equation (A-139) and Equation (A-138) of Appendix V. Hence,

E:mnn(P)' ,(Yo'm(' - s F h(EOY2)+;i cosS n f &{FsC&,OY2)-Fh(9,Oy2-

.G(ks)
(9a)

The quantities yl and Y2 can be shown to be related to d, and d2 as follows.

Yl = m lkd1 = 0 (since M is at P); Y2 = m-1 kd2 MOO

Since kd2 is assumed to be much smaller than ka in the present case (i.e.,

P is in the immediate neighborhood of the surface), a Taylor series approxi-

mation for the functions Fs({,y l ,y 2) and Fh({,y l ,y2 ) may be employed as

indicated in Equations (A-146) and (A-145) of Appendix V. Such an

approximation appears to be valid only if the value of E is not too close to

zero; however, it has the advantage that for sufficiently small kyI and ky2,

the functions Fs, and Fh may be evaluated in terms of the derivatives of

the functions -i-u({), and -v(E), respectively; these derivatives

with respect to the argument E may be easily computed numerically in an

accurate fashion; on the other hand, accurate approximations for these

functions and their derivatives are available (see Appendix V).

B. Asymptotic Results for the Canonical
Sphere Problem

The sphere geometry is illustrated in Figure 3. The infinitesimal

magnetic current source P is located at P4 on the sphere and it has been

13
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defined previously in Equation (1). Following the development in Part A

for the circular cylinder, the tangential magnetic field 1ln at P on at N
perfectly-conducting spherical surface which is excited by Ri may also be

expressed in terms of the local, geodesic surface ray coordinates as

follows. Firstly, it is noted that the geodesic surface ray paths on the

sphere are great circles. The triad of unit vectors, (',n',b') at P,

and (t,n,b) at PN, which are associated with a geodesic (great circle)

path that connects these points are illustrated in Figure 3. Secondly,

the following relationships exist between the unit vector triad associated

with a surface ray path, and the usual triad of unit vectors ,

associated with the spherical coordinates.

e t ; - ; r n . (lOa);(lOb);(lOc)

Also, O<(de<(

Fm - t' -cos ; 'm" b' -sin f (1d);(l0e)

14



I
When Equations (lOa-lOe) above are incorporated into Equations (A-lO4a;b;c)

j of Appendix II, one obtains

where

D = -e, a quantity which is related to the surface ray
, divergence factor, (12)

and

with s = ae. (13)a'

As in Equation (6), the above result in Equation (11) is associated with

only one geodesic (great circle) path between PA and PN as shown in

Figure 3. A second geodesic (great circle) path also exists between PA

and PN; this path is not shown in Figure 3, and it corresponds to the one

which arrives at PN after being launched at Pj in a direction opposite to

the path shown in Figure 3. The result in Equation (11) applies also to

the other geodesic path provided the unit vectors, t',b',t,b, and n,

and the quantities, s, 0, D and are now associated with this other ray

path. The contribution from additional, multiply encircling surface rays

is negligible for large ka. Except for the factor D which appears with

the square brackets in Equation (11), this result agrees with the one obtained

by Lee [12). It appears that D2 has been approximated by unity in [12]. It

is noted that e = w, or ks = kaw is the position of a focal caustic of the

surface rays on a sphere. At e = n, D is unbounded, and the result in

Equation (11) must be modified as indicated in Appendix III. In particular,

the total surface magnetic field, lt(total); i.e., the sum of the fields Rtt t
associated with "both" of the great circle geodesic paths from PA to PN

must be replaced by

15
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ITt(P. N E% - i) u( Tc
PN in the close
neighborhood
of e=f

PMT (14)

where the caustic correction factors Tcl and Tc3 are given in Equations (A-128)

and (A-130) of Appendix III. Away from 6=w, the result in Equation (14)

accurately approximates the sum of the field associated with each of the

two geodesic (great circle) ray paths from P to P in which the field of

either one of these rays is typically given by Equation (11).

From Equation (10), and Equation (A-lOg) of Appendix II, one may also
write the normal component of the electric field Em at P due to the

n P d
source M at N, in terms of the surface ray coordinates associated with a

typical geodesic surface ray path between P and PN as follows.

,e ~ )-l-*m-bmflhi. Qjv(t)D G(ks). (15)

Actually, the total field at PN is the sum of the fields associated with

the two dominant geodesic (great circle) paths which exist between the

points PA and P on the sphere; the form of the field along each of these

paths is as in Equation (15).

The result in Equation (15) may be generalized to include the case

in which the field point is no longer on the surface at PNI but is moved

to a point P which lies above the surface; it is assumed in this generali-

zation however, that P is in the close neighborhood of the surface. As

before, PN is the normal projection on the surface of the Point P which

is located a distance, d2 above the surface. The relationship between

PN and P Is as given in Equation C8). From the discussion at the end of

16



Appendix II, it is seen that when d2#1O, the v(&) in Equation (15) must be

replaced by Fh(h,yly 2 ) of Equation (A-138) with yl=O. The quantities yl

and Y2 are as in Equations (9b) and (9c), respectively. Since kd2 is

assumed to be much smaller than ka, Fh(tyl-y2) may be approximated by a

Taylor series for small Y2 as in Equation (A-145) provided that C is not

allowed to approach too close to zero. As 6-w, D-, and the total surface

electric field rn(total) ; i.e., the sum of the fields tn associated with

"both" of the great circle geodesic paths from P4 to PN must be replaced by

tn ( t Ot a l ) ( P N  (Yo)_ -(Ipm" j~ Tc(16

where the caustic correction factor Tc2 is given in Equation (A-129) of

Appendix III. If PN is changed to P in Equation (16), then v(g) must be

replaced by Fh(&,yly 2 ) with yl=O.

III. SUMMARY OF ASYMPTOTIC SOLUTIONS TO THE
CANONICAL PROBLEMS FOR THE ELECTRIC
CURRENT SOURCE CASE

In this section, asymptotic solutions for the fields in the immediate

vicinity of the canonical perfectly-conducting circular cylindrical, and

spherical geometries are summarized for the case when they are excited by

an infinitesimal electric current source. The electric current source is

placed in the close neighborhood of the cylindrical and spherical geometries,

and the orientation of this source is assumed to be along the surface

normal. As mentioned previously, the asymptotic solutions to these

canonical problems are developed in detail in Appendices I and II for the

circular cylindrical and spherical geometries, respectively. The results

for the circular cylinder case are presented in Part A of this section,

and corresponding results for the spherical case are presented

subsequently in part B.
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A. Asymptotic Results for the Canonical
Circular Cylinder Problem

The circular cylinder geometry is illustrated as before in Figure 1.

The source and the field points are initially chosen to lie at P4 and PN

on the surface. The electric current source is defined as

= Pe (IF-F' I). (17)

It is noted that T' is the position vector of the source at P4 on the

cylinder surface, and the quantity pe represents the strength of the

infinitesimal electric current (or current moment). From Equation

(A-39) of Appendix I, the tangential magnetic field et at P due to at

P4 propagates along a typical geodesic surface ray path as shown in

Figure 1. This field may be expressed in terms of the unit vectors

t',n',b' and t,n,b fixed in the surface ray as,

(P)-Y°- ( n  n T
s  ^ 1 s)

t(N) 0[l-ie" 'flv(hb+L cosa 2 f  Lu( )-v(1) G(ks).
(18)

There are of course two dominant geodesic surface ray paths as mentioned

earlier; only one such path is shown in Figure 1. The field of either of

these rays is given by Equation (18).

If the source at N is now raised a distance d1 above the surface

to the point P' as shown in Figure 1, where P' is in the close vicinity of

the surface, then the result in Equation (18) must be replaced as before

by

pe jFyo)' nCoss Tf {,F (&,yl 0O)-Fhy

.G(ks) (19)

It is noted that Y2 -mkd2 - 0 in Fs(,y l y 2 ) which appears in Equation
h
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(19) since P is on the surface. Only Yl m'Ikd may be non-zero. Further-

more, PUT'=IPP' In' = dln'. As before, the Fs(C,y 1 ,O) functions may be

approximated by a Taylor series valid for suf~iciently small kdI (kd1 <<ka)

and for 9 not too close to zero, as indicated in Equations (A-145) and

(A-146) of Appendix V.

From Equation (A-42) of Appendix I, the component of the electric

field V, which is normal to the surface at PN' due to T at P may be

expressed in terms of the surface ray coordinates associated with a

"typical" geodesic surface ray path between P4 and PN as follows.

n(pN)N-(yo)'2Pe- n'nI,- i- - s( v() f s[u( -v({]

k1- -(l ~)[u(g)-v(&G(ks), (20a)

or

Ee(pN2 p h- l- s)u(&)+f -[u(&)-v(w)jG(ks)(20b)

One notes that if source and observation points at P4 and PN are both moved

to the points P' and P, respectively which lie above the surface such that

= dln' with kdl<<ka, and "N = d2n with kd2 <ka, then the u(&) and

v(4) in Equation (20) must be replaced by Fs(",yl,y 2 ) and Fh(",y,)

respectively. Thus,

n o)- Teri^( -S(L q{l jh(CllY2)+ f kr5IFC,y11y2J

- F h(&,yly 2)J- ,71{- S)(F5(4,y,,y,)-F h(&9YlIY 2) )G(ks),

(21)

with y, m'kd,.
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B. Asymptotic Results for the Canonical
Sphere Problem

The geometry of the sphere problem is illustrated in Figure 3. The

source Was defined in Equation (17) is initially located at Ph on the

spherical surface. From Equations (lba-b0e), and (A-lbO) of Appendix II,

the tangential magnetic field H1e at PN on the sphere due to the sourcet
at Ph may be expressed in terms of the surface ray coordinates associated

with a typical geodesic great circle ray path between Ph and PN as

indicated below.

R e ,__(y Yo)-l'e- [I ' - v D G(ks). (22)

As before, the total field at PN is the sum of the fields associated with

the two dominant geodesic surface ray paths which exist between the points

Ph and PN on the sphere; the form of the field along each of these paths is

given by Equation (22). As e-, PN approaches the focal caustic of the

surface rays; hence, the total surface magnetic field He(total); i.e., the

sum of the fields Ht associated with "both" of the great circle surface ray

paths from Ph to PN must be replaced by:

e(total I  1

It (PN 'V+(Yo e )  'T-sv( {)T 2  (23)

The factor Tc2 is defined in Equation (A-129) of Appendix III. Also, if

Ph is moved to P' with PNpI=d 1 ', and kd1<<ka as before, then v(&) in

Equation (22) must be replaced by Fh(&,y I,y 2 ) with Y2=O.

From Equations (bOa-bOe), and (A-112) of Appendix II, the normal

component of the electric field, En at PN due to J at Ph is expressed as

follows

1-eNF 2:(e-n.; ks(- -s) v(&) D G(ks). (24)
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Again, the result in Equation (24) represents the field associated with a

"typical" geodesic surface ray path between the points P and PN on a

sphere. If the source and observation points at P and PN are both moved

to the points P' and P, respectively which lie above the surface such that

PN"=dln;' with kd1<<ka, and PNP=d2n with kd2<<ka, then v(M) in Equation

(24) must be replaced by Fh(hyl1 y2 ). Finally, if e-ov, the result in

Equation (24) becomes singular, and the total electric field r (total); i.e.,
the sum of the fields 'nn associated with "both" of the great circle paths

between P h and PN must be replaced by

)E ,. v(y )-- [-L(- s-j v(t)Tc 1 (25)
'r (PN PeYo 'e ksv c

where the caustic correction factors Tcl is as given by Equation (A-128)

of Appendix III.

IV. GENERALIZATION TO ARBITRARY CONVEX SURFACES

In this section, the results which were presented in Sections II and

III for the canonical circular cylinder and spherical geometries will be

generalized to the arbitrary convex surface case. In particular, the

results pertaining to the surface fields which are excited by infinitesimal

electric or magnetic current sources located on a smooth, perfectly-

conducting convex surface of arbitrary shape will be developed in this

section.

The generalization of the canonical solutions to treat the arbitrary

convex surface case is based on the locality of high frequency wave propa-

gation as employed in the GTD procedure. Thus, the results pertaining to

the canonical circular cylinder geometry which were presented in Sections

II-A and III-A for the magnetic and electric source excitations, respectively

may be generalized via the GTD procedure to treat the arbitrary convex

cylinder with a slowly varying curvature, by assuming that the neighborhood

of each point on the convex cylinder can be approximated by a circular

21
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cylinder of the same local radius of curvature as the convex cylinder.

While such a generalization to the convex cylindrical surface of variable

curvature is fairly direct, an analogous generalization presented here to

treat a smooth convex surface of any shape is somewhat less direct, and

more heuristic in nature for the following reasons. The circular cylinder

constitutes a "developable" surface; thus, it possesses an infinite radius

of curvature along its "generator" which also constitutes one of the
"principal directions" on the surface. In addition, the surface geodesics

are always straight lines on the "developed" surface. The arbitrary convex

cylinder and the cone also belong to the class of developable surfaces;

hence, they possess all of the properties of developable surfaces mentioned

above in connection with the circular cylinder geometry. As a result of

these common geometrical properties which characterize the cylinder and

cone, it is therefore reasonable to conjecture that a GTD type generalization

of the results pertaining to the canonical circular cylinder geometry would

be accurate for treating not only the convex cylinder, but also the cone

geometry. This conjecture has of course been verified by Keller [4] in

the case of the GTD analysis of the scattering of waves by a smooth convex

cylinder wherein the GTD solution based on the generalization of the

corresponding canonical circular cylinder solution was found to agree with

the rigorous asymptotic high frequency solutions to the problem of scattering

of waves by elliptic, and parabolic cylinder geometries. Recently, Chan

et. al. [11] have indicated that they are indeed able to verify that the

GTD prescription for the surface ray field on a cone which is based on a

generalization of the canonical circular cylinder result, is in agreement

with the corresponding rigorous asymptotic high frequency solution for the

surface field on a cone; this verification in [11) pertains to a cone

with an acoustic hard (or the Neumann) boundary condition. On the other

hand, a convex surface with an arbitrary shape is in general neither a

surface of revolution, nor a developable surface; hence, a generalization

of only the results for the canonical circular cylinder geometry is

expected to be inaccurate to treat an arbitrary convex surface; clearly,

additional information is required in order to construct an asymptotic

result which is useful for treating this case since one notes that the two
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principal radii of curvatures on an arbitrary convex surface are in general

different and finite. In addition, the torsion associated with the geodesics

on an arbitrary convex surface is generally not a constant. In contrast,

the canonical circular cylinder geometry possesses a constant principal

radius of curvature along the circumferential direction on the surface;

whereas, it exhibits an infinite radius of curvature along the other (or

the axial) principal direction. Furthermore, the torsion is constant along

a given geodesic path on a circular cylinder. Of course, a simple canonical

geometry for which both principal radii of curvatures are finite is the

sphere. The canonical problem of the radiation by an infinitesimal

electric or a magnetic current source on a perfectly-conducting sphere has

been treated in Appendix II as mentioned earlier. However, the sphere has

a constant curvature, and hence the surface geodesics on a sphere are great

circle paths which possess no torsion. A third canonical problem for which

a well known, exact solution is available is the problem of the radiation

by an infinitesimal electric or a magnetic current source on a perfectly-

conducting planar surface of infinite extent. The planar geometry has zero

curvature; and the surface geodesics for this case are straight lines which

are obviously torsionless. Even though the convex cylinder, and the

canonical sphere geometries do not possess all of the general properties

associated with a convex surface of an arbitrary shape, the asymptotic

solutions pertaining to these geometries including the exact solution for

the planar case nevertheless do provide some useful information based on

which an approximate asymptotic solution may be constructed for the

arbitrary smooth convex surface. Thus, an asymptotic solution for the surface

fields excited by infinitesimal electric or magnetic currents located on a

smooth, perfectly-conducting convex surface of any shape is developed here

on the basis of certain assumptions. Some of these assumptions are com-

pletely heuristic in nature. In particular, the development of this

asymptotic solution is based on the following properties and assumptions:

(a) An asymptotic solution for the arbitrary convex surface should

be expected to recover the solutions pertaining to the canonical circular

cylinder and sphere geometries when it is specialized to the latter cases,
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respectively. This solution should also be expected to reduce to the well

known result for the planar surface in the limit as the curvature of the

convex surface becomes vanishingly small.

(b) Since the sphere geometry exhibits uniform (or isotropic) surface

properties along different directions on the surface that correspond to

the different geodesic paths which originate from a source on the sphere, the

scalar components of the dyadic transfer function relating the surface field

at the receiving (or observation) point to the launching (or source) point

are also independent of these directions as seen from the canonical sphere

results of Sections Il-B and III-B, respectively. On the other hand, the

circular cylinder exhibits non-uniform (or non-isotropic) surface properties

along the different directions that again correspond to the different

geodesic paths originating from a source on this surface. As a result, the

scalar components of the dyadic transfer function for the surface field on

a circular cylinder in general are a function of the launching/receiving

direction on the surface. It is easily seen from the canonical circular

cylinder geometry that this non-uniform surface property results directly

from the variation of the geodesic radius of curvature, pg as the

launching/receiving direction of this geodesic path is changed at the

source/receiver location. Thus, as the launching direction of the geodesic

ray path is changed at the source (launch) point on a circular cylinder,

from the principal direction along the circumference to the other principal

direction along the generator (axial direction), the radius of curvature

P in the direction of the geodesic path increases monotonically from

pg a to Pg As a result of the change in pg, the torsion associated

with the geodesic path also increases from zero to a maximum value as pg

increases from a to 2a. As expected, however, the torsion then decreases

back to zero as pg increases from 2a to infinity, since the geodesics along

the principal directions on a convex surface must be torsionless. Referring

to the results for the surface fields on a circular cylinder as given in

Sections 11-A and III-A, one notes that the dependence of the scalar com-

ponents of the surface field dyadic transfer function upon variations in

pg. resulting from a change in the launching direction of the geodesic
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path at the source can be identified more definitely if the unit vectors

and 2 in Equations (6), (7), (18), and (20a) are expressed in terms of the

unit vectors t', b, t and b fixed in the surface rays. The corresponding

results in Equations (11), (15), (22), and (24) for the sphere case have been

completely expressed in the surface ray coordinates. Once the cylinder re-

sults are also completely expressed in an invariant form in terms of the same

surface ray coordinates, the precise differences between the cylinder and

sphere solutions should become apparent. Since the goedesic surface ray

paths in general posses non-zero torsion in the case of the cylinder; whereas,

they are torsionless in the case of the sphere, it is therefore also reason-

able to expect that any differences between the cylinder and sphere solutions

may be primarily caused by the effects of torsion associated with the surface

rays on a cylinder.

In order to express Equations (6), (7), (18), and (20a) completely in

terms of the surface ray coordinates, one makes use of the following relation-

ships.

a = cos6t'-sin6b' ; cos6t-sinb (26a;26b)

i sin6i'+cos6b' T "2 = sin6t+cosdb (26c;26d)

T2 T2 = sin2 t't+cos2 b'b+sin6cos6t'b+b't) (26e)

Incorporating Equation (26e) into Equation (6) yields

~~~ (f.)'v(tj+T2 _j(()v(t)}]

+ h[2 L v(t) L ( )2)vFi +

+ [i,6+bitT o {u()-v() D G(ks) . (27)

The factor D which is related to the surface ray divergence factor is unity

for the circular cylinder; however, it is introduced symbolically in Equation

(27) above to facilitate a direct comparison with the sphere results. The

factor T (=cot6) is identified as a ratio of the surface ray torsion T and
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the surface curvature K(Ul/p ) along the ray direction. It is easily verified

that for a given helical geodesic surface ray path on a circular cylinder,

2 ; sin 2 6 . (28a;28b;28c)
To cot6 = T/K ; T =  2aL ;I p)-

Thus, the quantity T0 is a constant for a given helical surface ray on the

cylinder, and indeed, it serves to uniquely specify that helical geodesic

path. When T (and hence T ) is allowed to vanish as in the case of the sphere,

the above result in Equation (27) for the cylinder reduces exactly to the

result in Equation (11) for the sphere, except for the (L) 2v( )G(ks) term

which is different from the (L)
2u( )G(ks) present in the sphere case. As J

expected, the significant differences between Equations (27) and (11) are

thus attributed to the presence of the torsion factor To=T/K. Proceeding

next to rewrite Equation (7) completely in terms of the surface ray coordi-

nates, one obtains

n(PN)(Yo)-Pmlm"(b' n -s] v(C)+T2 0

+ t'n TL [U()-v()D G(ks) (29)ks u

As in Equation (27), it is noted that D in Equation (29) is unity for the

cylinder. When the torsion T is allowed to vanish, the above result in

Equation (29) for the cylinder also reduces exactly to the corresponding

result in Equation (15) for the sphere. One may next rewrite Equation (18)

in the same way that Equation (7) was rewritten to obtain (29). Thus

it(PN) -(Yo)~e" ' {- ks)v(E+T2 L (u(&)-v( ))}+

+ n'tT O L [u(c)-v(E))D G(ks). (30)

Finally, Equation (20a) may be rewritten as

pen -2 p L v()() E +T 2 L[u(ci-v(c)) D (31)
(31)
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after noting that f-l=T2 for the circular cylinder. Again the factor D in0Equations'(30) and (31) is unity for the circular cylinder and it is introduced

symbolically in the above equations to facilitate a direct comparison between

the cylinder and the sphere solutions. Clearly, Equation (30) reduces directly

to the sphere result of Equation (22) when the torsion is allowed to vanish; on

the other hand Equation (31) reduces exactly to the sphere result of Equation

(24) if T (and hence To ) is set equal to zero except for the term (,7)2u( )G(ks)

which is different from the term (')2 v(g)G(ks) present in the sphere result.

However, the dominant differences between the sphere and the cylinder solutions

are clearly attributed to the presence of torsion associated with the surface

rays. The only other differences that exist between the cylinder and sphere

solutions involve terms with different Fock functions; i.e., they involve terms
f the type (k2) 2U(()G(ks)and ( O)2V(F)G(ks). One of these terms occurs in

the sphere solution; whereas, only the other occurs in the cylinder solution,

and vice versa. Notice that both, (,-)2u(c)G(ks) and (,.-_)2v()l(ks)behave

essentially as (sG(ks) when ks is small; furthermore, these terms of order
1 3 are(s are important only for very small ks values. Consequently, the failure

of the cylinder solution to exactly reduce to the sphere solution to terms in
(-)3, when T is set to zero, is not a serious problem from the point of view

of being able to generalize these canonical solutions to the arbitrary convex

surface. The following heuristic procedure is proposed for generalizing the

cylinder results in Equations (27), (29), (30), and (31), and the corresponding

sphere results in Equations (11), (15), (22), (24) to treat the arbitrary

convex surface. The results in Equations (27), (29), (30), and (31) for the

cylinder may be assumed to be applicable for treating an arbitrary convex

surface as well via the local properties of propagation and diffraction at

high frequencies~provided the geometrical properties of the arbitrary surface

are slowly varying with respect to the wavelength. The geodesic ray paths

on an arbitrary convex surface in general possess non-zero torsion. The

effects of torsion on the surface ray field are then accounted for by the

factor To present in Equations (27), (29), (30), and (31). The torsion T

and curvature K appearing in T of Equatin (28a) are given by Equations

(28b) and (28c), respectively for a circular cylinder. For an arbitrary

convex surface one may write
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T -T "T K -K ) ; K C co2 Klsin2 62 (32a;32b;32c)

with

= cosa ; t.r 2 = sin6 , (32d;32e)

in which I and ;2 are now the principal directions at any point on an

arbitrary convex surface, and K1 and K2 are the principal surface curvatures.

It will be assumed for the sake of definiteness that

Ki j i K (32f)
f K2 >

The result for torsion (or T) in Equation (32b) which applies to a geodesic

surface ray path on an arbitrary convex surface has been obtained in a simple

manner through the use of differential geometry; whereas, the result in

Equation (32c) for the curvature (or K=l/pg) is simply a statement of Euler's

theorem. For surfaces with slowly varying geometrical properties, one may

symmetrically split the factor T0 between the launch (or source) point and

the receiving (or field) point on the surface to represent an averaging

type effect. Such a symmetrical split is also essential for preserving

reciprocity. Thus*

0o ± K(PN) I" I K(P )

Next, one introduces the dimensionless shape factors As and Ac to appropriately
weight the ( s.) 2U({) G(ks), and the k-)2v(C)G(ks) type terms, such that only

one or the other type term is correctly present when the results for the

arbitrary convex surface are specialized to either the circular cylinder or

the sphere. In particular, this would require that As and Ac have the follow-

ing properties:

* The - sign is chosen in (33) if I is negative at Pi and/or PN; otherwise
the + sign is chosen
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AS+Ac - (34a)

r, sphere
A (34b)

0, cylinder

Ac , cylinder(3c

As will be seen later, the property in Equation (34a) is also essential for

recovering the planar surface result as K-+O. A simple choice of As would

be to define it as the ratio of the principal curvatures; thus,

As K _ 1, for a sphere (since KI=K2)As =K 2 t0, for a cylinder (since KI=0) (34d)

From Equation (34a), Ac must then be defined as

K2-Kl = 1, for a cylinder (since Kl=0) (34e)

c 2 10 for a sphere (since KZ=1(2 )

Furthermore, the above As and Ac will also be symmetrically split between

the launching and receiving points to preserve reciprocity and to represent

an averaging type effect for surfaces with slowly varying geometrical pro-

perties. It follows that,

/KI( KI(P N

As = I/ * -- (• ) ; Ac=I-A s (with As as in Equation (35a)(35a;35b)

The shape factors As and Ac essentially serve to smoothly interpolate between

the cylinder and sphere solutions; this role of the shape factors together

with the relation in Equation (35a) guarantees that the conditions set forth

in part (a) are satisfied by the solution for the arbitrary convex surface.
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As is evident from the cylinder and the sphere solutions, the variation

of the surface field between the launching and receiving points is primarily

governed by the Fock type functions u(C) and v(&). In the case of the cylinder,

the Fock parameter E - - msc; whereas, E = for the sphere. This Fock
Pg a

parameter & may be readily generalized in the usual manner to treat the

arbitrary convex surface case by employing the local properties of wave pro-

pagation at high frequencies as follows.

1/3

~J Nr d m (A2. , (36)
Ph Pg

in which the integral is evaluated over the geodesic surface ray path from

Ph to PN" It is assumed in the development of the result in Equation (36)

that m and hence pg vary slowly with a change in the geodesic arc length;

i.e., the surface properties are slowly varying. Besides the dependence on

Pg (or 1/K), the variation of the surface field between Ph and PN also depends

upon the surface radius of curvature, Ptn= (Klsin2 +K 2cos 2W
"I in the bi-

normal direction to the surface ray path; this dependence occurs through the

presence of the spatial factor, D which is related to the surface ray divergence

factor. For an arbitrary convex surface, it can be shown that

DP-* (37)

where d* 0 is the angle extended by the surface ray tube at the launching

point PhN, and likewise, d* is the angle extended by the same ray tube

(or pencil) at the receiving point PN as shown in Figure 4. Also

illustrated in Figure 4 is the caustic distance, pc of the wavefront

associated with the surface ray tube. The caustic distance p c is the

geodesic (or tangent) radius of curvature of the geodesic circle at PN"

It can be shown through the use of differential geometry that,
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(PC)- = 1,/as (38)

where E, F and G are the usual "first fundamental coefficients" which

arise in the development of the first fundamental form associated with

the differential arc length along a curve on a surface. It is easily

verified that pc-S on a cylinder and also on a plane; whereas pc=atane=atan(s)

for a sphere (see Figure 3). This concludes the discussion corresponding

to the assumptions and postulates of part (b).

f~ SARC LENGTH 

e

P, FROM. To . #

pc CAUSTIC DISTANCE
FROM PC TO PN

Figure 4. Caustic distance associated wit the spreading
of the surface ray field.
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A. Surface Fields of an Infinitesimal Magnetic

Current Source on a Convex Surface

In this section, an asymptotic solution is presented for the field on

an arbitrary convex surface excited by an infinitesimal magnetic current source.

The construction of this solution is heuristic in nature, and it follows

directly via the postulates and assumptions outlined in parts (a) and (b) above.

An analogous solution for the field on an arbitrary convex surface excited by

an infinitesimal electric current source will be presented later in Section B.

Thus, the field, Ht for an arbitrary convex surface becomes via Equations (11),

(27), and the postualtes in parts (a) and (b), the following,

P N P "( 
3 9 a )

where the dyadic m is given by

m = Cbbl- -- V(_)+D 2  -2 )+A 2 su()-v(0))J +
AM s-v c D [A r2 i ]+T J42

+ D t &n v~) (6u&- A U(C)+A V(0)]

+ (t~')fTO iF £u(w-y(w3}) D G(ks) . (39b)

The quantities C, D, AS, Ac, To and G(ks) are as defined in Equations (36),

(37), (35a), (35b), (33), and (4), respectively. One similarly obtains

for an arbitrary convex surface as

En(pN Pm m (40a)

where the dyadic 7m is given by

T= CY )i$bn {[l- i-Jv(w+T l u(&)-v(&))} +

+ t' {TO J-, Cu(Fc)-v(FJ}) D G(ks) .(40b)

It is easily verified that Equation (39) reduces to Equation (27) for a

circular cylinder when K,=O and K 2 1/a (a=radius), and it reduces to Equation

(11) for a sphere when Kl=K 2 =1/a and To-C. Likewise Equation (40) reduces to
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Equation (29) when it is specialized to the circular cylinder case, and it

reduces to Equation (15) when it is specialized to the sphere case. Further-

more, both Equations (39) and (40) properly reduce to the corresponding results

for a planar surface when K-O.

B. Surface Fields of an Infinitesimal Electric Current
Source on a Convex Surface

The field Htt for an arbitrary convex surface becomes via Equations (22)

and (30), and the postulates in parts (a) and (b), the following,

H t(PN) pe e , (41a)

where the dyadic Te is given by

Le= - (Yo)'l(n'b[l- sv(E)+Tos [u(V)-v(d)]I +

n't fT0  s- [u(g)-v( ))}) D G(ks) . (41b)

Likewise, the field E! for an arbitrary convex surface isn

E (PN) - pe.e , (42a)

where the dyadic 7e is given by

7e' [v({)- v(()Y+(O)) [A V(E)+A u() +

+ s [u()-v(0)]) D G(ks) (42b)

Again, it is easily verified that Equation (41) reduces to Equation (30) when

it is specialized to the circular cylinder case, and it reduces to Equation

(22) when it is specialized to the sphere case. Also, Equation (42) reduces

to Equation (31) when specialized to the circular cylinder case, and it reduces

to Equation (24) when specialized to the sphere case. Finally, both Equations

(41) and (42) reduce to the corresponding results for a planar surface as K-O.

It is noted that for a convex surface of revolution in which the source

Pe or Tm on the surface is located on the axis of revolution, there exists a
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caustic of the surface rays at a point which is antipodal to the source point.

In this case, the caustic matching functions Tcl, Tc2 and Tc3 must be intro-

duced in the results of Equations (39), (40), (41), and (42), in exactly the

same fashion as done in Sections II-B and III-B for the canonical sphere geo-

metry. Also, in the case that the field point is raised from PN on the surface

to the point P which is a small distance above the surface, the functions u(&)

and v(&) in Equations (39), (40), (41), and (42) must be replaced by Fs(",0,y2)

and Fh(E,0,Y2), respectively. In addition, if the source pe at Ph on the surface

is also raised slightly above the surface to the point P', then F(,ylY2) and

Fh(F,yl.y 2) must be used instead, as indicated previously.

Finally, if the surface changes continuously but not sufficiently slowly

from an almost spherical surface at one point on a geodesic surface ray path to

an almost cylindrical surface at another point on that geodesic path, then the

results given in Equations (39), (40), (41), and (42) may not be valid because

the GTD procedure upon which they are based is not strictly valid for rapidly

varying surface properties. However, if the change in surface properties is

not too rapid, then it would be interesting to study if one could heuristically

take such moderately rapid changes into account by allowing the factors T, As,

and Ac to also change continuously along the geodesic path. Thus, one may

conjecture that

To N = (T/)ds As JN (K1/K 2)ds (43a;43b)

and

Ac p (12(K1/K2)ds (43c)

It is noted that the results in Equations (39), (40), (41), and (42) appear

to be accurate, but they still are being tested carefully; as such, they may

be subject to further improvements or modifications in the future. Equations

(43a;b;c) are added simply as something of interest to study in the future,

and it is not recommended that they be used until sufficient tests on their

validity have been completed.
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V. NUMERICAL RESULTS AND DISCUSSION

*In this section, general expressions will be indicated for the mutual

coupling between a pair of antennas located on a smooth, perfectly-conducting

convex surface of any shape. These expressions will of course make use

of the results developed in Section IV. The type of antennas considered in

this paper are thin, rectangular slots which are less than half a wavelength

long, and thin stubs which are less than a quarter wavelength long. The

reason for selecting such short and thin slot, or stub antennas is that

the shape of the field distribution in the slot or the current distribution

along the stub may then be assumed to be that of the dominant mode.

Furthermore, a short circuit placed in a waveguide feeding the slot such

that it is an integral number of "dominant mode" half wavelengths from the

slot aperture would effectively produce a short circuit at the aperture.

Thus, a surface field which propagates along a geodesic surface ray path

over such a short circuited aperture would for all practical purposes be

unaltered by the presence of the slot since the scattering of the surface

field by the short circuited slot would then be vanishingly small. This

fact is particularly useful if one is interested in the calculation of the

mutual admittance between a pair of slots in a slot array environment. A

similar simplification results in the calculation of the mutual impedance

between a pair of thin and short stub (or monopole) antennas in a stub

array environment since such an open circuited stub, placed in the path of

the surface field would perturb this field negligibly. It is noted that

the conditions imposed by the above assumptions on the size of the radiating

elements are not stringent; in fact, these conditions are commonly met in

practice. The calculation of the mutual coupling between a pair of slot or

wire type radiating elements on a convex surface which do not satisfy the

above assumptions and conditions can still be performed on the basis of

the results developed in Section IV provided the aperture field distribution

(for the case when the radiating element is a slot antenna which may not be

sufficiently small) and the current distribution along a wire (for the case

of a stub antenna which may not be sufficiently short and thin) is known in
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the coupled environment. In the latter cases, one could employ measurements,

or numerical techniques (such as the method of moments) for solving the

coupled integral equations for these problems in order to obtain the field

or current distributions on these radiating elements. These integral equations

could be simplified so that the only unknowns are the fields on the antennas

and not on the electrically large structure upon which the antennas are

located, by appropriately employing the surface field dyadics introduced in

Section IV, in the construction of these integral equations. These dyadics

would actually constitute asymptotic approximations to the appropriate

surface dyadic Green's functions or their spatial derivatives which con-

stitute the kernels of these integral equations.

Some numerical results will be presented in this section for the

calculation of the mutual admittance between a pair of rectangular slots in

a perfectly-conducting circular cylinder; both, axial and circumferential

slots will be considered. These numerical results which are based on the

development in Section IV, will be compared with the corresponding numerical

results obtained by others [11,12].

The general expressions for the mutual coupling between a pair of

radiating elements on a smooth, perfectly-conducting convex surface are

presented in the following discussion. In particular, let antennas

designated Q and © constitute a pair of radiating elements on a convex

surface. The mutual coupling between these antennas may be calculated via

an application of the reaction theorem [2]. Thus, if antenna ( ) is an

aperture (or slot), the dominant mode current 121 induced in this aperture

by antenna ( when antenna ( is short circuited is given by [2)

I S2 (44)

s V22
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where T2 =2 x n2, and is the dominant mode electric field distribution

in the aperture of the slot antenna Q with n2 being the unit outward

normal vector to the surface of the aperture of antenna ®. The inte-

gration in Equation (44) is over the surface area s2 of the aperture

corresponding to slot antenna (Z). Furthermore,

T2 = v22e = v22Uy U E cos(' ux) . (45)

In Equation (45) above, v22 is the dominant mode voltage associated with

the dominant vector mode function I for a rectangular slot. The local,

orthogonal coordinates u and uy whose origin is at the center of the slot

are indicated in Figure 5 together with the slot dimensions d and Z,

SLOT ANTENNA

Ux

SLOT DIMENSIONS: OUSI _</2

uz z ux u =o

Figure 5. Local coordinates associated with
the slot antenna.

respectively. The field FF21 is the magnetic field at antenna (2), which

is produced by antenna G0 with antenna ® short circuited. From the

development in Section IV, it is easily seen that when antenna (D is

also a slot, then T21 = J ds1 
MTl'm' where the integration is over the

surface sl of the aperture corresponding to slot antenna (a), with y as

given in Equation (39b), and FT = ln. Of course, nI is the outward
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unit normal vector to the surface area sl of the aperture corresponding

to slot antenna (1, and

E1  :v11  e " (46)

Vl is the dominant mode voltage associated with slot antenna (. On the

other hand, if antenna uj is a stub, then '21 = jjj dvI 'JILel where the

v1

integration is on volume v, just encapsulating stub 0 , with Le as given in
Equation (41b), and

= i= 11 lluz6(ux)(Uy)I(uz) • (47a)

In Equation (47a) above, Ill is the mode current on the stub, which is

associated with the vector mode function F for the stub. The vector F

involves the 2-D Dirac delta function 6(ux)6(u y) and a distribution I(uZ)

which is generally assumed to be

sin~k(L-u DUz{)
I(uz sin(kL) ; 0 < u < (47b)

The local orthogonal coordinates (ux,UyUz) whose origin is at the base

(or feed point) of the stub are illustrated in Figure 6. From the above
discussion, it follows that

' ff 2 ff=
121 So s. antenna11Slot ) ="v22 ( is also

Short a slot,

Circuited,
or v21=0

(48)
and
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Ux
,,-STUB ANTENNA

E b0

U

THICKNESS sE

U x STUB DIMENSIONS: LENGTH -.

Figure 6. Local coordinates associated with
the stub antenna.

ds2  dvl  T1 L

21- 2 V 2 if antenna (49)
21 Slot v2 2  Q is a stub.

Short

Circuited,
or v21=0

It follows from Equation (48), that the mutual admittance Y21 between a pair

of slots (slot antenna 0 and slot antenna Q) is given by 121/v,, with

v21=0, or

ffds2 JJ ds1 g . ' . r2

21 vlv22 = 2 (50

A similar set of results may be obtained if antenna Q is a stub.

Thus, the mode voltage v2l induced in stub antenna ® by antenna ( when

antenna is open circuited is given as (2]
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f. ff dv 2 E21 *3'
v

- 2 (51)21 = 22

where v2 is the volume just encapsulating stub antenna ), and '2 = 122 W

on this stub. E2, is the electric field at stub antenna ®, which is
produced by antenna (1) when antenna (2 is open circuited. It follows

from the development in Section IV that 1 f dsl M1 Lm if antenna 0 V
E2 = Sl

is a slot, and rl jf dv1 
1lZe if antenna (® is also a stub. The

=- = V1
dyadics Lm and Ze are given in Equations (40b) and (42b). Summarizing the
results for the open circuit voltage v21 at stub antenna ©, one has

fff dv2 Jjds, ff L1 2

21 S2 if antenna )
Stub 22 is a slot,
Open CIrcuited,
or 121=0 (52)

and

fff d2fff
v2  v 1

= - ,1 if antenna
V21 Stub ( 122 is also a stub.

Open Circuited,
or 121=0 (53)

It is evident from Equation (53), that the mutual impedance Z21 between

a pair of stubs (monopoles) is given by V21/1ll with 121= 0 , or
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JJ{ dv 2 JJJ dv 11 -'e Z32
z21 1 11122 z21 z z12. (54)

Some numerical results are indicated below for Y12 between a pair

of identical rectangular slots in a perfectly-conducting circular cylinder.

In particular, Figures 7 and 8 indicate the surface field on a circular

cylinder due to an infinitesimal circumferential slot; whereas Figures 9

and 10 indicate the isolation, sl2 (related to Yl2 ) between a pair of

axial slots. These numerical results are marked as OSU on the plots.

Furthermore, these results are compared with the exact (modal) results

as well as those in [11,12]; in particular, the results of (11) are marked

as PINY in these figures; whereas, those of [12] are marked as UI results.

Additional comparison between the OSU, PINY, and UI results for Yl2 are

indicated in Tables I and II for the circumferential slots. It is seen

from these comparisons that firstly the OSU results agree very well with

the results based on the exact (modal) solution given in (12], which also

contains the Hughes modal solution. Secondly, it appears that the results

based on all three asymptotic solutions; namely those based on the OSU,

PINY and UI solutions are for all practical purposes quite accurate and not

noticeably different except when ks becomes small, and/or the pair of slots

are in each other's paraxial regions for the case of circumferential type

slots. Thus, when ks becomes very small, the PINY solution becomes
1

inaccurate because only terms up to and including -- appear in that
(ks)

solution; whereas, the OSU and UI results which include the effects of
(13

( s) terms remain accurate even for ks very small. The OSU and PINY

asymptotic solutions for the circular cylinder are not strictly valid within

paraxial regions since the approximation for the field in terms of Fock

type Airy functions cannot be completely justified in these regions. On the

other hand, the UI solution bypasses tiis difficulty by conjecturing an

asymptotic solution for the circular cylinder via a heuristic modification

of an asymptotic solution for the sphere geometry. As mentioned previously
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TABLE I
Y12 Between a Pair of Circumferential Slots in a Circular

Cylinder of Radius, a=l.991"; freguency=9 GHz, and 6=0 (E-plane)

Modal Solutions Asyriptotic Solutions
Planar

(Inches) Hughes UI UI OSU PINY awes

.5 - 7.27 dB - 7.27 - 7.31 - 7.86 - 6.46 - 8.16

-720 -720 -77.770 -69.710 -68.170 -66.850
2 -16.52 -16.43 -16.36 -17.56 -15.66 -18.10

-1170 .1170 -115.670 -110.080 -117.880 -105.840
8 -26.95 -26.49 -26.54 -28.78 -25.51 -28.97

330 340 36.770 46.200 33.600 53.60

16 -31.13 -31.31 -34.28 -30.04 -35.98
.40 9 10.190 -4.20 19.960

40 -36.60 -37.17 -41.29 -35.58 -43.93
-1150 -109.440 -96.970 -112.590 -83.170

S0.49
'1
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TABLE II

Y12 Between a Pair of Circumferential Slots in a Circular
Cylinder of Radius a=l.991"; Frequency=9 GHz and

for 6=n/2; zo=O (H-Plane)

Modal Asymptotic Solutions

Degree Hughes UI OSU PINY

300 -25.98 dB -25.98 -26.07 -77.93
-770 -76.770 -75.730 -64.810

400 -34.52 -34.63 -34.67 -35.72

1080 169.580 170.07 179.40
500 -40.96 -41.32 -41.76 -42.03

580 59.880 60.330 68.310

600 -46.62 -47.08 -46.92 -47.55
-490 -47.850 -47.550 -40.480

0.9"
d 0.4"
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Figure 9. Isolation of axial slots on a conducting cylinder
a - 1.991"; Zo = 1.50"; Frequency = 9 GHz.
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(Section I), this modification of the sphere solution in [12) results from the

introduction of an extra term via an ad hoc procedure. This extra term improves

the accuracy of the modified sphere result when it is specialized to the circular

cylinder case; and the improvement is especially noticeable in the paraxial

regions of the cylinder. As a result, the UI solution appears to be quite ac-

curate even in the paraxial regions, i.e., in the immediate vicinity of the

axial direction on a circular cylinder for the circumferential slot case.

Although the OSU and PINY solutions for the circular cylinder are not strictly

valid within te paraxial regions, they still provide accurate results for the

axial slot case, and they are reasonably accurate even for the circumferential

slot case; thus, these solutions may be employed even within the paraxial regions.

Actually, the OSU results for the paraxial regions corresponding to the circum-

ferential slot case differs from the exact (modal) results by less than 10% in

amplitude, and by less than 5% in phase.*

It is evident from the results in Sections II and III, that the asymp-

totic solutions for the cylinder are somewhat different from those for the

sphere as one might expect, since the two geometries are different. Also, it

is noted that the OSU solution for the circular cylinder case (as presented in

Section Il-A) is actually identical to the corresponding PINY solution to terms

in 1 and 1 except for the cross term (i.e., the i22 type term) whose
(ks)

functional form is different in the OSU and PINY solutions. A cross term of

this type is absent in the UI solution. Furthermore, it is this cross term

which dominates the solution in the paraxial regions for the circumferential

slot case. Thus, the numerical results based on the OSU and PINY solutions

are slightly different in the paraxial regions for the circumferential slot

case. While the UI solution surprisingly yields good accuracy for the circular

cylinder case, it raises some interesting questions which were also indicated

previously in Section I. In particular, the UI solution when specialized

to the circular cylinder geometry excited by an axial slot will contain

both, the soft and hard type Fock functions u(c) and v(c), respectively.

*It is expected that further improvements in the paraxial region field calcu-
I

lations are possible if higher order terms in are included in the analysis.
g 1

However, as indicated above, the leading (or lowest order) terms in -l which
P

are the only ones that have been retained in this analysis are sufficiently

accurate even for paraxial region calculations.
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However, it is well known, that only the potential corresponding to the

"hard" or v(t) type function is required to completely describe the fields

of an axial slot in a circular cylinder. Secondly, the "ad hoc" procedure

employed to modify the asymptotic solution for the sphere in order to

obtain an asymptotic solution for the circular cylinder geometry may need

further justification, In this sense, the present approximate (OSU)

asymptotic solution for the circular cylinder is not based on a heuristic

procedure as the one in [12],* and it may be viewed as an extension of the

approximate PINY asymptotic solution [11) and the previous OSU solution [9].

It is noted that the OSU asymptotic solution for the circular cylinder

could be improved even further in the paraxial regions for the circumferential

slot case by employing a different asymptotic evaluation which would be

more accurate in these regions; however, this analysis will not be pursued

at the present time since the solution derived in this paper appears to be

sufficiently accurate even for this special case.

It is noted that in addition to the asymptotic solutions pertaining

to the surface fields on the canonical circular cylinder and the sphere

geometries, an approximate asymptotic solution is also heuristically

constructed in this paper for the arbitrary smooth convex surface. Also,

the effect of torsion associated with the surface rays is clearly

identified in this solution through the presence of the factor T/K.

Furthermore, the excitation of this convex surface by both infinitesimal

electric and magnetic type current moments are considered in this paper.

Numerical results for both the electric and magnetic type source

excitation of spheroidal geometries will hopefully be presented in the

near future along with experimental results for comparison in order

to test the validity of the present asymptotic solution for the arbitrary

convex surface.

During the editing of the final version of this paper, we have received from
Professor S. W. Lee (at University of Illinois) a set of handwritten notes by
Professor J. Boersma which deal with a new and more rigorous asymptotic
solution (that is valid within the paraxial regions) for the surface fields of
slots on cylinders. These notes are soon expected to be published as a UI
report [16]. It is interesting to note that the solution in our paper agrees
exactly with the one in Professor Boersma's notes to all orders in
1 and to leading terms in (17), even though it is derived via a different

asymptotic procedure. The effeAc of torsion associated with the surface rays

has not been specifically identified in Prof. Boersma's notes.
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APPENDIX I

ASYMPTOTIC ANALYSIS OF THE SURFACE FIELDS EXCITED BY
INFINITESIMAL ELECTRIC OR MAGNETIC CURRENT SOURCES

ON A PERFECTLY-CONDUCTING CIRCULAR CYLINDER

The'geometry of this canonical problem is illustrated in Figure 1.

The case of a tangential magnetic current source at P will be analyzed

first; the analysis for a radial electric current source at Ph will be

performed subsequently.

Let a magnetic current source R generate the surface fields Enn andn
on the surface, where Im is the radial component of the electric field,t n

and ]tn is the tangential component of the magnetic field. The source Fr is
tdefined as

=r 6(IT - F, 1) ,(A-1)

where IF' is the position vector of P and T is an arbitrary position

vector. The quantity pm is the strength of the infinitesimal magnetic

current moment which is oriented tangential to the surface.

The fields En and H t can be constructed from a suitable set of electric

and magnetic vector potentials F and T, respectively [14]. Following the

development in [14] for an eJt time dependence which is assumed and sup-

pressed, one obtains,

iz-~en (2 h h= Azi,an(h) H (ktP)e (A-2)
ITI n tn

and

T r ejn b (h) H (2 )(ktp)ejhz dh = FzZ, (A-3)

-- 2
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t

where H(2)(ktP) is the Hankel function of the second kind and of order n.

The kt appearing in the argument of this Hankel function is defined by

2 k2 h2
k= k -h (A-4)
t

The unknown coefficients a n(h) and b n(h) in the above expansions may be

obtained by an application of the electromagnetic boundary conditions on

the surface. From the usual relationships between the vector potentials

and the electromagnetic fields, one obtains [14]

I a 2 2 -5)

Hz o + k2) Fz  (A-5

32F

H aA z a F z(A6H- Zp + 1o ¢ Z (A-6)

0

E l 2A z 1 aFz
p - -p5z p 50

0In the above equations, zo = free space impedance, and Yo= /Zo.

Then, t = H ^ + Hzz , and En = p Es,. In Equations (A-5), (A-6) and
(A-7), the fields are not necessarily on the surface. For convenience

of analysis, Fm is decomposed as follows.

-m=pm (+ c : zat P,(

m mT + M at (A-8)

From the boundary condition Pm x n = R at p = a, where Em is the total

electric field and IT is as in Equation (A-l), it can be shown that

* ~ 'TkY H~ (~2 )(ktp) h
e= = z e~n-Yop2k eJz dh (A-9)

[2 ro Lktapm H(2!)(k a)

and
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F-r a-- -I

1D H(2 (kpo
-- tn i HMIn

-wr 77t I H -(kta)

rn pm n '(ktp) jhz dh (A-1 )

2 j I 2-Tt2 I - a

In order to evaluate Equations (A-5), (A-6) and (A-7) asymptotically for

large kta, one begins by employing the usual Watson transformation [5] to

Equations (A-9) and (A-10). Thus,

T=^ JzdhejhzS 130M __j(1-)j2

+ T rhhrvp ~~~ I,(ejvO+e-j(r4)~j
I-J ej ~L7JHt (k a) Q

(A-11)

Isassmdtanaidufcetylag ota n a eanol

the LO tem inEquatons A-ll and(A-2),ath 0temcorsndo
the feld hichmultply nce th cyidr n onrbtenigii

cantly fo lare k. he cotusodnerto i h opev n
plnsTr shw i gure A-a I repetvey The doinn

cotrbuio t te iteras n qutinsAll an (12 wil ocu

for v'.Oa) inthe deshao reio an also in thphao)oudr

jhz V t (2r-O 254
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BRANCH CUTBRU

Figure A-I. Contour of integration in the complex h plane.

Im v
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CONTOUR OF

(e IS A POSITIVE INTEGRATION
NUMBER HOWEVER
SMALL)

Figure A-1I. Contour of integration in the complex v plane.
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transition region. Since the surface fields are of interest, and R lies

on the cylinder, the field point is always in the shadow region. Thus,

one may approximate the Hankel functions by the Fock type Airy functions

[6,15) for vNO(kta) as follows.

H(2)(kta) L J-(mt-) w2(T) (A-13)

',H(2)' (kta) N - (m-2) Wj(T) (A-14)

with

=kta + mt ; mt = (_) . (A-15a;A-15b)

It is noted that Wj(T) is the derivative of W2(T) with respect to the

argument T. The functions W1 (T), W2(T) and their derivatives are discussed

in Appendix V. Introducing the transformation of Equation (A-15a) into
Equations (A-ll) and (A-12) together with the approximations in Equations

(A-13) and (A-14), one obtains,

1A~zj jkY jh jT k ojtrZ A Pm f dh e { dT W -) eJkta¢'JmtT' (A-16)

F ZI~ _4-a J h- t  - dt e +

+ .,a dh~ kt - h  m= d (am ) W2tamte (A.

+ +

The superscript "+" on Az and Fz in Equations (A-16) and (A-17) signifies
that only the term corresponding to e -JV in Equations (A-II) and (A-12) are
considered for convenience; the expressions for the ejv(2 e' ) terms are
similar and may be designated by Az and FT with the understanding that

56

• _ ., _i . L . . ? . T.. . . . . . . . . . .. . . .. ..



Az = A ++ A- Fz = F++ F . (A-18a;A-18b)
z z z z z

iisIn order to evaluate the integrals with respect to the variable h,

iisconvenient to introduce the usual polar transformations given by.

h =ksinct, kt =+ kcosc*; di a s cosip; z =s sinip. (A-19a;A-19b
A=l19c; A-1I9d)

Thus, Equation (A-16) becomes the following via Equation (A-19).

8A+ jk -jT jM TO

dA ekp-jkscos(ct-i) dT e- t (A-20)
a I pa 47ra f

The contour of integrationi, Ca~ is indicated in Figure A-IIl. The dominant

Ca CSDP

T

V ~Re a

Cis IS THE SADDLE POINT
LOCAT ION

Figure A-IIl. Contours C. and CSDP in the complex ciplane.

contribution to the integral over ai occurs for ai = asi for large ks where

a5 is the saddle point in the complex ai plane. The integral over T yields
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a slowly varying function of a in the neighborhood of as . The contour

C. may be continuously deformed into the steepest descent path CSDP since

no singularities are enclosed (for 0 < 7/2), and the contributions from the

paths connecting C. with CSDP are vanishingly small. Therefore, Equation

(A-20) becomes

,A; +jkYop 37r
" 2 e 3 F-3/2 J jkscos(al*), (A-21)"V --I Pd - a u(&) e 11 f dae-js~~')

wa CSDP

where the Fock type function u(C) is discussed in Appendix V; it is defined

as,

u(W) = e 3 3/2 L. 2 e-j &T  (A-22a)

., -W22

with

C m MS m = 1 P/3a (A-22b;A-22c;A-22d)

The geometrical interpretation of the angle ip is illustrated in Figure 1

in terms of the angle 6 where

= -- = _cos- 1 , .62) (A-23)

It can be shown that the leading term in the steepest descent approximation

for large ks yields the following relationship for the CSDP integral in

Equation (A-21).

1 -2jkcos, f ejkscos(a-*) e- j ks

dd , ki . (A-24)

CSDP

It is interesting to note that the left hand side of Equation (A-24) is

directly related to another integral as follows
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..(2,.~ jhz 1 2jkcoi ~ jso~-

= r 12jk ,jso~- 2a

ISiidnia odh rest e rh nd sid o Ea (AT

Cfi

Badfor ktdl >>li
" with kt = k2-h 2 .

Furthermore, it is well known that the left hand side of Equation (A-25a)

is exactly given by

1 ( e jk e(Jk s 27f dh (2 )(ktd)eh ==in.(A-25b)

Now the approximation arrived at on the right hand side of Equation (A-24)
is identical to the result on the right hand side of Equation (A-25b). Thus,

the leading term of the asymptotic approximation to the CSDP integral in

Equation (A-25a) is identical to the exact result in Equation (A-25b).

Based on these observations, it would appear that the final result in

Equation (A-24) is therefore valid even for ks small. Equation (A-21) may

now be written as,

zi C
-Pm f jsu(C) G(ks) (A-26)

I

o  eG(ks) Y U (A-27 a)

and
f = lcos2* 1 /sin26 (A-27b)

Similarly, one can show that Equation (A-17) becomes
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Fl a-' '" a m2 * *" daek5P(~~

pm-m

+m • 47• ( j • d2 j ks c O s ( )* )9 C
c kcot6 W2T -JET jcosec2 6 8W2 T

PmdT W7 e- + 2m dT e- {

•f da e-j kscos (a-"  (A-28)

CSDP

where the Fock type function v(E) is discussed in Appendix V; it is also

defined below.

; W~12(t)e-

v( = E dT e-T (A-29)
-f

The third term on the right hand side of Equation (A-28) is of higher order
.1in V- as compared to the other two terms; hence, this term will be discarded

as only the lowest order terms in va are retained in this analysis. Con-

sequently, Equation (A-28) may be written as

Fl pa m2 w 4F_(_ d~ejkscos(a - i)

Sa 2CSDP

m kcot6 vw de-jkscs(- ) (A-30)
Fi -- v( ) d

8CSDP

From Equation (A-24), and Equation (A-30), one obtains

z1 pa -jks c jk s
m v(C) e Pe (A-31)

Psa TwCs
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From Equations (A-5), (A-6), (A-26) and (A-31),

T '.4'N Z - 1(aZ0 7 + k zjPa +kz[ap i zjp z

(A-32)

with the understanding that l1t(PN) in Equation (A-32) is associated only

with the A~z and F+ terms; the total frl(p) must be obtained from (A++A-)
z z tNz z

and (F+F). However, the form of RN~P ) associated with the (AF-)
terms will be identical to that associated with (AF) In odrt

simplify the derivatives in Equation (A-32) one emiploys the following

relationships.

7z =cos6 =sinp; az =- o6 1- =d s6 - =M- sin6.
_z P co as ad pS 3d

(A-33a) ;(A-33b)
(A-33c); (A-33d)

Employing Equation (A-33) into (A-32), and retaining only terms to lowest
1order in va, one obtains

" p m;iTl cos6sin6{1- 3*(1- S1)v(E)G(ks) +

+ &S.

"pmT4 2 (EO526+ h4I- (23os26J v(C)

+ f i.s u(E)-v(0%G(ks) .(A-34)

The above result has the interpretation that the field TIP propagates along

the helical geodesic surface ray path from to as shown in Figure 1.

A second helical geodesic ray path (not shown in Figure 1) which traverses
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'Fm

the cylinder surface in a sense opposite to that shown in Figure 1 also

contributes to the total field at P.; the latter contribution results from

the (Az,Fz ) terms, and it is identical in form to that in Equation (A-34),

I except that s, a and t are now associated with this second path. It is

noted that rj and l correspond to i, and ip., respectively; whereas,

and ^T2 correspond to ;Ipo and jIp, respectively.

Next, one may evaluate E due to IT via Equations (A-7), (A-26)

and (A-31) as follows.

kpc _ -jks 1Z kpm a ( eJls

L.. (kssin 0)] ~ otL
a ~kpm M 

(--jks

where d=a¢. One may simplify Equation (A-35) by employing the relations

in Equation (A-33); thus, retaining terms to lowest order in 1/ka,

F4 -jks _.e js ~6
Z ' (kssinO)J u "e sks) sinCS

and

E e-kl e-jks

" L€)es -jk(l- -) v(0)sin6

Therefore

k Pm • -jks €
Ep (PN) ks - T- v()cos6+ ()-v( C05 e

EPI0N ks k (ks7( C) siT6e

k Pma .- jks
-e -- T v(E)si~n , (A-36a)

or in the vector notation of Section II,
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(PN)'.'(Yo)'lpm-(VI sin6+4j:cos6]n (1- ismVo

+ icos6n -{u(_)-v(&)] f }G(ks). (A-36b)

One may now develop similar expressions for the electromagnetic

surface fields of a radial electric current T on a perfectly-conducting

circular cylinder. One defines 7 in a manner anologous to that in Equation
(A-l),

T= Pe6 ( IF-F' 1) (A-37)

It is noted that pe is the strength of the infinitesimal electric current

moment which is oriented normal to the surface at F'. The tangential magnetic

field 1i(PN) due to T may be simply obtained by employing the reciprocity

theorem to the fields of 9 and T; namely,

F EM ~ (A-38)

Consequently, from Equations (A-36b) and (A-38), one obtains

l~(P) (Y)'pe '- sn+ 2cos6 ](I -mo)V

+n'cos6 T2 i{u(t)-v(E)] f }G(ks). (A-39)

The radially directed electric field, en(PN); i.e., the electric field
n N ~ieteeeti il

component normal to the surface at PN' which is generated by the source T
may be obtained from Equation (A-39) via the equation of continuity. Thus,

-Lv .[^ .le(P)
kY0  s tN = N(A-40)

where [Vs.] is the surface divergence operator. The above equation simplifies
to
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which in turn may be evaluated via Equation (A-33). Without going through

the details of the evaluation of Equation (A-41), the final expression for

.) which contains terms only to lowest order in R- is given below.

- s(l- )U)-v G(ks). (A-42)

It is noted that u( ) and v(&) are special cases of the more general

functions Fs(,yl,y 2 ) and Fh(gyly 2) which are indicated in Appendix V.

It can be shown that if the height of the observation point P above the
surface is d2 (i.e., IT-- l=d 2 of Figures 1 and 2) and d2>O, then the

functions u(4) and v(C) in Equations (A-34), (A-36b), (A-39) and (A-42)

may be replaced by Fs(&,O,y 2 ) and Fh(4,O,Y 2 ) , respectively with y1=O and

y2=m -kd2, provided kd2<<kpg(PN). Furthermore, if the source T of Equation
(A-37) is also raised above the surface from P to P' (i.e., lP P'I=dI of

Figures 1 and 2) when PN is raised to P above the surface, then the u( ) and

v(&) in Equation (A-39) and Equation (A-42) must then be replaced by

Fs(&,yly 2) and Fh(ylY2, respectively with yl=m- kd1 and Y2=m 1kd for
kd<<kp(P, ) and kd2 P An approximation based on Taylor series

is given in Appendix V for Fs,h(t,yl,Y2) when hl, and h2 are sufficiently

small and when #0 (also 9 must not be close te zero).
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APPENDIX II

ASYMPTOTIC ANALYSIS OF THE SURFACE FIELDS EXCITED BY
INFINITESIMAL ELECTRIC OR MAGNETIC CURRENT
SOURCES ON A PERFECTLY-CONDUCTING SPHERE

The geometry of this canonical problem is illustrated in Figure 3.

The case of an infinitesimal tangential magnetic current source at P will

be treated first; a corresponding treatment will be subsequently presented

for the case of an infinitesimal radial electric current source at PA.

The notation employed in this Appendix for the fields nn TP- due to
the source R* has the same meaning as that in Section II, and Appendix I,
respectively. Let the source R be i-directed in Figure 3; then the vector

potential F associated with the source M=xp 6(F--I) in free space (i.e.,
0 M

in the absence of the sphere) is given by [14]

p Pme j k lr-F' l

To  xm eI-'I (A-43a)

or

kpm
k(2n+lh2)(kr')J(kr)Pn(cose); 1 ' (A-43b)

0 n=n

where h(2 ) and Pn are the usual spherical Bessel, Hankel and Legendrewhr n' nn

functions. Let

r' = (a+d) = bz. (A-44)

It is convenient to introduce a new set of potentials ffer and mr which

satisfy the following differential equation and the field relations [14].

V2 +k2 -r/ = (A-45)
+) r /r} u , .
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Er  Jk a + k r e  (A-46)

- m 1 2 e
E =l-1 a 71 + ar (A-47)

E¢- r JkYorsine ara¢ ivy 0

Hr = ~1~r(--21 (A-49)
r Jkz a

e 2 m
HO = a' n 7 + - ar (A-50)

o rsinO -50 jkz 0r BOO(A50

e 1 2m
H = - r Be + rSine r (A-51)r 8 ae jzosn Bra

where Er, E., and E are the r, 0 and 0 components of the electric field,
r 0 e inSwhich are respectively generated by the potentials Tr and xm . Likewise

Hr, He and H are the r, e and ; components of the magnetic field, IT which
e in e inare respectively generated by r and r. Let er and n denote the value

of the potentials re and m which are associated with the source K in

free space. Let the fields associated with these potentials 7r
e and 7rm be

denoted by E
(o) and (). From [143,

vxvxr v(v.r -V 2F
0-(o) jTz °  - jkZ (A-52a;A-52b)

jz0 jz0

Without going through the details, the following expressions are obtained

via (A-43, A-52a;A-52b).

r.r(°) = rrE(o) = rE ° ) =sinO F0  (A-53)

and

66



r-H = rrH' = r) CO- 0+ T - (A-54)

A useful procedure given by Fock in his development of a modal expansion
for the fields of an electric current moment over a dielectric sphere [13]
is employed in order to obtain the form in Equations (A-53) and (A-54).
The following relations are helpful in arriving at Equations (A-53) and

(A-54).

o =~ xPmejkR R2=i'-' 12 = b2+r2 -2brcose. (A-55)

aFo (I Fo)a F aFo R
0a R aF oaR) (A-56a;A-56b)

aR r-bcose aR brsine aR = b-rcose (A-57a;A-57b;A-57c)

c Fo sine IFo R F (A-58)ar r ae DR T 5= - aT

aFo coso DFo 1 aFo aR 1 aFo
sine _-os _ F -" (A-59)

From Equations (A-46), (A-47), (A-53) and (A-54), it can be seen that

IF e0~ -1e*O
sin _-- k (r ) (A-60)

and

c a*( ) , (A-61)

where the operator A* is as defined by Fock [13].

* 1(sine 1 a2 (A-62)

sin7 DO
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in order to solve for w e~m in terms of F via Equations (A-60) and (A-61),
0 0

respectively, it is convenient to introduce the following expressions as

done previously by Fock £132.

0 sin~ 0 - coso ~~ (A-63);(A-64)

Incorporating Equations (A-63) and (A-64) into Equations (A-60) and (A-61),

with F 0 as in Equation (A-43b), it follows that

kp ___ 2
A0  jkY(~) 2n l h (2)(kr')jn (kr)Pn (cose) (A-65)

and

where r' = b = a+d 1.

Using the definitions [13,15]

C 2 ) (kr) = krh (2)(kr) ; p.(kr) = kri (kr) (A-67) ;(A-68)

one obtains

A - k (Ni 1 2n+l (2)

Bo =TTE'ET~ (k n (2) , (kb) (kr)P (cose) (A-70)

p) T57 n(n+1) n

From the relationships in Equations (A-63) and (A-64), and the results in

Equations (A-69) and (A-70), the expressions for ir e and it are completely
a 10 0

determined. The relationship y- P n(cose) P n P(cose) may be employed in
IAn 

n%evaluating _- and in Equations (A-63) and (A-64), respectively.
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The potentials r 0
e and 7 are the potentials associated with the

source F in free space; consequently one may introduce e and 7m to denote
S 5

the potentials resulting from the presence of the conducting sphere such

that the total potentials re and m associated with K in the presence of

the sphere are obtained via the following superposition.

= + s e e = 7o + i s • (A-71);(A-72)

Let A and B be introduced as follows,
s

e iA s  s

-= sine ; S - coso - (A-73);(A-74)

Equations (A-73) and (A-74) have been chosen to possess the same form as

Equations (A-63) and (A-64), respectively. It follows from Equations

(A-69) and (A-70), that

AkPm 1 I 2n+l (2) (kr)P (cose)A s jk j)TTr nn+ n 'k) k) cs) (A-75)As -Jk~o2F 'Y kb)(~r)n=l

= kPm k T 2n+l (2)' (7

ns nT (n- (kb)(kr)' l n (kb)n(kr)Pn(cose) (A-76)

the coefficients n(kr) and 'n(kr) must be found by enforcing the

boundary condition that nx[E(o)+Er(s)]=O on the spherical surface at r=a;

here, r(s) is the electric field produced by the potentials fe and s" The
total electric field m=-(o)+F(s) is produced by Fr in the presence of the

sphere. Also, rr. m=n of the earlier notation. It is easily verified thatn
n (ka)

ln(kr) = */n(kr) (ka )  (2)(kr) (A-77)
n ~ 2 (ka)n

and

N *'(ka) (2)
B n(kr)k(kr) ( (kr) " (A-78)
nk Cnr -n 2 ,(ka

n
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V.-

Let Hm denote the total magnetic field of Fr in the presence of the sphere.
Then, from Equations (A-63), (A-64), (A-65), (A-66), (A-71), (A-72), (A-73),

(A-74), (A-75), (A-76), (A-46) and (A-49), it may be seen that

:k = (kr)

;.EI=Tm = (kpm)[-ks inO] (2n+l)2)(kb) Pn (cose) (A-79)
n 1jn=O n(kr) 2  n

and

;.Rm=Hm kpm  -jkY Cso  (2)' An(kr) (8=(,-¢ 0( n (kb) ), (A-80)
n n=O n(kr)'

the sum over n in Equations (A-79) and (A-80) starts from n=O instead of
n=l for convenience since P (cose)=O. In order to evaluate Equations

0(A-79) and (A-80) asymptotically for large ka, it is convenient at this

juncture to employ the Watson transform to these equations [5]. As a first

step, one may write Equations (A-79) and (A-80) more compactly for later

convenience.

Mp -k e~I (4-81)

(-jkYocoso)Im

where

,2)(kb) Bn(kr)/(kr) 2 (kb)
Im (2n+l)  ) n n(cose) . (A-82)

Sh n_ n() (kb) An(kr)/(kr) 2(kb)

Employing the Watson transform to Equation (A-82), one obtains

Ie 1 sicn6 d r (2)'(kb) v(kr)/(kr) 2 (kb) 1e 7 ini (PV(cose).

V V 1
(A-83)

Contours C are shown in Figure A-IV.
V
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IC

Re P

C ctz,+ CV

Figure A-IV. Contour of integration in the complex v plane.

Employing the relationship (-1)vPl(cose) = v(v+l)P-1 (-cose), and replacing

v by -v-1 in the integration over C1, one obtains

~j £~(
2) (kb)W (kr)/(kr) 2 (kb)

= im dv(-.! -(2v+l )v(v+l) IV( oe)II elT ir {n })P -cs)
h -W-je ({2) '(k) k)(r 2 (b

V V

(A-84)

where e is a positive number however small. In arriving at (A-84), use is

made of the following relationships.

p-1 (-cose) = Pl (-cose), (A-85)

2 TIk2br (2) a H(2)  r
2(kb)W (kr) = - Hk2+/2 (kb) L I2(kr) "  v +2+l/2 (k

(A-86)

(kb)W(kr) = kb H 2 /(kb) J +) +Hka 1() ' _kvv = v(/ [2/2' ) H(+l2 (krjr
Hv+/2 (ka)

(A-87)
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rkb-kri
'-= a- 2--) x = or, (A-88)

and the circuit relationships for the cylindrical Bessel and Hankel

functions, Jv+1/2 (x) and I respectively. Furthermore, one may

employ the following relationships in Equation (A-84); namely

2 (kr
I (kr)/(kr)2 1 2 V~~k~

= + k2)[ 1 ] k , (A-89)

A(kr)/(kr) } ar k v(v+I) (kr)

I V LV J
in order to obtain integral representations for e and m, since fm and

are simply related to re and -m via Equations (A-46) and (A-47),

respectively. Thus, from Equations (A-46), (A-47), (A-81), (A-84) and

(A-89),

e kPm -jY sin e  
1  Q .CJ2T= (Y)( k ) dv(-)(2v+l (kb)v(kr)P (-C sO )

(A-90)

and I dv( i )(2v+l)2) (kr)P 1l(-cose).

(A-91)

11e is next evaluated for the special case of interest; namely r'=b=a

(i.e., for dI=O) and r=a as follows. Let p=v+I/ 2 ; then,

-jY sin-j

e ,73m "--osln¢  COjr P-12 p- (ka)p i/z(ka)p, 1l/2 (-cose)

(A-g2)
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In the shadow boundary transition region (i.e., the penumbra region) and in

the deep shadow region, both of which are of interest in this study, the

dominant contribution to the integral in Equation (A-92) occurs when

, uO(ka). Thus, in this region, one introduces the usual transformation

2
u=ka+mr to approximate the cylindrical functions p-1/2 and ,-I/2 by the

Fock type Airy functions. In particular [15],

/M (Wka_2T); p~am = ) /

*l4l/2 (ka) f- 1 (A-93)

*,,i/2(ka) - (Wi(T)-W j(T)). (A-94)

(1)(2) /2ka) N jrm Wl(T)' (A-95)

2

(1)'{(2) / (ka) N - j ' .( -6
U-I/ j- Wr 4) A-

2

Noting that -1 - 2j e-j( -1/2)r e-j(u -l/ 2 )(2Trt) in Equation (A-92),
cosuw t=0

one may retain only the 1=0 term for large ka as the terms corresponding

to W 0 contribute to the multiply encircling field paths around the sphere;

these terms (L'O) contribute negligibly for large ka. Also, P~l 2(-cose)

may be approximated for large ka, O#w, and u.AO(ka) as follows [15],

-- 3/2 2T jT e.jej(..e1pVl1/2(_cose) [7 s -in Fej= - . (-7

Let

e . e +I e (A-98)

where the fe term is associated with the e-j e term in Equation (A-97);

and e is associated with the term e-j (2 -6) term in Equation (A-97).
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Thus, one may write w+ as:

w. ,_ e " kPmYo sine m2  dT e-  T e-jkae "

(ka) 2 'TsinO

(A-99a)

with

=me ; e (A-99b;A-99c)

Simplifying the expression in Equation (A-99a) yields
e jPm + + +

Ir -+ + v(-) sinOD" G(ks') (A-99d)

where v(&) is defined in Equation (A-29); it is also discussed in

Appendix V. Also, G(ks) is defined in Equation (A-27). Here,

+ ae
+ a + , ~ e e4.
s-= (}=m ; D±  -(A-10)a(2w-0) 2w-6 =T .i nA e

t4sin(2ir-e)

Clearly G(ks+) corresponds to the field propagation along a great circle
(geodesic) ray path corresponding to s+=ae; whereas, G(ks-) corresponds to
propagation along the ray path s'=a(2w-e) along the same great circle
(geodesic) but in a direction opposite to s+. In this analysis, O<e<f;

hence, it is noted that, D sin-6 = i lsin(Z-e) ; the factor j

outside the radical is the same as that in front of the term e
in Equation (A-97), and it results from the crossing of a caustic of the
great circle ray paths as they traverse the spherical surface. This

caustic occurs at e=n. The asymptotic approximation in Equation (A-99) must
be modified near e=w; a simple modification of Equation (A-99) for e at
and near w is discussed in Appendix III on caustic corrections.
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Without going through the details, it can be similarly shown that

pie + _ 41(T) +

(A-101)

for r'=b=a (i.e., dl=0), and

I

y 2=m- k(r-a)=-I kd2 ; r>a (A-102)

The subscripts on 1r have the same meaning as that in n+; i.e.,

"m ,nm + " (A-103)

From Equations (A-50), (A-51), (A-98), (A-99d), (A-lOl), and (A-103),

one obtains the following surface magnetic field associated with 1re and m
e m +(the field corresponding to w and mr is obtained by simply replacing s

by s, and by replacing &+ by 9-, etc. in the fields corresponding to
e a
+ n +). Here, the subscript (+) is dropped for convenience.

He =t*H = p-o.~.l F-)u(E)+D2 J-v( DG(ks) (A-104a)

H - -=-psin -s)v(&)+j2 D2 L DG(ks). (A-104b)

m (ks)

t(PN) t(t-JT) * b(b.lT). (A-104c)

In obtaining Equations (A-104a;A-104b) use is made of the following
rel ationships.

e-jks "  a eik = 3 e-jks ±  a
ae± ks as- kssks ks ;=

j 75I



.+ +++

D e-j4 T=m a (D-.  )=m  aTD e'Jt+D-('JT)e'- j. (A-1O5b)
1

As before, only terms to lowest order in are retained in Equations

(A-104a;A-104b).

In order to obtain rn(P i.e., lr due to IT, it is convenient to

rewrite Equation (A-46) as

E-- k o r . {A-106)r jkY 0r

It is noted that a is as in Equation (A-62), and

r l _D2 9 s D4 92 2 ]9 D4
*~ 2 4 2 + a 1 a (A-107)
7 T s (- 7-9 T + 7 72 -- TWS -

r r-- D sa as
a a

a2 e-s9 a

since -l (due to sine or coso variation of Te,), and -(-2) is

neglected as it contributes to terms which are higher order in . One may

rewrite Equation (A-106) via Equation (A-107) as follows after operating
on 1re with the - and a operators.

as
-Je 3 m F k2 -jks 2-4 Dv({ (A-lO8)

jkr L 4' e-Jkr

ra

One may conveniently neglect the term involving (I-D4 ) in Equation (A-lO)I
which contains a- dependence as it is vanishingly small for (ks) small

(where D+1) and it is also small in comparison to the first two terms for

(ks) large. Thus, r'=Er=Em becomes

(1-m 2 -jks D bl- D v()(-sin); m
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As before, the field in Equation (A-l09) is associated with Te with the

subscript (+) dropped for convenience. The term corresponding to we is the

same as in Equation (A-109) except that s+ and C+ are now replaced by s-

and &-, respectively for the e case.

One may next develop similar expressions for the electromagnetic

surface fields of a radial electric current T on a perfectly-conducting

sphere. The source -=Te6(- -' ) as in Equation (A-37). Since pe=Pen at Ph.

the tangential magnetic field Bet(PN) due to T may be simply obtained from
tn(PN) due to IT via reciprocity as indicated in Equation (A-38). Thus,

R (/) (o '  e.nb[l- s]V(t))D G(ks). (A-110)

One may next compute the normal (radial) electric field e(PN) due to

via the equation of continuity (see Equation (A-40)) and Equation (A-lO)

with the understanding that b-€ in Equation (A-lO). Thus,
aHe He

Vs'[nx H ] t +- (A-111)t ts

after neglecting ( ) as before. Then from Equation (A-40),
D

Once again, referring to Figure 3, it is noted that if d2>O, then u()

and v(t) in Equations (A-104), (A-lOg), (A-110) and (A-112) must be replaced

by Fs(&,O,y 2 ) and Fh(&,O,y 2 ) of Equations (A-139) and (A-138) for kd 2<<ka.

On the other hand, if d >O and d2>O in Equation (A-lbO) and Equation (A-112);

then one must replace u(&) by Fs(&,yly 2) and v(&) by Fh(&,yl,y 2) in these

equations when kd 2<<ka. The functions Fs,h(&,ylY2) are discussed in

Appendix V along with an approximation for these functions based on a

Taylor expansion which is valid for kdl, 2 sufficiently small and 0+O.

Finally, it is once again noted that the results in Equations (A-104),

(A-bOg), (A-l10) and (A-112) are not valid at and near e=w. For e+W,

these results must be modified as shown in Appendix III on caustic corrections.
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APPENDIX III
CAUSTIC CORRECTIONS FOR THE SURFACE FIELDS ON

THE SPHERE

As pointed out at the end of Appendix II, the expressions for the

surface field on a sphere due to a source at PA on the same sphere

(see Figure 3) as given in Equations (A-104), (A-lO9), (A-lO) and (A-112)

are not valid at o=7 because D- as e-n. The point PN on the surface

corresponding to O=f is a caustic of the surface rays since at O=w, every

great circle path is now a geodesic between the diametrically opposite

source and field points, P; and PN' respectively. Such a continuum of

geodesic surface ray paths intersect at PN' thereby producing a point

caustic at PN for e=w. In order to obtain an asymptotic approximation

for the surface field which is valid at and near the caustic at e=n, one

begins by noting that the approximation in Equation (A-97) is responsible

for the singular behavior of D at e=r. Thus, to remedy this singular behavior

of D at e=n, one may employ an asymptotic approximation for the Legendre

function which is different from that in Equation (A-97) when e-1; such

an approximation is indicated in [15]. Alternatively, one may employ an

approximation in Equations (A-104), (A-lOg), (A-llO) and (A-112) for o ir

which is based on the following physical considerations. Firstly,

whenever eJt, there are two great circle geodesic surface ray paths between

the points P' and P these paths are associated with the potentials ne,m

and 7e,m, respectively as indicated earlier in Appendix II. Furthermore,

the total field is constructed from the sum of these e,m potentials as

indicated in Appendix II, i.e., from ne,m with

e,m =e,m + e,m . (A-I13)

The electromagnetic surface fields resulting from 7e,m are given in

Equation (A-104) or (11) and in Equation (A-l09) or (15) for the case of the

magnetic current source Fron a sphere; and they are given in Equation (A-ll)
or (22) and Equation (A-112) or (24) for the electric current source Ton a
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sphere. From (11) it is noted that the total Wt1 field, (i.e., including
the e,m contribution) contains the following combination of D G(ks) type

terms.

Tcl = D G(ks+) + D- G(ks-), 
(A-l14)

and

Tc3 = [D+]3G(ks+ ) + [D']3G(ks-). (A-115)

O+0* k2 Yo e-jks
Simplifying Tcl and Tc3 via G(ks )D y ields ,

sine TIj ks"

T Yoe [e + e eks , (AtollS)
2 Y + -jks-

cl I-f j sn+ + .ies_ 9(A16

sine ks+  sink

and
3 ~

T 27 sin 3 ejk s +  + ' -ejk s _ (A-117)Tc3 ~k~ (sn
sinee- ks-

with the understanding that:

e+=e ; s+=ae ; "=2w-e ; s =a(27T-e). (A-118a;A-118b;
A-118c;A-118d)

Since O<e<ff is understood in the present development, it is clear that

sine-<O. Furthermore,

-s- = e: F s--8 0;<7 (A-119)

II flO~n

User the caustic, e-; hence, Equations (A-116) and (A-117) may be

approximted as
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T k2Y ka-Qka (7r + e j-ka(r
c ij L~r ))_ ks*

(A-120)

and

T c3 =ii- - T Tc2 ,(A-1 21)

where

k 2Y 0 jk~ (ei ka (7r- jka (r
T R T -  eJ ka; O-i j (A- 122)

In the above approximations, sine = sin(7r-e)RR 7-e has been used for e-)w;

also L 1 is used for e-,w. One may now rewrite Equation (A-120) and
ks- ks+

(A-122) in terms of trigonometric functions as:

k 2 Y 073/2 -j2rm 3  2711 2e TJ

and

0a/ 2-j23rm 2 2e

with

kp 1/3
m = ( and pg=a for the sphere. (A-125)

It is noted that sin(ka(?r-e)- .) = cos(ka(r-e)- 6 F - -f) in Equation (A-124).

Furthermore, one also notes that for ka(ir-e)>>l the trigonometric functions

in Equations (A-123) and (A-124) are asymptotic approximations of cylindrical

Bessel functions as indicated below.
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J0(a~r-o)) ;Tra1- co-~i-O- ,(126)

and

For small ka(ir-e), one may therefore replace the trigonometric functions

in Equations (A-123) and (A-124) by the Bessel functions in Equations

(A-126) and (A-127), respectively, thereby making TcO and Tc2 (and hence

Tc3) valid for e--i. This procedure is similar to that employed earlier by

Keller [3] in his study of the diffraction by a circular aperture.

Thus, for e-n.ir one may employ the following expressions forTO
T2and Tc3 instead of those in Equations (A-120). (A-122) and (A-121),

respectively.

T k~Y F3/2e3 ~nm3 J 23 j ; 2m3> l; e-Wi, (A-128)cl T~j I L J0(m(roJ ks'

k2Yo 3e 3

L2 J~ ks+

T k'Yo [2f2m9/2-j2 J1 (2m3 6r-e-)) 2e
c 3 ~ r "1 er j 3 2m >>I; e->nf, (A-130)

and m = ~.l3as noted previously.
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From Equations (15) and (22) it is noted that the total tn and the

t fields (i.e., including the e,m contribution) respectively contain only

the Tc type term; whereas, the total le field corresponding to Equationc2 n
(24) contains only the Tcl type term. Hence, Equations (15) and (22) may be

modified for e--" by employing Tc2 of Equation (A-129) in place of

Equation (A-122); likewise Equation (24) may be modified for e-" by employing

Tcl of Equation (A-128) in place of Equation (A-120).
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APPENDIX IV

NUMERICAL TECHNIQUES FOR EVALUATING THE MULTIPLE
SURFACE INTEGRALS ASSOCIATED WITHI THE MUTUAL
ADMITTANCE BETWEEN TWO IDENTICAL SLOTS

ON A CIRCULAR CYLINDER

Consider two identical circumferential slots on the surface of a

circular cylinder. Under the "dominant mode" approximation of the aperture

fields in the slots, the mutual admittance between the two slots can be

expressed as follows:

22 /2a d/ o +/2a z +d/2

Y12 = - Fd  f d ~l dz1 d2 dz2

=-i/2a z1 =-d/2 *2= 0 /2a z2=zo-d/2

cos[- ] cos[la(,2-,oI] g (s.6) . (A-131)

In the above expression, a is the radius of the circular cylinder, d and X

are the slot dimensions; and 00 and z are the angular and axial separation

of the centers of the two slots, respectively. These parameters are

illustrated in Figure A-5. The Green's function gc(s,e) represents the

surface field 2*1t at (02 ,z 2 ) due to a unit-strength, i-directed

magnetic dipole at (l1,zl). The variable "s" is the arc length along the

geodesic path joining the source location ( l,zl) and the field point

location (02,z2 ); and the variable "B" is the pitch angle associated with

the geodesic helix as shown in Figure A-5. It has been shown in Section II

that the surface field T2"1't is indeed only a function of the arc length2 t
"s" and the pitch angle "e". It is noted that both "s" and "e" depend

upon the relative distance of lz2-zlI and I€2-€i1. The feature that

2trf depends upon only the relative axial and angular separation between

the source and field locations suggests an efficient way to perform the
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Figure A-V. Slot dimensions and the cylinder geometry.

double surface integration required for the evaluation of the mutual

coupling between the slots. In fact, the double surface integration can be

reduced to a double line integration via a suitable coordinate transformation.

Equation (A-131) can be rewritten as follows:

2 4
Y12- Ii (A-132a)

where

I Cos(-j. 0  JJJ co~A( 2 .)](s~e)dzldz d.1d* (A-132b)
84 z2
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P rll Icsedlz d ,

1 = cos(AI- 0 f{ f cos[j~-1  )]4sedd ,d2  (A-i 32c)
¢l'2ZlZ2

13 = sn(z2 -o o ffffsij.( 2+-1))gO(se)dzdz2d*,d*2  (A-132d)

14 = £ - J{JJ sfnfff (.2- 1)]gc(s~e)dzld~, 1 .

0102Z 1Z 2

and

S = a2(€2-fi) + (z2-zI) (A-133a)

[ = " _ (A-133b)

It is observed that all four integrals in Equations (A-132b;A-132c;A-132d;

A-132e) are similar in form. This appendix is devoted to the discussion

of the numerical techniques used to perform only the double surface

integration appearing in Equation (A-132b). Similar analysis can be

carried out for the rest of the integrals in Equations (A-132c;A-132d;A-132e).

Let us introduce the following coordinate transformations.

v = 1 (02-01) (A-134a)

u = (0 +0i) (A-134b)

t (z2-z1 ) (A-134c)
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and

w I (z2+Z1) (A-i 34d)

It can be shown that the integral 11 given in Equation (A-132b), via the

transformation defined in Equations (A-134a;A-134b;A-134c;A-134d), can be

expressed as follows:

11 = Cos( ) J cos[4A 7u]gc(v,t)dtdw dudv.
vI  uI (t) t I  w t)

(A-135)

The regions of integration in the (t,w) plane and (u,v) plane correspond

to the shaded areas illustrated in Figure A-6. The u-integration and

w-integration in Equation (A-135) can be readily integrated in closed

form and leads to the following expression.

v 2= (O +/a) t2= 1 z+d)

I= dv dt F(t) F(u2)-F(ulj gc(v't)
v = -z-/a) tl= -(z -d)

(A-136a)

where

2t - V7(zo-d) t < --
F(t) =V-7'

(z+d)-2t ; t > 0 (A-136b)

and
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Figure A-VIa. Region of integration in the (t,w) plane.
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V2zf( 0 +L

Figure A-VIb. Region of integration in the (u,v) plane.
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F~) sin(V P u) (A-1 36c)

v- VT x/2a V *0

ul7 (A- I 36d)

U1= 7( 0-/a)-v V <00

0*

v~ + 7(/2a)v V<0
o V7

From Equations (A-132b) and (A-135), one concludes that

z/2a d(.2 x/2 z +d/2

do, dz1  d02  1 z2  cos x ( 2+.1)g( )
=-z/2a z =-d/2 2~-L/2a z2=z-d/2

1 oo+,/a) Iz +d)

Fdv f dt F(t)[F(u2)-F(u1))gC(v,t)(A17

V__(0 -P./a) t 1-(z -d)

The above equation indicates that the double surface integration in Equation

(A-132b) can be reduced to a double line integration via a set of

suitable coordinate transformations.

It should be noted that the discussion in this appendix is also

valid for the case of tw axial slots on the circular cylinder.
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APPENDIX V

ON THE SURFACE TYPE FOCK FUNCTIONS

In this appendix we define and list some useful formulas of the Fock

functions: Fh(&,yl,Y 2 ), Fs( ,yly 2), v(), u(g), Vl(Y ), v'(E), u'( ), and

the Airy functions wl(t) and w2(t). For a complex T and real c, we define

the above functions as follows.

F 1L eT C 1/2h(ClYl 'Y2) =r g- IzF

f dT W2 (-yl)[Wl(T-y 2 ) - jTW2 (r-y 2 )]e'{

r 2 1 1

Yl >" Y2 (A-138)
2 1

1 - ~ .e~ 3/2 1L. d
F "s(",ylY2) T e C erlF f32_l dT Wi(T-yl)-

[l(T -y2) _-lT - e-jC (A-39
1 W2''2Yl > Y2(-1)

I2

where y, and Y2 are defined in Sections II and III. For yly 2=O:

Fh(",0) = v(C) = 1 e T c1/2 1 f d 2 e3j CT  (A-140)

r
l
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J4- - WT T
F~ (Eo.o) =u(E) =eU E3/2 1 dT e-(t (A-141)

r1 r

= 1 LE 4 / f d ept - 2 T jT (A-142)W77

r 3
WIT L1 dz exp(tz- r-) (A-143)

where integration contour rl(r 2) goes from to 0 along the line
arg(z) 2f-(+27/3) and from 0 to -along the real axis.

For COO, and y1,y2 small, one may approximate F sand F h of Equations
(A-139) and (A-138) by a Taylor series expansion as follows.

F h(C 'y1 ,y2) v v(E) I j.EK 21 v1 (~[ 2  ; Co (A-145)

s(sIP2 u(d + [u' (E)3 -l 7

For C large and positive, one may employ a rapidly converging residue series
representation for the Fock functions as follows [6,11,12)

v(9) =e rf- Cl/ T (n eiT (A-147)
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u(C) = e 1F 2A V 3/ 2  e (A-148)
n=1

V = e T 2V- c3/2 1 e-jCTn (A-149)
n=l

l/2 201

v'(Q) =  e- 4~ (I -/ -j 2E=Tn)- e (A-150)

.2 "J Tn

u = e 3F 3 I/2 (lj3 n)e - (A-151)
n=1

where T and T' are zeros of w2(T) and wj(T), respectively, and they are

tabulated in Table A-I.

TABLE A-I

Zeros of W2((T) and W (T)

T n = ITni e'Ji/ 3 and T' = ITnI e'J"/3

Tn I T I - -T~I
1 2.33811 1.01879
2 4.08795 3.24819
3 5.52056 4.82010
4 6.78661 6.16331
5 7.94413 7.37218
6 9.02265 8.48349
7 10.0402 9.53545
8 11.0085 10.5277
9 11.9300 11.4751

10 12.8288 12.3848

On the other hand, if C is small and positive, one may employ a small

argument asymptotic expansion for the Fock functions as follows [6,11,12].
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i.r

v~ 3/ 2 7 3 7 rf 7F9/2_.

i Ir Tr

3/2 5'--3 erff 47, 9/2_..
WE + * + U e- (A-153)

rf ~ 3
/27- v 2. ..?

V, +- -r e (A-1 54)

V W 3 -/2+ 7 + = e-" '/2 (A-1 55)

3 &1/2+ 5- 2~ 4547- ?e'7/2_.. (A-1 56)

For the residue series representation with the first ten terms in the

summation may be used. For <Eo' the small argument asymptotic expression
with the first three terms may be used, In the present study t° is set
to be 0.6 as shown in [11,12].
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