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I.  INTRODUCTION

The geometrical theory of diffraction (GTD) [Keller,1953,1956,1962]
provides a very convenient and accurate method for analyzing the problem
of high frequency plane wave scattering by smooth convex surfaces except
in the vicinity of the shadow boundaries and caustics. Thus, approximate
asymptotic high frequency results which remain valid even within the
regions where the GTD fails are developed in this paper for the case of
a smooth, convex cylinder illuminated by a plane wave. This work is
motivated by the need to analyze the radiation patterns of antennas
mounted near curved surfaces such as an aircraft fuselage [Burnside,1972,
Burnside, et al.,1975] or a ship mast.

In the GTD analysis of the scattering of waves by an impenetrable,
smooth convex cylinder [Keller,1956], the total exterior field is
associated with the usual incident and reflected rays of geometrical optics,
together with the surface diffracted rays introduced by Keller. The
geometric optical rays do not penetrate the convex body, and hence their
field is zero within the shadow region. The surface diffracted rays are
launched by the incident ray which grazes the surface as shown in Figure
1; these surface rays propagate into the shadow region and entirely account
for the field therein. In that pure ray optical analyses fail at and near
shadow boundaries, the GTD solution is valid in regions I and III as shown
in Figure 1. It fails in the penumbral or transition region adjacent to
the shadow boundary (SB) which is indicated as region II in Figure 1.

The angular extent of this transition region is of the order (2/ko (Q'|))]/3
where k refers to the wavenumber of the surrounding medium which ig
assumed here to be free space, and p,(Qy) is the radius of curvature

of the cylinder at the point of graz?ng incidence, i.e., at Qj. GTD
also fails in regions IV, V, and VI shown in Figure 1 which are

usually referred to as the surface or caustic boundary layer regions.
Regions IV and V are close to the surface of the obstacle which is a
caustic of the surface diffracted rays; whereas, region VI is in the
neighborhood of Q) which is a caustic of the reflected ray for grazing
incidence. An asymptotic evaluation of the field within the shadow
boundary transition regions, the surface boundary layer regions and also
their common regions of overlap, is complicated by the fact that the
field must change rapidly but smoothly from one form to another across
these regions.

The problem of estimating the fields within the transition regions
associated with the diffraction of waves by smooth, convex surfaces
has received much attention, especially in connection with the theory
of radio wave propagation around the earth. Fock made significant
contributions to this area by developing a general asymptotic theory
for the diffraction of waves by large convex surfaces [Fock,1957]. Fock
expressed his general solution to this problem in terms of a canonical
integral. In particular, Fock considered the Fresnel diffraction by a
sphere [Fock,1951] in which he approximated the canonical integral
asymptotically within the transition region; as a result, he was able
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Figure 1. Rays associated with the plane wave scattering
by a smooth convex cylinder.

to obtain a simpler solution in terms of tabulated, universal functions
of a single parameter. That result [Fock,1951] is valid for heights of
the source and observation points above the sphere which are small
compared to the sphere radius. In another important paper on this
subject by Wait and Conda [1959], this condition was relaxed so that

the source and the observer could now be far from the diffracting
surface. The results in [Wait and Conda,1959] are in terms of functions
similar to those in [Fock,1951], but they are obtained from an asymptotic
analysis of the canonical problem of the diffraction of a plane wave by
a circular cylinder. However, the results in [Fock,1951] and [Wait and
Conda,1959] do not reduce uniformly to the usual GTD ray solutions for
the 1it and shadow regions far from the shadow boundaries. Consequently,




one has to be concerned about the blending of the transition field and
the ray optical field solutions. On the other hand, Logan and Yee [1962]
were able to obtain an approximate uniform solution which recovers

the GTD solution, by re-defining the parameters in Fock's canonical
integral via an ad hoc procedure; whereas, Ivanov [1971] obtained a
uniform result also ir terms of Fock's canonical integral which recovers
the GTD solution, by employing a coordinate transformation different

from that of Fock. However, both of those uniform solutions are far too
complex for numerical computations in the entire transition region. It
is noted that the results in [Fock,1951] and [Wait and Conda,1959] are
valid in region II which excludes regions IV and V of Figure 1. An i
' extensive bibliography on other work dealing with various aspects of

E | this diffraction problem may be found in [Logan and Yee,1962; Logan,1959],
: and [Borovikov and Kinber,1974].

In this paper, the canonical problem of plane wave scattering by
a perfectly conducting circular cylinder is solved in a manner analogous i
to that in [Fock,1951], and some asymptotic approximations are introduced
heuristically to obtain a uniform result for the total field which is valid
: within the transition region outside the surface boundary layer, and which
‘ automatically recovers the usual GTD or ray optical field solution exterior
. to this transition region. Hence, the present solution need not be in-
' troduced separately within the transition region, as a correction to the
GTD solution. Furthermore, the present asymptotic result is expressed in
! the convenient format of the GTD; and it allows a simple interpretation
f in terms of the GTD rays. Only the leading terms in the asymptotic ap-
| proximation are retained in this analysis. This uniform result is expressed
} in terms of tabulated, universal functions which are similar to those oc-
curring in [Fock,1951] and [Wait and Conda,1959]; hence, the present result
3 ] is very convenient for engineering applications. The analytical details
] pertaining to the solution of the canonical problem are presented in
: section II; these results are generalized to the convex cylinder case in
section III. Since the uniform result presented here is not valid in the -
l close vicinity of the surface and the surface boundary layer, a separate, |
‘ approximate representation for the field which is valid very close to and
on the surface is obtained in section IV. Numerical results are presented in
section V to indicate the accuracy of the asymptotic results developed in
sections III and IV.




I1. DEVELOPMENT OF A UNIFORM RESULT FOR THE
CIRCULAR CYLINDER CASE

An asymptotic high frequency analysis of the canonical problem of
electromagnetic plane wave scattering by a perfectly conducting cir-
cular cylinder in free space is presented in this section. This
analysis leads to a uniform asymptotic result for the field in the
shadow boundary transition region which does not include the close
vicinity of the cylinder. The geometry of this problem is illustrated
in Figure 2. Since the problem is two-dimensional, it reduces to a
scalar problem. It is assumed in the analysis that the field satisfies
an eJut time dependence which is suppressed. The total field exterior
to the cylinder is denoted by ul. Thus, ul = ui + uS, where u' denotes
the incident field, and uS denotes the field scattered by the cylinder.

(%)
l $B—— s~ = i
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¢s‘r —— X
‘ < i s CIRCULAR
r 2 CYLINDER

Figure 2. Geometry of the canonical problem.

If the incident electric field has only a z component, then the
problem is of the TMz (or acoustic soft) type. If the incident magnetic
4 field has only a z component, then the problem is of the TE; (or acoustic
? hard) type. Let

ul = edkx = gjkocoss | (1)

ul satisfies the reduced wave equation and the following boundary con-
ditions.

(v% + k2) uT = 0; V% = two dimensional Laplacian operator. (2)

1 for TM; case.

(3)

Qul(ps0)ly=g =0 Q=

3
35 for TE, case.




u® satisfies the Sommerfeld radiation condition as pre, (4)

It is noted that u'i and u® satisfy the reduced wave equation. A formal
integral solution to (2) subject to (3) and (4) is given in [Bowman
et.al.,1969] as

uT -y g™ (5a)
where
o-je
QJ (ka) .
= | dv[o s u(2) -3vi 5b
u J:'-:E v(ko) W - (ke)] e (5b)
or
*-je (1) (ka :
weg [ onDu - B ) W(E) () e (5¢)
“e-je QH\, (ka)

with € being a positive number, however small and
v= ol -5, with || < (or [y| <7). (5d)

The term u*¥ in (5a) represents the higher order diffraction effects
which become negligible for large ka; more will be said about this term
later in the analysis. Within the transition region, v ~ 0 (ka) such that
one may employ the transformation

1/3
v=~ka+mr ; m = %3) . (6a36b)
(1)

and replace J (ka) and H\()Z)(ka) in (5b3;5¢c) in the transition regions
by

1
3 (k) & @/ () WP (ka) & %5 (m/m) Ty (), (7a37b)
2
where the Airy functions V(t) and w](r) are defined as [Logan and Yee,1962]
2
3
23 V(o) = (gl w0 = 2 [ e )
2 n r
-1
2
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The approximation in (7) is valid for large ka and vWO(ka). It is assumed @i

here that ka is large. The contour 'y runs from we'J(Z"/3) to =-je, and
Iy is the complex conjugate of I'y. In (7), terms of 0(1/m2) and higher |
are neglected. Therefore, within the transition regions (5b3;5c) become ;
via (7a3;7b;7c and 7d): 2

e ————

3 o [3 ;
L udm SdT[JV(T)(kp) +j %&i%%; HS%Z)(kp)]e'J(ka+mr)w (8a)
-G-je 2 i
or :f
ul ;‘IEHm (ko) + Lalid H(2) (kp)]e~d (katmedy (8b) 1
. ; v('r) aw (T) v(r)
-=-je 2
ﬁ with
1 , for the TM
. or the TM, case : (8¢)
-1 9
-m

i for the TEZ case

The field u may be initially decomposed as in [Fock,1951] for the
sphere problem; namely, u is expressed as the sum of the integral in
(8a) over the contour c, from 0-je to =-je, and the integral in (8b)
over the contour ¢y from -=-je to 0-je, respectively. After rear-

rangement of terms, and the use of HSEZ)(kp) = ZJv(T)(kp)-HS%Z)(kp) in

the integral over c2, one obtains,

o S

u=1I;+1I,, (9a)

where

—
|

=m Sdr Jv(T)(kp)e'j"(T)"’ -3 Sd-t H\(,fl)(kp)e'j"(‘)“’, (9b)

1
C-I+C2 C-l
and
I, = jm Sdr Wa)_ y2), ()60 g‘-SdT S e (ko)e IV (T)v,
AR TURML ¢, Bplx)

(9¢)




It is noted that Iy is completely independent of the electrical prop-
erties of the cylinder. One may approximate the first integral asymp-
totically in (9b) via the method of steepest descent; it is seen that this
term constitutes the incident field.

=Jvy

o~je 41 (1o y4n(2)
de . Ul P (o)

m jd'l‘ \]\)(T\(kf’)e-‘jv(‘t-)’JJ 2 7

)
Cy¥eo e

n e=dkesing _ g ikecos|of; |¢|<n‘ (10)

The Hankel functions in the integrand of (10) are replaced by their
Debye approximations prior to the asymptotic evaluation of the integral.
The Debye approximation is [Bowman et. al.,1969]

g; : LTI -iﬁ-
H =JKp SINY 4 Jvy +° 3 v=kp cosY ;
b7 (ko) ’ﬂEp siny © O<ReY <7 . (11)

Since O<Rev<n in (11), the H{1) (ko) term in (10) yields ui for O<|¢|<n/2
from the saddle point 3t y=n)2 -|4|, and contributes negligibly else-
where; likewise, the H{2) (ko) term yields ul for n/2<£¢ < from the saddle
point at vy = |¢I-n/2. YThe remaining integrals in (9b) and (9c) will next
be approximated asymptotically for the shadowed portion of the transition
region in part A of this section; a corresponding development for the 1it
portion of the transition region will follow in part B. In the subsequent
analysis, ¢ will be restricted to O<¢<m for convenience; the results for
-m<¢<0 may be readily obtained via symmetry.

A. Field Analysis for the Shadowed Transition Region

One may rewrite (9b) by incorporating (10) and by replacing HS%Z)(kp)
in the integral over cy with its integral representation,

H\E%Z)(kp) ___;lr_ st e-jkps‘inB'l-jv('r)B

Cg

to obtain
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. -jke[sing- E'B] -
- -jkay J P
jkocos|o| , €73 I e
I %e + B = s

—an) (12)

g

where cg is shown 1n Figure 3. The integrand in (12) possesses a saddle
point a% B=Bg=COS~ a/p, and a pole at 8 = B_ = ¢y. For fixed values of
p and a, Bg is a constant which is alternativBly given by Bg = ¢g - m/2s
where ¢ is the value of ¢ at the shadow boundary (SB1) as shown in
Figure i. The angular extent of the shadow zone (for 0<¢<n) is

¢g<¢<m; thus, 8p>8s and 6>0 in the shadow region, where

S=g-B mE -8 = ¢ g, (13)

SHADOW REGION
FOR O <¢<w

Figure 3. Location of Bss Bp and SDP for the shadow
region analysis.

¢ - a

The shaded areas in Figure 3 denote the regions where e'Jk°[51"B' 56] in (12)
becomes vanishingly small for|Img|+= ; thus, one may deform the path

cg in (12) into the steepest descent path (SDP) through Bg as indicated

in Figure 3. Since Bs<Bp in the shadow, the pole at B, is crgssed in

this contour deformation; therefore, it's residue giveR by -eJkPC°5¢H(¢-¢S)
must be included in the evaluation of the integral. H(a) is a

step function which is unity when A>0, and zero when A<0. Next, the
exponent in the integrand of (12) may be approximated by it's three term
Taylor expansion about =8¢ for large ke sinBg to obtain




. ks 2

o~Jk(s+ae) S = 7 (B-8g)
773 % 58

. SDP P

(14)

S =p° =g & ) sinsS = s, (15a315b)

Note that the first two terms in (14) cancel in the shadow region. This
leaves the integral over the SDP which may be directly expressed in
terms of the well tabulated Fresnel integral after employing the
transformation

-j LJ
we=e ¥ (s-8)/VZ (16a)

which maps the SDP onto the real uw-axis (-w=<p<®), Thus, for $> 0

~ e m e
I % __28'jk.(_s+a°) S a1 fikd] €3 en)
A - H = a ’
1 mJ l-l'l-lp /?‘ﬂ'k 0 /;

where up is the value of u when B-Bp, and

LRy .2
FLKLE] = 2j|/kLa| eIkLa Jdt it ¥>0, (16¢)
VL3 |
N 92
iy as> . (17a317b)




A plot of F[kLa] is illustrated in [Kouyoumjian and Pathak,1974]. The
physical significance of the geometric quantities 6 and s is shown in

Figure 4. Turning next to the evaluation of I2 in (9c) for the shadow
region, it is observed that the integrals in (sc) may be simplified by

employing the Debye agproximation of (11) for HS%% (ko) in the integrands.

v(t) = ka + mr ~ 0(ka) in the transition region, and the major contri-
bution to the integrals is for t small; hence, one may use sin y ® s/p in
the Debye approximation to obtain,

-jks + j 7 Jj(ka+mr)s
(2) 2 J T s
N T)(kp) “Jg e e : (18)
Employing (18) and (7c) in (9¢c) leads to
= %
-jkae _-jks - e -jks
pe-te Bl B SR lEe e a9
v2wk /s h Vs
where ﬁs(s) are Pekeris' caret functions [Logan,1959;Bowman et. al.,1969]
h
defined by
..j ir. L]
Py(e) = € S W) -t g, (20)
h /TT -0 &2(1)

and the parameter & in the shadow region is
£=mé (£ >0 in shadow). (21)
The subscripts s and h in (20) correspond to the TM; and the TE,
cases, respectively. Plots of Pg(&) are i]]ustrateé in Figures 5a
: h
and 5b in terms of related functions p*(&) and q*(£). Combining
the results of (19) and (16b) according to (9a) allows one to write u

at a point Pg in the shadow region as

s T

e A%
u(Py) ~ -mE -kt ;—5-—/:_— (1-F[kLA]) + ﬁs(E)
v h

e-jks t = aé
T \e=me20 .

(22)
10




B, = cos™! i%-

8 =y - Bs>0

Figure 4. Ray paths for the shadow region.

The above result may be interpreted geometrically as a field which
propagates to P along the path Q1Q2Pg after being launched by the in-
cident wave at 31, as shown in Figure 4, Q2 is the point of tangential
shedding of the diffracted field from the surface. In the deep shadow
region, i.e., far from SBy, £>>0 and F[kLa] + 1 since kLa becomes large;

hence, for £>>0 only the ﬁﬁ term in (22) is significant. Furthermore, for
£>>0, the integral for ﬁﬁ in (20) may be replaced by a rapidly con-
vergent residue series [Logan,1959]

| s
Sy Jg e
- £ j& = s, for ™M, case
/v 2[Ai'(-q)]
p . (23)
AT
-3 JF e

_e e e

= e it S L TEz case .
L 7 v 2g[Ri(-q,)]

n
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Figure 5a. Plot of e'j"/4p*(g) versus & based on tabulated
data for p(&) by Logan (1959).
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Figure 5b. Plot of e“]"/4q*(5) versus & based on tabulated
data for q(&) by Logan (1959).




The Miller type Airy function is given by Ai(t) = V(1)//n, and Ai'(7) =
d/dr Ai(r). The parameters q, and q are defined by Ai(-q,) = 0, and

(-q,) = 0, respectively where n ? 3 their numer?caI values
are tabulated 1n Logan, 19592 Thus, far from SBy, i.e., exterior to the
shadowed transition region, (22) reduces via (23) to the Keller surface
diffracted ray field given by

S
: 5 tadwiit - ks
h h
ue) v u(y) | ogloyde " B(e)] S (24)

S S

and ah are the Keller diffraction and attenuation coefficients for the
n%h surface ray mode [Keller,1956] which to first order are given by

'j ™ _j m
[DS] r me Tz_ [DhJZ = 1 me Tz- :
LT TR e T
q j q j
az = -a— me B- ’ a: = ‘a'ﬂ me .6.

The superscripts s and h in (24) have the same meaning as the subscripts
in (208 also u'(Qq) is the value of the incident field at Qy which

is unity in this case. The geometrical interpretation of (Zl) is the
same as that in Figure 4.

Finally, the term " corresponds to a residue series [Bowman et. al.,
1969] which represents the field of multiply encircling GTD surface ray
modes given by

S
. o -(ah+jk)(t+zT) S -jks
cw h n h e <
uP) v u'(Qq) LZ g Da(Q;)e Dn(Qp) | ==+ j
- s :
S
; - ~(aPegk) (t'+{2-10T) ° -jks'
+ul(ep | I 1 op(h)e ()| S s 0o
=7 N

(25)

where T = 2na; t' = arc length from Q{ to Q4; and s' = distance from Q}
to Pg. The first term in (25) is the field of surface ray modes
launched at Q) which diffracts from the surface at Q2 to arrive at Pg
after encirc]¥ng the cylinder & times in the counter-clockwise sense.

P
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The second term represents the field of surface ray modes launched at Qi
isee Figure 4) which diffracts from Q2 to Ps after encircling the cylinder
2-1) times in the clockwise sense. For sufficiently large ka, only 2=1
in the second term of (25) is significant and the remaining contribution
is negligible. The total field at Pg in the shadow zone is the sum of
(22) and (25).

B. Field Analysis for the Illuminated Transition Region

If one directly employs the result given in the previous section
for the shadow region to calculate the field u at a point P close to
SBy in the 1it region, then

o

. 03 J PS =4
u(Pp) ~ u'(P) - NE— e-Jkt [251_4 (1-F[kLa]) + PR(EE] eJJ_ks y
™ S

t =a6 <0. (26)

Since ¢<¢¢ and B,<Bg in the 1it region H(¢-¢5) = 0 in (14). Also,

(19) is unchangea except that £,t and 6 now become negative in the 1it
region. The second term in (26) may be interpreted as a scattered field
which after being launched at Q propagates backwards from Qi to Q3
before being shed tangentially }rom Q3 to Py as illustrated in Figure 6.

PL
PSEUDO RAY PATH
REFLECTED n
RAY PATH

Ad
w

Figure 6. Reflected and pseudo ray paths for the 1it region.
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It is noted from Figure 6 that this "pseudo ray" propagation path is dif-
ferent from the geometric optical reflectea ray path which satisfies the
generalized Fermat's principle. The result in (26) is quite accurate
very close to SB1; however, just as the result in [Fock,1951] and

[Wait and Conda,1959], this result also does not reduce 5? the geometric
optical ray field far from SBj. An approximation for Hs (ke) which is
different from that in (18) appears to be necessary to adequately
approximate the field behavior in the deep 1it region. The fo ?wing ap-
proximate procedure is adopted to achieve this goal. First, H, T)(ko)

in I2 of (9c) is replaced by its large argument approximation (v(t)<<ke)
such that

L e )l Xd'r gxw RECIERE)

B (x) s (3 - v) . .
awz('r)

+r2n- dt
4

One next'defines the following

F-v=2; & =-amsiny, (28a;28b)
where
e e (B + ) 0%+ B () 1 ¢ e s
(29)
with
(gﬁ)z <1,

In the transition region, &' may be assumed to be small in comparison to
m which is taken to be large. One may approximate v(t)(m/2 -y) in the
exponent of (27) via (29) as

w(x) (§-¥) = (ka + m)2¥ % -ka Eﬁ- + S;Eé)-i-]-rz' . (30)

16
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Incorporating this result into (27) yields

3 : T s =
\P- jko| 32k siny-j L&, iy

QVfr) e-j;'r

(31)
Qwy (1)

Referring to Figure 6, it is seen that in the far zone (ko>>ka)

%, in amplitude

o200 p X ; (32a332b)
2 + a cos® , in phase

2¥ = x - |¢| X w- 20 (32¢)

respectively. Thus, I may be expressed in terms of the reflected ray
coordinates as

. ’ 3 1r
-jk(2+ a cos6')  j2ka cose'-j £ g I PR
|2 e
12'\'- H-e me ——+P(E') H
2O S

(33)
E'=<2m cose’ (via (28b) and (32c)). (34)

Turning next to the evaluation of Iy of (9b), one begins with its integral
representation in (12). The contour cp is deformed into the SDP through
the saddle point Bg as in Figure 3; the pole at B, is not crossed in this
contour deformation since Bp<B¢ is in the lit reg?on. To be consistent
with (27), I will also be Bvaluated in the far zone; thus, Bg=cos-la/p%n/2

for ke>>ka so that a three term Taylor expansion about 8¢ for the exponent
in (12) yields
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i

m j ™ 2
jka(z - v) ke[3{8- %) ]
I, % ui(PL) R e ke Ids e

(35)

The integral in (34) may also be directly expressed in terms of the F
function of (16d) which contains the Fresnel integral as done previously
for the SDP integral of (14) for the shadow zone.

, ket ) dka 2y
I ~ u‘(PL) -8 g FLko -2Y2]
v2nkp 2y

(36)

Incorporating (29), and the far zone approximations for o and ¢ of (32)

into (35) yields the following result.

i ek j2ka cose’-j (5:)° -jk(&+a cose')
L - Mg e
I]’VU(PL)+m e F[kLa]
VZnke' g
ke >> ka, (37)
% o (&) 2,i
=k 38 = -—zl— = 2 cos“6’ (with &' as in (34)). (38a338b)

2m

Combining (33) and (37) according to (9a) gives u(P ) in the far zone as

(&) -i 7
i i £, e ¥
u(P ) v u'(P) +u'(Qy) |-m Ee e2€|/1_r_ (1-F[kL'&'])
~ -jk"
+ Pz(z') eﬁ .

which for later convenience is re-expressed as

(39a)




(e)3 | -5 F
i i § i v,
u(P ) ~u'(P) + u'(Qp)|- ‘l- Fre ezc/; (1-F[kL'E'])
-jk&
e (e (396)

h
where
; i
Ui(QR) = incident field at Q (see Figure 6) = elka cosé’ .

i
oY = 2.2%22_ = reflected ray caustic distance. (39c¢)

Far from SB] in the 1it region, £'<<0, and hence F[kL'g'] + 1; further-
El

more, Ps( may be asymptotically approximated as [Logan,1959;
Logan aad Yee,1962]
()3
P(&') ~ *\]"' : [1+0(e73)1; £'<<0 (40)
s xS . 5

h
Thus, incorporating (40) into (39b) for the deep 1it region (£'<<0) yields

: - vy ; ™
u(P ) vu'(p) ¥ u‘(QR)\IQ—- eIk for the{ Z)case.  (41)

TEz

The field uGO of the geometric optical incident and reflected rays
represents an accurate, first order asymptotic field approximation within
the deep 1it region, and it is well known to be

GO i i !“’Y -jke
u (PL) ~ou (PL) + U (QR) R; %;:; e (42)




; R . : R_=-1 for TMz case
in which RS is the surface reflection coefficient given by Rh=*] for TEz iave
It is appapent from (42) that the result in (41) is the far zone geometric
optics field, since the reflected ray divergence factor'&*/(&*+2) of (42)

reduces to VpY/% in the far zone (£>>3"). The result in (39) for the Tit
region has essentially the same form as (22) for the shadow; this is a
desirable feature since the results in (22) and (39) are in terms of
tabulated functions, and they admit a simple interpretation which will be
discussed in Section V. The far zone result of (41), and hence (39) may
therefore be heuristically generalized to the near zone (which is exterior
to the close vicinity of the surface) according to ray-optics, by replacing

the far zone ray divergence factor J&Y/z with it's near zone value &'/ (3'+%),
where £ must now represent the near zone reflected ray distance from
Qr to P . Thus, the near zone result for the lit region is

h

. ' e'jkz; g' = - 2n coso' < 0; L'=24p",
oV +2

(43)

, : (@) i :
u(p ) ~ u‘(pL) +u‘(qR)EE_.€e I :a'/? (1-FLkL'&'])+P (£")
p'\oY

It is observed via (22) that the distance parameter L for the shadow zone

is the distance s from the caustic point Q2 to the field point Ps. The
caustic at Q2 is the effective origin of the diffracted ray path to Ps,

Thus, keeping this interpretation in mind, one modifies L'=% in (38a) for the
far zone to L'=2+}Y in (43) for the near zone, since £+ is now the distance
to P from the virtual caustic of the reflected ray path along which the

field u(Py) is assumed to propagate. One notes that L' of (43) reduces to
that of (58a) at the shadow boundary, and also in the far zone

(where 2>>3Y), The value of L' is significant only near the shadow

boundary where L' of (43) and (38a) are approximately the same; hence one
could use L' of either (43) or (38a) without noticeably affecting the
numerical calculations. The expression in (43) now properly reduces to

(42) in the deep 1it region. The total field at PE is the sum of (43)

and uc¥ of (25) with Pg replaced by P ; however, ut¥ is negligible in

the 1it region for large ka.

It will be shown in Section V that (43) for the 1it region and (22) for
the shadow region are equal at the shadow boundary, thereby making the
asymptotic solution presented in this paper continuous from the deep 1it
region to the deep shadow.




III. GENERALIZATION TO THE SMOOTH CONVEX
CYLINDER CASE

The uniform results for the circular cylinder in (22) and (43) may
be readily generalized to treat the scattering by a convex cylinder of
slowly varying curvature in the usual manner, by utilizing the local
properties of propagation, scattering and diffraction of waves at high
frequencies. Thus, one treats each point on the convex cylinder as if
it were locally on a circular cylinder of the same radius of curvature,
j.e., the radius (a) in the solution of the previous section is replaced by
pg where pg is now the local radius of curvature of the convex cylinder.
Specifically, the generalization of (22) and (43) to the case of plane
wave scattering by a smooth, perfectly-conducting convex cylinder of
variable curvature is indicated below for the shadow region in part A,
and for the 1it region in Part B.

A. Shadow Region

The field u at Pg in the shadow zone of the convex cylinder becomes

« T
: ’ T b jks
u(Pg ~ u'(Qq) |-/m(Q;)¥m(T, eIkt %- 9—7: (1-FLKLET)+P (&) e/_ ; €20

28V T h S
(44a)
with
m(t' kp (t')
Ee) Sty dtt s tel oWy e e (44b,44c ,44d)
g " q

and

L=s 5  a=¢&/2mo)nQ)] . (44e344f)

The points Q) and Q2 are indicated in Figure 1; t' denotes any point
between Q; and Q2 on the cylinder and s is_the distance from Q2 to Ps.

It is noted that m in (22) is replaced byvm Q])szQz) in (44a) to be
consistent with reciprocity, since the point of grazing incidence Q7 and
the point of diffraction Q2 on the convex surface in general possess
different radii of curvatures pg(Q]) and p (Qz), respectively. This sym-
metrical splitting of m is also essential gor preserving the uniform
property of the result so that deep in the'shadog region where £>>0, (44a)

reduces to the GTD result of (24) (except that (u: t) therein is replaced
2
byjQ aﬁ(t')dt' for the convex cylinder).
4




B. Lit Region

The field u at PL in the 1it zone of the convex cylinder becomes

i - -3 %_)i 4
1 1 = e I"’l D ]
u(P )vu (P )+u'(Qg) -L:e o (1-F[kL'a ])+Pz(e )
vy )
. p -sz. ] < 0 45
3’Y+2 e s 3 ~ Vs ( a)
with
SOTE (Qg)cose’
i Q P coso
g'= -2 m(QR)cose1 s m(Qp) = _g—B— s oY = __9__32__ ;
(45b345c;45d)
L
and
L' =2 +0"; 3= 2coszei. (45e;45f)

The point of reflection Qg is shown in Figure 1; also & is the distance
from Qp to P as before. Deep in the 1it zone where £1<<0, (45a) reduces
to the geometrical optics result of (42) except that p' is now given more
generally by (45d) for the convex cylinder.




IV.  FIELD IN THE CLOSE NEIGHBORHOOD OF A SMOOTH CONVEX CYLINDER

While the uniform result in (44) and (45) for the scattering of a
plane wave by a smooth, perfectly conducting convex cylinder is valid in
the far and near zone of the surface, it is not valid in the close
neighborhood of the surface. The region of validity of (44) and (45)
excludes the boundary layer and it's vicinity in the shadow region, and
it excludes approximately the same distance from the surface in the
1it region. The field in the close neighborhood of the surface is
available elsewhere in terms of the canonical Fock integral [Logan and
Yee,1962;Ivanov,1971] which is very complicated for numerical calculations.
In this section a Taylor series approximation for the canonical Fock
integral is obtained to describe the field in the close neighborhood of
the surface. This approximation is very convenient for numerical
calculations.

When the field point is extremely close to the surface of a circular
C{lgnder such that k(p-a)<<ka, one may then approximate JV(T)(kp) and
1

HZ) (ko) in (82) and (8b) by

(1)
3,(ke) & (/) V(e ; (ko) % 7 5 (/) (2-h) (46a) ; (46b)
2

where
T T S (46c); (46d)

Incorporating the above results into (8a) and (8b) essentially yields
an expression for the field u in terms of Fock's canonical integral as:

T Q (x) :
ud & S S de[V(z-h) - Y wz(T'h)]e-JZT3 Z=my (47a)
'/;f- Jeoje awz('f)
or
oo gt P Wy () .
uw :J-e'Jka¢ S dr[w](r-h) — a ](T wz(r-h)]e-JzT; Z=my, (47b)
2/7: -°°-jt-: awz(‘l'

with v = |¢| - n/2 as before.
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The above integrals for the circular cylinder case will be approximated
in the close vicinity of the surface by a Taylor series in direct powers
of the normalized distance h; these results will then be generalized

to the convex cylinder case as in section III.

The y>0 case will be considered first, to be followed by a similar
treatment for the y<0 case. Let O<¢<m as in section II; the results for
m<¢<2m may be directly obtained via symmetry. For y>0, it is convenient
to employ the representation in (47b). Thus, for h small, one may repre-
sent w](r-h) in (47b) by a Taylor series,

2

T R Y T L N I T e g Ty ey

2 3
wy(x=h) = wy(2) - wi(dh + ey (e) = - [wq(e) + wie)] -
2 2 2 2 2 2

4 5
+ [2wi(x) + rzwl(rn b - Loy () + rzwim] Yoy + 0(h%)  (48)

}

where the primes on w1(r) denote differentiation with respect to . In-

2
corporating (48) into (47b) allows one to express u in terms of Fock J
current functions and it's derivatives. ?

P i3 4 g
u(P) |y * e-akawEg(z) + -3 m- B-5- g g--(zz]w(hﬁ);

for the soft or TMz case (a=] case)

(49a)
jkay jh? h3 ht j4h°
U(P) [y50 ¥ € E(Z) + 37— 9'(2) - 37 9(2) - 71 9"(2) - g7 9'(D)
+ 0(h6); for the hard or TEz case (a = 3/9t case). (49b)

3(0) and g(D) are the Fock functions [Fock,1946;Logan,1959] defined by

==

S0) = L Sd g (o) = 3 YJZ s (50a;50b)
g = T ; g S - T . a;
7)o &) W

_ The values of N(D) and g(D) are extensively tabulated [Logan,1959].
The primes on g(D) and g(D) in (49a;b) denote differentiation with respect

F to the argument (D). The derivatives of § and g may be evaluated numerically
from the interpolated values of g and g, respectively. In obtaining

(49a;b), use has been made of the well-known relationships w{(r) = rw](r);

2 2
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w-.je n b—je
wi(r)wz(r)-w](T)Wé(r)’--zji and SdT e"‘jD‘r () = §" E_n Sdr e-jD-r f(x),
-w-je aD -G-je

where f(t) represents some combination of the Airy functions., It is

noted that E(Z)e'Jkaw and g(Z)e'Jkaw are directly proportional to the
electric current density induced on the cylinder surface by the in-
cident plane wave [Fock,1946]. In the present case, these currents exist
at Py which is the normal projection on the surface of the field point P
exterior to the surface. For y>0, the point Py lies in the shadow zone.
The distance from Py to P isAd(=p-a); furthermore, the unit outward

surface normal at Py is o = n = Py\P/ PyP . When the point Py on
the surface lies in the deep shadow (y>>0 and hence Z>>0), the Fock

currents 3 e-jkaw and ¢ e-jkaw reduce uniformly to the GTD current =
representation [Pathak and Kouyoumjian,1974].

For y<0, it is convenient to begin by re-writing (47a) in terms of
a new parameter Z' as employed for the Fock currents by Logan (1959).

) 1 l3 l2 :,
Z' =msiny = -m cos¢;¢=s1’n']"ZT-=é—-+%- 313)_4..--, if (é—)ﬂ. ’
i .

(51a,51b)

The approximation in (51b) is valid within the shadow boundary transition
region for large m. Thus, (47a) becomes

‘ : (¥ e . e
u(P) | <0 ¥ glkacosee Sdt V(z-h) - gjﬂlsz(x-h) e It'T,
L J i n ~w-je awz('f)

(52a)

: 3 ®-je
i -ihZ' 'J(Z') /3 s 7t
o n eJka cos¢l Jhz' e dx Qvgrz wz(r-h)e'JZ 9.
/; _“-je awz(T)

u(P)

(52b)




. SIS
In obtaining (52a), one employs et y miZ't and e~Jkav y oika cos¢-3(2')7/3.
Furthermore employing

®-je

dr V(r-h)e"jz'T = g-JhZ’ e‘j(zl):’/3

i

for y<0 in (52a) leads to (52b). Next, the wp(t-h) in (52b) may be expanded
for small h as in (48) to arrive at an expression similar to that in (49a;b)

for u in terms of the Fock currents and it's derivatives,

3 3 5 2 n
ka cos -jhZ' n (jhZ'
“”N@kéa ¢EJ 'L%b”-%TL)

b & i 45 5
+ e3(2') /3{hg(2')+ g - 5@ - ET'S"(Z')}] :

+ 0(h6), for the soft or TM, case (@=1 case), (53a)

. iE 5 n
u(P)|w<0 ¥ eJka COS¢[EiJhZ & (nzo L%}L__ (th')")

s(7113 4 3 4
+ e'J(Z ) /3<§(Z|) + %%_ g'(z') - %T g(2') - gr g"(2') -

R 6 y-2
-igr9 (2')) |+ 0(h°), for the hard or TEz case (Q = 5;-case)
(53b)

For y<0, the point Py on the surface is in the 1it zone, where Py is the normal

projection on the surface of the gield point P, as indicated g eviously.
. . (] Iy [}
edka €os-3(Z')%/3 471y ypq edka cose-3(2')°/3 g(z' X-3/m(Py))

The Fock currents
at Py which are induced by the incident plane wave reduce uniformly to the
eometrical optics currents when Py moves into the deep illuminated region

?Z'<<0).




The results in (49a;b) and (53a;b) may now be generalized as in
section III to obtain the field u in the close neighbourhood of a smooth,
perfectly conducting convex cylinder illuminated by a plane wave. Thus,

S 4 )
u(P) & U e 0T 4T <ng(0)+ 41§ (D) - Z-5(0) - £ §'(0)) |+ 0(n%),

for the soft or TMZ case, (54a)

2 2 3 4 saiD
u(p) % ue 3" r]+rz%(n)+ g1 (0) - §r 9(d) - - 9"(0)- - o' (D)) [+0(h°)

for the hard or TE, case, 4b)
where
' m(t' '
ui(Q ) k S dt S p (t dt PN in shadow
1 Q] Q] 9 zone
U = : f =ﬁ e D= H for
j P, in 1it
iy (PN) N zone
L 1 -m(PN)cose'i
(55a355b355¢c)
and
] ] e
0 Pg'Py P, in shadow
P (G]i N zone
T -< . $ g Ty= ﬁ g ; for
-jhD _ %3 e 0 Py in lit
& nZO '(Fr)_ (3hD) . J 3 N zone
. / ~ S

(55d;55e)




The arc length integrals in (55b) and (55c) are evaluated along, the

surface geodesic from Qi to Py in the shadow region; whereas, o1 is the
acute angle between the incident ray and the surface normal to Py in the

lit region. While the definitions for u,, ® and D for the convex cylinder
follow fairly directly from the generalizations of the guantities in (49a,b)
and_(53a3b) for the circular case, the introduction of [pq(PN)/pq(Q7)]1/6

in TE for Py in the shadow is required to preserve the uniform ndture of

the Fock currents in the shadow zone of the convex cylinder [Pathak and
Kouyoumjian,1974].

V. NUMERICAL RESULTS AND DISCUSSION

A uniform asymptotic result for the near zone field exterior to
a perfectly conducting convex cylinder which is illuminated by a plane
wave as shown in Figure 1, is given in (44a) and (45a) for the shadow
and 1it zones, respectively. These results may be employed via reciprocity
to directly obtain the radiation patterns of electric or magnetic line
sources in the near zone of the cylinder. A few numerical results for the
radiation patterns of line sources near circular and elliptic cylinders
which are based on (44a) and (45a) are presented in Figures 7b, 7c and 7d.
The accuracy of this uniform result is confirmed by the excellent agreement
obtained between the present solution and the eigenfunction solution for
the circular cylinder case. Similar agreement is observed for the elliptic
cylinder examples in which case the present result is compared with a moment
method solution. The results in (44a) and (45a) are not valid in the close
vicinity of the surface; hence, the results in (53a) and (53b) may be used to
calculate the field in the close neighborhood of the surface. In particular,
the latter results are used to calculate the far zone fields of line sources
in the close vicinity of a circular cylinder via reciprocity as shown in
Figures 8a and 8b. It is seen that these results tend to blend with
those obtained via (44a) and (45a) thereby providing an overlap region for
these two representations. It is noted from the above pattern calculations
that the uniform result of (44a) and (45a) makes the leading term of the
total high frequency field continuous at the shadow boundaries. On the
other hand, the use of the usual ray optical or GTD solution would have
produced a discontinuity in the field pattern at the shadow boundaries.
One may verify the continuity property of the uniform result as follows.
Near a shadow boundary, & and &' must both approach zero since the arc
length t = 0, and 68! + /2. Furthermore,

=

T -(Tl' +
Flo) + |[Ymo - Zaea-i' eJ it as o + 0, (s6a)

e

and one may re-express Pﬁ as

[ o -l
p*(o) 1 . T : (%b)

ﬁs(o) =

*(o) ; 2/mo
h L_“
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Figure 7a. Elliptic cylinder configuration excited by
a 2-D line source.
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e— \IA EQS (44a) & (450)

90° @ © ® & EIGENFUNCTION

R
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S

180°

g PN

270° p =476

Figure 7b. Total field surrounding the cylinder of Figure 7a
excited by an electric line source.
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SOLUTION

180°
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Figure 7c. Total field surrounding the cylinder of Figure
7a excited by a magnetic 1ine source.
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—— \|A EQS (440) & (450)
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Figure 7d. Total far-field surrounding the cylinder of
Figure 7a excited by a magnetic line source.
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180°

soe EIGENFUNCTION
SOLUTION
o oo VIA EQS(44a0)8 (45a)

— \|A EQ (54a)

90°
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270°
p'=2.15X

¢$'=0
Total field surrounding the cylinder of Figure 7a

Figure 8a.
excited by an electric line source.
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o o o EIGENFUNCTION
SOLUTION |
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—— VIA EQ (54b) |
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p'=2.15)\
$'=0
Figure 8b. Total field surrounding the cylinder of Figure 7a
excited by a magnetic line source.
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Incorporating (56a) and (56b) into (44a) and (45a) yields exactly the same
limit value as the field point approaches the shadow boundary from either
the shadow or the 1it side; this limit value is

-j%- p*(0) e'jszB TE, case

q*(o) |2'SB TMZ case

where %cp is the distance from Qy to P on the shadow boundary (SB). Thus,
(44a) ang (45&%) yield a continuous total field at the shadow boundary. It
can be shown for the circular cylindrical case that the total high
frequency field based on (44a) and (45a) possesses derivatives along the
normal direction to the shadow boundary which are also continuous to
0(1/%sg). In this connection, it has therefore been observed that

the pattern in addition to being continuous is also relatively smooth.
These observations hold also for the smooth convex cylinder case provided
the local radius of curvature of the convex cylinder is slowly varying

as assumed previously. The result of (53a) and (53b) is continuous

across the shadow boundary as may be easily verified by inspection.

u(P) g ~ 34 @) - me)[Z e

While the uniform result of (44a) and (45a) pertains to a perfectly
conducting smooth, convex cylinder, a similar result can be obtained for
a cylinder with an impedance boundary condition. However, the latter
case has not been included here since the PS functions which are now

dependent on the non-zero value of the impegance, are not extensively
tabulated.

Further extensions of the uniform result of (44a) and (45a) to treat
the general three dimensional problem of the scattering of an arbitrary
electromagnetic ray field by an arbitrary, smooth, perfectly conducting,
convex surface will be presented in a future paper [Pathak, et. al.].
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