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I. INTRODUCTION

The geometrical theory of diffraction (GTD) [Keller ,1953,1956,1962]
provides a very convenient and accurate method for analyzing the problem
of high frequency plane wave scattering by smooth convex surfaces except
in the vicinity of the shadow boundaries and caustics. Thus, approximate
asymptotic high frequency results which remain valid even wi thin the
regions where the GTD fails are developed in this paper for the case of
a smooth, convex cylinder illuminated by a plane wave. This work is
motivated by the need to analyze the radiation patterns of antennas
mounted near curved surfaces such as an aircraft fuselage [Burnside ,1972,
Burnside, et al.,1975] or a ship mast.

In the GTD analysis of the scat tering of waves by an impenetrable,
smooth convex cylinder [Keller,1956], the total exterior field is
associated with the usual incident and reflected rays of geometrical optics,
together with the surface diffracted rays introduced by Keller. The
geometric optical rays do not penetrate the convex body, and hence their
field is zero within the shadow region. The surface diffracted rays are
launched by the incident ray which grazes the surface as shown in Figure
1; these surface rays propagate into the shadow region and entirely account
for the field therein. In that pure ray optical analyses fail at and near
shadow boundaries , the GTD solution is valid in regions I and III as shown
in Figure 1. It fails in the penumbral or transition region adjacent to
the shadow boundary (SB) which is indicated as region II in Figure 1.
The angular extent of this transition region is of the order (2/kp 0(Q1))1/3
where k refers to the wavenumber of the surrounding medium which i~assumed here to be free space , and p (Qi) is the radius of curvature
of the cylinder at the point of graz~ng incidence, i.e., at Qi. GTD
also fa i ls in regions IV , V, and VI shown in Figure 1 which are
usuall y referred to as the surface or caustic boundary layer regions.
Regions IV and V are close to the surface of the obstacle which is a
caust ic of the surface diffracted rays; whereas , region VI is in the
neighborhood of Qi which is a caustic of the reflected ray for grazing
incidence. An asymptotic evaluation of the field within the shadow
boundary trans it ion regions , the surface boundary layer regions and also
their common regions of overlap , is compl icated by the fact that the
field must change rapidly but smoothly from one form to another across
these regions.

The problem of estimating the fields wi thin the transition regions
associated wi th the di ffraction of waves by smooth, convex surfaces
has received much attention, especially in connection wi th the theory
of radio wave propagation around the earth. Fock made signifi cant

• contributions to this area by developing a general asymptotic theory
for the diffraction of waves by large convex surfaces [Fock,1957]. Fock
expressed his general solution to this problem in terms of a canonical
integral. In particular , Fock consi dered the Fresnel diffraction by a
sphere [Fock,195l] in which he approximated the canonical integral
asymptotically wi thin the transition region; as a result, he was able

1
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Figure 1. Rays associated wi th the plane wave scattering
by a smooth convex cylinder.

to obtain a simpler solution in terms of tabulated, universal functions
of a single parameter . That result [Fock,1951) is valid for heights of
the source and observation points above the sphere which are small
compared to the sphere radius. In another important paper on this
subject by Wait and Conda (1959], this condition was relaxed so that
the source and the observer could now be far from the diffracting
surface. The results In [Wait and Conda,1959] are in terms of functions
similar to those in [Fock ,1951), but they are obtained from an asymptotic
analysis of the canonical probl em of the diffraction of a plane wave by
a circular cylinder. However, the results in [Fock ,195l] and [Walt and
Conda,1959] do not reduce uniformly to the usual GTD ray solutions for
the l i t  and shadow regions far from the shadow boundaries . Consequently,2
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one has to be concerned about the blending of the transition field and
the ray optical field solutions. On the other hand, Logan and Yee [1962]
were able to obtain an approximate uniform solution which recovers
the GTD sol ution, by re-defining the parameters in Fock’s canonical
integral via an ad hoc procedure; whereas, Ivanov [1971] obtained a
uniform result also in terms of Fock ’s canonical integral which recovers
the GTD solution, by employing a coordinate transformation different
from that of Fock. However , both of those uniform solutions are far too
complex for numerical computations in the entire transition region. It
is noted that the results in [Fock,l951] and [Wait and Conda,1959] are
val id in region II which excludes regions IV and V of Figure 1. An
extensive bi bliography on other work dealing wi th various aspects of
this diffraction problem may be found in [Logan and Yee,l962; Logan,1959],
and [Borovi kov and Kinber l974].

In this paper , the canonical problem of plane wave scattering by
a perfectly conducting circular cylinder is solved in a manner analogous
to that in [Fock,l95l]~ and some asymptotic approximations are introducedheuristically to obtain a uniform result for the total field which is valid
within the trans ition region outside the surface boundary layer, and which
automatically recovers the usual GTD or ray optical field solution exterior
to this transition region. Hence, the present solution need not be in-
troduced separately wi thin the transition region , as a correct ion to the
GTD solution. Furthermore , the present asymptotic result is expressed in
the convenient format of the GTD; and it al lows a simple interpretation
in terms of the GTD rays. Only the leading terms in the asymptotic ap-
proximation are retained in this analysis. This uniform result is expressed
in terms of tabulated , universal functions which are similar to those oc-
curr ing in [Fock ,1951] and [Wait and Conda,1959]; hence, the present result
is very convenient for engineering appl ications. The analytical details
pertaining to the solution of the canonical problem are presented in
sect ion II; these resul ts are generali zed to the convex cylinder case in
section III. Since the uniform result presented here is not valid in the
close vicinity of the surface and the surface boundary layer, a separate,
approximate representation for the field which is valid very close to and
on the surface is obtained in section IV. Numerical results are presented in
sect ion V to indi cate the accuracy of the asymptotic results developed in
sections III and IV.

3 
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II. DEVELOPMENT OF A UNIFORM RESULT FOR THE
CIRCULAR CYLINDER CASE

An asymptotic hi gh frequency analysis of the canonical problem of
electromagnetic pl ane wave scattering by a perfectly conducting cir-
cular cylinder in free space is presented in this section. This
analysis leads to a uniform asymptotic result for the field in the
shadow boundary transition region which does not Include the close
vicini ty of the cylinder. The geometry of this problem is illustrated
In Figure 2. Since the problem is two-dimensional , it reduces to a
sca1~r problem . It is assumed in the analysis that the field satisfies
an e3~t time dependence which is suppressed. Tl~e total field exteriorto the cylinder is denoted by uT. Thus, uT = u1 + u5, where u1 denotes
the inc ident field, and US denotes the field scattered by the cylinder.

(P,+.)
SB~- v ~~~~~~~~~~~~~~~~~~

SB CIRCULAR
2 CYLI NDER

Figure 2. Geometry of the canonical problem.

If the Inciden t electric field has only a z component, then the
problem is of the TM~ (or acoustic soft) type. If the incident magnetic
field has only a z component, then the problem is of the TE~ (or acoustic
hard) type. Let

= eikC = eJkpCOS* (1)

uT satisfies the reduced wave equation and the following boundary con-
ditions .

(v~ + k2) uT = 0; = two dimensional Laplacian operator. (2)

11 for TMz case .
Q UT(p ,4 ifl p =a = ~ ; Q = .1

~ (3)
for TEz case .

4
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u5 satisfies the Sonrerfeld radiation condition as ~~~~ (4)

It is noted that ui and u5 satisfy the reduced wave equation. A formal
Integral solution to (2) subject to (3) and (4) is given in [Bowman
et.al.,l969] as

uT = u + u CW , (5a)

where

u = J [ J  (kp ) - 

QJ
~

(ka ) 
H(2) (kp )] ~~ V* (5b)

‘~ QH~ ~(ka ) V
v

or

(1)
u = 

~~ 
dv[H~~~(kp ) - ~

i
~2 

(Ica) 
H(2) (kp)]e 3\~* (5c)

QH~ ~(ka ) V

with c being a positive number, however small and

* = 1+ 1 - , with ~~ 
< it (or Iip I < 

~~
- ). (5d) —

The term ~cw in (5a) represents the higher order diffraction effects
which become negligibl e for large ka; more will be said about this term
later in the analysis. Withi n the transition region , ‘u ~~ 0 (ka) such that
one may employ the transformation

k 1/3
v = ka + niT ; m 

(~~~~) 
, (6a;6b)

(1?
and replace J

~
(ka) and H~

2’~(ka) in (5b;5c) in the transition regionsby

(1)
J
~

(ka) ~ (m ’r~V(~r); H~
2) ( ka) ~ j(m/~~

1w1 (.r), (7a;7b)
2

where the Airy functions V (t) and w 1(.r ) are defined as [Logan and Yee,1962]

2j V(c) = w1(t)-w 2(T ); w 1(t) = ~~ 
J 

dt eTtt
3/3 

. (7c;7d )



The approximation in (7) is valid for large ka and V”.O(ka). It is assumed
here that ka is large. The contour r1 runs from .,e

_J(21r/3) to ~-j e , and
r2 is the compl ex conjugate of r1. In (7), terms of 0(1/rn2) and higher
are neglected . Therefore, within the transition regions (5b;5c) become
via (7a;7b;7c and 7d):

u m ~dt[J ( ) (kP ) + ~ ~V(t ) H~~~~~(kp)]e _J
~~~~~~T) * (8a )

2 ( T )

or

u ~~ ~dT[H9~)(kP ) + ~~~~ H~ )(kP)]e
_3
~~~

mT
~

? 
‘ (8b)

- -J C  2
T

with

1 , for the case
(8c)

-m~ ~ , for the TE caseZ

The field u may be initially decomposed as in [Fock ,1951] for the
sphere problem; namely, u is expressed as the sum of the integral in
(8a) over the contour c2 from O-jc to “-jc , and the integral in (8b)
over the contour c1 from -~-js to O-j€ , respectively. After rear-
rangement of terms, and the use of Hq)~(kp) = 2J ~, ~(kp)—H~~~ (kp ) in
the integral over c2, one obta ins , V~~T 1 V~ T 1 V~ T ,

u = 1 1 + 1 2, (9a)

where

= m ~ dT J
V(T)

(I
~~

)e - ~ ~dt ~~~~~~~~~~~~~~~~ (9b)

Cl

and

‘2 
= jm ~cIT 

~ 

H~~~~(kp )e 3~
(T
~~ + ~~. ~dt ~~~~ H (kp)e

_i
~~

T
~
)
.

(9c) 

.~~~~T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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It is noted that Ii is completely independent of the electrical prop-
erties of the cylinder. One may approximate the first integral asymp-
totically in (9b) via the method of steepest descent; it is seen that this
term constitutes the incident field.

m JdT JV~~~~~
)e = 

H ( ~~)+H (2 ) (kp ) 
e JV*

c1+c2 -.“-jC

~ e~~~~~
”1’ = ejkp cos I~ f; I+I< it (10)

The Hankel functions in the integrand of (10) are replaced by the ir
Debye approximations prior to the asymptotic eval uation of the integral .
The Debye approximation is [Bowman et. al.,1969]

H~
2
~(kp ) e

tjk~
) sinY + Jvi + .1 4 v=kp cosY

V jitkp siny O<ReY <ir . (11)

Since 0<Rey<ir in (11), the H(1) (kp term in (10) yields u 1 for 0<jc~j<ir/2
from the saddle point e,~ y= rY2 -~4~ , and cov~tributes negligibly else-where; likewise the H.S’)(kp ) term yields u~ for ir/2<I~ l<ir from the saddle
point at y = Is~—it/2. The remaining integral s in (9b) and (9c) will next
be approximated asymptotically for the shadowed portion of the transition
region in part A of this section ; a corresponding development for the lit
portion of the transition region will follow in part B. In the subsequent
analysis , • will be restricted to 0<+<it for convenience ; the results for
-it<~<O may be readily obtained via syninetry.

A. Field Analysis for the Shadowed Transition Region

One may rewrite (9b ) by incorporating (10) and by replacing H.~~ )(kP)
in the integral over c1 with its integral representation ,

H~~.~) (kP ) = 1. JdB e
_j 5mn

~~
j
~~

T)8

CB

to obtain

7
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~

. —jkp[sin~— ~
J pCo 

+ 1d8 121 2nj J tp-~
CB

where cB is shown i~ 
Figure 3. The integrand in (12) possesses a saddle

point at ~=~~=cos~ ’ alp , and a pol e at ~ = = p. For fixed values of
p and a, 

~ 
is a constant which is a1ternativ~ly given by ~~~~ 

= —

where •~ i s the value of ~ at the shadow boundary (SB1) as shown in
Figure 2. The angular extent of the shadow zone (for O<~

<it) is
~~~~~~~~ thus , 6~>~~ and 0>0 in the shadow region, where

(13)

sDP-..r
imfl 4 .

I I

~~~~~~~ Re
-V _1%~7/ O  

~~~‘~ 72 ‘

I / .4~’Fi~-8~I
• I .~ SHADOW REGION

FOR O<# <V

Figure 3. Location of 
~~~~
, 

~~
, and SDP for the shadow

region analysis. 

k ( a
The shaded areas in Figure 3 çienote the regions where e ~ P sln8- ~~

] in (12)
becomes vanishingly small forJIm8 I~~ ; thus, one may deform the path
cB in (12) into the steepest descent path (SDP) through $

~ 
as indicated

in Figure 3. Since s in the shadow, the pole at ~ is crçssed in
this contour deformadon; therefore, it’s residue given by _eJkPc0S4j.f(._,5)
must be included in the evaluation of the integral . H(~ ) i s a
step function which is unity when t~’0, and zero when ~<O. Next, the
exponent in the integrand of (12) may be approximated by it’ s three term
Taylor expans ion about ~=8~ for large kp sin~~ to obta i

n8
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.4
- • . ks 2

.~ jkpcos$ 
— eJId~

05$ H ~_j k (s+ae) 
1d8 e ~~ 

(e—~5)
— 2irj

SDP
(14)

where

= p 2 — a2 ; p sin~~ = s. (l5a;l5b)

Note that the first two terms in (14) cancel in the shadow region. Thi s
leaves the integral over the SDP which may be directly expressed in
terms of the well tabulated Fresnel integral after employing the
transformat ion

- 1 1

ii = e~ ~ (s— 8~)/v7 (16a)

which maps the SDP onto the real p-axis ( - <
~

<
~~). Thus , for 

~~~~~~

-.jk(s+ae) ° —ksp~ ~ 
— jkao 

~~ —jks
- 
e t di.i e = 

e F[kLa] e , (16b)1 2irj P-P,
1~

where Is the val ue of i~ when $—~~~, and

F[kL~] = 2j i/~~ ~~~~ J~~e_iT 2 
> 0, (16c)

• VkLa I

2
L = s; = . (l7a;17b)

9
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A plot of F[kL~
’] Is illustrated In [Kouyoumjian and Pathak,1974]. The

physical signi ficance of the geometric quanti ties 0 and s is shown In
Figure 4. TurnIng next to the evaluation of 12 in (9c) for the shadow
region, It is observed that the integrals in (9c) may be simplifi ed by
employing the Debye approximation of (11) for H~~~)(kp) in the integrands.

= ka + nit ‘~ O(ka) in the transition region , and the major contri-
bution to the Integrals is for t small; hence, one may use s in y ~d s/p in
the Debye approximation to obtain ,

(2) ~~~ 
-jks + S ~~

- j(ka+mt)8
H ()(kP) 4_.~ -e e . (18)

Employing (18) and (7c) in (9c) leads to

12 - _ _ _ _  
e~~~

0 e .1k5 
- 4ie 5~~

0 
~p (~) ~~~~ (19)

where P~(~) are Pekeris’ caret functions [Logan,1959;Bownan et. al.,l969]

defined
h

by

-j~~~~~~~~
oo 

_ _= 
e ~V( t ) 

e 5~~
T dt, (20)

h _ c~~~ 2 (T)

and the parameter ~ in the shadow region is

= mO (~~~ 
> 0 in shadow). (21)

The subscripts s and h in (20) correspond to the Th~ and the TE2cases , respectively. Plots of P5(e) are illustrated in Figures 5a

and 5b in terms of related functions p*(~) and q*(~)• Combining
the results of (19) and (16b) according to (9a) allows one to write u
at a point 

~~~ 
in the shadow region as

u(P5) _mJ~~e 5I’t~~~~~~ (l-F[kL~]) + 
~~~~~~~~~~~~~~ 

~~~~ : ::~(22 )
10
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Figure 4. Ray paths for the shadow region.

The above result may be interpreted geometrically as a field which
propagates to P~ along the path Q1Q2P5 after being launched by the in-
cident wave at Ql~ 

as shown in Figure 4. Q2 is the point of tangential
shedding of the diffracted field from the,~surface. In t~e deep shadowregion , i.e., far from SB1, ~ >0 and F(kLa] -‘ 1 since kLa becomes large ;
hence , for ~>>O only the P~ term In (22) is significant. Furthermore, for

~>>0, the integral for in (20) may be replaced by a rapidly con-

vergent residue series [Logan ,1959]

571-J~--if j~-
- 

e e e 
, for ill case

n 2[Ai’(-q~)]
2 2

H = (23)
~~~~~~~ ~>>o
h

— —3ii ii.j
~~ ~q~e

- ~ e e 
— 2 ~ for TE case

n 2q~[M( q)] 
Z

— -  - 

11 
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Figure 5a. Plot of e 3
~
’4p*(~ ) versus ~ based on tabula ted

data for p(~) by Logan (1959).
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’4q*(~ ) versus ~ based on tabulated• data for q(~) by Logan (1959).
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The Mi l l e r  type Airy function is given by A i (t)  = V(t )// , and A 1’(r ) =

d/d r M ( r ) .  The parameters q
~ 

and q~ are defined by Ai (—q~) = 0, and
Ai’ (—q~) = 0, respectively where n = T,2,3,•~~; their numerical valuesare tabulated in [Loga n,1959). Thus, far from SBi , I.e., exterior to the
shadowed transition region, (22) reduces via (23) to the Keller surface
diffracted ray field given by

u(P

:

) ~ u
1 (Q 1) ED~

(Q l )e 
+j~~t D~(Q~~ 

e~~~ . (24 )

D~ and are the Kel ler diffraction and attenuation coefficients for the - •

• nth surface ray mode [Keller ,1956] which to first order are given by

. w  .~~~r
2• 

(D~)2 

~ [Ai’(-q~)]
2 ~ (D~] =~I Z7T1 

~n~~~~~n)]
2 ~

. 1 1  — .11

~ 
q~ ~~ h q

~
• ~~~~~~~~ ; ct

~~= r m e

The superscripts s and h in (24) have the same meaning as the subscripts
in (20); also u ’(Q1) is the value of the incident field at Ql which
is unity in this case. The geometrical interpretation of (24) is the
same as that in Figure 4.

Finally, the term u~ ’ corresponds to a residue series [Bowman et. al.,
1969] which represents the fiel d of multiply encircling GID surface ray
modes given by

uCW( P )  ~ u
1 (Q 1)[~ 

I D~(Ql)e~~~~
3 t T )

h i  
e 5k5 

+

+ u1(Q~) ~ D~(Qj )e~~~~
5 t  ]T)

Dh(Q~~ e 5k5 ’

where I = 2ira; t ’ = arc length from Qj to Q~; and s
’ = distance from Q~to P5. The first term in (25) is the field of surface ray modes

launched at Qi which diffracts from the surface at Q2 to arrive at P5
after encirc ling the cylinder & times in the counter—clockwise sense.
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The second term represents the field qf surface ray modes launched at Qj
(see Figure 4) whIch diffracts from Q~ 

to P5 after encirc l ing  the cyl i nder
U-i) times In the clockwise sense. For sufficiently large ka, only t=l
in the second term of (25) Is signi f icant  and the remaining contribution
is negligible. The total field at P~ In the shadow zone is the sum of(22) and (25).

B. Field Analysis for the Illuminated Transition Region

If one directly employs the result given in the previous section
for the shadow region to cal culate the field u at a point PL close to
SB1 in the lit region , then

U(PL) ui (PL) - mjTe ikt 
[
eT~

4
~ (l-F[kL~]) + ~

(
~] 

e~~~

t = a O < O .  (26)

Since $<+~ and 
~ 

<
~~~~ 

in the lit region H(+—+5) = 0 in (14). Al so,
(19) is unchange~ except that F ,t and 0 now become negative in the lit
region. The second term in (26) may be interpreted as a scattered field
which after being launched at Ql propagates backwards from Qj to Q~before being shed tangentially from Q~ 

to P1 as illus trated in Figure 6.

I :
4

L~~I PSEUDO RAY PATH

REFLECTEQJ..,’
RAY PATH $

p\ I
Jill 1.

~
QI I,

U

a-
~~~~~ x

Figure 6. Reflected and pseudo ray paths for the lit region.
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It Is noted from Figure 6 that this “pseudo ray” propagation path is dif-
ferent from the geometric optical reflected ray path which satisfies the
generalized Fermat’ s principle. The result in (26) is quite accurate
very close to SB1; however, just as the result in [Fock,l951] and
[Wait and Conda,1959], this result also does not reduce ~q the geometricoptical ray fiel d far from SB1. An approximation for H~/)(kp ) which Is
different from that in (18) appears to be necessary to adequately
approximate the field behavior In the deep lit region. The foJ~qw1ng ap-proximate procedure is adopted to achieve this goal . First , H

~,tiI)
(kP)

in 12 of (9c) is replaced by its large argument approximation (v(r)<<kp )such that

‘2 ~ ~ ~~~~~~~~~ 
~~ ~~~~~ 

e~~~~~~~~~~ 

-

+~~~ JI T  ~~~~ e
S •t)(~~

. - _  

(27)

One next defines the follow ing

— ~p = 2~ ; ~~
‘ = —2m sin~ , (28a;28b)

where

-~~ = sin~ ~ (1~~(~ a) + l ~1~~~(~ l)3 + 3 ( 1
)

5
Ul) 5 + ... ;

(29)

wit h
f l \

In the transition region , ~~
‘ may be assumed to be small in comparison to

m which is taken to be large. One may approximate v(t)(n/2 -ip) In the
exponent of (2 7 ) via (29 ) as

V ( T )  (
~
. -*) = (ka + mr)2y ~ -ka + ~. ~ J_t~’ . (30 )

L ~ ..H~~~~IiI ~~~~~T1 I- i i i~~~ 



Incorporating this resul t into (27) yields

- “I 
(~~~~

s 3 _j lI 
_j

lr 

~
.

‘2 ~ - ~ 
e
_5

~~
E32

~ 

siny-j 
~ (e ,~ + 

e 

~

~~~~T) e~~~~
’Tul . (31)

~
W

2
(T )

Referr ing to Figure 6, it is seen that in the far zone (kp >>ka)

in amplitude
• ~ 20~; p . (32a;32b)

+ a coso 1 , in phase

i2y = it - n— 20 (32c)

I

respectively. Thus, 12 may be expressed in terms of the reflected ray
coordinates as

2 —jk(t+ a cos0~ j2ka cose1—j (~~~~~~~~~ [—i

‘2 
_
~f e  

me + P ( ~’)1 ; 
I 

-

(33)

= -2 m cose1 (via (28b) and (32c)). (34)

Turning next to the evaluation of Ii of (9b), one begins with its integral
representation in (12). The contour c~ is deformed into the SDP through
the saddle point 

~ 
as in Figure 3; the pole at 

~ 
is not crossed in thi s

contour deformatIon since S <S is in the lit region. To be consistent
with (27), Ii will also be ~va~uated in the far zone; thus, 55=cos~1a/p~w/2
for kp’>ka so that a three term Taylor expansion about S~ for the exponent
in (12) yIelds

17 
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jka(~.- - *) r kp[~.(S-~~..) )

I~ ~ u ~~~ 
— e 

2irj  e ~ jds e .

SOP

The integral in (34) may also be directly expressed in terms of the F
function of (l6d) which contains the Fresnel integral as done previously
for the SOP integral of (14) for the shadow zone.

11 •—j(kp+ 
~~
.) jka 2y

Il ~ 
u1 (PL) — 

e e F[kp.2~
2] (36)

i2~kp

Incorporating (29), and the far zone approximations for p and • of (32)into (35) yields the following result.

-j 
~ j2ka coso1—j (~~ l~~~3 .jk(&+a cose~)

I.
~ 

‘s u1(P1 ) + m e e F[kL ’a’] e ;

kp >> ka, (37)

,

L’ = 2. ; a ’ = _____ = 2 cos2O~ (w i th ~~
‘ as in (34)). (38a;38b)

2m

Combining (33) and (37) according to (9a) gives u(PL) in the far zone as

u(PL) ~ u
1(PL) + ui (QR) ~~~~~~ (l-F[kL ’~ ’])

—jk2.
+ Ps(~

’
~J] e 

, (39a)

which for later convenience Is re-expressed as

18
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u(P1) ~ u
1 (PL) + ui (QR

)[
~~~~~e

3 12 
~~~~~ (1-F[kL~~’])

+ ~s( We
3k 

, (39b )

h J J

where

u1 (QR) = incident field at 
~R 

(see Figure 6) = euica coso
1

= 
a coso1 = reflected ray caustic distance . (39c)

Far frgm SB1 in the lit region, F ’<<O , and hence F[kL ’~ ’] • 1; further-
more, P5(~’) may be asymptotically approximated as [Logan,1959;

hLogan and Yee,1962]

e 1 [1 + O(~ ’~~)]; ~‘<<O. (40)

Thus, incorporating (40) into (3gb) for the deep lit region (C<<O ) yields

u(PL) ~ u
i (PL) ui (QR)We~~~ , for the

{
~~~ case. (41)

The field uGO of the geometric opti cal incident and reflected rays
represents an accurate, first order asymptotic field approximation within

— the deep lit region, and it is well known to be

uGO(p L) ~ u
i(PL) + ui (QR ) R5 

~~~ e 5
~~ (42)
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(R5=-l for case
in which R

~ 
is the surface reflection coefficient given by (R =+1 for TE case

h l h  z
It is apparent from (42) that the result in (41) is the far zone geometric
optics field,_ since the reflected ray divergence factorJ~~/(~~+&) of (42)
reduces to4~~/L in the far zone (L>>r). The result In (39) for the lit
region has essentially the same form as (22) for the shadow; this is a
desirable feature since the results In (22) and (39) are in terms of
tabulated functions, and they admit a simpl e interpretation which will be
discussed in Section V. The far zone result of (41), and hence (39) may
therefore be heuristi cally generalized to the near zone (which is exterior
to the close v icinity of the surface)_according to ray-optics, by replacing
the far zone ray divergence factor .j~~

’/L wi th it’ s near zone value ‘
~/(fr~~+&),

where £ must now represent the near zone reflected ray distance from
QR to ~~ Thus , the near zone resul t for the lit regi on is

u(PL ) “s u’(PL) +u
i (QR)[J~~

e
J 12 S~

e
r 

(1-F[kL ’~ ’])+P5(~’)1

_ _  

-
~~~~e 3” ; ~~

‘ = — 2m cose ’ < 0; L’ =L+~
’.

—

(43)

It is observed via (22) that the distance parameter L for the shadow zone
is the distance s from the caustic point Q2 to the fiel d point P~. The
caustic at Q2 is the effective origin of the diffracted ray path to P5.Thus, keeping this interpretation in mind , one modif ies L ’=& in (38a) for the
far zone to L1 =&+Wr in (43) for the near zone, s ince £+Wr is now the distance
to 

~L 
from the virtual caustic of the reflected ray path along which the

field u(PL) is assumed to propagate. One notes that 1’ of (43) reduces to
that of (38a) at the shadow boundary, and also in the far zone
(where L>~~~Y ) .  The val ue of L’ is significant only near the shadow
boundary where L’ of (43) and (38a) are approximately the same; hence one
could use 1’ of either (43) or (38a ) without noticeably affecting the
numerical calculations. The expression In (43) now properly reduces to
(42) in the deep lit region. The total fiel d at 

~L 
is the sum of (43)

and UCW of (25) wIth P
~ 

replaced by P1; however, ucw is negligi ble in
the lit region for large ka.

It will be shown in Section V that (43) for the lit region and (22) for
the shadow region are equal at the shadow boundary, thereby making the
asymptotic solution presented in this paper continuous from the deep lit
region to the deep shadow.

20
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III. GENERALIZATION TO THE SMOOTH CONVEX
CYLINDER CASE

The uniform results for the circular cylinder in (22) and (43) may
be readily general ized to treat the scattering by a convex cylinder of
slowl y varying curvature in the usual manner by utilizing the local
properties of propagation , scatteri ng and diffraction of waves at hig h
frequencies . Thus , one treats each point on the convex cyl inder as if
it were locally on a circular cyl inder of the same radius of curvature ,
i.e., the radius (a) in the solution of the previous section is replaced by
Pg where p0 is now the local radius of curvature of the convex cylinder.
Specifically, the generalization of (22) and (43) to the case of plane
wave scattering by a smooth, perfectly-conducting convex cylinder of
variabl e curvature is indicated below for the shadow region in part A ,
and for the lit region in Part B.

A. Shadow Region

The f ield u at P5 in the shadow zone of the convex cylinder becomes

u(P5 ~ u
I (Q 1)~~~~~~)jmTQ2) e jkt

~~~~~~ ~~~~~~~~~~~~~~~~~~ 
;

(44a)
with

Q2 ~~kp (t’)
= 

~ 
dt’ ; t = dt’ ; m(t’) = -

~~ (44b,44c ,44d)
Q1

g LI
and

L = ; = ~~~~ m(Q 1 )m(Q2)] • (44e;44f)

The points Ql and Q2 are indicated in Figure 1; t’ denotes any point
between Ql and Q2 on the cylinder and s is e distance from Q2 to P5.
It is noted that m in (22) is replaced by m Q1)~i~iT~2) in (44a) to beconsistent with reciprocity, since the point of graz ing inc idence Ql and
the point of diffraction Q2 on the convex surface in general possess
different radii of curvatures pg(Q1 ) and p0(Q2), respectively. This sym-
metrical spl itting of m is al so essential for preserv ing the uniform
property of the result so that deep in the shadow region where ~>>O, (44a)
reduces to the GTD resul t of (24) (except that (ct~ t) therein i s replaced

~Q2~~
byJ c*~(t’)dt’ for the convex cylinder).Ql
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B. Lit Region

The field u at 
~L 

in the lit zone of the convex cylinder becomes

-
. (~~ i ) 3 .1

u(PL)~u
i (PL)+u

i (QR
)[

~~e ~~
l2 

{e 
(1-F[kL ’~ ’]) +~5(~’)1

I ‘~ ~
_jk 

~ C < 0, (45a)

with

C = - 2 m(QR)cose
1 ; m(QR) 

= L~
J’3
~ ~ 

= 
~~(Q~)cose

1 

;

(45b;45c;45d)

and

L’ = L + 
~~~~

‘

; ~~
‘ = 2cos2el . (45e;45f)

The point of reflection QR is shown in Figure 1; also £ is the distance
from QR to ~L 

as before. Deep in the lit zone where ~4<<O. (45a) reduces
to the geometrical optics result of (42) except that p is now given more
generally by (45d) for the convex cylinder.
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IV. FIELD IN THE CLOSE NEIGHBORHOOD OF A SMOOTH CONVEX CYLINDER

While the uniform result in (44) and (45) for the scattering of a
pl ane wave by a smooth, perfectly conducting convex cylinder Is valId in
the far and near zone of the surface, it is not valid in the close
neighborhood of the surface. The region of validity of (44) and (45)
excludes the boundary layer and it ’s vicinity in the shadow region , and
it excludes approximately the same di stance from the surface in the
lit region. The fiel d in the close neighborhood of the surface is
availabl e elsewhere in terms of the canonical Fock integral [Logan and
Yee ,l962;Ivanov ,1971] which Is very complicated for numerical calculations.
In this section a Taylor series approximation for the canonical Fock
integral is obtained to describe the field in the close neighborhood of
the surface. This approximation is very convenient for numerical
calculations.

When the field point is extremely close to the surface of a circular
cylinder such that k(p-a)<<ka, one may then approximate J , ~(kp ) and(1)
H
~t?~)

(kP ) in (8a) and (8b) by

(1)
J
~
(kp) ~ (mv’~I

1 V(c-h); H~,
2
~(kp ) ~ j(m1’~Y

1w1 (t-h) (46a);(46b)

where

h = m~~kd; d = p - a. (46c);(46d)

Incorporating the above results into (8a) and (8b) essentially yields
an expression for the field u In terms of Fock’ s canonical integral as:

-jka* ç~ 
~V ( ) -

.

~~u e d~[V(~—h) - ~ w2(r—h)]e ~ ~; Z = m~ (47a)

or

~W ( )
u ~~— e Sk

~
) 
~ dt[w1 (r-h) — 

1 ~ w2(T_h)]e
JZT ; Z=rnip, (47b)

2/~ 
~~~~~~~~~

with ij’ = - ir/2 as before.
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The above integrals for the circular cylinder case will be approximated
In the close vicinity of the surface by a Taylor series in direct powers
of the normalized distance h; these results will then be generalized
to the convex cylinder case as in section III.

The ~pO case will be considered first, to be followed by a simi lar
treatment for the ip<0 case. Let O<~

c ,r as in section II; the results for
ir<+<2rr may be directly obtained via symmetry. For ~>O, it is convenient
to employ the representation in (47b). Thus , for h small , one may repre-
sent w1(c-h) in (47b) by a Taylor series,

2
2 3

— wi(r) — W~(t)h + 

~~1(t) 
~~

— — [w 1(r) + ~w~(r)] ~~ .-
2 

+ ~ w~~t) +~~~~~~~~~~~~~ (t )]  - [4tw~(t) + t2w~(t)] ~~ + O(h~) (48)

where the primes on w1(r) denote differentiatIon with respect to r. In-

corporating (48) into2(47b) allows one to express u in terms of Fock
current functions and it’s derivatives.

u (P)I
~>o ~ 

e~~~~’~~~(Z) + 

~~—~~‘(Z)- ~
!_
~~(Z)_ 

h
~~

ll (
ZiI

+O(h6);

for the soft or M
~ 

case (~=1 case)

(49a)

u(P)
I~>0 ~~

e~~~ *~~(Z) +~~~~g’(z) - ~ - g(Z) - ~ -g ” (Z) - ~~~~~~ ~
• (

~~

+ 0(h6); for the hard or TE
~ 

case (?1 = a/at case) . (4gb)

~
‘(D) and g(D) are the Fock functions [Fock ,1946;Logan,1959] defined by

£ —j 0~ 
c —j Dr

= w2T~T 
; g(D) =) ~~ di~ 

~~~~~~~~ 

. (50a;50b)

The values of ~(D) and g(D) are extensively tabulated [Logan 1959).
The primes on ~(D) and g(D) in (49a;b) denote di fferentiation with respect
to the argument (0). The derivatives of ~ and g may be evaluated numericallyfrom the interpolated values of g and g, respectively. In obtaining
(49a;b), use has been made of the well-known relationships w~(r) =

2 2
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w~(r)w2(t)—w 1(t)w~(t)=-2i ; and ~dt e
jOt r~f(1) 

= j~ 
~—j~ ~dt e jOt f ( r) ,

—“—je

where f(t) represents some combinati on of the Ai ry functions. It is
noted that ~(Z)e 3k

~~ and g(Z)e~
1
~~

L’ are di rectly proportional to the
electric current density induced on the cylinder surface by the in-
cident pl ane wave [Fock ,1946]. In the present case , these currents ex ist
at 

~N 
which is the normal projection on the surface of the field point P

exterior to the surface. For p0, the point 
~N 

l ies in the shadow zone.
The distance from 

~N 
to P is d(=p-a); furthermore, the unit outward

surface normal at 
~N 

= n = V~~/ P~P . When the point 
~Nthe surface lies in the deep shadow (~p>>O and hence Z>>o), the Fock

currents ~ ~~~~~ and g ~~~~~ reduce uniformly to the GTD current
representation [Pathak and Kouyoumji an ,1974].

For ~p<0, it is convenient to begin by re-writing (47a) in terms ofa new parameter V as empl oyed for the Fock currents by Logan (1959).

Z’ = m sin* = -m cos$; ip = sin~ ~~
— =  

~~~~~~~~~~ 

~~~ 
(~~~)~~ + 

... , i~

(51a ,51b)

The approximation in (51b) is valid within the shadow boundary transition H
region for large m. Thus, (47a) becomes H

u(P)
f~<0 

~ ejka cos~ ~~~~~~~~ 
~Et~

h) - ~V(t1_ ( h ~~e~
JZ’T

(52a)

or 

u(P) ~ ejk a cos+~~ jhZ ’ 
- ~~~~~~~~ 

~~~ 

w2(t-h)e Jj.

(52b)
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In obtaining (52a), one employs e jZt 
~ e

_JZ’t and e 1’
~~ ~ e

jka cos*-i(V )3/3.
Furthermore employing

£

1. 
~dt V(t_h)e

J ZT 
= e 1

~~
’ ei~~

’
~

3
”~

-
~~~
-

~~~~~

for q,cO in (52a) leads to (52b). Next, the w2(t-h) in (52b) may be expanded
for small h as in (48) to arrive at an expression similar to that in (49a;b)
for u in terms of the Fock currents and it’s derivatives,

~~~~~ 
cos+~~ -jhZ’ 

-(JO 
~~~~~~~ (JhZt)t1)

+ e J ’ ) 3
/3{h~(Z1)+ 4~-~~’(z’) - Z ’ )  - 

~~~
ll(Zl)}1

+ 0(h6), for the soft or Thz case (?1=l case), (53a)

u(P)I
~<0~ 

ejka cos•~~ jhZ’ 

~~(J0 

(;;pfl 
(ihZ’)n)

+ ~~~~~~~~~~~~ +~~~~g’(z’) - ~~ g(Z’) - ~ -g ”(Z’) -

- j 9
l (Z l )

~~~

]+  

0(h ) ,  for the hard or TE
~ 

case (
~~ 

= h- case)

- 

- 
(53b)

For pcO , the point 
~N 

on the surface is in the li t zone, where 
~N 

is the normal
projection on the surface of the field point P, as indicated previously.
The Fock currents ejka cos4—j(Z’)~/3 g(Z’) ~nd elka cos~—j(Z’)~/3
at 

~N 
which are induced by the Incident plane wave reduce uniformly to the

geometrical optics currents when 
~N moves into the deep illuminated region

(Z’ c<O) .
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The results in (49a;b) and (53a;b) may now be generali zed as in
section III to obtain the field u In the close neighbourhood of a smooth,
perfectly conducting convex cylinder illuminated by a plane wave. Thus,

u(P) 
~ 
Uoe

1

~
E+T2

~
h
~
(D)+ �~~

‘ (D) - ~~~~~~ - 
~~~~~~ (D~~ + 0(h6),

for the soft or TM
~ 

case , (54a)

u ( P ) ~ U0e~~ ~ +~~~ (D)+ ~~~ g ’(D) - ~~ g (D) - ~~ g”(D)- ~~~ gl(o)~~+o(h
6)

for the hard or TE
~ 

case , 4b)

where

fu
I (Q

1~~ 
k ~~dt’ dt’ P

~ 
in shadow

U =
~~~ ? ; 11= ; D  ; for

° 

(~
i~~~
j 

- 

~N 
lf l  lit

1 -m(P
~
)cosO’

(55a;55b;55c)

and

1 o I~~u)1
l/6 

in shadow

T1 
T~ ~~~~~~ ; for 

zone

[,

—jhD 
- 

n=0 
(;pfl 

(jhD)” ~~ — ~N ~~~~~

(55d;55e)
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The arc length integrals in (55b) and (55c) are evaluated along the
surface geodesic from Ql to 

~ 
in the shadow region; whereas, e1 Is the

acute angle between the incident ray and the surface normal to 
~ 

In the
lit region. While the definitions for U0, a and D for the convex cylinder
follow fairly directly from the generalizations of the quantities in (49a,b)
and (53a;b) for the circular case, the introduction of LPa(PN)/pa(Ql)]1~

6
in T2 for ~ 

in the shadow is required to preserve the un~form nature of
the Fock currents in the shadow zone of the convex cylinder (Pathak and
Kouyoumjian,l974].

V. NLIIERICAL RESULTS AND DISCUSSION

A uni form asymptotic resul t for the near zone field exterior to
a perfectly conducting convex cylinder which is illuminated by a plane
wave as shown in Figure 1, is given in (44a) and (45a) for the shadow
and lit zones, respectively. These results may be employed via reciprocity
to directly obtain the radiation patterns of electric or magnetic line
sources in the near zone of the cylinder. A few numerical results for the
radiation patterns of line sources near circular and elliptic cylinders
which are based on (44a) and (45a) are presented in Figures 7b, 7c and 7d.
The accuracy of this uniform result is confirmed by the excellent agreement
obtained between the present solution and the eigenfunction solution for
the circular cylinder case. Similar agreement is observed for the elliptic
cylinder examples in which case the present result is compared with a moment
method solution. The results in (44a) and (45a) are not valid in the close
vicinity of the surface; hence, the results in (53a) and (53b) may be used to
calculate the field in the close neighborhood of the surface. In particular ,
the latter results are used to calculate the far zone fields of line sources
in the close vicinity of a circular cylinder via reciprocity as shown in
Figures 8a and 8b. It is seen that these results tend to blend with
those obtained via (44a) and (45a) thereby providing an overlap region for
these two representations. It is noted from the above pattern calculat ions
that the uniform result of (44a) and (45a) makes the leading term of the
total high frequency field continuous at the shadow boundaries. On the
other hand, the use of the usual ray optical or GTD solution would have
produced a discontinuity in the field pattern at the shadow boundaries.
One may verify the continuity property of the uniform result as follows.
Near a shadow bound4ry, ~ and C must both approach zero since the arclength t + 0 , and 0~ -

~ ir/2. Furthermore,

f11

F(a) -~ - 2cie e as ~ 0, (56a)

and one may re-express as
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Figure 7a. Ellipti c cylinder configuration excited by
a 2-D line source.
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FIgure 7b. Total field surrounding the cylinder of Figure 7a
excited by an electric line source.
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FIgure 7c. Total field surrounding the cylinder of Figure
7a excited by a magnetic line source. I -
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Figure 7d. Total far-field surrounding the cylinder of
FIgure 7a excited by a magnetic line source.
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Figure 8a. Total field surrounding the cylinder of Figure 7a
excited by an electric l ine source.
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Figure 8b. Total fiel d surrounding the cyl inder of Figure 7a
exci ted by a magnetic line source.
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Incorporating (56a) and (56b) into (44a) and (45a) yie’ds exactly the same
limit value as the field point approaches the shadow bounda ry from either
the shadow or the lit side; this limi t val ue is

u(P)
~SB ‘~ 

~~~ u ’(P) - m(Q 1)J ~~~~~~~~~ 
e~~

1(1
~6 

~ 

~~~~~~~~: 
::::

where £SR is the distance from Ql to P on the shadow boundary (SB). Thus,
(44a) and (45a~) yield a continuous total field at the shadow boundary. It
can be shown for the circular cylindrical case that the total high
frequency field based on (44a) and (45a) possesses derivatives along the
normal di rection to the shadow boundary which are also continuous to
O(l/&SB). In this connection, it has therefore been observed that
the pattern in addition to being continuous is also relatively smooth.
These observations hold al so for the smooth convex cylinder case prov ided
the local radius of curvature of the convex cylinder is slowly varying
as assumed previously. The result of (53a) and (53b) is continuous
across the shadow boundary as may be easily verified by inspection.

While the uniform result of (44a) and (45a) pertains to a perfectly
conducting smooth , convex cylinder, a similar result can be obtained for
a cyl inder wi th an impedance boundary condition. However, the latter
case has not been included here s ince the P5 functions which are now

dependent on the non-zero value of the impe~ance , are not extens ively
tabulated.

Further ‘extensions of the uniform result of (44a) and (45a) to treat
the general three dimensional problem of the scat tering of an arbitrary
electromagnetic ray field by an arbi trary, smooth, perfectly conducting,
convex surface will be presented in a future paper [Pathak, et. al.].
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