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CHAPTER 1
INTRODUCTION

The object of this study is to analyze the high frequency radiated
field of an antenna mounted near an elliptic disk. The elliptic disk
is studied because of its generality in modelling arbitrary cross-
section flat pla tes. The elliptic disk can be used to predict
antenna patterns for antennas located on circular or ellipt ic ground
planes. This solution can, also , be used to model an endcap of a
finite ellip tic cylinder used for modelling structures on aircraft
such as the fuselage, engines, and stores or structures on ships
such as masks , stores , etc .

The basic approach taken in this study Is to employ the
Geometrical Theory of Diffraction (GTD). Since GTD is a high fre-
quency method the lower frequency limi t of this solution is
dictated by the physical dimensions of the ellipse and the source
position. The radius of curvature of the ellipse should be greater
than a hal f-wavelength and the source should be at least a half-
wavelength away from the ellip tic edge.

The basic problem is analyzed using Keller ’s Geometrical Theory
of Diffraction (1] along with the more accurate and general ray
diffraction coefficients developed at The Ohio State University (2].
The sol ution for the elliptic disk case is modified in the caustic
and pseudo-caustic regions by en~1oying the method of equivalent
current developed by Ryan and Peters (3]. An empirical switching
procedure is also developed in order to determine where to employ
the equivalent current sol ution to correct these caustics to yield
a uniform sol ution.
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CHAPTER II
THEORETICAL BACKGROUN D

A. INTRODUCTION

The radiated field of an antenna positioned near an elliptic
disk is analyzed using the Geometrical Theory of Diffraction (610).
The GTD is a high frequency ray optic technique which allows the
radiated field to be analyzed in terms of individual ray components.

In this study, the scatteri ng body is asstsned to be perfectly
conducting and surrounded entirely by free space . The geometry
associated with this problem is illustrated in Figure 1. All fields
carry an exp(Jot) time dependence which is assianed and suppressed.

z ~ SOURCE
LOCAl ION

(x 5 ,y~.z~)

A

d
OBSERVATION
DIRECTION

b

a
•(v)

*

Figure 1. Elliptic disk geometry.
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B. GEOMETRICAL OPTICS FIELDS

The incident electric field E1 can be generated by an arbitrary
source. In this study, electric or magnetic current moments pro-
ducing a spherical wave are assumed. Note that an arbitrary source
could be constructed using superposition of these current ele-
ments [4]. The far field pattern of the source is written as

-jks
= [e F(e ,~) + • ~~~~~ e ( 1)

where F(o,~) and G(e,~) are the source pattern functions and s is
the distance between the source and the observation point.

The reflected electric field from a perfectly conducting flat
plate is determined from image theory and is expressed as

= (
~ F

” (e ,~) + ~ G”(e ,~)] (2)

where s’ Is the distance between the image source and the ob-
servation point. The geometry associated with the reflected field
is shown in FIgure 2.

The reflected field is determined using the source field in-
cident on the point of reflection Q and the boundary conditions .
The source field incident at Q is given by

-j kt1(e 11~1) 2 [
~ F(e 1,01) + ~ G(o 1,~~)) e

• III

where is the distance between the source and the point of re-
flection and the angles ej and ,.j are the angles of incidence from
the source to the point of reflection. The boundary conditions
applied at Q are given by

(3a )

and

~t . r = ~~t •t ~ (3b)



.~~~ • T T~T~ ~~~~~~~~~~
-
~~~~

-;--~ -;-- ------. 
~~~~~~~ —~c

--’
~

1

SOURCE

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

POINT OF_ J~~..~ / \*,
REFLECTION I

* 
0

IMAGE
LOCAT ION

Figure 2. Geometry for reflected field.

where i is the norma l to the surface and 1 is a tangent vector to
the surface defined by

~~~= 
ix !

Iz x II •

Equations (3a) and (3b) can be rewritten as

(
~ 

. ~)Fr + (~ 
. ;)Gr = (i • ~1) F+ (

~ 
. ;~)G

(t • e)Fr + (t )Gr (-ti • o1)F + (_
~ 

. 
~)G 
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The only unknowns in the above equations are the desired functions
F~ and 6r• Solving these equations yields

n ,~~ ~~~Fr =~~
t .+ )A +~~z •+ jA (4a)( . 

~)(t 
. ,) — (j j)(~ . ê)

Gr = -f(~ . ~)A~ + (t . t ) A”] (4b)(
~ 

. ê)(j . ) - (j  )~ . é)

where

A” = (j e ) F  + ( .

At z ( t . 0 1)F + ( t . 6 1)G.

C. DIFFRACTION BY A WEDGE

An asymptotic solution for the diffraction from a conducting
wedge was first solved by Soninerfeld [5). Originally plane wave
diffraction coefficients as presented by Keller [6] were used as
the basis for the GTD solution; however, as shown in Reference [7],
the use of cylindrical wave diffraction is necessary for antenna
applications. Thus, different formulations for wedge diffraction
were substituted for the plane wave diffraction coefficient which
Is the basis for wedge diffraction theory. Pauli [8) introduced
the VB function as a practical formulation for a finite angle con-
ducting wedge . Hutchins and Kouyoumjian [9,10] have presented a
formula ~~r the diffracted fiel d which significantly improves theaccuracy of the solution over that obtained from Pauli’s form .
This improved solution provides superior results in the transition
regions (near the incident and reflected shadow boundaries).

The three-dimensional wedge diffraction geometry is depicted
• in Figures 3 and 4. The source, located at s’(p ’,~’,z’), generates

a radiated! field given by U(s). The source can be an arbitrary
electric or magnetic source causing cylindrical , conical or spherical • I - •

wave incidence on the wedge. The diffracted vector field at s(p ,~,z)
can be written in terms of a dyadic diffraction coefficient.
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Figure 3. The basic GTD wedge di ffraction problem.

Kouyoumj ian and Pathak [11] have derived a more rigorous basis for
the GTD formulation and have shown that the diffracted field may
be -written compactly if placed in terms of a ray fixed coordinate
system. This ray fixed coordinate system is centered at the point
of diffraction Q’ , (or points of diffraction as in the case of
pl ane wave incidence). Q’ is a unique point or set of points for a
given source and observation point. The incident ray diffracts as
a cone of rays such that the cone half angle (

~
) equals the angle

(a ’) which the incident ray forms with the edge as shown in
F4ure 4.

Thç o~t~ogçnal unit vectors associated with these coordinates(s ’ ,a~,,+~,s,a0,s) are related by

- - 
1 •

where I is the incident direction unit vector and s is the unit
vector in the direction of diffraction.

6

---

~

-- -

~

•

~ 

‘—

—~~ 

-

~~ ~_LdI~i



~~~~ — -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -

OBSERVATION POINT

CONE OF
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SIDE VIEW

Figure 4. Geometry for three-dimensional wedge
diffraction problem.
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The diffracted field is then given by

p(s) 
~~ ~

(Q ’ ) . 

~E(,j)A(s)e
JkS

where

and

Ds ,h(+,+ ’ ,80) 
2nj~~k sin80 

{cot(~~~~~a)F[kLa+(._.I)]

+ cot( ’))F[k1a (.~.’)]~

;{cot(~
4
~~’ 4)) F[kL~~(.+ ’)]

+ cot(’~~r+’) F[kla (.+4’)]J.] (5)

where -

a (8) = 2 cos2(2 r~i~~ i_)

in which IC is the Integer which comes closest to satisfying thefollowing equations

2n,,tC —~~= — ~

2~iir N~~-~~a + ~

I 
- with aa • ±~~~‘. F(x) is defined by 
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F(x) = 2jI1~ ~~~ 
~ _j T 2 dr

and is called the transition function. The quanti ty n is defined by
the wedge angle WA where WA = (2-n)ir . For the elliptic disk case
n = 2. The $-+ ‘ terms are associated with the incident field;
whereas, the •+$ ‘ terms are associated wi th the reflected field.
The quantities A(s) and 1 are defined later.

In matrix notation the diffracted field is expressed by [9,10]

J~~
E~1

(s) 1 = FD5 01 r E1 (Q’ ~~ A (s )e_ik5 . (6)

LEIH L0 -
~i LEiQ1~J

The D5 coefficient corresponds to the t-field component parallel
to the edge with the boundary condition (acousti cally soft) or

(t1 ) = O .
wedge - -

The Dh coefficient corresponds to the t-field component perpendic-
ular to the edge with the boundary (acoustically hard) or

(
~~L a ~ It, wedge)

The quantity A(s) in Equation (6) is a ray divergent factor
given in general by [12]

p
‘ ‘

For the wedge case p”p~ which is the radius of curvature of theinciaent wavefront in the plane containing the incident ray and the
edge. For spherical wave Incidence A(s) is given by

FA(s) —J
~ S(ST + S )

9 ’
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- The quantity L Is a distance parameter and is given in generalby (12)

s (p +s)p 1p 2 sin 2a •e 0

where pj and P2 are the principal radii of curvature of the wavefront.For a straight edge, I Is given by [12)

s ’s sin 2a
L =  s ÷ ~~ 

0 

- 
(7)

for spherical wave incidence.

At grazing Incidence (•‘ =O) D5 and 0h must be halved since theIncident and reflected fields merge together and only hal f of thetotal field on the surface is the Incident field wi th the other
half being the reflected field.

10
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CHAPTER I I I
SCATTERING FROM AN ELLIPTIC DISK USING THE

GEOMETRICAL THEORY OF DIFFRACTION

A. INTRODUCTION

The scatteri ng by an elliptic disk is analyzed in this
chapter using the Geometrical Theory 0f Diffracti on discussed in

Chapter II. The geometry of the disk is Illustrated in Figure 1
with the source located in the near zone of the disk , and the
far zone scattered fields are computed.

B. INCIDENT FIELD

The incident field from the source is given using Equation (1)
by

—jks
~~(e,~) [êF(e ,~)+ •G((e,~)] 

e (8)

where s = d + x
~ 

• d.

The vector d is the far field observation direction given by

d = cos • sin e + sin • sin 0 y + cos 0 ~

and dais the distance from the origin to the far field observer
with x5 as the source locat ion as in Figure 5. The phase is
referred to the origin using the usual far field approximation
yielding

_____ ~~~~ 
-j k 

~s .
$ e

It Is possible for the source to radiate in all directions
provided that the ray path from the source to the observation
point is not blocked by the elliptic disk. If the source ray is
blocked, then the source field in that direction is set equal to
zero since the disk Is assumed to be perfectly conducting.

11 
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Figure 5. Intersection of incident ray
with elliptic disk.

The first test implemented to de~emIne if the observationdirection vector (d) and the vector (x5) from the center of the
ellipse to the source are on opposite sides of the elliptic disk
as i~ Fi gur~ 5. This is accomplished by comparing the sign of
z x 5 and z a. If the sign of these two dot products is the
same, then no shadowing can occur in that the source and the ob-
server are on the same side of the elliptic disk. If the sign
is opposite, further testing is needed.

For the next test, the intersection of the incident ray and
the plane of the ellipse is found by

~ A~x ,~ = x
~ 

- d

12
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where A~ is the orthogo~al distance from the source to~the pl~ne of
the ellipse (A n - • z) and D~ is the projection of d onto z
(D~ — a • z).

The shadowing test is then defl nçd such that if I~~I ‘ max(a,b)
then the source Is not ~~adowed. If I~t I c min (a ,b) shadowing will
occur. If min(a~b) < < max(a,b) a final test is implemented
which compares IXtI with the exact distance from the center of the
ellipse to the edge as depicted in Figure 5. The angular elliptic
parameter in the desired direction Is found using

-l a
~~t

y
v = tane b

~~
’
t
.x

The radial distance from the center of the ell ipse to the
ellipti c edge In this di rection is found from

= a~cos~v~ + b2 sin2ve

Finally, if ~ < I~tI no shadowing will occur and if ~e ~~. I~tI, the
incident ray ~s shadowed.

C. REFLECTED FIELD

Reflections off the elliptic disk are possible only if the
observation point and the source are located on the same side of
the disk. This is equivalent~ to saying that the observation di-rection (a) and the vector (ii ) from the center of the ellipse to
the image location are on opposite sides of the elliptic disk as
In Figure 2. The image location is given by

.-~ ...~x 1 = X s _ 2 A n Z

-~~where An — x 5 z.

The procedure, used to determine If a reflected field exists,
parallels the section on source shadowing by the ellipse except for
some minor changes. The reflected field exjsts only If the ray from
the image source in the scatter direction (d) intersects the elliptic
disk. If this intersection does not occur the reflected field Is
set equal to zero.

If it Is determined that a reflected field exists, then the
reflected field Is expressed by

13
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- EiFr(e ,,) + ~Gr(O ,,)] e~~
kd 

e
ik 

~~~~~~~~

and Fr(e,,) and Gr(e,,) can be found using Equations (4a) and (4b).
The angles of incidence Oj and $j from the source to the point of
reflection are found by defining

~~~~~ ~~~~~~~~~~~~~~~~~~~

which is th~ vector frçm the source~to ~he point of refl ection
located at X1 + A~/D~ d where D~ = d . z. O j  and •j  are then foundby solving

~JI2 + I 2
= tan

_
i( 

x 
T
~ 

~~ 

)

= tan 1(~~)

0. DIFFRACTED FIELD

The diffracted field from an ell iptic disk is normally
generated from discrete points along the elliptic rim which satisfy

H the law 0f diffraction. This law states that at the diffraction
point ( Q ’) ,  the angle of incidence and the diffracted cone half—
angle are equal. Thi s law is expressed in the geometry of Figure
6as

cos I3.,~, = cos a0

or

1(v) . (v) — a . ~(v) (9)

where 1(v) Is the unit vector from the source to the~diffraction~point (Q’). If Q’ is located at the~po1nt (a co~ v x + b sin v y)
and the source is located at T5 — X~~~X + ysy + Zsz then

14
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Figure 6. Diffracted field geometry.

(a c o s v - x 5)~~+ (b s i n v - y 5),~

I(a c o s v _ x s )2 + ( b s i n v _ y s )2

The quanti ty ~ (v) is the unit vector tangent to the edge at Q’ andis given by -

4a 2 sin 2v + b2 cos2 v
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The exact solution for the elliptic parameter v , which specifies
the location of the points of diffraction, is complicated for an
arbitrary geometry. The solution, In general, requires solving an
eighth-order polynomial for each observation direction which becomes
very time consuming.

Since there are, in general, only four points of diffraction
such as illustrated in Figure 7, a search technique has been used to

1
A

SOURCE
LOCAT ION

Figure 7. Curved wedge diffraction points
on rim of elliptic disk.

-
‘ find these points of diffraction along the elliptic rim. The method

- - is based upon the minimization of the difference between the two
dot products given in Equation (9). An error term is given by

c (V) — 1(v) • ~(v) - .

The minimum error Is found by first forming

c(vj .i) + c(v j ) + c(Vj~1) for i — 0 to 360. If

~~. Ii~
_
~I and k1I ~~. ICj+iI. then vj is the closest degree to a

mTh1m~an ill the error. In order for thI~ minimum to be a diffraction

L ~~~~~~~•± ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-



p
point, the error term must reduce to zero. This technique, however,• will also find a minimum in the error which is not a zero crossing.
In order to remove this problem and to determine the point of dif-
fraction closer than one degree increments, an interpolation scheme
is used which is given by

~dI ff = V
j  

+ Lv

where Ly is defi ned as

. iti (~‘.a) 
— (~ .j )

lel + Le . - 

~~ 
(Le.d) - (e.I) ~ •d)

and

-~~
—

~~ 3e ,. 
.Le=~~~~ = - a cos v x - b s i n v z.

If Lvi > 1 then the point found is not a diffraction point but a
minimum in the error function and is ignored.

The location of these diffraction points on the rim of the
elliptic disk depends upon the source location, the observation
direction, and the physical dimensions of the ellipse. If the
source is located on the z-axIs through the center of the ellipse ,
as in Figure 8, the only physical dimensions necessary to locate

OBSERVAT IONA
d DIRECTION

DIPOLE SOURCE

(o ,O,O )— ~ ~ 5,~~
’(O, b ,O)

Figure 8. Dipole off an elliptic disc.

_ 1
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the diffraction points are the axial ratio and the height ratio. The
axial ratio is defined as the ratio a/b. The height ratio is
defined as the ratio h/b. The quantities a, b, and h are illustrated
in Figure 8.

The location of the diffraction points on an ellipse with axial
ratio of 0.4 and height ratio of zero for a pattern cut in the
0 = 900 plane (refer to Figure 8) are shown in Figure 9a. In
Figure 9b four observation directions were chosen from Figure 9a
to demonstrate where the points of diffraction occur. For example
at • = 25° four diffracti on points occur at V = 10.5°, 135.6°,
161.0, and 233.9° which are labeled 5, 6, 7 and 8, respectively on
both figures. 

-

The location of the points of diffraction as a function of
Increasing height ratio, i.e., as the antenna is moved off the
disk along the z—axis , is illustrated in Figure 10. The pattern cut
for this case Is in the 4= 900 plane for an ellipse with an axial
ratio of 0.4.

It is shown in Figure 11 how the location of these diffraction
points are effected as the observation direction is scanned from the
• 

= 90° plane to the • = 1800 plane in 10° increments. For this case
the axial ratio is 0.4 and the source is in the center of the disk
(height ratio is zero). Note that in these figures if 0 and • aredefined, then either two or four diffraction points exist.

The effect of changing the axial ratio is shown in Figure 12
for an ellipse with the source in the center of the disk and the
pattern taken in the 4 = 90° plane.

After the discrete points of di ffraction along the rim have been
located , the diffracted field is found using the curved wedge
diffraction coefficients given in Chapter II.

The diffracted field for a single diffraction point (Q’) on the
rim of the elliptic disk illumi nated by a current moment is given
using Equation (6) by

[E~~ [D~ °1 ~~v~e ik td ~~~~

L!tJ Lo ~DJ L~
1(

~~
’2J

The dyadic diffraction coefficientS for this case are found using
Equation (5). The distance parameter I in the far field reduces
to
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Figure 10. Location of diffraction points as a function of
height ratio (4=900 , axial ratio = 0.4).
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Figure 11(d). Location of diffraction points as a function of
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L • 5’ sin280

where s’ = i•ti .

The total di ffracted field is obtained by siamiiing each of the
diffracted field terms provided that the points of diffraction are
separated. It has been determined that if the diffraction points are
separated there are a maximum of four such points which will satisfy —

the laws of diffraction such as shown in Figure 7. This four point
diffraction solution when combined with the incident and reflected
fields usually predicts patterns which are in very good agreement wi th
experimental results . However for certain geometries and observation
directions, caustics can occur.

The axial caustic occurring if the antenna is located on axis
near a circular disk (see Figure 13) has been treated by Ryan and

SOURCE
LOCATION

a

a 
y

x

A
d

Figure 13. Axial caustics of a circular disk.

Peters (13]. With this geometry an Infinite number of diffraction
points exist along the rim of the disk for axial observation.
directions (e • 0 or w). The infinite number of diffraction points

- 

- 
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implies that an infinite field exists in the neighborhood of e= 0 or
ir which of course, is not the true physical result. However, the
equivalent current solution gi ven in the next section can be used to
correct the diffracted fields in these caustic regions (i.e., the
sectors where the diffraction solution fails).

A pseudo-caustic problem which can occur wi th the elliptic disk
geometry is the merging of diffraction points along the rim as the
observation direction is changed. This effect is illustrated using
the configuration shown in Figure l4a. Solving the law of dif-
fraction for this case yields :

A OBSERVATION
d DIRECTION

z

SHORT
MONOPOLE I

y
‘I

4

H

Figure 14(a). Monopole on an elliptic disc.

1(v) . e(v ) = d • e(v) (10)

where

~~~a c o s v x + b s 1 n v y

4 a2cos2v + b2 sin 2v

~~~-a sin v x + b c o s  ;~
4 a 2sln 2v + b2cos 2v

= sin 0 + cos 0

wi th the pattern taken In the y-z plane (~=90°).

30
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Equation (10) can be reduced to give

b cos v sin ~ = tb
2—a~)s ln v cos v (11)

‘[ a2cos2v + b2sin2v

If cos v 0, the equality holds ; therefore, v = ± ,/2 are two
diffraction points. If cos v p’ 0 then the possibility of two other
diffraction points exists and Equation (11) becomes

b sin 0 = 
(b2—a!)sin v

1 a2cos2v + b2 sin2v

Squaring both sides of this equation and solving for tan v, leads
to

t a n v = ±  abs ine — 
-

~J~~
2_a2)2_b4sin 2 ~

The above equation has two real solutions for v if

(b2-a2)2 > b4 sin 2 e

which Implies

Isin 01 1 — (
~)I . (12)

If the i nequality is true, then four distinct diffraction points
will exist. The -criterion for thLee of the four diffraction points
to merge into one occurs if a < 12 b for this pattern cut.

As an example of this pseudo—caustic effect , the case where
a 2A and b — 5X Is chosen. As seen is Figure 14b caustics occur
at the angles where-the diffraction points merge as defined by
Equati on (12) or

e - ± sin~ (
~ 
- (~)2> ±57.14°, t122.86°.

I
I 
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Fi gure 14(b). E-theta radiation pattern in the y-z plane
for the configuration in Figure 14(a).

The merging of these di ffraction points as well as their position
along the rim Is seen in Figure 15. If the pattern is taken in
the x—z plane, which is similar to letting a—5A and b=2A , then
a > ~~ b and no caustics occur as shown-in Figure 14c.
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for the configuration in Figure 14(a).

The plot of the diffraction points for a given pattern cut is
useful in showing where caustics can occur. As the locus of dif-
fraction points approach a vertical line , such as in Figure 15 , a
caustic condition is being approached.

The use of equivalent currents as described in the next
chapter can correct these pseudo-caustic effects in addi tion to
the axial caustics discussed earlier.
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CHAPTER IV

CAUSTIC CORRECTION VIA EQUIVALENT CURRENT

A. INTRODUCTION

The equ ivalen t curren t conce pt was implemented by Ryan and
Peters [13] to correct axial caustics occuri ng in the back-
scattering of axially syninetric cone frustrums. This type of
caustic occurs because GTD predicts infinite fiel ds when an
infinite number of diffracted rays occur. The term equivalent cur-
rent is used because the currents generated are a function of the
scattering direction which is not characteristic of true line
currents.

The equivalent current concept is used to correct the two
types of problems associated with the GTD four point diffraction
solution of the previous section. The first problem is the axial
type caustic similar to those dealt with by Ryan and Peters. This
case occurs, for example, with a circular disk when the observation
and source locations are both axially located. The second problem
is a pseudo-caustic effect where GID predicts a discontinuity in
the scattering pattern whenever diffraction points merge or
disappear from view . This pseudo-caustic effect can be observed
on the disk when three of the four diffraction points merge into
a single diffraction point or two diffraction points merge and
disappear as the observation direction is changed (see Figure 15).

B. TECHNICAL APPROACH

The equivalent current method is based upon the two dimensional
diffraction of a plane wave incident upon a perfectly conducti ng
half plane. The equivalent current is found by comparing the
electric and magnetic fiel ds generated by the two dimensional
diffraction process at each point along the edge with the fields
which would be produced by equivalent electric and magnetic
current elements . The diffracted fiel d from the curved edge is
found by numerically integrating these equivalent currents in the
radiation integral .

Referring to Equation (6), the two-dimensional diffracted
fiel d at the point p is given by

.1 4 -jks
= E’((P) D e 

~l3I.,, 
~~~~~ 5
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~~~~

—jks
Hd(p) = H

~
(Q ’) Dh 

e 
• (13b)

In terms of the equivalent electric and magnetic li ne currents(I
~ 

and M
~
) along the edge, these fiel ds are

Ed(p) = -z0 e~ ~ ~
j ~~~ 1

Hd(p) = -y0 e~ ~~~~~ e ik5 M
~
.

Equating these two expressions Implies that

— 

E~(Q ’) D5(Q’) j-
~ 

-j 
~~

- 

14z — - sinB0 
~~~~~~~~~ e ( a)

and 

M
~ 

H (Q ’) ~~~
‘) 

~~~~~~~ (l4b)

where 
*

— 

D5
(Qt ,80=90°) — _____D5 s1n~0 

— sin80

and

0 - 

Dh
(QI ,Bo=900) - ____

h sin~~0 sin~

E~(Q ’) and H~(Q’) are the electric and magnetic components,respectively, of the incident field parallel to the edge.
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Using the above equivalent currents, one can show that the
diffracted field for an Infinite straight edge can be reproduced.
This is done using the following line integrals:

d jkz -jks —

E0 = 
0 J I (z ’) sine (z ’) e dz’

11 
*

E~ = -
~
•:•

~ 
e-:

0

4• 
~[~i jE~( z )  ~~~~~~~ si~0(z

’) 
e jk5dz l

E~ = e~ ~~J~~ JE~(z ’) D~(z ’) ~~~~ (z ’) e~
Jks 

dz ’ . (15)

The above integra l can be solved using a stationary phase argument
since a stationary phase point occurs in the Integrand of Equation
(15) at the diffraction point. From stationary phase (14],

jF(zI)e ik
~~
Z’)dz I 

~ 
F(z

~)Jk,f
,I
~~~~, 

-jkf(z~)-j ~ sign f”(z~)

where

H - - f(z ’ ) = s + z ’ cosB0

f’(z ’) = -cos o(z~) + cos~0 = 0

9(z ’)  =

sin28
f”(z ’) = 0 o
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In this case,

F(z ’ ) E~(z ’) D ( z ’) slne (z ’) ~ ejk z s cos80

with

s =J x 2 + y 2 + ( z _ z ) 2

using the geometry ill ustrated i n Figure 16. Therefore,

E~ = e~ 
~ ~~~ 

E~(z~)D ~~ .1
~
- ~~~~~~~

* 
~ 2 e jks e~~~~~

0580 e~~ ~
H 

4 s1n 80

which reduces to

d E1 (z ’) —jks
E = - 

Z 5 D* e
0 sin 80 5

The above equation checks with (13a) in that ê is in the -i
direction and secondly

5

sin80 s

Returning to Equation (15) and using the fact that in the
far field:

—s = d - d •

it follows that
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= e~ ~~~~~~~ 
~~~~ sine (z ’) ~~~ dz ’

for the diffracted field. In order to include contributions in
the integrand for directions not lying on the cone of diffraction
the substitution si n2

~0 = sin ~0sin e(z’) is used (15]. The
exact substitution used here is not critical to the answer and
this substitution was chosen to enforce reciprocity. This sub-
stitution yields:

Ed0= e~ ~~ 
e~~

d 
JE~(z ’) D~(z ’)~) 

sino(z’) 
~~~~ dz’.

For the elliptic disk case

dz’ =J~~ in2v + b2cos2v dv = J d v

so the diffracted f ie ld  becomes

= E~6 e~ ~ [iZ ~~~~ _______

where is the tangent to the elliptic edge. Using duality, the
magnetic field becomes

= e~~ ~~ J
r e~

Jkd 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

*eJI
~~~

’ 
D~J~~dv

40

- 

- —

—~~~ --~~~~~- —~~- 
--

~~~~~~~~~~~~~~~~
—

~~~~~~~~~~~~~~
--

~~~~~~
--- -



——- -—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- — - -------- ~~~

--- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.- — - - —.

~~
- 

~‘1

- 
- 

In the far field

dzo

and

t =  z0 R x - â

which impl ies

= -e 

~~~~~~ 

e Jkd 

~~~~~~~~~
*ei1”~~ D~ /7dv .

Also

z~~ = ci x = -E~,,O’ + ~~~~

Therefore

= -e~ 
•~

!L J.:~::. ~~~~ J:T;1~~~
_ E
~~+E~~ ).;1 

—

*I
shh’O(z ’) 

~~~~ D~ ~C d y .

The Dl and D~ di ffraction coef f ic ients  are two-dimensional
diffraction coefficients computed by assumi ng a straight edge
which is tangent to the elliptic edge at the integration point.
Dl and D~ are computed using Equation (5) with sinB0 set equal
to unity which implies L — ti.
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The above equations for E~ and E~ are numerically integrated
using the following technique:

AX
2ir x0 +~~—

J f (x )dx  = M (x ) e~~~’~dx = 

x~=O ‘,c0
_ M(x)e ~~ ’~dx

in steps
of Ax

where M(x) and s(x) are the magnitude and phase of f (x) , re-
spectively. Over the interval Ax , the magnitude is assumed constant
and the phase is assumed to be linear. The integral now becomes

aAxr2ir 2iv

J f(x)dx % ~ f(x )
o x=O IaAxo

in steps
of Ax

where

•(x +~x)- +(x -~tx)
— L+~~X I i  4~ 0a —  dx 2Ax

0

If Ax is one degree, the integral can be reduced to

1800 .

J 

f (x)dx % ~ f(x) si~ A -

o x 00
0

wh ere

s (x + 10)  — • (x _ 10 )
A -  ~ 0

The equivalent current solution Is only truly valid in the
vicinity of a caustic. This method can, however, yield good
results in other scatter directions due to the stationary phase

- — nature of the integrand at points of diffraction. One region
where this method is not usually valid is in the area around the
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incident and reflected shadow boundaries . This effect can be
seen by examining the problem illustrated in Figure 17 and also
can be seen as a discontinuity in the integrand of the equivalent
current sol ution as shown in Figure 18, where the reflected shadow
boundary is at 78.7° .

OBSERVATION
DIRECTION

DIPOL E SOURCE

- 

AT (O,O, b)  —

,

(O,b ,O)

Figure 17(a). Dipole off an elliptic disc .

A computational problem associated wi th the equivalent
current solution is that it requires integration around the
elliptic edge for each observation direction. This requires a
large amount of computer time when compared with the GTD four point
diffraction solution which requires calculation at a max imum of
four points along the rim.

Since the four point diffraction solution and the equivalent
current solution fail for different reasons, the discontinuities
in the pattern caused by the diffracted field will , in general ,
appear in different regions of the pattern. Thus , the two methods
may be combined, in most cases, to yield a smooth pattern which
avoids the difficul ties associated wi th each individual method.
One case where this will not usually yield a smooth pattern is
when the caustic and a shadow boundary coincide.
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Figure 18(a). Discontinuties occuring in the integrand
magnitude of the equivalent current
solution near the shadow boundary .
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The four point diffraction sol ution is used whenever possible
since it is the more numerically efficient. The equivalent current
solution is used to correct the caustic and pseudo-caustic problems
associated wi th the four point diffraction solution.

The mechanism chosen to swi tch between the two methods is
based upon the stationary phase nature of the Integrand in the
equivalent current solution in the neighborhood of a diffraction
point. The axial caustic problem, associated wi th the geometry
illustrated in Figure 13, is apparent from the phase of the
integrand as seen in Figure 19. Note that the phase is constant
at the caustics (e=d’) and has a broad stationary phase peak in
the vicinity of the caustic. The phase of the integrand is shown
in Figure 20 for the pseudo-caustic case of Figure l4b. Four
distinct phase extremums are seen when 0—45° which correspond
to the four diffraction points at v=32’, 90°, 148°, and 2700 .
As the observation angle changes to 0—57° , three of the four diffraction
points merge into one at v = 900. The stationary phase peak at this
point becomes very broad as seen in Figure 20. In both the caustic
and pseudo-caustic cases , it is noted that the width of these
extremums is a good indication that a caustic is present and
the equivalent current solution should be implemented.

As a resul t of the above arguments , the second deriv itive of
the phase at the diffraction points yields a good measure of the width
of these stationary phase peaks, such that it can be used to determine
the switching procedure. The phase of the integrand can be
specified in a simplified form by the phase of the di ffracted
field at the diffraction point v

~
. Thus

flj = -ii i + d .

where

~
‘=acos v1~~~+ b s i n v1 y

and

using the geometry illustrated in Figure 21. The second
derivitive is computed numerically by

• _~~ i+i _ T l
i-1 -fli 2~v -
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Figure 21. Geometry for switching procedure.

The test value used to determine when the equiva lent current
sol ution should be implemented, was found by empirical methods, i.e.,
deciding where the switching should occur for several test patterns
and observing the value of fij . The test value chosen was 0.01
(degrees) l . Thus if (T ~j I  is less than 0.01 (deg) 1 the equivalent
current sol ution is used. Otherwise, the four point diffraction
solution is sufficient .

An application of this swi tching procedure is seen using the
geometry illustrated in Figure h a .  The pseudo-caustics associated
wi th the four point diffraction solution are shown in Figure l7b.
The shadow boundary problems associate d wi th the equivalent
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current solution can also be seen in Figure 17b. The combined
sol ution avoids both of these difficulties by employing the
equivalent current solution only in the pseudo-caustic regions.
The comb ined solution is shown in Figure 22.

The accuracy of the combined solution can be demonstrated
by compari son wi th measured results . In Figure 23a the ax ial
causttcs associated with the GTD four point diffraction solution
is observed at 0=0° and 180°. The combined solution which cor-
rects these caustics via equivalent current is seen in the same
figure and Is compared with measured results taken on a 3A circular
disk [16] as shown in Figure 23b. The comparison between measured
resul ts and the combined sol ution for the pseudo-causti c case
(see Figures l4a and b) can be seen in Figure 24.
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Figure 22. The composite 4—point + equivalent current
solution corresponding to Figure 17(a).
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Figure 23(a). Axial caustics on a 3X circular disk.
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Figure 23(b). Comparison of combined solution with measured
results on a 3A circular disk.
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Figure 24(a). Composite soluti on for E-theta radiation in
y-z plane corresponding to Figure 14(a).
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CHAPTER V
SU~t4ARY AND CONCLUSIONS

The object of this study has been to analyze the radiated
field of an antenna mounted near an elliptic disk at high
frequency. The basic approach used in this study to analyze the
scatteri ng by an elliptic disk was to employ the Geometr ical
Theory of Diffraction discussed briefly in Chapter II. The
incident, reflected, and diffracted f ields were d iscussed in
Chapter III. The diffracted fiel d was described using the GTD
four point diffraction method .

In Chapter IV the method of equiva lent currents was employed
to correct for caustics and pseudo-caustics associated with the
GTD four point diffraction solution. An empiri cal switching
procedure was introduced in order to apply the equivalent current
solution whenever caustics occur in the four point diffraction
sol ut ion. 

—

The combined sol ution for the ellipti c disk was compared with
measured results on a circular and elliptic disk to veri fy Its
accuracy.

The equi valent current sol ution has been shown to be an
effective method of removing caustics associated wi th the GTD
four point diffraction solution on the elliptic disk. The
combined elliptic disk solution using the GTD four point dif-
fraction solution wi th the equiva lent current solution in the
causti c regions, can be used effecti vely to predict patterns of
sources located near an elliptic disk.

The ell iptic disk solution is useful in predicting antenna
pa tterns for antenna located on circular or elliptic gorund planes.
The elliptic disk can also be used as an approximation to an
arbitrary cross-section flat plate or as an endcap for an elliptic
cylinder. The elliptic cyl inder model can be used to model
structures on an aircraft such as the fuselage , engines, and
stores or structures on ships such as masks , stores, etc.
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