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CHAPTER I
INTRODUCTION

The object of this study is to analyze the high frequency radiated
field of an antenna mounted near an elliptic disk. The elliptic disk
is studied because of its generality in modelling arbitrary cross-
section flat plates. The elliptic disk can be used to predict
antenna patterns for antennas located on circular or elliptic ground
planes. This solution can, also, be used to model an endcap of a
finite elliptic cylinder used for modelling structures on aircraft
such as the fuselage, engines, and stores or structures on ships
such as masks, stores, etc.

The basic approach taken in this study is to employ the
Geometrical Theory of Diffraction (GTD). Since GTD is a high fre-
quency method the lower frequency 1imit of this solution is
dictated by the physical dimensions of the ellipse and the source
position. The radius of curvature of the ellipse should be greater
than a half-wavelength and the source should be at least a half-
wavelength away from the elliptic edge.

The basic problem is analyzed using Keller's Geometrical Theory
of Diffraction El] along with the more accurate and general ray
diffraction coefficients developed at The Ohio State University [2].
The solution for the elliptic disk case is modified in the caustic
and pseudo-caustic regions by employing the method of equivalent
current developed by Ryan and Peters [3]. An empirical switching
procedure is also developed in order to determine where to employ
the equivalent current solution to correct these caustics to yield

a uniform solution.




CHAPTER 11
THEORETICAL BACKGROUND

A. INTRODUCTION

The radiated field of an antenna positioned near an elliptic
disk is analyzed using the Geometrical Theory of Diffraction (GTD).
The GTD is a high frequency ray optic technique which allows the
radiated field to be analyzed in terms of individual ray components.

In this study, the scattering body is assumed to be perfectly E
conducting and surrounded entirely by free space. = The geometry '
associated with this problem is illustrated in Figure 1. A1l fields
carry an exp(jut) time dependence which is assumed and suppressed.
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Figure 1. Elliptic disk geometry.
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B. GEOMETRICAL OPTICS FIELDS

The incident electric field E can be generated by an arbitrary
source. In this study, electric or magnetic current moments pro-
ducing a spherical wave are assumed. Note that an arbitrary source
could be constructed using superposition of these current ele-
ments [4]. The far field pattern of the source is written as

: : -5k
B'(0.0) = [3 F(0,6) + ¢ 6(0,0)] £ 1)

where F(6,4) and G(e,4) are the source pattern functions and s is
the distance between the source and the observation point.

The reflected electric field from a perfectly conducting flat
plate is determined from image theory and is expressed as

; ; -3
E7(0.0) = [6 F"(8,0) + & 6"(0,0)] & (2)

where s' is the distance between the image source and the ob-
servation point. The geometry associated with the reflected field
is shown in Figure 2.

The reflected field is determined using the source field in-
cident on the point of reflection Q and the boundary conditions.
The source field incident at Q is given by

; : -3k (1|
ﬁwvﬂ>=urwph)+¢mgwg]%ﬂ——

-
where |I| is the distance between the source and the point of re-
flection and the angles ¢4 and ¢4 are the angles of incidence from 1
the source to the point of reflection. The boundary conditions
applied at Q are given by

” 4
2 . ez .8 (3a)
and .

R PR & (3b) |
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Figure 2. Geometry for reflected field.

where z is the normal to the surface and t is a tangent vector to
the surface defined by

N>
D

X
X

t=-2
|z x 1

Equations (3a) and (3b) can be rewritten as
(z - 0)F" + (2 - ¢)6" = (2 - 6,)F + (2 - 4,6

N
—0

(t - 0)F 4 (£ §)ar= (-t - 6)F + (-£ - 4,06 .
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The only unknowns in the above equations are the desired functions
F' and G". Solving these equations yields

e . (% : §)AT + 4} : $2At Tl (ta)
(z - 0)(t-0)-(z-0)(t-0)

A (RN AR R (4b)
(z - 0)(t.¢)-(z-¢)(t.o0)

>
S
"

(z - 8,)F + (z - 4,)6

>
"

(. 8,)F + (t - 4,)6.

C. DIFFRACTION BY A WEDGE

An asymptotic solution for the diffraction from a conducting
wedge was first solved by Sommerfeld [5]. Originally plane wave
diffraction coefficients as presented by Keller [6] were used as
the basis for the GTD solution; however, as shown in Reference [7],
the use of cylindrical wave diffraction is necessary for antenna
applications. Thus, different formulations for wedge diffraction
were substituted for the plane wave diffraction coefficient which
is the basis for wedge diffraction theory. Pauli [8] introduced
the Vg function as a practical formulation for_a finite angle con-
ducting wedge  Hutchins and Kouyoumjian [9,10] have presented a
formula {5r the diffracted field which significantly improves the
accuracy of the solution over that obtained from Pauli's form.
This improved solution provides superior results in the transition
regions (near the incident and reflected shadow boundaries).

The three-dimensional wedge diffraction geometry is depicted
in Figures 3 and 4. The source, located at s'(p',¢',2'), generates
a radiated E field given by E'(s). The source can be an arbitrary
electric or magnetic source causing cylindrical, conical or spherical
wave incidence on the wedge. The diffracted vector field at s(p,¢,2)
can be written in terms of a dyadic diffraction coefficient.
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Figure 3. The basic GTD wedge diffraction problem.

Kouyoumjian and Pathak [11] have derived a more rigorous basis for
the GTD formulation and have shown that the diffracted field may
be written compactly if placed in terms of a ray fixed coordinate
system. This ray fixed coordinate system is centered at the point
of diffraction Q', (or points of diffraction as in the case of
plane wave incidence). Q' is a unique point or set of points for a
given source and observation point. The incident ray diffracts as
a cone of rays such that the cone half angle (By) equals the angle
égéz whzch the incident ray forms with the edge as shown in

re 4.

. .The orthogonal unit vectors associated with these coordinates
(s'4Bgs4"55:8,,4) are related by

-~

i=-s

' '
0

i-=

>

X

>

>

s =

W,

ox

where i is the incident direction unit vector and s is the unit
vector in the direction of diffraction.
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-The diffracted field is then given by

Els) v E1(Q") - Bp(S,DA(s)endks

where

and

-j%

D a',B =-e————--——— t!.t.(.u:l)FkL+ A
5.h(#+07.5) 2nf2nk sing_ {co ( o e

. ' 1
+ Cot(—"-é:;‘—)') F[kLa-(¢"¢' )]} !
${cot(1t§%+—'ﬂ) FIkLa®(4+')]
+ cot ("—'(-3?:-)-) F[kLa’(¢+¢')]}] (5)

where
+
at(g) = 2 cos? (z—m'—g-—'ﬁ—)
+

in which N~ is the integer which comes closest to satisfying the
following equations

r -8 = =g

2mrN+ -8 = +n

with g= ¢ ¥4'. F(x) is defined by




2
F(x) = 2j| /Xl ejxs e JT dt
| VX1

and is called the transition function. The quantity n is defined by
the wedge angle WA where WA = (2-n)w. For the elliptic disk case
n=2. The ¢-¢' terms are associated with the incident field;
whereas, the ¢+¢' terms are associated with the reflected field.

The quantities A(s) and L are defined later.

In matrix notation the diffracted field is expressed by [9,10]

I A(s)e IKS (6)

The Dg coefficient corresponds to the E-field component parallel
to the edge with the boundary condition (acoustically soft) or

(E" ) = 0.

wedge

The D coefficient corresponds to the E-field component perpendic-
ular to the edge with the boundary (acoustically hard) or
of

80.
an

wedge

The quantity A(s) in Equation (6) is a ray divergent factor
given in general by [12]

As) = s

For the wedge case p'p1 which is the radius of curvature of the
incident wavefront in %he plane containing the incident ray and the
edge. For spherical wave incidence A(s) is given by

Als) 'j s :' ¥




;ge quantity L is a distance parameter and is givén in general

by

3 S(pe*s)plpz sinza°
péfb]*s)(oz+s)

where pj and p2 are the principal radii of curvature of the wavefront.
For a s{raight edge, L is given by [12]

2
s's sin Bo

Leopenme o : (7)

for spherical wave incidence.

At grazing incidence (¢'=0) Dg and D must be halved since the
incident and reflected fields merge togetner and only half of the
total field on the surface is the incident field with the other
half being the reflected field.




CHAPTER III

SCATTERING FROM AN ELLIPTIC DISK USING THE
GEOMETRICAL THEORY OF DIFFRACTION

A.  INTRODUCTION

The scattering by an elliptic disk is analyzed in this
chapterusing the Geometrical Theory of Diffraction discussed in
Chapter II. The geometry of the disk is illustrated in Figure 1
with the source located in the near zone of the disk, and the
far zone scattered fields are computed.

B.  INCIDENT FIELD

The incident field from the source is given using Equation (1)
by

. : -k
B (0,0) = [6F(0,0) + 46((0,0)] £ (8)

A

where s=d+ f; . d,

The vector d is the far field observation direction given by

Y

d=cos ¢ sin8 x +sin¢ sin @ y + cos & 2

and dis the distance from the origin to the far field observer
with xg as the source location as in Figure 5. The phase is
referred to the origin using the usual far field approximation

yielding
oiks  -jkd -k SE‘S o
o ~ e L]
s 3

It is possible for the source to radiate in all directions
provided that the ray path from the source to the observation
point is not blocked by the elliptic disk. If the source ray is
blocked, then the source field in that direction is set equal to
zero since the disk is assumed to be perfectly conducting.

1
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Figure 5. Intersection of incident ray

with elliptic disk. .

The first test implemented to determine if the observation
direction vector (d) and the vector (Xg) from the center of the
ellipse to the source are on oppcsite sides of the elliptic disk
as in Figure 5. This is accomplished by comparing the sign of
Z.xgand z - 4. If the sign of these two dot products is the
same, then no shadowing can occur in that the source and the ob-
server are on the same side of the elliptic disk. If the sign
is opposite, further testing is needed.

For the next test, the intersection of the incident ray and
the plane of the ellipse is found by

-

A
- - n
Xt=xs-'rn d




where Ap is the orthogopal distance from the source to_the plane of
%he ellipsg)(An = Xg *+ 2z) and Dy, is the projection of d onto z
Dn' e Z).

The shadowing test is then defined such that if IYEI > max(a,b)
then the source is not sphadowed. If |X¢| < min(a,b) shadowing will
occur. If min(a,b) < |X¢| < max(a,b) a final test is implemented
which compares IQ@ with the exact distance from the center of the
ellipse to the edge as depicted in Figure 5. The angular elliptic
parameter in the desired direction is found using

-; -~

1 ave ey
ve=tan] '—t_'_,._

b f} * X

The radial distance from the center of the ellipse to the
elliptic edge in this direction is found from

o | A e 2 .2
™ Ja cos ve + b sin ve

Finally, if pe < lf}l no shadowing will occur and if pg > [Rt|, the
incident ray ?s shadowed.

C. REFLECTED FIELD

Reflections off the elliptic disk are possible only if the
observation point and the source are located on the same side of
the disk._ This is equiva]eq;_to saying that the observation di-
rection (d) and the vector (Xj) from the center of the ellipse to
the image location are on opposite .sides of the elliptic disk as
in Figure 2. The image location is given by

- ~
where A, = Xg * Z.

The procedure, used to determine if a reflected field exists,
paraliels the section on source shadowing by the ellipse except for
some minor changes. The reflected field exésts only if the ray from
the image source in the scatter direction (d) intersects the elliptic
disk. If this intersection does not occur the reflected field is
set equal to zero.

If it is determined that a reflected field exists, then the
reflected field is expressed by

13




.J ~
- kd - k od
P (0.0) = [8F(0,) + 67(0,0)] S & ° 1

and F'(6,4) and G"(8,4) can be found using Equations (4a) and (4b).
The angles of incidence ©; and ¢j from the source to the point of
reflection are found by defining

A
'i’-F:- d-zA

2= lxx + Iyy + Izz

which is the vector from the source_to the point of reflection
located at Xj + Ap/D, d where D, =d - z. 6§ and ¢ are then found
by solving

Z,

I
ei = tan-](—xT—l—
¥4

D. DIFFRACTED FIELD

The diffracted field from an elliptic disk is normally
generated from discrete points along the elliptic rim which satisfy
the law of diffraction. This law states that at the diffraction
point (Q'), the angle of incidence and the diffracted cone half-
gngle are equal. This law is expressed in the geometry of Figure

as

]
cos 80 = CO0S Bo

or

I(v) - e(v) =d * e(v) (9)

where I(v) is the unit vector from the source to the diffraction,
point (Q'). If Q' is located at the point (a cos v x + b sin v y)
and the source is located at Xg = xgx + ygy + zgZ then




SOURCE
LOCATION

Figure 6. Diffracted field geometry.

¥ (acos v-x)x+(bsinv-y)y
TPEME, s s

(a cos v - x§)2 + (b sinv - .vs)2

The quantity E(v) is the unit vector tangent to the edge at Q' and
is given by :

e(v) ==2 sin v X + b cos vy

Jaz sinzv + b2 cos2 v

15
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The exact solution for the elliptic parameter v, which specifies
the location of the points of diffraction, is complicated for an
arbitrary geometry. The solution, in general, requires solving an
eighth-order polynomial for each observation direction which becomes
very time consuming.

Since there are, in general, only four points of diffraction
such as illustrated in Figure 7, a search technique has been used to

o>

SOURCE
LOCATION

Figure 7. Curved wedge diffraction points
on rim of elliptic disk.

find these points of diffraction along the elliptic rim. Ti:e method
is based upon the minimization of the difference between the two
dot products given in Equation (9). An error term is given by

elv) = I(v) « e(v) - d + e(v).
The minimum error is found by first forming

€5 = elvyy) * elvy) + e(vyyy) for j =0 to 360. If

[&4] s.lci_vl and [&4] < [&541], then v; is the closest degree to a
mihimum 1 e error. In order for thi$ minimum to be a diffraction

16
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point, the error term must reduce to zero. This technique, however,
will also find a minimum in the error which is not a zero crossing.
In order to remove this problem and to determine the point of dif-
fraction closer than one degree increments, an interpolation scheme
is used which is given by

Vaiff = v‘j + Ay
where 4v is defined as

I E@d) - @1
Be g -T- 1T ey @1) -0

Ay =

and

2 e - .
“'W =-aCosVvX-=-Dbsinvaz,

If |av| > 1 then the point found is not a diffraction point but a
minimum in the error function and is ignored.

The location of these diffraction points on the rim of the
elliptic disk depends upon the source location, the observation
direction, and the physical dimensions of the ellipse. If the
source is located on the z-axis through the center of the ellipse,
as in Figure 8, the only physical dimensions necessary to locate

OBSERVATION
d DIRECTION

DIPOLE SOURCE
AT (0,0,h) —™»

B
(6,0,0) __.,‘ \I\(o.b.o»
¢

Figure 8. Dipole off an elliptic disc.
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the diffraction points are the axial ratio and the height ratio. The
axial ratio is defined as the ratio a/b. The height ratio is

defined as the ratio h/b. The quantities a, b, and h are illustrated
in Figure 8,

The location of the diffraction points on an ellipse with axial
ratio of 0.4 and height ratio of zero for a pattern cut in the
6 = 90° plane (refer to Figure 8) are shown in Figure 9a. In
Figure 9b four observation directions were chosen from Figure 9a
to demonstrate where the points of diffraction occur. For example
at ¢ = 25° four diffraction points occur at v = 10.5°, 135.6°,
161.0, and 233.9° which are labeled 5, 6, 7 and 8, respectively on
both figures.

The location of the points of diffraction as a function of
increasing height ratio, i.e., as the antenna is moved off the
disk along the z-axis, is illustrated in Figure 10. The pattern cut
for this case is in the ¢= 90° plane for an ellipse with an axial
ratio of 0.4.

It is shown in Figure 11 how the location of these diffraction
points are effected as the observation direction is scanned from the
¢ = 90° plane to the ¢ = 180° plane in 10° increments. For this case
the axial ratio is 0.4 and the source is in the center of the disk
(height ratio is zero). Note that in these figures if @ and ¢ are
defined, then either two or four diffraction points exist.

The effect of changing the axial ratio is shown in Figure 12
for an ellipse with the source in the center of the disk and the
pattern taken in the ¢ = 90° plane.

After the discrete points of diffraction along the rim have been
located, the diffracted field is found using the curved wedge
diffraction coefficients given in Chapter II.

The diffracted field for a single diffraction point (Q') on the

rim of the elliptic disk illuminated by a current moment is given
using Equation (6) by

Ef -D, 0 EN(Q") Jre-ik T.q4 e-Jkd
Tig 4
ef 0 -0 | [Ej(Q)

The dyadic diffraction coefficients for this case are found using
Equation (5). The distance parameter L in the far field reduces
to

18
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Figure 9(a). Location of diffraction points on an ellipse
as a function of observation angle (6=90°,
axial ratio = 0.4, height ratio = 0).
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Figure 10. Location of diffraction points as a function of
height ratio (¢=90°, axial ratio = 0.4).
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Figure 11(a). Location of diffraction points as a function of
observation direction (¢=90°-110°, axial ratio =
0.4, height ratio = 0).
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Figure 11(b). Location of diffraction points as a function of
observation direction (¢=110°-130°, axial
ratio = 0.4, height ratio = 0),
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Figure 11(c). Location of diffraction points as a function of i
observation direction (¢=120°-150°, axial ratio
= 0.4, height ratio = 0.
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Figure 11(d). Location of diffraction points as a function of
observation direction (¢=150°-170°, axial
ratio = 0.4, height ratio = 0).
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Figure 11(e). Location of diffraction points as a function of

observation direction (¢=170°-180°, axial
ratio = 0.4, height ratio = 0).
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Figure 12(a). Location of diffraction points as a function of
axial ratio (¢=90°, height ratio = 0).




Al Sl v v b I g

il AT o C bt Salars it i ha ol L LS Sl A ke ottt ol e il e e Ml oadt 10 Lnd

(2]
w
w
a
O
1Y)
(=]
-
>

Fiog Sy o BT R S0t

360

@ (DEGREES)

Figure 12(b). Location of diffraction points as a function of
axial ratio (¢=90°, height ratio = 0).
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2
= [}
L =s'sin Bo

where s' = ﬂ‘l ;

The total diffracted field is obtained by summing each of the
diffracted field terms provided that the points of diffraction are
separated. It has been determined that if the diffraction points are
separated there are a maximum of four such points which will satisfy
the laws of diffraction such as shown in Figure 7. This four point
diffraction solution when combined with the incident and reflected
fields usually predicts patterns which are in very good agreement with

experimental results. However for certain geometries and observation
directions, caustics can occur.

The axial caustic occurring if the antenna is located on axis
near a circular disk (see Figure 13) has been treated by Ryan and

SOURCE \I.\O

LOCATION

Figure 13. Axial caustics of a circular disk.

Peters [13]. With this geometry an infinite number of diffraction
points exist along the rim of the disk for axial observation.
directions (6 = 0 or 7). The infinite number of diffraction points
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implies that an infinite field exists in the neighborhood of 6= 0 or
n which of course, is not the true physical result. However, the
equivalent current solution given in the next section can be used to
correct the diffracted fields in these caustic regions (i.e., the
sectors where the diffraction solution fails).

A pseudo-caustic problem which can occur with the elliptic disk
geometry is the merging of diffraction points along the rim as the
observation direction is changed. This effect is illustrated using
the configuration shown in Figure 14a. Solving the law of dif-
fraction for this case yields:

OBSERVATION
d OIRECTION

SHORT
MONOPOLE

CHED—

[ i
¢

Figure 14(a). Monopole on an elliptic disc.

d - e(v) (10)

1(v) - e(v)

where

acosvx+bsinvy

‘lazcoszv + b2 sinzv

Y

=isinv;wl»bcos v;
‘l:zsinzv + bzcoszv

=sin ® x + cos & 2

Qo

with the pattern taken in the y-z plane (¢=90°).
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Equation (10) can be reduced to give

b cos v sin 6 =

(p?-qglsin vV COS V } (1)

Jazcoszv + bzsinzv

If cos v = 0, the equality holds; therefore, v = £ w/2 are two
diffraction points. If cos v # O then the possibility of two other
diffraction points exists and Equation (11) becomes

diazcoszv + b2 sinzv 7

Squaring both sides of this equation and solving for tan v, leads
to

ab sin 6
J (bz-az)z-b4sin2 9

tanv =1

The above equation has two real solutions for v if

2.2 5 8 gl

(b >b’ sin“ 6

which implies
a 2
Isine| < 1 - | . (12)

If the inequality is true, then four distinct diffraction points
will exist. The criterion for three of the four diffraction points
to merge into one occurs if a < b for this pattern cut.

As an example of this pseudo-caustic effect, the case where
a=2\and b = 51 is chosen. As seen is Figure 14b caustics occur
at the angles where the diffraction points merge as defined by
Equation (12) or

2
e =t s1n']_ (I - (%) )- 157.14°, 1122.86°.
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Figure 14(b). E-theta radiation pattern in the y-z plane
for the configuration in Figure 14(a).

The merging of these diffraction points as well as their position
along the rim is seen in Figure 15, If the pattern is taken in
the x=z plane, which is similar to letting a=5A and b=2), then

b and no caustics occur as shown;1n Figure 1l4c.
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Figure 14(c). E-theta radiation pattern for the x-z plane
for the configuration in Figure 14(a).

The plot of the diffraction points for a given pattern cut is
useful in showing where caustics can occur. As the locus of dif-
fraction points approach a vertical line, such as in Figure 15, a
caustic condition is being approached.

; The use of equivalent currents as described in the next
b chapter can correct these pseudo-caustic effects in addition to
P the axial caustics discussed earlier.
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CHAPTER IV
CAUSTIC CORRECTION VIA EQUIVALENT CURRENT

A. INTRODUCTION

The equivalent current concept was implemented by Ryan and
Peters [13] to correct axial caustics occuring in the back-
scattering of axially symmetric cone frustrums. This type of
caustic occurs because GTD predicts infinite fields when an
infinite number of diffracted rays occur. The term equivalent cur-
rent is used because the currents generated are a function of the
scattering direction which is not characteristic of true line
currents.

The equivalent current concept is used to correct the two
types of problems associated with the GTD four point diffraction
solution of the previous section. The first problem is the axial
type caustic similar to those dealt with by Ryan and Peters. This
case occurs, for example, with a circular disk when the observation
and source locations are both axially located. The second problem
is a pseudo-caustic effect where GTD predicts a discontinuity in
the scattering pattern whenever diffraction points merge or
disappear from view. This pseudo-caustic effect can be observed
on the disk when three of the four diffraction points merge into
a single diffraction point or two diffraction points merge and
disappear as the observation direction is changed (see Figure 15).

B. TECHNICAL APPROACH

The equivalent current method is based upon the two dimensional
diffraction of a plane wave incident upon a perfectly conducting
half plane. The equivalent current is found by comparing the
electric and magnetic fields generated by the two dimensional
diffraction process at each point along the edge with the fields
which would be produced by equivalent electric and magnetic
current elements. The diffracted field from the curved edge is
found by numerically integrating these equivalent currents in the
radiation integral.

Referring to Equation (6), the two-dimensional diffracted
field at the point p is given by

-Jjks
ep) = E}(0") Dy E— (13a)

e




. |

~Jjks
H(p) = ui(e') b, &= . (13b)

78

In terms of the equivalent electric and magnetic 1ine currents
(Iz and Mz) along the edge, these fields are

iz 3
Ed(p) = -Zo e 4 ~’§%§ e Jks Iz

PR |
J 7 is
w(p) = Y, e 4 ‘3—"-'5‘- e Jks M,.

Equating these two expressions implies that

ENQ")  D.(Q') i
% F4 S 8n 4
AR 1 sing, j—-:F > (14a)
and
i) 0,0 g -iF
MZ = zzo EFB—O_ rﬂ e (‘4b)
where *
DS(Q‘,5°=90°) Ds
D = =
s sThao singo
and
o . Ph(@.8y=90°) Dp

h sin 8o singo

E;(Q') and H;(Q') are the electric and magnetic components,
respectively, of the incident field parallel to the edge.
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Using the above equivalent currents, one can show that the
diffracted field for an infinite straight edge can be reproduced. .
This is done using the following line integrals: #

Jkz -jks
Eg = -1;9 fl(z') sine (z') & = dz'
o™
$ 'j a ” [
d_ Ky o4 G j i D (z*) sine(z') _-jks
el z, Jk E,(z%) sTnB, s ¢ .’

3n
g [} °ij
e ol e o S8 € g g

The above integral can be solved using a stationary phase argument
since a stationary phase point occurs in the integrand of Equation
(15) at the diffraction point. From stationary phase [14],

Jr(z')e'J"f(z')dz- R TETS) -3kflzg) -3 g sign £(z;)

e
klf"!zgil

where

f(z') =s + 2' CoSB,
f'(z') = -cos e(z;) + cosg, = 0
e(z') = By

2
sin Bo

f'(z') = ' B

S




In this case,

X i ooy Sin8 (2') 1 _jkz' cosB
F(z') Ez(z') D;(z‘) sTns - ()

with

s =[x+ y2 + (z - z')2

using the geometry illustrated in Figure 16. Therefore,

3n

d _ ST [k i sin 8(z') 1 jkz'cosBo
Eg = € J;? E(25)D8 T R

‘ m
& “ o-iks e-jkz cosB, e-J 7

sin Bo

which reduces to

10,0
d Ez(zs) e dks

E,L = - D*
(] sinso (3 JS- .

The above equation checks with (13a) in that 6 is in the -z
direction and secondly

D; i
sfnso S

Returning to Equation (15) and using the fact that in the E
far field:

S'd-a'i‘.

it follows that
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Figure 16. Geometry for three-dimensional wedge
, diffraction problem.
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-j jkd
d 4 ‘/: e JE (2" )D*(z) sine_(z') jkdz

51ns

for the diffracted field. In order to include contributions in
the integrand for directions not lying on the cone of diffraction
the substitution s1n23° = sin Bosin e?z is used [15]. The
exact substitution used here is not critical to the answer and

P this substitution was chosen to enforce reciprocity. This sub-
stitution yields:

3 :
CH 'Jkd . ' 2 “.“
el-e”d [k e fsi(z')og(z') sino(z')  Jkd-2 40

s1n80

For the elliptic disk case

Ja sin’v + bZcos?y dv = - av

so the diffracted field becomes

24 . gda -3 %“_ T bl sing(z')
gk el J—?; d Joe(f-z ),‘sinso

where Z' is the tangent to the elliptic edge. Using duality, the
magnetic field becomes

3n
-J = -jkd 2n €
—d = 4 k e A "1 1 Sine
Hy = e “2—" — Io 8'(H .2 )’T_:E):s n B,

redkd% e [Tay
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In the far field

S
Txi-LE g
0

and
'E=zoﬁ'xd

which implies

3n

ad . T ’k o~ Jkd JZ"* > A 'sine (")
Ep = -e 2rn — d 5 ¢(on '2') sin 8,

A
*eIkd% pa T gy

Also

zoﬂ'1 = & xE = -Ei.a' + Eg.$' L

Therefore
3 j%—IF i
By = -€ Mo g I ¢ [(-E¢0+Eeo)-z ]

0

A =
’sine (z') _Jjkd-2
- sin Bo e D"“' Vodv .

The Dt and Df diffraction coefficients are two-dimensional
diffraction coefficients computed by assuming a straight edge
which is tangent to the elliptic edge at the integration point.
D¢ and D are computed using Equation (5) with singy set equal
to unity which implies L = ?Tl.




The above equations for 53 and EH are numerically integrated

using the following technique:

X+AX

2 2 i 2 o2
J “f(x)dx = J "M(x)eJ¢(X)dx 2 E J M(x)ejO(X)dx
° o X =0 « - Ax

in steps 9

of Ax

where M(x) and ¢(x) are the magnitude and phase of f(x), re-
spectively. Over the interval Ax, the magnitude is assumed constant
and the phase is assumed to be linear. The integral now becomes

2m 2n sin aMx

I f(x)dx ¥ ) f(x,) Ax ——(_Z)

] X,=0 (395)
in steps 2
of Ax

where
Lo del | o ¢(x,+Ax)-0(x,-Ax)
dx X ™ 2Ax
0

If Ax is one degree, the integral can be reduced to

m 180° i
A
f(x)dx ¥ =z ) f(x ) 20
E 180 xo=0° 0 A

where

o B

The equivalent current solution is only truly valid in the
vicinity of a caustic. This method can, however, yield good
results in other scatter directions due to the stationary phase
nature of the integrand at points of diffraction. One region
where this method is not usually valid is in the area around the
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incident and reflected shadow boundaries. This effect can be

seen by examining the problem illustrated in Figure 17 and also
can be seen as a discontinuity in the integrand of the equivalent
current solution as shown in Figure 18, where the reflected shadow
boundary is at 78.7°.

OBSERVATION
DIRECTION

DIPOLE SOURCE |
AT (0,0,h) —> a= 3\

Figure 17(a). Dipole off an elliptic disc.

A computational problem associated with the equivalent
current solution is that it requires integration around the
elliptic edge for each observation direction. This requires a
large amount of computer time when compared with the GTD four point
diffraction solution which requires calculation at a maximum of
four points along the rim.

Since the four point diffraction solution and the equivalent
current solution fail for different reasons, the discontinuities
in the pattern caused by the diffracted field will, in general,
appear in different regions of the pattern. Thus, the two methods
may be combined, in most cases, to yield a smooth pattern which
avoids the difficulties associated with each individual method.
One case where this will not usually yield a smooth pattern is
when the caustic and a shadow boundary coincide.
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Figure 17(b).
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Radiation pattern of the configuration in
Figure 17(b); the sharp peaks in the 4-point
solution occur at the pseudo-caustics where
the equivalent current solution must be
employed.
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The four point diffraction solution is used whenever pcssible
since it is the more numerically efficient. The equivalent current
solution is used to correct the caustic and pseudo-caustic problems
associated with the four point diffraction solution.

The mechanism chosen to switch between the two methods is
based upon the stationary phase nature of the integrand in the
equivalent current solution in the neighborhood of a diffraction
point. The axial caustic problem, associated with the geometry
illustrated in Figure 13, is apparent from the phase of the
integrand as seen in Figure 19. Note that the phase is constant
at the caustics (6=0) and has a broad stationary phase peak in
the vicinity of the caustic. The phase of the integrand is shown
in Figure 20 for the pseudo-caustic case of Figure 14b. Four
distinct phase extremums are seen when 6=45° which correspond
to the four diffraction points at v=32°, 90°, 148°, and 270°.
As the observation angle changes to 6=57°, three of the four diffraction
points merge into one at v = 90°. The stationary phase peak at this
point becomes very broad as seen in Figure 20. In both the caustic
and pseudo-caustic cases, it is noted that the width of these
extremums is a good indication that a caustic is present and
the equivalent current solution should be implemented.

As a result of the above arguments, the second derivitive of
the phase at the diffraction points yields a good measure of the width
of these stationary phase peaks, such that it can be used to determine
the switching procedure. The phase of the integrand can be
specified in a simplified form by the phase of the diffracted
field at the diffraction point Vi Thus

n1=-|-f|+a-f(‘
where

S
R

a cos v, X + b sin vi ¥
and

- @
'T =R - xs

using the geometry illustrated in Figure 21. The second
derivitive is computed numerically by

R ) L 1)
" 28V
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The test value used to determine when the equivalent current
solution should be implemented, was found by empirical methods, i.e.,
deciding where the switching should occur for several test patterns
and observing the value of "y . The test value chosen was 0.01
(degrees)=1. Thus if |'ﬁi| is less than 0.01 (deg)-! the equivalent
current solution is used. Otherwise, the four point diffraction
solution is sufficient.

An application of this switching procedure is seen using the
geometry illustrated in Figure 17a. The pseudo-caustics associated
with the four point diffraction solution are shown in Figure 17b.
The shadow boundary problems associated with the equivalent
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current solution can also be seen in Figure 17b. The combined
solution avoids both of these difficulties by employing the
equivalent current solution only in the pseudo-caustic regions.
The combined solution is shown in Figure 22.

The accuracy of the combined solution can be demonstrated
by comparison with measured results. In Figure 23a the axial
caustics associated with the GTD four point diffraction solution
is observed at 6=0° and 180°. The combined solution which cor-
rects these caustics via equivalent current is seen in the same
figure and is compared with measured results taken on a 3x circular
disk [16] as shown in Figure 23b. The comparison between measured
results and the combined solution for the pseudo-caustic case
(see Figures 14a and b) can be seen in Figure 24.
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Figure 22. The composite 4-point + equivalent current
solution corresponding to Figure 17(a).
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Figure 24(b). E-theta radiation pattern for ¢=45°
corresponding to Figure 14(a).
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CHAPTER V
SUMMARY AND CONCLUSIONS

The object of this study has been to analyze the radiated
field of an antenna mounted near an elliptic disk at high
frequency. The basic approach used in this study to analyze the
scattering by an elliptic disk was to employ the Geometrical
Theory of Diffraction discussed briefly in Chapter II. The
incident, reflected, and diffracted fields were discussed in
Chapter III. The diffracted field was described using the GTD
four point diffraction method.

In Chapter IV the method of equivalent currents was employed
to correct for caustics and pseudo-caustics associated with the
GTD four point diffraction solution. An empirical switching
procedure was introduced in order to apply the equivalent current
solution whenever caustics occur in the four point diffraction
solution.

The combined solution for the elliptic disk was compared with
measured results on a circular and elliptic disk to verify its
accuracy.

The equivalent current solution has been shown to be an
effective method of removing caustics associated with the GTD
four point diffraction solution on the elliptic disk. The
combined elliptic disk solution using the GTD four point dif-
fraction solution with the equivalent current solution in the
caustic regions, can be used effectively to predict patterns of
sources located near an elliptic disk.

The elliptic disk solution is useful in predicting antenna
patterns for antenna located on circular or elliptic gorund planes.
The elliptic disk can also be used as an approximation to an
arbitrary cross-section flat plate or as an endcap for an elliptic
cylinder. The elliptic cylinder model can be used to model
structures on an aircraft such as the fuselage, engines, and
stores or structures on ships such as masks, stores, etc.
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