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I. INTRODUCTION

The contract entitled, “Investigation Of Electromagnetic Coupling

Through Single Or Multiple Apertures Into Cylindrical Structures” (N00014—

75—C—0293) was awarded to the University of Illinois for one year, starting

December 1, 1977. The contract was later extended to Feb. 28, 1979 at no

additional cost. This is the final report of the contract.

II. PERSONNEL

R. Mittra, Professor of Electrical Engineering, Principal Investigator.

S. W. Lee, Professor of Electrical Engineering.

E. K. Yung, Research Associate.

S. Safavi—Naini, Graduate Research Assistant.

III. TECHNICAL RESULTS

During the present contract year , we have studied the following • 
-

two technical problems:

• I (a) Penetration of an electromagnetic wave into a cylindrical

cavity and the current induced on a wire inside. The tech—

nical details of this work are described in Attachment A.

(b) Electromagnetic radiation from a source located on a

smooth conducting surface which is detailed in Attachment B.

1
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IV. PUBLICATIONS AND PRESENTATIONS

[1) E. K. Yung, S. W. Lee, and R. Mittra, “Penetration of an EM wave
into a cylindrical cavity and the current induced on a wire inside,”

Electromagnetics Laboratory Technical Report No. 78—9, University
of Illinois, Urbana , 1978; also to appear in AEU (Germany).

[2] S. Safavi—Naini and ft. Mittra, “Source radiation in the presence of

• smooth convex bodies,” Electromagnetics Laboratory Technical Report
No. 78—3, University of Illinois, Urbana , 1978; also to appear as an
invited paper in Radio Scienc~ .

[3] D. C. Chang, S. W. Lee, and L. Rispin, “Simple formula for current
on a cylindrical receiving antenna, “IEEE Trans. Antenna Propagat.,

vol. AP—26, pp. 683—690, 1978.

[4] S. Safavi—Naini and ft. Mittra, “Effect of surface ray torsion on
diffraction by a smooth object,” Digest of National Radio Science
Meeting, p. 3, Nov. 1978.

[5] S. Safavi—Naini and R. Mittra, “Source radiation in the presence of
smooth convex bodies,” 1978 International Antenna and Propagation
Digest, pp. 85—88, 1978.

[6] B. K. Yung, S. W. Lee, and ft. Mittra, “EM penetration into a cavity
and the induced current on a wire inside,” ibid, pp. 132—135, also
to appear in AEU (Germany).

[7] ft. Mittra, Y. Rahmat—Samii, and W. L. Ko, “Solution of electromagnetic
scattering and radiation problems using a spectral domain approach —

A review,” Wave Motion Journal, to appear.
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ABSTRACT

This paper addresses the problem of computing the current induced

in a thin wire located inside a cylindrical cavity with a circumferential

slot when the cavity is illuminated by an incident plane wave. The calcu—

Lation is carried out in two steps. First , the problem of penetration

of the incident field into the cavity is solved by the method of moments

under the assumption that the presence of the wire inside the cavity creates

little or no perturbation of the interior field. Next , the induced current

on the wire is calculated by the following two methods : (1) use of a simple

analytical formula derived from the application of the Wiener—Hopf techniques 
S

to the finite wire problem; (ii) numerical solution of an integral equation .

Extensive numerical results for the induced current are presented . It is

found that the current is sensitive to the cylinder radius , the cavity

height, the frequency of excitation , and the wire location , but is relatively

less sensitive to the variation in the slot length. In addition , the induced

current on a wire inside the cavity can be much larger than its counterpart

in free space illuminated by the same incident plane wave at frequencies

where the cavity is near resonance.
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I. INTRODUCTION

The penetration of an electromagnetic wave through an aperture into

a cylindrical structure is of current interest because of its application

to E~~ , to EMC, and to biological studies. As early as 1949, Sounnerfeld

(1] studied the problem of an infinitely long circular cylinder with a F
longitudinal slot, illuminated by a normally incident plane wave. Using a

Fourier analysis approach , Som m erfeld reduced the problem to a system of

infinitely many linear equations, but declared resignedly , “We can do 
S

practically nothing with the problem.” Silver and Saunders [2] used the

saddle—point integration method for the inversion of Fourier transforms

and extracted the far field of Sommerfeld ’s problem. Hitherto, a number

of extensions along this line of work have been reported (3], (4]. With

the advent of high—speed dig~~.i1 r~mputers, Sonimerfeld’s penetration

problem can now be solved by numerical means (5], [6]. The penetration of

an EN wave into the cylinder through a rectangular aperture was first

carried out by Safavi—Naini, Lee and Mittra [7], [8]. Their problem has

a more complex geometry than Sommerfeld’s in that two conducting plates

are introduced inside the cylinder at a — ~h to form a cavity , as illu.s—

trated in Figure 1.

In the present report, and extension of the penetration problem of

Safavi—Naini et al. is investigated ; in which a thin wire is added inside

the cavity and the problem is to determine the current induced on the wire.

The wire is oriented parallel to the longitudinal direction of the

cylindrical cavity . If the slot in the cavity wall is also longitudinal,

there is little induced current on the wire. Hence , we concentrate on

1 
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Figure 1. An infinitely long cylinder with a cavity and a
longitudinal slot , illuminated by an incident plane wave.
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the more interesting case , namely , the slot which is circumferential on the

cylindrical cavity wall . The composite geometry of the present problem

is sketched in Figure 2.

Due to the thinness of the wire , it appears reasonable to assume that

the presence of the wire does not perturb the field generated inside the

cavity. Thus , the problem under consideration can be solved in two steps :

• (A) Determine the field E inside the cavity as if the wire were

absent.

S (B) Using E as an incident field, determine the induced current

1(z) as if the wire were situated in the free space.

We emphasize that the above two—step approach is an approximation . The

exact degree of approximation will be studied in a separate report .

The plan for the present report is as follows : In Section II , the

problem of Part (A) with the wire absent is formulated and a system of S

infinitely many linear equations derived . The procedures are briefly

described below : 
S

1. The unknown electric field across the aperture is represented 
S

by a Fourier series .

2. Applying the equivalence principle, the aperture is shorted by S

a perfect conductor. The effect of the original aperture field

is accounted for by introducing equivalent magnetic currents on

both sides of the shorted aperture.

3. Inside the cavity, the magnetic field produced by the equivalent

• magnetic current is determined via a magnetic vector potential .

The resultant field is given in the form of a doubly infinite

series of eigenfunctions of the cavity.

3 
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Figure 2. An infinitely long cylinder with a cavity and a wire
inside, illuminated by an incident plane wave through a
circumferential slot on the cavity wall.
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4. Exterior to the cavity, the magnetic field is also generated

via a magnetic vector potential, which is partitioned into three

components to represent the incident field, the reflected field,

and that produced by the equivalent magnetic current .

5. The coupled equation fr~~ which the unknown aperture electric

field can be determined is developed by enforcing the continuity

of the tangential magnetic field across the aperture.

6. The coupled equation is solved numerically by the method of

moments [9].

In Section III, the current induced on the wire inside the cavity

when it is illuminated by the field E computed in Part (A) is derived.

Since I is given in terms of a doubly infinite series of eigenfunctions

of the cavity, it can be interpreted as a spectrum of plane waves. As a

result, the induced current 1(z) can be determined by superimposing the

currents due to each component of the plane wave spectrum . The current

induced by each component of the spectrum is determined by one of the

following two methods:

1. The standard numerical (moment) method based on an integral

equation formulation (10], and

2. the simple approximation formula recently developed by Chang ,

Lee , and R.ispin (i ll ,  [12) .

It should be noted that both of the above methods apply only if the incident

plane wave is homogeneous . In the present problem , however , the field E

inside the cavity consists of both homogeneous and inhomogeneous plane

wave components. Hence, the above two methods have to be extended by

analytical continuation to cover the case of an incident inhomogeneous

plane wave.
5
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In Section IV , possible difficulties of numerical computations of

the .~uations derived in Sections II and III are considered. Techniques

for improving the convergence rate of the sunmmation procedures are

presented in Section IV. Extensive numerical results are presented in

Section V.

6
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II. FIELD IN THE CAVITY

• In this section, the field I excited in the cavity with the wire absent

is derived. The geometry of the problem under consideration in this section

is illustrated in Figure 2 , with the wire removed. The conducting circular

cylinder is infinitely long and is of radius a. A cylindrical cavity is

formed inside the cylinder by two conducting plates located at z — ±h.

S The cavity is coupled to exterior excitations through a circumferential

slot on its cylindrical wall. The rectangular slot is of dimension

2c x 2d and centered at Cx — a , y — 0, z — 0). The width of the slot is

assumed to be small in terms of wavelength, i.e.,

2kd c< l . (2— 1)

The structure is illuminated by a normally incident plane wave of unit

magnitude described by

—i ikxE — z e

-.1 1 ~~~ 
(2— 2)

S H - y~~~e 
5 5

where th. time harmonic factor exp (+jwt ) has been suppressed and S

S fl — ~~ 120 ii is the intrinsic impedance of the free space.

The symeetry of the configuration, together with the plane wave

excitation given in Eq. 2—2, dictate that the tangential electric field

across the aperture be an even function of •. Furthermore, the narrowness

of the slot enables us to assume that the aperture field is approximately

constant in a and is a—directed. Thus, the tangential electric field across

the aperture — a can be represented by a Fourier—cosine series:

E — ~ E cos F •; f~ < •~
, ~z I  < .d . (2—3)

U U

7
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In accordance with the boundary condition that Ea vanishes at • — ±
~o
(
~o 

— c/a) ,

{F
U
} are found to be

r (2U
2
+ l)ir ; U — 0,1,2 (2—4)

U

Due to the assumed direction of the aperture electric vector (or the

equivalent magn~tic current), it can be shown that a field TM with respect

to z is sufficient torepresent the total field inside the cavity. Such 
S

a field can be generated via a z—directed magnetic vector potential

A — A
~z . The relations between A

~ 
and the field components are

E = — ~~— Z H
p jW ~~~~~~QaZ ‘ P U P ~~

E —  1 z
$ JWIAC Q~~$~ Z U ~P

E
~ 

— + k~JA 
, H - 0 . (2—5)

Inside the cavity, A is a linear combination of all possible elementary

wave functions that are solutions to the scalar Helmholtz equation [13).

S It assumes the form

A (p,$ ,z) — 
~~~ 

A J
m

(YnP)cos m$ cos ~~z (2—6)
m,n 0

where

- [ 
~~~~~~~~ k2 > c~ ,

- k2 k2 (2-7)

and

mm — 0,1,2 , . . .   (2— 8)

_ _ _ _ _  _ _  _ _ _ _ _



• The constants {A } are unknowns , and (J } are the mtI~ order Besselmu a
functions of the f irst  kind . Note that with the choices of the

eigenvalues {a} in Eq. 2—8 , the boundary conditions that E~ and

be zero at z — ±h are automatically satisfied.

The constants {Amu
} in Eq. 2—6 are unknown quantities, and by

enforcing the conditions that E5 
be zero on the cylindrical wall and

equal to Ba on the aperture, they can be evaluated in terms of

• the expansion coefficients of Ea 
given in Eq. 2—3. First, we evaluate

E
~ 

(referring to Eq. 2—5) at p — a to obtain

Jw~c m~n~0 
Y~

AmuJm (Yna) cos m$ cos

— ~~($, z) ~ E cos ; ~~ < ii , Izi < h (2—9)
U 0  

S

- 
where ~ is the characteristic function of the aperture:

(1 ~~ ~~~ 
, ~~ < d  S

— (
otherwise. (2.10)

We recognize that Eq. 2—9 is a standard Fourier—Bessel series with 
S

unresolved coefficients {A }. Hence , {A } are determined by standardmn mu

procedures with the results

j4w pc cos m$ sin a d (_l) Ur
— 

0 
~ 

E
1~ 2 2 (2—1 1)

Cm
Cn~~n

’
~
’n m ~Tn~~ 

U 0  rU 
- m

m,n — 0 ,1,2 , . . .

in which c is the Neumann number, defined by

(2  , m — 0
£ ~~a 

~~l , m ,’0

9
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In the region exterior to the cylindrical structure, the symmetry

of the configuration again leads to a TM field with respect to z. Thus,

the exterior field is also determined via a z—directed magnetic vector

potential A — Pa. For reasons which will be obvious later, ‘V is

partitioned into three wave funcitons: ‘V — ~~ + + ?. The first of

these represents the incident plane wave; it is independent of a and

is given by

‘VI — ~ J (kp)cos m$ . (2—12)
W m_0 a m

The field components of ‘V~ are given in Eq. 2—2. The second wave function 
S

represents the reflected wave when the aperture is closed by a perfect S

conductor; it assumes the form:

— ~~~~ . 

~~ 
[ H

(2)
(~~)C~~ ~~ (2—13) 

S

W~~~ 0 m
~~~~~a 

(1~~)) 
a

where {H~
2
~} are the m

tl
~ order Hankel functions of the second kind. The

third wave function ? corresponds to the field produced by the equivalent

magnetic current. In contrast to both and ~f , ? depends on a and is

represented by a continuous spectrum of cylindrical waves:

— cos m$ 
~~ 

F (a)R~
2
~ (yp)e~~~ da , (2—14)

m—0 
-~~~

where CF} are unknown functions, and

S I ~~~ k2 > x 2
— . (2—15)

‘j~_ila2 
— It2 k

2 < ct2

S To determine CF } , we first evaluate E+ at p * a to obtaina a

10
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~~~ 
cos u~ 

~~

S 
- 

— ~~($,z) 
~ 

E cog J$I .~~. ~ Izi < . (2— 16)
)A0 U

Then , we multiply both sides of the equation above by cos n$, n — 0 1,2,...,

and after that, integrate the equation over the entire domain of interest.

By invoking the orthogonal properties of {cos n$}, IFa
) are determined

in terms of {E
U
}: 

• S

J2wi.ic cos u~ 
sin ad (—l)~rF (a) — 2 2 (2) E 2 

(2—17)
ay H

a (ya) i.’—O P rU 
- a

a — 0 ,1,2 

With {Amu} and {F} defined by Eqs. 2—11 and 2—17 , tne requirement

that the tangential electric field be continuous across the aperture is

automatically satisfied. However, these definitions, of themselves, do not

ensure the continuity of the tangential magnetic field across the aperture.

To enforce the continuity of the magnetic field, we proceed as follows : In

the region exterior to the cylinder, the three partial magnetic fields

H~ , H~ , and H (H is immaterial) corresponding respectively to the three S

wave functions defined in Eqs. 2—12 through 2—14 are

— ~~
— J ’(kp)cos m$ ,

m ’O a

- 

~~~ m~0 
£ 

[~~ 

li
(2) (ka)] 

H~
2)
~(kp)cos mcb ,

— co~ 
~~ f~ 

yF (a)H’2~’(yp)e~~~ dci . (2—18)
m~’0

11
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Inside the cavity H~ is given by

— 
~~~ 

y~A~~J~ (y~p)cos m$ cos ~~z . (2-19)

Hence, the desired continuity of the tangential magnetic field across

the aperture now reads

~~ Jo 
~~~~~ 

[J
~ (ka) - 

H (2) (ka) 
H (2) 

(ka] cog m$

- cos m$ 
~~ 

m~~~~ i ‘ (ya)e~~~ dci S

— — 

~~~ 
y

n
Amuu

im
(m

n
a

~~~
0s m$ cos ci a  ; (2—20)

m,n 0

I$I 
~~~ 

Izi < d  . S

The above equation can be simplified by recognizing that the term in the

bracket on the LHS is the Wronskian of Bessel functions :

J (ka) S

J’ (ka) — 

H~
2
~ ( I t)  

( k )  — 

irkaH ’2
~

By substituting the above result into Eq. 2—20, it becomes

cos m$ f~ 
yF
m

(a) H
~
2
~ 
‘ (ya)e~~~ dci

— cos ~~ y A J ’(y a) cos ci a
a, n 0

— ~
_

~~
_ ~ j cos ~$ I$I < 

~ô’ 
z J  < d . (2—21)

a-0 £ B (ka)m m

12~~~~~~~~~~~~~
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Applying the method of Galerkin [9 1, the preceding equation can be solved

numerically. First , we integrate the equation with respect to z over the

aperture; the result is

2 sin ad yF (ct)H~
2
~’(ya) dci

2 s i nc i d
- cos m$ — ~~~~~

m,n 0  n

— 
~~~ I 2d ; I$I < . (2—22)

S H (kay
m a

Next we multiply both sides of the equation above by cos v$, V — 0,1,2,...,

and the integration of the resultant equation over the entire domain of

interest leads to

j 
sin t~~~ yF

m
(a)H~

2
~~ya) dci

sin ci d
- 

~~ g~ , 
—- ~~ y A muJ~

(y
n
a)

m,n 0  mm S

4d 1m g
~~— 

~~ 
v — 0,1,2,..., (2—23)

~~ m 0 a H’ / (ka)
a

where g~~ stands for

sin(m - v)$ sin(m + v)$
— + . (2—24)

TUV r n — V  m + V

Then, we replace {Amu
} and {F

m
} in Eq. 2—23 by their definitions in Eqs.

2—11 and 2—17. After some algebraic manipulations, we arrive at

U~O 
E~ [A~~

)+ ~~~ - D~~; v - 0,1,2,... 
(2-25)

13
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where

A~
1
~ 

(_l)~r~ g ,~cos m$
0 

~~ 
sin2 c i d  H~

2
~ ’(ya) dcx

U’) 
ti~ Ø c (r2 - m2) ~ ~~~ Ii~

2’(ya)

— — 

(_1)~’r~ ~ g~~cos i~~~~ sin a~d J’(y a)

U m—0 c (1’ — a ) n 0  ci~~

and
m

D ~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _  

-

‘) k~a in-O

Equation 2—25 is the system of infinitely many linear equations that

we intended to derive . In general, this system of equations cannot be

solved. However, if the series in Eq. 2—3 is truncated at a finite number

N, the system would become a system of N x N algebraic equations, with

which the unknowns (E~}~ U — 0,1,2,.. .N , can be determined by solving the

equations simultaneously by standard procedures such as the method of

Gaussian elimination. After {E~ } are determined , it is a matter of direct

substitution of {E~} into Eq. 2—5 to obtain the field inside the cavity.

For example, the z—component of the electric field E is given by

E — 

~~~~ i—0

~ sin c t d c o s ct a ~ cos m$ cos m$ J ( y p)
mm mm 0 a n  (2-26)2 2 ‘

n 0 mm mm maO Sm
a’
U 

- a )

p < a , I$~ 
<j r , jz~ < h

This completes our derivation for the field inside the cavity due to the

incidence of Eq. 2—2 in the absence of the wire.

14

- - 5 -- -5~~~~~-- - - -—_ - -S- 5 S ~~~ 5 5 . S S S S S S~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _  - T E - ~~~~~~~ -’~~~~~~~~~-—- ---- ~~~~~~~~~~~~~~~~~~~~~~~~

III. CURRENT INDUCED ON A WIRE IN THE CAVITY

In this section, the current induced on the wire inside the cavity

when it is illuminated by the field I is derived. We attack the problem

by assuming that the presence of the wire does not perturb the field

S 
generated inside the cavity. It enables us to use I as an incident field

and to determine the induced current 1(z) as if the wire were situated S

in the free space.

With reference to Eq. 2—26, we note that the electric field tangen-

tial to the wire B2 
is given in terms of a doubly infinite series of

S eigenfunctions of the cavity. The series can be interpreted as a spectrum

of plane waves. Explicitly , E
~ 
is rewritten as

E
~ 

— 

~ ~~~~~~ 
exp(+jk cos O z) ; (3—1)

n — ~

p < a , I$I < ir , Iz i < h

where

—l n~re — ~~ (
~

) , (3—2)

and

2 sin a d cos m$ cos m$0 ~ ~~~
‘ i~

— 
~ 

E~ 2 2 
a fl .

mm m—O 
~m~

1’
U 

— a )

We interpret each component of the field in Eq. 3—1 as a plane wave in

free space propagating in the direction 8 with respect to the z—axis . 
S

In this report, two methods are used to compute the current induced

on the wire due to each component of the plane wave spectrum described

in Eq. 3—1. The first of these methods is based on an integral equation

formulation:

15
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z +h
+ k~ 

~~~~ 

IW (z~ )K(z ,z~ )dz 1 — — ~~~~~~~~~~~~ 
On
Z 

. (3—4)

The above thin wire scattering problem has been thoroughly studied in

recent years, and a number of efficient programs to compute the unknown

current have been developed. The program developed by Butler (10],

which is based on solving Eq. 3—4 by the method of moments, is adopted S

here. Applying the principle of superposition , the induced current I

is given by S

1(z) — 

~ ~~~~~~~~~~~~ 
, (3—5)

where p is evaluated at the location of the wire.

As is well—known , using moment methods to compute the current on a

wire is extremely time—cona~iming when the wire is of the order of several

wavelengths. An alternative method that is suitable for long wires is

to use the simple approximation formula developed recently by Chang, Lee

and Rispin (11], (12]. The techniques used to derive this simple formula

are briefly described below:

1. Using a Wiener—Bopf method, the reflection coefficient from the

end of a semi—infinite wire illuminated by a plane wave of unit

amplitude is determined.

2. By considering the multiple bounces of the current waves, the

S current induced on a wire of finite length can be expressed in

terms of two Neumann series involving the just mentioned reflection

coefficient. The series are then sumsed up into a closed form

to give the desired approximation formula. 
. 

S

5 
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The induced current due to each component of the plane—wave spectrum is

denoted by i~
2) 

and is given by

2 r R(ir,h —z’)
I~ ~(z) — L C(ir-O~) R(ir,2h)  + 

~
Or_O

~
,h
~
_z’) V (e~~h~,)]u (h

~~
z’)

r R(n ,h +z ’) 
~1+ LC(e t~ R( ’

2h) + 
~

(8 ,h
~
+z’) V (7r_8

n~
h
w
)
JU 

(h+z ’)

+ V(O ,z’) , (3—6)

where z’ — a — z0, In the above formula, V represents the current induced

on an infinitely long cylinder by a unit plane wave:

~~ 
exp(—jkcos 6 z’)

V(O,z) — — r~ sin 0 W(kcoa 8 )  ‘

in which W stands for

W — —jffJ
0

(ka sin 8 ) H~
2
~ (ka sin ~~) , (3—8)

where and H~
2
~ are , respectively, the zereth—order Bessel function of

the first kind and the Hankel function of the second kind, and as,, is the

radius of the cylinder. Another universal function U is found in the

simple formula; it represents the current on an infinitely long center—

fed antenna generated by a unit voltage impulse. For a thin—wire antenna

and for a suff iciently large kz , U can be accurately approximated by

U( ) — 
exp (—JkIz’fl (3 9)

S 

a 
r~ ~n (2klz’I) — jir/2 — 2Ln(ka ) - ‘

where y — 0.57712... is th~e Euler ’s constant. The reflection coefficient

A in Eq. 3—6 is defined by

R(e,z) - - 
~~
[
~
n(ka

~
sin 1~ 

+ ~ + + e Ei(Jv o)] 
, (3-10)

17 
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where

V
0

k~ ’(l e~~~e~)

and E1 is the exponential integral. Finally, A and C are, respectively,

shorthand notations for

S A — a(e ,2 h)  — R(0 ,h+z ’) , (3—11)

and

— 
R(1r_ 8~

,2h)
~~ 

V (0 ,h )R( ir ,2h) U (2h) — R(8 ,2h) V (w—0~ ,h~,)

1 — (R(ir ,2h ) U (2h ~w W (3—12)

Again, the total induced current is obtained by superimposing all ~~~~ 
S

As is illustrated in Figure 3, the electric field of the incident plane

S wave is in the 8—direction and has an amplitude f /sin 0 . Therefore,

I is related to i~
2) by

I
(2)

( Z)

1(z) — 

~.L ~~~~~~ ~in 0 
(3 l3)

where P is evaluated at the location of the wire .

A careful scrutiny of the techniques in deriving both I~
1) 

and i~
2)

reveals that the two methods apply only if the incident plane wave is

homogeneous , i.e., cos2 e~ < 1. or real incident angle 8~~. In the present

problem, however, the field I inside the cavity consists of both homo—

geneous and inhomogeneous compoüents. Hence, both methods have to be

extended by analytical continuation to cover the case of an incident S

inhomogeneous plane wave .

Let us first consider I~
1) 

which is obtained by solving Eq. 3—4.

Note that Eq. 3—4 is developed by equating the axial component of the

18
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~
, z

z~O Z h ~ -

S Figure 3. A finite length cylinder illuminated by an incident plane
wave at an oblique angle.
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electric field on the wire and that of the incident field. The tangential

component of the incident electric field is f~exp(+jkcos emma) which

remains valid even in the case when cos2 8 > 1. Thus no modification

is necessary here, although allowances in the actual computer programsing

must be made to adcornmodate the rapidly oscillating nature of

exp(+jkcos Oz) when is large.

Next , we have to extend the formula of i~
2) in Eq. 3—6. In the case

of an inhomogeneous plane wave , sin 8 is pure imaginary , and may be

55 calculated from

sin 0 - 0 — l~ ; cos2 0 > 1 . (3—14)

The question is then: “Which sign in Eq. 3—14 should be used in the

calculation?” Consider an inhomogeneous plane wave propagating in the

x — z plane:

—jk(x sin 0 i-a cos 0 2
E — e mm n : ~os 0 > I. • (3—15)
y mm

In order to satisfy the radiation condition, the f ield must decay (instead

of grow) exponentially as x +~~. This imposes a condition on sin 0 , viz.,

1 (sin ~~) < 0. (3—16)

Thus, the lower sign (minus sign) in Eq. (3—14) must be used in the
S 

calculation of I~
2) 

from Eqs. 3—7, 3—8, 3—10, and 3—13. Furthermore,

W in Eq. 3—8 becomes

W — 2I0(ka I~~~~ e _ l ) K
0(kaj cos2 0 — 1) , (3—17)

where 1
0 

and K
0 
are, respectively , the zeroth order modified Bessel functions .

20
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IV. NUMERICAL COMPUTATIONS

As it stands, the numerical computation of each element of the system

of linear equations in Eq. 2—25 is extremely time—consuming . The

summation of the ratio of Bessel functions often presents another problem

because both the numerator and the denominator could exceed the range of

the computer and yet the quotient is still not small enough to warrant 
S

the termination of the summation process. In this section, a technique

S 

to circumvent the above difficulty is presented . And , at the same time,

it significantly improves the rate of convergence. To best illustrate

this technique, the evaluation of is discussed in detail.

Besides a multiplying constant, is rewritten below with the

order of summation and integration interchanged:

— 
sin

2 
~~ 

g,~,cos m$0 H~
2
~’(ya) 

dci . (4—1)
0 maO 5m

t
~
’
p 

— a2) H~ ~(ya)

Because of the branch point cx — k, we partition the above integral into

two parts:

— 
j

k sin2 ad gmVcos ~~~ 
H~

2)
~(ya) 

dci
U 0 ci y m—O - m ) H (ya)

f~ 
sin

2 ad g~~cos m&~ K
~
(ta) 

4 2)— 

k a2’r m~O ~m~~p 
— a

2
) Km

(ta) dci 
( —

where CK } are the mth order modified Bessel functions and t ,42 — k2.

Note that both integrands above have a non—integrable singularity in

the neighborhood of the branch point. Hence, both integrals must be

further partitioned such that the integration of a small region around

21
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the branch point is deliberately isolated. Each of the partial integrals

would be treated individually in the subsequent paragraphs’.

The first integral to be treated is

— 
j

k-iS 
sin ~~~~~ (ya) dci , (4—3)

0

where ~ is an arbitrarily small number and ~~ represents the s~~~ation of

Rankel functions. By invoking the recurrence relationship between the

Hankel function and its derivative, 
~H 

becomes

ff (2) ( )  rH~
2
~(u) 1

— —G0~ 
H~
2
~ (u) 

+ 

[H~~~~U 
- ‘
~
j

where u — ya and

g cos
G — 

2 ~~~ 
; m — 0,1,2,... . (4—5)

a’)

Since the real and imaginary parts of have different rates of convergence,

they are treated independently as follows: First, by explicitly writing

~(2) as ~ + JY , the real part of reads

3 (u)J (u) + Y (u)Y (u)
Re
~~~ 

— — G 0~ 2 2
.10

(u) + Y0(u)

+ ~ G [3m~~~~s_i~
%1) + Y (u)Y l(u)1 4—6

L ~~~~~ 
+ Ym

(u) J
Note that for a given u , the large—order approximations of each tc’rm of

the sum can be extracted, which are
(~~J + y y  1

lim a rn—i 
2 

rn—i 
— 
a 

— — (4—7) 
5

m400 I J + Y  U
a

22
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sin
S li.m — — COS ‘)0 3 (4—8)

a

By adding and subtracting the large—order approximations from each term

of the sum, Eq. 4—6 becomes

33 + YY  ( C J J  +~~~
y

0 1 0 1
÷ Z t

~
Gm v l 

m m—i 
2 u

S 

3o~~~~O ~ L L 3m~~~~a

cos sin 2m4) cos sin 2~~o
— 

u 2 1 
+ u 2 

(4 9)
S i n)  mal m

The second sum can be evaluated analytically and the result is

~ sin 2U~o r 2~o tS 

2 — — J £a(2 sin ~) dt . (4—10)
mal a

The integral above is a thoroughly studied special function , known as

Clausen’s integral [14), whose value can be easily determined . The

remaining sum in Eq. 4—9 has to be evaluated numerically. However, as

S compared with the sum in Eq. 4—6, which converges at a rate of ~~~~ the

modified sum converges at a much faster rate of rn~
4. Furthermore , in

evaluating the rnt~ order Bessel function B (B — .1 or Y ), we can5 

apply the following recurrence formula:

B~~1
(u) — 3 (u) — B 1

(u) . (4—11)

However, as is well—known , we should use this recurrence formula with S

extreme caution in computing 3 to avoid the so—called “propagation of

error ” when 2m/u > 1. In the actual computation, the total sum is broken

down into partial sums of 10, e.g. , from mm to n + 9. We first evaluate

and then, we apply the recurrence formula in both the forward S

and backward directions to obtain the rest of 3 . Moreover, we terminate S

in
23 

_ 

- - . 5 . 5.- --  5 

-~~~~~~~~~~
---~~

- -~~~~ - - 5 5--- S~~~___  - -



-. —..5—~~-- 5 5 5 5 . 5  ~~~~~~5S’.5 ~S __________________________S S 
~~~~~~~~ s55~~ -S 5

5 -  5

the summation by comparing the magnitude of the partial sum with the total

sum. In doing so, we avoid the danger of terminating the summation pre—

maturely in the case 2n+0 
is a multiple of ii ~referring to Eq. 4—8).

As a final remark, when kaw >> ‘~ can be approximated by

~~~ ~~(u) ; u > 100 . (4—12)

On the other hand, no modification is necessary to sum Im{~H
} because

its large—order approximation is zero.

The second integral of concern is

i — 
f 

~ (ta) dcx , (4—13)
2 k+~~~c it  

K

where ~~ represents the summation of the modified Bessel functions {K~
}.

With the derivative of K written in terms of K and K , ~ reads
a a n*-l K

g (v)
- - G0~ I(

0
(V) - C 

[K
ma1~~~ + ni] , (4 14)

in which v — ta. Since the large—order approximation of each term of the S

sum is

(v) 1
u r n  m—l + -

~~~ 
a (4—15)

___ K (v) v v S

we evaluate 
~K 

as S

K
1
(v) cos v4’0 

sin 2JD4
~o

- - C0 K0(v) + v m~i in
2

- 

nj i (G
~~~
[r

l + + 0 
2 0) 

. (4-16)

The above formula is similar to Eq. 4—9; therefore , it is evaluated by 
S

S similar techniques. Furthermore , we extract the large argument approximation

24
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of 
~K’ which is

— 
~K

(15O) ; v > 150 . (4—17)

Substituting the results of Eqs. 4—16 and 4—17 into Eq. 4—13, we arrive at S

1
2 

— J ~ ~K
(Ta) dci 

S

+ 
mmli. 

1

(n+l)it/d sin2 ad [
~ ~K

(Ta) - 

~ ~~~~~~~ 
dci

+ ZK
(lSo) f 

simm
3
~~ dci . (4—18)

By two successive integrations by parts , the last integral above is

transformed into S

sin2 ad dci — d
2 COB ~ dt - - d

2C~ (21T) , (4—19)

?r/ d 2ir S

where C~ is the cosine integral (15].

The third integral of concern is

si:2 c*d 
~H
(ya) dci - Z (~

a dci . (4-20)

First, we examine the small—argument behaviors of both and ZK ’ they are

tim Re{~~ } - - 
~~ ~~mv

in—i

irC

S 
u r n  I {

~ R
} a — 

2 ‘

u-~O 2u~~n u

S and

S ].im 
~K 

- - 

~ ~~i 
n~~~ . (4—21)
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It can be easily shown that the real part of 13 
tends to zero, and its S

S 

imaginary part can be approximated by

‘riG sin
2 kd . S

Ov . (4—22)
a 2ak3 ~n(av’~~~) S

Since the forms of ~~~ and ~~~ are similar , analogous techniques

are employed to evaluate the result is (besides a multiplying constant)

N sin2 a d  sin 2 c x d t
— 2 

~‘ ~3
(y a) — 2 

~ 
~~~~ 

~1
(T~a) — 

~~~~~

n 0 c c inymm n—N+l 
~n ~~n 

n J

2sin a d
— (~)3 

~I
(l50) 

~ 3 
, (4—23)

n N+l mm

where N — Integer (kh/Tr) and

S (u) cos sin 2~~
r 1 0 0

_ _ _  
_ _ _ _  _ _ _ _ _  S

‘.3 0-u 30
(u) u rn—i a

2

I ~~ ml 
cos sin 2mi~0

’\ 
S

+ 
~ J (u) — 1~ u 2 (‘

tm1L  
L 

~ J a ) (4-24)

and

1
1
(u) cos sin 2nw~0

___ —

I O v I ( u) - 2
0 rn 1  in

S 

~ i
’ ~~ 

-1 cos sin 2rn~0~~
+

m~l~Cm vL Im(u) 
_

~~
j

+ u 2 (
.1(4—25)

The last sum in Eq. 4—23 can be determined as follows:

~ sin
2 a d r2’trd/h N sin

2 a d
TI 

— 4 J f ( 9 ) d O  — 
mm 

, (4—26

n N+l n nl  mm

where f is the Clausen’s integral stated in Eq. 4—10.
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V. NUMERICAL RESULT S

In determining the field inside the cavity with the wire absent ,

the series representation of the aperture field in Eq. 2—3 is truncated

S at mm — N (the series contains N + 1 terms). We must first establish the

convergence of the aperture field with respect to N. The aperture fields

as calcu.latadwith N — 0 , 1, and 2 are shown in Figure 4. We notice that

the aperture fields as computed by N — 1 and that by N — 2 agree reasonably

at the main lobe but not so well at the side lo~e. For many practical

cases , the three—term expansion N — 2 is generally sufficiently accurate

for computing the aperture field.

An indication of the accuracy of the field E inside the cavity is

how well does E satisfy the boundary condition on the cavity wall (including

the aperture). In Figure 5, E
~ 
as computed from Eq. 2—26 is plotted as a

function of 4 .  In the aperture defined by f~ 
< 57.29°, the calculated

E agrees extremely well with the two—term expansion of the aperature field

calculated from Eq. 2—3. It drops to less than 0.01% of the aperture 5

field on the wall where E
~ 
should be ideally zero. Also shown in Figure 5 

5

is E at points just behind the aperture, p/a — 0.995. The variations

of E
~ 

with respect to z at ~/a — 0.0 , 0.5 , and 0.8 are sketched in Figure 6.

As a function of decreasing (p~’a), E~ decreases rapidly from its value

in the aperture, while it increases at an even faster rate from zero on 
S

the cavity wall toward the center of the cavity . These features are

illustrated in Figure 7 where E
~ 
is plotted as a function of p at a — 0.0

and a/h — 0.3.

Part B of the problem is to compute the current induced on the wire 
S

inside the cavity. As mentioned in previous sections, the simple formula
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S 
developed by Chang, Lee and Rispin (8] must be extended to compute the

current on a finite wire due to an incident inhornogeneous plane wave .

Since the method of moments does not require any modification for

handling the case of an inhomogeneous incident wave, it provides us a

verification of the extended simple formula. The comparison of the

induced currents on a wire in free space due to a plane wave of unit

strength as computed by both methods is illustrated in Figure 8, and we

notice that the results are in reasonable agreement . Now, we may apply

this extended formula to comput . the induced current on a wire inside

the cavity. In Figure 9 , the current as calculated by th. simple formul a

is compared with that obtained by the method of moments. Again , the

agreement between the two results is acceptable. It should be noted

that the current inside the cavity is normalized with respect to the

center current on a wire of the same length in fres space . Since the

convergence of the moment method must be established on a case—by—case 
S

basis, the simple formula is used hereafter to compute the induced current S

even in the case where the wire is as short as 0.4 wavelength.

Although we have already established that the three—term expansion

is usually adequate to represent the aperture electric field , it is still

appropriate here to examine the convergence of the current induced on a

wire inside the cavity with various numbers of expansions. In Figure 10,

the induced currents as calculated with N — 0, 1, and 2 are sketched .

We see that, as far as the induced current is concerned , the two—term

expansion (N — 1) is sufficient .

Inside a given cavity, it is expected that the induced current on

a given wire with its position fixed would increase with the enlargement

32
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= of the length of the slot 2c. The induced current at the center of the

S 
wire does increase with a when c is relatively small as compared with

the radius of the cavity a. The center current acquires its peak value

when c/a is about 0.9 and begins to decrease thereafter. These charac—

S teristics are demonstrated in Figure 11.

In Figure 12, we show the center current on the wire as a function

S of a, 0.25 ,$~ 
a/A ~~ . 0.8, with the other dimensions fixed. We observe that

there are three peaks. The first of these peaks corresponds to the

resonance at which 3
0
(y
0a) — 0. The second and third peaks correspond 

S

respectively to 31
(y
0a) 0 and 3

0
(y
1a) — 0. It should be noted that the

resonances would occur more often beyond the range of Figure 12, and

numerical solutions for large a would not be reliable. S

The center current on a wire as a function of the length of the S

cavity 2h with other dimensions fixed is plotted in Figure 13. Two

peaks are observed in Figure 13. The first peak is related to the

resonance corresponding to J0
(y
1a) — 0, but we are unable to analyze

‘ the nature of the smaller peak at h = 1.02A.

Finally, we examine the variation of the induced current with respect

to the frequency of the incident plane wave. The induced currents at

representative frequencies are sketched in Figure 14, which clearly reflects

the alteration of the electrical length of the wire .
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ABSTRACT S

The problem of radiation from sources in the presence of

smooth , convex , impenetrable objects is considered , and a brief

survey of various high frequency techniqes is presented . A

generalization of the geometrical, theory of diffraction, and two

new techniques based on the spectral domain approach and an

asymptotic evaluat ion of the radiation integral for  the surface

current , also are discussed . Some numerical results derived from
S the spect ral domain formulas are pres ented and a comparison with

- available theoretical and experimental data is included .
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1. Introduction

The problems of radiation from sources in the presence of impenetrable

smooth convex objects and the diffraction of a plane wave by such objects are

of great practical interest in the design of antennas on structures, e.g.,

conformal arrays. Unfortunately, the exact analytical solutions to these

problems, based on the methods of “separation of variables” or “function—

theoretic” procedures (Wiener—Ho pf technique, residue calculus, etc.), exist

only for a very limited number of scattering geometries. Furthermore,

the exact solutions are typically -tighly complex in nature; hence, the process

of extracting numerical results from them can be very time—consuming and is

by no means trivial . This situation has motivated many researchers to explore

approaches to the problems of radiation and scattering from smooth convex

structures .

In the low and resonant frequency r anges , several reliable numerical

procedures , e.g., the moment method, are available for  solving the radiation
S 

and scattering problems. However, in the high frequency domain, numerical S

techniques based on matrix methods become unwieldly if not impractical, prompting

one to employ asymptotic techniques suitable for  large k ( 2 ~ / X ) ,  where \ is

the wavelength of the illuminating wave.

En this work, we begin by presenting, in Sec. 2 , a survey of varLous

high frequency asymptotic techniques for the problem stated above. The survey

will be necessarily brief , and will cover only the highlights of a number of

important approaches to the problem at hand , v iz . ,  Pock’ s theory, the geometrical

theory of d iffract ion ( GTD) , and the direct integral equation approach . The S

reader interested tn further details nay choose to consult the works of 3owman ,

et al. £ 1],  Uslenghi f 2], and ~ouyoumjian [3 ] .
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In Sec. 3, we consider the generalization of GTD and present some new

approaches to the curved surface radiation and scattering problems. Some

S numerical results based on one of these new approaches are presented in Sec. 3

and 4 comparison with other available methods are included. -

- 2. Survey of Available High—Frequency Asymptotic Techniques 
S

2.1 Watson Transformation

S One of the first successful attempts to derive an asymptotic expansion

for the far—field generated by a point source located in the proximity of a

conducting surface was made by G. N. Watson in 1918 [4]. His method ,

essentially, consisted of two steps: 1) transforming the original infinite

series solution into a contour integral (by Cauchy ’s residue theorem); 2)

deforming the contour of integration so as to capture a set of complex poles

of the integrand. The original integral is then expressed in terms of an S

infinite series which converges very rapidly, provided the observation point 
S

is in the shadow region. The first few terms of this series were later inter-

preted as “creeping waves.” The method was first applied to a sphere and S

circular cylinder , and later to some other geometries as well. The mathematical

rigor of the method was the subject of further investigations by other researchers

([5], [6] and ( 7 ] ) .  Although Watson transformation can only be applied to a

few simple goemecries, e.g., the sphere , cylinder, cone, spheroid , it is S

still. regarded as one of the cornerstones of the more general high frequency

techniques because of its mathematical rigor. Watson transformation is S

especially powerful in the shadow region of the geometric optics field. In S

the lit region, the above—mentioned contour integral is evaluated using the

“stationary phase” method and yields the reflected field from the surface.

In this region, the nost sIgnificant contrIbutIon to the total scattered field

typically comes from the surface current induced on the smooth convex ~art of

the object; the so—called “Physical Optic&’ approximation can be applied

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - S-~—-——-- 5 5_55_ S
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( [ 8 ] ,  [ 9 ] ,  and (10]) to derive the reflected field . The Phy sical Optics

method is based upon ap~roximating the induced surface current in the lit

region of the object by the current that would be induced ott the local tangent

S 

plane, and by assuming that the surface current is zero in the shadow region.

S The far field is constructed by substituting the above estimate for the

induced surface current in the integral representation of the scattered field,

and evaluating the same in an asymptotic sense. The dominant term of the

asymptotic expansion of this integral can be shown to be identical to the first term

of the Luneberg—Kline expansion of the geometrical optics far field ([11] and

[12]). However , the higher—order terms derived from the physical optics

approach do not provide us with the correct result in. the shadow or transition

regions where the diffracted field contributes the most.
S In the next section, we discuss Took’s theory , which can fill the gap

between the Physical Optics in the lit region and the “creeping wave”

representation in the shadow region.

2.2 Fock’s Theory

The region between the lit and the shadow part on a surface is called

“penumbra region. ” The angular width of this region is approximately given

by (\r~/~i)
1”
~ where 

)~ is the wavelength of the illumination and r0 is the 
S

radius of curvature of the surface of the object in this region in the incident

plane (Fig. 1). Fock’s theory invokes the principle of coa character of

the field in the penumbra region (13] and is based on the conjecture that all

bodies with a smoothly varying curvature have the same current distribution

In t~e penumbra region, provided that the curvature and the incident wave are

the same near the point under consideration. This principle allows one to 
S

locally replace the surface of the object by a oortion of a paraboloid of

3 

S S5~~~~~ 
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/
revolution. A unique feature of the expressions for Fock currents is that

they provide a convenient transformation of the geometric optics currents

in the lit region into the creeping wave currents in the shadow region.

Took himself deduced the pertinent formulas for the surface currents by

treating a convex body problem (14] described below.

Consider a convex body and a plane wave incident in the direction of the

S x—axis. If the Muation of the surface is

f ( x ,y, z) 0 (1)

then tA* curve representing the boundary of geometrical shadow is given by

-o
f (r )  .0 , -~~~— O (2)

Consider a point 0 on the boundary of a shadow region where we set up S

a rectangular coordinate system as shown in Fig. 2 (z: normal to the surface , S

Y cc: in the direction of propagation, and ~ is the tangent to the boundary of

shadow). In the vicinity of this point, the surface of the body could be

locally replaced by a paraboloid of revolution which is expressed by the S

equation.

z + l / 2 (ax 2 + 2bxy + cy2)~~~O (3)

Each of the field components satisfies the Helmholtz equation

(72 + k2)~ 0 (4)

)
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The fact that the incident wave travels along the x—axis, suggests that ~

be written in the form

a 
~~~~~~~~ (5)

where an exp (j~ t) time dependence has been assumed. Substituting (5) in (4)

gives

72;.  2j k~~~~ ’ — 0 (6)

At this point, two basic assumptions are introduced in Pock’s theory,

viz.

i) ~‘s are relatively slowly varying function of coordinates

ii) ~ varies more rapidly in the z—dir.ction than in x and y ,

i .e . ,

k —  ~~~‘ Ic — i” k 
S

S O(— 54!) , a O(;~ ~ O ,  0 C— 1’) (7)

Sased upon ( 7 ) ,  we can write (6) as

f ~~ 
2~k-~j~~ 0 (8)

2 2
and consequently m ’ a m (m is very large), where the terms of order I/n S

have been omitted.

InsertIng these estimates and assumotions into the Maxwell’ s equation , . 
S

we can find some simple expressions for all the field components in terms cf 
S

H and H . f we wrIte H as
y z y

-S

- - 
S 

—- - 
SSS~~~~~S S~~~~~~~~~~~_ 

- -
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S 

H a H e 1~~~~! (9)
S F F

S 

where H~ is the magnitude of the 
incident wave at infinity, then ‘4! must

satisfy

-~-~~ — 2jk }~~.O (10)

with boundary condition

- 1
~~~—jk (ax + by +j~~) 4 ! 0  (11)

on the surface of the body. Eqa. (11) is the simplified version of the

Leontovich boundary condition where

4iro
fl • — ~~

The final solution for U on the surface of the body which satisfies

the boundary condition and the condition at infinity, may be written in the

form

a ~~~ G(~ ,q) (12)

where a external, fieldy

G(~ ,q) - e~~~
’3
~ ~~V1(~ ,q)

V1
(~ ,q) Pock function defined in the Appendix A.

a m(ax + by) - reduced distance from the shadow boundary LId.

d a the width of p enumbra region (2r
0
2
1k)1”3

a distance between the observation point and the shadow boundary along the
incident ray (Fig . 3).

7

_~~~~~~~~~~~~S 1S5~~~~~~~~~~~~~~~~~~~~~~~ S~~~~~~S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _



- 
— 5

S~~~~~~~~~~

_ _

S S__ 

S
______ -- 

55 .

S Incident 
-

Wave

7
5

• 7
55 Center of

curvature

Figure 3: G.omstr1~C. mw’~”g of th. quantity .1 in (12) .

Observation point 
S

Figure 4: Coord.inates of observation point in terms of ~ and ;. ..

8

S - ~~~~~~SS S S S~~~~~~~~55~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— ~~~~~~~~ — 
-

S 
—~~~~~‘ v’~~~ — (j/n) 

~~J ~~~~~

’ 

(— 0 for conducting body)

The other tangential component of the magnetic field 11 on the surface

of the body can be obtained in a similar manner

H - R~~ (- ~ ~~~~~~~~~ f(~)] (13)

where f (~) is another Pock function defined in Appendix A. Took’s

formulas not only give the surface value of the f ield , but also can be

utilized to find the field In the proximity of the object. For a plane wave

incidence , the first order, i.e., 0(1/in) terms for the scattered field within

a certain layer around the object, can be written as S

(14)

E — (j/in)a° e ’1
~~ 3~ / ;~ , E55

y 
— H~~ E

~ 
a _H~ 

S

where

a 2am2[z +~l/2Xax
2 + 2bxy + cy 2 ) J  a reduced height from the surface

of the body (Pig. 4).

- - , 3 - w~(t)—qv (t )
4! a —je ~~~~~~~~~~~ ~~ ~ f e ’

~~~ (w 1(t— ~ ) — w~ (t )—qw 2~ E~ 
w 2 (t—; ) ] dt

(13)
S 

- — 
j — (j/3)~

3 
— • -

~~ 

w
1
(t) S

— _1!. f e ‘ (w 1(t— ;) — w (t )  w 2 (t— ~~) ]  dt
2i~ c 2

The path of integration for  ~ and ~ is shown in Fig . 3

9
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S Pock’s expressions for the field components in the penumbra region -

(~ 
0) can be extended to the shadow region , by introducing some modifications

in the definition of parameter ~~~. Goodrich (15] has generalized the

argument used by Pock in the penumbra region to anywhere in the shadow

region by introducing a new see of variables,~ and ;,for the incremental

distances along the path leading into the shadow region. In this generalization,

the parameter ~ as def ined in (12) is replaced by

— f (kR(5))l/3 ds (16)
2 R(s)

where s is the arc leng th along the geodesics which orIginate from the shadow

boundary and go into the shadow region along the surface , and R( s) is the

radius of curvature of the surface along the geodesics. For the case of a

circular cylinder of radius a (Fig. 6), the expression ~ simplifies to

— (ka/2)~
’3 

9 — s/d (17)

Pock also treated the case where the point source was very close to

the surface of the body. He analyzed the radiation of electric dipoles near a

si,herjcal model of the earth (16] and derived the formulas for the scattered

fields in terms of functions (attenuation functions ) similar to ~ and

4!, which are valid both in the shadow and transition regions t17]. Pock’s

assumptions were later proven in a more systematic and mathematically rigorous

manner by Cullen (181 and Hong (19] by using a direct integral equation

approach. This method is described in the next section.

11
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2.3 Direct Integral Equation Approaches

This method, which is closely related to Pock’s theory, can be

illustrated by analyzing the diffraction of a plan. electromagnetic wave

by an arbitrary conducting body (large compared with ~). Cullen (18] obtained

a first—order asymptotic solution to the integral equation for the induced

S 
surface current

-
~~ -~iacJ(r )  — 2n(r) ~ H (r) — (l /2i r)n (r )  S

(18)

~ f f ds ’ 1+j kR 
x

where )is the outward unit normal. to the surface at , ~~~ ( )  is -

-~~ 
-~~ S

the incident magnetic field on the surface (S) of the body ,and R r —

( ‘  is a variable point on the surface).

Pock used this integral equation to deduce the important principle -

of local character of the field in the penumbra region. Cullen derived a

first—order asymptotic solution to (18) which agreed with Pock’s results 
S

¶ given in (12) and (13). Cullen’s method consists of transferring the two—

dimensional integral equation (18), in the p enumbra region , to a one—dimensional,

Volterra—type equation. This is accomplished by applying the stationary

S phase technique to the original integral while integrating with respect to

one of the variables . The resulting one—dimensional Volterra equation is then
S 

solved in Cu.Uen’s method by the Fourier transform technique. A similar 
S

S 

- procedure was used by Hong [19] to analyze , asymptotically , the diffraction 
- S

of electromagnetic and acoustic plane waves by smooth convex bodies. We will - 
S

S now proceed to explain Hong ’s method in a l i t t le more detail by referr ing S

back, once again, to the integral equation (18). The surface is parametrized by

12
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thegeodesic coordinate system (~ ,v) such that the shadow boundary for the

incident plane wave traveling along the tangent ;(o,v) to the v a 0 curve is the

— 0 ~.ixve. The quantities (c ,v), ~(~,v) and ~L( ~~ ,v) form a right—hand local

orthonormal basis (n — ~ b) (Fig. 7).

Since the incident field has a phas. factor

we write the surface current in the form

— (t~ ( )  & ( )  + ‘
b~~~~~~~ 

~~~~~ e 1
~~ (19)

where ~ is the arc length along the geodesic. Substituting (19) back into

(18) and restricting the resulting equation to the points on the geodesic v 0 ,

we obtain two coupled, two—dimensional integral equations for I0(c~0) and

It can be shown that these integrals have saddle points at vaG (for

the v—integration). Applying the “steepest descent path” method to v—integration,

and keeping the terms up to the order l/N~, where M
0 

* (~~~ (c , O) ) 1”3
, we

obtain the following decoupled one—dimensional, Voltarra—ty-pe integral equations S

5 for ‘b~~’°~ 
and I~(~,0) 

S

S I,(~ ,0) a 2 1inc (~~ 0) ~ f dr I~~(~~,0) K ( ~ -r) + 0 ( M 3)

(20)

a 2 1iric (~~,o) - f ~ d~ ‘b~~~’°~ ~~~~~~~ ~ O(~ç~ )

is the radius of curvature of the surface along geodesics Cv — constant

curves ) at point (~,v).

Solving (20)by Fourier transforms, we obtain the expression for the

Induced currents in the penumbra and shadow regious,and the first—o rder solutions

13
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are found to be the same as those of Pock and GTD (20]. One of the important

conclusions drawn from Hong’s solution is that the leading term in the

asymptotic expansion, which is the same for the acoustic and electromagnetic

problems, is independent of curvature in the direction transverse to the

geodesic, provided the divergence factor is suppressed. However, we should

bear in mind that Hong’s method was designed for the case of axial incidence - S

on symme tric objects,and in this case, the geodesics are torsionless. The

above conclusion does not seem to be valid in the cases where the rays have

nonzero torsion ( . 2 1], [2 2 ] ) .  In Hong’s expressions for the surface current,

the transverse curvature has only a second—order effect. It was also shown

that up to the terms of order (ko~)
2”3 in the asymptotic expansion, the

tangential and binormal components of the creeping waves are not coupled.

Both Fock~s theory and the “direct integral equation approach” give the

induced surface current, or the scattered field in the neighborhood of the

surface of the scatterer, due to an incident plane wave. These expressions can

also be used to derive the radiated field via the use of the reciprocity theorem.

The methods which have been discussed thus far are mathematically

S rigorous. However, they are limited in the scope of their application to

geometries satisfying some special smoothness and symmetry criteria. “Geometrical

theory of diffraction” (GTD), which we discuss in the next section, has a

br oader scope, although it does lack the mathematical rigor of approaches

described until now.

2.4  Geometrical Theory of Diffraction (GTD) S

Geometrical theory of diffraction (GTD), developed by J. 3. Keller S

([20], (231, (24~ , (25], and (26]), is a generalization of geometrical optics.

15
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It is based upon the assumption that fields propagate along rays . Keller ’s

major contribution was to introduce the new kinds of rays called the “diffracted

rays:’ which together with the geometrical optics rays,constitute the total

field. In our problem, viz., source radiating in the proximity of the smooth

S 

object, the diffracted rays travel along the curves on the surface of the

scatterer. By applying Fermat’s principle to these surface rays, we conclude

that the above—mentioned curves should be geodesics on the surface of the body.

In the GTD procedure, one assigns a value to the field along each ray of these

surfaces. The total field at any point in the space is the sum of the fields

due to various rays (incident, reflected and diffracted) passing through that

point . An important advantage of the GTD approach is that it can be applied

to both scalar (acoustic) and vector (electromagnetic) problems and to smooth

convex objects of an arbitrary shape.

Consider the problem of determining the radiated field of a scalar point

source located on the surface of a smooth convex opaque body. If the observation S

point is in the shadow region, the ray ?aths ori~inatin~ at Q and reaching P
S (observation point) are comprised of two sections. One of these sections follows the

straight line path P
1
P, while the other travels along a geodesic on the surface

(Fig. 8). Let us consider the propagation of the field along each section separately.

a) Rays in free space: Behavior of the fields along these rays can be

determined by obtaining a high—frequency asymptotic solution to Maxwell’s

equation inasource—free homogeneous isotropic medium. We begin with the 
S

Lun.berg—Kline asymptotic expansion of the electric field (( 11) and [12]) :

- j k S( ~ ) 
-m — S

E ( r )  - k e ~ (jk) em
(r )  ( 21)
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and insert it into the Maxwell’s equations. This resu~.ts in the following

equations governing the propagation of electromagnetic fields along the rays.

a 1 (Eikonal equation) (22)

2(~7S .7); + (72S). — _7 2 
l (Transport equation) (23)

~7S~~ “—7~~ (Gauss ’s Law) (24)

0 , — 0 , 1, 2 ,

The zeroth— order solution to the above system of equations,c’zhich turns out

to be in agreement with what one would obtain by geometric optics , may be

written as S

E (~ ) 
j 0 /~~~~ 

e~~~o~ (25) 

- 

S

\/ ~~~~~ ~~~~~

where ~ is the distance traveled along the ray from the reference point

0(.~’O) on the ray path. 
~~ 

and are the principal radii of curvature of

the wavefront at c~—O. It is apparent that the expression fails when :—— c 1 or

~ ~°2’ i .e . ,  at the caustic lines (Fig. 9). In the cases where it is

convenient to choose the point of diffraction on the surface of a body as

the reference point 0, the formula (2.5) should be modified as follows S

— _____ -jkc
. 

~~(~~
-+.

~~) 
e S

• (26 )

18
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In these cases , the po int of diffrac tion itself is a caustic , and o is the

distance between this point and the second caustic.

b) Surface Rays : These rays follow the surface S along the geodesics

into the shadow region, and shed off energy tangentially as they propagate.

In order to study the behavior of the field along these rays, we introduce a

special ray—fixed coordinate systea,~~,n,b.

: Unit vector tangent to the ray ; a: outward unit normal to the

surface; and b a x 
~ or binorma]. direction; a vector field can be decomposed

into its components along these unit vectors as

( 27)n b

At this point, several important assumptions are introduced in the GTD

approach [20]:

I) ~ and are orthogonal to each other and to the ray.

ii) Variation of the phase of the field along the ray is

the same for both fields.

iii) En and Eb propagate independently, and — 0.

iv) E
b 
satisfies the scalar wave equation (72+k2) u 0  with the

boundary condition u—O on the surface S,while E satisfies

the same equation with the boundary condition
? 

a

The next step in the GTD approach is to conjecture,ott the basis of the

solution to some canonical problems, that the surface field propagatIng along

each ray is cornpr~sed of an inf inite set of “modes.” Along a ray—fixed path

GTD assigns a comp lex value to each component of the field associated with 
S

the Individual modes. The propagation of these modal fIel d is described by

the equation

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
S
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j(~0—kc
)

a (a-) — A(:) e (28)

when o is the distance between an arbitrary point along the ray and the source

Q and is the phase of the field at the source point. Next, invoking the 
S

S principle of conservation of energy between two adjacent rays, and using the fact

that the surface rays shed energy off tangentially, we can arrive at the

following expression for a(o)

a(~) — K /  
~~~~ 

exp (—jk~ — I ~ (a ’)da ’]  (29 )
2 0

-where :x(a) is the “attenuation constant,” K is proportional to the strength of

the source,and d’~’1, d’~’, and ~ are shown ifl Figure 10. The quantity [d’~
1
1/(~d~Y2)]

1”2 
S

indicates the spreading of the surface ray tube” as it travels along the surface.

Equations (26) and (29) describe the laws of propagation for the rays which

originate from the source point Q, are dif f rac ted at P
1
, and reach the S S

observation point P. To complete the solution, we need to determine the actual

values of the fields from these equations. These require the knowledge of S

and K, which, in turn, are related to the initial values of the rays QP
1 

and

as well as the attenuation constant a ( S ~~~). The initial value of the field

at Q is related to the strength of the source by L(Q), the so—called “launching

coeff icient,” while the initial value of the field at P
~ 

is related to the

actual field on the surface at P1 through the “diffract ion coefficient” D(P 1) .  S

If we now sum up the contributions of all the modes , we obtain the final

solution (25 )  for the field radiated in the shadow region by an infInitesimal S

magnetic dipole of strength ~ located on a smooth convex conducting body -

5- -i — - -—- i_~~~
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(p) a ( S (Q) a (Q 1

)F 4 3(Q)S(P
1
)G) J ~~~~ 

~~~~~~ (30a)

where

F a ~ Lh (Q)D h (P
1

) exp [-f~~~(o ’)d~ ’]
pa]. ° (30b )

and the expression for G is obtained by replacing the superscript “h” by

“s” in (30b), where h and s stand for hard and soft boundary conditions, S

viz., u 0  and 3u/an a 0, respectively. The quantities ~~~~ D~~
S and

S 

appearing in (30b), in general depend upon the local geometry and the

electromagnetic characteristic of the surface, frequency k, and the mode of

propagation. They are determined by studying the asymptotic expansions of

the exact solutions of some special canonical problems . Keller and Levy

((20] and (27]) have derived the first few terms of the asymptotic expansions S

for D and ~ by considering the canonical problems of scalar diffraction by a 
S

S circular cylinder, sphere, elliptical and parabo lic cylinder. A study of the

above—mentioned asymptotic expansions and the works of Franz and Klante (28 ]

and Voltmer (29],who have also investigated the same problem, as well as a

comparison with the results of the “direct integral equation approach ,” reveals

the followine characteristics of the solution: I) the first—order terms in

the asymptotic expansion of D and o are independent of whether the problem

under consideration is scalar or vector; il) the first—order approximation of

D and ~ are dependent only on ~~~~~~~ the radius of curvature of the surface along

the ray; iii) the second—order terms are functions not only of ~ , but also of S

S _____ , r , and ~ (the radius of the curvature of the surface transverse -

da d~~ ~n S

to the ray) . Finally , the higher—order terms are d~~ feren t  for  scalar and

S vector problems .

S 

S
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The leading terms in the asymptotic expansion of “diffraction coefficient”

D, “attentuation constant” t and “launching coefficient” L are presented below:

S “Soft” polarization:

~l/2 2
_5
~
’6 • 

1/3 • 
—j -n-/12

(D~]
2 

2 
(31)

k (Ai’(—r~)]

r e~~~~
6 k~~~ l/3 

S

p 

~
—i—

~ 
(32)

— ~~~~~~ (2lTk) h/’Z (_1._) . Aj’(—r ) . D (33)

“Hard” polarization:

~V2 2
_5 1’6 1/3 

e~~~
’12

h 2  ___________________E D] a 
1/6 2

k r ’ (~j(.r’)]

j f f / 6  -

a (~~~ ) l ~ (35)

e~~~
12 (2vk)~~

2 ( 2 ) 1/3 Ai(-r’).~ Dh (36)

S 
where Ai(x) is the Airy function:

3
Ai(x) a 

~ 
f cos(-~- + xt) dt (x real ) (37)
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and Ai(_r~) — 0, Ai’(_r;) — 0, (Ai ’ is the derivative of Ai with respec t

to its argument). Higher—order terms in the expansion of D, & and L have

been given in (25] and (30] and in some of the other works on GTD mentioned

earlier.

The expression (30) is convenient to use in the lit region. In the

shadow part of the transitIon region, since the exponential decay of the terms

in (30) in weak. The convergence of the series representation is very slow.

Furthermore, the series diverges in the lit part of the transition region.

Consequently, in these regions, it is more reasonable to use an integral

representation for the surface ray field, which, in our case, can be expressed

in terms of Fock functions (25].

Attempts have been made to establish the mathematical validity of GTD

and to minimize its “nondeductive parts” (parts which are based upon physical

intuition or the 8tudy of the as;’mptotic solutIon of some simple problem S 5

geometrical concepts of different kinds of rays, diffraction coefficients,

attenuation constants, etc.). Kravtsov [31] and Ludwig [32] have

analyzed the field near the caustic surface (smooth envelope of a f amily 
S

of ray), and have developed a “uniform asymp totic solution” in the sense tha t

it is finite at the caustic and reduces to geometrical optics away from the

caustic.

3. Generalization of GTD and Investigation of Alter-nate Methods

3.1 Generalization of GTD to Arbitrary Surfaces

I Keller’s generalIzation of GTD for the analysis of the field diff ract ed

from a smooth convex object is closely related to what is known as the

“bounda ry layer technique” in the theory of differential  equations (43 ] .  On

the other hand , the “uniform asymptotic theory ” is analogous to the method

used by ~~~. E. Langer and F. J. O liver to find the asymptotic solutions of the
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S second—order differential equations near their “ turning poin ts ,” which are

counterparts of the transition regions in our case [33], ~34] , and [35].

The procedure is based upon the ~enera1i~ation of the geometric optical

interpretation of the circular cylinder problem. The solution obtained by

this method involves some functions with unknown phase and amplitude, similar

to Bessel and Hankel functions. Since the surface of a smooth object is

actually the caustic surface of diffracted rays, the above—mentioned formulation

is applicable in this case, too. Lewis, at al. (36] nave modified this

S 

solution to make it satisfy the boundary condition on a convex body . Using

ray formalism, they have obtained an asymptotic solution in a complicated form ,

which they call “creeping wave” and satisfies the boundary condition on and is

uniformly valid near and away from the surface. It should be mentioned that

the method has been developed primarily for scalar diffraction problems.

Creeping waves that are traveling on the surface of the body generate

S other kinds of diffracted rays in the presence of the irregularities in the

geometric or electromagnetic characteristics of the surface. The effects  of
S discontinuity in the surface curvature , its hIg her—order derivatives ,

or the surface impedance have been studied by many authors ( 2 7 ] ,  [38] ,

[39] or [40 ] .  An exhaustive study of various d~f fraction

tnechanisns and corresponding dlf fraction coefficients ,

and constants associated with the propagation of creeping waves, has been

carried out by Albertsen [41].

At this point , let us examine one of the most important features of GTD

and its various modifications . GTD formulation is essentially scaler in nature

and is heuristic In so-me parts . Thus , when GTD is applied to a vector problem , S

it is not surprising that the coup ling between various components of the fields

25
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are neglected, and each one of them is treated as an uncoupled scalar wave.

The other assumptions in GTD are concerned with the directions of these field

components and the kind of boundary conditions they satisfy (see Sec. 2.4).

~~ mentioned earlier, non—deductive parts of GTD are based on asymptotic

expansions of known solutions to some selected “canonical’ problems . Quite

often these canonical problems are not general enough to fully and accurately

describe the local behavior of the field for an arbitrary structure. Finally, S

most of the canonical problems investigated are two—dimensional in nature. The

only exception to this is the sphere. However, in so far as the geometric

properties of the surface are concerned, the sphere is a very special case

since its radius of curvature is the same in all directions and,cons equen tly ,

the surface rays are torsionless. Finally, GTD fails when the observation

point is located in the transition regions, shadow boundaries or in the neighbor-

hood of a caustic. In each of these regions, one needs to carefully modify the - 
-

GTD formulas a-id often a~ch a modification is not too simple. Nevertheless , S

in spite of these difficulties, GTD is recognized to be a powerful high—frequency

S technique for  computing the leading terms of the asymptotic solution. Two of

the p rincipal attributes of GTD are its simplicity and wide scope of application.

3.2 ~pect ral Domain Approach

~‘1e now examine an approach different from GTD which uses the spectrum

of the Induced current , or the expression for the radiated field , as a starting
point ,  in order to gain a bett er  insight into the curved—surface radiation S

and scattering problem and to verify the basic assumption of GTD , it is S

worthwhile to consider such alternative approaches , particularly if they apply

to canonical problems which are more general in nature than those employed to - 
-

derive the GTD results. An example of such a study would be to consider the

26
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case of surface ray propagation with non—zero torsion , a situation that occurs

S 

- 
when a magnetic dipole source radiates from a location on the surface of a

S circular cylinder.

The geometry of the problem is shown in Fig. 11 (p.  21) . The radius of the

cylinder is a and the source,which is an infinitesimal magnetic dipole with

density ~Lis located at the point Q described by the spherical polar coordinates

( r a , 8’.90 , ~“0 ) .  Each point P on the surface of the cylinder is defined by a

“geodetical polar coordinate” system (o,8), where ~ is the arclength of the

S geodesic connecting Q to P and 3 is the angle between ~ (at point Q) and

geodesic QP. The local orthonormal basis vectors (~~,3) are also associated with

these two parameters. The observation point in the far field is specified by -

its spherical polar coordinates (r,~~,q). The radiated field at an arbitrary

S point can be expressed in terms of two potentials , ‘ ax~ ~‘, which, in cylindrical

coordinates , can be written as:

— 

* ~~_co~~

3

~~ 
1 

~~~~~~ 
H~

2
~ (k~~

) e Z dk ( 37)

— 

~ ~~~~~~~~~ 

f g (k ) H’2
~

(k
~
P) e Z dk

~ (38)

S For the problem under consideration , we can express the spectral weight
S coefficients as

- ti Z 2~rICH~
2
~ (k a)

t n  t

-M nkM S1 z ___— (2~ ’ + ] (40)
Z k H ‘ (k a) 2~k at n  t t
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where

1/k2 _
~ (41)

L —j /’~~—k2 
,

In order to derive an asymptotic expansion of (37) and (38), we proceed

as follows. As a first step , we apply Watson’s transformation to the infinite

su ation with respect to ti and employ appropriate asymptotic formulas for

Hankel functions with large order and argument to derive the following expressions

for (37) and (38) under the conditions that ka is large and ~ small compared to ~: S

(2~t-)~ ~~ ~~~~~ 
f dk ~~~~~~ 

k 5’
~
’2 ~o ~~ 

(42)

S 
- 

( 2:)~ 

. 
C f dk~~ e~~~ k 512 ~ m g ~~1

) -1- 2m3
g0
(~ 1

) ]

( 2:) 2 a /~ T .  j~r/4 ( dk
~ g0

(~ 1) (4 3) 

.
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where

S 

k z  +

(k~a/2)~~
3 S

f
0

, g
0

, g
1 

— Fock ’s functions defined in Appendix A.

and M — components of ~~, (~~tt’ 0)

Next , applying the “ saddle—poInt” technique to (4 2) and (43) and keepIng only

the first—order terms, the far field can be written in term-s 
of its components along

the normal and tangent to the surfac e at the “stationary point ” P
~ 

as

S E 
~~~~~ 

g ( ~ 1
)

(A•~ 1
) 

~~~~ —jk~ 
ko 3 1/3

+ — 4 
. e . 

~~~~~~~ 
. g~~~15~ 

(44)

- ~~~~l~~~~l~~l’ kQ 
~~~~ f ( ~~~ ) S

. (45)
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where 

S

is the stationary point of 2 which turns out to be the

same as the point of diffraction predicted by GTD .

~ls 
- ) h /3  (~~~~/ 2 )  . sin~

”3

— radius of curvature of - geodesic QP1

— arc length QP
1

R — the distance between the point of diffraction P
1 

and

the observation point

tt
z 

— * normal to the surface at P1

The details of the derivations of (44) and (45) are given in Appendix 3.

Fig. 12 illustrates the geometric meaning of some of the parameters S

appearing in (44 ) and (45), for the observation point is located in the shadow S

region. In this case , 
~ls ’ which is identical to ~ given in ( 16), is the

reduced distance traveled by the surface ray before leaving the surface

tangentially.

to the lit region , the geometric Interpretations of o and ~ are shown S

in Fig. 13. The rays , like QP 1P , that do not obey the generalized Fermat ’s S

S 
principle are called “psuedo— rays ” (2 5].  The ray QP ,P appea rs to travel along - -

the surface up to the point P1 and then leaves the surface at P
~ 

tangentially S

in the opposite direction , to reach the -Qbservat ion point P.  It  should Se

noted tha t formulas (44) and (45) give us the contribution of the ray which

- 1  
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travels along the shortest path on the surface, and thus, suffers the least

attenuation. It is not difficult  to see that, in general , there are infinitely

many ray s which contribute to the total field ac any observation point . However ,

their contributions are very small compared to that of QP1 and theIr phases and

amplitudes can be determined in a similar manner (Appendix 3) . Several other

remarks on the formulas given in (44) and (45) are in order:

a) Numerical results indicate that good agreement between (49),

(45) , and the exact modal solution is obtained for ka > 10.

b) The zeroth—ord er terms in the asymptotic expansion of the normal

compo nent of the field E are identical to those given by GTD ;

however, the 1(11
/3 

terms derived from the two approaches are

different.

c) Tangential component of the field, E~ , given by (45), also

is different from the corresponding expression based on GTD . 
S

by a multiplicative polarization factor. Specifically ,

(~~(45) — 

~(cos~~~~~~~~5~ 
(GTD) (46)

Consequently , ou r results agree In GTD only for the circumferential

ray , i.e., for S 0.1 addition, for  an axial r agnecic dipole

(M — 0) ,  CTD gives a nonzero value for the field in the 
~, 

direct~.qn

our solution predicts chat this field is identically zero, a result

which is in complete agreement with the exact solution for the

problem.

In contrast to GTD, formulas (34) and (45) are valid in

respect. to the location of the observation point , be it In the

lit, shadow or transition regIons. Although not valid in the ?araxial S

-1 region (S~ 9 0 ) , they can be generalized to work along this direction. S
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Finally , let us consider the possibility of the generalization of

(44) and (45) to other convex surfaces of more general nature.

3y “more general surfaces ,” we mean those surfaces which are not sub stantially

different  from cylinders , some examples being cylinders with noncircular

(elliptical, hyperbolic and parabolic) cross sections and conical

surfaces with small apex angles. The key step in a systematic approach to

generalizing (44) and (45) is to use the generalized definition of ~ given

S in (16) .

Fig. 14 exhibits some initial results of the generalization of these

formulas to the case of a cone . it is evIdent that results obtained from

S 
the present approach agree quite well with the series solution which is rather

tedious and time—consuming. ~Je also observe from Fig. l4c that there is a

noticeable discrepancy between the analytical solution and the experiment. Thus,

within the range of experimental error, our results agree quite well with

those published In the literature.

3.3 Appr oach 3ased on an Asymptotic Evaluation of the Radiation Integral

of the Surface Current

As a final topic , we consider an approach based on the asymptotic

evaluation of the radiation integral expressed in terms of the induced surface

current which is itself derived in an asymptotic manner for surfaces with

large radIus of curvature.

It was shown in Sec . 2 that Fock’s theory can provide us with an

expression for the scattered field in the neighborhood of a smooth convex

body illuminated by a plane wave. Using this solution in conjunction with

S the reciprocity principle , we can find the far field radiated by a point source

located on the surface of the body . 3y generalizing the definition of ~ in

33
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FIgu re 14: Comparison between spectral domain results (UI),
modal approach (Hughes ) ,  and experimental measure-
ments (Hughes). The UI results are derIved from a

S generalized version of (44) and (43) for  a cone .
The Hughes ’ results have been reproduced from [63)
and are based on a modal series of 13 terms. All
results are for \/2 radial slot on a :one of
half—angle 100 .
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Pock’s theory, we can also write the final result in a GTD format and represent

it as a surface ray. The total field at a point on the surface is obtained

by adding all the possible rays which reach the observation point P. Various

techniques c~~ be used to determine the field propagation along these rays .

For instance , when the source is located on the surface , and the surface is a

conical one , the field at each point can be decomposed into two parts.

I
F — F l + F 2 (47)

where F1 is the geometrical optics field when the observation point is directly H

illuminat ed by the source , and is the creeping-wave contribution derivable

via an extension of Pock’ s theory when the point is in the shadow region. The

other term , F2, is the so—called tip contr ibution , and can be obtained by

phy sical optics or GTD . Goodrich et al. (42] have applied this procedure to

f ind the radiation pattern of slot arrays on cones .

The approximate induced surface current distr ibut ion caa be obtained by

Pock’ s theory , GTD [131, (14], [16] and (25 ] or some o ther appropriate high

f requency technique. The induced surfac e current due to a magnetic dipole on

a perfectly conducting circular cylinder and cone has been calculated by Chang

et al. (44] ,  and Chan et . al (4 5] whose procedure is based upon an asymptotic

expansion of the exact modal solution to the above—mentioned problems. Lee ,

et al. !46] and (22] have treated the same problem by a ~nethod based on

Pock’s asymptotic solution of the problem of a sphere (47]. These expressions

for the current distribution can be used in the radiation integral representation

of the far field.

The numerical evaluatIon of this integral is a formidable task, especially

when the frequency is very high. Thus, it is highly desirable to have an

analytical and exp 1~cit formula for the Ear field expressed in terms of the
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surface current. We now discuss an approach for accomplishing this task and

examine the problem of deriving an asymptotic expansion of the far field

radiated due to a point source located on the surface of a smooth, conducting,

and convex body of an arbitrary shape.

Consider an arbitrary smooth convex surface S sho~in in Fig. 15. Let

a magnetic dipole source be located at a point Q on S. We parametrize the

surf ace S introducing a “geodetical polar coordinate ” system wit h the pole

located at Q such that an arbitrary point P1 on the surface is defined by a

pair of numbers ~~~~ where is the arc Length of the geodesic QP1 and

is the angle between QP1 
and some reference direction at Q. Unit vectors

along the constant parameter curves a and 3 are locally orthogonal. The

uni t normal to the surface, ~~ , is given by a — ~ c 3~ An element of length

in this coordinate system may be written as

2 2 2
ds — d o  + G d B

(48)

The radiation integral for the scattered far field can be written

j  i~ i~ ‘ f  !(l—aa ) . dS (49)

where R is the distance between any point on the surface and the observation

point. En the geodetical polar coordinate system, we can rewrite a scalar

component of (49), say ~~~, in terms of a double integral of the following

general form

— : ~ F(~~,3,?) exp(—~k(R+c]~~ v G  d~~ d~ 
(50)

-~~~~~~~~~~~~-- -  
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Figure 13: Source radiation in the presence of a smooth convex surface ,
parametrized by geodetical polar coordinate system .
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where we have assumed the following form for the surface current:

— t (P 1
) exp (—jk 1~

) — + J8;
(51)

k.~~~ k — i k 2 ; k — 2r / X , k2 > 0 , k2 < < k

where is a relatively slowly varying function when k , the free-space

wave number , is large. This assumption is based upon a close scrutiny of

different asymptotic formulas given for the induced surface currant.

~‘hen the observation point P is located in the shadow reeloit, the

main contribution to (51) comes from a small neighborhood of the stationary

point of the integrand ,and the stationary phase method for multiple integrals

( (4 8] and [49]) Is applicable. The asymptotic expansion of (49) has been

derived up to the order ~~~~~~~~~ The details of calculation have been presented

in Appendix C. The f inal result is

- (~~ + + O(k ~~~”6 ) )  (52)

where

U0 - e~~~~ (53)

U1 — ~ (A.I
3 

+ -
~~~~ 

(J 3e~
’ )e~~

’
~ ) 3  + (BJ 3 + C.!);]

_______ 

(54)

• 1 /_______ . —i kR
~:s / (R+~ )R

*

—

~

-—-



- a ’4 . 63/6 . r ( l / 2 )  r~1/3) ,2/3 
(5 5 )

________ 
7/6

— _________ . 6 ~ (2/3 )  • (1/2) - (56)

A, B, and C are dependent upon geometric properties of the surface at the

stationary point which turns out to be exactly the same as the “point of

diffraction” of surface rays. The quantities A, B, and C are given by

(57)

+ (L B0 ) 2 
— (l/2)~-4] + 0 (~~)

B — L~~ /G 112 , C — - l/o~ 
(58)

where

— radius of curvature of the geodesic

— geodetic radius of curvatureg
L38 , L~~ — coefficients of the second fundamental form of the surface (S)

A geometric interpretation of these parameters has been illustrated
~ 1/2

in Fig. 16. It is eviden t from this figure that 
~a(R~ )] is simply the

divergence factor of the rays leaving th. surface tangentially at the point

of diffraction. In using formula (36) , we should bear in mind that the

various terms l.a U0 and U1 are not of th. same order . For example , in the

deep shadow, J~ is exponentially larger than J 3 .
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The formulas given in (56) have been tested and compared with ocher

available solutions. An important conclusion derived from this comparison

is that although th e nethod of radiation integral is based on less restrictive

assumptions, it is perhaps not as useful as the spectral domain approach

because the stationary point of the phase of the integrand in (50) is of the

second order, and hence, the asymptotic expansion of this integral converges

rather slowly except when k~0 is very large ( 4 0  or sore) .
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APPENDIX A: FOCK FUNCTIONS

In studies of radio—wave propagation around the earth by Van der 201,

3remmer , Pryce , Fock, and others, and also the later studies of diffraction

of electromagnetic waves by certain bodies of revolution ((3l1,(521,[531,

t541,t531,[481,(56],(571,[381,(591,(60] and (50]), a class of universal

functions was introduced which can be used to predict the amplitude and the

phase of the reflected or diffracted field by smooth convex surfaces (17].

An exhaustive treatment of these functions which, itt general, are defined

as Fourier integrals having combinations of Airy integrals in their inte—

gr ands , has been carried out by N. A. Logan [6 1). (See also Bowman , et al.

[13 and Logan and The (171).

Since the first extensive application of these functions to diffraction

theory was done by Fock, many authors named them after him . Here we list

only the most importan t formulas and expressions for these funcc~ons without

going through the l.etails of their derivations . ~e have f ollowed Logan ’s

set of notations for these functions (61]. However , since his time dependence

factor , exp(—iwc), is different from one we have used throughout zh~s paper ,

namely e p ( ~ j~~t), our expressions , listed below , are conjugates of ~hae

h ave been presented ~~ 511.

First we start with genera]. definitions. Fock ’s most general form of

the “Van der ?oL— Bre ~~er diffract ion formula” is

- ax p~~~~ ) F ~_: • ~~~~ w~~t - y>
) . v (t  - y < )

— ~v (t)— , —
~ 

— 
- (c — i’>) dt (A.~~)— - — 

~~~~~~ - ••.- •- -• - . - - 

- 
— -~~~~=~~~ - -.- - -~- ~~~~—~~~~~~~-~~--—--~~ 
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where w
1
(t), w,(t), u(t) and v (t) are Fock—cype Airy functions , def ined as

u(t) — v ’~ Bi(t) , v(t) — v ’
~~ A . i(t )

w
1

(t )  — u(t) + jv(t) , w
2
(t) — w

1
(t)*

qe note that and w
2 
can also be defined as in Sec . 2. and

y < are the larger and smaller of the two numbers y 1 and y2. V(x,y1,y,,q) is

proportional to the attenuation suffered by an electromagnetic wave generated

by a source located at reduced height y1 above the surface of a smooth con-

vex body , when it reaches the observation point located at reduced height

above the same surface. x is the reduced distance between the source and

the observation point along the surface, and q is dependent upon the impedance

of the surface. Let us consider some useful limiting cases.

When — y, — 0, then V (x,O ,O ,q) is denoted by V0, where

/ —jxte w ( t )
V0

(x ,q) - 
2 

- - L w~(t) - qw
2
(t) 

- dt (A.2)

~7e also have

- ~~~~v( x) = V
0

(x ,O) — 
2 w~(t) 

dt  (A . 3 )

/ .-jxt
1 2 

‘

~ e~
3
~

1 ’ 3/’ a
u(x) lim —2jxq V0(x,q)j — —

.
— - x - _________

q~~ 
j _ ~~ 

U
2

(A- -a)

When y
1 

0 and y , -
~~ ~~~ , then V V,(x ,q) :

:~~ e
_jXt 

-
— 

J~~ 
w~(c) 

— qw2(c) 
- dt (A. )

and also

g (x) — V
1

(x ,0) — —
~~
- dt (A.6)
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- r ‘
~ . r~~~ —i~~:(x ) — ~.im — qV

1(x
,q) . = — - dt (A.7)

q~~ ~~~~ _~~

3ased on Equations (A.6) and (A.7), a class of functions can be

defined :

f~~~ (x) — ~~~~_j ~L 

~~ 
• dt — 

d~ f ( x ) (A.8)

( f l ) ( )  - 
( j )

fl 
- 

1 
~~~ e jXt 

- dt - (A.9)r w1(t) dX~

where ‘ is any path in the complex t—plane whIch comes from in a sector

defined by — -r < a rg (t )  < - and goes to +~~ In the sector —
~~~~ < arg(t) < ~~

-.

In what follows, we will give the suitable formulas for f(x) and g(x) in

different ranges. Tabulated values and graphs of these functions can be

found in [571,f541 and [611.

When x is very large and negative , the following asymptotic expansions *

for f ( x ) arid g(x)  can be used ~61] :

f (x )  - _ 2~xe~~~~3[l + + 1 
- 

j~~ 5 
- 

395 ~3l8l75 
- .~~~~~ (A. 10)

4x 2x~ 6~x 16x lO2ix~~ J
- 2e~~~~~fL - - + ~4ó9 5005 

- 
j1122 121 

- - -
x 6~x 5’~x~

2 1024x 15 J
The above formulas are valid and accurate for x << —1 .  For moderate

values of ~~ , namely , —1 < x < 1, it is difficult to find an appropriate

expression. Although there are some analytical techniques like “stationary

phase method” or “Po isson summation formula” which may be usad to evaluate

(-t ) (
~ )

and ~~ for  these 7alues , another possible way which is ~robab ly easier

and more e f f i c i e n t is to in ter~ o1ac~ the tabula ted  values of these func t ions

l.n this range.

-- 
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- ~~~~~~~~~~ _ _ _ _ _  _ _ _ _ _ _ _



~~~~— - _  ~~~~~~~~~~~~~~~~~ 
— — —- — 

~
t- --

In the vicinity of zero (~ x~ 0) ,  the Taylor expansion can be used

to calculate f and g. The coefficients are given by

(fl)(3) - -j(5n~/6- /3) r (3
~

]

(2/3) (n_1/4) 
A (n) - 

f2 1 2m

- r(2m - 
.4n

6 
l 

, (A. 12)

- ~-j5nv/6 - 
~~ 

[3~]
(2/3) (n_3/4)~~ B (n) .[

~~
]

2m

4 n — 3 1
- -r~ 2m — 

6 
(A. 13)

where ~~(X ,~.i) is the generalized “tau” function :

r ( X ,u) ~ 
(
~ 1) fl 

, ~ > i (A.14)
n0 (n + u)

A1(n) = 1 , A
1

(n) = (n — 1)

A2(n) = 5 15n
2 

- 143n + 2~~ 85) / (2~ - 3
2)

BO (n) — I 
‘ 

3
1

(n )  = — 7 ( n  — 3/2)/48

32 (n) (49n 2 + 364n + 39849/16)/(2~ - 3
2)

When x is large , and positive , residue series can be used to compute
(n) (n)

f and g :
—jSir/6

~ 
(r ) exp (r - x • )

f
( f l )

( )  = ej(2+7n~~
’6 ~ Ai’(— r ) (A.15)

p—i p
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(n)
(X) - ej7~~

/6
~~ 

(-r~)~~~ exp(r~ • x  * e~~~~~
6) 

(A. l6) 
.

where Ai(— r )  — 0 and Ai’(—r ) 0 for p 1,2,3 .

I
I

: 1

I 
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APPE~TDIX B: DEI~IVATION OF FOP.~ULAS (44) and (45)

Here, we consider only the derivation of the asymptotic expansion of

4 for a circumferential magnetic dipole. In this case, ~ may be written

as: _ jk~z
e - SOc )

2 1 dk - 

2 (8.1)
(2 rr ) J~~~ Z

where
H~

2
~ (k ~)

S(k
~
) — ~~ e~~~ - (2) (B.2)

H (k~
a)

Applying the Watson transformation to (3.2),

~
) —j~~(~—ir)

S(kt) 
a - 

~C+D H~
2
~(k a) 

- 
e 

vir 
- dv (3.3)

- where C and D are shown in Figure 17. Or ,

~ cos v (r r  — ~) H~
2
~ (k o)

S(k
~
) i - 

(2) 
~ dv (3 .4)

~~ —‘~° sin ‘.~ii - H (k
~

a)

Substi tut ing the expansion

2 ~ —j’(~ -‘2~
rl)cos ‘ ( ~ — ~) — — i

3 ) ) e (3.5)
sin uir

i—i 1—0

where ~ and = 27r — 
~~, in (8.4), the result wi].l be:

2 
~~ r ~ H,~

2
~(k o) —jv (~~.+2~rl) 3 6S(k

~
) — — L. (2) • e - 

- dv
i—i 1—0 —

~~~ H,~ (k
~
a)

Each term of the above expansion is associated with a “cree ping wave”

travelling in a counterclockwise (I. — 1) or clockwise ( i — 2) direction

around the cylinder . Following the ra;? concept , each creep ing wave

--~~~~~~ -~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~ 1~~:J1~~~I~~ :L :~~~ _ _t_______________



- -

appears to be travelling along a specific surface ray . Now, as o a

(far zone) for each fixed v , we have [621

(2) 2 j(k —u n 12— Tr / 4)
R~ (k~~) - ____ - e (8 7)

On the other hand , it can be shown that the significant contribution

to S(k
~
) comes from a small neighborhood of k

~
a. In this neighborhood , where

k
~
a and v are large and close to each other (

~
k
~
a — 

~ ~~~~~~~~ 
the Hankel ’s

asymptotic expansion (3.7) is not valid any longer. In this case, it is

necessary to expand Bessel’s functions in terms of Fock—type , Airy functions ,

and w
2

( t) ,  and their derivatives (16]:

H~
2
~~(x) ~~— f w2 (c)  - 

1
2 14 t  w

2
(t) + t4 w~ (t)J ~ .~~~~~~~~ (3.8)

60m j
(2) ’  1 ~ 3 1 

*

H (x) - 2 ~~~~~t) + 
.. 2 t4 t w~ ( t )  + ( 6 — c  ) w ,( t )j  ÷
oOm

(3.9)
where

-‘ 1/3
m = , ~ — 

v — x (m is very large )

Inserting (3.~~) and the first—order terms of (B.S) and (3.9) into ( 3 . 6 )

and (B-i) , we obtain

- 

(~~)
2 

• e
j
~

/4 
- 

~~~~~~~ 

dk - e~~~~
1 

• - 

, 512

(B.10)

where

m (k
~

a/2)
~~

3

— k z + k~~ ,o 4- a(~ + 2~r l —
J.l Z i

— m(~~. + 2 -r l  — ~r / 2 )
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Introducing a new in tegra tion variable ~:

— k sin a (8.11)

— k cos a (8.12)

+ a(~~ 4 2~l - ir/2)]} (3.13)

we have: -

— k~~1 
cos(3~1 — a) (3.14)

where

A _~~2 + (p + a($~ + 2~1 - ~/2)])l/2

Now (3. 10) takes the following form :

- 

~~~ 
~~~~~~~~~~ - • e~~”~ • 

~~L 1L f da . e~~~~u1
005

~~
_8
u1)

a f0(~~1) 
(3.15 )

y is the path of integration in the complex a—plan e, which is shown in

Figure 18.

Now we deform the path of integration into the “steepest descent path ,”

SDP, passing through the saddle point of the phase of the integrand. Per-

forming the “saddle point integration,” we can derive the asymptotic

expansion of (B.l5) for large kR
~~
. The first order term is:

- ___ - e~~
’2 [

~~
]

1/3 
- 

~~ 
~~(cos 3 )

_4/3 
• 

C

(B.16)

wher e and 
~ils are the values of these para meters at the stationary point

specified by a —

5] . 

~~~~~~~~~~~~~~~~~~~~~~~~ -
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I m ( a )

~ ~~~~~~~~2 Re(a)

(fl

4 1

Figure 18: Steepest dEscent path (SD?) for integral (B.15).

52



‘ ~~~~~~~~
- ----~-~~~~~~~~-- - - ~~~ -~~~-- ~~~~~~~~~~~~~~~~~ - 

- — --‘ --- -

1 - 

Eqn (3.16) is the creeping~~ave representation of the far field . If the

cylinder is large (ka >> 1) and 
~j is not very close to ir , then only the

first term Ci — 0, 1 1) has the most important contribution to the total

infinite sum, and the other terms are not significant. Neglecting the other

terms , we obtain the result given in (44 and 45). It should be emphasized

that (44) and (45) are not valid when 3! is close to -r/2 (paraxial region),

because in this case , k~a is very small , and (3.7),  (3 .0) and (3.9) no longer

apply .

The other formulas can be derived in a similar manner .
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APPENDIX C: ASY~~TOTIC EVALUATION OF THE RADIATIO!T IITTEGrtAL

Consider the following double integral:

TJ (k) — f I g(x ,y) - dxdy (C .l)

where g(z ,y) is rather slowly varying, and ~(x ,y) has a stationary point

(x ,y) inside domain D. The objective is to derive an asymptotic expansion

fo r (C-i)  when k is large .

Suppose g and ~D have the following forms around (x ,y ):

( X~~l ~~
—1

g (x,y) — Cx - x )  (y — y3) g1(x ,y), X 0, u 3, > 1
ç ( C . 2 )

L~~~

x

~

7) = ~(x ,y ) + a~~0(x 
- x5

)~ (1 + P (x ,y) ] + b0 r (Y — ~~)[1 + ~~~~~~~~

N. Chako (48] has derived the following asymptotic series for U:

U Ck) - 3~ p ,qaQ : : 1 2 1  ~~ 
- _____ - 

(C.3)

(ka30)

where

B . 
1 

• 
1 • jk~(x ,y)

0 X3/~S (3-r ) C 3 3

(ka
~~ 3) (kb 0 . . )

- exp(j (\ 0 ÷ p ) / ( 2 5 ) ]  , a2 - axp~ (j-r/ (2f)]~~(~0 + ~) ( 2 ~ + e~Th 
- 2d i }

+ ~)/ (2~ ) ]  
‘ 

~2 - e~~
{
~i /(2~)i[(uo + q ) (2 r  ÷ e~~~) - 2~~.)
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- X
3
):(Y -

P(x,y) — a~~(x — x ) (y — y )
m+n>1.

m nQ(x,y) — L b_ ( x — x )  (y — y )

- 
a 0 b

A00 g00 ‘

1’ h ‘1
01 O1~A31 g01 — g 00~~~— + C ~0

+ l )  -
~ J

In order to apply this procedure to the integrals of the type (5.4) for

— which
- 

- 4(x ,y) — —~ (~ ,3) — —(R + 
~~~) 

(C.4)

g(x ,y) F(~ ,3 , P) Q (C.5)

When F is one of the components of ~ (l — ~~) ,  one should first determine

the stationary point of ~~, wherein its first—order derivatives vanish. The

second step is to compute the various order derivatives of ~~, J, R, . .  - ,at

this point , and then insert them into (C.3). We just give the main formulas

needed for these derivat ions .

Suppos e the surface of the body , 
~~~~~~~~~~~~~~~~~~ 

is parametrized by a geodetical

pola r coordinate system. As discussed previously , in this system , is the

arc length of the surface geodesic connecting the pole Q to ~ (a ,3 ) ,  and 3 is

the angle between the geodesic and some fixed reference geodesic at Q

(Fig. 15).

The elemant of Length in this system is given by

2 2
- ds — da + C(~ , 3) d B ’ (~ .6)
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Let us denote dx(u )/ du by ~~; then -ie ~iave the fo1lo~71ng set of relations

- 
—3 G/~a 

• + ~~~~~ 
~~ 

+ L
38 x

3 
(C.7)

-ø -
~~ ~G/~3 a - ’-

— + L x
3 

(C.8)

~ 
(C.9)

and
where — — 3 are unit vectors along 3 Coast. and ~ const. curves ,

and .4.

(C.1O)
v
I
~

is the outward unit normal to the surface. Another quantity of interest is the

“geodetical cu rva t ure” given by I 
-

- 
- 

= (C.l1)

Using the above relations , we can derive the following expressions

-..,hich ~~1ds true at tha stationary point :

— 0  (C.12)

~~~— — R x3 0 (C.13)

(C. 14) H
where I/<~~ and

.3
— 2 ‘ 

— —L
3
~ /o~ (C-iS )

-I
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— .2- + 3G/ 3~ + 
32C/~~

2 
— (C 162 A 2•~3~~a R

— 
3~G/38 ÷ ~.Q. . - 1 + L~° • + - ~~~ (C 17)

2R 33 3a 4G 2 3a38 *

where o is the radius of curvature of the geodesic.

Equations (C. 12) and (C .l3) determine the location of the stationary

point. At this point ?~. = ~~~~, which , if we introduce the ray concept.

tells us that the surface rays leave the surface at the “point of diffraction”

tangentially. Equation (C.14) indicates that the stationary point is of

second order , so that we need higher—order deriviciesofd~~�iase. L~~, L~~

and L33 are coefficients of the second fundamental form of the surface - -

evaluated at the stationary point. They are defined as

-ø — 

~S -ø 
~8 

-.
L — x~7~ 

• 

~~~~ 

L — x 8 
* x3 , L — x33 

- x3

• Using the relationships given above, one can find the expansion co-

efficients 3k1’ a , bnn and Apq in (C.3). Zeroth and first—order terms in

(C.3) give us formulas (5.6).

A few remarks should be nade concerning the expansion presented in

(C.)). First of all, (C.3) iS a doubly infinite series ; therefore , for  each

fixed power f a finite number of terms should be summed up. The

coefficients of various terms in these finite sums , rtamelv A ‘S , becomepq

very complicated when ? and ~ are greater than 0 or 1. Another difficulty with

this series is that -~hen the stationary point of the phase is of an order

higher than 1, the difference between the order of the successive terms

(when they are ordered according to the descending power of k) becomes very

0 /

~~~~~~~~~-~~ - -~~~~~~~~
_ --.-- - . ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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small , and consequently the infinite series converges very slowly . For

instance , in our problem where 5 — 3 and r 2 (stationary point is of

second order) , sometimes the difference between the orders of successive

terms is k 116, which indicates the weak convergence (in an asymptottc

sense) of the expansion in the cases where the frequency is not very large.

I
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