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I. INTRODUCTION

The contract entitled, "Investigation Of Electromagnetic Coupling
Through Single Or Multiple Apertures Into Cylindrical Structures" (NOOOl4~
75-C-0293) was awarded to the University of Illinois for one year, starting
December 1, 1977. The contract was later exténded to Feb. 28, 1979 at no

additional cost. This is the final report of the contract.

II. PERSONNEL
R. Mittra, Professor of Electrical Engineering, Principal Investigator.
S. W. Lee, Professor of Electrical Engineering.
E. K. Yung, Research Associate.

S. Safavi-Naini, Graduate Research Assistant.

ITI. TECHNICAL RESULTS
During the present contract year, we have studied the following
two technical problems:
(a) Penetration of an electromagngtic wave into a cylindrical
cavity and the current induced on a wire inside. The tech-
nical details of this work are described in Attachment A.
(b) Electromagnetic radiation from a source located on a

smooth conducting surface which is detailed in Attachment B.
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PENETRATION OF AN EM WAVE INTO A CYLINDRICAL
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ABSTRACT

This paper addresses the problem of computing the current induced
in a thin wire located inside a cylindrical cavity with a circumferential
slot when the cavity is illuminated by an incident plane wave. The calcu-
lation is carried out in two steps. First, the problem of penetration
of the incident field into the cavity is solved by the method of moments
under the assumption that the presence of the wire inside the cavity creates
little or no perturbation of the interior field. Next, the induced current
on the wire is calculated by the following two methods: (i) use of a simple
analytical formula derived from the application of the Wiener-Hopf techniques
to the finite wire problem; (ii) numerical solution of an integral equation.
Extensive numerical results for the induced current are presented. It is
found that the current is sensitive to the cylinder radius, the cavity
height, the frequency of excitation, and the wire location, but is relatively
less sensitive to the variation in the slot length. In addition, the induced
current on a wire inside the cavity can be much larger than its counterpart
in free space illuminated by the same incident plane wave at frequencies

where the cavity is near resonance.
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I. INTRODUCTION

The penetration of an electromagnetic wave through an aperture into
a cylindrical structure is of current interest because of its application
to EMP, to EMC, and to biological studies. As early as 1949, Sommerfeld
[1] studied the problem of an infinitely long circular cylinder with a
longitudinal slot, illuminated by a normally incident plane wave. Using a
Fourier analysis approach, Sommerfeld reduced the problem to a system of
infinitely many linear equations, but declared resignedly, "We can do
practically nothing with the problem." Silver and Saunders [2] used the
saddle-point integration method for the inversion of Fourier transforms
and extracted the far field of Sommerfeld's problem. Hitherto, a number
of extensions along this line of work have been reported [3], [4]. With
the advent of high-speed digiral computers, Sommerfeld's penetration
problem can now be solved by numerical means [5], [6]. The penetration of
an EM wave into the cylinder through a rectangular aperture was first
carried out by Safavi-Naini, Lee and Mittra [7], [8]. Their problem has
a more complex geometry than Sommerfeld's in that two conducting plates
are introduced inside the cylinder at z = th to form a cavity, as illus-
trated in Figure 1.

In the present report, and extension of the penetration problem of
Safavi-Naini et al. is investigated; in which a thin wire is added inside
the cavity and the problem is to determine the current induced on the wire.
The wire is oriented parallel to the longitudinal direction of the
cylindrical cavity. If the slot in the cavity wall is also longitudinal,

there is little induced current on the wire. Hence, we concentrate on
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Figure 1.

An infinitely long cylinder with a cavity and a

longitudinal slot, illuminated by an incident plane wave.




the more interesting case, namely, the slot which is circumferential on the

cylindrical cavity wall. The composite geometry of the present problem
is sketched in Figure 2.

Due to the thinness of the wire, it appears reasonable to assume that
the presence of the wire does not perturb the field generated inside the

cavity. Thus, the problem under consideration can be solved in two steps:

(A) Determine the field E inside the cavity as if the wire were
E absent.
(B) Using E as an incident field, determine the induced current
* I(z) as if the wire were situated in the free space.
We emphasize that the above two-step approach is an approximation. The
exact degree of approximation will be studied in a separate report.
The plan for the present report is as follows: In Section II, the

problem of Part (A) with the wire absent is formulated and a system of

infinitely many linear equations derived. The procedures are briefly
described below:
1. The unknown electric field across the aperture is represented

by a Fourier series.

2. Applying the equivalence principle, the aperture is shorted by
a perfect conductor. The effect of the original aperture field
is accounted for by introducing equivalent magnetic currents on

both sides of the shorted aperture.

i 3. Inside the cavity, the magnetic field produced by the equivalent

’ magnetic current is determined via a magnetic vector potential.

The resultant field is given in the form of a doubly infinite

series of eigenfunctions of the cavity.
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k Figure 2. An infinitely long cylinder with a cavity and a wire
3 inside, illuminated by an incident plane wave through a
4 circumferential slot on the cavity wall.
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4. Exterior to the cavity, tﬁe magnetic field is also generated
via a magnetic vector potential, which is partitioned into three
components to represent the incident field, the reflected field,
and that produced by the equivalent magnetic current.

5. The coupled equation from which the unknown aperture electric
field can be determined is developed by enforcing the continuity
of the tangential magnetic field across the aperture.

6. The coupled equation is solved numerically by the method of
moments [9].

In Section III, the current induced on the wire inside the cavity
when it is illuminated by the field E computed in Part (A) is derived.
Since E is given in terms of a doubly infinite series of eigenfunctions
of the cavity, it can be interpreted as a spectrum of plane waves. As a
result, the induced current I(z) can be determined by superimposing the
currents due to each component of the plane wave spectrum. The current
induced by each componént of the spectrum is determined by one of the
following two methods:

1. The standard numerical (moment) method based on an integral

equation formulation [10], and

2. the simple approximation formula recently developed by Chang,
Lee, and Rispin [11], [12].

It should be noted that both of the above methods apply only if the incident
plane wave is homogeneous. Iﬁ the present problem, however, the field E
inside the cavity consists of both homogeneous and inhomogeneous plane

wave components. Hence, the above two methods have to be extended by

analytical continuation to cover the case of an incident inhomogeneous

plane wave.
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In Section IV, possible difficulties of numerical computations of

the equations derived in Sections II and III are considered. Techniques

for improving the convergence rate of the summation procedures are

presented in Section IV. Extensive numerical results are presented in

Section V.
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II. FIELD IN THE CAVITY

In this section, the field E excited in the cavity with the wire absent
is derived. The geometry of the problem under consideration in this section
is illustrated in Figure 2, with the wire removed. The conducting circular
cylinder is infinitely long and is of radius a. A cylindrical cavity is
formed inside the cylinder by two conducting plates located at z = th.

The cavity is coupled to exterior excitatioms through a circumferential
slot on its cylindrical wall. The rectangular slot is of dimension
2c x 2d and centered at (x = a, y = 0, z = 0). The width of the slot is
assumed to be small in terms of wavelength, i.e.,

2kd << 1 . (2-1)
The structure is illuminated by a normally incident plane wave of unit

magnitude described by

Ei ;eikx .
&t ~ 1 ikx (2=2)
=y ;]- e

where the time harmonic factor exp(+jwt) has been suppressed and
ns= ¢G7E'- 120 ™ is the intrinsic impedance of the free space.

The symmetry of the configuration, together with the plane wave
excitation given in Eq. 2-2, dictate that the tangential electric field
across the aperture be an even function of ¢. Furthermore, the narrowness
0f the slot enables us to assume that the aperture field is approximately
constant in z and is z-directed. Thus, the tangential electric field across

~

the aperture E; = Ez z can be represented by a Fourier-cosine series:

E, - uzo E,cos Fu¢; (9] < 6> g} <4 . (2-3)
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In accordance with the boundary condition that E, vanishes at ¢ = t¢0(¢0 = c/a),

{Fu} are found to be

r, - Q%—I-M e 0h P ey (2-4)
0

Due to the assumed direction of the aperture electric vector (or the
equivalent magnetic current), it can be shown that a field TM with respect
to z is sufficient torepresent the total field inside the cavity. Such

a field can be generated via a z-directed magnetic vector potential

A= Azz. The relations between Az and the field components are

%A 34
R o =1_2

1

Eo = JoiEe Fp3z

2

s %A, 1 %A

E —tie n e NS

¢~ jwue pdgaz ° u 3

E, = jwue i kJ 3 - O (2-5)

Inside the cavity, Az is a linear combination of all possible elementary
wave functions that are solutions to the scalar Helmholtz equation [13].

It assumes the form

A, (p,0,2) -mznZO Ame(an)cos mp cos a2 (2-6)
where
2 2 2 2
g Jﬁ: - WS o
n
/ 2 2 2 2
-j an -k ’ k™ < Qh ’ (2'7)
and
an--‘-'% . B = 01,200 . (2-8)
8

e - — .
o . - o R, P B S
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The constants {Amn} are unknowns, and {Jm} are the m'" order Bessel
functions of the first kind. Note that with the choices of the
eigenvalues {an} in Eq. 2-8, the boundary conditions that Ep and E¢
be zero at z = th are automatically satisfied.

The constants {Ahn} in Eq. 2-6 are unknown quantities, and by
enforcing the conditions that Ez be zero on the cylindrical wall and
equal to E_on the aperture, they can be evaluated in terms of {Eu},
the expansion coefficients of Ea given in Eq. 2-3. First, we evaluate

Ez (referring to Eq. 2-5) at p = a to obtain

z Z Y A J (y_a)cos m$ cos oz

jwue n,0=0 nmma 'n

= Q(¢,2) Z E cos E ¢ : o]l <7, |z] <h (2-9)
u=0
where Q is the characteristic function of the aperture:
1; (ol <6y » 2]l <d ,
Q(d,2) =
0 ; otherwise. (2.10)
We recognize that Eq. 2-9 is a standard Fourier-Bessel series with

unresolved coefficients {Amn}' Hence, (Amn} are determined by standard

procedures with the results

u
jbwue cos mp. sin o d o (-1'Tr
PN 0 L.y g —bs (2-11)
- € e ot YZhJ (v _a) =0 o P2 - mz
n nn m T H H

m,n = 0,1,2,...

in which em is the Neumann number, defined by

2 ,m=0
Gm' %
l1,m#0

et
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In the region exterior to the cylindrical structure, the symmetry
of the configuration again leads to a TM field with respect to z. Thus,
the exterior field is also determined via a z-directed magnetic vector
potential K+ = Yz. For reasons which will be obvious later, Y is
partitioned into three wave funcitoms: Y = Wi + ¥° + ¥, The first of

these Wi represents the incident plane wave; it is independent of a and

is given by
¥ Z 1—-J (kp)cos mp . (2-12)

The field components of Yi are given in Eq. 2-2. The second wave function
yr represents the reflected wave when the aperture is closed by a perfect

conductor; it assumes the form:

© m J (ka)
yrad2 y L ( '%'T"" 12 (kp)cos mb (2-13)
@ w0 m amz (ka)}] ™

where {Hiz)} are the mth order Hankel functions of the second kind. The
third wave function ys corresponds to the field produced by the equivalent
magnetic current. In contrast to both Vi and Yr, d depends on a and is

represented by a continuous spectrum of cylindrical waves:

¥ = ] cos m f” F@E P el d@ (2-14)
m=0 i

where {Fm} are unknown functions, and

% g TR S
k [+]

|v

Y- : (2-15)
-3fa -k > 2 a2

To determine {Fm}, we first evaluate E: at p = a to obtain

10
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Z cos m v’E_ (@ (ya)el ¥
m=0 g m m

= Q(¢,2) X E cos T ¢ ¢ ael £% 5 Il c@ (2-16)
H=0
Then, we multiply both sides of the equation above by cos n$, n = 0,1,2,...,
and after that, integrate the equation over the entire domain of interest.
By invoking the orthogonal properties of {cos n¢}, {Fm} are determined

in terms of {Eu}=

j2wue cos m¢0 sin ad « (-1)“F
F (a) = ) E —5—-—“2 ; (2-17)
s ﬂ oy H (ya) u=0 H Pu -m

o= 051,2,000 6

With {Amn} and {Fm} defined by Eqs. 2-11 and 2-17, the requirement
that the tangential electric field be continuous across the aperture is
automatically satisfied. However, these definitions, of themselves, do not
ensure the continuity of the tangential magnetic field across the aperture.
To enforce the continuity of the magnetic field, we proceed as follows: In
the region exterior to the cylinder, the three partial magnetic fields
H;, H;, and H; (H+ is immaterial) corresponding respectively to the three
wave functions defined in Eqs. 2-12 through 2-14 are

- 3 i
Hy jwuz u'J(litp)coa’otmi’ s

r 2 w 1 Ik

(2)
a——— -  ——— H '(kp) cos m¢ n
v Jw m=0 em H;z)(ka) -

B = = z cos md YF (a)H(z)TYo)ejaz do . (2-18)

¢ m-O

11
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Inside the cavity H, is given by

¢

.-—— mzngo Yo J;(an)cos mp cos @ z . (2-19)

i

Hence, the desired continuity of the tangential magnetic field across

the aperture now reads

. (ka) (2)‘(ka) cos md

1— J'(ka) -
Z m (2)(ka) m

jmv m=0 m

- %- z cos md J YFm(c:t)l-l‘E‘Z)'(Ya)ejc"z da

-C0

-1 E { Yol 3 (Y a)cos mp cos o z ; (2-20)
m,n=0

=

|6] < 09, 2] <4 .

The above equation can be simplified by recognizing that the term in the

bracket on the LHS is the Wronskian of Bessel functtons:

J (ka)
iy "' (ka) = mkal " (ka)

By substituting the above result into Eq. 2-20, it becomes

jaz

Z cos md yF (a)H(z)'(Ya)e do

m=0 Ciie

2 Z cos md Y A 3" (Y a)cos a2
m,n=0

4 v ]mcos md |
. = i el <o, l2l 24 . (2-21)
TWa =0 Em“(:.) (ka) e

12

- ——
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Applying the method of Galerkin [9], the preceding equation can be solved
numerically. First, we integrate the equation with respect to z over the

aperture; the result is

oo
] cos m FZ—M YF (u)H(z)'(Ya) da
«-00
zwz 2 sina d
= cos m¢ Y A J'(y_ a)
ot o nmm 'n
£ v 1
-y leemag 5 el s, - (2-22)
m=0 ¢ H “’(ka)
mm
Next we multiply both sides of the equation above by cos v¢, v = 01,2525

and the integration of the resultant equation over the entire domain of

interest leads to

Ll r 2in od YFm(a)H(Z)'(Ya) do

.. a m
@ sin o d
- s L
Il 8y =5 Yhmla(ry®
m,n=0 n
. g
-id oY Sacoma B b ¥ L (2-23)

TE 20 €a a‘ff) (ka)

where 8y stands for

sin(m - v)¢0 sin(m + V)é,
gmv = + . (2-24)

m-V m+V

Then, we replace {Amn} and {Fm} in Eq. 2~23 by their definitions in Egs.

2-11 and 2-17. After some algebraic manipulations, we arrive at

5 VR ey R .
uzo EU[AW-O-AW D\J,v S P (2-25)
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.....

u = (2),
A(l) . (-1)'T 8 <08 m¢0 I@ sin® a d Hm (ya) 3
UV T 2

2
m=0 em(Pu -m) 0 a“Y H

M : -
(-1) I‘u © g,,c08 My = sin” ad In(v@)
h

2 = - 7 2
uv = y ’
m=0 em(I'u - m ) n=0 anYn Jm(yna)

m
=id 5 __3_§m2___
B, "3 )
t k“a m=0 ¢ H_ (ka)

Equation 2-25 is the system of infinitely many linear equations that

we intended to derive. 1In general, this system of equations cannot be

? solved. However, if the series in Eq. 2-3 is truncated at a finite number

E N, the system would become a system of N x N algebraic equations, with

which the unknowns {Eu}, u=0,1,2,...N, can be determined by solving the
equations simultaneously by standard procedures such as the method of
Gaussian elimination. After {Eu} are determined, it is a matter of direct
substitution of {Eu} into Eq. 2~5 to obtain the field inside the cavity.

For example, the z-component of the electric field Ez is given by

4 Th =0 u
© sino d cos &z ® cos mp cos mp. J (Y p)
$ n n — O m o . (2-26)
g |
n=0 nn m=0 em(I'u m) Jm(Yna)

p<a, [¢f <m lzf 2 .
This completes our derivation for the field inside the cavity due to the

incidence of Eq. 2-2 in the absence of the wire.

14
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III. CURRENT INDUCED ON A WIRE IN THE CAVITY

In this section, the current induced on the wire inside the cavity
when it is illuminated by the field E is derived. We attack the problem
by assuming that the presence of the wire does not perturb the field
generated inside the cavity. It enables us to use E as an incident field
and to determine the induced current I(z) as if the wire were situated
in the free space.

With reference to Eq. 2-26, we note that the electric field tangen-
tial to the wire Ez is given in terms of a doubly infinite series of
eigenfunctions of the cavity. The series can be interpreted as a spectrum
of plane waves. Explicitly, Ez is rewritten as

E,= 1 £,(p,0) exp(+jk cos 8 z) (3-1)

n-—w

0 Cas- B W, 12] €8 4

where
-1 (am
Gn = cos (kh s (3-2)
and
u
® (-1)'T_sina d ® cos mp cos mp, J (Y p)
e =21k Lo 2 &= * (3-3)
u=0 n w0 el Sl I, (@)

We interpret each component of the field in Eq. 3-1 as a plane wave in

free space propagating in the direction Bn with respect to the z-axis.
In this report, two methods are used to compute the current induced

on the wire due to each component of the plane wave spectrum described

in Eq. 3-1. The first of these methods is based on ar integral equation

formulation:

15




2 Izo+hw

Iél)(z')l((z.z')dz' - - jlmmefnejkc” 0P . (38
zO-hw
The above thin wire scattering problem has been thoroughly studied in

recent years, and a number of efficient programs to compute the unknown

(1)

2 have been developed. The program developed by Butler [10],

current I
which is based on solving Eq. 3-4 by the method of moments, is adopted
here. Applying the principle of superposition, the induced current I
is given by
©
1) = § £6.01P@ , (3-5)
n=—o
where p is evaluated at the location of the wire.

As is well-known, using moment methods to compute the current on a
wire is extremely time-consuming when the wire is of the order of several
wavelengths. An alternative method that is suitable for long wires is
to use the simple approximation formula developed recently by Chang, Lee
and Rispin [11], [12]. The techniques used to derive this simple formula
are briefly described below:

1. Using a Wiener-Hopf method, the reflection coefficient from the
end of a semi-infinite wire illuminated by a plane wave of unit
amplitude is determined.

2. By considering the multiple bounces of the current waves, the
current induced on a wire of finite length can be expressed in
terms of two Neumann series involving the just mentioned reflection
coefficient. The series are then summed up into a closed form

to give the desired approximation formula.

16
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The induced current due to each component of the plane-wave spectrum is

(2)

denoted by In and is given by

) # R(T,h ~2') ; ;
In (z) = gC(ﬂ'-en) _R—('n_,-Z_l':)— + A(ﬂ'-en,hw-z )V (en.hw) U (hw-z )

(~ R(T,h +2')
* LC(en) R(T,2h_)

+ A(On,hw+z') \' Cw-en,hwi]U (hw+z')
+ V(en,z') . (3-6)

where z' = z - Zys In the above formula, V represents the current induced
on an infinitely long cylinder by a unit plane wave:

e ]
- exp(-jkcos an )

¥0,2). =+ n sin 6 W(kcos 6 ) °* (3-7)
n n
in which W stands for
o (2) 2
W jﬂJo(kawsin en)H0 (kawsin en) § (3-8)
where JO and Héz) are, respectively, the zerath-order Bessel function of

the first kind and the Hankel function of the second kind, and a, is the
radius of the cylinder. Another universal function U is found in the
simple formula; it represents the current on an infinitely long center-
fed antenna generated by a unit voltage impulse. For a thin-wire antenna
and for a sufficiently large kz, U can be accurately approximated by

exp(-jk|z'|) -
L ey n Ta(k[z']) - j7/2 - 2n(ka) - Y ° k=0

S
where y = 0.57712... is the Euler's constant. The reflection coefficient

R in Eq. 3-6 is defined by
jv
n en Lo 0
R(6,z) = - — Zn(kawsin —2) +Y + j-z- + . P El(jvo)] 4 (3-10)

17




where

= ' -
Ve kz'(1 - cos Bn) 2

and El is the exponential integral. Finally, A and C are, respectively,
shorthand notations for

A= R(en’Zhw) - R(On,hw+z') A (3-11)

and

c

i R(Tr—EE,Zhw) \ (en,hw)R(Tr,Zhw) U (Zhw) = R(en,2hw) \ (w-en,hw)

2
1 - [R(m,2h ) U(2h )]
» - (3-12)

2
Again, the total induced current is obtained by superimposing all Ii )-

As is illustrated in Figure 3, the electric field of the incident plane

wave is in the 6-direction and has an amplitude fn/sin en . Therefore,

(2)

I is related to In by
> 12 ()
I(z) = n_gm fn(p,¢) —sﬁTn ’ (3-13)

where P 1is evaluated at the location of the wire.

1)

n

(2)

A careful scrutiny of the techniques in deriving both I and In

reveals that the two methods apply only if the incident plane wave is

homogeneous, i.e., cos2 Gn.§ 1 or real incident angle Gn. In the present

T

problem, however, the field E inside the cavity consists of both homo-

geneous and inhomogeneous components. Hence, both methods have to be

P Ve

extended by analytical continuation to cover the case of an incident

inhomogeneous plane wave.

(1)

Let us first consider In

which is obtained by solving Eq. 3-4.

Note that Eq. 3-4 is developed by equating the axial component of the

18
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Figure 3. A finite length cylinder illuminated by an incident plane
wave at an oblique angle.
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electric field on the wire and that of the incident field. The tangential
component of the incident electric field is fnexp(+jkcos an) which
remains valid even in the case when cos2 en > 1, Thus no modification

is necessary here, although allowances in the actual computer programming
must be made to accommodate the rapidly oscillating nature of

exp(+jkcos an) when cos en is large.

-

(2)

n

Next, we have to extend the formula of I in Eq. 3-6. In the case

of an inhomogeneous plane wave, sin en is pure imaginary, and may be

calculated from !

/ 2 ; 2 ! ;
sin en *j cos en -1 l $ cos en > (3-14) i

The question is then: 'Which sign in Eq. 3-14 should be used in the

calculation?" Consider an inhomogeneous plane wave propagating in the

X - z plane:
-jk(x sin 6n+z cos en) 2
E =¢e ; OB O ] s (3-15)
y n i
In order to satisfy the radiation condition, the field must decay (instead
of grow) exponentially as x > +©. This imposes a condition on sin Gn, viz.,

Im(sin en) < 0. (3-16)

Thus, the lower sign (minus sign) in Eq. (3-14) must be used in the

(2

calculation of In ) from Eqs. 3-7, 3-8, 3-10, and 3-13. Furthermore,

W in Eq. 3-8 becomes

2 2
W= ZIO(ka;Vcos en-l)Ko(ka Jcos en B 1) e (3-17)

where IO and KO are, respectively, the zeroth order modified Bessel functioms.
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IV. NUMERICAL COMPUTATIONS

As it stands, the numerical computation of each element of the system
of linear equations in Eq. 2-25 is extremely time-consuming. The
summation of the ratio of Bessel functions often presents another problem
because both the numerator and the denominator could exceed the range of
the computer and yet the quotient is still not small enough to warrant
the termination of the summation process. In this section, a technique
to circumvent the above difficulty is presented. And, at the same time,
it significantly improves the rate of convergence. To best illustrate
this technique, the evaluation of A(l)

uv
Besides a multiplying constant, A5$) is rewritten below with the

is discussed in detail.

order of summation and integration interchanged:

(2
2 © g cos mp, H “"(ya)
1) = ’ sin_ad my 0 & da . (4-1)
0

azY m=0 em(Fi - mz) HLZ)(Ya)

Because of the branch point o = k, we partition the above integral into

two parts:
(2),
(1) k sin2 ad e 8y ©OS m¢0 Hm (va)
' = 0 o 0 e (2 - a2 82 (va) i

G i m= nu m - Y
1

sin2 ad 1 gmvcos m¢0 Km(ra)

= 7 3 2. K (ta) B e

¥ "aT m-Oem(I‘u—m)m

where {Km} are the mth order modified Bessel functions and T = /az - kz.

Note that both integrands above have a non-integrable singularity in

the neighborhood of the branch point. Hence, both integrals must be

further partitioned such that the integration of a small region around

21




the branch point is deliberately isolated. Each of the partial integrals
would be treated individually in the subsequent paragraphs.

The first integral to be treated is

e
I -I sia MY e de. (4-3)
1 2 H
0 ey

where § is an arbitrarily small number and ZB represents the summation of
Hankel functions. By invoking the recurrence relationship between the

Hankel function and its derivative, ZH becomes

; B e e oo A
(u) = -G —Fo— + G =gl & 1 4=
H ov H(SZ) (a)" ‘aego W H(Z)(u) u
m
where u = ya and
g_ cos m
- (2’ s m=s 0,125,040 . (4-5)

- rsm(I"z1 - a%)

Since the real and imaginary parts of ZH have different rates of convergence,
they are treated independently as follows: First, by explicitly writing
(2)

H ' as J_ + jY , the real part of 1y reads

Jo(u)Jl(u) + Yo(u)Yl(u)

Re{] .} = -G
- i Jg(u) + Yg(u)

Y Y
+ 2 va iu)i‘:l(u) + m(“)ﬁm;l(“) GO

wel Ji(u) + Yi(u)

Note that for a given u, the large-order approximations of each term of

the sum can be extracted, which are

lim Jme-l 4 YmYm-l Bl o B 4=7
o ol b x: % S
m m
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and
sin 2m¢o
lim G = ~ cos Vp, —r— . (4-8)
mv °m3

By adding and subtracting the large-order approximations from each term

of the sum, Eq. 4~6 becomes

JoJl + YOYI ® JmJ 1 + YmYm-l v
Re{lplt =~ Gy =+ I (% o
J. + Y. m=1 J°o+ Y
0 0 m m
s cos \)¢0 sin ZMR +c:m v¢0 «E sin Zwo s
u 2 ‘] u 2
m m=1 m
The second sum can be evaluated analytically and the result is
© gin 2m¢0 2¢0 ¢
R AR f £n(2 sin -2~) at . (4-10)
m=1 m 0

The integral above is a thoroughly studied special function, known as
Clausen's integral [14]), whose value can be easily determined. The
remaining sum in Eq. 4-9 has to be evaluated numerically. However, as
compared with the sum in Eq. 4-6, which converges at a rate of m-z, the

modified sum converges at a much faster rate of m-a. Furthermore, in

evaluating the mth order Bessel function Bm (Bm = Jm or Ym), we can

apply the following recurrence formula:

2m
Bm+1(“) N Bm(u) — Bm_l(U) . (4-11)

However, as is well-known, we should use this recurrence formula with

extreme caution in computing Jm to avoid the so-called "propagation of
error"” when 2m/u > 1. In the actual computation, the total sum is broken
down into partial sums of 10, e.g., from n to n + 9. We first evaluate

J and J then, we apply the recurrence formula in both the forward

o+4

and backward directions to obtain the rest of Jm. Moreover, we terminate

23
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the summation by comparing the magnitude of the partial sum with the total
sum. In doing so, we avoid the danger of terminating the summation pre-
maturely in the case 2n¢o is a multiple of w (referring to Eq. 4-8).

As a final remark, when kaw >> 1, ZH can be approximated by

L =307 @ 5 ou>100 . (4-12)

On the other hand, no modification is necessary to sum Im{zﬂ} because
its large-order approximation is zero.
The second integral of concern is

2
I, = J“ EEEE—EQ XK(Ta) da , (4-13)
k+8§ ot

where EK represents the summation of the modified Bessel functions {Km}-

With the derivative of K_ written in terms of K and K ., Z reads
m m m-1’ “K

K. (V)
S R el R LS ki ) (4-14)
» 0y Ko (¥) ey . BV K_(¥) *3

in which v = Ta. Since the large~order approximation of each term of the

sum is
K (v)
lim ;'%v) +21-2 (4-15)
e 2 i
we evaluate ZK as
Z g Kl(v) - cos v¢0 ®© gin 2m¢0
K Ov KO(V) v =l mZ
® Km_1 & COS‘v¢0 sin 2m¢0
ol 05 UL okl e 5 . (4-16)
m=1 m m

The above formula is similar to Eq. 4-9; therefore, it is evaluated by

similar techniques. Furthermore, we extract the large argument approximation
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of ], which is
Tutv) = Lo (150) 1 > 150 . (4-17)
Substituting the results of Eqs. 4-16 and 4-17 into Eq. 4-13, we arrive at

w/d 2
12 = J g%—ﬂ ZK(Ta) da

kes O
@ (n+l)T/d 2
sin” ad| 1 oy
+ 21 f _"2_’[1 lptte) == ZK(lsoa da |
= an/d %
2
] + J (150) r sin_od 4o . (4-18) i
ma ° I

By two successive integrations by parts, the last integral above is

transformed into

2
r ﬂ%— dom &2 rﬂz—i B s dzci(21r) : (4-19) :
m/d - 27 3

. where Ci is the cosine integral [15].

3 The third integral of concern is P

3

k 2 +6 2
I-I 3—152—% ZH(Ya) do - rk gin_z_ﬁ;g ZK(Ta) do . (4-20)
kg @Y K 't

First, we examine the small-argument behaviors of both ZH and Zl(; they are

lim Re{] } = - % mzl mG

w0 %

E 3;:3 Im{ZH} e 24 £’y 3

} and
s J, e-2% T (4-21)
— K Vel ™
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It can be easily shown that the real part of I3 tends to zero, and its

imaginary part can be approximated by

™G s:l.n2 kd

T {1.} = 2 . (4-22)
w3 23k3 2n(av2ks)

Since the forms of A:‘\];) and Afl\z)) are similar, analogous techniques

are employed to evaluate A‘(J\z))- the result is (besides a multiplying constant)

’

2

2
N sin" a d o gin” a d
Afnz,) o ) ——pin] O 0 - ] e G— ot~ ;— £ (150)
n=0 €.%Yn n=N+1 ey n n
he3 L sin2 and
- @7 Laso ] 3 ,  (4-23)

n=N+1 n

where N = Integer (kh/m) and

J’l(u) cos \)4)0 ®© gin Zmo

2 (u) = - G -
J Ov Jo(“) u T mZ
© Jm—l(“) & cos \)¢0 sin 2m¢0
s 1 e | B - Bt ;
1) my Jm(u) u u m2
ok (4-24)
and
zI(u) N Go ilzzz 2 cos \)¢0 °° sin zmo
bl b O,
® Im_l(u) o cos u¢0 sin 2m¢0
£ S ST ~ul* % 2
m=1 m m
(4-25)
The last sum in Eq. 4-23 can be determined as follows:
® 2 2
sin and 1 2md/h N sin and
———— J £(0Y48 = | eyt (4-26
n=N+1 n 0 n=1 n

where f is the Clausen's integral stated in Eq. 4-10.
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V. NUMERICAL RESULTS

In determining the field inside the cavity with the wire absent,
the series representation of the aperture field in Eq. 2-3 is truncated
at n = N (the series contains N + 1 terms). We must first establish the

convergence of the aperture field with respect to N. The aperture fields

as calculatedwith N = 0, 1, and 2 are shown in Figure 4. We notice that

T —

the aperture fields as computed by N = 1 and that by N = 2 agree reasonably
at the main lobe but not so well at the side lobe. For many practical

cases, the three-term expansion N = 2 is generally sufficiently accurate

for computing the aperture field.
An indication of the accuracy of the field E inside the cavity is
how well does E satisfy the boundary condition on the cavity wall (including

the aperture). In Figure 5, Ez as computed from Eq. 2-26 is plotted as a

function of ¢. In the aperture defined by [¢[_§ 57.29°, the calculated
Ez agrees extremely well with the two-term expansion of the aperature field
calculated from Eq. 2-3. It drops to less than 0.01% of the aperture . i
field on the wall where Ez should be ideally zero. Also shown in Figure 5 |
is Ez at points just behind the aperture, p/a = 0.995. The variations

of Ez with respect to z at p/a = 0.0, 0.5, and 0.8 are sketched in Figure 6.

e

As a function of decreasing (p/a), E, decreases rapidly from its value

] in the aperture, while it increases at an even faster rate from zero omn
the cavity wall toward the center of the cavity. These features are
illustrated in Figure 7 where Ez is plotted as a function of p at z = 0.0
and z/h = 0.3.

Part B of the problem is to compute the current induced on the wire

inside the cavity. As mentioned in previous sections, the simple formula
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Figure 4. E_ in the aperture as a function of ¢ with N as
a parameter. The input data are a = 0.3\, c = 0.3},
d = 0.015A, h = 0.6A.
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Figure 6. E, inside the cavity as a function of z with (p/a)
as a parameter. The input data are a = 0.3,
¢ =0.3\, d = 0.015A, h = 0.6\, ¢ = 0.
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Figure 7. E, inside the cavity as a function of p with (z/h)
as a parameter. The input data are: a = 0. 3,
c = 0.3\, d = 0.015\, h = 0.6A.
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developed by Chang, Lee and Rispir [8] must be extended to compute the
current on a finite wire due to an incident inhomogeneous plane wave.
Since the method of moments does not require any modification for
handling the case of an inhomogeneous incident wave, it provides us a
verification of the extended simple formula. The comparison of the

induced currents on a wire in free space due to a plane wave of unit

e —— ————

strength as computed by both methods is illustrated in Figure 8, and we
notice that the results are in reasonable agreement. Now, we may apply }
this extended formula to compute the induced current on a wire inside

the cavity. In Figure 9, the current as calculated bv the simple formula
is compared with that obtained by the method of moments. Again, the
agreement between the two results is acceptable. It should be noted

that the current inside the cavity is normalized with respect to the
center current on a wire of the same length in free space. Since the

convergence of the moment method must be established on a case-by-case

basis, the simple formula is used hereafter to compute the induced current .i
even in the case where the wire is as short as 0.4 wavelength.
Although we have already established that the three-term expansion :
is usually adequate to represent the aperture electric field, it is still %
appropriate here to examine the convergence of the current induced on a
wire inside the cavity with various numbers of expansions. In Figure 10,
the induced currents as calculated with N = 0, 1, and 2 are sketched.
We see that, as far as the induced current is concerned, the two-term
expansion (N = 1) is sufficient.
Inside a given cavity, it 1is expected that the induced current on

a given wire with its position fixed would increase with the enlargement
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Figure 10. Induced current on a wire inside the cavity as a

function of z with N as a parameter. The input
data are a = 1.0A, c = 0.6A, d = 0.015A, h = 2.2A.
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of the length of the slot 2¢c. The induced current at the center of the
wire does increase with c when ¢ is relatively small as compared with
the radius of the cavity a. The center current acquires its peak value
when c/a is about 0.9 and begins to decrease thereafter. These charac-
teristics are demonstrated in Figure 11.

In Figure 12, we show the center current on the wire as a function
of a, 0.25 < a/\X < 0.8, with the other dimensions fixed. We observe that
there are three peaks. The first of these peaks corresponds to the
resonance at which Jo(Yoa) = 0. The second and third peaks correspond
respectively to Jl(Yoa) = 0 and JO(Yla) = 0. It should be noted that the
resonances would occur more often beyond the range of Figure 12, and
numerical solutions for large a would not be reliable.

The center current on a wire as a function of the length of the
cavity 2h with other dimensions fixed is plotted in Figure 13. Two
peaks are observed in Figure 13. The first peak is related to the
resonance corresponding to Jo(Yla) = 0, but we are unable to analyze
the nature of the smaller peak at h = 1.02A.

Finally, we examine the variation of the induced current with respect
to the frequency of the incident plane wave. The induced currents at
representative frequencies are sketched in Figure 14, which clearly reflects

the alteration of the electrical length of the wire.
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Figure 11. Induced current at the center of the wire inside the cavity
as a function of slot length 2c. The input data are:
a=1,d=0.015, h = 2.2, freq. = 0.3.
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Figure 12. Induced current at the center of the wire inside the
cavity as a function of cylinder radius a. The input
data are: ¢ = 0.3A, d = 0.015A, h = 0.6\, h = 0.2A,
p/a = 0.1. w
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ABSTRACT

The problem of radiation from sources in the presence o:f
smooth, convex, impenetrable objects is considered, and a brief
survey of various high frequency techniqes is presented. A
generalization of the geometrical theory of diffraction, and two
new techniques based on the spectral domain approach and an
asymptotic evaluation of the radiation integral for the surface
current, also are discussed. Some numerical results derived from
the spectral domain formulas are presented and a comparison with

available theoretical and experimental data is included.
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1. Introduction

The problems of radiation from sources in the presence of impenetrable
smooth convex objects and the diffraction of a plane wave by such objects are
of great praétical interest in the design of antennas on structures, e.g.,
conformal arrays. Unfortunately, the exact amalytical solutions to these
problems, based on the methods of '"separation of variables" or "function-
theoretic' procedures (Wiener-Hopf technique, residue calculus, etc.), exist ;
only for a very limited number of scattering geometries. Furthermore, 4
the exact solutions are typically zighly complex in nature; hence, the process
of extracting numerical results from them can be very time-consuming and is
by no means trivial. This situation has motivated many researchers to explore
approaches to the problems of radiation and scattering from smooth convex
structures.

In the low and resonant frequency ranges, several reliable numerical
procedures, 2.g., the moment method, are available for solving the radiation
and scattering problems. However, in the high frequency domain, numerical
techniques based on matrix methods become unwieldly if not impractical, prompting
one to employ asymptotic techniques suitable for large k(=27/1\), where \ is
the wavelength of the illuminating wave.

In this work, we begin by presenting, in Sec. 2 , a survey of various
high frequency asymptotic techniques for the problem stated above. The survey
will be necessarily brief, and will cover only the highlights of a number of
important approaches to the problem at hand, viz., Fock's theorv, the geometrical
theory of diffraction (GTD), and the direct integral equation approach. The
reader interested in further details may choose to consult the works of 3owman,

et al. [l], Uslenghi [2], and Xouvoumjian [3].
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In Sec. 3, we consider the generalization of GTD and present some new
approaches to the curved surface radiation and scattering problems. Some
numerical results based on one of these new aporoaches are nresented in Sec. 2
and a comparison with other available methods are included.

2. Survey of Available High-Frequency Asvmptotic Techniques

2.1 Watson Transformation

One of the first successful attempts to derive an asymptotic expansion
for the far-field generated by a point source located in the proximity of a
conducting surfaée was made by G. N. Watson in 1918 [4]. His method,
essentially, consisted of two steps: 1) transforming the original infinite
series solution into a contour integral (by Cauchy's residue theorem); 2)
deforming the contour of integration so as to capture a set of complex poles
of the integrand. The original integral is then expressed in terms of an
infinite series which converges very rapidly, provided the observation point
is in the shadow region. The first few terms of this series were later inter-
preted as ''creeping waves.' The method was first applied to a sphere and
circular cylinder, and later to some other geometries as well. The mathematical
rigor of the method was the subject of further investigations by other researchers
({51, (6] and [7]). Although Watson transformation can only be applied to a
few simple goemetries, e.g., the sphere, cylinder, cone, spheroid, it is
still regarded as one of the cormerstones of the more general high frequency
techniques because of its mathematical rigor. Watson transformation is
especially powerful in the shadow region of the geometric optics £field. 1In
the lit region, the above-mentioned contour integral is evaluated using the
"stationary phase'" method and vields the reflected field from the surface.
In chis region, the most significant contribution to the total scattered field
typically comes from the surface current induced on the smooth convex part of

the object; the so-called "Physical Optices" approximacion can be applied

5
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([8], [9], and [10]) to derive the reflected field. The Physical Optics
method is based upon approximating the induced surface current in the lit
region of the object by the current that would be induced on the local tangent
plane, and by assuming that the surface curreant is zero in the shadow regionm.
The far field is constructed by substituting the above estimate for the
induced surface current in the integral representation of the scattered field,
and evaluating the same in an asymptotic sense. The dominant term of the
asymptotic expansion of this integral can be shown to be identical to the first term
of the Luneberg-Kline expansion of the geometrical optics far field ([11l] and
[12]). However, the higher-order terms derived from the physical optics
approach do not previde us with the correct result in. the shadow or tramsition
regions where the diffracted field contributes the most.

In the next section, we discuss Fock's theory, which can fill the gap
between the Physical Optics in the 1it region and the 'creeping wave'

representation in the shadow region.

2.2 Fock's Theorv

The region between the lit and the shadow part on a surface is called
"penumbra region." The angular width of this region is approximately given
by (.‘«rglw)l/3 where A is the wavelength of the illumination and T, is the
radius of curvature of the surface of the object in this region in the incident
plane (Fig. 1). Fock's theory invokes the principle of Zocal character of
the field in the penumbra region (13] and is based on the conjecture that all
bodies with a smoothly varying curvature have the same current distribution
in the penumbra region, provided that the curvature and the incident wave are

the same near the point under consideration. This principle allows one to

locally replace the surface of the object by a portion of a paraboloid of
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revolution. A unique feacure of the expressions for Fock currents is that

they provide a convenient transformation of the geometric optics currents
in the lit regiom into the creeping wave currents in the shadow regiom.

Fock himself deduced the pertinent formulas for the surface currents by

e ————

treating a convex body problem.[lél described below.
Consider a convex body and a plane wave incident in the direction of the

x-axis. If the equation of the surface is i
£(x,y,2) = 0 (L)
then the curve representing the boundary of geometrical shadow is given by
== 0 (2)
Consider a point 0 on the boundary of a shadow region where we set up
a rectangular coordinate system as shown in Fig. 2 (z: normal to the surface,
x: in the direction of propagation, and § is the tangent to the boundary of
shadow). In the vicinity of this point, the surface of the body could be

locally replaced by a paraboloid of revolution which is expressed by the

equation.
p. 2
z+1/2 (ax” + 2bxy + cy’) = 0 (3)

Each of the field components satisfies the Helmholtz equation

7 + By =0 (%)
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The fact that the incident wave travels along the x-axis, suggests that ¥

be written in the form

Y = ;e-jkx (5)

e

where an exp(jut) time dependence has been assumed. Substituting (5) in (4)

gives
2 A
V - — Y =
A 2jk T 0 (6)
At this point, two basic assumptions are introduced in Fock's theory,
viz.

i) ¥'s are relatively slowly varying function of coordinates

ii) ¥ varies more rapidly in the z-direction than in x and vy,

i1.€.,
.3_‘ZL. k3 ’_‘".,. k 3 3_'1‘... k
3z O(m D = O(m' ¥), 2y 0 (m %) (7
Based upon (7), we can write (6) as
2e -
5 ¥ 3¢
ST Uk =0 o

and consequently a' = m2 (m is verv large), where the terms of order l/m2
have been omitted.
Inserting these estimates and assumptions into the Maxwell's equation,

we can find some simple expressions Zor all the field components in terms of

H and 3 . If we write d as
b 4 z N




)

0

-jkx
H =H e
y y

v 9

where Hg is the magnitude of the incident wave at infinity, then ¥ must

satisfy

- -

2

-g-z-‘}-m-g—:-o (10)
with boundary condition

39 ) P L

g-jk (ax+by+'/;)i’-0 (11)

on the surface of the body. Eqn. (11) is the simplified version of the

Leontovich boundary condition where

4o
WAL NaE

The final solution for Hy on the surface of the body which satisfies
the boundary coundition and the condition at infinity, may be written in the
form

s £¥%als, (12)
Hy v (5,q9)

where H;x = axternal field

3
6z, = 9D Fy (5,0

Vl(z,q) = Fock function defined in the Appendix A.

LA ]

= m(ax + by) = reduced distance from the shadow boundary = i/d.
d = the width of penumbra region = (Zt'oz/k)]‘/3

L = distance between the observation point and the shadow beundary along the
incident ray (Fig. 3).

7




ol b s 2l Al panc el L dan ogl Lt et i e 2 Al s L St

i

— ” |
L
Incident
Wave
/ o
Center of
curvgture
Figure 3: Geometric meaning of the quantcity 1 ia (12).
Observation point
Figure 4: Coordinates of observatiom poiat in terms of 5 and 3. i
8
e s ey s . ad




q = =jm/vVn= =(j/n) %ﬁé; (= 0 for conducting body)

The other tangential component of the magnetic field Hx on the surface

of the body can be obtained in a similar manner

H = H

ex 1 ~U/DEY3
X z

£(¢)] (13)

where £(%) is another Fock function defined in Appendix A. Fock's
formulas not only give the surface value of the field, but also can be
utilized to find the field in the proximity of the object. For a plane wave
incidence, the first order, i.e., 0(l/m) terms for the scattered field within

a certain layer around the object, can be written as

- 05 —flkathea 0: =Jkx =
B-0, B =8 S (n, 1 ed) TG,
(16)
-jkx

E, -G/m)a; e 3¥/ 3z, £S5 H, ToeoH

where

;= Zamz[z +w1/2ﬂéx2 + 2bxy + cyz)j = reduced height from the surface

of the body (Fig. 4).

A Lo * wi(t)=qw,(t)
- atali83=3/3 &%) -j&t BOR RN i i | iy
¢ = -je £ ¢ by(e0 - Trrmye ey V(0] e
_, (13)
E jEz-(4/3) 8 = w. (t)
il -j&t R Rt <
_ ? - £ e [wy (=) "z(‘) w, (e-7)] de

-

The path of integration for % and ¥ is shown in Fig. 5§ .
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Fock's expressions for the field components in the penumbra region
(£ 3 0) can be extended to the shadow region, by introducing some modifications
in the definition of parameter Z%. Goodrich [15] has generalized the
argument used by Fock in the penumbra region to anywhere in the shadow
region by introducing a new set of variables,f and ;,for the incremental
distances along the path leading into the shadow region. In this generalizationm,

the parameter  as defined in (12) is replaced by

S
Y kR(s).1/3 ds
g=[ T e (16)

o

where s is the arc length along the geodesics which originate from the shadow
boundary and go into the shadow region along the surface, and R(s) is the
radius of curvature of the surface along the geodesics. For the case of a

-

circular cylinder of radius a (Fig. 6), the expression § simplifies to

£ = (ka/2)Y3

9 = s/d a7

Fock also treated the case where the point source was very close to
the surface of the body. He analyzed the radiation of electric dipoles near a
spherical model of the earth [16] and derived the formulas for the scattered
fields in terms of functions (attenuation functioms) similar to ; and
;, which are valid both in the shadow and transition regioms [17]. Fock's
assumptions were later proven in a more systematic and mathematically rigorous

manner by Cullen (18] and Hong [19] by using a direct integral equation

approach. This method is described in the next section.

B
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2.3 Direct Integral Equation Approaches

This method, which is closely related to Fock's theory, can be
illustrated by analyzing the diffraction of a plane electromagnetic wave
by an arbitrary conducting body (large compared with A). Cullen [18] obtained
a first-order asymptotic solution to the integral equation for the induced

surface current

I@) =A@ x B@® - @/2ma’®
(18)
x | e MR (33 « IR
‘ 3
S R
where ;(;)is the outward unit normal to the surface at ;, ﬁinc(;) is

the incident magnetic field on the surface (S) of the body,and R = T-1
(;' is a variable point on the surface).

Fock used this integral equation to deduce the important prinmciple
of local character of the field in the penumbra region. Cullen derived a
first-order asymptotic solution to (18) which agreed with Fock's results
given in (12) and (13). Cullen's method consists of transferring the two-
dimensional integral equation (18), in the penumbra region, to a one-dimensional,
Volterra-type equation. This is accomplished by applying the stacionary
phase technique to the original integral while integrating with respect to
one of the variables. The resulting one-dimensional Volterra equation is then
solved in Cullen's method by the Fourier transform technique. A similar
procedure was used by Hong [19] to analyze, asymptotically, the diffraction
of electromagnetic and acoustic plane waves by smooth comvex bodies. We will
now proceed to explain Hong's method in a little more detail by referring

back, once again, to the integral equation (18). The surface is parametrized by

12
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the geodesic coordinate system (o,v) such that the shadow boundary for the
incident plane wave traveling along the tangent 3(0,v) to the v = 0 curve is the
g = 0 curve. The quantities 3(a,v), 5(s,v) and n(o,v) form a right-hand local
orthonormal basis (n = o x b) (Fig. 7).

Since the incident field has a éhase factor e-jk5(°’0)°é(g’o),

we write the surface current in the form

o (19)

I = (1, @ + L@ D] &
where ¢ is the arc length along the geodesic. Substituting (19) back into
(18) and restricting the resulting equation to the points on the geodesic v=0,
we obtain two coupled, two-dimensional integral equatioms for Ic(c,O) and
Ib(s,O). It can be shown that these integrals have saddle points at v=(0 (for
the v-integration). Applying the "steepest descent path" method to Q-incegration,
and keeping the terms up to the order l/Mg, where MO = (kog (0,0))1/3, we
obtain the following decoupled one-dimensional,Volterra-type integral equations
for Ib(q,O) and Ic(s,O)
g

4 - inc = - f
IU(”O) 2 IQ’ (,,O) o

-0

- S “3
dr I_(5,0) K (5-1) +004°)

(20)

-3,

-
L, (5,00 = 2 1% (5,00 - [ 4t I,(6,0) K(5=m) + 001")

oj(c,v) is the radius of curvature of the surface along geodesics (v = constant
curves) at point (a,v).

Solving (29) by Fourier transforms, we obtain the exporession for the

induced currents in the penumbra and shadow regions,and the first-order solutions
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are found to be the same as those of Fock and GTD [20]. One of the important
conclusions drawn from Hong's solution is that the leading term in the
asymptotic expansion, which is the same for the acoustic and electromagnetic

problems, is independent of curvature in the direction transverse to the

geodesic, provided the divergence factor is suppressed. However, we should
bear in mind that Hong's method was designed for the case of axial incidence
on symmetric objects,and in this case, the geodesics are torsionless. Tﬁe
above conclusion does not seem to be valid in the cases where the rays have
nonzero torsion ([21], [22]). In Hong's expressions for the surface current,
the transverse curvature has only a second-order effect. It was also shown
that up to the terms of order (koc)-Z/3 in the asymptotic expansion, the

tangential and binormal components of the creeping waves are not coupled.

Both Fock's theory and the "direct integral equation approach" give the

induced surface current, or the scattered field in the neighborhood of the

surface of the scatterer, due to an incident plane wave. These expressions can

also be used to derive the radiated field via the use of the reciprocity theorem.
The methods which have been discussed thus far are mathematically

rigorous. However, they are limited in the scope of their application to

geometries satisfying some special smoothness and symmetry criteria. '"Geometrical

theory of diffraction" (GTD), which we discuss in the next sectiom, has a

broader scope, although it does lack the mathematical rigor of approaches

described until now.

2.4 Geometrical Theorv of Diffraction (GTD)

Geometrical theory of diffraction (GTD), developed by J. 3. Keller

([20], [23], (24], [25], and ([26]), is a generalization of geometrical optics.
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It is based upon the assumption that fields propagate along rays. Keller's

major contribution was to introduce the new kinds of rays called the "diffracted

rays!" which together with the geometrical optics rays, constitute the total
field. In our problem, viz., source radiating in the proximity of the smooth

object, the diffracted rays travel along the curves on the surface of the

scatterer. By applying Fermat's principle to these surface rays, we conclude
that the abové-mcntioucd curves should be geodesics on the surface of the body.
In the GTD procedure, one assigns a value to the field along each ray of these
surfaces. The total field at any point in the space is the sum of the fields
due to various rays (incident, reflected and diffracted) passing through that
point. An important advantage of the GTD approach is that it can be applied
to both scalar (acoustic) and vector (electromagnetic) problems and to smooth
convex objects of an arbitrary shape.

Consider the problem of determining the radiated field of a scalar point

source located on the surface of a smooth convex opaque body. If the observation

point is in the shadow region, the ray Daths originating at Q and reaching P

(observation point) are comprised of two sections. One of these sections follows che

straignt line path P.P, while the other travels along a geodesic on the surface

1
(Fig. 8). Let us consider the propagation of the field along each section separately.
a) Rays in free space: Behavior of the fields along these rays can be

determined by obtaining a high-frequency asymptotic solutiom to Maxwell's

equation inasource-free homogeneous isotropic medium. We begin with the

Luneberg-Kline asymptotic expansion of the electric field ([11l] and [12]):

-jk S(7) =

EE) - ke ° L

&, (® (21)

a=0Q
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Figure 3: Diffractiom by a smooth convex body when the observation
point is in the shadow regiom of the source Q.
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y
and insert it into the Maxwell's equations. This resuicts in the following

equations governing the propagation of electromagnetic fields along the rays.

(s(®1% =1 (Etkonal equation) (22)
2(7s-T)a_ + (725): - -72 PY (Transport aquation) (23)
m m o1
7S'e «-7-e (Gauss's Law) (24)
m m=-1

e.=0, mw=0,1, 2, ...

-1
The zeroth-order solution to the above system of aquations,which turns out
to be in agreement with what ome would obtain by geometric optics, may be
written as

-jk
E(g) - Eo(O)e

s(0)

0

B85 0 (25)

(Dl+0)(oz+ﬁ)

where 7 is the distance traveled along the ray from the reference point
0(c=0) on che ray path. °1 and 0, are the principal radii of curvature of

the wavefront at o=0. It is apparent that the expression fails when o=-g. or

1
3= -0y, i.e., at the caustic lines (Fig. 9). In the cases where it is
convenient to choose the point of diffraction on the surface of a body as

the reference point 0, the formula (2.5) should be modified as follows

B(g) - 5. 2 o " (2€6)

0 3 (p+a)




In these cases, the point of diffraction itself is a caustic, and o is the

discance between this point and the second caustic.

b) Surface Rays: These rays follow the suiface S along the geodesics
into the shadow region, and shed off energy tangentially as they propagate.
In order to study the behavior of the field along these rays, we introduce a
special ray-fixed coordinate system,&,ﬁ,g.

J: Unit vector tangent to the ray; n: outward unit normal to the

surface; and P =t x n or binormal direction; a vector field can be decomposed

into its components along these unit vectors as
S A X :
E= EG+En+ED (27)

At this point, several important assumptions are introduced in the GTD
approach (20]:
i) E and § are orthogonal to each other and to the ray.
ii) Variation of the phase of the field along the ray is
the same for both fields.
iii) En and Eb propagate independently, and E0 = Q.
iv) E, satisfies the scalar wave equation (724k?) u=0 with the

boundary condition u=0 on the surface S,while En satisfies

the same equation with the boundary condition %% = Q.

The next step in the GTD approach is to conjecture,on the basis of the
solution to some canonical problems, that the surface field propagating along
each ray is comprised of an infinite set of ''modes." Along a ray-fixed path
GTD assigns a complex value to each component of the field associated with

the individual modes. The propagation of these modal field is described by

the equation

19




j(ao-kc)
a(a) = A(T) e (28)

when o0 is the distance between an arbitrary point along the ray and the source

Q and is the phase of the field at the source point. Next, invoking the

%
principle of conservation of energy between two adjacent rays, and using the fact
that the surface rays shed energy off tangentially, we can arrive at thne

following expression for a(o)

dwl o4
a(o) = K exp(~jks = [ a (0')do'] (29)
Dd@z 0

where 2(0) is the "attenuation comstant," K is proportional to the stremgth of

172

the source,and 4¥,, d¥, and ¢ are shown in Figure 10. The quantity [d?l/(odyz)]

b Sy

indicates the spreading of the surface ray tube'" as it travels along the surface.
Equations (26) and (29) describe the laws of propagation for the rays which
originate from the source point Q, are diffracted at Pl’ and reach the
observation point P. To complete the solution, we need to determine the actual
values of the fields from these equations. These require the knowledge of SO
and X, which, in turn, are related to the initial values of the rays QP1 and
PLP as well as the attenuation constant 2(3). The initial value of the field
at O is related to the strength of the source by L(Q), the so-called "launching
coefficient," while the initial value of the field at Pl is related to the
actual field on the surface at Pl through the "diffraction coefficient" D(Pl)‘
If we now sum up the contributions of all the modes, we obtain the final
solution {[25] for the field radiated in the shadow region by an infinitesimal

magnetic dipole of strength ¥ located on a smooth convex conducting body




Figure 10: Divergence of surface rays.

Observation
point

Figure 1ll: Geometry of the cylinder problem.
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zd I - 1500)a . L. B  =fks
E(?) =+ [b(Qa(Q)F + J(Q)B(Pl)cl Sl (30a)

where

-]ke -jko
E V/ 24y, gdyz ) L (Q)D (B)) exp [-; :P(c )do']
(30b)

and the expression for G is obtained by replacing the superscript "h" by
"s" in (30b), where h and s stand for hard and soft boundary conditionms,

viz., u=0 and 3u/3n = 0, respectively. The quantities Lg i Dh’s and

P
a:’s, appearing in (30b), in general depend upon the local geometry and the
electromagnetic characteristic of the surface, frequency k%, and the mode of
propagation. They are determined by studying the asymptotic expansions of
the exact solutions of some special canonical problems. Keller and Levy
({20] and [27]) have derived the first few terms of the asymptotic expansions
for D and a1 by considering the canmonical problems of scalar diffractiom by a
circular cylinder, sphere, elliptical and parabolic cylinder. A study of the
above-mentioned asymptotic expansions and the works of Franz and Klante [28]
and Voltmer [29],who have also investigated the same problem, as well as a
comparison with the results of the ''direct integral equation approach,” reveals
the following characteristics of the solution: i) the first-order terms in
the asymptotic expansion of D and ¢ are independent of whether the problem
under consideration is scalar or vector; ii) the first-order approximation of
D and = are dependent only on 25 the radius of curvature of the surface along
the ray; iii) the second-order terms are functions not only of B but also of
d2o d2o

S, 3, and o (the radius of the curvature of the surface transverse
de dc? "

to the ray). Finally, the higher~order terms are different for scalar and

vector problems.




The leading terms in the asymptotic expansion of "diffraction coefficient"

D, "attentuation constant" a and "launching coefficient" L are presented below:

"Soft" polarization:

/2 =506, L/3 ., ~iT/12

2 a

(01" = (31)

P il [Ai'(-rp)]z

jn/6

b Aol koc 1/3

mp = o ( 3 ) (32)
2/3

S . -jm/12 102 4 . (Hro . p°

Lp e (2mk) (“"o) Ai'( rp) Dp (33)
"Hard" polarizatiom:
WE bl s 1o -adiR

h.2 T - 2 . Dc v e

[Dp] = kl/6 ' : )]2 (34)
rp [Ai(-r o
' jn/6

. r e ke

2 S - o e
ap 5, ( 5 ) (35)
b gn/l2 | 172 . 2.-34/3 el s wl
Lp e (27k) (kpc) Ai( rp,- Dp (36)

where Ai(x) is the Airy function:
3
) M :3
Aaf(x) =2 [ cos(3 + xe) dt (x real) (37N
)
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and Ai(—r?) = 0, Ai'(-r;) = 0, (AL' is the derivative of Ai with respect

to its argument). Higher-order terms in the expansion of D, 2 and L have
been given in [25] and [30] and in some of the other works on GTD mentioned
earlier.

The expression (30) is convenient to use in the lit region. In the
shadow part of the tramsition region,Asince the exponential decay of the terms
in (30) is weak. The convergence of the series representation is very slow.
Furthermore, the series diverges in the lit part of the transition region.
Consequently, in these regions, it is more reasonable to use an integral
representation for the surface ray field, which, in our case, can be expressed
in terms of Fock functioms [25].

Attempts have been made to establish the mathematical validity of GTD
and to minimize its "nondeductive parts" (parts which are based upon physical
intuicion or the study of the asymptotic solution of some simple problem
geometrical concepts of different kinds of rays, diffraction coefficients,
attenuation coanstants, etc.). Kravtsov [31l] and Ludwig [32] have
analyzed the field near the caustic surface (smooth envelope of a family
of rav), and have developed a "uniform asymptotic solution" in the semse that
it is finite at the caustic and reduces to geometrical optics away from the

caustic.

3. Generalization of GTD and Investigation of Alternate Methods

3.1 Generalization of GTD to Arbitrary Surfaces

Keller's generalization of GTD for the analysis of the field diffraccted
from a smooth convex object is closely related to what is known as the
"soundary layer technique' in the theory of differential equatioms [43]. On
the other hand, the "uniform asymptotic theory' is analogous to the method

used by R. E. Langer and F. J. Oliver to find the asymptotic solutions of the
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second~order differential equations near their '"turning points," which are
counterparts of the transition regions in our case {33], (34], and [35].

The procedure is based upon the zeneralization of the geometric optical
interpretation of the circular cylinder problem. The solution obtained by
this method involves some functions with unknown phase and amplitude, similar
to Bessel and Hankel functions. Since the surface of a smooth object is
actually the caustic surface of diffracted rays, the above-mentioned formulation
is applicable in this case, too. Lewis, et al. [36] have modified this
solution to make it satisfy the boundary condition on a convex body. Using
ray formalism, they have obtained an asymptotic solution in a complicated form,
which they call "creeping wave'" and satisfies the boundary condition om and is
uniformly valid near and away from the surface. It should be mentioned that

the method has been developed primarily for scalar diffraction problems.

Creeping waves that are traveling on the surface of the body generate
other kinds of diffracted rays in the presence of the irregularities in the
geometric or electromagnetic characteristics of the surface. The effects of
discontinuity in the surface curvature, its higher-order derivatives,
or the surface impedance have been studied by many authors [27], [38],

[39] or [40]. An exhaustive study of various diffraction
mechanisns and corresponding diffraction coefficients,

and constants associated with the propagation of creeping waves, has been
carried out by Albertsen [41].

At this point, let us examine one of the most important features of GTID
and its various modifications. GTD formulation is essentially scalar in nature
and is neuristic in some parts. Thus, when GID is applied to a vector problem,

it is not surprising that the coupling between various components of the fields




are neglected, and each one of them is treated as an uncoupled scalar wave.

The other assumptions in GTD are concerned with the directions of these field
components and the kind of boundary conditions they satisfy (see Sec. 2.4).

As mentioned earlier, non-deductive parts of GTD are based on asymptotic
expansions of known solutions to some selected '"canonical problems. Quite

often these canonical problems are not general enough to fully and accurately
describe the local behavior of the field for an arbitrary structure. Finally,
most of the canonical problems investigated are two-dimensional in nature. The
only exception to this is the sphere. However, in so far as the geometric
properties of the surface are concerned, the sphere is a very special case

since its radius of curvature is the same in all directions and,consequently,

the surface rays are torsionless. Finally, GTD fails when the observation

point is located in the transition regions, shadow boundaries or in the neighbor-
hood of a caustic. In each of these regions, one needs to carefully modify the
GTD formulas and often such a modification is not too simple. Nevertheless,

in spite of these difficulties, GTD is recognized to be a powerful high-frequency
technique for computing the leading terms of the asymptotic solution. Two of

the principal attributes of GTD are its simplicity and wide scope of application.

3.2 Spectral Domain Approach

We now examine an approach different from GTD which uses the spectrum

of the induced current, or the expression for the radiated field, as a starting

point. In order to gain a better insight into the curved-surface radiation
and scattering problem and to verify the basic assumption of GID, it is
worthwnile to consider such alternative approaches, particularly if they apply
to canonical proolems which are more general in nature than those employed to

derive the GTD results. An example of such a study would be to consider the




case of surface ray propagation with non-zero torsion, a situation that occurs
when a magnetic dipole source radiates from a location on the surface of a
circular cylinder.

The geometry of the problem is shown in Fig. 11 (p. 21). The radius of the
cylinder is a and the source,which is an infinitesimal magnetic dipole with
dens;ty ﬁ,is located at the point Q described by the spherical polar coordinates

(r=a, 3=90°, 4$=0°). Each point P on the surface of the cylinder is defined by a

"geodetical polar coordinate" system (0,3), where ¢ is the arclength of the ﬁ
geodesic connecting Q to P and 3 is the angle between 5 (at point Q) and
geodesic QP. The local orthonormal basis vectors (3,3) are also associated with
these two parameters. The observation point in the far field is specified by -
its spherical polar coordinates (r,3,¢). The radiated field at an arbitrary
point can be expressed in terms of two potentials, $ and ¥ which, in cylindrical

coordinates, can be written as: ;

(2) B ’

sk T due o : 5 2 :

& - [ £.0) » BE27 (ko) e dk, (37) ]
= °° -jk 2z

, L1 T _-ine . ~2(2) S |

¥ 77 n:-ae _i gn(kz) Hn (ktp) e dkz (38) :

For the problem under consideration, we can express the spectral weight

coefficients as 4

jm€M®

f (k) =
a2 2.2 (39)

ZwktHn (kta)

-1 nk M
L Yz z2 )

g (k) = T [ + ] (40)
L (2) 27 2

ktan (kta) 27kca
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k = (41)

'J'E*Z , Dk ee

In order to derive an asymwptotic expansion of (37) and (38), we proceed
as follows. As a first step, we apply Watsons transformation to the infinite
summation with respect to n and employ appropriate asymptotic formulas for
Hankel functions with large order and argument to derive the following expressions

for (37) and (38) under the conditions that ka is large and $ small compared to T:

weM i © Z
¥ 7 T LT wW T . . 42)
B -(-2:‘::2 /p e “{ dk_ e 57 £y ) (

b

i : in/4 * o k 3
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where
R=kz+ kt[o+a(¢-ﬂ/2)]

o (kta/2)1/3

El ™ m(¢-"/2)

£ = Fock's functions defined in Appendix A.

0’ %’ &

M¢ and Mz = components of ﬁ, (§~;-0)

Ylext, applying the ""saddle-noint' technique to (42) and (43) and keening only
the first-order terms, the far field can be writtem in terms of its components along

the normal and tangent to the surface at the "stationary point" Pl as

3 -jko -jkR
- ‘.' j}i—— . . .e_.——
E“z ™ 31) ( e ) go(ils) =
(He0.) (y°3.) ko _ 1/3 -jkR
1 ) T -jk 5 e
% an ik G b e (44)
> " ST 2/3
(M:9,) (9,°0,/ ko -jkR
e a 1 YLk g. . _=jko . LETy 2
E3 o &-z-) e EO(‘ls) Y (43)
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where

Pl: is the stationary point of X which turns out to be the

same as the point of diffraction predicted by GTD.

2 = G (or) - sl :

I radius of curvature of. geodesic QPl
g = arc length QPl

R = the distance between the point of diffraction Pl and ‘;

the observation point

-~ -

nz - g X Bz; normal to the surface at P

2 L

The details of the derivations of (44) and (45) are given in Appendix 3.

Fig. 12 illustrates the geometric meaning of some of the parameters
appearing in (44) and (45), for the observation point is located in the shadow
region. In this case, ils’ which is identical to 3 given in (16), is the
reduced distance traveled by the surface ray before leaving the surface
tangentially.

In the 1lit region, the geometric interpretations of ¢ and 3 are shown
in Fig. 13. The rays, like QPlP, that do not obey the generalized Fermat's
principle are called '"psuedo-rays" [25]. The ray QPlP appears to travel along
the surface up to the point Pl and then leaves the surface at Pl tangentially

in the opposite direction, to reach the observation point P, It should be

noted that formulas (44) and (45) give us the contribution of the ray which
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travels along the shortest path on the surface, and thus, suffers the least

attenuation. It is not difficult to see that, in general, there are infinitely

many rays which coantribute to the total field at any observation point. However,
their contributions are very small compmared to that of QPl and their phases and
amplitudes can be determined in a similar manner (Appendix B). Several other

remarks on the formulas given in (44) and (45) are in order:

e ——

a) Numerical results indicate that good agreement between (49),
(45), and the exact modal solution is obtained for ka > 10.

b) The zeroth-order terms in the asymptotic expansion of the normal
component of the field E areidentical to those given by GTD;

however, the k.l/3

terms derived from the two approaches are
different.
¢) Tangential component of the field, EB’ given by (45), also

is different from the corresponding expression based on GTD

by ‘a multiplicative polarization factor. Specifically,

F-5))
9 = eem- @y ™ i

Consequently, our results agree in GTD only for the circumferential

ray, i.e., for 3 = 0.In addition, for an axial r.agnetic dipole

1 = 0), GTD gives a nonzero value for cthe field in the 52 direction
our solution predicts chat this field is identically zero, a result

M - 5

which is in complete agreement with the exact solution for the

problem.

In contrast to GTD, formulas (44) and (45) are valid ia

respect. to the location of the observation point, be it in the

» lit, shadow or transition regicms. Although not wvalid in the paraxial

region (3%90°), they can be generalized to work along this direction.
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Finally, let us consider the possibility of the generalization of
(44) and (45) to other convex surfaces of more general nature.
By "more general surfaces," we mean those surfaces which are not substantially
different from cylinders, some examples being cylinders with noncircular
(elliptical, hyperbolic and parabolic) cross sections and conical
surfaces w;ch small apex angles. The key step in a systematic approach to
generalizing (44) and (45) is to use the generalized definition of £ given
in (16).

Fig. 14 exhibits some initial results of the generalization of these
formulas to the case of a cone. It is evident that results obtained from
the present approach agree quite well with the series solution which is rather
tedious and time-consuming. We also observe from Fig. l4c that there is a
noticeable discrepancy between the analytical solution and the experiment. Thus,
within the range of experimental error, our results agree quite well with

those publisned in the literature.

3.3 Aporoach Based on an Asvmptotic Evaluation of the Radiation Integral

of the Surface Current

As a final topic, we comsider an approach based on the asymptotic
evaluation of the radiation integral expressed in terms of the induced surface
current which is itself derived in an asymptotic manner for surfaces with
large radius of curvature.

It was shown in Sec. 2 that Fock's theory can provide us with an
expression for the scattered field in the neighborhood of a smooth convex
body illuminated by a plane wave. Using this solution in conjunction with
the reciprocity principle, we can find the far field radiated by a point source

located on the surface of the bodv. By generalizing the definition of I in
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Fock's theory, we can also write the final result in a GTD format and represent
it as a surface ray. The total field at a point on the surface is obtained

by adding all the possible rays which reach the observation point P. Various
techniques can be used to determine the field propagaticn along these rays.

For instance, when the source is located on the surface, and the 'surface is a
conical one, the field at each point can be decomposed into two parts.

F=F +F (47)

where Fl is the geometrical optics field when the observation point is directly
illuminated by the source, and is the creeping-wave contribution derivable
via an extension of Fock's theory when the point is in the shadow region. The
other term, FZ’ is the so-called tip contribution, and can be obtained by
physical optics or GTD. Goodrich et al. [42] have applied this procedure to
find the radiation patterm of slot arrays on cones.

The approximate induced surface curreant distribution cam be obtained by
Fock's theory, GTD (13], (14], (16] and [25] or some other appropriate high
frequency technique. The induced surface current due to a magnetic dipole on
a perfectly conducting circular cylinder and cone has been calculated by Chang
et al. [44], and Chan et. al (45] whose procedure is based upon an asymptotic
expansion of the exact modal solution to the above-mentioned problems. Lee,
et al. [46] and [22] have treated the same problem by a method based on
Fock's asymptotic solution of the problem of a sphere [47]. These expressions
for the current distribution can be used in the radiation integral representation
of the far field.

The aumerical evaluation of this integral is a formidable task, especially
when the frequency is verv high. Thus, it is highly desirable to have an

analytical and explicit formula for the far fiesld expressed in terms of the
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surface current. We now discuss an approach for accomplishing this task and
examine the problem of deriving an asymptotic expansion of the far field
radiated due to a point source located om the surface of a smooth, conducting,
and convex body of an arbitrary shape.

. Consider an arbitrary smooth convex surface $§ shown in Fig. 15. Let
a magnetic dipole source be located at a point Q on S. We parametrize the
surface S introducing a "geodetical polar coordinate" system with the pole

located at Q such that an arbitrary point Pl on the surface is defined by a

pair of numbers (¢,3), where 1is the arc length of the geodesic QPl and
is the angle between QPl and some reference direction at Q. Unit vectors
along the constant parameter curves ¢ and 3 are locally orthogonal. The
unit normal to the surface, ﬁ, is given by a =3 x 3., An element of length

in this coordinate system may be written as

2 2 2
ds” = do” + G d8
i (48)
The radiation integral for the scatterad far field can be written
- -fwu £og - g - A (""'kR)
B= Sl af foleamhs QL. 48 (49)

where R is the distance between any point on the surface and the observation
point. In the geodetical polar coordinate system, we can rewrite a scalar

component of (49), say M, in terms of a double integral of the following

general form

Yye [ [ F(s,3,2) EE.L;BA&"EU vG da d8
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Figure 15: Source radiation in the presence of a smooth convex surface,
parametrized by geodetical polar coordinate system.




where we have assumed the following form for the surface current:

J(Pl) = E(Pl) exp(-jkla) = Jdc + Jas

(51)

kl =k - jkz; k = 21/}, kz > 0, kz << k

where E(Pl) is a relatively slowly varying function when k, the free-space

wave number, is large. This assumption is based upon a close scruciny of

different asymptotic formulas given for che induced surface current.

RSP ———

When the observation point P is located in the shadow region, the
@main contribution to (51) comes from a small neighborhood of the stationary
Point of the integrand,and the stationary phase method for multiple integrals

([48] and [49]) is applicable. The asymptotic expanmsion of (49) has been

3
derived up to the order k.5/3. The details of calculation have been presented | ?
in Appendix C. The f£inal result is ﬁi

.S = -11/6

Eweie (. +U, # 0k J) (52)
3 a9 i
-

‘i
where

» D :3 ]

0 -jkR : J
U = Q J . —- s @ (’3)
0 3" (3l6 /Rwo

A R L L FINC U EY
o< 3 3 o
(54)

h
. _DL. /_93_._. . e‘ij
716 (R+2_)R
14 \/ 2
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D = o T4 . 5/6 2/3 i

5 LT T -, (55) |
ia-im/é
D, = J°3— . 6718 Jreasny - Tty . 034/3 (56)

A, B, and C are dependent upon geometric properties of the surface at the
stationary point which turms out to be exactly the same as the "point of

diffraction" of surface rays. The quantities A, B, and C are given by
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(57)

2
it o @
3g”

Sc/Gl/Z

B=1L s CRghais l/,oU (58)

where
o _ = radius of curvature of the geodesic
o _ = geodetic radius of curvature

Q
LSB, L~o = coefficients of the second fundamental form of the surface (S)

A geometric interpretation of these parameters has been illustrated
in Fig. 16. It i3 evident from this figure that Eizﬁgf—ylllz is simply the
divergence factor of the rays leaving the surface :angeitially at the point
of diffraction. In using formula (56), we should bear in mind that the

various terms in U0 and Ul are not of the same order. For example, in the

deep shadow, J3 is exponentiallv larger than Js.




e T e

Geodetical

of curvature

Figure 16:

radius

Center of curvature
of geodesic

meaning of quantities Bgr 94 and R.

Im(v) A

Re (v)

Figure 17: Pachs C and D in Vatson tramsformation.

42

Diffraction of rays by a smoota convex body and geometric

il o

o

A it

s



The formulas given in (56) have been tested and compared with other
available solutions. An important conclusion derived from this comparison
is that alchough the method of radiation integral is based on less restrictive
assumptions, it is perhaps not as useful as the spectral domain approach
because the stationary point of the phase of the integrand in (50) is of the
second order, and hence, the asymptotic expansion of this integral converges

rather slowly except'when koc is very large (%40 or more).

ACKNOWLEDGEMENT

The work reported in this paper was supported in part by the Office
of Naval Research under Grant N000-19-78-C-0064, and in part by the
National Science Foundation Grant NSF-ENG 76-08305. The authors are also
indebted to their colleagues Prof. S. W. Lee and Dr. Y. Ranmat-Samii for

nelpful discussions and encouragement.




T I P e LT L T T ST YT e

APPENDIX A: FOCK  FUNCTIONS

In studies of radio-wave propagation around the earth by Van der Pol,

Bremmer, Pryce, Fock, and others, and also the later studies of diffractcion
of alectromagnetic waves by certain bodies of revolutionm (([511],(52],(53],
[547,0551,(48],(561,(571,(581,{59],{60] and (50]), a class of universal
functions was introduced which can be used to predict the amplitude and the
phase of the reflectad or diffracted field by smooth convex surfaces [17].
An exhaustive treatment of these functions which, in general, are defined
as Fourier integrals having combinations of Airy integrals in their inte-
grands, has been carried out by N. A. Logan [6l1]. (See also Bowman, et al.
{1] and Logan and Yee [17]).

Since the first extensive application of these functions to diffraction
theory was done by Fock, many authors named them after him. Here we list
only the most important formulas and expressions for these functions without
going through the datails of their derivations. We have followed Logan's
set of notatiocms for these functioms [61l]. However, since his time dependence
factor, exp(-iwt), is different from one we have used throughout this paper,
namely exp(+jwt), our 2xpressiomns, listed below, are conjugatas of wnat
have been presented in [ 61].

First we start with general definitions. Fock's most general Zorm of

5 alt

the ""Van der Pol-Bremmer diffraction formula" is

) i
Vi . -3 t /4 X { -ixt . s |
,\x).’ly.'z)q) £ QXP(J-M*) ¥ : S | L v wlz - - _\>A . IV(E o Y<)

-0

© wy(t = y)) de (A. 1)

"
>

e ————




where wl(t), w,(:), u(t) and v(t) are Fock-type Airy functions, defined as

u(e) = /7 Bi(t) ,  v(t) = /7 Ai(c)
*
wl(c) = u(c) + jv(e) . wz(t) = wl(t)
Ve note that Wy and v, can also be defined as in Sec. 2. v, and

vy are the larger and smaller of the two numbers Y1 and Yo V(x,yl,yz,q) is
proportional to the attenuation suffered by an electromagnetic wave generatad
by a source located at reduced height 71 above the surface of a smooth con-
vex body, when it reaches the observation point located at reduced height

Yy above the same surface. x is the reduced distance between the source and

the observation point along the surface, and q is dependent upon the impedance

of the surface. Let us consider some useful limiting cases.

When 2 e > Sy 0, then V(x,0,0,q) is denoted by VO’ where
ejw/é = = e-jx: w,(t)
= . - — . _“.2
Tatue %7578 /n’ J'_@ aI® - quy(o Lol
‘le also have
R R RN O)
vix) = \70(3,0) = 3 ﬁ J.a —Wé(T det (a<3)
i JITe gy e e W)
u(x) = lim {-2jxq Vo(x,q)1 e~ X | )
ghe ’ v I W)

(A.4)

When ¥y 0 and - ¢ i then V » V. (x,q):




2 (x) T )1 7 et d (4.7)
f(x) = lim |- q Ry Q) e i i 13 A.
o t 1 AR - S

Based on Zquations {(A.6) and (A.7), a class of functions can be

defined:
£® () et [ g0 e Recns ik
VT lp 9@ dx"
n n =jxt n
3(n)(x) L ( E___T%ET_— . de = S 80x (A.9)
/T ‘r | dxn

where [ is any path in the complex t-plane which comes from —= in a sector
defined by - 7 < arg(t) < - % and goes to +» in the sector -% < arg(t) < %.
In what follows, we will give the suitable formulas for f£(x) and g(x) in
different ranges. Tabulated values and graphs of these functions can be
found in [57/,(54] and (61].

When x is very large and negative, :he'following asymptotic expansions

for £(x) and g(x) can be used [51]:

3/ . - - -
£(x) ~ -ijejx /3 1+ '15 - —ég - 12#% - 3952 + 1318112 7 e (A.10)
4% 2x 64x 16 1024x
3/ [ s ' ”~ - .
i3 i4 Q 2
g(x) = 2ad¥ £ & _13 2 Jg " _403 e lei = 1;1221;._ ] (A.11)
4% x 64 54x 1024x

The above formulas ars valid and accurate for x << =-1l. TFor moderata
values of x, namely, -1 < x < 1, it is difficult to find an appropriate
axpression. Although there are some analvtical techniques like '"stationmary
phase method" or "Poisson summation formula" which may be used to evaluate

(1) (n) . : . - :
£ and 32 for these values, anocher possible way which is probably easier

and more afficient is to interpolate the zabulated values of these functionms

in this range.




———

In the vicinity of zero (|x| = 0), the Taylor expansion can be used

to calculate f and 3. The coefficients are given by

i 2 (2/3) (n=1/4) = 2m
§8Y gy & JSHERTIER(D) B (-3‘1] c1 A {-327}
m=0
4n - 1 3
. r(Zm e ZJ (A.12)
: (2/3) (n=-3/4) = 2m
@) gy o gI500/6 | =, (30 . e
g () = e ey [2) ) B (n) u"]
m=0
f 4n - 3 1
. rkZ 5 w0 (A.13)
where t(\,u) is the generalized '"tau" functicn:
@ n
= S (A.14)
n=0 (n + u)
5
Aym =1, A/(m) = 7g -1
[l 26085 9. .2
Az(n) = Sian ~ 143n + 16 J/(Z S5

Bo(n) = 1 5 Bl(n) = -7(n - 3/2)/48

(49n% + 364n + 39849/16)/ (27 - 3%

Bz(n)

When x is large, and positive, residue series can be used to compute

f(n) and g(n):
B () eER(E % iy
Zl a2 (A.15)

j(2+7a)7/6
P

£ 0y §
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i }
RE | !
! ~ -1 : -35m/6 |
: 2 (2™ exp(r! - x e )

s (o = 17T/ s I (4.16)
1 p= P

where Ai(- rp) = 0 and Ai'(-r;) =0 forp=1,2,3,... .

]
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APPENDIX B: DERIVATIOM OF FORMULAS (44) and (45)

Here, we consider only the derivation of the asymptotic expansion of
9 for a circumferential magnetic dipole. In this case, % may be written

as: -jkzz
-jweM¢ r L) e . S(kt)
dk (B.1)
z k2
123

d =
@n? 1

where
¢ _-in¢ H(Z)(kt;)
(07 wigh oY . %—— (B.2)
n=-x Hn (kta)

Applying the Watson transformatiom to (B.2),

(2) ;
HE T (k. p) =jv(9=m)
5 (k, ) ad. S b8 . (3.3)

2 Jesp HSZ)(kca) Sin v

. where C and D are shown in Figure 17. Or,

f = cos vwir = 3) HSZ)(ktD)
s(kc) =4 J D) « dv (B.4)
-o gin vumw Hv (kta)

Substituting the expansion

cos v(r = &) _ . 2 ? =jv (s +27l) :
sin vw J L RS (3.5)
i=1 1=0

where @l = $ and 32 = 27 - 9, in (B.4), the result will be:

(2)
& % % NH e ) -jv(s,+271)
: TORICE 0 A= o (3.6)
2 i=1 150 J== u'% (k a)

"

Each term of the above expansion is associated with a ''creeping wave"

travelling in a counterclockwise (1 = 1) or clockwise (i = 2) direction

around the cylinder. Following the ray concent, each creening wave

T




appears to be travelling along a specific surface ray. Now, as o + =

(far zone) for each fixed v, we have [62]

-j(k_p=vm/2-mw/4)
(2) 5 73 t
B (kto) /1ktp e (B.7)

On the other hand, it can be shown that the significant contribution

to S(kt) comes from a small neighborhood of kca. In this neighborhood, where
k.2 and v are large and close to each other (Ekta - v < {vil/B), the Hankel's
asymptotic expansicn (B.7) is not valid any longer. In this case, it is

necessary to expand Bessel's functions in terms of Fock-type, Airy functions,

wL(t) and wz(t), and their derivatives [16]:

(2) = el 2y
B,"' () - "= v, (t) 1 4y (e) + T wi(e) )+ L (8.8)

' = ( \
R (%) = —J/—_ wi(e) + —= ?Lét wy(e) + (6 - ) "2<c)j £ ik

2 2 o2
m YT 60m
{(B.9)
where
x|/ v - x
m = (Ej 5 £ - e (m is very large)

Inserting (3.7) and the first-order terms of (B.3) and (B.9) into (B.6)

and (B.l), we obtain

(27)° 9 i=] 1=0 /== % k.

where
m = (kta/Z)l/3

£ : k { <+ T e ]
2y = k2 + LR a(ai + 27l - 7/2)]

S.x ®a(d, + 27l - 7/2)
il b




Introducing a new integration variable a:

kz = k sin a (B.11)
kt = k cos a (B.12)
3, = tan{z/lo + aley * 271 = W/D)]} (.13)
we have:
011 = kRil °°S(Bil - a) (B.14)
where

Ril -{gz + (o + a(¢i + 27l - W/Z)E}I/Z 5 L

Now (B.1l0) takes the following form:

2
weM m 2 = -jkR, .cos(a=8,.)
@._92..&._3(/’_2,;”4..2 Zfda-e il L
(27) B i=1 1=0 'y
g 0 g £5(5,) (8.15) 1

v is the path of integration in the complex a-plane, which is showm in
Figure 13.

Now we deform the path of integration into the ''steepest descent path,"
SDP, passing through the saddle point of the phase of the integrand. Per-
forming the "saddle point integration,”" we can derive the asymptotic

expansion of (B.1l5) for large kRil' The first order term is:

-jkR
weM 0D S ¥ IkRy1s
$ - —-—%-' 2 l%? « ¥ 1 (cos 8,1 “3, 8 R © 508 ,4)
27k e i=1 1=0 ils
(B.16)
where Rils and iils are the values of these parameters at the stationary point

specified by a = 3

i1




Im(a) A l

- /2 asof” e
J 5 f w2 Re (@)

_ (7)

Figure 18: Steepest descent path (SDP) for integral (B.15).
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Eqn. (B.16) is the creeping-wave representation of the far field. If the
cylinder is large (ka >> 1) and §¢i is not very close to 7, then only the
first term (i = 0, 1 = 1) has the most important contribution to the total
infinite sum, and the other terms are not significant. Neglecting the other
terms, we obtain the result given in (44 and 45). It should be emphasized
that (44) and (45) are not valid when |3!| is close to 7/2 (paraxial regionm),
because in this case, kta is very small, and (B.7), (B.3) and (3.9) no longer
apnly.

The other formulas can be derived in a similar manner.

i
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APPENDIX C: ASYMPTOTIC EVALUATION OF THE RADIATINI IITEGRAL

Consider the following double integral:

u(k) = Jf J.{ g(x,y) » IRO0Y) 440 c.1)
D

where g(x,y) is rather slowly varying, and ¢(x,y) has a stationary point
(xs,ys) inside domain D. The objective is to derive an asymptotic expansion
for (C.l) when k is large.

Suppose g and ¢ have the following forms around (xs,y’):

An-1 L=l

g(x,y) = (x - xs) 2 (¥ = Ys) ¢ sl(x.y), » 1

)‘09 Uo;
(G:2)

d(x,y) = ¢(xs,ys) + as‘o(x - xq)sfl * B(x,y)] * bo'r(y - Ys)’[l + Q(x,y)]

N. Chako (48] has derived the following asymptotic series for U:

( 7 ( ( (lo - p] (uo - q}
U(k) ~ By + 7 A (¢, +a,)(8, +8,) « l—= . [|—]
Q0 p,q-O Pq L 2 1 2 l - J
i 3
(ka. ) ’ (kbo 2
30 i
where
- 1 5 1 ke R )
B0 xolé uO/r Go = © e
1
(kas’o) <‘b0,?)

f 6 \,
1 = eIty + )/ (28)] , 3, = expgtj*/(ZS)]{(xo +0)(25 + &) - 25}}

( % )
3 2 em{in(uy + /(2] , 3, = exp ij/(2:>}i(uo F@r+d™) - th}

N LT P et <




gk,l(x - xs)k(y - vs)l

m n
P(x,y) = ] a_(x- x)y=-y)

o
~~
g
<
o
"
~
o
~
"
'

m n
x’) (y - yg
a b
~ ey o (1 e 1
%0 " 800 * %10 " 810 “oo[(‘o*” il :]

(a9, 5oy
A1 " 891 300{—5"* bng ®.8) 2.~3%

In order to apply this procedure to the integrals of the type (5.4) for

which
¢ (x,y) = -Q(0,8) = =(R + 3) - (C.4)
g(x,y) = F(c,8,P) 3g§ (€.5)

When F is one of the components of 3(1 - RR), one should first determine
the stationary point of Q, wherein its first-order derivatives vanish. The
second step is to compute the various order derivatives of 2, J, ﬁ, cen,at
this point, and then insert them into (C.3). We just give the main formulas
needed for these derivations.

Suppose the surface of the body, ;(c,S), is parametrized by a2 geodetical
polar coordinate system. As discussed previously,in this system, - is the
arc length of the surface geodesic connecting the pole Q to ;(6,3), and 3 is
the angle between the geodesic and some fixed reference geodesic at Q
(Fig. 15).

The element of length in this system is given by

2 2 <
ds” = d¢” + G(s7,3) d8 (C.6)
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- -
Let us denote dx(u)/du by % ; then we have the following set of relationms

- -3G/ 3¢ e 5G/3 - 38 -
Xag * 7 Xa 4 6 s + L X4 {C.T)
- - = 3G/3g = 30 + 3
Pag * % ™ 8 B TR % (0.8
X
- = 3
1 2, .= (€.9)

and

-~

- - -
where x_ = J ,Axs//a = 3 are unit vectors along 3 =const.and ¢ ® const. curves,

and

X xx
1
2 o8 (C.10)

3 P4 %
b, = n =
3 Vel

is the outward unit normal to the surface. Another quantity of interest is the

""geodetical curvature" Kg given by

o 3G/3¢0
Kg " (e 11

Using the above relations, we can derive the following 2xpressions

which holds crue at tha stationary point:

! M,1-8:% 0 (C.12)
! aC o)
o (TR %
; 38 R+ xg 0 (R:13)
£
; 2 2 " S
§ 3eo , Lhuo , Loz _31_1, (C.14)
. 30 o 33 L 3) ?

where :3 = l/tg, and

(C.13)




T ———— STy

32 ¢ . 36/30 . 3%G/3ct  LBB
P + = + 5 "= (C.16)
38730 R™ g
300 2e/es. 36 36 K. B0 88 1, A% i
383 2R 3 3o 4G 2 3038 E

where Py is the radius of curvature of the geodesic.
Equations (C.12) and (C.13) determine the location of the stationary

point. At this point R = ;q, which, if we introduce the ray concept,

1

tells us that the surface rays leave the surface at the "point of diffraction'

tangentially. Equation (C.14) indicates that the stationary point is of

second order, so that we need higher~order derivities of the phase. de, Lsc

88

and L are coefficients of the second fundamental form of the surface

evaluated at the stationary point. They are defined as

19¢ . ; i ; LGB i ; e 38 > -
ag: 3 (o]

Using the relationships given above, one can find the expansion co-

efficients 31 3 bmn and qu in (C.3). Zeroth and first-order cterms in

mn
(C.3) give us formulas (5.6).

A few remarks should be made concerning the expansion presented in
(C.3). First of all, (C.3) is a doubly infinite series; therefore, for each

T
<

f£ixed power of a finite number of terms should be summed up. The
coefficients of various terms in these finite sums, namely qu's, become

very complicated when p and 7 are greater than Q0 or 1. Another difficulty with
this series is that when the stationary point of the phase is of an order

higher than 1, the difference between the order of the successive terms

(when they are ordered according to the descending power of k) becomes very




small, and conmsequently the infinite series converges very slowly. For

instance, in our problem where § = 3 and t = 2 (stationary point is of ?
second order), sometimes the difference between the orders of successive

terms is k-1/6, which indicates the weak convergence (in an asymptotic

sense) of the axpansion in the cases where the frequency is not very large.
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