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~ MOTIVATION

The early work In program synthesis relied strongly on mechanical theorem-proving
!‘ techniques. The work of Green [1969] and Waldinger and Lee (1969], for example,

depended on resolution-based theorem-proving; however, the difficulty of representing the
principle of mathematical induction in a resolution framework hampered these systems in
the formation of programs with iterative or recursive loops. More recently, program
synthesis and theorem proving have tended to go their separate ways. Newer theorem
proving systems are able to perform proof s by mathematical induction (e.g. , Boyer and
Moore [1976]), but are useless for program synthesis because they have sacrificed the
ability to prove theorems’ involving existential quantifiers. Recent work in program
synthesis (e.g.. Burstall and Darlington [1977] and Manna and Waldinger [1977]), on the
other hand , has abandoned the theorem-proving approach, and has relied instead on the
direct appl ication of transformation or rewriting rules to the program ’s spec ificat ions ; in
choosing this path, these systems have renounced the use of such theorem-proving
techniques as unification or induction.

In this paper , we describe a framework for program synthesis that again relies on a
theorem-proving approach. This approach combines techniques of un ification , mathematical
induction, and transformation rules within a single deductive system. We will outline the
logical structure of this system without considering the strategic aspects of how
deductions are directed. Although no implementation exists, the approach Is machine-
oriented and ultimately Intended for Implementation In automatic synthesis systems.

in the next section, we wi ll give examples of specifications accepted by the system.
in the succeeding sections, we explai n the relation between theorem proving and our
approach to program synthesis.
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SPECIFICATION

1. . The specification of a program allows us to express the purpose of the desired program,
without indicating an algorithm by which that purpose is to be achieved. Specifications
may contain high-level constructs that are not computable, but are close to our way of
thinking. Typically, specifications Involve such constructs as the quantifiers for all ... and

for some..., the set const ruc tor {x : ...), and the descriptor find z such that.

For example, to specify a program to com pute the Integer square-root of a nonnegative
integer n, we would write

sqrt (n) <. find z such that
integer(s) and z~ ~ n ‘c (z+ 1)2

where isle ger(n) and 0 s n.

Here, the In put condition

Integer (s) and 0 ~ n

expresses the class of legal inputs to which the program is expected to apply. The output
con4~tion

Integer (s) and z~ s n (2.1)2

describes the relation the output z is intended to satisfy.

To describe a program to sort a list 1, we might write

sort(l) (. find z such that
ordered (s) and perm(1, z)

where IsIS st(l) .

Here, ordersd(z) expresses that the elements of the output list z should be in
nondecreasing order ; perm(I, z) expresses that z should be a permutation of the input 1;
and isllst (I) expres ses that I can be assumed to be a list .

Finally, to describe a program to fInd the last element of a nonempty list !, we might
wr ite

Iast(1) C. find z such that
for some y I •

where is list( O and I • ~
. -

Sd .,, ~~
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Here, u<>v denotes the result of appending the two lists u and v; (u] denotes the list
whose sole element Is u; and [] denotes the empty list. (Thus, [A B C].c>[D] yields
(A B C D]; therefore, by the above specification, Iast( (A B C D]) • D.)

In general, we are considering the synthesis of programs whose specifications have the
form

f(a) C. find z such that R(a , z)
where P(a).

Thus, in this paper we limit our discussion to the synthesis of applicative programs, which
yield an output but produce no side effects. To derive a program from such a
specification, we attempt to prove a theorem of the form

for all a, -

if P(a)
then for some z , R(a , z).

The proof of this theorem must be constructive, In the sense that it must tell us how to
find an output z satisfying the desired output condition. From such a proof , a program to
compute z can be extracted.

I

- 
.~.,..
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BASIC STRUCTURE

The basic structure employed in our approach is the sequent , which consists of two lists
of sentences, the assertions 

~~ ~~ and the goals C~, C~, . ..,  G~. With each
assertion or goal there may be associated an entry called the output expression. This output
entry has no bearing on the proof itself , but records the program segment that has been
constructed at each stage of th e derivation (cf. the “answer literal” in Green (1969]).
We will denote a sequent by a table with three columns: assertions , goals , and output.
Each row in the sequent has the form

assertions goals - outp ut I
4,(a, x) t 1(a , x) ]

or

C~(a , x) J t~(a, x)

The meaning of a sequent Is that If all instances of each of the assertions are true,
then some instance of at least one of the goals is true; more precisely, the sequent has
the same meaning as Its associated sentence

if for all x , A 1(a , x) and
for ali x , A2(a, x) and

for all x , A~(a , x)
then for some x , G~(a , x) or

for some x , O~(a , x) or

for some r , C(a , x)

where a denotes all the constants of the sequent and x denotes all the free variables. (in
general, we will denote constants or tuples of constants by a, b, c , . . . ,  n and variables
or tup I.s of varia bles by u, v, w , . ..,  z.) If some Instance of a goal is true (or some

L~ :-~ 
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instance of an assertion is false], the corresponding instance of its output expression
satisfies the given specification. In other words, If some instance G,(a , e) is true [or some
instance Aa(a, e) is false], then the correspondrng instance t~(a, e) (or t è(a , e)] satisfies the
specification,

Note that: (1) an assertion or goal is not required to have an output entry; (2) an
assertion and a goal never occupy the same row of the sequent; (3) the variables in each
row are “dummys,” that we can systematically rename without changing the meaning of the
sequent.

The distinction between assertions and goals is artificial, and does not increase the
logical power of the deductive system. In fact , if we delete a goal from a sequent, and
add its negation as a new assertion, we obtain an equivalent sequent; similarly, we can
delete an assertion from a sequent, and add its negation as a new goal, without changing
the meaning of the sequent. This property Is known as duality. Nevertheless, the
distinction between assertions and goals makes our deductions easier to understand.I

If initIally we are given the specification

f(a) find z such that R(a , z)
where P(a),

we construct the initial sequent

Assertions Goals Output

P(a)

R(a , z) z

in other words, we assume that the input condition P(a) is true, and we want to prove that
for some z, the goal RCa , z) is true; If so, z represents the desired output. Quantifiers have
been removed by the usual skolemization procedure (see, e.g. , Nilsson (1971]). The
output z Is a variable, for which we can make substItutions; the input a Is a constant.

The input condition P(a) is not the only assertion in the sequent; typically, simple, basic
• axioms, such as u a u, are represented as assertions that are tacitly present in all

sequants. Many properties of the subject domain, however, are represented by other
means, as we shall see.

_____ - — — - — - —________________________________
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The deductive system we describe operates by causing new assertions and goals, and

corresponding new output expressions, to be added to the sequent without changing its
meaning. The process terminates if the goal true (or the assertion false) is produced,
whose corresponding output expression consists entirely of primitives from the target
programming language; this expression is the desired program. in other words, if we
develop a row of form

I true I ‘ I
or 

[ false I t

where t is a prImitive expression, the desired program Is of form

f(a) c. t.

Note that this deductive procedure never requires us to establish new sequents or
(except for strategic purposes) to delete an existing assertion or goal. In this sense, the
approach more resembles resolution than “natural deduction.”

In the remainder of this paper we outline the deductive rules of our system, and we
present two complete examples illustrating the application of the system to program
synthesis.

~~

:“:: ,‘ 
~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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~ 
SPLiTTiNG RULES

t “

~~ 
The splitting rules allow us to decompose an assertion or goal into Its logical

components. For example, if our sequent contains an assertion of form F and G, we can

introduce the two assertions F and G into the sequent without changing its meaning. We
will call this the andspllt rule and express it in the following notation:

ii.
the and: ~iil rul e

‘p

assertion s goals output -
~~

F and O t
I

F t
C

Similarly, we have the or: p/ it rule - - 

-

assertions goals output

F o r G t
_ _ _ _  -~~~~~~~~~~

F t

_ _ _ _ _  

C t

and the ifs pill rule J
• assertions goals output

L f F then O t

F I
C I

Note that the output entries for the consequents of th. splitting rules are exactly the
• same as the entries for their antecedents,

I

~ ~~~~~~~~~~~~~~~~~~~~~ :- ‘ .
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r

S Although initially only the goal has an output entry, the Ifs p/i s rule can introduce an
assertion with an output entry. Such assertions are rare in practice, but can arise by the

- action of such rules.

- 
•
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• . TRANSFORMATION RULES

Transformation rules allow one assertion or goal to be derived from another. Typically,
transformations are expressed as conditional rewriting rules

r~~~s 1/ P

meaning that in any assertion, goal, or output expression, a subexpression of form r can be
replaced by the corresponding expression of form s , provided that -the condition P holds.
We never write such a rule unless r and s are equal terms or equivalent sentences ,
whenever condition P holds. For example, the transformation rule

u € v ~ u head(v) or u C tail (v) if IsIist (v) and v . [)

expresses that an element belongs to a nonempty list li lt equals the head of the list or
belongs to its tail. (Here, head(v) denotes the first element of the list v , and taii(v) denotes
the list of all but the first element.) The rule

uj O ~ true if integer Cu) and u . 0

expresses that every nonzero Integer divides zero.

if a rule has the vacuous condition true , we write it with no condition; for example, the
logi cal rule

~~and Irue 
~ Q

may be applied to any subexpression that matches its left-hand side.

A transformation rule

r~~~s l fP

is not permitted to replace an expression of form s by the corresponding expression of
form r when the condition P holds, even though these two expressions have the same
values. For that purpose, we would require a second rule

s r  i fP .

For example , we might include the rule

‘
p. .p

~~~~~~ ~~~~~~ t~
- — —--- ——---- -.— — ———-—— 
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I
x + 0 ~ x if number(x ) a

but not the rule

x ~ x + 0 if number(x) .

Assertions and goals are affected differently by transformation rules. Suppose

r~~~s I/ P

is a transformation rule and F(r ’) is an assertion such that Its subexpression r ’ is not
within the scope of any quantifier. Suppose also that there exists a unifier for r and r ’,
i .e. , a substitution 0 such that rO and r ’O are identical. Here, rO denotes the result of
applying the substitution 0 to the expression r. We can assume that 0 is a “most generai”
unifier (in the sense of Robinson (1966]) of r and r ’, (We rename the variables of F(r ’), if
necessary, to insure that it has no variables in common with the transformation rule.) By
the rule, we can conclude that If P0 holds, then rO and sO are equal terms or equivalent
sentences. Therefore , we can add the assertion

if P0 then F(s)0

to our sequent.

For example, suppose we have the assertion

a E / and a 0 0

and we apply the transformation rule

- u C v u a h.o4(v) or u C Sau Cy) if islih(v) and v.  [] ,

taking r ’ to be a E l  and 0 to be the substitution (u  a; v 1] ;  then we obtain the new
assertion

If isllst( I) and 1 []
then (a • headQ) or a C taLl(l)) and a. 0.

:
1 Note that a and I are constants, while u and v are variables, and indeed, the substitution

was made for the variables of the rule but not for the constants of the assertion.

In general, if th. given assertIon P(r ’) has an associstød output entry 1, the new output

- 

~~~~~~~~~~~~ - ~- -
~~~~~~

--
~~~~~ -~~~~~~~~~~~~~~ - : ‘. - 

-
-
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, 

entry is formed by applying the substitution 0 to I. For, suppose some instance of the new
assertion “if P0 then F(s)0 ” is false; then the corresponding instance of P0 is true, and the
corresponding instance of F(s) 0 is false. Recall that F(r) 0 and F(r ’)O are identical. Then,
by the transformation rule, the corresponding instance of F(r)0 , i.e. of F(r ’) O , Is false. We
know that if any instance of F(r ’) is false, the corresponding instance of t satisfies the -

given specification. Hence, because some instance of F(r ’) O is false, the corresponding -

Instance of tO Is the desired output. 
. -

In our deduction rule notation, we write

assertIons goals output

F(r ’) t 
- •

If P0 then F (s) 0 tO J
- The corresponding dual deduction rule for goals is

- assertions goals out put

F (r ’) t

• P0 and F(s) 0 
- 

tO

(Transformation rules can also be applied to output entries In an analogous manner.)

For example, suppose we have the goal 
• 

-

• 

J 

alz and bj z 
J 

z+I 1 1
and we apply the transformation rule

* uJ O * true If inleger(u) and u . 0,

taking r ’ to be aix and 8 to be the substitution ( z 0; u a) .  Then we obtain the goal 
-

—
_ _--_ _ _ _ _ _ _

b 

- —

. ~~~~ I k 
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(inte ger(a) and a - 0) and 0÷1 
$

(true and bIO)

which can be further transformed to

lnteger(a) and a — 0 and bIO I I
Note that applying the transformation rule caused a substitution to be made for the
occurrences of the varIable z in the goal and the output entry.

TransformatIon rules need not be simple rewriting rules; they may represent arbitrary
procedures. For example, r could be an equation fix) • a , s could be Its solution x e, and
P could be the condition under which that solution applies. In general, efficient procedures
for particular subtheories may be represented as transformation rules (see, e.g. , Bledsoe

[1977) or Nelson and Oppen [1978].)

Transformation rules play the role of the “antecedent theorems” and “consequent
theorems” of PLANNER (HewItt [1971]). For example, a consequent theorem that we might
write as

to prove f l u)  — flu)
p rove u • V

can be represented by the transformation rule

flu) -f l y) ~ true if u • v .

This rule will have the desired effect of reducing the goal f(s) - fib) to the simpler subgoal
a - b , and (like the consequent theorem) will not have the pernicious side effect of
deriving from the simple assertion a • b the more complex assertion f(a) - fib) . The
axiomatic representation of the same fact would have both results. (IncIdentally, the
transformation rule has the beneficial effect , not shared by the consequent theorem, of
deriving from the complex assertion not(f(a) a fib)) the simpler assertion not(a . b).)

‘.1 -

_______________ • :~~
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RESOLUTION

The original resolution principle (Robinson (1965)) applied only to a sentence in
conjunctive normal form. However, the ability to deal with sentences not In this form Is
essential If resolution and mathematical Induction are to coexist happily within the same
framework. The version of resolution we employ does not require the sentences to be in
conjunctive normal form.

Assume our sequent contains two assertions of form F(P 1) and 0(P 2) , where P 1 and P2
are subsentences of these assertions not within the scope of any quantifier. For the time
being, let us Ignore the output expressions corresponding to these assertions. Suppose
there exists a unifier for P 1 and P2, i.e. , a substitution 0 such that P 10 and P20 are

identical. We can take 0 to be the most general unifier. The 44—resolution rule allows us
to deduce the new assertion

F (tr ue) 0 or 0(false) O,

and add it to the sequent. (Here, F(true) denotes the result of replacing P 1 by true in
F(P 1) . Of course, we may need to do the usual renaming to ensure that F(P 1 ) and 0(P 2)
have no variables In common.) We will call 0 the unifying substItution and P 10 (~P26) the

eliminated subexpresslon ; the deduced assertion is called the resolvenl. Note that the rule is
symmetric, so the roles of F(P 1) and 0(P 2) may be reversed.

For example, suppose our sequent contains the assertions

if (P(x) and Q(b)) then R(x )

and

P(a) and Q(,).

The two subeentences “P(x) and Q(b)” and “P(a) and Q(y)” can be unified by the
substitution

0 a ( x  ~ a ;y  ..b) .

Therefore, the AA-reso$ution rule allows us to eliminate the subexpresslon “P(a) and Q(b) ”
and derive the conclusion

(if true :h~n R(a)) oi false,

which reduces to

• - •  —• -- 
- - --. -•- - -

~~~~~~~~~~~~~~~~~~~~ ~
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r
R(a ) -

by application of the appropriate transformation rules.

The conventional resolution rule may be regarded as • special case of the above M-
resolution rule. The conventional rule allows us to derive from the two assertions

(not P 1) or Q

and

~ 2 or R

the new assertion

QOor R0,

where 0 is a most general unifier of P 1 and P2. From the same two assertions we can use
our AA-resolution rule to derive

((not true) or Q)O or (false or R) O,

which reduces to the same conclusion

QOor RO

as the original resolution rule.

The Justification for the AA-resolution rule is straightforward: Because F(P~
) holds, if

18 is true, then F(true)O hoids~ on the other hand, because 0(P2) holds, If P ) O (-P~0) is

false, G(fals,)0 holds. In either case, the disjunction

F(trus)0 or (J(false)8

holds.

A “ non-clausal ” resolution rule similar to ours has been developed by Murray (1918).
Other such rules hay, bean proposed by WilkIns (1073] and Niisson (1077].

. ; ~Z~_ _ _ _ _ _ _ _  _ _ _  _ _ _ _ _  _ _
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THE RESOLUTION RULES

We have defined the AA-resolution rule to derive conclusions from assertions:

the 44—resolution rule 
-

assertions goals

F (P 1)
0(P2)

F(tr ue) O or G(false)O

where P 10 P2O, and 0 is most general.

By duality, we can regard goals as negated assertions; consequently, the following
three rules are corollaries of the AA-resolution rule:

the 06—resolution rule

assertions goals

F (P 1)
0(P 2)

F (true) O and G(false) O

the GA—resolution rule

assertions goals

F(P l)
0(P2)

- 
I F(tru4 and (not G(false) O)

b:~~~~~~”~ 1T 
~~~ ft-~ 
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the 40—resolution rule

assertions goals

F (P 1)
0(P 2)

I (not P(true) O) and G(fatse) 6

where P 1, P2. and 0 satisfy the same condition as for the AA-resolution rule.

Up to now, we have ignored the output expressions of the assertIons and goals.
However, if at least one of the sentences to which a resolutIon rule is applied has a
corresponding output expression, the resolvent will also have an output expression, If

• only one of the sentences has an output expression, say t, t h n  the resolvent will have
the output expression tO. On the other hand, If the two sentences F(P 1) and 0(P 2) have
output expressions t~ 

and t2, respectively, the resolvent will have the output expression

If P 10 then t~0 else t20.

The justification for constructing this conditional as an Output expression is as follows ;
we consider only the GG case: Suppose the goal

P(true)O and 0(false)0

has been obtained by GG-resolution from two goals F(P 1) and 0(P 2). We would like ~o
• show that if this goal is true, the conditional output expressIon satisfies the desired

specification. We assume that the resolvent is true; therefore both F(trzs.)0 and Gtfalse) O
are true. In the case that P 10 Is true, we have that F(P 1) 0 Is identical to F(true) O, and

therefore is true. Consequently, the corresponding Instance 
~l

8 of the output expression 
~l

satisfies the specification of the desired program. in the other case, in which P 10 Is false,
• • P2p9 is false, and the same reasoning allows us to conclude that ~O satisfies the

specification of the desired program. In either case, we can conclude that the conditional

Sf P l 0 then :l O eIse t20

satisfies the desired spsolfication. By duality, the same output expression can be derived
for AA-r..olution, GA-resolution, and AG-resolution.

—/

S 

- - 

~ J - T ~ 
- 
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For example, let u. is denote the operation of inserting u before the first element of the
list v, and SU~PO5O we have the goal

assert ions goals output

hcad(z) s aan d tall(z) ‘b  z

and we have the assertion

head (u.u) -u

with no output expression; then by GA-resolution, applying the substitution

O~~( u. . a ; r . - a.u ]

and eliminating the subsentence

hcad(a.v) s a,

we obtain tile new goal

(true and tall(a ’ts) — b) an~ a.v j
(not false)

which can be reduced to

cail (a.v) — 6 J a’v
by application of the appropriate transformation rules. Note that we have applied the
substitution ( u ~ a; z • a.v ] to the original Output expression z, obtaining the new output
expression a’v. Therefore, if we can find is such that taiJ(a’v) • b, the correspondIng
Instance of a•v will satisfy the desired specifIcation.

Another exampim: suppose we have derived the two goals

_ _  
•!~~; ; . ~- - . . L’ -~
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.max( :ail (l)) � head (l) max(tail(l))
and tai l (l) � []

not( ma~(tail (l)) � head(l) ) head(l)
and tail (l) • (]

Then by GG-resolution, eliminating the subsentence max(tail(l)) � head(l), we can derive the
new goal

(true and tail( l) ~ 
(]) and if mar( ai/ ( I)) � head(l)

• (not(false) and tai1(l) — ()) then max(tail(/))
else head (/ )

which can be reduced to

tail (l) • [J if max(tai/(/)) � head (l)
then ma~(tail (l))
else /se ad(l)

1~~~
•
~~~

- ~~ ~ (~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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THE POLARITY STRATEGY

Not all applications of the resolution rules will produce valuable conclusions. For
example , suppose we are given the goal

goals

P(c , x) and Q(x, a)

and the assertion

assertions

if P(y , d) then Q(b, y)

Then if we apply GA-resolution, eliminating Q(b, a), we can obtain the rosolvent

(P(c , b) and true) and not(if P(a , d) then false),

which reduces to the goal

J 
P(c , b) and P(a , d) 

f I
However, we can also apply GA-resolution and eliminate P(c , d), yielding the resolvent

(true and Q(d, a)) and noe(lf false then Q(b, c)) ,

whici~ reduces to the trivIal goal

false I I
Finally, we can also apply AG-resolutfr - . to the s.*e sssertlon and goal in two different
ways, eliminating P(c , d) and eliminating Q(b, a); both of tbos. applications lead to the same
trivial goal false.

.4
.
,

11

_ 
- 

- 

,i.
.
~
.
- - r~; ~ ~~~~~~~ ~~



21

A polarity strate gy adapted from Murray [1978) restricts the resolution rules to prevent
many such fruitless applications.

We first assign a polarity (either positive (+) or negative (-) or both) to every
subsentence of a given sequent , as follows:

• each goal is positive

• each assertion is negative

• if a subsentence S has form “not ci ” , then its component a has polarity opposite to S

o if a subsentence 5 has form “a and 
~~~

“ “a or a” , “for all x , a”, or “for some x , a,” then its

components a and ~ have the same polarity as S

O if a subsentence 5 has form “if a then a”, then ~ has the same polarity as S, but a has

the opposite polarity.

For example , the above goal and assertion are annotated w ith the polarity of dach
subsentence, as follows:

assertions - goals out put

(if P(y . d) ’ then Q(b , y Y)
(P(c , r)~ and Q(x ,a)~)~

The four resolution rules we have presented replace certain subsentences by true , and

others by false. The polarity stra tegy , then, permit s a subsentence to be replaced by true
only if it has at least one positive occurrence, and by false only if has St least one
negative occurrence. For example , we are permitted to apply GA-resolution to the above
goal and assertion, eliminating cNb, a), because Q(x, a), which is replaced by true , occurs

positively in the goal, and ~(b, y), which is replaced by false, occurs negatively in the
assertion. On the other hand, we are not permitted to apply GA-resolution to eliminate
P(c , d) , because P(y, d), which is replaced by false , only occurs positively in the assertion.
Similarly , we are not permitted to apply AG-resolution between this assertion and goal,
whether we eliminate P(c , d) or Q(b , a). Indeed, the only application of resolutIon permitted
by the polarity strategy is the one that led to a nontrivial conciusion.

‘4.

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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. 1
The deductive system we have presented so far , including the splitting rules, the

- resolution rules, and an appropriate set of logical transformation rules, constitutes a
• complete system for first-order logic, In the sense that a derivation exists for every valid

sentence. (Actually, only the resolution rules and some of the logical transformation rules
are strictly necessary.) The above polarity strategy does not interfere with the
completeness of the system.

I

• .

4

I
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MATHEMATICAl. INDUCTION AND THE FORMATION OF RECURSIVE CALLS

Mathematical .induction Is of special Importance for deductive systems intended for
program synthesis, because it is only by the application of some form of the Induction
principle that recursive calls or iterative loops are introduced into the program being
constructed. The induction rule we employ is $ version of the principle of mathematical
induction over a well-founded set , known in the computer science literature as “structural
induction.”

We may describe this principle as follows: In attempting to prove that a sentence of
form P(a) holds for every element a of some well-founded set, we may assume inductively
that the sentence holds for all u that are strictly less than a In the well-founded ordering
<. Thus, in trying to prove P(a) , the well-founded induction principle allows us to assume
the Induction hypothesis

- for all u, l f u ( a t h e n F(u).

In the case that the well-founded set Is the nonnegative integers under the usual <
ordering, well-founded induction reduces to the familiar complete induction principle: to
prove that F(n) holds for every nonnegative Integer n , we may assume InductIvely that
the sentence F(u) holds for all nonnegative Integers u such that u < n.

In our inference system, the principle of well-founded induction is represented as a
deduction rule (rather than, say, an axiom schema). We present only a special case of
this rule here.

Suppose we are constructing a program whose specification Is of form

f(a) <e find z such that
for some y, RCa , y . z)

where P(a) .

Then our Initial sequent ii

assertions goals output

P(a)
R(a , y , z) x

~- 1~~H 1’.. . .~ . ~T . c .. - .~ ~~~~~~~~~~~
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Then we can always add to our sequent a new assertion, the induction hypothesis

i f u  <a
then if P(u)

then R(u , g (u) , flu))

Here, f denotes the program we are trying to construct , and g Is a new Skolem function
corresponding to the variable y . The well-founded set and the particular wail-founded
ordering < to be employed in the proof have not yet been determined.

Let us paraphrase: We are attempting to construct a program f such that , for an
arbitrary Input a satisfying the input condition P(a), the output fla) will satisfy the output
condition R(d , y , f(a)) , for some y; or , equivalently, RCa , g (a), f (a)). By the well-founded
induction principle, we can assume inductively that for every u less than a in some well-
founded ordering such that the input condition P(u) holds, the output flu) ~.li satisfy the
same output condition R(u , g (u), flu)) .

In general, we could introduce an induction hypothesis corresponding to any subset of
the assertions or goals in our sequent, not Just the initial assertion and goal; most of these
induction hypotheses would not be relevant to the final proof , and the proliferation of new
assertions would obstruct our efforts to find a proof. Therefore , we employ the following
recurrence strategy for determining when to introduce an Induction hypothesis.

Let us restrict our attention to the case where the induction hypothesis is derived from
the initial assertion and goal. Suppose that Q(a , y, z) is some subsentence of the initial
goal; then that goal may be written

R(Q(a , y , z)).

Suppose further that at some point in the derivation an assertion or goal of form

S( Q(t , y ’, z ’))

is developed, where t is an arbitrary term and y ’ and z ’ are distinct variables. In other
words, the newly developed assertion or goal has a subsentence Q(t , y ’, z ’) that Is a
precise instance of a subsentence Q(a, y , z) of the initial goal. This recurrence motivates
us to acid the induction 

hypothesis4
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i f u < a
then if P(u)

then R( Q(u , g(u) , flu))).

The rationale for introducing the induction hypothesis at this point is that now we can
perform resolution between the Induction hypothesis and the newly d eveloped assertion or
goal S(Q( t , y ’ , z ’)), eliminating the subexpression Q(t , g(t), fi t)) . In fact , we do not need
to introduce the induction hypothesis unless the original subexpresslon (~(a , y , z) and the
recurrrent subexpression Q(t , y ’, z ’) have the same polarity, either both positive or both
negative. For the subexpression ç~(u , g (u) , flu)) in the Inductive assertion always has
polarity opposite to the subexpression Q(a , y , z) of the initial goal; and the induction
hypothesis cannot be resolved against the newly developed assertion or goal unless the
eliminated subexpressions c~(u , g(u), flu)) and Q(t , y ’, z ’) have opposite polarity, by the
polarity strategy for resolution.

Let us look at an example. Suppose we are constructing a program rem(1, j) to compute
the remainder of dividing a nonnegative integer I by a positive integerJ; the specification
may be expressed as

rem(i , j )  (. find z such that
for some y,
i : y J  + z and O ~ z and z <j

where 0 � I and 0 <J.

(Note that , for simplicity, we have omitted type requirements such as integer (l) .) Our initial
sequent is then -

assertions goals out puts

O~~i a n d 0 <j
i - y ’ J + z a n d o s z a n d z <j  z

Here , the inputs i end j  are constants, for which we can make no substitution; y and the
output z are variables.

Assume that during the course of the derivation we develop the goal

I i -j . y 1 ’J +z a n d 0~~z a n d z < j  I z ‘

- - - - _ _

1 —~ ~~~~~~~ 
,
~
,

• -~ _____________
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1 his goal is a precise instance of the initial goal

I y •J + r and 0 ~ r and z

obtained by replacing i by i-j. Therefore , taking Q(i ,J,y, z) to be the initial goal itself , we
add as a new assertion the induction hypothesis

if (u 1, u 2) < (I , j )
then if 0 ~ u 1 and 0 <  u2

then u 1 — g(u 1, u2) •u 2 + ron(u 1, u2)
and 0 ~ re?n(u 1, u2) and rern (u 1, u2) < u2 - 

-

Hero , g is a new Skolem function corresponding to the variable y, and < is  an arbitrary well-
found ed ord ering. Note that < is to be defined on pairs because the de5ircd programf has
a pair of inputs.

We can now apply GA-resolution between the goal

I i — j — y 1~j + z a n d O~~z a n d z <j  z

and the induction hypothesis; the unifying substitution 0 is

[ u i—j; U2 ~-j ; y ‘- g(i-.j , j ); z ~ rem (i—J , j ) ].

The new goal is

true and rem( t—j ,  j )
not (if (1—j . j )  <( 1 , j )

t/z en I f 0~~i—j a n d 0 <j
- then false)

which reduces to

I (i— J , j )  <(i ,j ) and re~n(l—j , j )

• 
0 � i — J and Oc J

- -

~
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Note that the recursive call rem(i—j , j ) has been introduced into the output entry.

The particular well-founded ordering < to be employed in the proc’f has not yet been
- 

- determined. To choose the ordering requires special transformation rules , which describe
known well-founded orderings and ways of combining them. In this case , (he ordering < is
chosen to be the < ordering on the first component of the pairs , by application of the
transformat ion rule

(u 1, u2 ) <~ (v 1, v2) ~ Zrue if U1 < v1 and 0 ~ u 1 and 0 � v 1.

A new goal

I-f < i and 0 s i—f and 0 ~ I and rem(i — J , j )

I 

true and 0 � i—j and 0 <j 
-

is produced; this goal ultimfttely reduces to

j  i rem (i.-j, j ) J
In other words, in the case thatj s i , the output rem (t—j , j )  satisfies the desired program’s
specification.

In a later section we wiH give the full derivation of the related program that finds the
integer quotient of two integers.

We will not discuss here the more general case , where a newly developed assertion or
goa1 has a subsentence that Is an instance of a subsentence not of the initial goal, but of

some Intermediate goal or assertion; this situation accounts for tIm introduction of
“auxiliary procedures ” to he called by the program under construction. We will also not
discuss the case where the new subsentence Is not a precise instance of the earlier
subsentence, but where both are instances of a somewhat more general sentence.

Some early efforts toward incorporating mathematical induction In a resolution
frame work were made by J. L. Darlington (19681. His system treated the induction
principle as a second-order axiom schema rather than as a deduction rule; it had a limited
ability to perform second-order unifications.

~~~~~~~ 
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r
A COMPLETE EXAMPLE; Finding the Quotient of Two Integers

In this section, we present a complete example that exploits most of the features of
the d eductive synthesis approach. Our task is to construct a program dlv(l , J) for finding
the integer quotient of dividing a nonnegative Integer I by a positive integer j . Our
specification is expressed as

div(i , j )  (. find y such that
for some z,
i = y . j + z a n d o � z a n d z <j

w h e r e o s l a n d o c j .

(For simplicity, we again omit type conditions, such as tnteger(1) , from this discussion). Our
initial sequent is therefore

assertions goals out put

1.0 ~~l and0<j
2 .iRy .j+zand0sz y

and z cf

(Note that we are enumerating the assertions and goals.)

In presenting the derivation we will sometImes apply simple logical end algebraic
transformation rules without mentioning them explicitly. We assume that our background
knowledge includes the two assertions

3.u.u
4 . u s v o r v < u  - 

-

Applying the ands pElt rule- to assertion 1 yields the new assertions

6 .0s I - 
-

6 .0<j

Assume we have the following transformatIon rules that define integer multiplication:

4

~~~~~~~~~~~ ~7~J ~~~~~~~~~~~~~~ . •.~~~~ 
.-~~~r4~ & c~’~ 
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0•v~~~0(u+l) . v ~~ u ’v + v.

ApplyIng the first of these rules to the subexpression y.J In goal 2 yields

I I 7.i ~~0 + z a n d O � z a n d z < j

The unifying substitution In deriving goal 7 is

O~~[y4 . O; v..j ] ;

applying this substitution to the output entry y produced the new output 0.

Applying the numerical transformation rule

0 + v ~~~v

yields

I I 8 . l s z a n d 0 s z a n d z <j  J 0

The GA-resolution rule can now be applied between goal 8 and the equality assertion 3,
u u. The unifying substitution Is

8 x ( ~~o. t; ri -i ]

and the eliminated subexpression Is I ~ I; we obtain

9~o s i a n d s <j

By applying GA-resolution again, against assertion 6, 0 ~ I, we obtain

I I 10. i~~j  I 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
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In other words, we have found that in the case that I c J, the output 0 will satisfy the
specIfication for the quotient program.

Let us return our attention to the Initial goal 2,

1~~y .J+zand0�z and z<j .

- Recall that we have a second transformation rule

(u+1).v~~ u .v+v

for the multiplication function. Applying this rule to goal 2 yIelds

I 11.1~~y 1 .j +j +z and 0~~z a n d z <j  y~+i 
4

where Yi is a new variable. Here, the unifying substitution is -

0 (y . .y+ l ;  u . - y 1;  v — j ] ;

applying this substItution to the output entry z produced the new output y~+i.

The transformation rule

u = v+w ~

applied to goal 11 yields

I 12. 1—f . y1.j + z a n d o �z a n d z <j  ( ,~+i

Goal 12 Is a precise Instance of the initial goal 2,

isy .J+zan d0~~z and z.c J,

obtained by replacing the input I by I-f. (Again, the replacement of the dummy variab le ,
by ,

~ 
Is not significant. ) Ther ifors, the following induction hypothesis is formed:

______ 
.~~~~~~~~~~ 
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13. if (u 1, 1SR) <(I , f)
then ifO ~ u1 and 0 <  u2

then u 1 • dlv(u 1, u2) ’u 2 + h(u 1, u2) and
0~ h(u 1, u2) and h(u 1, u2) .c

Here, h is a Skolem function corresponding to the variable z, and < is an arbitrary well-
founded ordering.

By applying GA-resolution between goal 12 and the induction hypothesis, we obtain the
goal

14. true and dtv(t—j , j ) + l
not (If (1—f , f) <(I , j )

then if 0 � I—f and 0 <j
then false)

Here, the unifying substitution Is

O s [ u 1 i- i—j ; u2 i- f; y 1 i- dlv(l—j , fr ~ z.- h(l-.j , J) ]

and the eliminated subexpression Is

i—f - dlv(i—j, j)’j + h(l -.j, j) and 0 s h(l—j, j )  and h(1—j , J) c f .

Note that the su bstitution to the variable 
~ 

has caused the output entry y~+l to be
changed to div(i—j , j )+1. The use of the induction hypothesis has Introduced the rec’irslve

- 

call dlv(i—j, J) into the output.

Goal 14 reduces to

I 16. (i—f, J) <(I , j )  and 0 s i—f and 0 cj )  div(I—j , j) -.- l J
The particul ar ordering ( has not yet been determIned; however , it Is chosen to be the
orderi ng on the first component of the pairs , by appl ication of the transformation rule

(u 1, u2) ‘
~ rn (v 1, u,) ~ true If it 1 s~ and 0 ~ si1 and Os v1.

• ‘ ~~ 
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A new goal Is produced:

16. I — J < i  and 0 s i—j and 0~~i and diu (i—j , j ) + 1
0~~i—J a n d 0 c J

Note that the conditions of the transformation rule caused new conjuncts to be added to
the goal.

By application of algebraic and logical transformation rules, and GA-resolution with the
assertion 5, 0 ~ 1, and assertion 6,0 cf , goal 16 is reduced to

I I 17. f~~i div(I—j, f)+ l

In other words, we have learned that in the case thatf ~ I , the output di v ( 1-f,j ) +l satisfies
the specification of the dlv program. On the other hand, in deriving goal 10 we -learned
that in the case that I <j , 0 is a satisfactory output. Assuming we have the assertion 4

• u � v o r v < u ,

we can obtain the goal

I 18. nol(i ci) dtv(i—j , J) + 1

by GA-resolution. -

The final goal

19. lrue I f I < f
then 0
else div(i—j , j) .s. I

can then be obtained by GG-resolution between goals 10 and 18.- The conditional
expression has been formed because both goals have a corresponding output entry.
Because we have developed the goal trut and a corresponding primitive out put entry , the
derivation Is complete. The final program

~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~- . ‘ YL ~ ~~~~~~~~~~~~~~ ~~
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L dlv(1,j )  <. If ~ -

then 0
else div(I—f , f) +1

is obtained directly from the final output entry.

Note that the same proof could be used to derive a remainder program as well as a
quotient program. The specification of the remainder program

t
rem(I , j )  (. find z such that

for some ,,
I . y .j + z ànd 0~~z a n d z cj

where 0 s I and I
)

yields the same initial assertion and goal as the quotient program, except that the initial
output entry is z instead of y. The succeeding output entries are changed accordingly.
The finai remainder program is then

rem(i , j) (. if I <J
then i -

else rem(l—f , J) .

We used steps fr om the derivation of this program to illustrate the formation of recursive
calls in the section on mathematical induction.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~q-~
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ANOTHER COMPLETE EXAMPLE; Finding the Last Element of a List

In this example, we apply the same techniques to derive a list-processing program. Our
discussion here will be a bit more brisk than in the preceding section.

Our task Is to construct a program las t(l) to find the last element of a nonempty list 1.
Our specification is

last(l) (. find z such that
for some y, ~ y c >[z ]

where I • (].

Recall that u<>v is the result of appending two lists U and v, (w] is the list whose sole
element is w, and [] denotes the empty list. Again, we omit type conditions, such as
Is IIst (l) , from our discussion.

Our initial sequent is

assertions goals output

1.l~~ (] - 4
2 .l—y c> tz ) Z

Let us assume that our subject knowledge Includes the assertion

J 3 . u - u  I I I
and the transformation rules

(]c> u .p u

(u ’v) c>w

w u.s * a,. (] and head(w) s it and tall (w) v

(u] us u’(]

tail(u) <L it true if U 
~ 

(] .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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The first two rules constitute the definition of the append function <>; the third expresses
the uniqueness of the decomposition of a list into a head and a tail; the fourth provides the
meaning of the abbreviation [it]; and the final rule defines a well-founded ordering <~ over
the lists.

The first transformation rule

[ ] c > u u s u

can be applied to the initial goal 2,

g

the unifying substitution is

0 [y . . . [) ;  u .-. (z) )

and the resulting goal is

4.I..[zJ z

ApplyIng the two rules

(u] us u ’(3

and

w a u.s us w .  (~ and *tad(w)s uand :aSl (w).z,

yields 
-

I 5.1. D and head(l).z z
L - and tail(l) — C]

Applying GA-resolution between goal 5 and assertion 1, 1 • (3, produces the goal

6. head(l). x and taIl(1) • z

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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- Applying GA-resolution agaIn~ between goal 6 and assertion 3, it it, produces the goal

- - 
- 

- 1 7. tail(l) — U I heo4(I) I
Here, the unifying substitution is

1 0 ( z  head(l) ; it

and the eliminated subexpresslon is h~ad(l) ~ head(l). Note that the substitution has
caused the output entry z to be replaced by head(1) . We have learned that in the case
where taU(l) Is empty the output hcad(l) satisfies the specification for last.

Returning to the initial goal 2,

1 ~y <>[z ] ,

we can apply the second transformation rule

(u ’v) <>w us u ’(v<>w)

- to the subexpresslon y.o{z). The unifying substitution is

0 [ u  b y ; ;  V 
~~y2; w [z ] ;  y 

~YI ’Y2 ]

- and the resulting goal is

I 8. 1 — y 1 ’(y2 c> Cz]) I z

Applying the transformatIon rule

w ~ u•v us w. (] and head (w)s uand l.zU (w) . v

yields

1 
‘ 9. 1 • (] and head(i) — and tall(1) . . I I

J 
,

::i~. ~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~ 
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Next, applying GA-resolutIon between goal 9 and assertion 1, 1 • [], and then between the
resulting goal and assertion 3, u u, we obtain

io. 1a411) - y2 >[z] z

Note that goal 10 Is a precise instance of our initial goal 2, 1 = y<>[z], obtained by
replacing ! by laI!(I); therefore, the following induction hypothesis is formed:

I

11. if u < 1
then l f u s ( ]

[ f/zen u - g(uk>[ Iast(u)]

Here , < Is an arbitrary well-founded orderIng and g is a Skoiem function corresponding to
the variable y.

We can now apply GA-resolution between goal 10 and the Induction hypothesis,
assertion 11. The unifying substitutIon is

0 1 u .- tatl(1), Y2 ~— g(:aU(1)) ; z last(tall(1)) ]

and the eliminated subexpression is

tail(1) g(tail(l)) <> [l a st (taU (l)) ];

we obtain

12. true and last (tail(l))
no:(if taU(!) <1

then if tail(l) • Ci
then false)

which reduces to

I 13. taiI(l) I and iaU(I) • C] Iast(ta4I(1))

I
— ~~ ~~~~~~~ 
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Note that the unifying substitution caused the introduction of the recursive call last(taLl(1))
in the output entry.

The rule

tail(u) <L U us true if it • (]

suggests taking the well-founded ordering <to be <L; we derive

I ] 1 4. 1 — () and tail(1) • C] J last (tail ( 1))

which reduces to

1 5. tail(l) • C] I lasI ((ail(I)) I
after GA-resoluion with assertion 1, 1 - [].

We have deduced that in the case where tail(1 ) • [], the output !ast(taIl (!)) satisfies the
specification; on the other hand, from goal 7 we know that in the case where :all(I) •
head(!) is a satisfactory output. Combining these two goals by GG-resolution, we obtain

16. true If tail (l) — (]
then hcad(l)
else last (tall(I))

Because we have derived the goal true with a corresponding primitive output entry, our
derivation Is comp lete. The final program, extracted from the final output entry, is

las:(!) <. If tall(1) (3
then head(l)
else last (tail(l)).

Note that the same proof could be used to derive a program fron:(l ) to remove the last
element from a nonempty lIst 1. The specification for/ro,U is

front(1) (. find s such that .
- 

-

for som e z I • ,<4x3 - -

- ~~~~~~ - - - .~~~~~~
- -:----
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where I • [] .
I

- This specification yields the same initial assertion and goal as the last program, except
- 

that the InItial output entry is, instead of z. The succeeding output entries are changed
accordIngly, and the final program derived Is

front(l) <. If taIl(!) • []
then [3
else head(I) ’fron: (uzil(l)) .

-
-

-

- _____________ ______ 
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APPLICATION TO PROGRAM TRANSFORMATION

Our program synthesis techniques can be applIed as well to the transformation of
programs. In this application, we are given a clear and concise program for a certain task ,
which may be Inefficient; we derive a more efficient equivalent program, which may be
neither clear nor concise (see BurstaIl and Darlington [1977)).

To transform a given program, we regard the program itself as the specification of a
new program. For example, suppose we are given the program

rev( l) <i i f l~~[]
then ( 3
else rev(tall(l)) <> [head(1))

where lslist(l)

for reversing the order of the elements of a list I. This program is Inefficient , for it
requires many recursive calls to rev and to the append program <>. The specification for 4
the tra nsformed program revnew(!) Is then

revnew(l) <. find z suc h that z - rev(I)
where Isllst (l) .

The Initial sequent Is thus

assertions goals output

1 . is llsg (I)
2 .z — rev( 1)  z

We admit the new transformation rules

rev (u) us [)  I f u - ( ]

and

rev(u) us rev(tail (u)) c> [head(u)] if it — C];

these rules are obtained directly from the given program.

In such a derivation , the given program rev is not regarded as a primitive construct of

-
- - - -
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(

th . target langu age. For efficiency purposes, we may also choose to regard the append

- 

function .c> as nonprimltlve.

Applying our synthesis techniques, we can obtain the followIng new program for
- reversing a list ;

revne~(I) (. revnea,2(l. (]),

where

revnew2(j , m) <~ ill 1]
then m
else revnew2(tail(l) , head(l) .m) .

The derivation Involves the formation of auxiliary procedures and the use of generalization,
- which we do not discuss in this paper.

The new program Is more efficient than the given program ,-ev(l); it Is essentially
iterative and does not employ the expensive c> operation. In general, however, unless we
Introduce additional efficiency criteria, we cannot ensure that the program we obtain is
more efficient than the given program.

~~~ 
_ _  
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. COMPARISON WITH THE PURE TRANSFORMATION-RULE APPROACH

Recent work (e.g. , Manna and Waldinger [1977), as well as Burstall and Darlington
[1077)) does not regard program synthesis as a theorem-proving task , but instead adopts
the basic approach of applying transformation rules directly to the given specification.
What advantage do we obtain by shifting to a theorem-proving approach, when that
approach has aiready been attempted and abandoned?

The structure we outline here is considerably simpler than, say, our implemented
synthesis system DEDALUS. That system required special mechanisms for the formation of
conditional expressions and recursive calls, and for the satisfaction of “conjunctive goals”
(of form “find z such that R 1(r) and R2(z) ”) . It relied on a backtracking control structure ,
that required It to explore one goal completely before attention could be passed to
another goal. in the present system these constructs are handled as a natural outgrowth
of the theorem-proving process. In addition, the foundation is laid for the application of
more sophisticated search strategies , in which attentIon is passed back and forth freely
between several competing assertions and goals.

Furthermore, the task of program synthesis always Involves a theorem-proving
component , which is needed, say, to prove the termination of the progran being
constructed, or to establish the input condition for recursive calls. (The Burstall-Darlington
system is interactive and relies on the user to prove these theorems; DEDALUS
incorporates a separate theorem prover). If we retain the artificial distinction between
program synthesis and theorem proving, each component must duplicate the efforts of the
other. The mechanism for forming recursive calls will be separate from the induction
principle; the facility for handling specifications of the form

find z such that R 1(z; and R2(z)

will be distinct from the facility for proving theorems of form

for some z , R , (z) and R2(x);

and so forth. By adopting a theorem-proving approach, we can unify these two
components.

The two complete examples In this paper have been chosen to Illustrate the
advantages of the new approach ; both were beyond the capabi lities of the DEDALUS
system.
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Theorem proving was abandoned as an approach to program synthesis when the
development of sufficiently powerful automatic theorem provers appeared to flounder.
However, theorem provers have been exhibiting a steady Increase In their effectiveness ,
and program synthesis is one of the most natural applications of these systems.
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