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ABSTRACT. There are - many ways of programming an actuator or effector
for movement between th same two points. In the interest of efficiency it
is sometimes desirable to program that trajectory which requires the least
amount of energy. This paper considers the minimum energy movement for
a spring-like actuator abstracted from muscle mechanics and energetics. It
is proved that for this actuator a bang-coast-bang actuation pattern
minimizes the energy expenditure. For some parameter values this pattern
is modified by a singular arc at the first switching point. A surprising
limitation on the duration of coast is demonstrated. Some relaxations of the
restrictions underlying the spring model are shQwn to preserve the bang-
coast-bang solution.
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Though considerable effort has been expended in th. study of the

human motor ejjstem, the execution of even simple movements Is not well

understood. One current theoril holds that movements ar. memor ized In ter ms
of fina l position CBIzzI at cii. The organism selects length—tension

curves of agonist and antagonist bU adjusting th. innervation levels so

that the intersection of those curves occur s at the desired position
(Feldmanl .

- This process is illustrated bU the htjpothetlcal length—tension

curves of agonist and antagonist muscles in figure 1. Suppos. the eVst.m

is currently at length 1.0 under InnervatIon rates g
~ 

for the agonist and n1
for the antagonist. If the innervation rate of the agonist is changed to

g3, a d lff .rent agonist length—tension curve Is selected and the
equilibrium length shifts to L~. Assuming no delatj in tension development

and Ignoring veIocit~ effects, the arrow In the figure Indicates the
tension course. There Is an isometric buildup of tension from P0 to P2
tollawed bV en isotonic dec~~ to P1, i4~.rs the tension In agonist balerices

th. tension In antagonist. Th. final position th.or~ maintains that the

position L~ can be reached ind.psndent of starting position mers l~ bU

s itting rates n1 and g3. This theorU Is Interesti ng fr om a manipulation

viewpoint because it obviates the need for precise t raj.ctor u calculation.

There are menu choices of agonist—antagonist length—tension curve

pairs that have L.1 as equilibrium position. One choice that could be

expected to requir. less energy is n2 and g
~
, which minimize the i sometric

tensions. fore genereIl~, It Is conceivable that some co mplex s.quence of

Innervation rates (n1,g11 might require tees energy than a scheme which

_ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Figure 1. The equilibrium point of the intersecting

length-tension curves of agonist (g labels) and

antagonist (n labels) shifts from L
0 to L1 when the

firing rate of the agonist is raised from g
1 to g3

and the antagonist rate remains at n
1.I

Tension (kg)
Impulses/sec

length (cm )

Figure 2. Length-tension curves from the cat soleus

muscle (Rack and Westbury).
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selects the final length—tension curves i mmediately . The dstsrmlnaton of

this optima l Innervation p ttsrn I. the focus of this paper.

I. Muasl. MesbaMos

The investigated properties of muscle present a too co mpli cated

view for analytic treatment. Th. plan in my research has been to simplify

the muscle mechanics until an analytic solution to the optima l energy

problem is possible, then to examin, if the nature of the solution Is

chang.d by adding some of the excluded muscle properties. A full—b lown

formulation of the problem would requir, numerical methods for solution,

and I Intend eventually to carry out this analysis.

The length—tension curves In figure 1 are themselves a

simplification of actual length—tension curves such as in fIgure 2. The

L 

simplific ation arises from extracting only the l inear portions at short

lengths. There is some question a. to what portion of the length—tension

curves we used in actual movement. Some authors IZI.rl r, 14111 1970, Cook

and Stark] maintain that the active portions occur near L~, the length at

which there Is maximum i sometrIc tensIon and which Zierler also calls the

rest or natural length of muscle. Collins et al (1975] on th. other hand

- 

- report that the linear portions are used In eye movement.

For the present we accept the h~ othet)cal length-tension curves of
- - fIgure 1. The curves are a l so assumed parallel , as reported by Co llins it

al.~ Rack and Weetbury, however, repor t a decrease in slop, with f rIng

rate for this linear portion (fIgure 2). The curves in flgurs 1 lead to a

mad& of muscle as a spring with variable zero setting . The slope K of the

— — 
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curves represents th. sprIng constant, and the variable zero setti ng L~
corresponds to the selection of f i r ing rats. The force exerted by a muscl e
is thus K(L-L,). 

- 
- 

-

An important simplifIcatIon of muscle properties is to exc lude the
serIes elastic coaponint. We also exclude the parallel elastic component

and the active damp ing. The resulting muscle model I. presented In figure

3. The equation of motIon for th. spring system of figure 3 iii

m - b d x + k ( x 1—x) - k ( x — x,) (1)
dt1 dt

Define a controi variable X and a state variable U as below.

• (x 1 ] I x ] L u 1 ] 1x 0 1
X . I  J • I I U — I  J e t  ]

( x 2 J t~~~J L u 5 ] ( x 1

Setting the mass m — 1, the state variable represen tation of the spring
system Is:

. 1 0  1] (0 8 1
X • t  J X + I I V  (2)

(- k -k1 -b] 1 1 i k ]

lore compactly,

X .A X + I U  (3)

• f(X,U,t)

II. Musol. In.rg.t Io.

The energy E -expended during movement equals work plus heat. The

work Ii may be subdIvided Into conservative work performed on the seee s and 

— -—  - -
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Figure 3. Simplified muscle model with equation of motion:

g g  n n
where

b e  coefficient of passive damping

kg= spring constant of the agonist

k =  spring constant of the antagonist

m =m agg

x • position

X
g
= variable zero setting for the agonist

x =  variable zero setting for the antagonist
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nonconservative work performed on the viscous element. The isositric heat

O~ Is given off In maintaining th. muscle at a particular tension P0. The

rate of energy expenditure I. thus

E — P0 v (power) + a P0 (maintenance heat rate)

• (x2 + a) (k (u1—x 1) + k~(x1—u5)) (4)

where v is velocity and a Is the maintenance heat coeff icient, The two
force terms have be n summed because each contributes to en.r gy loss. We
have exc luded the shorteni ng heat because th. active damping wa. also
exc luded, and because there uiag be a theoretical relationship between the

two (Nuxley, Caplan], The transient characteristlca of heat production

have also been excluded.

III. Tb. ~u1.r-Lsigrsng. ~qustIona
The task now is to find the time varying control 0(t) that

minimize, the energy used in moving between two points in a fixed Interval

of ti .. Let V represent the energy consumed In applying the control U to
yield the trajectory X. The problem of minimizing V is readil y approached

by techniques of modern control theory. The fundamental equations that the
optima l control 0(t) must satisfy are derived from a theorem from the

calculus of variatIons. This theorem states that In older to find the n— 3
vector X(t ) that minimize. V(X) , where -

r~~.V(X) — / L (X,X,t) dt (5)

J~&osubject to the constraint relations

g1 (X ,X ,t) — 0 I • 1,...,. ~ n (6)

_  _ _ _
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then X (t) eatisf ies the euler equations

~L’ X.X.t) — d aL’(X.X.t) • 0 I • 1,...,n (7)

dt a~s~

where
m

L’ (X ,X,t ) • L(X ,X,t ) + Z  i~j (t )g 1 (X,X,t ) (8)

and )~1 (t ) ’ s are the multi plier functions (Schultz and Melsa).

Applying this theorem to the optimal control problem, the stat.

equation. X — f (X ,U, t ) represent the equality constraints. L represents

the rate of change of energy E. The Hamiltonlan H • I + AT? repr esents

(8), where AT — ~~ h~
. By applying the Euler equation first for X and

then for U, it can be shown that the minimizi ng U(t) satisfies the

following two Euisr-Laorange equations (Schultz and Ilelsal.

(9)

(10)

IV. Tb. MlniiRum Prinolpi.

Because I I. linear in the control U, there will not generally

ex i st a minimum energy solution. To obtain a realistic solution,

constraints must be placed on the control. The solution In this case will

lie on the constraInt boundaries Bryson and Ho]. Constraints on U,

however, make I t i mpossib le to differentiate H with respect to U.

The minimum p rinciple of Pontryagin makes it possible to pr oceed

from this-p oint. Pontryagin showed that even if the control is

constrained , one still obtains a mInima l solution by finding the U0

u°(X,A,t) to minimize the Hamlltonisn H, but by inspection rather than by

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
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d lff er ent iaj ion. Af ter findIng the min imizi ng U°, one forms H0

H (X,u°,A,t) and then sol ves the follow i ng two equations (Schultz and
flelsa].

x •a HD (11)

(12)

There are two natural constraints that f all on the control U.
First, the spring cannot push. -

u1 — x ~~ , 0 (13)

x1- u 5 ~ , O (14)
Second, spr ings have a max imum tension that they can exert. Without this

constraint the solu tion would Invo l ve an infini te i mpu l se. For the mos.nt

we assume the maximum tension Is constant and independent of length :

- 
u1 — x 1 ~ c1 (15)

K1 -U 5~~ C5 (16)

where c1 and c3 are constants. The case of maximum tensIon varying with

length is deferred until section XI.

V. £ Bang-Coast-Ba ng Solution
To facilit ate Inspection of the Hamiltonian, we expand N — ATf + I

into three lines, the first dependIng on U1, the second on u2, and the
third on neither control.

- N — k(u1-x1) (a+x2+A5) (17)

+ k,(x 1-u5) (+ xrAs)

+ 

-- -- -- - ---- - ——- - —--— --- -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- -~~~~~ _ ___ _ _ _ : - ---- —
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To min imize H with respect to u~, we observe that If s+x,+A, 0 then H i s

m in im )~sd when u1—x 5. If a+x~4, 0 then N is minllized with u1—x 1+c5.

Similarly, It can be shown for u2 that when a+xrA2 0 the minimizi ng u2

lIes at x1—c2; otherwise u2 is at x1. Combining these results, one finds a

bang—coast-bang solution to the minimum energy for muscle movement.

~~~Ji A, ~
Then u1—x 1+c1, urx1.

Ca.. 2: IA,I s. (six2)
Then u1— x1, u2—x1.

~o!!Ji . A, (04 K2)

Then u1.x1, urxi—c,.
VI. Tb. Solution Equation s

Substituting th. minimizing u0 into H, one obtains three functions

correspondIng to the three cases.

Case 1: 110 - k1c1 (a+x2+A2) + x,(A,-bA,)

c L .~L 110 —

Case 3: H0 — k,1c,(s+xrA,) + x2(A1—bA2)

Th. differential equation (11) and its solution becomes for the three

cases :

• ( 0 1)  ( 0 )
) X + t  I

( 0 — b ) ( kc )

- - - .~~~~~~~~~ -~~-:
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x1(t ) • x,(t Je~~
t t
~
) 

s ~~(1 — •~~ t..t O) ) (18)
b

• x5(t0) + 1(x,(to) — x2(t)) + kc (t—t0) (19)
b b

where c—c5 and k’k for case 1; c-B for case 2; and c--c2 and kuik, for

case 3. The time 
~ 

represents the starting time. The differential
equation (12) and It. solution are:

• (0 01 C 01
A — C  I A - C  I -

(— lb I (kcj

A1 (t) — A1 (t0) (20)

A,(t) • AS(t~)s~~
t_t 0) 

+ ~~ta+kc (1 - 5
b(t_t o) ) (21)

where c and k have the same meaning as above except c-4c2 for case 3.
Since )11(t) 1. constant, it appears henceforth sa A1 without a time

VII. Tb. Ixtramual V.raus Singular Solution
It Is proven in appendix A that there are exactly tb... events In

the extremai bang-coast-bang solutions an acceleration perIod, a coast

per iod, and a deceleration period. No other combination of bang. and
coa.t. I. minimizing. However, a nonextremai minimi zIng solution may aria.

from a singular arc at the switching points. The l4amiltonian (17) his the
curious property that if Ar$six,I then the corresponding control may take
on any value nd still iiniiizs N. If a control can be found to maint ain
Avu l.+x*~ for a fini te time interval, then a non-sxtrsma l solution to

-~~~~~-~~~ —-~~~~—-~~~~~~~~~~~~~~~~~~ 
-- - - - —

~~~~~~~~~~~~~~~ ~~~~~~~~~~ e-~-



~ 

~~
-- ‘

~~~ 
- - -

~~~~~~~~~~~~~
- -

~~~~~~~~~~~~
‘
~~~ 

- 
-

~~
---—---- ‘

PAGE 12

energy minimization might exist. This situation is called a singu l ar arc

and iris ., from a psrformanca index linear In controF but quadratic in

state (es yson and Ho). To maintain Ag’ Is+x,I for a finite time Interva l ,

all time derivatives of the two switching curves must be zeros

d’Gyii+x,) - 0 n~0 (22)
dt5

n~0 (23)
dt5

Carrying through the analysis for a singular arc at th. first switchi ng

point (22), the time varying force during the singular arc is:

k~
(u1—x 5) • A~ be + 3bx1(t1)e~~

t t
~ s ~.(b*+A,)(.?~~

t t 1)_l) (24)

Unfortunately no sufficient condition has yet been deve~op.d to

test whether a singular arc is minimizi ng, and one must compare va l ues of

the performance Index for specific parameter values for the singular arc

solution v rsus the *xtrueai solution. Depend i ng on the choice of A, the

force (24) tak.. aw of the three form. in figure 4.

Of these forms only ~C has been found minimizing far some parameter

combinations. To search for such combinations , a set of parameters was

initially deduced from Rack and Westbury (table I). The elapsed distance

x~ and the elapsed time t~ are variable and have been chosen as 0.2 cm and

0.4 sec respectively. The initial and final velocities are assumed zero.

For the extrema l solution (bang,coa.t,bang) there result B nonlinear

equations in B unknowns from (1B)— (21 ) and the initial conditions (x ,t 51.

- - - - - -- 
~~~~~~~~~~~~~ ---- —-~~~~~~ -
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k • 2 kg/ca
m — 0.2 kg (plausible value )

b/a — 3.16/sec (chosen to give t—~•~• c — i c e
u — 0.1 cm/sec (deduced from Moledge)

For the singular solution (bang,4C coast,bang) 15 nonlinear equations in 15

unknowns result from (18)—(24) and the Initia l conditions. The equations

were solved numer icall y by Newton-Raphsan and gradient methods. Individual

parameters were varied and energies of movement computed from (5). Solving

(5), the energy for the extrema l solution ii

E • kc(ax1 (t 1)+ax 5 (t3)) + kcu(at ,+at3) (25)

where t 1 is the switching time from acceleration to coast, t3 is the time

at the end of deceleration , ôt 1 i s the durat i on of acce l eration, ax 1(t 1) is

th. di stance moved during accelerati on, and 8x1(t3) is the distance moved

during deceleration. For the singular solution, the energy is

E • kc (ax 1 (t 1)+ax 5 (t 4))  + ~s~s a t ,+at 4 +Jks(u i_x s)(xz(t)+u) dt (26)

~ 1

where t1 is the switching time from acceleration to the sin gular arc 4C, t 2

is the switching time from 4C to coast, and t4 is the time at the end of

deceleration. The farce k (u1—x 1) is given by (24) , while the velocit y

x2(t) Is

x2 (t ) • x,(t ,)e~~
t _ t t ) + b.~~l(e

2I)(t_t1)_1) (27)

The energies for the extrseai versus the singular solution are

coepared In tables IIa—g ; the units are kg ca/kg ut. In table lIc
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Singular Extr..sl b Singular Extreme)
7 impossIble 0.708 tI i mpossible
$ 0.66117 0.66186 2.4 0.552836 0.552034

*10 0.6173 8.6164 - 2.6 0.6675 8.5674
28 0.6640 0.6627 3.8 8.6020 8.6014
30 8.5513 0.5609 *18 8.6173 8.6164
48 0.54564 0.54552 4.8 8.7 845 8.7838

50 0.5423 0.6426 5.0 8.820 0.824
180 8.536 0.537 10.8 1.45 1.51

15.8 2.13248 2.13246
• 15.557 Impossible 2.4

Th.~kJIo(b’4~) Tabi. lid 
-

k ~~r~~i c Singular Extre as i
ImpossIble 

_____ 

TY ImpossTbie
8 8.632026 8.632823 8.8 8.6612 8.6611

• *18 0.6173 0.6164 *1.8 0.6173 8.6164
14 0.6442 0.6448 2.8 8.5640 0.5627
28 8.708 8.725 30 8.5513 8.5508

4.8 0.54554 0.54551
5.0 0.5427 0.5437
6.8 8.5481 8.5487

Tabi. II. Tabi. IIf (k.16, b 4 )

..k..... ~~~~~~ Extr amsi xl 
~~~~~~ 

Extreme 1
0.36 impossible 8.814 8.806 Impossibl e 8.8841
8.36 8.76123 0.76122 0.85 8.0632 8.8634
*0 .4 0.6173 8.6164 0.1 8.1925 8.1942
0.46 8.512 0.511 *0.2 0.6647 0.6681
0.5 8.444 8.446 8.3 1.4636 1.4628
0.6 0.358 8.369 0.3 6 2.0120 2.8872

8.4 2.6878 2.6825
0.54 impossIble 6.4598

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  __
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!!bi!. j.~~~k.16, b.4)

Sin icr Extre.al
112 8.6161

*0.1 0.6667 8.6681
0.2 8.7974 8.7981
8.25 8.8633 8.8631
8.5 1.1903 1.1882
1.0 1.8393 1.8382
1.7 2.748417 2.748411
1.8 impossible 2.8784

th. parameters k and b are virlsd sImultaneously but at a fIx ed damping

ratio of 8.5. In tables IIf-g the parameters k and b are respectivel y set
at 16 and 4 rather than at the table I values where the extremal solution

Is minim izing over the s.shol• range of x1 and.. The Initial vaiues from

table I are stirred in table II. A singular solut i on becomes minimizing
with high values of k, b, c, and t~, and with los. va l ues of a and x~. As
the parameters cause the coast time to approach zero (higher b and x~,

lower Ii, c, and t,), the sIngular and extremal solutions become identical

because the AC portion vanishes.

For the extremal solution it 1. proved in appendix B that there is

an upper limit on the duration of coast. It is tempting to speculate that
for longer coast durations a singular solution becomes minimizi ng, but the
singular solution in table II is not always minimizi ng under these

conditions. Perhaps a different combination of bangs, coasts, and singu lar

arcs would then be minimizing , but this remains an open question. Some
combinat ion• can be proved i mpossible, such as (bang, AC, coast, 4*-C,
bang) .

~~~~~~~ 
—_.-—-- --_ - 

—~~~~~~~~~~~~ - ~~~~-
_ —-~~~~~— - ~~~~~~~~~~~~~~~~~~~ ~~~~-— -— ~~~~ -- — - - - - -~~—
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VIII. Bpzlng Mod.i R.iaxationa: X D.p.nd.n ol..

A natural question Is whether the minimum energy solution is

changed by incorporating a more realistic muscle model. For those

relaxations of the spring model involvi ng only X dependencies, the answer

Is that the solution remains bang—coast —bang, Th. reason Is that the

Ham ii ton ian H remains linear In the control U, and th. minimization of H

w ith respect to U occurs at f hted X. I~iether the solution also rema ins
acce leration—coast -dece leration needs to be determined far each case.

Reiaxations of the spring model Involving X dependencies inc lude

the following. -

1. Posit Ion Limits on Tension

For rea l muscle the maximum i sometric tension varies with position

(figure 2). This makes c~ and c2 into functions of x1, but the controls

wi l l  still fail at the extremes wherever they are.

2. Velocity Limits on Tension

Actua l muscle exhibits a hyperbolic farce—velocity relation . If P0

is the isometric tension, then the maximum force P that can be produced for

- a velocity v is (Hill 19381 (see figure 5):

P . P0 — vt P~+a) (28)
v+b’

The term (P0+e)/(vib’) can be considered the coeffIcient of active damping.

The coefficien t ! has been determined as .25 P0s the farce P then becomes

P0—i.2SP0v/(v b’). The literature conflicts on the value of active dampIng

• during lengtheni ng. For consistency with the shorteni ng heat (be low), it

- - -
~~~~~~~
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Figure 5. Tension dependence on velocity (Hill 1938) .

length

Figure 6. Hypothetical length-tension curves with
the property that at any given length the slopes are
the same for all choices of u2.
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Is assumed the same as active dampIng during shortening.

Associated with the active damping is an extra heat expenditure

abov. the isometric heat due to shortening. Thi s shortening heat rate is

04111 19641:

Q5..16P0v+.18 Pv (29)

TI,. Isometric heat rats Qj remains aP0, but the power is now Pv.

Substituting th. sum of spring force s for the i sometric tension P~ and (28)

for P. the energy rate is:

L a  (k1(u1—x 1) + k~,(u1—x1))(a — S.19x5 + 1,45b’) (38)

Similarly It can be sfiosi tht the equation of motion is,

— b x5 + (1 — I, J (1i (u1—x 11 - k (x 1-.Q)  (31)

Iteen these terse are combined to form the Hsmiitonian, the control is seers

to resain linear. Hence the solution is once again bang-coast-bang.

3. Sen se Constant Variations wltb Po ltio,s

One way of bringing the simplified length-tension curves of fig ure

1 closer to those of figure 2 Is illustrated . in fig ure 6. The spring

constant k, varies with position , but at any given positIon the constant k, •

is the same for all controls u5. tMdsr thee. conditions the solution

remaIns bang—coast-bang.

4. Parallel and Ser ies Elastic Elements

The incorporation of these elements into the model is depicted in
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figure 7. Since the parallel elastic element depends only on position , it

does not change the solution. The seri es elastic elements and the active
springs may be replaced with equivalent spr ings with constants

k,’.k~k,I(II,41Q and k~,”k~Ji1/(k+k,). This modifIcatIon also has no effect

on the solution.

IX. Spring Mod .1 R.1az&tiona: U D.p.nd.nol.. -

In fIgure 2 the spring constant k5 Is seen to vary with firi ng rate
at any fixed positIon. The linear portions of these length-tension curves
when extended seem to intersect at a common point (figur. 8). In this

circumstance the spring constant k, is Tol(u,-sQ. The u5 terms of the

Hami l tanlan N becomes

H’ • .IIL(x,-us) (a+xr7~s)Urxo

— To(a4sr~,
)(xi..xs~1) 

(32)
ut-Ko

If •+x~~,~ 8 then N’ Is minimi zed at u5.x1s otherwise u2—x1—c5. That is

to say, the solution for U2 is exactly the same as in section V. A similar
analysis holds for u1. Thus the minimi zi ng pattern is also bang—coast—

• bang. 
-

~ 
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Figure 7. An expanded muscle model incorporating series
elastic elements k and a par allel elast ic element k .

x
0 length

-T
0

Figure 8. The length—tension curves of Rack and Westhury
when extended meet at a point. The dependence of k~ on u2
can be characterized by T0/ (u 2—x 0) .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
ii_

~
____

~~~
_ •___ . _

~~_ 1______________ 
_ _ _ _



________ ________ 
— ~~~~ -

‘

PAGE 22

£pp.ndiz £
• In this appendix it Is shown there are only two bangs and one coast

In the •xti seal selutions one acce i sratlon, followed by one coast per iod,

terminated by on. deceisratlon, No other combinations of coasts and bangs

are possible. To demonstrate this is the only possible combination, it is

necessary to examine the switch ing curves and their time der ivatives.

The first lemma shows that once the control has passed from

acceleration to colat, then the control cannot return to another

acceleration but lust proceed to deceleration. The second l emma shows tha t

once deceleration has started , the dsc.leratlan must contInue until th. end

of the movement. This proves that the acceleration-coast—d.ceieration

combination is the only possible one. In the followi ng it is presumed that

the movement starts with acceleratIon in the positive x1 direction. Hence

aI.l ve l ocitise are positive . 
-

~~~~jj After acceleration, th. glide period cannot double back to

another acceleration.

Proofs The proof of this l emma proceeds by examining the time der i vative

of the accel eration—coast swi tching curve (henceforth referred to as the

siope of the sw i tching curve). The slope of this curve I. initially

positive at the transition from acceleration to coast. In ord r for

another acceleration to follow the coast period, this slope must become

negative, leading to a contradIction.

At the first switching time t1 the acc.l.ration—coast swi tching

curve is zero.

-- —- - 
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+ a + x2(t 1) — 8 - (Al)

After the acce’eratIon period, the coast equations ares

a ?, (t l)e~~
t t

~ + ~,•(j — 
b (t—t 1)~ (A2)

x5(t ) — — ()~,(t ,)+&e~~
t_t

~ (A3)

Thus 
-

a ~,(t i)e~~
t t~

)
~ ?i (l_.b(t t l) ) (A4)

b
—b (t—t1) -

+ a —

The slope of this switching curve is:

(b~2(t 1)45) + bQl~2(t I)..)e~~
t t 1) (AS)

At tat 5, the slope of the switchi ng curve is:

8 (A6)

One can show this quantity cannot be l ess than zero. Next, suppose the

coast doubles back to another acceleration. At some point the slope must

go through zero. This time t I. found from (AS) ass

2b (t—t
1
) 

— b (A~(t~)+.) > 1 (Al)

~5—*2(t ,)

Case 1: ~1—b),,(t1) > 8.

Then ~2(t,)+an8, contradicti ng (Al).

• ~~~~~~~~~~~~ 7s1—bA~(t~
) 8.

Cr ossauItiplying (Al ) and collecti ng term.,

2b)~5(t1)—)14bsc8, contradicting (AS) .
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Thus after acceleration, the coast period must eventually arr ive at the

deceleration ssiitch ng point.

Lemma 2: The ~ove.snt a locked in deceleration until the end.

Proofs It will be shown tha t if deceleration ever switches to coast , then

the slope of the coast—deceleration switching curve requires an im sd iate

return to deceleration. Hence the movement I. locked In dece l eration until

the end.

Suppose there i s a  tim. t3 when deceleration suitches to coast. At

this  point the coaet.decelsratlon swItchIng curve is zer~

~2(t3)—s—x5(t3) a 9 (A8)

The coast switching cia-va ~~(t)-s—x2(t) is

X,(t $).~
(t

~~~+ k(l~.
b(t t3)) — a x,(t $)e 1)(t t3) 

(AS )

The slope of (AS) Is:

+ bx!(ts)e~~
(tt 3) (AIB)

At time t5 the slope (*18) is b~,(ts)—A,..bx~(ts). This Is positive since

1it(t.)~$, x2(t1)a8, and A~d (lemma 3). This means that deceleration would

bounce of f the coast boundary and immedIately continue the deceleration.

Furthermore, s i nce the slops is positive , the deceleration would not

immediate ly switch back to coasting, causing chattering.

-J
~~~~~~~~~~~

.
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~
Lemaa 3s ~~~~~
Proof: At the second switchi ng point t5 we hays

- 

~~(t5)— — x2(t5) a 9 (All)

From (*2) and (*3), this becomes

L.(l 
b(trtl)) — • + (~2(t ,)...)e

.Wt r.ts) — 8 (A12)
b

Rearranging, 
-

~ ,(1
b (ta_t l)) a — ~2(t 5) (•

b (trts)~~.b (trt:)) + .(l_e~~
tt t 1)) (*13)

b

From (Al ) and (*3) we find an expression for 7i5(t).

• — a — ~•ç•~(1
_b(t I_tO)) (*14)

Substituti ng into - (A13) ,

L.(l
Wt

~~
t 1) ) ~1~•~•(1_••..blt I_t o)

) (
b(t rt l) —b (trt s ) )) (*15)

b b
- 

b (trti))

Thus

kIc (l_e t1 t0))(e trt~ +e~~
4trt1 )) 

+ bs(l+~~
t
~~

t 1 )) 
(*16)

Since the numerator is positive and the denominator is negative, 
~ 

is

negative.

Taken together, these lemmas show that accsleration.pass.s through coast to

deceleration. There is no possib le variation in this scheme. It is also
possible to show the movement cannot start by coasting followed by

acceler ation.

_ _ _  _ _ _
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£pp.udIz B
A surprisin g limitation on the value of trt,, the duration of the

coasting time, has been found. Th. switching curve during accel eration is:

— ,~ ~~ 
b (t—to) A,+k~cI(l_e15(t_t

~~) + a (81)

The slope of this switching curve Is:

• e
b(t_ to)

(b~S(tO).. ,~I...k,cl) + ~~~— b(t—t0) (82)

At the first switchi ng t i me t1, the switching function (81) is zero.

Rearranging (81) for t~t1,

b (t1—t 0) (~2(t)— ~ i+k1c,)) — — (
~,t41IjC) — a — ~~•

~(1_•
..b(tI_tO)) (83)

Substituting (83) into (82), ths.slops at t 5 Is:

— ~k~~(l _b(t t_ to)) — — b (84)

Substituting for 
~ 

from (A16),

+ 2ba (85)

Since s lops(t 1)~~ and since the denominator is positive , so is the

numerator .

kcI (l_. t1_t0) )(2..~~
(t1_t 1)_e~~

tr_t
~~) + 2be 

~~, 
S (86)

-- _ _ _ _ _ _ _ _ _ _ _ _
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—b(trt s ) b(trt,)Because 2+. —. is a decreasing function of t5, at some
b ( trts)point (96) becomes zero. Solving then for e $

he + e+~~c (1 
—bIt I—tO)

))! + (k ct (l_e~~
t* t0))) 2 + 1 (87)

k,c(l
_
~~

t1 t0))

As t2 Increase., t 5 wi l l  decrease. However, t5 does not decrease enough to

offset the effect of the t2 increase. If a4, (87) r educes to

• b (trt:) • j (B7a)

Strangely, in this circumstance t ,—t 5 depends only on b.

I

• 

• 
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