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ABSTRACT. There are many ways of programming an actuator or effector
for movement between th same two points. In the interest of efficiency it
is sometimes desirable to program that trajectory which requires the least
amount of energy. This paper considers the minimum energy movement for |
a spring-like actuator abstracted from muscle mechanics and energetics. It q
is proved that for this actuator a bang-coast-bang actuation pattern
minimizes the energy expenditure. For some parameter values this pattern
is modified by a singular arc at the first switching point. A surprising
limitation on the duration of coast is demonstrated. Some relaxations of the
restrictions underlying the spring model are shqwn to preserve the bang-
coast-bang solution. :
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Though considerable effort has been expended in the study of the
human motor system, the execution of even simple movements is not well
understood. One current theory holds that movements are memorized in terms
of final position [Bizzi et al.). The organiem selects length-tension
curves of agonist and antagonist by adjusting the innervation levels so
that the lntéructlon of those curves occurs at the desired position
(Feldman].

This process is illustrated by the hypothetical length-tension
curves of agonist and antagonist muscles in figure 1. Suppose the system
is currently at length Ly under innerva_tlon rates g, for the agonist and n;
for the antagonist. 1f the innervation rate cf the agonist is changed to
g3, 8 different agonist length-tension curve is selected and the
equilibrium length shifts to L;. Assuming no delay in tension development
and ignoring velocity etfects, the arrow In the figure Indicates the
tension course. There is an isometric bulldup of tension from Py to P,
followed by an .Isotonic decay to Py, where the tension in agonist balunces
the tension in antagonist. The final position theory maintaine that the
position L; can be reached independent of starting position merely by
setting rates n; and g3. This theory ls Interesting from a manipulation
viewpoint .bacauu‘lt obviates the need for precise trajoctory. calculation.

Ther‘e are many choices of agonist-antagonist lenﬁth—ter'\slon curve
paires that have L; as equilibrium position. One choice that could be
expected to require less energy is ny and gy, which minimize the isometric
tensions. More 9onoral||,j, it Is conceivable that some complex sequence of

innervation rates (n;,g! might require less energy than a scheme which
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Figure 1. The equilibrium point of the intersecting
length-tension curves of agonist (g labels) aad
antagonist (n labels) shifts from Lo to L1 when the
firing rate of the agonist is raised from 9, to 9,

and the antagonist rate remains at n..
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Figure 2. Length-tension curves from the cat soleus

muscle (Rack and Westbury) .
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selects the final length-tension curves immediately. The determinaton of
this optimal innervation pattern is the focus of this paper.

I. Muscle Mechanics

The investigated properties of muscle present a too complicated
view for analytic treatment. The plan in my research has been to simplify
the muscle mechanics unti! an analytic solution to the optimal onor;w
problem is possible, then to examine if the nature of the solution is
changed by adding some of the excluded muscle properties. A full-bloun
formulation of the problem would require numerical methods for solution,
and | intend eventually to carry out this analysis.

The length-tension curves in figure 1 are themselves a
simplification of actual length-tension curves such as in figure 2. The
simplification arises from extracting only the linear portions at short
lengths. There is some question as to what portion of tho’ length-tension
curves are used in actual movement. Some authors [Zierler, Hill 1978, Cook
and Stark]l maintain that the active portions occur near Ly, the length at
which there is maximum isometric tension and which Zierier also calls the
rest or natural length of muscle. Collins et al. [1975] on the other hand
report that the linear portions are used in eye movement.

For the present we accept the hwothitl_cdl length-tension curves of
figure 1. The curves are also assuwed paralliel, as reported by Collins et
al.s Rack and Westbury, however, report a decrease in slope uith firing
rate for this |inear portion (figure 2). The curves in figure 1 lead to a
mode! of muscle as a spring with variable zero setting. The slope K of the
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curves represents the spring constent, and the variable zero setting ke
corresponds to the selection of firing rate. The force exerted by a muscle
is thus K(L-L,). :

An important simplification of muscle properties is to exclude the
series elastic component. UWe also exclude the parallel elastic component
ond the active demping. The resulting muscie mode! is presented in figure
3. The equation of motion for the spring system of figure 3 is: .

md¥x = - b i+ Kylxg=x) = Ky(x-%,) ($§)

Oefine a control variable X and a state variable U as below.

e [ [x] Lul [
Xel ) =1 ) Vel Jel )
(xp] [x) Cul [x] :

Setting the mass m = 1, the state varisble representation of the spring
system is:

. [ © 1] (8 8]
X=[ 1X + I 10 2)
{

Kgky b ] [k k)
More compactly,

XeAX+BU 3
- 10X,U, 1)

II. Muscle Energetios
The energy E expended during wovement equals work plus heat. The
work W may be subdivided into conservetive work performed on the mase m and

S S
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Figure 3.

where

Simplified muscle model with equation of motion:

m;S- % (¢ - - -
b x + kg(xg x) kn(x xn)

b =
k =
g
k =
n
m =
X =

X =

coefficient of passive damping

spring constant of the agonist

spring constant of the antagonist
mass

position

variable zero setting for the agonist

variable zero setting for the antagonist
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nonconservative work performed on the viscous element. The isometric heat
Q; is given off in maintaining the muscle at a particular tension Po. The
rate of energy expenditure is thus

€ = Pg v (power) + a Py (maintenance heat rate)

= (x3 + @) (Kglup=x)) + Kk, (x;-up)) %)

where v is velocity and a is the maintenance heat coefficient. The two
force terms have besn summed because sach contributes to energy loss. We
have excluded the shortening heat because the active damping wes also
excluded, and because there may be a theoretical relationship between the

tuo [Huxliey, Caplan]. The transient characteristice of heat production
have also been excluded.

III. The Buler-Lagrange Equstions

The task nou is to find the time varying control U(t) that
winimizes the energy used in moving between tuo points in a fixed interval
of time. Let V represent the energy consumed in applying the control U to
yield the trajectory X. The problem of minimizing V is readily approached
by techniques of modern control theory. The fundamental equations that the
optimal control U(t) must satisfy are derived from a thecrem from the
calculus of variations. This theorem states that in ofder to find the n-
vector X(t) that minimizes V(X), uhere

[
V(X) = LIX, X, t) dt ()
4,
sub ject to the constraint relations
9 Xt =8 lel,...msn 6)

L b



then X(t) satisfies the Euler equations

A XLX ) -d A (XXt =8 I P o
al' dt ai,
where
L] L] . .
LX) « LOGX, 8D + 2 A (thg; (X, X, t) 8)
(] -

and \;(t)’s are the multiplier functions [Schultz and Melsal.

Applying this theorem to the optimal control problem, the state
equations * = f(X,U,t) represent the equality constraints. L represents
the rate of change of energy é. The Hamiltonian H= L + ATf represents
(8), where AT = [\; Ag]. By applying the Euler equation first for X and

then for U, it can be shoun that the minimizing U(t) satisfies the

following two Euler-Lagrange equations (Schultz and fMeisal.
AW 9
H, =8 ue

IV. The Minimum Principle

Becauge L is linear in the control U, there will not generally
exist a minimum energy solution. To cdbtain a realistic solution,
constraints must be placed on the control. The solution in this case will
Iie on the constraint boundaries [Bryson and Hol. Constraints on U,
however, make it impossible to differentiate H with respect to U.

The minimum principle of Pontryagin makes it possible to proceed
from this point. Pontryagin shoued that even if the control is
constrained, one still obtains & minimal solution by finding the u° =
w(X,A,t) to minimize the Hamiltonian H, but by inspection rather than by
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differentiation. Afte- finding the minimizing u° one forms K° =

H(X,u% ), t) and then solves the follouing two equations [Schultz and
Melsal.

X = W 1)
o
A=-af 12)
X

There are tuo natural constraints that fall on the control U.

First, the spring cannot push.

uy-%x20 (13)

X -ug28 (16)
Second, springs have a maximum tension that they can exert. Without this
constraint the solution would involve an infinite impulss. For the moment
We assume the maximum tension is constant and independent of length:

U - X% €6 1s)

X} - U S Cy (16)

shere c; and C2 are constants. The case of maximum tension varying with

length is deferred until section XI.

V. A Bang-Coast-Bang Solution

To facilitate inepection of the Hamiltonian, ue expand H = AT + L
into three lines, the first depending on U, the second on up, and the
third on neither control.

He kglu-x) (@engihg) a7
+ k'(ll-\lg) (m'-xg)
+ lg‘*.-ﬂ:’
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To minimize H with respect to u;, we observe that if a+xgthy > @ then H Is
minimized when uy=x;. [f a+xgthy < @ then H is mininized with ujex,+c,.

Similarily, it can be shoun for up; that when a+xy-A; < @ the minimizing u,
lies at x;-cy; otheruise u; is at x;. Combining these results, one finde a

bang-coast-bang solution to the minimum energy for muscle movement.

Case 1s A; < -lawny)
Then !.l'-l(‘#c.p Uge¥Xqo

Case 2: |A2] < (a+xj)
Then ujsx;, ugex;.

Case 31 )p > (mexp)
Then up=x;, Ug=x;~Ca.

VI. The Solution Equations
é Substituting the minimizing W into H, one obtains three functions
corresponding to the three cases.

Case 1: W = kyc;l@mexgthg) + xa(A;-bAg)
Case 2t 0 = xp(\;-bh)
Case 31 W = K,colaexa-Ag) + xa(A;-bA2)

The differential equation (11) and ite solution becomes for the three

o
®

— = -
e o

&
x
+
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xa(t) = xgltge™® 71! | yo(g _ g0t

ke ) (18)
b

y (8) = x(tg) + Liaaltg) - xptt)) + ke (t-to) (19)

where cecy and kek, for case 1; ce8 for case 2; and ce=-c; and ke=k, for
case 3. The time ty represents the starting time. The differential

equation (12) end its solution are:

. (98 0] ( 6]
A= Ia-1I ]
(-1b) (ke ]
A (8) = )\ (tp) (29)
M(t) « agite® UYL iake 1 - 21 (21)
b
uhere c and k have the same mesning as above except cescy for case 3.

Since )\ (t) is constant, it appears henceforth ss A; without a time
dependence.

VII. The Bxtremal Versus Singular Solution

It is proven in appendix A that there are exactiy three events In
the extremal bang-coast-bang solution: sn acceleration period, a coast
period, and a deceleration period. No other co_nﬁlnatim of bangs and
codsts is minimizing. However, a nonextremal minimizing solution nay orise
from a singuler arc at the suitching points. The Hamiltonien (17) has the
curious property that if Ag=|asxy| then the corresponding control may teke
on any value and still minimize H. If & control cen be found to maintain

Ag=la+xz| for a finite time interval, then a non-extrema! solution to




energy minimization might exist. This situation is called a singular arc

and arises from @ performence Index |inesr In control but quadratic In

state (Bryson and Hol. To meintain Ag=|a@+xg| for @ finite time interval,

all time derivatives of the two switching curves must be zero:

L Qotgexy) = 8 n28 (22)
dt"

" Q\o-g-x;) = @ n2é 23
dt"

Cerrying through the analysis for & singuler arc at the first suitching
point (22), the time varying force during the singular arc iss

Kelug=;) = Ag + be + Fowgltppes> U4 (oashp WOy e

Unfor tunately no sufficient condition has yet been developed to

test whether a singular arc is minimizing, and one must compare values of
the perforkance index for specific psremeter values for the singular arc
solution versus the extremal solution. Depending on the choice of ), tho.
force (24) tekes one of the three forme in figure 4.

Of these forms only 4C has been found minimizing for some parameter
combinations. To search for such combinations, a set of parameters uas
initially deduced from Rack and Westbury (table I). The elapsed distance
%y and the elapeed time t; are variable and have been chosen as 8.2 cm and
0.4 sec respectively. The initial and final velocities are assumed zero.
For the extremal solution {bang,coast,bang) there result 8 nonlinesr
equations In 8 unknouns from (18)-(21) and the initial conditions (x, ty.




(WS 0 Cnnncilonps 0 time

2 1 t2 tl t2

Figure 4. The three possible forms for force in a singular
arc solution.
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Table I
k = 2 kg/cm
mn=0.2 kg (plausible value)
b/m = 3.16/%ec (chosen to give [=0.5)

ce=lcnm

a = 0.1 cn/sec (deduced from Woledge)
For the singular solution (bang,4C,coast,bang! 15 nonlinear equations in 15
unknouns result from (18)-(24) and the initial conditions. The equations
were solved numerically by Newton-Raphson and gradient methods. Individual
parameters were varied and energies of movement computed from (S). Solving

(S), the energy for the extremal solution is
Es= kc(&x.(t,)ml(tan + kca(dt +dt3) (25)

where t; is the suitching time from acceleration to coast, t3 is the time
at the end of deceleration, at, is the duration of acceleration, ax;(t,) is
the distance moved during acceleration, and dx(tg) is the distance moved

during deceleration. For the singular solution, the energy is
*3

Ee kc(&xﬂt,)ﬁx,(t‘)) + kca(at|+at4) */‘K.(Ul—Xﬂ (Xz(t)ﬂ) dt (26)
]
where t; Is the suitching time from acceleration to the singular arc 4C, t;

is the suitching time from 4C to coast, and tq is the time at the end of
deceleration. The force kgl(u;-x;) is given by (24), while the velocity
N:‘t, is

2b(t-t,)

Iz(t) - x:(t.). .2b(t-t|)

+ !l.%t( -1) 27)
The energies for the extremal versus the singular solution sre

compared in tables Ila-g; the units sre kg cw/kg ut. In table llc

cane B4 5




Ia
Kk Singular
e impossible
3 0.66117
=10 0.6173
20 8.56648
30 0.5513
49 0.54554
S0 0.5423
180 0.536
Table Ilo( bavk)
k Singular
impossible
8 9.632026
=10 8.6173
14 8.6442
28 8.768
Table Ile
L) Singular
8.35 impossible
8.36 0.76123
*0.4 8.6173
8.45 0.512
8.5 0.444
8.6 8.358

Extremal

0.66106
0.6164
0.5627
0.5509
0.54562
0.5426
8.537

tremal

0.6164
0.6440
8.725

Extromal
8.814
8.76122
0.6164
8.511
0.445
0.369

able IIb

b Singular
2.3 Tmpossible

2.6 0.552036

2,6 0.567%

3.0 0.6020
=10 8.6173

4.8 0.7045

5.0 0.820
10.6 1.45
15.0  2.13248
15.557 impossible
Table IId

c Singular
8.7 impossible

8.8 0.6612
s1.6 0.6173

2.0  0.5640

3.8 8.5513

4.0 0.54554

5.0  0.5427

6.6 98.5481

able IIf(k=16, b=4)

0.606
8.65
8.1
0.2
8.3
08.35
8.4
8.54

Singular
impossible
0.0632
8.1925
8.6647
1.64636
2.0120
2.6878
impossible

PAGE 15

Extremal

0.552834
8.5674
6.6814
0.6164
8.7838
0.824
1.51
2.13246
2.6 .

Extremal

8.6611
8.6164
8.5627

8.54551
0.5437
0.5487

Extremal
8.0041
08.0634
0.1942
0.6681
1.4620
2.08072
2.6825
6.4538

L am L ol e co st
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Table IIg(ks16, bs4)

Singular Extremal
‘5.’3’ re'!r 11 9.6161
0.1 0.6647 0.6681
8.2 8.7974 0.7981
8.25 0.8633 0.8631
8.5 1.1963 1.1882
1.0 . 1.8393 1.8382
1.7 2.748417 2.7486411
1.8 impossible 2.8784

the parameters k and b are varied simultaneously but at a fixed damping
ratio of 8.5. In tables 11f-g the parameters k and b are respectively set
at 16 and 4 rather than at the table 1 values where the extremal solution
is minimizing over the whole range of x; and @. The initial values from
table | are starred in table Il. A singular solution becomes minimizing
uith high values of k, b, c, and t;,, and uith low values of @ and x;. As
the parameters cause the coast time to approsch zero (higher b and x,,
lower k, c, and t;), the singular and extremal solutions become identical
because the 4C portion vanishes.

For the extremal solution it is proved In sppendix B that there is
an upper limit on the duration of cosst. It is tempting to speculate that
for longer coast durations a singular solution becomes minimizing, but the
singular solution in table I1 is not aluays minimizing under these
conditions. Perhaps a different combination of bangs, coasts, and singular
arce would then be minimizing, but this remains an open question. Some

combinations can be proved impossible, such as (bang, 4C, coast, 4A-C,
bang! .
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VIIL. Spring Model Relaxations: X Dependencies

A natural question is whether the minimum energy solution is
changed by incorporating a more realistic musclie model. For those
relaxations of the spring mode! involving oﬁlu X dopondonelu_. the answer
is that the solution remains bang-cosst-bang. The reason is that the
Hami1tonian H remains |inesr in the control U, and the minimization of W
ulth respect to U éce\ro at fixed X. Hhether the solution also remains
acceleration-coast-deceleration needs to be determined for each case.

Relaxations of the spring mode! involving X dependencies include
the follouing.

1. Position Limits on Tension

For real muscl!e the maximum Ioontrlé tension varies uith position
(tigure 2). This makes c; and cp into functions of x;, but the controls
uill still fall at the extremes uherever they are.

2. Velocity Limits on Tension
Actual muscle exhibits a hyperbolic force-velocity relation. [f Py

is the isometric tension, then the maximum force P that can be produced for

- & velocity v ie [Hill 1938] (see figure S):

P = Py - viPpra) (28)
v4b'
The term (Pg+a)/(v+b’) can be considered the coefficient of active damping.
The coefficient a has been determined as .25 Pp; the force P then becomes
Po-1.25Pgv/(v4b'). The |iterature conflicts on the value of active damping
during lengthening. For consistency with the shortening heat (below), it




e

Velocity

Tension

Figure 5. Tension dependence on velocity (Hill 1938).

ﬁfuz

—

Tension

length

Figure 6. Hypothetical length-tension curves with
the property that at any given length the slopes are

the same for all choices of “2'
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is assumed tho' sane as active damping during shortening.
Associated uith the active damping is an extra heat expendi ture

sbove the isometric heat due to shortening. This shortening heat rate is
CHitl 19641s

Qg = 16 Pov + .18 Pv (29)
The isometric heat rate 6, renains aPy, but the power is nou Pv.
Substituting the sum of spring forces for the isometric tension Py and (28)

for P, the energy rate ls:

L= (kglup=x)) + kolug=x;)) (@ - 0.89%; + hﬂ;_) (38)
xgtd
Similarly it cen be shou that the equation of motion ies
RN (g (uy=sey) = Ky {xy-uig)) (1)
) *: L,.%g’ kg (uy=2)) = Kkqlx)-ug

; Hhen thess terms are combined to form the Hesiltonian, the control is seen
to remain linear. Hence the solution is once agein bang-cosst-beng.

1 1¢4 . 13

One uay of bringing the simplified length-tension curves of figure
1 closer to those of figure 2 Is illustrated in figure 6. The spring
| constant k, varies uith position, but at any given position the constant k,

, is the same for all controls up. Under thess conditions the solution
remains beng-coasst-bang.

4. P Yol 1 lastic El ts

The incorporation of these elements into the mode! is depicted in

b e i Ot i



figure 7. Since the paralle! elastic element depends only on position, it
does not change the solution. The series slastic elmnto' and the active

springs may be replaced with equivalent springs uith constants

k' =kgky/ (kgtky) and ko' =k ke/ (kotke). This modification also has no effect

on the solution.

IX. Spring Model Relaxations: U Dependencies

In figure 2 the spring constant k, is seen to vary uith firing rate
at any fixed position. The |inear portions of these length-tension curves
when extended seem to intersect lt.. common point (figure 8). In this
circumstance the spring constant k, is To/(ug-%g). The up terms of the
Hamiltonian H become:

H e Tn ('l'ul) (ﬂlr‘g’
Ug=%o

= To(.ﬂrxg) (K|—ﬁ-l) (32)
Up=%o
If @a+xg-Ag > @ then ' is minimized at ugex)s otheruise ugex;-cy. That is
to say, the solution for u; is exactly the same as in section V. A similar
analysis holds for u;. Thus the minimizing pattern is also bang-coast-

beng.
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Figure 7. An expanded muscle model incorporating series
elastic elements kB and a parallel elastic element kp.

Tension

Figure 8. The length-tension curves of Rack and Westbury

when extended meet at a point. The dependence of kn on u,

can be characterized by To/(uz—xo).
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Appendix A

In this appendix It is shoun there are only two bangs and one coast
in the extremal solution: one acceleration, followed by one coast period,
terminated by one deceleration. No other combinations of coasts and bangs
are possible. To demonstrate this is the only possible combination, it is
necessary to examine the sulitching curves and their time derivatives.

The filrot iemma shous that onco the control has passed from
acceleration to coast, then the control Mt return to another
acceleration but must proceed to deceleration. The second lemma shous that
once deceleration has started, the deceleration must continue until the end
of the movement. This proves that the acceleration-coast-deceleration
combination is the only possible one. In the folloning it is presumed that
the movement starts uith acceleration in the positive x; direction. Hence

all velocities are positive.

Lemma 1: After acceleration, the glide period cannot double back to
another acceleration.
Proofs The proof of this lemma procesds by examining the time derivative
of the acceleration-coast suitching curve (hencefarth referred to as the
slope of the suitching curve). The sliope of this curve is initially
positive at the transition from acceleration to coast. In order for
another acceleration to follow the coast period, this siope must become
negative, leading to a contradiction.

At the firet esuitching time t; the acceleration-coast switching

curve |s zero.
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|
A2ity) + @+ xp(ty) = 0 . (A1)
After the acceleration period, the coast equations are:
et = Maftged M Loy - JiN, (A2)
b
wglt) = = Dgltyeate >ttt (A3)
Thue
Nelthemegt) = Agltpe® 7ty -2 (A&)
b
s 4 - Qyltyeate T W
The slope of this sul tching curve is:
LUt (400 + bt eme 2t (AS)
At tet;, the siope of the suitching curve is:

20)p(t)) -\ +ha > @ (AB)
One can shou this quantity cannot be less than zero. Next, suppose the
coast doubles back to another acceleration. At some point the siope must
go through zero. This time t is found from (AS) as:

gl pObdaet s § (A7)
M-ﬂ;(t.)

Case 1: )\,-bAa(ty) > 0.
Then \a(t;)+@>8, contradicting (Al).

Case 2: )\ -bAa(ty) < 8.
Crossmul tiplying (A7) and collecting terms,
20)\g(t;) -\ +ba<B, contradicting (AB).
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Thus after acceleration, the coast period must eventually errive at the

deceleration suitching point.

Lemma 2: The movement is locked in deceleration until the end.
Proof: It will be showun that if deceleration ever switches to coast, then
the siope of the coast-deceleration suitching curve requires an immediate
return to deceleration. Hence the movement is locked in deceleration until
the end. -

Suppose there is a time t3 when deceleration suitches to coast. At
this point the coast-deceleration suitching curve is zsro.

A2(tg) -a@-xa(ty) = @ (A8)

The coast suitching curve Ap(t)-g-xp(t) is

Xg(t.)o'"-t','t h(l-obu-t',) -®- x.(t.)o.b(t°t’, (A9)
b
The slope of (A9) ist
St (it h) + bgltge 2t (A18)

At time tg the siope (Al) is blg(tg) =)\ +bxg(tg). This is positive since
A2(t3)>8, x3(t3)>8, and ) \<@ (lemma 3). This means that deceleration would
bounce off the coast boundery and immediately continue the deceleration.
Furthermore, since the sliope is positive, the deceleration would not
immediately suitch back to coasting, causing chattering.




Lemma 3: )\ < 6.

Proof: At the second suitching point ty we have
A2(tg)-a-xp(t) = @ (A11)
From (A2) and (A3), this becomes

Mttpe® Ly PN o e Lo i2)
b
Rearranging,
M-"UTY) L Ut ottty L, bttt o,
b : :
From (A1) and (A3) we find an expression for \g(t).
Ae(ty) =« - @ - wu-'“"""’) (A16)
: b
Substituting into (A13),
h“.-.b(trt") a mu‘.-b“r'to),(.b(trh)“-b(trtﬂ,) (A1S)
b b
+ alls®'trt)
Thus
A\ o w.'-b(h-to)) (.b(tg-tﬂ“-b(trtﬂ) & uub(trh), (A16)
l*b(trh)

Since the numerator is positive and the denominator is negative, \; is
negative. |

Taken together, these lemmas shou that acceleration.passes through coast to
deceleration. There is no possible variation in this scheme. It is also
possible to shou the movement cannot start by coasting followed by

acceleration.




PAGE 26

Appendix B.

A surprising limitation on the value of tp-t;, the duration of the

coasting time, has baeri found. The suitching curve during acceleration iss:

Aa(thsmong(t) = Agltede® 44 p ke 1-a®t ) 4 o
b

1)
. &g(l-o-'“-w)
b
The slope of this suitching curve iss
P11 gt Mykger) + keere 1Y 82)
At the first suitching time t;, the suitching function (Bl) is zero.
Rearranging (Bl) for tet;,
21117t (g - Qutken)) = - Qutkel) - @ - ke 1-0 0 U7 @3
b b b
Substituting (B3) into (32), the. slope at t; is:
T ST YR 84)
Substituting for A\; from (A16),
' olte-t))

Since slope(t;)20 and since the denominator is positive, so is the
numerator.

ey (1021 710)) (gt t)_bltety),

+2ba 20 (886)
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-b(trﬁ)..b'tft') Is @ decreasing function of tz, at some

)
point (B6) becowes zero. Solving then for .b(tz-t| 3

be_+ 4 tbgrke - 212y e a2 L @)

kSt u_.-b(tr-to))

Because 2+e

As ty increases, t; will decrease. However, t; does not decreass enough to
offset the effect of the t; increase. [f @=8, (B7) reduces to

St . 2 (87a)

Strangely, In this circumstance tp-t; depends only on b.
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