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Annual Summary 

W. A. Woods 

During the past year, BBN's ARPA project on natural language 

understanding has been pursuing a number of diverse problems, all 

of which are major bottlenecks to significant advances in natural 

language understanding by machine. These problems impose 

significant limitations on the kinds of intelligent support for 

complex decision making that can be gained from computerized 

knowledge bases. The directions that we have been pursuing 

include: 

- representation of complex natural language concepts. 

- representational structures that facilitate use of such 
knowledge. 

- algorithms for recognition of instances of complex 
structured concepts. 

- parsing algorithms for interfacing to such concept 
recognition algorithms. 

- the relationship between such parsing algorithms and the 
recognition algorithms themselves. 

- formal properties of parsing and situation recognition 
algorithms. 

- formal semantics and epistemological foundations of 
knowledge representation structures. 

- application of such structures and algorithms to 
practical problems of command and control decision 
support. 

- concepts for parallel machine architectures to support 
such applications. 

- 1 - 
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In addition, we have continued to make advances in the 

codification and formalization of i.ules of human use of natural 

language for communication, most notably in the formalization of 

evoked entities that become available for anaphoric reference in 

discourse. 

This work can be broken down into three major areas: 

1. Knowledge Representation 
2. Syntactic and Semantic Processing 
3. Fast Symbolic Algorithms 

Our activities in knowledge representation and its use for 

situation recognition have centered around the refinement and use 

of struct', red inheritance networks [Brachman, 1978a,b] for 

representing complex concepts, ATN grammars [Woods, 197ßj for 

parsing natural language sentences, and relationships between the 

two. We have been gradually uncovering deep similarities between 

the parsing functions of ATN grammars and the recognition and 

understanding functions of a conceptual taxonomy expressed as a 

structured inheritance network. (Some of this is described in more 

detail in the Technical Notes in this report.) 

During the past year, we have implemented a computerized 

interpretation package for a particular version of structured 

inheritance networks (KLONE), and have successfully used that 

representation system to develop a taxonomy of kinds of syntactic 

- 2 - 
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structures as well of the concepts that they can signify. Further, 

we have developed a method for representing the connections between 

the two in the form of "interpretation cables" which can be used to 

develop incremental semantic interpretations in the course of 

parsing. We have also developed and refined a parsing system (RUS) 

that provides close and efficient interaction between a general 

syntactic processor and a semantic-pragmatic interpreter. 

Experience with the RUS grammar, and its coupling to the KLONE 

network taxonomies has reinforced an emerging understanding of the 

utility of a kind of parsing automaton which I have called 

"cascaded ATN's", a sequence of ATN transducers each of which takes 

as input the output of the previous transducer. Some theoretical 

insight into the computational advantages of such cascades has been 

emerging, and several formal results on the computational power of 

ATN grammars have been developed. 

Also in the area of syntactic/semantic processing, we have: 

- Completed an extensive theoretical study of mechanisms of 
pronominal and anaphoric reference in English, culminating 
in a Ph.D. thesis at Harvard university [Webber, 1978], 
which appears likely to establish a paradigm for the 
linguistic investigation of anaphora. 

- Developed a new control strategy for ATN parsers which, 
together with appropriate grammar structuring, results in 
an "almost-deterministic" parsing strategy that combines 
many of the best features of Marcus' deterministic pacser 
[Marcus, 1978] and the above mentioned close-coupled ATN 
parser/interpreter. 

- 3 

rto- to-Jmn       „, 



Report No. 3963 Bolt Beranek and Newman Inc. 

Written a report on semantics and quantification in natural 
language question answering, including a retrospective 
analysis of the techniques of the LUNAR system and their 
relative advantages and disadvantages. This study led to 
an implementation of a powerful and general quantification 
facility in the RUS system, and an investigation of new 
types of quantifier representation using the Si-net 
notation. 

Developed some theoretical results on the power of ATN 
parsers and the advantages of close-coupled systems of 
parsing and interpretation. 

In the area of fast symbolic algorithms, we have identified a 

general problem of situation recognition as a problem of major 

importance across many areas of artificial intelligence, including 

parsing and interpreting natural language, interpretation of visual 

scenes, monitoring for alerting conditions in large data bases, 

rule selection in large systems of production rules, and special 

case recognition in problem solving and mechanical inference 

systems. We have been concentrating on developing potentially fast 

algorithms and efficiency techniques for this problem, and have 

identified and partially developed two major techniques: 

- Hypothesis-Factoring, which operates to cut down 
combinatoric enumeration, and 

- Marker-Passing Algorithms, which facilitate the 
exploitation of specialized parallel processing 
architectures. 

Specifically, we have: 

- Developed techniques for minimizing the combinatorics of 
hypothesis enumeration in ATN parsing, and 

_ 4 _ 
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Developed an abstract parallel machine architecture and a 
corresponding marker passing algorithm for semantic 
interpretation of English sentences. Although this 
algorithm is still under active development, an early 
version of it has been documented in a quarterly report. 

During the coming year, we plan to: 

Continue our investigation of knowledge representation 
issues - especially in the areas of plurality and sets, 
mutual exclusion and exhaustiveness, temporal history and 
change in large data bases, inheritance mechanisms, and 
uses of meta knowledge. 

Implement the anaphoric reference system described above 
and integrate it with the RUS parsing system. 

Assemble an integrated system to understand natural 
language display manipulation instructions. 

Continue to explore the close coupling between syntactic 
and semantic processing - especially for resolving 
ambiguity and vagueness. 

Implement a facility for speech act interpretation and plan 
recognition. 

Continue the theoretical investigations of fast algorithms 
for situation recognition and related processes. 

Continue our investigation of parallel architectures and 
algorithms for situation recognition in general, and for 
natural language understanding in particular. 

5 - 
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Publications 

During the past year, the following reports were published or 

accepted for publication: 

Senantics and Quantificatior 
in Hatural Language Question Answering 

W. A. Woods 
BBN Report No. 3687 

November 1977 

This paper is concerned with the semantic interpretation of 
natural English sentences by a computerized question-answering 
system, and specifically with the problems of interpreting and 
using quantification in such systems. These issues are presented 
and discussed from the perspective of four different natural 
language understanding systems with which the author has been 
involved.  The presentation includes the process of semantic 

the  nature  and  organization  of  semantic 
the  nature  and  organization  of  semantic 

rules,  a  notation  for  representing  semantic 
(the  meaning  representation  language),  the 

that notation, and the generation and scoping of 
Also discussed are a variety of loose ends, open 

interpretation, 
interpretation, 
interpretation 
interpretations 
semantics of 
quantifiers. 
questions, and directions for future research. Particular 
attention is given to the interaction of syntactic, semantic (and 
pragmatic) information. 

On The Bpistecological Status of Senantic Networks 

Ronald J. Brachman 
BBN Report No. 3807* 

April 1978 

* To appear in Associative Networks - The Representation and Use of 
Knowledge in Computers. Nicholas V. Findler, ed. New York: 
Academic Press, 1978. 
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This paper examines in detail the history of a set of 
network-structured formalisms for knowledge representation the 
so-called, "semantic networks". Semantic nets were introduced 
around 1966 as a representation for the concepts underlying English 
words, and since then have become an increasingly popular type of 
languace for representing concepts of a widely varying sort. While 
these nets have for the most part retained their basic associative 
nu_ure, their primitive representational elements have differed 
significantly from one project to the next, These differences in 
underlying primitives are symptomatic of deeper philosophical 
disparities, and I discuss a set of five significantly different 
"levels" at which networks can be understood. One of these levels, 
the "epistemological", or "knowledge-structuring, level, has played 
an important implicit part in all previous notations, and is here 
made explicit in a way that allows a new type of network formalism 
to be specified. This new type of formalism accounts precisely for 
operations like individuation of description, internal concept 
structure in terms of roles and interrelations between them, and 
structured inheritance. In the final section of the paper, I 
present a brief sketch of an example of a particular type of 
formalism ("Structured Inheritance Networks") that was designed 
expressly to treat concepts as formal representational objects. 
This language, currently under development, is called "KLONE", and 
it allows the explicit expression of epistemological level 
relationships as network links. 

A Formal Approach to Discourse Anaphora 

Bonnie Lynn Webber 
BBN Report No. 3761 

May 1978 

Extended natural, language communication between a person 
engaged in solving a problem or seeking information and a machine 
providing assistance requires the machine to be able to deal with 
anaphoric language in a pc >picuous, transportable non-ad hoc way. 
This report takes the view >;uat dealing with anaphoric language can 
be decomposed into two complementary tasks: (1) identifying what a 
text potentially makes available for anaphoric reference and (2) 
constraining the candidate set of a jiven anaphoric expression down 
to one possible choice. The second task has been called the 
"anaphor resolution" problem and, to date, has stimulated much 
research in psychology and artificial intelligence natural language 
understanding. 

- 7 - 
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The focus of this report is the first task - that of 
identifying what a text makes available for anaphoric reference and 
how it does so. Evidence ".s given to back up two strong claims: 

1. None of the three types of anaphoric expressions that I 
have studied - definite anaphora, "one"-anaphora and 
verb phrase deletion - can be understood in purely 
linguistic terms. That is, none of them can be 
explained without stepping out of the language into the 
conceptual model each participant is synthesizing from 
the discourse. 

2. On the other hand, if a discourse participant does not 
assign to each new utterance in the discourse a formal 
representation in which, inter alia, 

a. quantifiers are indicated, along with their scopes; 
b. main clauses are distinguished from relative clauses 

. id subordinate clauses; 
c. clausal subjects  are  separated  from  clausal 

predicates; 

then s/he will not be able to identify all of what is 
being made available for anaphoric reference. 

Building on these claims, I show that there is an intimate 
connection between such a formal sentential analysis and the 
synthesis of . appropriate conceptual model of th- discourse. The 
computational Tiplications of this research are discussed, 
primarily in terms of possible implementations within current 
levels of technology. 

Description Formation and Discourse Model Synthesis 

Bonnie Lynn Webber 

July 1978 

This paper starts from the point of view that a common 
objective of discourse is to direct a listener in the construction 
of a model of some particular or general situation. Its concern is 
ho" the explicit data of the discourse provides material for ehe 
mof »1 synthesis process. In particular, it shows how (1) 
in- ^finite noun phrases are associated with the evocation of new 
en..,,ties into the model ("discourse entities") and (2) how those 

- 8 - 
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new discourse entities will initially be described. The claim is 
that such an initial description is critical to both model 
synthesis and anaphor resolution since it allows the listener to 
reason appropriately about entities in order to assign them to 
appropriate roles vis-a-vis his or her higher-level expectations. 

Taxonomic Lattice structures for Situation Recognition 

W.A. Woods 

July 1978 

This paper discusses issues in the representation of knowledge 
for an intelligent computer assistant to a human decision maker. A 
substantial portion of the knowledge base of such a system will 
consist of rules of the form "if <situation description do 
<action>", where sit'.ution descriptions are characterizations of 
classes of situations that the machine could be in. A taxonomic 
lattice is a structure that organizes such situation descriptions 
into an inheritance structure that permits information to be stored 
in its most general form and yet still be triggered by any 
situation to which it applies. This lattice serves as a "coat 
rack" upon which various pieces of advice may be hung, and is 

the machine in order to find and activate advice that 
the current situation. The process of situation 
is similar to the process of parsing in that only as a 
its recognition is a situation transformed from a 

collection of unrelated events and conditions into a perception of 
a structured concept. Two methods are discussed for efficient use 
of a taxonomic lattice for situation recognition - factored 
knowledge structures, which merge common parts of alternative 
hypotheses, and mar kable classification structures, whose nodes 
serve as rendezvous points where "footprints" from various 
constituents can meet to detect coincidences. 

accessed by 
applies to 
recognition 
result of 
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A Structural Paradign for Representing Knowledge 

R. J. Brachman 
BBN Report No. 3605 

May 1978 

This report presents an associative network formalism for 
representing conceptual knowledge. While many similar formalisms 
have been developed since the introduction of the "semantic 
network" in 1966, they have often suffered from inconsistent 
interpretation of their links, lack of appropriate structure in 
their nodes, and general expressive inadequacy. In this paper, we 
take a detailed look at the history of these "semantic" nets and 
begin to understand their inadequacies by examining closely what 
their representational pieces have been intended to model. Based 
on our analysis, we present a new type of network - the "Structured 
Inheritance Network" (SI-NET) - designed to circumvent common 
expressive shortcomings. We acknowledge "concepts" to be formal 
representational objects and keep "epistemological" relationships 
between formal objects distinct from conceptual relations between 
the things that the formal objects represent. The notion of an 
epistemologically explicit representation language is introduced to 
account for this distinction, and Si-Nets are offered as a 
particular candidate. 

The Structured Inheritance formalism that we present takes a 
concept of functional roles tied together by a structuring gestalt. 
Generic concepts, describing potentially many individuals, have as 
their parts generic "'dattr' descriptions", which capture 
information about the functional role, number, criteriality, and 
nature of potential role fillers and "structural conditions", 
which express explicit relationships betwe^ the potential role 
fillers, and give the functional roles their eanings.  Individual 

- 12 - 
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concepts have explicit binding structures ("Instantiated dattrs") 
which indicate an individual's fillers for its roles: the 
individual's roles are inherited from a generic concept, in terms 
of which it is described. Details of the representation are 
elaborated, including explicit role and role-filler inheritance 
rules. The language is then applied to two task domains: 1) the 
understanding of two-word nominal compounds (e.g., "computer 
science", "arm chair", "hockey stick"), for which we present a 
conceptual analysis that uses only two basic structuring techniques 
to explain an extensive set of compound types; we also present a 
new account of nominalization, based on structured inheritance; and 
2) knowledge about a complex message-processing program that is 
implemented on several ARPA Network hosts; we attempt to account 
for the structure of objects in the "Hermes" program, its commands, 
and the interaction of the commands and objects. 

In addition to detailing these uses of the structural 
paradigm, we review carefully its relationship to three other 
current representation languages - KRL, FRL, and MDS. The surface 
notation, underlying data structures, and deeper epistemological 
import of each of these languages is examined and compared with the 
others. 

KLONE Reference Manual 

R.J. Brachman 
E. Ciccarelli 
N. Greenfeld 

M. Yonke 

July 1978 

KLONE is being developed to be an epistemologically-explicit 
language for representing conceptual knowledge and structured 
inheritance; this manual provides user documentation for the 
current state of the INTERLISP implementation. Documented are: 
types of KLONE entities and relationships; procedural and data 
attachment; conceptual "meta-description" of KLONE entities; 
implementation naming conventions; all user-accessible KLONE 
primitives. 

- 13 - 
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KLONE's Progress 

R.J. Brachman 

This year was spent laying the foundation for the complete 

natural language system that we plan to build in the seccnd year. 

We concentrated on two major components - the parser and the 

knowledge representation - working on them independently and 

jointly. We designed the "abstract machines" for these two partis 

of our system, implemented and tested those designs, designed and 

implemented an interface to allow natural language information to 

be projected into the representation system, and built some 

experimental systems to help us get a better understanding of the 

potential overall complexity of a complete system. 

Our knowledge representation language, KLONE, has undergone 

several cycles of revision during the course of the year. KLONE is 

directly descended from work reported in [Brachman, 1978b], and 

since its adoption into this project has become a sophisticated, 

state-of-the-art representation system. There are still several 

open issues to be resolved in the abstract design of the language, 

but the current conception is virtually all implemented and usable. 

The current implementation work consists of completing some more 

recent design features, and finishing a complete set of "Structural 

Description" (SD) manipulation functions. The system as described 

- 14 - 
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in [Woods & Brachman, 1978] has been in use for about half of the 

year . 

Work on our abstract conception of KLONE continues at a lively 

pace, although we believe that we are gradually obtaining a sense 

of closure on many representation issues. Each round of 

design/implementation/use will, of course, bring new information to 

bear on the original design, but the number of unresolved issues is 

definitely diminishing. 

During the course of the year, we have come to a much clearer 

understanding of inheritance in classificatory network structures. 

We have begun to think of such relations between Concepts as 

"Cables", which themselves have structure and can be talked about 

(e.g., meta-described) . The Cable notion* helps to substantially 

solidify one of the principal insights of [Brachman, 1978b] - that 

there is no simple "ISA" link, but instead, an inheritance 

connector must allow access to subparts of the description of the 

Concept. Subpart connections between sub- and superConcepts are 

not independent of the connections between the Concepts as wholes. 

The inter-Role connections that make up the bulk of the Cable 

have also become better understood, and we have re-implemented the 

* Our cable metaphor comes more or less directly from the work of 
Brian Smith [1978] . 
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Role facet inheritance functions. The "Mods" primitive means that 

the subRole is essentially overlaid on top of its superRole, with 

only unmodified facets remaining visible. Thus, there is only one 

Role to be considered as a Mods chain is descended - the subRole is 

virtually the very same Role as the one it modifies. The "Diffs" 

connector, on the other hand, indicates that a Role spawns 

distinguishable subRoles. Each subRole inherits its name and other 

applicable subparts from its parent, but is considered a "real" 

Role unto itself. The more specific Role is in a sense subsumed by 

its parent, but it is not indistinguishable from that parent. This 

clearer understanding of the meaning of the role inheritance 

primitives has made their implementation easier, and has also 

served to facilitate the adjudication of putative conflicts in 

situations of multiple inheritance. 

The idea of a "Paralndividual", developed during the course of 

this year, has also helped clarify the meaning of the SD's, and has 

put us in a better position to solve the puzzle of recursive 

descriptions in a declarative representation language. It has also 

highlighted a strong similarity between SD's and Roles - the Value 

Restriction of a Role is almost intcrpretable as a Paralndividual: 

it has existence local to the Concept in which it appears, and its 

value in each Individuator is contextually determined by that 

Individuator. Parolndividuals have been implemented, and we are in 

the midst of investigating their utility and meaning. 
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In the last quarter of this year, we produced a new proposal 

for interpretive hooks (ihooks), a proposal for allowing SD's to 

have names, a set of proposals regarding the representation of 

quantification, and a cleaner separation between individuals and 

descriptions. We also embarked on an investigation into the 

explicit representation of descriptions of sets. On a larger 

scale, we also designed and initially implemented an integrated 

KLONE/parser system for understanding simple sentences about the 

graphics domain. 

As we began to make extensive use of he ihook facility for 

attaching procedures, we found it deficient in a number of ways. 

First, the simple 3EFORE-<procedure>/AFTER-<procedure> dichotomy 

did not provide a rich enough set of invoking situations. We 

needed some procedures to be invoked after KLSpecializeRole and 

after KLEstablishAsSpecializer, for example. That is, we wanted to 

activate an attached procedure upon the specialization of a Role, 

regardless of which function produced the specialization. Thus, we 

required a better taxonomy of invoking situations. Further, 

"BEFORE" and "AFTER" were not quite right - the main intent of a 

"BEFORE" hook is to allow a set of preconditions to be tested 

before the procedure is actually invoked; and "AFTER" hooks have 

two uses: as postcondition-checkers, so that an undesirable effect 

of an attached procedure could be aborted; or as "consequent 
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theorems" (a la PLANNER), such as "WHEN-FILLED". Finally, all 

procedures from all parents were inherited indiscriminately - no 

procedure from a parent Concept could be "turned off" in one of its 

descendants. 

This set of difficulties led us to redesign the ihook feature. 

We decided that instead of two basic situation types, there should 

be three: PRE-, POST-, and AFTER-. The first two will be invoked 

right before and right after the main function body (of the 

interpreter primitive), respectively, and will be treated as 

predicates. If a "PRE-" or "POST-" condition fails, then the 

interpreter primitive will be aborted, without any effect. An 

"AFTER-" procedure will run after successful completion of the 

function body, and its effect will not be of consequence to the 

function. In addition, ihook situations will be more general than 

simple function names. A taxonomy of situations, like 

"INDIVIDUATION" and "SPECIALIZATION", will allow the same procedure 

to be invoked by distinct, but conceptually similar, functions. 

Finally, we will allow a user to attach to an ihook an arbitrary 

keyword (to symbolize for him the "intent" of the hook). 

Procedures will be inherited as before, but only the most local 

will be executed for any given keyword. This new facility will 

give us a tremendous repertoire of power to experiment with. 

- 18 - 
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As mentioned, we have added "SDNames", which will work for 

SD's much as RoleNaraes work for Roles. This will allow us to 

address segments of a Concept's internal structure directly, and 

will allow selective building of new SD's in the conceptual 

structure of our language understanding system. 

We spent much of the final quarter of this year discussing the 

handling of natural language quantification in KLONE. While much 

depends on the particular use of KLONE chosen for the language 

interface, one observation is worth mentioning in and of itself. 

After investigating a number of natural language phenomena, we 

decided that it made sense to separate the "lexical", or 

prepositional, content of a sentence from its quant ificational 

content [see Van Lehn, 1978]. The lexical portion of the sentence 

explains the type of entity doing the type of action to a type of 

object, etc. The quantification structure can then be superimposed 

on top of the lexical material to explain how many actions there 

were, how many actors, etc., and the nature of the map from actor 

onto action, etc. For example, in "Every boy kissed three girls", 

the verb and the two nouns serve to relate that some kissing 

activity(ies) transpired between some boy(s) and some girl(s). On 

top of that, the quantificational structure leaves the total number 

of participants open, (presumably, there is some implied set over 

which the universal ranges) but says that each kissing event had 
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one object (a girl) and one agent (a boy), and that each boy mapped 

onto three kissing events. We are actively pursuing a clear and 

adequate representation scheme for relating lexical and 

quantificational import. The status of this enterprise will be 

reported in subsequent QPR's. 
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Generalizations of ATN Graaaars 

W. A. Woods 

1.  Introduction 

ATN orammars, as presented in Woods [1970] are a form of 

augmented pushdown store automata, augmented to carry a set of 

register contents in addition to state and stack information and to 

permit arbitrary computational tests and actions associated with 

the state transitions. Conceptually, an ATN consists of a network 

of states with connecting arcs between them. Each arc indicates a 

kind of constituent that can cause a transition between the states 

it connects. The states in the network can be conceptually divided 

into "levels" corresponding to tb« different constituents that can 

be recognized. Each such level has a start state and one or more 

final states. Transitions are of three basic types, as indicated 

by three different types of arc. A WRD (or CAT) transition 

corresponds to the consumption of a single word from the input 

string, a JUMP transition corresponds to a transition from one 

state to another without consuming any of the input string, and a 

PUSH transition corresponds to the consumption of a phrase parsed 

by a subordinate invocation of some level of the network to 

recognize a constituent. 
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ATN's have the advantage of being a class of automata into 

which ordinary context-free phrase structure and "augmented" phrase 

structure grammars have a straightforward embedding, but which 

permit various transformations to be performed to produce grammars 

that can be more efficient than the original. Such transformations 

can reduce the number of states or arcs in the grammar or can 

reduce the number of alternative hypotheses that need to be 

explicitly considered during parsing. (Some transformations tend 

to reduce both, but in general there is a tradeoff between the 

two) . Both kinds of efficiency result from a principle that I have 

called "factoring", which amounts to merging common parts of 

alternative paths in order to reduce the number of alternative 

combinations explicitly enumerated. The former results from 

factoring common parts of the grammar to make the grammar as 

compact as possible, while the latter results from arranging the 

grammar so as to factor common parts of the hypotheses that will be 

enumerated at parse time. The former promotes ease of human 

comprehension of the grammar and should facilitate learning of 

grammars by machine. The latter promotes efficiency of run time 

execution. I will refer to the former as "conceptual factoring" 

and the latter as "hypothesis factoring". 

Many of the same factoring principles that apply to ATN 

grammars of the ordinary kind can be applied to other problems not 
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directly interpretable as consuming elements from sequences of 

symbols. In this paper, I will present some generalizations of the 

notion of ATN grammar that capitalize further on the principle of 

factoring and that are applicable to a much more diverse set of 

situations. The first is obtained by generalizing ATN's from 

simple parsers to transducers by the the addition of an output 

operation ("TRANSMIT") which can be executed on arcs, followed by 

the construction of a parsing automaton from a cascade of such ATN 

transducers. The resulting automaton, which I call an "ATN 

cascade", gains a factoring advantage from merging together common 

cr:,iputations at early stages of the cascade. 

Cascaded ATN's are analogous to certain state decomposition 

characterizations of finite state machines and carry many of the 

advantages of such state decomposition into the domain of more 

general recognition automata. The normal decomposition of natural 

language description into levels of phonology, lexicon, syntax, 

semantics, and pragmatics, can be viewed as a cascade of ATN 

transducers - one for each of the individual levels. Viewing 

natural language understanding as parsing with such a cascade has 

computational advantages and also provides an efficient, systematic 

framework for characterizing the relationships between different 

levels of analysis due to conceptual factoring. The factoring 

advantages of cascade decompositions can thus serve as a partial 
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explanation of why such a componential description of natural 

language understanding has arisen. 

A second generalization of ATN's lifts the implicit 

assumptions that the input is a sequence of symbols and permits the 

application of similar factoring and optimization techniques to the 

general case of recognition automata acting on a generalized 

"perceptual field". Such generalized transition networks (GTN'S) 

have potential applications in scene analysis, acoustic phonetic 

analysis of speech, medical diagnosis, discourse analysis, and data 

base monitoring for "alerting" capabilities. Generalized 

transition networks thus lift the notion of "grammar" away from the 

limited conception of a set of rules characterizing well-formed 

sequences of words in sentences. Rather, they are capable of 

characterizing arbitrary classes of structured entities. 

Finally, I will present an interpretation of structured 

inheritance networks [Brachman, 1978b; Brachman &. Woods, 1978] as 

generalized transition networks and discuss the new perspectives 

introduced by the addition of a concept of inheritance to the 

concept of grammar. 

2. Factoring in ATN's and PSG's 

As discussed above, the principle of factoring involves the 

merging of common parts of alternative paths through an ATN or 
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similar structure in order to minimize the number of combinations. 

This can be done either to reduce the size of the grammar or to 

reduce the number of alternative hypotheses considered at parse 

time. Conceptual factoring attempts to reduce the size of the 

grammar by minimizing the number of places in the grammar where the 

same or similar constituents are recognized. Frequently such 

factoring results from "hiding" some of the differences between two 

paths in registers so that the paths are otherwise the same and can 

be merged. For example, in order to represent number agreement 

between a subject and a verb, one could have two distinct paths 

through the grammar - one to pick up a singular subject and 

correspondingly inflected verb, and one to pick up a plural subject 

and its verb. By keeping the number of the subject in a register, 

however, one can merge these two paths so there is only one push to 

pick up the subject noun phrase and one push to pick up the main 

verb. 

In other cases, conceptual factoring results from merging 

common initial, final, and/or medial sequences of paths across a 

constituent that are not the same, but which share subsequences. 

For example, an interrogative sentence can start with an auxiliary 

verb followed by the subject noun phrase, while a declarative can 

start with a noun phrase followed by the auxiliary. in either 

case, however, the subsequent constituents that can make up the 
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sentence are the same and the grammar paths to recognize them can 

be merged. Moreover, in either case there can be initial 

prepositional phrases before either the subject or the auxiliary 

and again these can be merged. When one begins to represent the 

details of supporting auxiliaries that are present in 

interrogatives but not in declaratives, the commonalities these 

modalities have with imperatives, and the interaction of all three 

with the various possibilities following the verb (depending on 

whether it is transitive or intransitive, takes an indirect object 

or complement, etc.), this !:ind of factoring becomes increasingly 

more important. 

In ordinary phrases structure grammars (PSG's), the only 

mechanism for capturing the kinds of merging discussed above is the 

mechanism of recursion or "pushing" for constituent phrases. In 

order to capture the equivalent of the above merging of commonality 

between declaratives and interrogatives, one would have to treat 

the subject-auxiliary pair as a constituent of some kind (an 

organization that is linguistically counter-intuitive) . 

Alternatively, one can capture such factoring in a PSG by emulating 

an ATN - e.g., by constructing a phrase structure rule for every 

arc in the ATN and treating the states at the ends of the arc as 

constituents. Specifically, an arc from si to s2 that picks up a 

phrase p can be represented by a phrase structure rule si -> p s2. 
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and a final state s3 can be expressed by an "e rule" s3 -> e (where 

e represents the "empty string") . In either case, one is forced to 

introduce a "push" to a lower level of recursion where it is not 

necessary for an ATN, and to introduce a kind of "constituent" that 

is motivated solely by principles of factoring and not necessarily 

by any linguistic criteria of constituenthood. 

A phrase structure grammar emulating an ATN as in the above 

construction will contain all of the factoring that the ATN 

contains, but will not make a distinction between the state name 

and the phrase name. Failure to make this distinction masks the 

intuitions of state transition that lead to some of the ATN 

optimization transformations and the conceptual understanding of 

the operation of ATN's as parsing automata. The difference here is 

a lot like the difference between the way that LISP implements list 

structure in terms of an underlying binary branching "cons" cell 

and the way that it is appropriate to view lists for conceptual 

reasons. For exactly the same kinds of reasons, it is appropriate 

to think of certain sequences of constituents that make up a phrase 

as sequences of immediate constituents rather than as a 

right-recursive nest of binary branching phrases. 

From the perspective of hypothesis factoring, the distinction 

made in an ATN between states that can be recursively pushed to and 

states that merely mark intermediate stages in the recognition of a 
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constituent sequence permits a distinction between that part of a 

grammar that is essentially finite state (and hence amenable to 

certain kinds of optimization) and that which is inherently 

recursive. This permits such operations as mechanically 

eliminating unnecessary recursion and performing finite-state 

optimizations procedures on what remains - see Woods [1969]. These 

transformations can result in significant gains in parsing 

efficiency by trading recursion for iteration wherever possible and 

by minimizing the non-determinism (by hypothesis factoring) in the 

resulting networks. 

The construction given above for emulating an ATN with a PSG 

can, of course, emulate the same hypothesis factoring optimization 

that an ATN permits, but its ability to do so depends critically on 

the use of e-rules for the final states. Most parsers for PSG's, 

on the other hand, do not permit e-rules, probably because they are 

highly non-deterministic when applied bottom-up. Unfortunately, 

the construction that transforms a PSG with e-rules into an 

equivalent PSG with no e-rules would give up some of the factoring 

achieved in the ATN emulation when applied to final states that are 

not obligatorily final (a common occurrence in natural language 

grammars). Every transition coming into such a state, would 

effectively be duplicated - once leading to an unambiguously final 

state (si -> p) , and once forcing subsequent consumption of 
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additional input (si -> p s2). It thus appears that as a class of 

formal automata, ATN's permit a greater flexibility in capturing 

hypothesis factoring advantages than do conventional PSG's. 

As we have discussed them, the principles of conceptual 

factoring and hypothesis factoring have been motivated by different 

measures of cost. Nevertheless, many of the factoring 

transformations that can be applied to ATN's gain a simultaneous 

efficiency in both dimensions. This is not always the case 

however. In particular, the transformations that optimally 

minimize nondeterminism for left-to-right parsing tend to cause an 

increase in the number of states and arcs in a grammar (unless 

fortuitous regularity causes a collapsing). Since a major 

characteristic of the ATN grammar formalism is that it permits the 

expression of mechanical algorithms for performing hypothesis 

factoring transformations, it is probably appropriate for grammar 

writers to devote their attention to conceptual factoring as a 

grammar writing style, while leaving to various grammar compilation 

algorithms the task of transforming the grammar into an efficient 

parsing engine. However, in absence of such compilers, it is 

always possible within the ATN formalism for a grammar writer to 

incorporate explicit hypothesis factoring structure into his 

grammar and to make tradeoffs between the two factoring principles. 
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3.  Notation 

ATN's are characterized as automata by specifying their 

computations in terms of instantaneous configurations and a 

transition function that computes possible successor 

configurations. As such, they can admit a variety of superficial 

syntaxes, without changing the essential nature of the automaton. 

In this paper, I will use a notation that is somewhat more concise 

and slightly more convenient than the original ATN syntax specified 

in Woods [1970]. The major change will be a formal distinction 

between a phrase type and an initial state for recognizing a 

phrase. (The original ATN specification used the initial state to 

serve double duty.) Moreover, I will permit a given phrase type to 

have several distinct initial states and for several phrase types 

to share some initial states. This permits somewhat greater 

flexibility in factoring and sharing common parts of different 

phrase types. The pop arcs of these ATN's will indicate the phrase 

type being popped, and a given state can be a final state for 

several phrase types. A BNF specification of the syntax I will use 

is: 
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<ATN> -> (<machinename> (accepts <phrasetype>*) <statespec>*) 
;an ATN is a list consisting of a machine name, a 
specification of the phrasetypes which it will 
;accept, and a list of state specifications. 

<statespec> -> (<statename> {optional <initialspec>} <arc>*) 
<initialspec> -> (initial <phrasetype>*) indicates that this state 

;is an initial state for the indicated phrasetypes. 
<arc> -> (<phrasetype> <nextstate> <act>*)  ;a transition that 

;consumes a phrase of indicated type. 
-> (<pattern> <nextstate> <act>*) ;a transition that consumes 

;an input element that matches a pattern. 
-> (J <nextstate> <act>*) ;a transition that jumps to a new 

jstate without consuming any input. 
-> (POP <phrasetype> <form>)  ;indicates a final state 

;for the indicated phrase type and specifies 
;a form to be returned as its structure. 

<nextstate> -> <statename> ;specifies next state for a transition. 
<pattern> -> ( <pattern>* ) ;matches a list whose elements match 

;the successive specified patterns. 
-> <wordlist>     ;matches any word in the list. 
-> & ;matches any element. 
-> — ;matches any subsequence. 
-> <form> ;matches value of <form>. 
-> <<classname>K »-matches anything that has or inherits 

;the class name as a feature. 
<wordlist> -> {,<rford> | ,<word>, <wordlist>} 
<act> -> (transmit <form>) .«transmit value of form as an output. 

-> (setr <registername> <form>) ;set register to value of form. 
-> (addr <registername> <form>) ;add the value of form to the 

;end of the list in the indicated register (assumed 
; initially NIL when the register has not been set) . 

-> (require <proposition>) ;abort path if proposition is false. 
-> (dec <flaglist>)        ;set indicated flags. 
-> (req <flagproposition>) ;abort path if proposition is false. 
-> (once <flag>) ;equivalent to (req (not <f lag>)) (dec <f lag>) . 

<flagproposition> -> <boolean combination of flag registers> 
<proposition> -> <form>    ;the proposition is false if the value 

;of the form is NIL. 
<form> -> !<registername>   ;returns contents of the register. 

-> '<liststructure>  ;returns a copy of a list structure 
;except that any expressions preceded by ! are 
;replaced by their value and any preceded 
;by (a have their value inserted as a sublist, 

-> !c  ;contentE of the current constituent register. 
-> !<liststructure>  ;returns value of list structure 

; interpreted as a functional expression. 
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A simple example, using the above conventions,  is the 

following grammar: 

(m (accepts q) 
(si (initial q) 

('a s2 (setr n 1))) 
(82 

(q S3 (setr n !(1 + 1c))) 
(J S3)) 

(S3 
(•b s4)) 

(s4 
(pop q In) )) 

This grammar parses a string of n a's followed by n b's and pops 

the number n. 

4.  Cascaded ATN's 

The advantages of having semantic and pragmatic information 

available at early stages of parsing natural language sentences 

have been demonstrated in a variety of systems.* Ways of achieving 

such close interaction between syntax and semantics have 

traditionally involved writing semantic interpretation rules in 1-1 

correspondence with phrase structure rules (e.g., Thompson [1963]), 

writing "semantic grammars" that integrate syntactic and semantic 

constraints in a single grammar (e.g., Burton [1976]), or writing 

ad hoc programs that combine such information in unformalized ways. 

There are some compensating disadvantages if the semantic domain is 
more complex than the syntactic one, but we will assume here that 
immediate semantic feedback is desired. 
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The first approach requires as many syntactic rules as semantic 

rules, and hence is not really much different from the semantic 

grammar approach (this is the conventional way of defining 

semantics of programming languages). The second approach has the 

tendency to miss generalities and its results do not automatically 

extend to new domains. It misses syntactic generalities, for 

example, by having to duplicate the syntactic information necessary 

to characterize the determiner structures of noun phrases for each 

of the different semantic kinds of noun phrase that can be 

accepted. Likewise, it tends to miss semantic generalizations by 

repeating the same semantic tests in various places in the grammar 

when a given semantic constituent can occur in various places in a 

sentence. The third approach, of course, may yield some level of 

operational system, but does not usually shed any light on how such 

interaction should be organized, and is difficult to extend. 

Rusty Bobrow's RUS parser [Bobrow, 1978] is the first parser 

to my knowledge to make a clean separation between syntactic and 

semantic specification while gaining the benefit of early and 

incremental semantic filtering and maintaining the factoring 

advantages of an ATN. It's operation can be characterized by a 

generalization of ATN grammars that I have called cascaded ATN's 

(CATN's). A cascade of ATN's provides a way to reduce having to 

say the same thing multiple times or in multiple places, while 
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providing efficiency comparable to a "semantic" grammar and at the 

same time maintaining a clean separation between syntactic and 

semantic levels of description. It is essentially a mechanism for 

permitting decompt.3ition of an ATN grammar into an assembly of 

cooperating ATN's, each with its own characteristic domain of 

responsibility. 

A CATN is essentially a sequence of ATN transducers with each 

successive machine taking input from the output of the previous 

one. Specifically, a CATN is a sequence of ordinary ATN's that 

include among the actions on their arcs an operation TRANSMIT, 

which transmits an element to the next machine in the sequence. 

The first machine in the cascade takes its input from the input 

sequence, and subsequent machines take their input from the 

TRANSMIT commands of the previous ones. The output of the final 

machine in the cascade is the output of the machine as a whole. 

The only feedback from later stages to earlier ones is a filtering 

function that causes paths of the nondeterministic computation to 

die if a later sta^e cannot accept the output of an earlier one. 

The conception of cascaded ATN's arose from observing the 

interaction between the lexical retrieval component and the 

"pragmatic" grammar of the HWIM speech understanding system [Woods 

et al., 1976]. The lexical retrieval component made use of a 

network ♦•.hat consumed successive phonemes from the output of an 
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acoustic phonetic recognizer and grouped them into words. Because 

of phonological effects across word boundaries, this network could 

consume several phonemes that were part of the transition into the 

next word before determining that a given word was possibly 

present. At certain points, it would return a found word together 

with a node in the network at which matching should begin to find 

the next word (essentially a state remembering how much of ehe next 

word has already been consumed due to the phonological word 

boundary effect) . This can be viewed as an ATN that consumes 

phonemes and transmits words as soon as its has enough evidence 

that the word is there. 

The lexical retrieval component of HWIM can thus be viewed as 

an ATN whose output drives another ATN. This led to the conception 

of a complete speech understanding system as a cascade of ATN's, 

one for acoustic phonetic recognition, one for lexical retrieval 

(word recognition), one for syntax jne for semantics, and one for 

subsequent discourse tracking. A predecessor of the RUS parser 

[Bobrow, 1978] was subsequently perceived to be an instance of a 

syntax/semantics cascade, since the structures that it was 

obtaining from the lexicon to filter the paths through the grammar 

could be viewed as ATN's. Hence, practical solutions to problems 

of combinatorics in two different problem areas have independently 

motivated computation structures that can be viewed as cascaded 
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ATN's. It remains to be seen how effectively cascades can be used 

to model acoustic phonetic recoanition or to track discourse 

structure, but the possibilities arc, *... .guing. 

4.1 Specification of a CATN Computation 

As with ordinary ATN's and other formal automata, the 

specification of the computation of a CATN will consist of the 

specification of an instantaneous "configuration" of the automaton 

and the specification of a transition function that computes 

possible successor configurations for any given configuration. 

Since CATN's are nondeterministic, a given configuration can in 

general have more than one successor configuration and may 

occasionally have no successor. One way to implement a parser for 

CATN's would be to explicitly mimic this formal specification by 

implementing the configurations as dt-a structures and writing a 

program to implement the transition function. Just as for ordinary 

ATN's, however, there are also many other ways to organize a 

parser, with various efficiency tradeoffs. 

A configuration of a CATN consists of a vector of state 

configurations of the successive machines, plus a pointer to the 

input string where -he first machine is about to take input. The 

transition function (nondeterministic) operates as follows: 
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1. A distinguished register C is set (possibly 
nondeterministically) to the next input element to be 
consumed and the pointer in the input string following C is 
computed. Then a stage counter k is set to 1. 

2. The state of the kth machine in the sequence is used to 
determine a set of arcs that may consume the current input 
(possibly following a sequence of JUMPS, PUSHes, and POPs 
to reach a consuming transition). 

3. Whenever a transmission operation TRANSMIT is executed by 
the stage k machine, the stage k+1 configuration is 
activated to process that input, and the stage k+1 
component of the configuration vector is updated 
accordingly. If the k+1 stage cannot accept the 
transmitted structure, the configuration is aborted. 

As for a conventional ATN, the format of the state 

configurations of the individual machines consist of a state name, 

a set of registers and contents, and a stack pointer (or its 

equivalent) .* Each element of a stack is a pair consisting of a 

PUSH arc and a set of register contents. Transitions within a 

single stage are the same as for ordinvAry ATN's. 

4.2 Uses of CATN's 

A good illustrative example of the use of cascaded ATN's for 

natur?x language understanding would be a three stage machine 

consisting of a first stage that performs lexical analysis, a 

second stage for syntactic analysis, and a third stage for semantic 

* For example. Barley's algorithm for context free grammars 
[Barley, 1968] replaces the stack pointer with a pointer to a 
place where the conf iguration(s) that caused the push can be 
found.  A similar technique can be used with ATN grammars. 
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analysis. The lexical stage ATN would consume letters from an 

input sequence and perform word identification, including 

inflectional analysis, decomposition of contractions, and 

aggregation of compound phrases, producing as its output a sequence 

of words with syntactic categories and feature values. This 

machine could also perform certain standard bottom-up, locally 

determined parsings such as constructing noun phrase structures for 

proper nouns and pronouns. Ambiguity in syntactic class, in word 

grouping, and in homographs within a syntactic class can all be 

taken care of by the non-determinism of this first stage machine 

(e.g., "saw" as a past tense of "see" vs present tense of "saw" can 

be treated by two different alternative outputs of this first stage 

machine) . 

This first stage machine is not likely to involve any 

recursion, unlike other stages of the machine, but does use its 

registers to perform a certain amount of buffering before deciding 

what to transmit to the next stage. Because machines such as this 

one will reach states where they have essentially finished with a 

particular construction and ars ready to begin a new one, a 

convenient action to have available on their arcs is one to reset 

all or a specified set of registers to their initial empty values 

again. Such register clearing is similar to that which happens on 

a push to a lower level, except that here the previous values need 
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not be saved. The use of a register clearing action thus has the 

desired effect without the expense of a push. 

The second stage machine in our example will perform the 

normal phrase grouping functions of a syntactic grammar and produce 

TRANSMIT commands when it has identified constituents that are 

serving specific syntactic roles. The third stage machine will 

consume such constituents and incorporate them into an incremental 

interpretation of the utterance (and may also produce differential 

likelihoods for alternative interpretations depending on the 

semantic and pragmatic consistency and plausibility of the partial 

interpretation). 

The advantage of having a separate stage for the semantic 

interpretation, in addition to providing a clean separation between 

syntactic and semantic levels of description and a more 

domain-independent syntactic level, is that during the computation, 

different partial semantic interpretations that have the same 

initial syntactic structure share the same sy cactic processing. 

In a single "semantic" ATN, such different semantic interpretation 

possibilities would have to make their own separate 

syntactic/semantic predictions with no sharing of the syntactic 

commonality between those predictions. Cascaded ATN'S avoid this 

while retaining the benefit of strong semantic constraint. 
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4.3 Benefits of CATNs 

The decomposition of a natural language analyzer into a 

cascade of ATN's gains a "factoring" advantage similar to that 

which ATN's themselves provide with respect to ordinary phrase 

structure grammars. Specifically, the cascading allows alternative 

configurations in the later stages of the cascade to share common 

processing in the earlier stages that would otherwise have to be 

done independently. That is, if several semantic hypotheses can 

use a certain kind of constituent at a given place, there need be 

only one syntactic process to recognize it.* 

Cascades also provide a simpler overall description of the 

acceptable input sequences than a single monolithic ATN that 

combined all of the information into a single network would give. 

That is, if any semantic level process can use a certain kind of 

constituent at a given place, then there need be only one place in 

the syntactic stage ATN that will recognize it.  Conversely, if 

* One might ask at this point whether there are situations in which 
one cannot tell what is present locally without "top-down" 
guidance from later stages. In fact, any ch later stage 
guidance can be implemented by semantic filtering of syntactic 
possibilities. For example, if there is a given semantic context 
that permits a constituent construction that is otherwise not 
legal, one can still put the recognition transitions for that 
construction into the syntactic ATN with an action on the first 
transition to check compatibility with later stage expectations 
(e.g., by transmitting a flag indicating that it is about to try 
to recognize this special construction). 
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there are several syntactic contexts in which a constituent filling 

a given semantic role can be found, there need be only one place in 

the semantic ATN to receive that role. (A single network covering 

the same facts would be expected to have a number of states on the 

order of the product, rather than the sum, of the numbers of states 

in the individual stages of the cascade.) 

An additional advantage provided by the factoring commonality 

introduced by the cascade is that the resulting localization of 

early stage activities in a single place provides a single place 

for a given linguistic fact to be learned, rather than independent 

versions of essentially the same fact having to be learned in 

different semantic contexts. Moreover, the separation of the 

stages of the cascade provides a decomposition of the overall 

problem into individually learnable skills. These facts may be of 

significance not only for theories of human language development 

and use, but also for computer systems that can be easily debugged 

and can contribute to their own acquisition of improved language 

skill. The above facts suggest that the traditional 

characterization of natural language in terms of the levels of 

phonemes, syllables, words, phrases, sentences, and higher level 

pragmatic constructs may be more deeply significant than just a 

convenience for scientific manipulation. 
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4.4 Parsing with CATN's 

Conceptually, each ATN in a cascade produces 

(nondeterministically) a sequence of inputs for the next stage, 

which the next stage then parses. One could implement a computer 

parsing algorithm for a cascade in several ways. For example, the 

individual components of a configuration could be incremented as 

described above, with the later stages advanced as soon as the 

earlier stages transmit something. Alternatively, the later stages 

could wait until the earlier stages have completed a path through 

the input sequence before they begin to process the output of the 

earlier stages. The latter approach has the advantage of not 

performing second stage analysis on a path that will eventually 

fail at the first stage. On the other hand, it will result in the 

first stage occasionally continuing to extend partial paths that 

could already be rejected at the second stage. 

In general, one can envisage an implementation in which the 

second stage can wait until the first stage has proceeded some 

distance past the current point before commencing its operations. 

This could either be done by having a fixed "lookahead" parameter 

which would always run the first stage some number of transmissions 

ahead of the second stage, or one could have a command that the 

first stage could execute when it considered its current path 

sufficiently likely to make it worthwhile for the second stage to 
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operate on it. In fact, to handle both of these cases, one could 

simply have the first stage buffer its information in registers 

until it is ready for the next stage to work on it and only then 

perform the transmissions. For the remainder of this paper, we 

will assume that this is done and that the next stage begins to 

operate as soon as its input is transmitted. 

As presented above, an instantaneous configuration of a CATN 

is essentially a vector of configurations (let us call them IC's) 

for the individual stages of tho cascade. However, since any two 

configuration vectors having the same IC in some component will 

perform the same computation for that component and will only 

differ when they transmit to a suosequent stage, a parsing 

implementation should merge such common components and only perform 

their processing once. This can be achieved by representing the 

set of instantaneous configurations of the CATN not simply as a set 

of IC vectors, but as a tree structure (TC) that merges the common 

initial parts of those vectors. That is, each vector representing 

an instantaneous configuration of the CATN will be represented by a 

path through the TC from root to leaf, with the successive nodes in 

the path being the successive IC's of the vector. It is 

straightforward to transform the transition function that computes 

successor configuration vectors from a given one into a transition 

function that computes successor TC's from a given TC. 
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The TC representation has the characteristic that as long as 

the common left parts of configuration vectors are merged, the 

computation of a given IC at some level k will be done only once. 

To fully capitalize on the factoring advantages of this 

representation, one would like to assure that the common initial 

parts of alternative configuration vectors remain merged. This 

happens automatically for alternative stage k+1 computations that 

stem from a common stage k configuration. However, it is possible 

for two distinct k stage configurations, which have gone their 

separate ways and accumulated their own trees of higher level 

configurations, to come again to essentially the same k-stage 

configuration via different paths. This can happen especially with 

lexical stage computations when one word is recognized and the 

parsing of the next word begins. To provide maximum factoring, it 

is thus necessary to check for such cases and merge subtrees when 

the IC's at their heads are found to be equivalent. 

When the k-stage network happens to be a finite state machine 

(i.e., makes no use of registers or recursion) the detection of a 

duplicate configuration is easy due to the simple equivalence test 

(i.e., sameness of state) . When it is a general ATN, the detection 

of the conditions for merging are somewhat more involved (due to 

the register contents), and the likelihood of such merging being 

possible tends to be less.  Hence for such stages the cost of 
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checking for duplication may not be worth the benefit. 

Interestingly, it appears that the early stages of phonetic, 

lexical, and simple phrase recognition do have essentially finite 

state transition networks, while those of the later stages, where 

such sharing is not as important or as likely, is more apt to 

require non-finite-state register activities. 

4.5 Comparison of Cascading with Recursion 

Some interesting questions arise when considering the nature 

of cascaded ATN's as automata. For example, since a number of 

activities that are normally done with recursion in ATN's and other 

phrase structure grammars can be done by separate stages of a 

cascade, one is led to wonder about the relationship between 

cascading and recursion. That is, instead of arcs of an ATN 

pushing for a constituent of a certain kind, occasionally a cascade 

can be set up to find constituents of that kind and transmit them 

to a later stage of the cascade as units. A particular example, 

which has occasionally been proposed informally, would be for an 

early stage processor to group the input words into basic noun 

phrases, verb groups, etc., and for a later stage to take such 

units as input. Clearly this is a task normally performed by 

recursion. One might then wonder whether cascading was just 

another form of recursion, or somehow equivalent to it. 
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It turns out that cascading is in some respects weaker than 

recursion, and in other respects it is more powerful. In the next 

section, I will give an example of a context free cascade that can 

recognize a language that cannot be recognized by a single context 

free ATN. Hence, cascading clearly increases the power of a basic 

ATN beyond that provided by recursion alone. On the other hand, 

one is considerably more constrained in the way he can use 

cascading when writing a grammar than he is in the use of 

recursion. For example, indefinitely deep recursion can be used to 

recognize noun phrases inside prepositional phrases inside noun 

phrases, etc. When setting up a cascade of two ATN's to perform 

such grouping, the earlier cascade cannot model this directly, but 

instead would have to recognize "elementary" noun phrases 

consisting of, say, determiner, adjectives, and head noun, and 

would use looping transitions to accept subsequent prepositional 

phrases and relative clauses. Moreover, this stage of the cascade 

could not content itself solely with the noun phrases, but would 

also have to transmit the other elements of the sentence 

(auxiliaries, verbs, adverbs, particles, ate.) so that the later 

stages of the cascade will have a chance to see them. That is, a 

stage of a cascade provides a level of description of the entire 

input sequence in terms of a sequence of units to be transmitted to 

a later stage of analysis. Hence it appears that cascading is a 

fundamentally different operation that interacts with recursion and 

overlaps some of its functions in interesting ways. 
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Another interesting comparison arises between cascaded ATN's 

and the kinds of transformations used in a transformational 

grammar. If one were to attempt to analyze a transformational 

grammar by successively applying its transformations in reverse to 

the surface string, one repeatedly performs a partitioning of the 

input into a sequence of units as described above. That is, in 

applying a reverse transformation to a syntax tree in the course of 

a reverse transformational analysis, the operation of matching the 

pattern description of the transformation to the syntax tree 

amounts to finding a level at which the syntax tree can be "cut" 

yielding a sequence of units matching the sequence of elements in 

the pattern of the rule. This is exactly the kind of partitioning 

of the input into units that is done by a stage of a cascaded ATN. 

Moreover, the result of the transformation is expressed by a 

"right-hand-side" of the transformational rule, which may reorder 

the input sequence into a slightly modified sequence, and may copy 

an element several times, modify it in certain restricted ways, or 

even delete it (under suitable restrictions) . In exactly the same 

way, a stage of a cascade can transmit the units that it has picked 

up in a different order than it found them, can duplicate a unit, 

drop a unit, insert a constant, and transmit units that are 

modified from the form in which they were recognized. In short, a 

stage of an ATN cascade can mirror the activity of any given 

transformational rule. 

I 
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However, transformational rules are normally considered to 

apply in a cycle governed by the number of levels of embedding of 

clauses in the sentence, so that the number of successive 

transformations applied can be unbounded. By contrast, in an ATN 

cascade, there are only a finite number of stages in the cascade. 

Moreover, successive transformations in a transformational grammar 

are free to discard everything that was learned about the structure 

of the input in the matching of the previous transformation and 

there is no constraint that the manner in which a subsequent 

transformation analyzes the result of the previous transformation 

bear any relationship to the level of description imposed on the 

input by that previous transformation. In an ATN cascade, there is 

an assumed sequence of progressive aggregation and higher level of 

description implied by the transduction of information to 

successive stages of the cascade, with each stage perceiving the 

input in the terms that it was described by the previous. Thus, 

the ATN cascade seems to impose additional constraints on the 

process of language recognition that ai .■ not imposed by an ordinary 

transformational grammar.* 

Experience with ATN grammars for natural language indicates 

that everything that a transformational grammar of natural language 

* These constraints tend to promote tEe efficiency öl the 
processing. See Woods [1970] for a discussion of some of the 
inherent inefficiencies of an ordinary transformational analysis. 
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does can be done with even a single ATN, so there does not appear 

to be any need for more than a finite number of stages of a 

cascade. On t^e other hand, the arguments presented here indicate 

that one may be able to obtain a simpler description of an overall 

set of facts with a cascade than with a single monolithic ATN. It 

is possible, therefore, that a cascade of ATN's corresponds to a 

more appropriate formal!zation of the underlying facts of language 

that gave rise to the original model of transformational grammar 

than does the conventional conception. 

4.6 A Simple Formal Example 

As a simple example of what a cascade of ATN's can do, I will 

give here a simple ATN cascade that without the use of registers 

can recognize the set of strings of the form n a's followed by n 

b's followed by n c's, for arbitrary n. This language is a 

traditional example of a language that is not contest free but is 

context sensitive. However, it does happen to be specifiable as 

the intersection of two context free languages. Capitalizing on 

this fact, it is possible to represent it by a cascade of two 

"context free" ATN's (i.e., ATN's which do not use registers to 

check constraints between different constituents). This cascade 

effectively computes the intersection of two ways of viewing the 

input. The two ATN's, whose structure is illustrated in figure 1, 

can be written as follows: 
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(ml   (accepts q) 
(si   (initial  p q) 

Ca  s2)) 
(s2 

(P S3) 
('b  s4   (transmit   'b)) 

(s3 
('b  s4   (transmit   'b)) 

(s4   (pop p) 
('c  s5   (transmit   'c))) 

(s5   (pop q) 
Cc s5   (transmit   'c) ))) 

(m2   (i    :epts  r) 
(s     (initial  r) 

Cb s2)) 
{s2 

(r  S3) 
Cc  s4)) 

(s3 
Cc  s4)) 

(s4   (pop r))) 

c trans c 

Fig.  1.    ATN Cascade for {aVcn: nM) 
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These two machines correspond to the grammars: 

q->pc*, p->ab, p->apb 
and 

r->bc, r->brc 

with augmentation such that the b's and c's accepted by the first 

grammar are passed through to be accepted by the second. The first 

stage checks that the number of a's and b's agree and accepts any 

number of c's, while the second stage requires that the b's and c's 

agree. 

4.7 Another Example - Syntax and Semantics 

Another, less trivial example is the use of an ATN cascade to 

represent syntactic and semantic knowledge sources of a language 

understanding system. We will give here a brief example 

illustrating a kind of cascading of syntactic and semantic 

knowledge similar to that done by R. Bobrow in his RUS parser 

[Bobrow, 1978]. A rough characterization of this parser is that as 

the syntactic component works its way through a noun phrase, it 

accumulates information about the determiner structure and initial 

premodifiers of the head noun until it encounters the head noun 

(i.e., takes a path corresponding ""o a hypothesis that it has found 

the head noun). At that point, it begins to transmit information 

to the semantic stage, starting with the head noun, and followed by 

the premodifiers of that noun. Then it continues to pick up post 

modifiers of the noun phrase, transmitting them to the semantic 
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stage as it encounters them, and finally, when it hypothesizes that 

the noun phrase is completed. It transmits the determiner 

information. 

In a similar way, in the parsing of a clause, the syntactic 

ATN can wait until it has encountered the main verb before 

transmitting that verb followed by its subject and any fronted 

adverbial modifiers. After that it can transmit subsequent post 

verbal elements as they are encountered, and finally transmit any 

governing modality information such as tense, aspect, and any 

governing negations. 

The example presented here, is a constructed one to illustrate 

the principle, and does not directly represent the analyses by the 

RUS grammar. The example implements a subset of the semantic rules 

of the airline flight schedules system of Woods [1967] , a 

predecessor of the LUNAR system [Woods et al.,1972]. I will give 

here only a fragment of the semantic stage ATN that understands 

designators (i.e., noun phrases). It assumes that the syntactic 

stage operates as outlined above and, in particular, that it 

transmits prepositional phrases by transmitting the preposition and 

then transmitting its object. It also assumes that the syntax 

stage transmits a signal QUANT when it has hypothesized the end of 

a noun phrase and is about to transmit the determiner and number 

information.  One could  alternatively transmit prepositional 
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phrases as single units to be tested for syntactic and semantic 

features.  I will assume that a pattern such as <flight> on a 

consuming arc is matched by a constituent that receives the 

indicated semantic marker (e.g., FLIGHT). 

(m2 (accepts designators) 
(dl (initial designator) 

(J 62   (setr vbl (getnewvar))) 
(d2 

('flight,'plane d/flight (setr head 'FLIGHT)) 
('jet d/flight (setr head 'FLIGHT)(addr mods '(JET !vbl))) 
('airline d/head (setr head 'AIRLINE)) 
('city,'town d/head (setr head 'CITY)) 
('airport,'place d/head (setr head 'MRPORT)) 
('time d/time) 
('fare d/fare) 
('owner,'operator d/owner)) 

(d/owner 
('of d/owner-of)) 

(d/owner-of 
(<flight> d/head (addr quants (getquant !c)) 

(setr head '(OWNER !c)))) 
(d/fare 

('(mod first-class),'(mod coach),'(mod stand by) d/fare 
(require (not class)) 
(setr class .' c) ) 

('(mod one-way),'(mod round-trip) d/fare 
(require (not type)) 
(setr type !c))) 

('from d/fare-from (require (not from))) 
('to d/fare-to (require (not to))) 
(J d/head (require class type from to) 

(setr head '(FARE Ifrom !to Itype !class))) 
(d/fare-from 

(<place> d/fare (addr quants (getquant !c)) (setr from !c))) 
(d/fare-to 

(<place> d/fare (addr quants (gfzquant !c)) (setr to !c))) 
(d/time 

('(mod departure) d/time (require (not op)) (setr op 'DTIME)) 
('(mod arrival) d/time (require (not op)) (setr op 'ATIME)) 
('of d/time-of (require (not flight))) 
('in,'at  d/time-prep   (require   (eq op   'ATIME))) 
('from d/time-prep (require (eq op 'DTIME))) 
(J d/head (require op flight place) (setr head ' (!op ! flight ! c)) 

(*e.g., (setr head ' (ATIME AA-57 CHICAGO))))) 
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(d/time-of 
(<flight> d/tirae (addr quants (getquant Ic)) (setr flight !c) )) 

(d/time-prep 
(<place> d/time (addr quants (getquant !c)) (setr place 1c))) 

(d/head 
CQUrtNT d/quant   (setr  mod   ! (packmods) ) )) 

(d/flight 
('(mod  non-stop)   d/non-stop-flight) 
('from d/flight-from   (require   (not  from))) 
('to d/flight-to   (require   (not   to))) 
('(mod  first-class),'(mod  coach),'(mod  jet-coach)   d/fliyht 

(once  class)    (addr mods   '(SERVCLASS   !vbl   !c))) 
C^mod  jet)   d/flight   (addr mods  '(JET  !vbl))) 
('(mod propeller)   d/flight   (once  equip) 

(addr mods   '(NOT   (JET  Ivbl)))) 
(J d/flight   (once  connect)    (require  from  to) 

(addr  mods   '(CONNECT   !vbl   !(sem  from)    !(sem  to)))) 
('QUANT d/quant   (setr  mod   !(packmods)))) 

(d/flight-from 
(<place>  d/flight 

(addr   quants   (getquant   !c)) 
(setr   from   !c)) 

(d/flight-to 
(<place> d/flight 

(addr quants (getquant !c)) 
(setr to !c))) 

(d/quant 
('some,'a,'any,'NIL d/some) 
('each,'every d/each) 
Call d/all) 
( "not d/not) 
('the d/the) 
('this,'that d/this) 
('which,'what d/what) 
(<integer> d/integer)) 

(d/some 
('sg,'pl d/end 

(setr quant '(FOR SOME !vbl / Ihead : !mod ; DLT)))) 
(d/each 

('sg d/universal)) 
(d/all 

( 'pi d/universal) ) 
(d/universal 
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(J d/end (setr quant '(FOR EVERY Ivbl / Ihead : Imod ; DLT)))) 
(d/not 

('some d/not-some) 
('every d/not-every) 
Call  d/not-all)) 

(d/not-some 
('sg,'pl  d/end 

(setr quant '(NOT (FOR SOME !vbl / Ihead : !mod ; DLT))))) 
(d/not-every 

('sg d/not-universal)) 
(d/not-all 

('pl d/not-universal)) 
(d/not-universal 

(J d/end 
(etr quant '(NOT (FOR EVERY !vbl / Ihead : !mod ; DLT))))) 

(d/the 
('sg d/end (setr quant ' (FOR THE !vbl / Ihead : ! mod ; DLT))) 
( 'pl d/end (setr quant ' (FOR EVERY !vbl / Ihead : !mod ; DLT)) ) ) 

(d/this 
('sg d/end (setr quant '(FOR THE !vbl/ 'head : Imod ; DLT)))) 

(d/what 
(' sg d/end (seti quant 

' (FOR THE Ivbl / 'head : (AND !mod DLT) ; (PRINTOUT !vbl)))) 
('pl d/end (setr quant 

' (FOR EVERY !vbl / Ihead : (AND !mod DLT) ; (PRINTOUT !vbl) )))) 
(d/integer 

('sg,'pl d/end (setr quant 
'(FOR !integer MANY Ivbl / Ihead : Imod ; DLT)))) 

(d/end 
(pop <depignator> (sem-quant Iquants Iquant Ivbl)))) 

In the above fragment grammar, the state dl gets a variable 

name to use for the recognized designator, the state d2 dispatches 

on the head noun of the designator phrase to various states that 

recognize modifiers that are particular to the head. Eventually 

the path for each such head will lead to the state d/quant, where 

the determiner and number information is picked up to build the 

quantifier that governs this designator.  This transition is 
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triggered by the transmission of the flag QUANT from the syntax 

stage, signalling that the noun phrase is complete and the 

determiner information is coming. Notice how the quantification 

information that is common to most designators is shared. 

The transitions that follow d/quant implement most of the 

d-rules in Woods [1967], which is itself a subset of the d-rules of 

the LUNAR system [Woods, et al,, 1972; Woods, 1978b]. The 

function sem-quant is a function that performs the sem-quant pair 

manipulations described in Woods [1978b]. These manipulations 

usually embed the quantifier just constructed (Iquant) into the 

quantifier nest accumulated from below (Iquants) to form a 

quantifier nest to be passed up to a higher clause. They then 

return the variable name (ivbl) as the "sem" to be inserted into an 

argument position in the higher structure. The function getquant, 

here, is a function that extracts the quant from a structure that 

has been passed up from below and is used to accumulate the 

quantifier nest (quants) from subordinate designators that should 

dominate the quantifier of the designator being interpreted. The 

function packmods examines the contents of the register mods and 

returns an AND of the mods if there are several, a single mod if 

there is only one, and T if there are none. 
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5.  KLONE Networks as Transition Networks 

As mentioned previously, an ATN as an abstract automaton is 

characterized by its set of states and rules of transition, and not 

necessarily by a particular surface syntax for specifying those 

states and transitions. In many situations, such as the semantic 

stage ATN above, because of regularities in the behavior of classes 

of states and transitions, it is attractive to develop a surface 

notation in which more of the state transition behavior is 

implicit, so that a grammar designer need not explicitly indicate 

transition behavior that is highly regular. This is especially 

true for grammar segments that are intended to pick up constituents 

that can occur in relatively arbitrary order, in this section, I 

will show hew KLONE concepts can be interpreted as ATN's and 

thereby provide a syntax that promotes sharing of regular behavior. 

ATN's provide two ways of dealing with unordered constituents. 

One is to construct a separate state for each of the situations 

that could occur in the process of accumulating those constituents, 

and the other is to use a single state with looping transitions to 

pick up each constituent while using the registers to keep track of 

which constituents have been found. The former results in fast 

operation at execution time, but a potentially combinatorial 

increase in the number of states that are explicitly enumerated at 

compile time. The latter results in a more compact grammar, with 
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fewer states enumerated at compile time, but with additional 

computation performed at parse time to determine which arcs are 

possible as a function of information accumulated in the registers. 

The use of flag registers and actions such as DEC, REQ, and 

ONCE to characterize such behavior permits a grammar designer to 

develop the more compact form of grammar representation, while 

permitting a compiler that reads in a grammar to make either 

decision about the actual implementation (i.e., it can construct a 

separate state for all realizable combinations of state and flag 

registers, or it can construct a configuration in which state and 

flag registers are distinct components, with fast tests to filter 

the arcs leaving a state according to their flag requirements). 

Hence, the self-looping realization with special flag registers 

appears to provide the level of representation that a grammar 

designer should look at and think in terms of, while leaving 

questions of implementation up to a later compiler. 

The above situation is a lot like the situation of modeling a 

physical device such as an elevator as a finite state machine. One 

can think of an elevator as being modeled by a state determined by 

the floors that have made requests (for each direction), where the 

car is, what direction it is travelling, and whether the doors are 

open. However, one does not want to enumerate all combinations of 

these variables since the behavior exhibited is regular and can be 
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componentially represented. Nevertheless, thinking of such a 

componential representation as an abbreviatory specification of a 

finite state machine is a useful way to characterize what the 

representation means and how the elevator's behavior is being 

modeled. In a similar way, ATN's can be used to understand systems 

of grammar rules whose notational structure specifies transition 

behavior componentially. 

Given the above perspective, it useful to think of the 

concepts in a KLONE inheritance network as a syntactic abbreviatory 

device for an ATN. In particular, we can take the following view. 

A Concept node will correspond to a state like d/fare above. Each 

Role of the Concept (either directly present or inherited) will 

correspond to a loop transition that sets a register corresponding 

to that Role. If the Role has a number facet =1 then the setting 

is done with setr. If the Role has a number facet >= 0 then the 

setting is done with addr. Popping is governed by an implicit pop 

transition which has requirements that each Role with a necessary 

modality facet bo filled. The constituent popped will have a 

syntactic category identical with the concept node name. 

From this perspective, the d/fare state in the above example 

would have an equivalent KLONE Concept: 
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(fare) 
has Roles: 

head  'fare necessary «1 
from <place>  necessary =1 
to  <place>  necessary =1 
type  (or 'one-way 'round-trip) necessary =1 
class (or 'coach 'first-class 'jet-coach) necessary =1 

where the name of the Concept is "fare", the Roles are named 

"head", "from", "to", "type", and "class", with value restrictions 

and modalities as indicated. 

The only thing missing from this specification that is present 

in  the above ATN fragment  is  the characterization of  the 

transformation that is to take place to construct the structure 

that is popped.  That is, the above Concept characterizes in some 

sense the surface structure that the ATN would have recognized - 

what Roles were filled and what relationships they had to each 

other  - but  does  not  indicate,  as  the ATN could do,  a 

transformation of this surface structure into an underlying 

semantic representation.  This can be done in the KLONE formalism 

by means of an "interp cable" (see Woods [1978a]). An interp cable 

points to another KLONE concept and maps Roles from the source 

Concept into corresponding Roles (perhaps several levels deep) in 

the destination Concept.  This corresponds to the form on the pop 

arc of an ATN that indicates how the structure to be returned is to 

be built up.  Thus, the interp cables in the KLONE nets correspond 

in some sense to the pop transitions of the ATN. 
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5.1 Inheritance 

The major advantage of going from a conventional ATN notation 

to a KLONE notation for the semantic interpretation stage of an ATN 

cascade comes from the introduction of the notion of inheritance 

that results. That is, it is possible in the KLONE notation to 

have several different levels of description of a structure, while 

sharing common information among them. Thus, for example, when a 

semantic stage transition network has consumed a head noun "man", 

it would like to inherit from the Concept <person> the arcs that 

accept modifiers that are unique to people and from the Concept 

<physical object> those modifiers that apply to physical objects in 

general. The KLONE network notation, with its explicit inheritance 

of Roles from higher Concepts, provides exactly the sort of 

structure that is needed Moreover, the explicit linking of Roles 

as differentiations or restrictions of higher Roles permits sharing 

of certain actions that are regularly performed on many different 

arcs (e.g., the " (addr quants (getquant !c))" action that occurs on 

every arc that consumes a subordinate that might generate 

quantifiers). 

The use of inheritance networks to specify ATN's as described 

here appears to be an attractive way to organize complex "grammars" 

with extensive componential sharing. However, at least in its 

present  state of  formalization,  KLONE  structures appear  to 
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characterize only a subset of the class of possible ATN's and do 

not seem to be a universal subset. Specifically, the description 

above gives a characterization of the kinds of things that are done 

in the example of d/fare where the arcs are essentially consuming 

successive constituents of a single structure. However, the 

self-looping structure of this particular example is not typical of 

the transition structure of ATN's in general. When the result of a 

transition is to shift the ATN to a new state rather than to return 

to the original state with one more slot filled, the corresponding 

operation in a KLONE structure is not obvious. One might possibly 

achieve it by adding some form of augmentation to the Role nodes in 

KLONE to indicate the state to which the transition should go, but 

in general, this would depend on the actual node at which the Role 

was inherited and perhaps the state of filling of the other Roles. 

The above problem appears to be a general difficulty for 

adding mechanisms of inheritance to ATN grammars for other than 

self-loop transitions. For example, in the LUNAR parser, a 

mechanism of "active" LEXARCS in a dictionary entry permitted 

specified words to add arcs to the current state of the grammar, 

thus capturing the regularities of words such as "and" and "or", 

wuose effect depended more on the word than on the state of the 

grammar. However, here also, one faced the problem of determining 

to what state the inserted arc should make its transition.  In 
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general, this requires a facility for asking what the current state 

is and computing an appropriate destination state from it. In 

actuality, the LEXARC feature was only used in LUNAR to invoke a 

special SYSCONJ arc for conjunctions and this arc behaved 

essentially like a very complicated self-loop. 

6.  Generalized Transition Networks 

The above interpretation of KLONE nets as ATN's is one way of 

dealing with constituents whose relative order of occurrence is not 

critical. In those cases where relative order is important, a 

KLONE net Concept can explicitly indicate the ordering constriint 

as a Structural Description associated with those constituents. 

Thus, the KLONE net formalization appv. rs to be able to deal with 

the accumulation of constituents of a concept with arbitrary 

degrees of constrained order. However, even in the above example, 

the constituents were still considered in a unique order that was 

determined by the order of their transmission from the earlier 

stage ATN. A more general notion of transition network grammar, 

which I will call a "generalized transition network" (GTN) removes 

this limitation and generalizes the hypothesis factoring advantages 

of ATN grammars to automata that parse arbitrarily structured 

collections of input. 
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The idea of a GTN stems from the following ooservation: In an 

ATN, the set of transitions leaving a given state of the network 

does double duty - both specifying the alternative possible next 

stL es that one can go to as a result of measuring additional 

information a'xjut the input utterance, and also specifying 

implicitly that the measurement is tc be made immediately to the 

right of the ptevious measurement in the input string. Thus, in 

following a sequence of arcs through an ATN grammar, one is both 

following the sequence of te^ts and hypothesis refinements that go 

O" in the process of recognition and also following the 

left-to-right sequence of constituents in the input sentence. For 

many potential situation recognition applications, unlike for 

sentences the input is not simply a 1 near sequence of symbols. 

In such cases, the ATN's characterization of a sequence of 

information gathering accivitier is still desirable even though the 

idea of a left-to-right sequence of constituents does not make 

sense. 

A GTN provides the appropriate automaton for such applications 

by keeping the general state transition structure of an ATN, but 

removing the implicit, assumptions about the kind and location of 

the information gathering operations that result in a transition. 

When following a sequence of arcs through a GTN, one will still be 

following a sequence of hypothesis refinement operations, but there 
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will no longer by any implicit left-to-right assumptions about the 

successive measurements. Rather, explicit instructions on the arcs 

will indicate how successive measurements relate to previous ones. 

We will assume the structures being recognized satisfy a 

generalized constituent structure constraint; they consist of 

structural assemblies of constituents of specified types stanaing 

in specified relationships to each other, with each constituent 

type either a specified elementary constituent type or itself 

characterized as a structured assembly of other constituents. Note 

that this is exactly the class of structures that can be 

characterized by KLONE Concepts. 

In a GTN, information about whether successively acquired 

pieces of information are right/left, above/below each other, etc. 

will be explicitly indicated by operations on the arcs of the 

network. We will assume that the input elements of information are 

associated with "addresses" in some systematic indexing structure 

such as left-to-right word order, two-dimensional retinal position, 

position of a sentence in an ongoing dialog, time index of a 

portion of a continuous speech signal, node position in an 

arbitrary graph structure, etc., and that there are operations 

available for testing relative positions of constituents in this 

structure. Moreover, we may require specific accessing functions 

that, given a position in the addressing structure, can access 
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related positions or scan in specified "directions" from the 

specified position. A GTN which actively uses such accessing 

functions to explore its input will be referred to as an "active" 

parser, while one that responds to an input sequence of perceptions 

that is determined by an external agent will be called "passive". 

In either case, an input element will consist of a pairing of an 

elementary constituent with the positional address of that element 

in the indexing space. 

Formally, one can specify a GTN by the following components: 

1. A perceptual domain - the space of possible input 
structures to which the GTN parser will be applied. Examples 
include strings of symbols from a finite vocabulary (as in 
traditional formal language theory), two-dimensional arrays of 
light intensities or hue descriptors (as in image understanding) , 
sequences of sentences paired with speakers and unordered 
collections of facts and beliefs (for dialog understanding), and 
continuously varying time functions over a finite time interval 
(e.g., energy, fundamental frequency, and formant positions for a 
speech signal) . Individual perceptions from a perceptual domain 
will be assumed to be composed of "elements" standing in some 
relationship to each other. 

The perceptual domain will be assumed to have an associated 
indexing space, with respect to which elements of a perception can 
be "located" on a "perceptual field". Examples of indexing spaces 
are serial position of elements in a string, coordinates of 
positions in a two-dimensional (or n-dimensional) array, time 
points and time intervals in continuous signals, and node names in 
arbitrary gi.aph structures. 

2. A set of probing operations or measurements that can be 
used on an arc to indicate the conditions under which a transition 
can be made. In general, these will permit a probe to be made at 
any point in the indexing space. A probing operation will be 
assui.ied to set a focus pointer to ehe location in the indexing 
space where the measurement was made, and subsequent probes can 
take this focus pointer as a point of departure. Different probing 
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operations may make measurements at the same location, leaving the 
focus unchanged, may shift the focus by a specified amount in a 
specified direction and make a measurement there, or may scan from 
the current focus in a specified "direccion" (or by some other 
specification of a trajectory of successive focus locations) until 
some measurement predicate is satisfied (returning the value of 
that measurement and leaving the focus set at the point where the 
measurement occurred). 

3. A structural space in which the descriptions of parsed or 
recognized inputs will be constructed, 

4. A set of constituent types that can be recognized. 

5. A distinguished top-level constituent type, specifying the 
kinds of constituents that can be taken as a characterization of 
the entire perceptual complex being parsed. 

6. A set of state names characterizing the possible states of 
the (nondeterministic) automaton in the course of parsing. 

7. An initial state function, assigning one or more initial 
states to each constituent type, characterizing the states which 
can begin the knowledge acquisition process for a constituent of 
that type. Note that a given state may be an initial state of 
several different constituent types - this is useful when two 
different constituent types have a significant overlap of initial 
measurements (whether or not they have any actual overlap in 
constituent membership) . 

8. A final state function, assigning one or more final states 
to each constituent type, characterizing the states of the 
automaton at which complete recognition of a constituent of that 
type could be signaled. Note again, that a given state could be a 
final state for several constituent types - this would occur when 
two or more constituent types had possible common members. 

9. A set of arcs connecting pairs of states, consisting of 
one of the following types: 

PROBE Measurement operation>, an arc that enables a transition 
if the indicated measurement operation returns a non-failure result 
and sets the focus to the location of that measurement. 

JUMP, an arc that enables a transition from one state to another 
without a probing operation, although computations can be done by 
the transition and conditions on the arc may block it. 
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ACCEPT Constituent type> <location constraints>, an arc that 
enables a transition when a constituent of the indicated type has 
been found satisfying the indicated location constraints. (In 
certain "top-down" parsing algorithms, the location constraints may 
be used to actively initiate the initial states for the desired 
constituent with appropriate focus locations. In other parsing 
algorithms, they are used only as filtering constraints on 
constituents that are independently found "bottom up".) 

FOCUS <focus specification^ an arc that enables the focus to be 
relocated - e.g., to a location that has been saved in a register. 

10. A set of registers that can hold the intermediate results 
of computations and the measurements that have been accumulated by 
a sequence of transitions. Registers can contain arbitrary 
elements from the structural space (which should include the 
structural descriptions of elements from the perceptual domain) and 
can also hold elements from the indexing space (in order to 
remember previous focus positions for later use). 

11. A set of structure manipulation operations that can be 
used to set registers to the value of the current constituent (i.e. 
the constituent that enabled the current transition) , the value of 
the current focus, the value of another register, a structural 
combination of the contents of other registers, or a specified 
constant. 

12. A set of transition augments that characterize associated 
conditions and actions that must be satisfied (or performed) in 
order to take a given transition. These will include register and 
flag setting operations, a "require" action that blocks the 
transition unless specified conditions are satisfied, and a "cover" 
action that specifies that a given element (or region) of the input 
is to be considered covered or consumed by this transition. (One 
of the requirements for a complete parsing is that tne entire input 
be "covered", analogous to the requirement in parsing a sequence of 
symbols that the end of the sequence must be reached.) This 
formulation of covering as an independent operation that may or may 
not be performed by an arc permits arcs to look at regions of the 
input beyond the boundaries of the region that they are attempting 
to parse without thereby asserting that the pieces of evidence that 
they have considered in this way have been fully accounted for. 
This situation is analogous to the use of lookahead in ordinary 
ATN's and other sequential parsers. We assume that ACCEPT arcs 
automatically cover all of the input covered by the constituent 
they accept. 
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13. A completion condition for each state that can be a final 
state of a constituent. The completion condition characterizes 
conditions on the register contents in order for a complete 
instance of that constituent to be recognized. Note that a given 
state will have completion conditions for each constituent type for 
which it is a final state. 

14. A construction function for each constituent type that 
will construct a structural representation of a parsed constituent 
from the contents of the registers when a complete constituent has 
been recognized. 

An ordinary ATN is a GTN whose perceptual domain is strings of 

words from a vocabulary, whose probing and measuring operations are 

the operations of CAT and WRD arcs that determine whether the next 

input word is satisfactory, and whose structural space is the space 

of tree or list structures. Constituent types are the phrase types 

recognized, and states, arcs, and transition augments are the 

states, arcs, and the conditions and actions of the ATN. The CAT 

and WRr arcs of the ATN are PROBE arcs with the appropriate 

measurement operations, and they automatically cover the input that 

they consume and move the focus beyond it. PUSH arcs are ACCEPT 

arcs and their location constraints are temporal adjacency to the 

focus. The focus in this case is simply the current position 

indicator in the input string. 

A more interesting example of a GTN would be a transition 

network to understand visual images on a two-dimensional input 

field.  In such an application, the coordinates of the indexing 
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space could include positional information on the orientation of 

the head and the eye, as well as position on the retina, and 

probing measurements would include eye movement and head movement 

as possible operations. The trajectories for such probes could be 

determined by global measurements in the retinal field, including 

detection of "interesting" events by peripheral vision, and such 

probing may involve scanning in a given direction until an event of 

a certain kind is found, rather then the expectation of an 

immediately adjacent probe as is customary in sentence recognition. 

Another interesting example would be a "middle-out" parser for 

speech understanding that probes for words at stressed syllables 

and other prosodically marked locations and works out from such 

positions to fill in the gaps. Likewise, a GTN to perform the 

acoustic phonetic analysis of the input waveform would be an 

interesting application because of its continuous perceptual 

domain, as would applications to tactile understanding and spatial 

exploration. 

6.1 Observations 

Although the GTN is at this point merely an abstract, 

formulation of a generalization of the essential hypothesis 

factoring techniques of ATN grammars, it appears to be a very 

attractive framework for a variety of perceptual situations.  For 
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example, the control of the combinatoric possibilities of explicit 

hypothesis enumeration is an attractive feature for the analysis of 

visual scenes. In this connection, it is interesting to note that 

an observed characteristic of human visual processing would be 

explained by the use of a GTN for visual scene interpretation. 

Specifically, the observation that there appears to be a 

characteristic signature of eye movements for recognizing a given 

scene on separate presentations (at lease in laboratory situations 

[Noton & Stark, 1971]) would be predicted. That is, if visual 

scene recognition were governed by a GTN as outlined above, then 

one would expect that attributes of the scene would govern the 

sequence of probes performed on the input in order to recognize it, 

and that replication of the input stimuli would replicate this 

sequence. (One would also expect changes in situation involving 

such things as a priori expectations and peripheral vision would 

alter the selection of probes, so that this characteristic 

signature might disappear outside of a controlled environment.) 

7.  Conclusions 

In Woods [1977, 1978c; Woods & Brachman, 1978], I discussed 

the general principle of hypothesis "factoring" - i.e., the 

coalescing of common parts of alternative hypotheses in such a way 

that an incremental hypothesis development and search algorithm 

does not need to individuate and consider separate hypotheses until 
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sufficient information is present to make different predictions in 

the different cases. The most common example of factoring is the 

well-known device called "decision trees" in which a cascade of 

questions at nodes of a tree leads eventually to selection of a 

particular "leaf" of the tree without explicit comparison to each 

of the individual leaves. Tf the tree is balanced, then this leads 

to the selection of the desired individual leaf in log(n) tests 

rather than n tests, where n is the number of leaves of the tree. 

Another example of factoring is the mechanism in ATN grammars 

whereby common parts of different phrase structure rules are 

merged, thereby saving the redundant processing of common parts of 

alternative hypotheses. 

One can think of an ATN as a generalization of the notion of 

decision tree to permit recursion, looping, register augmentation^ 

and recombination of paths. In this paper, I have discussed some 

families of automata that are variations or generalizations of 

ATN's and which provide similar hypothesis factoring capabilities. 

These include ATN cascades (CATN's), which permit a decomposition 

of complex language understanding behavior into a sequence of 

cooperating ATN's with separate domains of responsibility; KLONE 

networks, which can be interpreted as a kind of ATN that permits 

capturing grammar regularities through inheritance and a natural 

specification of relatively unordered constituents; and generalized 
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ATN's (GTN's), which remove the implicit assumptions of linear 

sequence of inputs that characterizes ordinary ATN's. 

A GTN has a structure similar to an ATN in terms of its 

appearance and flow of control, except that information is accessed 

in response to explicit probing operations in the grammar rather 

than coming from an implicit "next symbol" operation. The states 

in the GTN correspond to states of knowledge, and the sequence of 

transitions leading to a state correspond to the info, lation 

seeking operations that lead to that state of knowledge. 

The culmination of the development presented here would be a 

cascade of GTN's represented in some form of structured inheritance 

network, to permit sharing through inheritance and representations 

at varying levels of generality. Research is currently under way 

exploring the use of such automata for several stages of natural 

language understanding. Much work remains to be done to refine the 

notions of such automata and to assess their utilities. To this 

end, the presentation here may stimulate additional work along 

these lines. 

Of specific interest are two distinct notions of the concept 

of factoring that are beginning to emerge from such considerations. 

One, which I have called hypothesis factoring, provides a reduction 

through sharing in the number of distinct hypotheses that have to 
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be explicitly considered during parsing. The other, which I will 

call conceptual factoring, provides a reduction through sharing in 

the number of times or places that a given fact or rule needs to be 

represented in a long-term conceptual structure (e.g., the 

grammar). The former promotes efficiency of "run-time" parsing, 

while the latter promotes efficiency of grammar maintenance and 

learning. In many cases conceptual factoring promotes hypothesis 

factoring, but this is not necessarily always the case. 
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