
- ^5 Bolt Beranel
00
W5

(=5 Report No. 3963

Research in Natural Language Understanding
Quarterly Progress Report No. 4, 1 June 1978 to 31 August 1978

Annual Report, 1 September 1977 to 31 August 1978

O

D D C

„„,12 1319 ^\

c

I
1
1

Prepared for:
Advanced Research Projects Agency

This document W * ^ \^ ■
ior publiT re
distribulion is unlimited.

79 03 07 Hi jl:

r QJ __ __^ _t ^

^RESEARCH IN NATURAL LANGUAGE UNDERSTANDING •

y Technical Progress R4p«r,t,Jto. 4,/
Jfz:::-.

| 1 Juq* »?€/,— 31 Auguwt »78.

Annual Report

1 September 1977 - 31 August 1978

! //. - 3 9<£ c
ARPA Order No. 3414

Program Code No. 8D30

Name of Contractor:
Bolt Beranek and Newman Inc.

Effective Date of Contract:
1 September 1977

Amount of Contract
$712,572

S

C04tjLact....No.> N00014-77-C-0378

JZt tmUL it ii t - ^z Sy Con-Lr-arr fExpiracign-Dt1rg-: ^-~~
31 August 1979

Short Title of Work:
Naturalianguage Understanding

<7cn
Pr inc^gjafc^lnvestigator :

Dr.^Wi111am A./woods
(612) ■ *,**4-t*Mii*»36

^■ioor i
Gordon D. Goldstein

In.

*361 i p"

/// C7 S
/' ' 6yC

Sponsored by
Advanced Research Projects Agency

ARPA Order No. 3414

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by ONR under
Contract No. N00014-77-C-0378.

f7 / yj<6^
/

79 03 0 7
y 'J

tikr-'^ifwnrfrn*''^^ j^^^

I

Unclassified.
ItCUWTV CtA««riC*TIOW OF THI* PAOC (*»>•* OMa Bn(*r*0

REPORT DOCUMENTATION PAGE
I. nltofttNUMllft

BBN Report No. 3963
1. OOVT ACCIUMN VH

4. Jtrtt (mnd Submit)

RESEARCH IN NATURAL LANGUAGE UNDERSTANDING
Q.T.P.R. No. 4, 6/1/78 - 8/31/78

Annual Report, 9/1/77 - 8/31/78 .. ,
T. »UTKOdf»;

W.A. Woods and R.J. Brachman

\

> PERFORMINOOItOANIZATION NAME AND ADDRESS

Bolt Beranek and Newman Inc/
50 Moulton Street
rambridae. MA 02138

<). CONTROLLING OFFICE NAME AND AOOAESS

Office of Naval Research
Dept. of the Navy
Arlington. VA 22217

1«. MONITORING AGENCY NAME • AiJDRESV" <""•'•»(Inm ConlnlVnt Olllet)

READ mSTRUCTIONS
BEFORE COMPLETING FORM

1. RECIRlENT'l CATAl 00 NUMBER

S. TVFE OF REPORT A PERIOD COVERED

Quarterly Progress Report
Annual Report

• - PERFORMING ORO. REPORT NUMBER

Report No. 3963
1. CONTRACT OR GRANT NUMBERf«;

N00014-77-C-0378/

10. PROORAM ELEMENT. PROJECT, TASK
AREA ft WORK UNIT NUMBER«

II. REPORT DATE

31 August 1978
U NUMBER OF PACES

77
IB. SECJRITY CLASS, (ol Mt import)

Unclassified

1»«. DECLASSIFICATION/DOWNORADINO
SCHEDULE

16. DISTRIBUTION STATEMENT (til Ihlt Ftpotl)

Distribution of this document is unlimited. It
the Clearinghouse, Department of Commerce, for
public.

may be released to
sale to the general

17. DISTRIBUTION STATEMENT (ol Ih» mbmlrmel mtfnd Im Block 10, II olllmrtnl Inm Rmpart)

It. SUPPLEMENTARY NOTES

19. KEY WORDS fConflnu» on r*r«r«* ild* II nmcmmmary mnd Idmnllly 6r Mock num6«r;

Semantic networks, knowledge representation, cognitive science, artificial
intelligence, natural language understanding, natural language conceptual
structure, ATN granmars, natural language granmars, perceptual automata,
structured inheritance networks, KLONE, memory models, property inheritance
augmented transition networks, parsing, syntactic-semantic interactions.

20, ABSTRACT (Coniinum on rovorio tldt U nacooiarr an« Idttlllr hy Meek nuaibar;

.^This report contains an annual summary of BBN's ARPA-sponsored
natural language understanding project and two Technical Notes: "KLONE1s
Progress," by R.J. Brachman, and "Generalizations of ATN Grammars," by
W.A. Woods. The Annual summary includes a list of publications of the
project and an overview of the first year's work. The first Technical
Note focuses on the progress in the development of the KLONE knowledge
representation system, an implementation of Brachman's Structured
 ,L sont'd.

DD FORM
I JAN 71 1473 EDITION OF I NOV «I II OBSOLETE Unclassified,

•ECURITY CLAIIIF1CATION OF THIS PACE fWian Dala BnlaradJ

i^=^~i~!*^

Unclassified
MCUWITV CLMIiriOTlQN Of TMI« PAQK <OTIM Dm

20. Abstract (cont'd.)

^Inheritance Networks. The second describes some generalizations of
the notion of ATN grammar, including Cascaded ATN's (a sequence of
nondetermlnlstk ATN transducers with each successive ATN taking Its
Input from the output of the previous), Generalized Transition
Networks (a generalization of the notion of ATN to handle arbitrary
structured input rather than only linear strings), and an interpreta-
tion of KLONE networks as a kind of ATN with inheritance.

 um\m> «01 fPfiM Sift KTitrt«

"f^^^T:

Report No. 3963 Bolt Peranek and Newman Inc

TABLE OF CONTENTS

Annual Summary 1

KLONE's Progress 14

Generalizations of ATN Grammars 21
1. Introduction 21

2. Factoring in ATN' s and PSG's 24
3. Notation 30

4. Cascaded ATN's 32

4.1 Specification of a CATN Computation 36
4.2 Uses of CATN's 37
4.3 Benefits of CATN's 40
4.4 Parsing with CATN's 42
4.5 Comparison of Cascading with Recursion 45
4.6 A Simple Formal Example 49
4.7 Another Example - Syntax and Semantics 51

5. KLONE Networks as Transition Networks 57
5.1 Inheritance 61

6. Generalized Transition Networks 63
6.1 Observations 70

7. Conclusions 71

References ^^

■ iiiiiTri.m^
^_ :.-,■--,

Report No. 3963 Bolt Beranek and Newman Inc.

Annual Summary

W. A. Woods

During the past year, BBN's ARPA project on natural language

understanding has been pursuing a number of diverse problems, all

of which are major bottlenecks to significant advances in natural

language understanding by machine. These problems impose

significant limitations on the kinds of intelligent support for

complex decision making that can be gained from computerized

knowledge bases. The directions that we have been pursuing

include:

- representation of complex natural language concepts.

- representational structures that facilitate use of such
knowledge.

- algorithms for recognition of instances of complex
structured concepts.

- parsing algorithms for interfacing to such concept
recognition algorithms.

- the relationship between such parsing algorithms and the
recognition algorithms themselves.

- formal properties of parsing and situation recognition
algorithms.

- formal semantics and epistemological foundations of
knowledge representation structures.

- application of such structures and algorithms to
practical problems of command and control decision
support.

- concepts for parallel machine architectures to support
such applications.

- 1 -

mmMtä^^ämm

Report No. 3963 Bolt Beranek and Newman Inc.

In addition, we have continued to make advances in the

codification and formalization of i.ules of human use of natural

language for communication, most notably in the formalization of

evoked entities that become available for anaphoric reference in

discourse.

This work can be broken down into three major areas:

1. Knowledge Representation
2. Syntactic and Semantic Processing
3. Fast Symbolic Algorithms

Our activities in knowledge representation and its use for

situation recognition have centered around the refinement and use

of struct', red inheritance networks [Brachman, 1978a,b] for

representing complex concepts, ATN grammars [Woods, 197ßj for

parsing natural language sentences, and relationships between the

two. We have been gradually uncovering deep similarities between

the parsing functions of ATN grammars and the recognition and

understanding functions of a conceptual taxonomy expressed as a

structured inheritance network. (Some of this is described in more

detail in the Technical Notes in this report.)

During the past year, we have implemented a computerized

interpretation package for a particular version of structured

inheritance networks (KLONE), and have successfully used that

representation system to develop a taxonomy of kinds of syntactic

- 2 -

Report No. 3963 Bolt Beranek and Newman Inc.

structures as well of the concepts that they can signify. Further,

we have developed a method for representing the connections between

the two in the form of "interpretation cables" which can be used to

develop incremental semantic interpretations in the course of

parsing. We have also developed and refined a parsing system (RUS)

that provides close and efficient interaction between a general

syntactic processor and a semantic-pragmatic interpreter.

Experience with the RUS grammar, and its coupling to the KLONE

network taxonomies has reinforced an emerging understanding of the

utility of a kind of parsing automaton which I have called

"cascaded ATN's", a sequence of ATN transducers each of which takes

as input the output of the previous transducer. Some theoretical

insight into the computational advantages of such cascades has been

emerging, and several formal results on the computational power of

ATN grammars have been developed.

Also in the area of syntactic/semantic processing, we have:

- Completed an extensive theoretical study of mechanisms of
pronominal and anaphoric reference in English, culminating
in a Ph.D. thesis at Harvard university [Webber, 1978],
which appears likely to establish a paradigm for the
linguistic investigation of anaphora.

- Developed a new control strategy for ATN parsers which,
together with appropriate grammar structuring, results in
an "almost-deterministic" parsing strategy that combines
many of the best features of Marcus' deterministic pacser
[Marcus, 1978] and the above mentioned close-coupled ATN
parser/interpreter.

- 3

rto- to-Jmn „,

Report No. 3963 Bolt Beranek and Newman Inc.

Written a report on semantics and quantification in natural
language question answering, including a retrospective
analysis of the techniques of the LUNAR system and their
relative advantages and disadvantages. This study led to
an implementation of a powerful and general quantification
facility in the RUS system, and an investigation of new
types of quantifier representation using the Si-net
notation.

Developed some theoretical results on the power of ATN
parsers and the advantages of close-coupled systems of
parsing and interpretation.

In the area of fast symbolic algorithms, we have identified a

general problem of situation recognition as a problem of major

importance across many areas of artificial intelligence, including

parsing and interpreting natural language, interpretation of visual

scenes, monitoring for alerting conditions in large data bases,

rule selection in large systems of production rules, and special

case recognition in problem solving and mechanical inference

systems. We have been concentrating on developing potentially fast

algorithms and efficiency techniques for this problem, and have

identified and partially developed two major techniques:

- Hypothesis-Factoring, which operates to cut down
combinatoric enumeration, and

- Marker-Passing Algorithms, which facilitate the
exploitation of specialized parallel processing
architectures.

Specifically, we have:

- Developed techniques for minimizing the combinatorics of
hypothesis enumeration in ATN parsing, and

_ 4 _

ärwmrim

Report No. 3963 Bolt Beranek and Newntan Inc.

Developed an abstract parallel machine architecture and a
corresponding marker passing algorithm for semantic
interpretation of English sentences. Although this
algorithm is still under active development, an early
version of it has been documented in a quarterly report.

During the coming year, we plan to:

Continue our investigation of knowledge representation
issues - especially in the areas of plurality and sets,
mutual exclusion and exhaustiveness, temporal history and
change in large data bases, inheritance mechanisms, and
uses of meta knowledge.

Implement the anaphoric reference system described above
and integrate it with the RUS parsing system.

Assemble an integrated system to understand natural
language display manipulation instructions.

Continue to explore the close coupling between syntactic
and semantic processing - especially for resolving
ambiguity and vagueness.

Implement a facility for speech act interpretation and plan
recognition.

Continue the theoretical investigations of fast algorithms
for situation recognition and related processes.

Continue our investigation of parallel architectures and
algorithms for situation recognition in general, and for
natural language understanding in particular.

5 -

Report No. 3963 Bolt Beranek and Newman Inc.

Publications

During the past year, the following reports were published or

accepted for publication:

Senantics and Quantificatior
in Hatural Language Question Answering

W. A. Woods
BBN Report No. 3687

November 1977

This paper is concerned with the semantic interpretation of
natural English sentences by a computerized question-answering
system, and specifically with the problems of interpreting and
using quantification in such systems. These issues are presented
and discussed from the perspective of four different natural
language understanding systems with which the author has been
involved. The presentation includes the process of semantic

the nature and organization of semantic
the nature and organization of semantic

rules, a notation for representing semantic
(the meaning representation language), the

that notation, and the generation and scoping of
Also discussed are a variety of loose ends, open

interpretation,
interpretation,
interpretation
interpretations
semantics of
quantifiers.
questions, and directions for future research. Particular
attention is given to the interaction of syntactic, semantic (and
pragmatic) information.

On The Bpistecological Status of Senantic Networks

Ronald J. Brachman
BBN Report No. 3807*

April 1978

* To appear in Associative Networks - The Representation and Use of
Knowledge in Computers. Nicholas V. Findler, ed. New York:
Academic Press, 1978.

6 -

u™M~__..„Ä»

Report No. 3963 Bolt Beranek and N<wman Inc.

This paper examines in detail the history of a set of
network-structured formalisms for knowledge representation the
so-called, "semantic networks". Semantic nets were introduced
around 1966 as a representation for the concepts underlying English
words, and since then have become an increasingly popular type of
languace for representing concepts of a widely varying sort. While
these nets have for the most part retained their basic associative
nu_ure, their primitive representational elements have differed
significantly from one project to the next, These differences in
underlying primitives are symptomatic of deeper philosophical
disparities, and I discuss a set of five significantly different
"levels" at which networks can be understood. One of these levels,
the "epistemological", or "knowledge-structuring, level, has played
an important implicit part in all previous notations, and is here
made explicit in a way that allows a new type of network formalism
to be specified. This new type of formalism accounts precisely for
operations like individuation of description, internal concept
structure in terms of roles and interrelations between them, and
structured inheritance. In the final section of the paper, I
present a brief sketch of an example of a particular type of
formalism ("Structured Inheritance Networks") that was designed
expressly to treat concepts as formal representational objects.
This language, currently under development, is called "KLONE", and
it allows the explicit expression of epistemological level
relationships as network links.

A Formal Approach to Discourse Anaphora

Bonnie Lynn Webber
BBN Report No. 3761

May 1978

Extended natural, language communication between a person
engaged in solving a problem or seeking information and a machine
providing assistance requires the machine to be able to deal with
anaphoric language in a pc >picuous, transportable non-ad hoc way.
This report takes the view >;uat dealing with anaphoric language can
be decomposed into two complementary tasks: (1) identifying what a
text potentially makes available for anaphoric reference and (2)
constraining the candidate set of a jiven anaphoric expression down
to one possible choice. The second task has been called the
"anaphor resolution" problem and, to date, has stimulated much
research in psychology and artificial intelligence natural language
understanding.

- 7 -

Report No. 3963 Bolt Beranek and Newman Inc.

The focus of this report is the first task - that of
identifying what a text makes available for anaphoric reference and
how it does so. Evidence ".s given to back up two strong claims:

1. None of the three types of anaphoric expressions that I
have studied - definite anaphora, "one"-anaphora and
verb phrase deletion - can be understood in purely
linguistic terms. That is, none of them can be
explained without stepping out of the language into the
conceptual model each participant is synthesizing from
the discourse.

2. On the other hand, if a discourse participant does not
assign to each new utterance in the discourse a formal
representation in which, inter alia,

a. quantifiers are indicated, along with their scopes;
b. main clauses are distinguished from relative clauses

. id subordinate clauses;
c. clausal subjects are separated from clausal

predicates;

then s/he will not be able to identify all of what is
being made available for anaphoric reference.

Building on these claims, I show that there is an intimate
connection between such a formal sentential analysis and the
synthesis of . appropriate conceptual model of th- discourse. The
computational Tiplications of this research are discussed,
primarily in terms of possible implementations within current
levels of technology.

Description Formation and Discourse Model Synthesis

Bonnie Lynn Webber

July 1978

This paper starts from the point of view that a common
objective of discourse is to direct a listener in the construction
of a model of some particular or general situation. Its concern is
ho" the explicit data of the discourse provides material for ehe
mof »1 synthesis process. In particular, it shows how (1)
in- ^finite noun phrases are associated with the evocation of new
en..,,ties into the model ("discourse entities") and (2) how those

- 8 -

Report No. 3953 Bolt Beranek and Newman Inc

new discourse entities will initially be described. The claim is
that such an initial description is critical to both model
synthesis and anaphor resolution since it allows the listener to
reason appropriately about entities in order to assign them to
appropriate roles vis-a-vis his or her higher-level expectations.

Taxonomic Lattice structures for Situation Recognition

W.A. Woods

July 1978

This paper discusses issues in the representation of knowledge
for an intelligent computer assistant to a human decision maker. A
substantial portion of the knowledge base of such a system will
consist of rules of the form "if <situation description do
<action>", where sit'.ution descriptions are characterizations of
classes of situations that the machine could be in. A taxonomic
lattice is a structure that organizes such situation descriptions
into an inheritance structure that permits information to be stored
in its most general form and yet still be triggered by any
situation to which it applies. This lattice serves as a "coat
rack" upon which various pieces of advice may be hung, and is

the machine in order to find and activate advice that
the current situation. The process of situation
is similar to the process of parsing in that only as a
its recognition is a situation transformed from a

collection of unrelated events and conditions into a perception of
a structured concept. Two methods are discussed for efficient use
of a taxonomic lattice for situation recognition - factored
knowledge structures, which merge common parts of alternative
hypotheses, and mar kable classification structures, whose nodes
serve as rendezvous points where "footprints" from various
constituents can meet to detect coincidences.

accessed by
applies to
recognition
result of

- 9 -

Report No. 3963 Bolt Beranek and Newman Inc.

Research in Natural Language Understanding

Quarterly Technical Progress Report No. 1
1 September 1977 to 30 November 1977

TABLE OF CONTENTS

page
Introduction 1

1. Knowledge-Based Natural Language Understanding 4
1.1 The Role of a Knowledge Network for

an Intelligent Machine 4
1.2 Parsing Situations 8
1.3 The Process of Situation Recognition 9

1.3.1 Factored Knowledge Structures 12
1.3.2 Markable Classification Structures 18

1.4 The Structure of Concepts 21
1.5 The Need for Inheritance Structures 23
1.6 The Taxonomic Lattice 26
1.7 An Example 29
1.8 Conclusions 34

2. Structured Inheritance Networks 36
2.1 A Note on Notation 38
2.2 Node Types 43

2.2.1 Concept and Concept-node Types 43
2.2.2 Role- and SD-nodes 45

2.3 Eplink Types 45
2.3.1 Intra-concept-links 48

2.3.2 Intra-role-links 50
2.3.3 intra-sd-links 54
2.3.4 Abstraction Hierarchies and

Inter-concept-links 56
2.3.5 Inter-role-links 61
2.3.6 Inter-sd-links 63

2.4 SI-Net-1 Primitive Concepts 65
2.5 Meta-description and Procedural Attachment 68
2.6 The Individuation Process 73
2.7 Further Refinements 77

3. References 79

- 10 -

Report No. 3963 Bolt Beranek and Newman Inc,

Research in Natural Language Understanding

Quarterly Progress Report No. 2
1 December 1977 to 28 February 1978

TABLE OF CONTENTS

page
Introduction 1

Towards a Notion of Concept 2
1. The Notion of a Description 2
2. The Conception of an Object 6

Representing Interpretations as "Cables" 8

Marker Passing Algorithms 15
1. Virtual Structure-Building with Marks 18
2. The Interpretation Algorithm 20

References 28

Research in Natural Language Understanding

Quarterly Progress Report No. 3
1 March 1978 to 31 May 1978

TABLE OF CONTENTS

Introduction 1

Description Formation and Discourse Model Synthesis 2

1. Introduction 2
2. Indefinite Noun Phrases and Discourse Entities 6
3. Two Interesting Reference Problems 15

3.1 Parameterized Individuals 15
3.2 Disjunction 22

4. Conclusion 24

The RUS System 28
1. Introduction 28
2. Background 29

2.1 The LUNAR Approach 29
2.2 Semantic Grammars 31

- 11 -

Report No. 3963 Bolt Beranek and Newman Inc.

2.3 Initial Development of RUS
Incremental Parsing

3.1 Structural Descriptions
3.2 Incremental vs. Wholistic Processes
3.3 The Basic Operation of RUS
3.4 Illustration
Improvements to Increase Determinism

and General Efficiency

33
34
34
36
38
41

45

Related Reports;

A Structural Paradign for Representing Knowledge

R. J. Brachman
BBN Report No. 3605

May 1978

This report presents an associative network formalism for
representing conceptual knowledge. While many similar formalisms
have been developed since the introduction of the "semantic
network" in 1966, they have often suffered from inconsistent
interpretation of their links, lack of appropriate structure in
their nodes, and general expressive inadequacy. In this paper, we
take a detailed look at the history of these "semantic" nets and
begin to understand their inadequacies by examining closely what
their representational pieces have been intended to model. Based
on our analysis, we present a new type of network - the "Structured
Inheritance Network" (SI-NET) - designed to circumvent common
expressive shortcomings. We acknowledge "concepts" to be formal
representational objects and keep "epistemological" relationships
between formal objects distinct from conceptual relations between
the things that the formal objects represent. The notion of an
epistemologically explicit representation language is introduced to
account for this distinction, and Si-Nets are offered as a
particular candidate.

The Structured Inheritance formalism that we present takes a
concept of functional roles tied together by a structuring gestalt.
Generic concepts, describing potentially many individuals, have as
their parts generic "'dattr' descriptions", which capture
information about the functional role, number, criteriality, and
nature of potential role fillers and "structural conditions",
which express explicit relationships betwe^ the potential role
fillers, and give the functional roles their eanings. Individual

- 12 -

Report No. 3963 Bolt Beranek and Newman Inc

concepts have explicit binding structures ("Instantiated dattrs")
which indicate an individual's fillers for its roles: the
individual's roles are inherited from a generic concept, in terms
of which it is described. Details of the representation are
elaborated, including explicit role and role-filler inheritance
rules. The language is then applied to two task domains: 1) the
understanding of two-word nominal compounds (e.g., "computer
science", "arm chair", "hockey stick"), for which we present a
conceptual analysis that uses only two basic structuring techniques
to explain an extensive set of compound types; we also present a
new account of nominalization, based on structured inheritance; and
2) knowledge about a complex message-processing program that is
implemented on several ARPA Network hosts; we attempt to account
for the structure of objects in the "Hermes" program, its commands,
and the interaction of the commands and objects.

In addition to detailing these uses of the structural
paradigm, we review carefully its relationship to three other
current representation languages - KRL, FRL, and MDS. The surface
notation, underlying data structures, and deeper epistemological
import of each of these languages is examined and compared with the
others.

KLONE Reference Manual

R.J. Brachman
E. Ciccarelli
N. Greenfeld

M. Yonke

July 1978

KLONE is being developed to be an epistemologically-explicit
language for representing conceptual knowledge and structured
inheritance; this manual provides user documentation for the
current state of the INTERLISP implementation. Documented are:
types of KLONE entities and relationships; procedural and data
attachment; conceptual "meta-description" of KLONE entities;
implementation naming conventions; all user-accessible KLONE
primitives.

- 13 -

Report No. 3963 Bolt Beranek and Newman Inc.

KLONE's Progress

R.J. Brachman

This year was spent laying the foundation for the complete

natural language system that we plan to build in the seccnd year.

We concentrated on two major components - the parser and the

knowledge representation - working on them independently and

jointly. We designed the "abstract machines" for these two partis

of our system, implemented and tested those designs, designed and

implemented an interface to allow natural language information to

be projected into the representation system, and built some

experimental systems to help us get a better understanding of the

potential overall complexity of a complete system.

Our knowledge representation language, KLONE, has undergone

several cycles of revision during the course of the year. KLONE is

directly descended from work reported in [Brachman, 1978b], and

since its adoption into this project has become a sophisticated,

state-of-the-art representation system. There are still several

open issues to be resolved in the abstract design of the language,

but the current conception is virtually all implemented and usable.

The current implementation work consists of completing some more

recent design features, and finishing a complete set of "Structural

Description" (SD) manipulation functions. The system as described

- 14 -

■■■.

Report No. 3963 Bolt Beranek and Newman Inc.

in [Woods & Brachman, 1978] has been in use for about half of the

year .

Work on our abstract conception of KLONE continues at a lively

pace, although we believe that we are gradually obtaining a sense

of closure on many representation issues. Each round of

design/implementation/use will, of course, bring new information to

bear on the original design, but the number of unresolved issues is

definitely diminishing.

During the course of the year, we have come to a much clearer

understanding of inheritance in classificatory network structures.

We have begun to think of such relations between Concepts as

"Cables", which themselves have structure and can be talked about

(e.g., meta-described) . The Cable notion* helps to substantially

solidify one of the principal insights of [Brachman, 1978b] - that

there is no simple "ISA" link, but instead, an inheritance

connector must allow access to subparts of the description of the

Concept. Subpart connections between sub- and superConcepts are

not independent of the connections between the Concepts as wholes.

The inter-Role connections that make up the bulk of the Cable

have also become better understood, and we have re-implemented the

* Our cable metaphor comes more or less directly from the work of
Brian Smith [1978] .

- 15 -

Report No. 3963 Bolt Beranek and Newman Inc.

Role facet inheritance functions. The "Mods" primitive means that

the subRole is essentially overlaid on top of its superRole, with

only unmodified facets remaining visible. Thus, there is only one

Role to be considered as a Mods chain is descended - the subRole is

virtually the very same Role as the one it modifies. The "Diffs"

connector, on the other hand, indicates that a Role spawns

distinguishable subRoles. Each subRole inherits its name and other

applicable subparts from its parent, but is considered a "real"

Role unto itself. The more specific Role is in a sense subsumed by

its parent, but it is not indistinguishable from that parent. This

clearer understanding of the meaning of the role inheritance

primitives has made their implementation easier, and has also

served to facilitate the adjudication of putative conflicts in

situations of multiple inheritance.

The idea of a "Paralndividual", developed during the course of

this year, has also helped clarify the meaning of the SD's, and has

put us in a better position to solve the puzzle of recursive

descriptions in a declarative representation language. It has also

highlighted a strong similarity between SD's and Roles - the Value

Restriction of a Role is almost intcrpretable as a Paralndividual:

it has existence local to the Concept in which it appears, and its

value in each Individuator is contextually determined by that

Individuator. Parolndividuals have been implemented, and we are in

the midst of investigating their utility and meaning.

- 16 -

Hiääs^sssiäüu

Report No. 3963 Bolt Beranek and Newman Inc.

In the last quarter of this year, we produced a new proposal

for interpretive hooks (ihooks), a proposal for allowing SD's to

have names, a set of proposals regarding the representation of

quantification, and a cleaner separation between individuals and

descriptions. We also embarked on an investigation into the

explicit representation of descriptions of sets. On a larger

scale, we also designed and initially implemented an integrated

KLONE/parser system for understanding simple sentences about the

graphics domain.

As we began to make extensive use of he ihook facility for

attaching procedures, we found it deficient in a number of ways.

First, the simple 3EFORE-<procedure>/AFTER-<procedure> dichotomy

did not provide a rich enough set of invoking situations. We

needed some procedures to be invoked after KLSpecializeRole and

after KLEstablishAsSpecializer, for example. That is, we wanted to

activate an attached procedure upon the specialization of a Role,

regardless of which function produced the specialization. Thus, we

required a better taxonomy of invoking situations. Further,

"BEFORE" and "AFTER" were not quite right - the main intent of a

"BEFORE" hook is to allow a set of preconditions to be tested

before the procedure is actually invoked; and "AFTER" hooks have

two uses: as postcondition-checkers, so that an undesirable effect

of an attached procedure could be aborted; or as "consequent

- 17 -

Report No. 3963 Bolt Beranek and Newman Inc.

theorems" (a la PLANNER), such as "WHEN-FILLED". Finally, all

procedures from all parents were inherited indiscriminately - no

procedure from a parent Concept could be "turned off" in one of its

descendants.

This set of difficulties led us to redesign the ihook feature.

We decided that instead of two basic situation types, there should

be three: PRE-, POST-, and AFTER-. The first two will be invoked

right before and right after the main function body (of the

interpreter primitive), respectively, and will be treated as

predicates. If a "PRE-" or "POST-" condition fails, then the

interpreter primitive will be aborted, without any effect. An

"AFTER-" procedure will run after successful completion of the

function body, and its effect will not be of consequence to the

function. In addition, ihook situations will be more general than

simple function names. A taxonomy of situations, like

"INDIVIDUATION" and "SPECIALIZATION", will allow the same procedure

to be invoked by distinct, but conceptually similar, functions.

Finally, we will allow a user to attach to an ihook an arbitrary

keyword (to symbolize for him the "intent" of the hook).

Procedures will be inherited as before, but only the most local

will be executed for any given keyword. This new facility will

give us a tremendous repertoire of power to experiment with.

- 18 -

ha*,

Report No. 3963 Bolt Beranek and Newman Inc.

As mentioned, we have added "SDNames", which will work for

SD's much as RoleNaraes work for Roles. This will allow us to

address segments of a Concept's internal structure directly, and

will allow selective building of new SD's in the conceptual

structure of our language understanding system.

We spent much of the final quarter of this year discussing the

handling of natural language quantification in KLONE. While much

depends on the particular use of KLONE chosen for the language

interface, one observation is worth mentioning in and of itself.

After investigating a number of natural language phenomena, we

decided that it made sense to separate the "lexical", or

prepositional, content of a sentence from its quant ificational

content [see Van Lehn, 1978]. The lexical portion of the sentence

explains the type of entity doing the type of action to a type of

object, etc. The quantification structure can then be superimposed

on top of the lexical material to explain how many actions there

were, how many actors, etc., and the nature of the map from actor

onto action, etc. For example, in "Every boy kissed three girls",

the verb and the two nouns serve to relate that some kissing

activity(ies) transpired between some boy(s) and some girl(s). On

top of that, the quantificational structure leaves the total number

of participants open, (presumably, there is some implied set over

which the universal ranges) but says that each kissing event had

- 19 -

Report No. 3963 Bolt Beranek and Newman Inc.

one object (a girl) and one agent (a boy), and that each boy mapped

onto three kissing events. We are actively pursuing a clear and

adequate representation scheme for relating lexical and

quantificational import. The status of this enterprise will be

reported in subsequent QPR's.

- 20 -

Report No. 3963 Bolt Beranek and Newman Inc.

Generalizations of ATN Graaaars

W. A. Woods

1. Introduction

ATN orammars, as presented in Woods [1970] are a form of

augmented pushdown store automata, augmented to carry a set of

register contents in addition to state and stack information and to

permit arbitrary computational tests and actions associated with

the state transitions. Conceptually, an ATN consists of a network

of states with connecting arcs between them. Each arc indicates a

kind of constituent that can cause a transition between the states

it connects. The states in the network can be conceptually divided

into "levels" corresponding to tb« different constituents that can

be recognized. Each such level has a start state and one or more

final states. Transitions are of three basic types, as indicated

by three different types of arc. A WRD (or CAT) transition

corresponds to the consumption of a single word from the input

string, a JUMP transition corresponds to a transition from one

state to another without consuming any of the input string, and a

PUSH transition corresponds to the consumption of a phrase parsed

by a subordinate invocation of some level of the network to

recognize a constituent.

- 21 -

^^^^^.^^^Ig^lj^^^^ ^-i-~=rts^^^-*^^ ■ < ü'-Hi^a^^^aP^¥^ii^:TTTr^^^a

Report No. 3963 Bolt Beranek and Newman Inc.

ATN's have the advantage of being a class of automata into

which ordinary context-free phrase structure and "augmented" phrase

structure grammars have a straightforward embedding, but which

permit various transformations to be performed to produce grammars

that can be more efficient than the original. Such transformations

can reduce the number of states or arcs in the grammar or can

reduce the number of alternative hypotheses that need to be

explicitly considered during parsing. (Some transformations tend

to reduce both, but in general there is a tradeoff between the

two) . Both kinds of efficiency result from a principle that I have

called "factoring", which amounts to merging common parts of

alternative paths in order to reduce the number of alternative

combinations explicitly enumerated. The former results from

factoring common parts of the grammar to make the grammar as

compact as possible, while the latter results from arranging the

grammar so as to factor common parts of the hypotheses that will be

enumerated at parse time. The former promotes ease of human

comprehension of the grammar and should facilitate learning of

grammars by machine. The latter promotes efficiency of run time

execution. I will refer to the former as "conceptual factoring"

and the latter as "hypothesis factoring".

Many of the same factoring principles that apply to ATN

grammars of the ordinary kind can be applied to other problems not

- 22 -

Report No. 3963 Bolt Beranek and Newman Inc.

directly interpretable as consuming elements from sequences of

symbols. In this paper, I will present some generalizations of the

notion of ATN grammar that capitalize further on the principle of

factoring and that are applicable to a much more diverse set of

situations. The first is obtained by generalizing ATN's from

simple parsers to transducers by the the addition of an output

operation ("TRANSMIT") which can be executed on arcs, followed by

the construction of a parsing automaton from a cascade of such ATN

transducers. The resulting automaton, which I call an "ATN

cascade", gains a factoring advantage from merging together common

cr:,iputations at early stages of the cascade.

Cascaded ATN's are analogous to certain state decomposition

characterizations of finite state machines and carry many of the

advantages of such state decomposition into the domain of more

general recognition automata. The normal decomposition of natural

language description into levels of phonology, lexicon, syntax,

semantics, and pragmatics, can be viewed as a cascade of ATN

transducers - one for each of the individual levels. Viewing

natural language understanding as parsing with such a cascade has

computational advantages and also provides an efficient, systematic

framework for characterizing the relationships between different

levels of analysis due to conceptual factoring. The factoring

advantages of cascade decompositions can thus serve as a partial

- 23 -

Report No. 3963 Bolt Beranek and Newman Inc.

explanation of why such a componential description of natural

language understanding has arisen.

A second generalization of ATN's lifts the implicit

assumptions that the input is a sequence of symbols and permits the

application of similar factoring and optimization techniques to the

general case of recognition automata acting on a generalized

"perceptual field". Such generalized transition networks (GTN'S)

have potential applications in scene analysis, acoustic phonetic

analysis of speech, medical diagnosis, discourse analysis, and data

base monitoring for "alerting" capabilities. Generalized

transition networks thus lift the notion of "grammar" away from the

limited conception of a set of rules characterizing well-formed

sequences of words in sentences. Rather, they are capable of

characterizing arbitrary classes of structured entities.

Finally, I will present an interpretation of structured

inheritance networks [Brachman, 1978b; Brachman &. Woods, 1978] as

generalized transition networks and discuss the new perspectives

introduced by the addition of a concept of inheritance to the

concept of grammar.

2. Factoring in ATN's and PSG's

As discussed above, the principle of factoring involves the

merging of common parts of alternative paths through an ATN or

- 24 -

Report No. 3963 Bolt Beranek and Newman Inc.

similar structure in order to minimize the number of combinations.

This can be done either to reduce the size of the grammar or to

reduce the number of alternative hypotheses considered at parse

time. Conceptual factoring attempts to reduce the size of the

grammar by minimizing the number of places in the grammar where the

same or similar constituents are recognized. Frequently such

factoring results from "hiding" some of the differences between two

paths in registers so that the paths are otherwise the same and can

be merged. For example, in order to represent number agreement

between a subject and a verb, one could have two distinct paths

through the grammar - one to pick up a singular subject and

correspondingly inflected verb, and one to pick up a plural subject

and its verb. By keeping the number of the subject in a register,

however, one can merge these two paths so there is only one push to

pick up the subject noun phrase and one push to pick up the main

verb.

In other cases, conceptual factoring results from merging

common initial, final, and/or medial sequences of paths across a

constituent that are not the same, but which share subsequences.

For example, an interrogative sentence can start with an auxiliary

verb followed by the subject noun phrase, while a declarative can

start with a noun phrase followed by the auxiliary. in either

case, however, the subsequent constituents that can make up the

- 25 -

Report No. 3963 Bolt Beranek and Newman Inc.

sentence are the same and the grammar paths to recognize them can

be merged. Moreover, in either case there can be initial

prepositional phrases before either the subject or the auxiliary

and again these can be merged. When one begins to represent the

details of supporting auxiliaries that are present in

interrogatives but not in declaratives, the commonalities these

modalities have with imperatives, and the interaction of all three

with the various possibilities following the verb (depending on

whether it is transitive or intransitive, takes an indirect object

or complement, etc.), this !:ind of factoring becomes increasingly

more important.

In ordinary phrases structure grammars (PSG's), the only

mechanism for capturing the kinds of merging discussed above is the

mechanism of recursion or "pushing" for constituent phrases. In

order to capture the equivalent of the above merging of commonality

between declaratives and interrogatives, one would have to treat

the subject-auxiliary pair as a constituent of some kind (an

organization that is linguistically counter-intuitive) .

Alternatively, one can capture such factoring in a PSG by emulating

an ATN - e.g., by constructing a phrase structure rule for every

arc in the ATN and treating the states at the ends of the arc as

constituents. Specifically, an arc from si to s2 that picks up a

phrase p can be represented by a phrase structure rule si -> p s2.

- 26 -

Report No. 3963 Bolt Beranek and Newman Inc.

and a final state s3 can be expressed by an "e rule" s3 -> e (where

e represents the "empty string") . In either case, one is forced to

introduce a "push" to a lower level of recursion where it is not

necessary for an ATN, and to introduce a kind of "constituent" that

is motivated solely by principles of factoring and not necessarily

by any linguistic criteria of constituenthood.

A phrase structure grammar emulating an ATN as in the above

construction will contain all of the factoring that the ATN

contains, but will not make a distinction between the state name

and the phrase name. Failure to make this distinction masks the

intuitions of state transition that lead to some of the ATN

optimization transformations and the conceptual understanding of

the operation of ATN's as parsing automata. The difference here is

a lot like the difference between the way that LISP implements list

structure in terms of an underlying binary branching "cons" cell

and the way that it is appropriate to view lists for conceptual

reasons. For exactly the same kinds of reasons, it is appropriate

to think of certain sequences of constituents that make up a phrase

as sequences of immediate constituents rather than as a

right-recursive nest of binary branching phrases.

From the perspective of hypothesis factoring, the distinction

made in an ATN between states that can be recursively pushed to and

states that merely mark intermediate stages in the recognition of a

- 27 -

Report No. 3963 Bolt Beranek and Newman Inc.

constituent sequence permits a distinction between that part of a

grammar that is essentially finite state (and hence amenable to

certain kinds of optimization) and that which is inherently

recursive. This permits such operations as mechanically

eliminating unnecessary recursion and performing finite-state

optimizations procedures on what remains - see Woods [1969]. These

transformations can result in significant gains in parsing

efficiency by trading recursion for iteration wherever possible and

by minimizing the non-determinism (by hypothesis factoring) in the

resulting networks.

The construction given above for emulating an ATN with a PSG

can, of course, emulate the same hypothesis factoring optimization

that an ATN permits, but its ability to do so depends critically on

the use of e-rules for the final states. Most parsers for PSG's,

on the other hand, do not permit e-rules, probably because they are

highly non-deterministic when applied bottom-up. Unfortunately,

the construction that transforms a PSG with e-rules into an

equivalent PSG with no e-rules would give up some of the factoring

achieved in the ATN emulation when applied to final states that are

not obligatorily final (a common occurrence in natural language

grammars). Every transition coming into such a state, would

effectively be duplicated - once leading to an unambiguously final

state (si -> p) , and once forcing subsequent consumption of

- 28 -

Report No. 3963 Bolt Beranek and Newman Inc.

additional input (si -> p s2). It thus appears that as a class of

formal automata, ATN's permit a greater flexibility in capturing

hypothesis factoring advantages than do conventional PSG's.

As we have discussed them, the principles of conceptual

factoring and hypothesis factoring have been motivated by different

measures of cost. Nevertheless, many of the factoring

transformations that can be applied to ATN's gain a simultaneous

efficiency in both dimensions. This is not always the case

however. In particular, the transformations that optimally

minimize nondeterminism for left-to-right parsing tend to cause an

increase in the number of states and arcs in a grammar (unless

fortuitous regularity causes a collapsing). Since a major

characteristic of the ATN grammar formalism is that it permits the

expression of mechanical algorithms for performing hypothesis

factoring transformations, it is probably appropriate for grammar

writers to devote their attention to conceptual factoring as a

grammar writing style, while leaving to various grammar compilation

algorithms the task of transforming the grammar into an efficient

parsing engine. However, in absence of such compilers, it is

always possible within the ATN formalism for a grammar writer to

incorporate explicit hypothesis factoring structure into his

grammar and to make tradeoffs between the two factoring principles.

- 29 -

tfflp1^3^-" . ""imrii iiHriim

Report No. 3963 Bolt Beranek and Newman Inc.

3. Notation

ATN's are characterized as automata by specifying their

computations in terms of instantaneous configurations and a

transition function that computes possible successor

configurations. As such, they can admit a variety of superficial

syntaxes, without changing the essential nature of the automaton.

In this paper, I will use a notation that is somewhat more concise

and slightly more convenient than the original ATN syntax specified

in Woods [1970]. The major change will be a formal distinction

between a phrase type and an initial state for recognizing a

phrase. (The original ATN specification used the initial state to

serve double duty.) Moreover, I will permit a given phrase type to

have several distinct initial states and for several phrase types

to share some initial states. This permits somewhat greater

flexibility in factoring and sharing common parts of different

phrase types. The pop arcs of these ATN's will indicate the phrase

type being popped, and a given state can be a final state for

several phrase types. A BNF specification of the syntax I will use

is:

- 30 -

Report No. 3963 Bolt Beranek and Newman Inc

<ATN> -> (<machinename> (accepts <phrasetype>*) <statespec>*)
;an ATN is a list consisting of a machine name, a
specification of the phrasetypes which it will
;accept, and a list of state specifications.

<statespec> -> (<statename> {optional <initialspec>} <arc>*)
<initialspec> -> (initial <phrasetype>*) indicates that this state

;is an initial state for the indicated phrasetypes.
<arc> -> (<phrasetype> <nextstate> <act>*) ;a transition that

;consumes a phrase of indicated type.
-> (<pattern> <nextstate> <act>*) ;a transition that consumes

;an input element that matches a pattern.
-> (J <nextstate> <act>*) ;a transition that jumps to a new

jstate without consuming any input.
-> (POP <phrasetype> <form>) ;indicates a final state

;for the indicated phrase type and specifies
;a form to be returned as its structure.

<nextstate> -> <statename> ;specifies next state for a transition.
<pattern> -> (<pattern>*) ;matches a list whose elements match

;the successive specified patterns.
-> <wordlist> ;matches any word in the list.
-> & ;matches any element.
-> — ;matches any subsequence.
-> <form> ;matches value of <form>.
-> <<classname>K »-matches anything that has or inherits

;the class name as a feature.
<wordlist> -> {,<rford> | ,<word>, <wordlist>}
<act> -> (transmit <form>) .«transmit value of form as an output.

-> (setr <registername> <form>) ;set register to value of form.
-> (addr <registername> <form>) ;add the value of form to the

;end of the list in the indicated register (assumed
; initially NIL when the register has not been set) .

-> (require <proposition>) ;abort path if proposition is false.
-> (dec <flaglist>) ;set indicated flags.
-> (req <flagproposition>) ;abort path if proposition is false.
-> (once <flag>) ;equivalent to (req (not <f lag>)) (dec <f lag>) .

<flagproposition> -> <boolean combination of flag registers>
<proposition> -> <form> ;the proposition is false if the value

;of the form is NIL.
<form> -> !<registername> ;returns contents of the register.

-> '<liststructure> ;returns a copy of a list structure
;except that any expressions preceded by ! are
;replaced by their value and any preceded
;by (a have their value inserted as a sublist,

-> !c ;contentE of the current constituent register.
-> !<liststructure> ;returns value of list structure

; interpreted as a functional expression.

- 31 -

Report No. 3963 Bolt Beranek and Newman Inc.

A simple example, using the above conventions, is the

following grammar:

(m (accepts q)
(si (initial q)

('a s2 (setr n 1)))
(82

(q S3 (setr n !(1 + 1c)))
(J S3))

(S3
(•b s4))

(s4
(pop q In)))

This grammar parses a string of n a's followed by n b's and pops

the number n.

4. Cascaded ATN's

The advantages of having semantic and pragmatic information

available at early stages of parsing natural language sentences

have been demonstrated in a variety of systems.* Ways of achieving

such close interaction between syntax and semantics have

traditionally involved writing semantic interpretation rules in 1-1

correspondence with phrase structure rules (e.g., Thompson [1963]),

writing "semantic grammars" that integrate syntactic and semantic

constraints in a single grammar (e.g., Burton [1976]), or writing

ad hoc programs that combine such information in unformalized ways.

There are some compensating disadvantages if the semantic domain is
more complex than the syntactic one, but we will assume here that
immediate semantic feedback is desired.

- 32 -

Report No. 3963 Bolt Beranek and Newman Inc.

The first approach requires as many syntactic rules as semantic

rules, and hence is not really much different from the semantic

grammar approach (this is the conventional way of defining

semantics of programming languages). The second approach has the

tendency to miss generalities and its results do not automatically

extend to new domains. It misses syntactic generalities, for

example, by having to duplicate the syntactic information necessary

to characterize the determiner structures of noun phrases for each

of the different semantic kinds of noun phrase that can be

accepted. Likewise, it tends to miss semantic generalizations by

repeating the same semantic tests in various places in the grammar

when a given semantic constituent can occur in various places in a

sentence. The third approach, of course, may yield some level of

operational system, but does not usually shed any light on how such

interaction should be organized, and is difficult to extend.

Rusty Bobrow's RUS parser [Bobrow, 1978] is the first parser

to my knowledge to make a clean separation between syntactic and

semantic specification while gaining the benefit of early and

incremental semantic filtering and maintaining the factoring

advantages of an ATN. It's operation can be characterized by a

generalization of ATN grammars that I have called cascaded ATN's

(CATN's). A cascade of ATN's provides a way to reduce having to

say the same thing multiple times or in multiple places, while

- 33 -

äafcfiS^^sffirfRfffrtff^^ ...-.--..:

Report No. 3963 Bolt Beranek and Newman Inc.

providing efficiency comparable to a "semantic" grammar and at the

same time maintaining a clean separation between syntactic and

semantic levels of description. It is essentially a mechanism for

permitting decompt.3ition of an ATN grammar into an assembly of

cooperating ATN's, each with its own characteristic domain of

responsibility.

A CATN is essentially a sequence of ATN transducers with each

successive machine taking input from the output of the previous

one. Specifically, a CATN is a sequence of ordinary ATN's that

include among the actions on their arcs an operation TRANSMIT,

which transmits an element to the next machine in the sequence.

The first machine in the cascade takes its input from the input

sequence, and subsequent machines take their input from the

TRANSMIT commands of the previous ones. The output of the final

machine in the cascade is the output of the machine as a whole.

The only feedback from later stages to earlier ones is a filtering

function that causes paths of the nondeterministic computation to

die if a later sta^e cannot accept the output of an earlier one.

The conception of cascaded ATN's arose from observing the

interaction between the lexical retrieval component and the

"pragmatic" grammar of the HWIM speech understanding system [Woods

et al., 1976]. The lexical retrieval component made use of a

network ♦•.hat consumed successive phonemes from the output of an

- 34 -

i

Report No. 3963 Bolt Beranek and Newman Inc.

acoustic phonetic recognizer and grouped them into words. Because

of phonological effects across word boundaries, this network could

consume several phonemes that were part of the transition into the

next word before determining that a given word was possibly

present. At certain points, it would return a found word together

with a node in the network at which matching should begin to find

the next word (essentially a state remembering how much of ehe next

word has already been consumed due to the phonological word

boundary effect) . This can be viewed as an ATN that consumes

phonemes and transmits words as soon as its has enough evidence

that the word is there.

The lexical retrieval component of HWIM can thus be viewed as

an ATN whose output drives another ATN. This led to the conception

of a complete speech understanding system as a cascade of ATN's,

one for acoustic phonetic recognition, one for lexical retrieval

(word recognition), one for syntax jne for semantics, and one for

subsequent discourse tracking. A predecessor of the RUS parser

[Bobrow, 1978] was subsequently perceived to be an instance of a

syntax/semantics cascade, since the structures that it was

obtaining from the lexicon to filter the paths through the grammar

could be viewed as ATN's. Hence, practical solutions to problems

of combinatorics in two different problem areas have independently

motivated computation structures that can be viewed as cascaded

- 35 -

Report No. 3963 Bolt Beranek and Newman Inc.

ATN's. It remains to be seen how effectively cascades can be used

to model acoustic phonetic recoanition or to track discourse

structure, but the possibilities arc, *... .guing.

4.1 Specification of a CATN Computation

As with ordinary ATN's and other formal automata, the

specification of the computation of a CATN will consist of the

specification of an instantaneous "configuration" of the automaton

and the specification of a transition function that computes

possible successor configurations for any given configuration.

Since CATN's are nondeterministic, a given configuration can in

general have more than one successor configuration and may

occasionally have no successor. One way to implement a parser for

CATN's would be to explicitly mimic this formal specification by

implementing the configurations as dt-a structures and writing a

program to implement the transition function. Just as for ordinary

ATN's, however, there are also many other ways to organize a

parser, with various efficiency tradeoffs.

A configuration of a CATN consists of a vector of state

configurations of the successive machines, plus a pointer to the

input string where -he first machine is about to take input. The

transition function (nondeterministic) operates as follows:

- 36 -

Report No. 3963 Bolt Beranek and Newman Inc.

1. A distinguished register C is set (possibly
nondeterministically) to the next input element to be
consumed and the pointer in the input string following C is
computed. Then a stage counter k is set to 1.

2. The state of the kth machine in the sequence is used to
determine a set of arcs that may consume the current input
(possibly following a sequence of JUMPS, PUSHes, and POPs
to reach a consuming transition).

3. Whenever a transmission operation TRANSMIT is executed by
the stage k machine, the stage k+1 configuration is
activated to process that input, and the stage k+1
component of the configuration vector is updated
accordingly. If the k+1 stage cannot accept the
transmitted structure, the configuration is aborted.

As for a conventional ATN, the format of the state

configurations of the individual machines consist of a state name,

a set of registers and contents, and a stack pointer (or its

equivalent) .* Each element of a stack is a pair consisting of a

PUSH arc and a set of register contents. Transitions within a

single stage are the same as for ordinvAry ATN's.

4.2 Uses of CATN's

A good illustrative example of the use of cascaded ATN's for

natur?x language understanding would be a three stage machine

consisting of a first stage that performs lexical analysis, a

second stage for syntactic analysis, and a third stage for semantic

* For example. Barley's algorithm for context free grammars
[Barley, 1968] replaces the stack pointer with a pointer to a
place where the conf iguration(s) that caused the push can be
found. A similar technique can be used with ATN grammars.

- 37 -

Report No. 39G3 Bolt Beranek and Newman Inc.

analysis. The lexical stage ATN would consume letters from an

input sequence and perform word identification, including

inflectional analysis, decomposition of contractions, and

aggregation of compound phrases, producing as its output a sequence

of words with syntactic categories and feature values. This

machine could also perform certain standard bottom-up, locally

determined parsings such as constructing noun phrase structures for

proper nouns and pronouns. Ambiguity in syntactic class, in word

grouping, and in homographs within a syntactic class can all be

taken care of by the non-determinism of this first stage machine

(e.g., "saw" as a past tense of "see" vs present tense of "saw" can

be treated by two different alternative outputs of this first stage

machine) .

This first stage machine is not likely to involve any

recursion, unlike other stages of the machine, but does use its

registers to perform a certain amount of buffering before deciding

what to transmit to the next stage. Because machines such as this

one will reach states where they have essentially finished with a

particular construction and ars ready to begin a new one, a

convenient action to have available on their arcs is one to reset

all or a specified set of registers to their initial empty values

again. Such register clearing is similar to that which happens on

a push to a lower level, except that here the previous values need

- 38 -

,UM.,-^--:. , iBJMU ..

Report No. 3963 Bolt Beranek and Newman Inc.

not be saved. The use of a register clearing action thus has the

desired effect without the expense of a push.

The second stage machine in our example will perform the

normal phrase grouping functions of a syntactic grammar and produce

TRANSMIT commands when it has identified constituents that are

serving specific syntactic roles. The third stage machine will

consume such constituents and incorporate them into an incremental

interpretation of the utterance (and may also produce differential

likelihoods for alternative interpretations depending on the

semantic and pragmatic consistency and plausibility of the partial

interpretation).

The advantage of having a separate stage for the semantic

interpretation, in addition to providing a clean separation between

syntactic and semantic levels of description and a more

domain-independent syntactic level, is that during the computation,

different partial semantic interpretations that have the same

initial syntactic structure share the same sy cactic processing.

In a single "semantic" ATN, such different semantic interpretation

possibilities would have to make their own separate

syntactic/semantic predictions with no sharing of the syntactic

commonality between those predictions. Cascaded ATN'S avoid this

while retaining the benefit of strong semantic constraint.

- 39 -

nn.t.-rr.. , .^ ^ ^ .jp, .

Report No. 3963 Bolt Beranek and Newman Inc.

4.3 Benefits of CATNs

The decomposition of a natural language analyzer into a

cascade of ATN's gains a "factoring" advantage similar to that

which ATN's themselves provide with respect to ordinary phrase

structure grammars. Specifically, the cascading allows alternative

configurations in the later stages of the cascade to share common

processing in the earlier stages that would otherwise have to be

done independently. That is, if several semantic hypotheses can

use a certain kind of constituent at a given place, there need be

only one syntactic process to recognize it.*

Cascades also provide a simpler overall description of the

acceptable input sequences than a single monolithic ATN that

combined all of the information into a single network would give.

That is, if any semantic level process can use a certain kind of

constituent at a given place, then there need be only one place in

the syntactic stage ATN that will recognize it. Conversely, if

* One might ask at this point whether there are situations in which
one cannot tell what is present locally without "top-down"
guidance from later stages. In fact, any ch later stage
guidance can be implemented by semantic filtering of syntactic
possibilities. For example, if there is a given semantic context
that permits a constituent construction that is otherwise not
legal, one can still put the recognition transitions for that
construction into the syntactic ATN with an action on the first
transition to check compatibility with later stage expectations
(e.g., by transmitting a flag indicating that it is about to try
to recognize this special construction).

- 40 -

Report No. 3963 Bolt Beranek and Newman Inc.

there are several syntactic contexts in which a constituent filling

a given semantic role can be found, there need be only one place in

the semantic ATN to receive that role. (A single network covering

the same facts would be expected to have a number of states on the

order of the product, rather than the sum, of the numbers of states

in the individual stages of the cascade.)

An additional advantage provided by the factoring commonality

introduced by the cascade is that the resulting localization of

early stage activities in a single place provides a single place

for a given linguistic fact to be learned, rather than independent

versions of essentially the same fact having to be learned in

different semantic contexts. Moreover, the separation of the

stages of the cascade provides a decomposition of the overall

problem into individually learnable skills. These facts may be of

significance not only for theories of human language development

and use, but also for computer systems that can be easily debugged

and can contribute to their own acquisition of improved language

skill. The above facts suggest that the traditional

characterization of natural language in terms of the levels of

phonemes, syllables, words, phrases, sentences, and higher level

pragmatic constructs may be more deeply significant than just a

convenience for scientific manipulation.

- 41 -

Report No. 3963 Bolt Beranek anr» w^wman Inc.

4.4 Parsing with CATN's

Conceptually, each ATN in a cascade produces

(nondeterministically) a sequence of inputs for the next stage,

which the next stage then parses. One could implement a computer

parsing algorithm for a cascade in several ways. For example, the

individual components of a configuration could be incremented as

described above, with the later stages advanced as soon as the

earlier stages transmit something. Alternatively, the later stages

could wait until the earlier stages have completed a path through

the input sequence before they begin to process the output of the

earlier stages. The latter approach has the advantage of not

performing second stage analysis on a path that will eventually

fail at the first stage. On the other hand, it will result in the

first stage occasionally continuing to extend partial paths that

could already be rejected at the second stage.

In general, one can envisage an implementation in which the

second stage can wait until the first stage has proceeded some

distance past the current point before commencing its operations.

This could either be done by having a fixed "lookahead" parameter

which would always run the first stage some number of transmissions

ahead of the second stage, or one could have a command that the

first stage could execute when it considered its current path

sufficiently likely to make it worthwhile for the second stage to

- 42 -

Report No, 3963 Bolt Beranek and Newman inc.

operate on it. In fact, to handle both of these cases, one could

simply have the first stage buffer its information in registers

until it is ready for the next stage to work on it and only then

perform the transmissions. For the remainder of this paper, we

will assume that this is done and that the next stage begins to

operate as soon as its input is transmitted.

As presented above, an instantaneous configuration of a CATN

is essentially a vector of configurations (let us call them IC's)

for the individual stages of tho cascade. However, since any two

configuration vectors having the same IC in some component will

perform the same computation for that component and will only

differ when they transmit to a suosequent stage, a parsing

implementation should merge such common components and only perform

their processing once. This can be achieved by representing the

set of instantaneous configurations of the CATN not simply as a set

of IC vectors, but as a tree structure (TC) that merges the common

initial parts of those vectors. That is, each vector representing

an instantaneous configuration of the CATN will be represented by a

path through the TC from root to leaf, with the successive nodes in

the path being the successive IC's of the vector. It is

straightforward to transform the transition function that computes

successor configuration vectors from a given one into a transition

function that computes successor TC's from a given TC.

- 43 -

Report No. 3963 Bolt Beranek and Newman Inc.

The TC representation has the characteristic that as long as

the common left parts of configuration vectors are merged, the

computation of a given IC at some level k will be done only once.

To fully capitalize on the factoring advantages of this

representation, one would like to assure that the common initial

parts of alternative configuration vectors remain merged. This

happens automatically for alternative stage k+1 computations that

stem from a common stage k configuration. However, it is possible

for two distinct k stage configurations, which have gone their

separate ways and accumulated their own trees of higher level

configurations, to come again to essentially the same k-stage

configuration via different paths. This can happen especially with

lexical stage computations when one word is recognized and the

parsing of the next word begins. To provide maximum factoring, it

is thus necessary to check for such cases and merge subtrees when

the IC's at their heads are found to be equivalent.

When the k-stage network happens to be a finite state machine

(i.e., makes no use of registers or recursion) the detection of a

duplicate configuration is easy due to the simple equivalence test

(i.e., sameness of state) . When it is a general ATN, the detection

of the conditions for merging are somewhat more involved (due to

the register contents), and the likelihood of such merging being

possible tends to be less. Hence for such stages the cost of

- 44 -

Report No. 3963 Bolt Beranek and Newman Inc.

checking for duplication may not be worth the benefit.

Interestingly, it appears that the early stages of phonetic,

lexical, and simple phrase recognition do have essentially finite

state transition networks, while those of the later stages, where

such sharing is not as important or as likely, is more apt to

require non-finite-state register activities.

4.5 Comparison of Cascading with Recursion

Some interesting questions arise when considering the nature

of cascaded ATN's as automata. For example, since a number of

activities that are normally done with recursion in ATN's and other

phrase structure grammars can be done by separate stages of a

cascade, one is led to wonder about the relationship between

cascading and recursion. That is, instead of arcs of an ATN

pushing for a constituent of a certain kind, occasionally a cascade

can be set up to find constituents of that kind and transmit them

to a later stage of the cascade as units. A particular example,

which has occasionally been proposed informally, would be for an

early stage processor to group the input words into basic noun

phrases, verb groups, etc., and for a later stage to take such

units as input. Clearly this is a task normally performed by

recursion. One might then wonder whether cascading was just

another form of recursion, or somehow equivalent to it.

- 45 -

. .\-^-^=^^..._.^.-.-.. . .-.■..■-..^;_- ;.-;.."■..,. . .JL :_;_^

Report No. 3963 Bolt Beranek ai i Newman Inc.

It turns out that cascading is in some respects weaker than

recursion, and in other respects it is more powerful. In the next

section, I will give an example of a context free cascade that can

recognize a language that cannot be recognized by a single context

free ATN. Hence, cascading clearly increases the power of a basic

ATN beyond that provided by recursion alone. On the other hand,

one is considerably more constrained in the way he can use

cascading when writing a grammar than he is in the use of

recursion. For example, indefinitely deep recursion can be used to

recognize noun phrases inside prepositional phrases inside noun

phrases, etc. When setting up a cascade of two ATN's to perform

such grouping, the earlier cascade cannot model this directly, but

instead would have to recognize "elementary" noun phrases

consisting of, say, determiner, adjectives, and head noun, and

would use looping transitions to accept subsequent prepositional

phrases and relative clauses. Moreover, this stage of the cascade

could not content itself solely with the noun phrases, but would

also have to transmit the other elements of the sentence

(auxiliaries, verbs, adverbs, particles, ate.) so that the later

stages of the cascade will have a chance to see them. That is, a

stage of a cascade provides a level of description of the entire

input sequence in terms of a sequence of units to be transmitted to

a later stage of analysis. Hence it appears that cascading is a

fundamentally different operation that interacts with recursion and

overlaps some of its functions in interesting ways.

- 46 -

Report No. 3963 Bolt Beranek and Newman Inc.

Another interesting comparison arises between cascaded ATN's

and the kinds of transformations used in a transformational

grammar. If one were to attempt to analyze a transformational

grammar by successively applying its transformations in reverse to

the surface string, one repeatedly performs a partitioning of the

input into a sequence of units as described above. That is, in

applying a reverse transformation to a syntax tree in the course of

a reverse transformational analysis, the operation of matching the

pattern description of the transformation to the syntax tree

amounts to finding a level at which the syntax tree can be "cut"

yielding a sequence of units matching the sequence of elements in

the pattern of the rule. This is exactly the kind of partitioning

of the input into units that is done by a stage of a cascaded ATN.

Moreover, the result of the transformation is expressed by a

"right-hand-side" of the transformational rule, which may reorder

the input sequence into a slightly modified sequence, and may copy

an element several times, modify it in certain restricted ways, or

even delete it (under suitable restrictions) . In exactly the same

way, a stage of a cascade can transmit the units that it has picked

up in a different order than it found them, can duplicate a unit,

drop a unit, insert a constant, and transmit units that are

modified from the form in which they were recognized. In short, a

stage of an ATN cascade can mirror the activity of any given

transformational rule.

I
- 47 -

Report No. 3963 Bolt Beranek and Newman Inc.

However, transformational rules are normally considered to

apply in a cycle governed by the number of levels of embedding of

clauses in the sentence, so that the number of successive

transformations applied can be unbounded. By contrast, in an ATN

cascade, there are only a finite number of stages in the cascade.

Moreover, successive transformations in a transformational grammar

are free to discard everything that was learned about the structure

of the input in the matching of the previous transformation and

there is no constraint that the manner in which a subsequent

transformation analyzes the result of the previous transformation

bear any relationship to the level of description imposed on the

input by that previous transformation. In an ATN cascade, there is

an assumed sequence of progressive aggregation and higher level of

description implied by the transduction of information to

successive stages of the cascade, with each stage perceiving the

input in the terms that it was described by the previous. Thus,

the ATN cascade seems to impose additional constraints on the

process of language recognition that ai .■ not imposed by an ordinary

transformational grammar.*

Experience with ATN grammars for natural language indicates

that everything that a transformational grammar of natural language

* These constraints tend to promote tEe efficiency öl the
processing. See Woods [1970] for a discussion of some of the
inherent inefficiencies of an ordinary transformational analysis.

- 48 -

Report No. 3963 Bolt Beranek and Newman Inc.

does can be done with even a single ATN, so there does not appear

to be any need for more than a finite number of stages of a

cascade. On t^e other hand, the arguments presented here indicate

that one may be able to obtain a simpler description of an overall

set of facts with a cascade than with a single monolithic ATN. It

is possible, therefore, that a cascade of ATN's corresponds to a

more appropriate formal!zation of the underlying facts of language

that gave rise to the original model of transformational grammar

than does the conventional conception.

4.6 A Simple Formal Example

As a simple example of what a cascade of ATN's can do, I will

give here a simple ATN cascade that without the use of registers

can recognize the set of strings of the form n a's followed by n

b's followed by n c's, for arbitrary n. This language is a

traditional example of a language that is not contest free but is

context sensitive. However, it does happen to be specifiable as

the intersection of two context free languages. Capitalizing on

this fact, it is possible to represent it by a cascade of two

"context free" ATN's (i.e., ATN's which do not use registers to

check constraints between different constituents). This cascade

effectively computes the intersection of two ways of viewing the

input. The two ATN's, whose structure is illustrated in figure 1,

can be written as follows:

- 49 -

Report No. 3963 Bolt Beranek and Newman Inc,

(ml (accepts q)
(si (initial p q)

Ca s2))
(s2

(P S3)
('b s4 (transmit 'b))

(s3
('b s4 (transmit 'b))

(s4 (pop p)
('c s5 (transmit 'c)))

(s5 (pop q)
Cc s5 (transmit 'c))))

(m2 (i :epts r)
(s (initial r)

Cb s2))
{s2

(r S3)
Cc s4))

(s3
Cc s4))

(s4 (pop r)))

c trans c

Fig. 1. ATN Cascade for {aVcn: nM)

- 50 -

Report No. 3963 Bolt Beianek and Newman Inc.

These two machines correspond to the grammars:

q->pc*, p->ab, p->apb
and

r->bc, r->brc

with augmentation such that the b's and c's accepted by the first

grammar are passed through to be accepted by the second. The first

stage checks that the number of a's and b's agree and accepts any

number of c's, while the second stage requires that the b's and c's

agree.

4.7 Another Example - Syntax and Semantics

Another, less trivial example is the use of an ATN cascade to

represent syntactic and semantic knowledge sources of a language

understanding system. We will give here a brief example

illustrating a kind of cascading of syntactic and semantic

knowledge similar to that done by R. Bobrow in his RUS parser

[Bobrow, 1978]. A rough characterization of this parser is that as

the syntactic component works its way through a noun phrase, it

accumulates information about the determiner structure and initial

premodifiers of the head noun until it encounters the head noun

(i.e., takes a path corresponding ""o a hypothesis that it has found

the head noun). At that point, it begins to transmit information

to the semantic stage, starting with the head noun, and followed by

the premodifiers of that noun. Then it continues to pick up post

modifiers of the noun phrase, transmitting them to the semantic

- 51 -

Report No. 3963 Bolt Beranek and Newman Inc.

stage as it encounters them, and finally, when it hypothesizes that

the noun phrase is completed. It transmits the determiner

information.

In a similar way, in the parsing of a clause, the syntactic

ATN can wait until it has encountered the main verb before

transmitting that verb followed by its subject and any fronted

adverbial modifiers. After that it can transmit subsequent post

verbal elements as they are encountered, and finally transmit any

governing modality information such as tense, aspect, and any

governing negations.

The example presented here, is a constructed one to illustrate

the principle, and does not directly represent the analyses by the

RUS grammar. The example implements a subset of the semantic rules

of the airline flight schedules system of Woods [1967] , a

predecessor of the LUNAR system [Woods et al.,1972]. I will give

here only a fragment of the semantic stage ATN that understands

designators (i.e., noun phrases). It assumes that the syntactic

stage operates as outlined above and, in particular, that it

transmits prepositional phrases by transmitting the preposition and

then transmitting its object. It also assumes that the syntax

stage transmits a signal QUANT when it has hypothesized the end of

a noun phrase and is about to transmit the determiner and number

information. One could alternatively transmit prepositional

- 52 -

Report No. 3963 Bolt Beranek and Newman Inc.

phrases as single units to be tested for syntactic and semantic

features. I will assume that a pattern such as <flight> on a

consuming arc is matched by a constituent that receives the

indicated semantic marker (e.g., FLIGHT).

(m2 (accepts designators)
(dl (initial designator)

(J 62 (setr vbl (getnewvar)))
(d2

('flight,'plane d/flight (setr head 'FLIGHT))
('jet d/flight (setr head 'FLIGHT)(addr mods '(JET !vbl)))
('airline d/head (setr head 'AIRLINE))
('city,'town d/head (setr head 'CITY))
('airport,'place d/head (setr head 'MRPORT))
('time d/time)
('fare d/fare)
('owner,'operator d/owner))

(d/owner
('of d/owner-of))

(d/owner-of
(<flight> d/head (addr quants (getquant !c))

(setr head '(OWNER !c))))
(d/fare

('(mod first-class),'(mod coach),'(mod stand by) d/fare
(require (not class))
(setr class .' c))

('(mod one-way),'(mod round-trip) d/fare
(require (not type))
(setr type !c)))

('from d/fare-from (require (not from)))
('to d/fare-to (require (not to)))
(J d/head (require class type from to)

(setr head '(FARE Ifrom !to Itype !class)))
(d/fare-from

(<place> d/fare (addr quants (getquant !c)) (setr from !c)))
(d/fare-to

(<place> d/fare (addr quants (gfzquant !c)) (setr to !c)))
(d/time

('(mod departure) d/time (require (not op)) (setr op 'DTIME))
('(mod arrival) d/time (require (not op)) (setr op 'ATIME))
('of d/time-of (require (not flight)))
('in,'at d/time-prep (require (eq op 'ATIME)))
('from d/time-prep (require (eq op 'DTIME)))
(J d/head (require op flight place) (setr head ' (!op ! flight ! c))

(*e.g., (setr head ' (ATIME AA-57 CHICAGO)))))

- 53 -

Report No. 3963 Bolt Beranek and Newman Inc.

(d/time-of
(<flight> d/tirae (addr quants (getquant Ic)) (setr flight !c)))

(d/time-prep
(<place> d/time (addr quants (getquant !c)) (setr place 1c)))

(d/head
CQUrtNT d/quant (setr mod ! (packmods))))

(d/flight
('(mod non-stop) d/non-stop-flight)
('from d/flight-from (require (not from)))
('to d/flight-to (require (not to)))
('(mod first-class),'(mod coach),'(mod jet-coach) d/fliyht

(once class) (addr mods '(SERVCLASS !vbl !c)))
C^mod jet) d/flight (addr mods '(JET !vbl)))
('(mod propeller) d/flight (once equip)

(addr mods '(NOT (JET Ivbl))))
(J d/flight (once connect) (require from to)

(addr mods '(CONNECT !vbl !(sem from) !(sem to))))
('QUANT d/quant (setr mod !(packmods))))

(d/flight-from
(<place> d/flight

(addr quants (getquant !c))
(setr from !c))

(d/flight-to
(<place> d/flight

(addr quants (getquant !c))
(setr to !c)))

(d/quant
('some,'a,'any,'NIL d/some)
('each,'every d/each)
Call d/all)
("not d/not)
('the d/the)
('this,'that d/this)
('which,'what d/what)
(<integer> d/integer))

(d/some
('sg,'pl d/end

(setr quant '(FOR SOME !vbl / Ihead : !mod ; DLT))))
(d/each

('sg d/universal))
(d/all

('pi d/universal))
(d/universal

- 54 -

Report No. 3963 Bolt Beranek and Newman Inc.

(J d/end (setr quant '(FOR EVERY Ivbl / Ihead : Imod ; DLT))))
(d/not

('some d/not-some)
('every d/not-every)
Call d/not-all))

(d/not-some
('sg,'pl d/end

(setr quant '(NOT (FOR SOME !vbl / Ihead : !mod ; DLT)))))
(d/not-every

('sg d/not-universal))
(d/not-all

('pl d/not-universal))
(d/not-universal

(J d/end
(etr quant '(NOT (FOR EVERY !vbl / Ihead : !mod ; DLT)))))

(d/the
('sg d/end (setr quant ' (FOR THE !vbl / Ihead : ! mod ; DLT)))
('pl d/end (setr quant ' (FOR EVERY !vbl / Ihead : !mod ; DLT))))

(d/this
('sg d/end (setr quant '(FOR THE !vbl/ 'head : Imod ; DLT))))

(d/what
(' sg d/end (seti quant

' (FOR THE Ivbl / 'head : (AND !mod DLT) ; (PRINTOUT !vbl))))
('pl d/end (setr quant

' (FOR EVERY !vbl / Ihead : (AND !mod DLT) ; (PRINTOUT !vbl)))))
(d/integer

('sg,'pl d/end (setr quant
'(FOR !integer MANY Ivbl / Ihead : Imod ; DLT))))

(d/end
(pop <depignator> (sem-quant Iquants Iquant Ivbl))))

In the above fragment grammar, the state dl gets a variable

name to use for the recognized designator, the state d2 dispatches

on the head noun of the designator phrase to various states that

recognize modifiers that are particular to the head. Eventually

the path for each such head will lead to the state d/quant, where

the determiner and number information is picked up to build the

quantifier that governs this designator. This transition is

- 55 -

Report No. 3963 Bolt Beranek and Newman Inc.

triggered by the transmission of the flag QUANT from the syntax

stage, signalling that the noun phrase is complete and the

determiner information is coming. Notice how the quantification

information that is common to most designators is shared.

The transitions that follow d/quant implement most of the

d-rules in Woods [1967], which is itself a subset of the d-rules of

the LUNAR system [Woods, et al,, 1972; Woods, 1978b]. The

function sem-quant is a function that performs the sem-quant pair

manipulations described in Woods [1978b]. These manipulations

usually embed the quantifier just constructed (Iquant) into the

quantifier nest accumulated from below (Iquants) to form a

quantifier nest to be passed up to a higher clause. They then

return the variable name (ivbl) as the "sem" to be inserted into an

argument position in the higher structure. The function getquant,

here, is a function that extracts the quant from a structure that

has been passed up from below and is used to accumulate the

quantifier nest (quants) from subordinate designators that should

dominate the quantifier of the designator being interpreted. The

function packmods examines the contents of the register mods and

returns an AND of the mods if there are several, a single mod if

there is only one, and T if there are none.

- 56 -

Report No. 3963 Bolt Beranek and Newman Inc.

5. KLONE Networks as Transition Networks

As mentioned previously, an ATN as an abstract automaton is

characterized by its set of states and rules of transition, and not

necessarily by a particular surface syntax for specifying those

states and transitions. In many situations, such as the semantic

stage ATN above, because of regularities in the behavior of classes

of states and transitions, it is attractive to develop a surface

notation in which more of the state transition behavior is

implicit, so that a grammar designer need not explicitly indicate

transition behavior that is highly regular. This is especially

true for grammar segments that are intended to pick up constituents

that can occur in relatively arbitrary order, in this section, I

will show hew KLONE concepts can be interpreted as ATN's and

thereby provide a syntax that promotes sharing of regular behavior.

ATN's provide two ways of dealing with unordered constituents.

One is to construct a separate state for each of the situations

that could occur in the process of accumulating those constituents,

and the other is to use a single state with looping transitions to

pick up each constituent while using the registers to keep track of

which constituents have been found. The former results in fast

operation at execution time, but a potentially combinatorial

increase in the number of states that are explicitly enumerated at

compile time. The latter results in a more compact grammar, with

- 57 -

Report No. 3963 Bolt Beranek and Newman Inc.

fewer states enumerated at compile time, but with additional

computation performed at parse time to determine which arcs are

possible as a function of information accumulated in the registers.

The use of flag registers and actions such as DEC, REQ, and

ONCE to characterize such behavior permits a grammar designer to

develop the more compact form of grammar representation, while

permitting a compiler that reads in a grammar to make either

decision about the actual implementation (i.e., it can construct a

separate state for all realizable combinations of state and flag

registers, or it can construct a configuration in which state and

flag registers are distinct components, with fast tests to filter

the arcs leaving a state according to their flag requirements).

Hence, the self-looping realization with special flag registers

appears to provide the level of representation that a grammar

designer should look at and think in terms of, while leaving

questions of implementation up to a later compiler.

The above situation is a lot like the situation of modeling a

physical device such as an elevator as a finite state machine. One

can think of an elevator as being modeled by a state determined by

the floors that have made requests (for each direction), where the

car is, what direction it is travelling, and whether the doors are

open. However, one does not want to enumerate all combinations of

these variables since the behavior exhibited is regular and can be

- 58 -

Report No. 3963 Bolt Beranek and Newman Inc.

componentially represented. Nevertheless, thinking of such a

componential representation as an abbreviatory specification of a

finite state machine is a useful way to characterize what the

representation means and how the elevator's behavior is being

modeled. In a similar way, ATN's can be used to understand systems

of grammar rules whose notational structure specifies transition

behavior componentially.

Given the above perspective, it useful to think of the

concepts in a KLONE inheritance network as a syntactic abbreviatory

device for an ATN. In particular, we can take the following view.

A Concept node will correspond to a state like d/fare above. Each

Role of the Concept (either directly present or inherited) will

correspond to a loop transition that sets a register corresponding

to that Role. If the Role has a number facet =1 then the setting

is done with setr. If the Role has a number facet >= 0 then the

setting is done with addr. Popping is governed by an implicit pop

transition which has requirements that each Role with a necessary

modality facet bo filled. The constituent popped will have a

syntactic category identical with the concept node name.

From this perspective, the d/fare state in the above example

would have an equivalent KLONE Concept:

- 59 -

Report No. 3963 Bolt Beranek and Newman Inc.

(fare)
has Roles:

head 'fare necessary «1
from <place> necessary =1
to <place> necessary =1
type (or 'one-way 'round-trip) necessary =1
class (or 'coach 'first-class 'jet-coach) necessary =1

where the name of the Concept is "fare", the Roles are named

"head", "from", "to", "type", and "class", with value restrictions

and modalities as indicated.

The only thing missing from this specification that is present

in the above ATN fragment is the characterization of the

transformation that is to take place to construct the structure

that is popped. That is, the above Concept characterizes in some

sense the surface structure that the ATN would have recognized -

what Roles were filled and what relationships they had to each

other - but does not indicate, as the ATN could do, a

transformation of this surface structure into an underlying

semantic representation. This can be done in the KLONE formalism

by means of an "interp cable" (see Woods [1978a]). An interp cable

points to another KLONE concept and maps Roles from the source

Concept into corresponding Roles (perhaps several levels deep) in

the destination Concept. This corresponds to the form on the pop

arc of an ATN that indicates how the structure to be returned is to

be built up. Thus, the interp cables in the KLONE nets correspond

in some sense to the pop transitions of the ATN.

- 60 -

Report No. 3963 Bolt Beranek and Newman Inc.

5.1 Inheritance

The major advantage of going from a conventional ATN notation

to a KLONE notation for the semantic interpretation stage of an ATN

cascade comes from the introduction of the notion of inheritance

that results. That is, it is possible in the KLONE notation to

have several different levels of description of a structure, while

sharing common information among them. Thus, for example, when a

semantic stage transition network has consumed a head noun "man",

it would like to inherit from the Concept <person> the arcs that

accept modifiers that are unique to people and from the Concept

<physical object> those modifiers that apply to physical objects in

general. The KLONE network notation, with its explicit inheritance

of Roles from higher Concepts, provides exactly the sort of

structure that is needed Moreover, the explicit linking of Roles

as differentiations or restrictions of higher Roles permits sharing

of certain actions that are regularly performed on many different

arcs (e.g., the " (addr quants (getquant !c))" action that occurs on

every arc that consumes a subordinate that might generate

quantifiers).

The use of inheritance networks to specify ATN's as described

here appears to be an attractive way to organize complex "grammars"

with extensive componential sharing. However, at least in its

present state of formalization, KLONE structures appear to

- 61

....... - „,-fM-!-, rtfc.ra,^ ,,_, M -, tt

Report No. 3963 Bolt Beranek and Newman Inc.

characterize only a subset of the class of possible ATN's and do

not seem to be a universal subset. Specifically, the description

above gives a characterization of the kinds of things that are done

in the example of d/fare where the arcs are essentially consuming

successive constituents of a single structure. However, the

self-looping structure of this particular example is not typical of

the transition structure of ATN's in general. When the result of a

transition is to shift the ATN to a new state rather than to return

to the original state with one more slot filled, the corresponding

operation in a KLONE structure is not obvious. One might possibly

achieve it by adding some form of augmentation to the Role nodes in

KLONE to indicate the state to which the transition should go, but

in general, this would depend on the actual node at which the Role

was inherited and perhaps the state of filling of the other Roles.

The above problem appears to be a general difficulty for

adding mechanisms of inheritance to ATN grammars for other than

self-loop transitions. For example, in the LUNAR parser, a

mechanism of "active" LEXARCS in a dictionary entry permitted

specified words to add arcs to the current state of the grammar,

thus capturing the regularities of words such as "and" and "or",

wuose effect depended more on the word than on the state of the

grammar. However, here also, one faced the problem of determining

to what state the inserted arc should make its transition. In

- 62 -

■-■■....■■; :■ : ...

Report No. 3963 Bolt Beranek and Newman Inc.

general, this requires a facility for asking what the current state

is and computing an appropriate destination state from it. In

actuality, the LEXARC feature was only used in LUNAR to invoke a

special SYSCONJ arc for conjunctions and this arc behaved

essentially like a very complicated self-loop.

6. Generalized Transition Networks

The above interpretation of KLONE nets as ATN's is one way of

dealing with constituents whose relative order of occurrence is not

critical. In those cases where relative order is important, a

KLONE net Concept can explicitly indicate the ordering constriint

as a Structural Description associated with those constituents.

Thus, the KLONE net formalization appv. rs to be able to deal with

the accumulation of constituents of a concept with arbitrary

degrees of constrained order. However, even in the above example,

the constituents were still considered in a unique order that was

determined by the order of their transmission from the earlier

stage ATN. A more general notion of transition network grammar,

which I will call a "generalized transition network" (GTN) removes

this limitation and generalizes the hypothesis factoring advantages

of ATN grammars to automata that parse arbitrarily structured

collections of input.

- 63 -

■,.,—■-=.-.^^

Report No. 3963 Bolt Beranek »d Newman Inc.

The idea of a GTN stems from the following ooservation: In an

ATN, the set of transitions leaving a given state of the network

does double duty - both specifying the alternative possible next

stL es that one can go to as a result of measuring additional

information a'xjut the input utterance, and also specifying

implicitly that the measurement is tc be made immediately to the

right of the ptevious measurement in the input string. Thus, in

following a sequence of arcs through an ATN grammar, one is both

following the sequence of te^ts and hypothesis refinements that go

O" in the process of recognition and also following the

left-to-right sequence of constituents in the input sentence. For

many potential situation recognition applications, unlike for

sentences the input is not simply a 1 near sequence of symbols.

In such cases, the ATN's characterization of a sequence of

information gathering accivitier is still desirable even though the

idea of a left-to-right sequence of constituents does not make

sense.

A GTN provides the appropriate automaton for such applications

by keeping the general state transition structure of an ATN, but

removing the implicit, assumptions about the kind and location of

the information gathering operations that result in a transition.

When following a sequence of arcs through a GTN, one will still be

following a sequence of hypothesis refinement operations, but there

64 -

Report No. 3963 Bolt Beranek and Newman Inc,

will no longer by any implicit left-to-right assumptions about the

successive measurements. Rather, explicit instructions on the arcs

will indicate how successive measurements relate to previous ones.

We will assume the structures being recognized satisfy a

generalized constituent structure constraint; they consist of

structural assemblies of constituents of specified types stanaing

in specified relationships to each other, with each constituent

type either a specified elementary constituent type or itself

characterized as a structured assembly of other constituents. Note

that this is exactly the class of structures that can be

characterized by KLONE Concepts.

In a GTN, information about whether successively acquired

pieces of information are right/left, above/below each other, etc.

will be explicitly indicated by operations on the arcs of the

network. We will assume that the input elements of information are

associated with "addresses" in some systematic indexing structure

such as left-to-right word order, two-dimensional retinal position,

position of a sentence in an ongoing dialog, time index of a

portion of a continuous speech signal, node position in an

arbitrary graph structure, etc., and that there are operations

available for testing relative positions of constituents in this

structure. Moreover, we may require specific accessing functions

that, given a position in the addressing structure, can access

- 65 -

. ...,.____^.--: ■■^-- --■■■■ ■ ■

Report No. 3963 Bolt Beranek and Newman Inc.

related positions or scan in specified "directions" from the

specified position. A GTN which actively uses such accessing

functions to explore its input will be referred to as an "active"

parser, while one that responds to an input sequence of perceptions

that is determined by an external agent will be called "passive".

In either case, an input element will consist of a pairing of an

elementary constituent with the positional address of that element

in the indexing space.

Formally, one can specify a GTN by the following components:

1. A perceptual domain - the space of possible input
structures to which the GTN parser will be applied. Examples
include strings of symbols from a finite vocabulary (as in
traditional formal language theory), two-dimensional arrays of
light intensities or hue descriptors (as in image understanding) ,
sequences of sentences paired with speakers and unordered
collections of facts and beliefs (for dialog understanding), and
continuously varying time functions over a finite time interval
(e.g., energy, fundamental frequency, and formant positions for a
speech signal) . Individual perceptions from a perceptual domain
will be assumed to be composed of "elements" standing in some
relationship to each other.

The perceptual domain will be assumed to have an associated
indexing space, with respect to which elements of a perception can
be "located" on a "perceptual field". Examples of indexing spaces
are serial position of elements in a string, coordinates of
positions in a two-dimensional (or n-dimensional) array, time
points and time intervals in continuous signals, and node names in
arbitrary gi.aph structures.

2. A set of probing operations or measurements that can be
used on an arc to indicate the conditions under which a transition
can be made. In general, these will permit a probe to be made at
any point in the indexing space. A probing operation will be
assui.ied to set a focus pointer to ehe location in the indexing
space where the measurement was made, and subsequent probes can
take this focus pointer as a point of departure. Different probing

- 66 -

Report No. 3963 Bolt Beranek and Newman Inc.

operations may make measurements at the same location, leaving the
focus unchanged, may shift the focus by a specified amount in a
specified direction and make a measurement there, or may scan from
the current focus in a specified "direccion" (or by some other
specification of a trajectory of successive focus locations) until
some measurement predicate is satisfied (returning the value of
that measurement and leaving the focus set at the point where the
measurement occurred).

3. A structural space in which the descriptions of parsed or
recognized inputs will be constructed,

4. A set of constituent types that can be recognized.

5. A distinguished top-level constituent type, specifying the
kinds of constituents that can be taken as a characterization of
the entire perceptual complex being parsed.

6. A set of state names characterizing the possible states of
the (nondeterministic) automaton in the course of parsing.

7. An initial state function, assigning one or more initial
states to each constituent type, characterizing the states which
can begin the knowledge acquisition process for a constituent of
that type. Note that a given state may be an initial state of
several different constituent types - this is useful when two
different constituent types have a significant overlap of initial
measurements (whether or not they have any actual overlap in
constituent membership) .

8. A final state function, assigning one or more final states
to each constituent type, characterizing the states of the
automaton at which complete recognition of a constituent of that
type could be signaled. Note again, that a given state could be a
final state for several constituent types - this would occur when
two or more constituent types had possible common members.

9. A set of arcs connecting pairs of states, consisting of
one of the following types:

PROBE Measurement operation>, an arc that enables a transition
if the indicated measurement operation returns a non-failure result
and sets the focus to the location of that measurement.

JUMP, an arc that enables a transition from one state to another
without a probing operation, although computations can be done by
the transition and conditions on the arc may block it.

- 67 -

Report Nr. 3963 Bolt Beranek and Newman Inc.

ACCEPT Constituent type> <location constraints>, an arc that
enables a transition when a constituent of the indicated type has
been found satisfying the indicated location constraints. (In
certain "top-down" parsing algorithms, the location constraints may
be used to actively initiate the initial states for the desired
constituent with appropriate focus locations. In other parsing
algorithms, they are used only as filtering constraints on
constituents that are independently found "bottom up".)

FOCUS <focus specification^ an arc that enables the focus to be
relocated - e.g., to a location that has been saved in a register.

10. A set of registers that can hold the intermediate results
of computations and the measurements that have been accumulated by
a sequence of transitions. Registers can contain arbitrary
elements from the structural space (which should include the
structural descriptions of elements from the perceptual domain) and
can also hold elements from the indexing space (in order to
remember previous focus positions for later use).

11. A set of structure manipulation operations that can be
used to set registers to the value of the current constituent (i.e.
the constituent that enabled the current transition) , the value of
the current focus, the value of another register, a structural
combination of the contents of other registers, or a specified
constant.

12. A set of transition augments that characterize associated
conditions and actions that must be satisfied (or performed) in
order to take a given transition. These will include register and
flag setting operations, a "require" action that blocks the
transition unless specified conditions are satisfied, and a "cover"
action that specifies that a given element (or region) of the input
is to be considered covered or consumed by this transition. (One
of the requirements for a complete parsing is that tne entire input
be "covered", analogous to the requirement in parsing a sequence of
symbols that the end of the sequence must be reached.) This
formulation of covering as an independent operation that may or may
not be performed by an arc permits arcs to look at regions of the
input beyond the boundaries of the region that they are attempting
to parse without thereby asserting that the pieces of evidence that
they have considered in this way have been fully accounted for.
This situation is analogous to the use of lookahead in ordinary
ATN's and other sequential parsers. We assume that ACCEPT arcs
automatically cover all of the input covered by the constituent
they accept.

- 68 -

.««SÖSfiS»_. ^ - _-.:_-_-i-_^-_.-_., I. C\,--.- ■ .._.-.---:-.::-■: .

Report No. 3963 Bolt Beranek and Newman Inc.

13. A completion condition for each state that can be a final
state of a constituent. The completion condition characterizes
conditions on the register contents in order for a complete
instance of that constituent to be recognized. Note that a given
state will have completion conditions for each constituent type for
which it is a final state.

14. A construction function for each constituent type that
will construct a structural representation of a parsed constituent
from the contents of the registers when a complete constituent has
been recognized.

An ordinary ATN is a GTN whose perceptual domain is strings of

words from a vocabulary, whose probing and measuring operations are

the operations of CAT and WRD arcs that determine whether the next

input word is satisfactory, and whose structural space is the space

of tree or list structures. Constituent types are the phrase types

recognized, and states, arcs, and transition augments are the

states, arcs, and the conditions and actions of the ATN. The CAT

and WRr arcs of the ATN are PROBE arcs with the appropriate

measurement operations, and they automatically cover the input that

they consume and move the focus beyond it. PUSH arcs are ACCEPT

arcs and their location constraints are temporal adjacency to the

focus. The focus in this case is simply the current position

indicator in the input string.

A more interesting example of a GTN would be a transition

network to understand visual images on a two-dimensional input

field. In such an application, the coordinates of the indexing

69 -

Baarftiirf.Trr-.,,!.

Report No. 3963 Bolt Beranek and Newman Inc.

space could include positional information on the orientation of

the head and the eye, as well as position on the retina, and

probing measurements would include eye movement and head movement

as possible operations. The trajectories for such probes could be

determined by global measurements in the retinal field, including

detection of "interesting" events by peripheral vision, and such

probing may involve scanning in a given direction until an event of

a certain kind is found, rather then the expectation of an

immediately adjacent probe as is customary in sentence recognition.

Another interesting example would be a "middle-out" parser for

speech understanding that probes for words at stressed syllables

and other prosodically marked locations and works out from such

positions to fill in the gaps. Likewise, a GTN to perform the

acoustic phonetic analysis of the input waveform would be an

interesting application because of its continuous perceptual

domain, as would applications to tactile understanding and spatial

exploration.

6.1 Observations

Although the GTN is at this point merely an abstract,

formulation of a generalization of the essential hypothesis

factoring techniques of ATN grammars, it appears to be a very

attractive framework for a variety of perceptual situations. For

- 70 -

Report No. 3963 Bolt Beranek and Newman Inc.

example, the control of the combinatoric possibilities of explicit

hypothesis enumeration is an attractive feature for the analysis of

visual scenes. In this connection, it is interesting to note that

an observed characteristic of human visual processing would be

explained by the use of a GTN for visual scene interpretation.

Specifically, the observation that there appears to be a

characteristic signature of eye movements for recognizing a given

scene on separate presentations (at lease in laboratory situations

[Noton & Stark, 1971]) would be predicted. That is, if visual

scene recognition were governed by a GTN as outlined above, then

one would expect that attributes of the scene would govern the

sequence of probes performed on the input in order to recognize it,

and that replication of the input stimuli would replicate this

sequence. (One would also expect changes in situation involving

such things as a priori expectations and peripheral vision would

alter the selection of probes, so that this characteristic

signature might disappear outside of a controlled environment.)

7. Conclusions

In Woods [1977, 1978c; Woods & Brachman, 1978], I discussed

the general principle of hypothesis "factoring" - i.e., the

coalescing of common parts of alternative hypotheses in such a way

that an incremental hypothesis development and search algorithm

does not need to individuate and consider separate hypotheses until

- 71 -

-^r'- i^n^iT^t-ntfm- n^r-r

Report No. 3963 Bolt Beranek and Newman Inc.

sufficient information is present to make different predictions in

the different cases. The most common example of factoring is the

well-known device called "decision trees" in which a cascade of

questions at nodes of a tree leads eventually to selection of a

particular "leaf" of the tree without explicit comparison to each

of the individual leaves. Tf the tree is balanced, then this leads

to the selection of the desired individual leaf in log(n) tests

rather than n tests, where n is the number of leaves of the tree.

Another example of factoring is the mechanism in ATN grammars

whereby common parts of different phrase structure rules are

merged, thereby saving the redundant processing of common parts of

alternative hypotheses.

One can think of an ATN as a generalization of the notion of

decision tree to permit recursion, looping, register augmentation^

and recombination of paths. In this paper, I have discussed some

families of automata that are variations or generalizations of

ATN's and which provide similar hypothesis factoring capabilities.

These include ATN cascades (CATN's), which permit a decomposition

of complex language understanding behavior into a sequence of

cooperating ATN's with separate domains of responsibility; KLONE

networks, which can be interpreted as a kind of ATN that permits

capturing grammar regularities through inheritance and a natural

specification of relatively unordered constituents; and generalized

- 72

• twiiM-iffiiiiMiriiiiriiiiiiTniiii

Report No. 3963 Bolt Beranek and Newman Inc.

ATN's (GTN's), which remove the implicit assumptions of linear

sequence of inputs that characterizes ordinary ATN's.

A GTN has a structure similar to an ATN in terms of its

appearance and flow of control, except that information is accessed

in response to explicit probing operations in the grammar rather

than coming from an implicit "next symbol" operation. The states

in the GTN correspond to states of knowledge, and the sequence of

transitions leading to a state correspond to the info, lation

seeking operations that lead to that state of knowledge.

The culmination of the development presented here would be a

cascade of GTN's represented in some form of structured inheritance

network, to permit sharing through inheritance and representations

at varying levels of generality. Research is currently under way

exploring the use of such automata for several stages of natural

language understanding. Much work remains to be done to refine the

notions of such automata and to assess their utilities. To this

end, the presentation here may stimulate additional work along

these lines.

Of specific interest are two distinct notions of the concept

of factoring that are beginning to emerge from such considerations.

One, which I have called hypothesis factoring, provides a reduction

through sharing in the number of distinct hypotheses that have to

- 73 -

Report No. 3963 Bolt Beranek and Newman Inc.

be explicitly considered during parsing. The other, which I will

call conceptual factoring, provides a reduction through sharing in

the number of times or places that a given fact or rule needs to be

represented in a long-term conceptual structure (e.g., the

grammar). The former promotes efficiency of "run-time" parsing,

while the latter promotes efficiency of grammar maintenance and

learning. In many cases conceptual factoring promotes hypothesis

factoring, but this is not necessarily always the case.

- 74 -

Report No. 3963 Bolt Beranek and Newman Inc.

References

Bobrow, R.J. 1978. "The RUS System", in B.L. Webber and
R.J. Bobrow, Research in Natural Language Understanding,
Quarterly Technical Progress Report No. 3. BBN Report
No. 3878, Bolt Beranek and Newman Inc., Cambridge, MA. July.

Brachman, R.J. 1978a. "Structured Inheritance Networks," in Woods
and Brachman, 1978, Research in Natural Language
Understanding, Quarterly Technical Progress Report No. 1, 1
September 1977 to 30 November 1977, BBN Report No. 3742, Bolt
Beranek and Newman Inc., Cambridge, MA. January.

Brachman, R.J. 1978b. "A Structural Paradigm for Representing
Knowledge," Ph.D. dissertation. Division of Engineering and
Applied Physics, Harvard University. Also, BBN Report
No. 3605, Bolt Beranek and Newman Inc., Cambridge, MA, May.

Burton, R.R. 1976. "Semantic Grammar: An Engineering Technique
for Constructing Natural Language Understanding Systems." BBN
Report No. 3453, Bolt Beranek and Nei man Inc., Cambridge, MA,
December.

Earley, J. 1968. "An Efficient Context-free Parsing Algorithm."
Ph.D. thesis, Dept. of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA.

Marcus, M.P. 1972. "A Theory of Syntactic Recognition for Natural
Language," Ph.D. thesis, Dept. of Electrical Engineering aid
Computer Science, M.I.T., Cambridge, MA, February.

Noton, D. and Stark, L. 1971. "Eye Movement and Visual
Perception," Scientific American, June.

Smith, B.C. 1978. "Levels, Layers, and Planes: The framework of a
system of knowledge representation semantics." Master's
thesis. Artificial Intelligence Laboratory, MIT, January.

Thompson, F.B. 1963. "The Semantic Interface in Man-Machine
Communication," Report No. RM 6 3TMP-3 5, Tempo, General
Electric Co., Santa Barbara, CA, September.

Van Lehn, K. 1978. Determining the Scope of English Quantifiers.
MIT Artificial Intelligence Laboratory, Technical Report No.
483.

- 75 -

Report No. 3963 Bolt Beranek and Newman Inc

Webber, B.L. 1978. "A Formal Approach to Discourse Anaphora",
Ph.D. thesis. Harvard University. Also BBN Report No. 3761,
Bolt Beranek and Newman Inc., Cambridge, MA, May.

Woods, W.A. 1967. "Semantics for a Question-Answering System,"
Ph.D. thesis, Division of Engineering and Applied Physics,
Harvard University. Also Report NSF-19, Harvard Computation
Laboratory, September. (Available from NTIS as PB-176-548,
and from Garland Publishing, Inc. as a volume in a new series:
Outstanding Dissertations in the Computer Sciences.)

Woods, W.A. 1969. "Augmented Transition Networks for Natural
Language Analysis," Report No. CS-1, Aiken Computation
Laboratory, Harvard University, December. (Available from
ERIC as ED-037-733; also from NTIS as Microfiche PB-203-527.)

Woods, W.A. 1970. "Transition Network Grammars for Natural
Language Analysis," CACN, Vol. 13, No. 10, October.

Woods, W.A., R.M. Kaplan, and B.L. Nash-Webber 1972. "The Lunar
Sciences Natural Language Information System: Final Report,"
BBN Report No. 2378, Bolt Beranek and Newman Inc., Cambridge,
MA, June. (Available from NTIS as N72-28984.)

Woods, W.A., M. Bates, G. Brown, B. Bruce, C. Cook, J. Klovstad,
J, Makhoul, B. Nash-Webber, R. Schwartz, J. Wolf,
V. Zue. 1976. Speech Understanding Systems - Final Report,
30 October 1974 "to 29 October 1976, BBN Report No. 3438,
Vols. I-V, Bolt Beranek and Newman Inc., Cambridge, MA.

Woods, W.A. 1977. "Spinoffs From Speech Understanding Research,"
in Panel Session on Speech Understanding and AI, Proceedings
of the 5th Int. Joint Conference on Artificial Intelligence,
August 22-25, p. 972.

Woods, W.A. 1978a. Research in Natural Language Understanding,
Quarterly Technical Progress Report No. 2, 1 December 1977 to
28 February 1978. BBN Report No. 3797, Bolt Beranek and
Newman Inc., Cambridge, MA, April. (Available from NTIS as AD
No. A0497 81.)

Woods, W.A. 1978b. "Semantics and Quantification in Natural
Language Question Answering," in Advances in Computers,
Vol. 17. New York: Academic Press. (Also Report No. 3687,
Bolt Beranek and Newman Inc.)

- it> -

Report No. 39C3 Bolt Beranek and Newman Inc.

Woods, W.A. 1978c. "Taxonomic Lattice Structures for Situa'-.ion
Recognition," in TINLAP-2, Conference on Theoretical Issues in
Natural Language Processing-2, university of Illinois at
Urbana-Champaign, July 25-27.

Woods, W.A. and Brachman, R.J. 1978. Research in Natural Language
Understanding, Quarterly Technical Progress Report No. 1, 1
September 1977 to 30 Nove, *r 1977, BBN Report No. 3742, Bolt
Beranek and Newman Inc., Cambridge, MA, January. (Now
available from NTIS as AD No. A053958).

- 77 -

Official Distribution List
Contract N00014-77~C-0378

Copies

Defense Documentation Center 12
Cameroi Station
Alexandria, VA 22314

Office of Naval Research 2
Information Systems Program
Code 437
Arlington, *A 22217

Office of Naval Research 1
Code 200
Arlington, VA 22217

ocfice of Naval Research 1
Code 455
Arlington, VA 22217

Office of Naval Research
Code 458
Arlington, VA 22217

Office of Naval Research
Branch Office, Boston
495 Summer Street
Boston, MA 02210

Office of Naval Research
Branch Office, Chicago
536 South Clark Street
Chicago, IL 60605

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

Office of Naval Research
New York Area Office
715 Broadway - 5th Floor
New York, NY 10003

Naval Research Laboidtory 6
Technical Information Division
Code 2627
Washington, D.C. 20380

Naval Ocean Systems Center 1
Advanced Software Technology Division
Code 5200
San Diego, CA 92152

Dr. A.L. Slafkosky 1
Scientific Advisor
Commandant of the Marine Corps (Code RD-1)
Washington, D.C. 20380

Mr. E.H. Gleissner 1
Naval Ship Research & Development Center.
Computation & Mathematics Dept.
Bethesda, MD 20084

Capt. Grace M. Hopper 1
NAICOM/MIS Planning Branch (OP-916D)
Office of Chief of Naval Operations
Washington, D.C. 20350

Mr. Kin B. Thompson 1
NAVDAC 33
Washington Navy Yard
Washington, D.C. 20374

Advanced Research Projects Agency 1
Information Processing Techniques
1400 Wilson Boulevard
Arlington, VA 22209

Capt. Richard L. Martin, USN 1
Commanding Officer
USS Francis Marion (LPA-249)
FPO New York 09501

