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ABSTRACT

Two similarity laws for a thick, axisymmetric, turbulent boundary
layer on a long circular cylinder have been established. The validity
of the assumption of constant-stress moment in the law-of-the-wall
region is analyzed under the assumption of similarity. A new loga-
rithmic mixing length, which takes into consideration the effect of
transverse curvature on turbulence, is proposed for the law-of-the-
wall region. 'With this logarithmic mixing-length model, the mean-flow
momentum equation yields a law-of-the-wall relation in terms of the
exponential integral in the logarithmic portion of the inner layer.
Comparisons with available data and other proposed relations reveal
that this logarithmic law gives a definite improvement. Also a mathe-
matical explanation is given as to why the cylinder data do not
deviate appreciably from the classical two-dimensional law of the wall,
even though it is observed that the turbulent characteristics, such as
the size of large eddies and the turbulent intensities are much smaller
than for a flat plate.

When the boundary layer is very thick relative to the radius of
the cylinder, the flow in the outer region of the boundary layer is
similar to an axisymmetric wake. With this assumption, a velocity-
defect law is derived, analogous to that for aﬁ axisymmetric, turbu-

lent wake. It is assumed that the velocity defect has a separable form.




Depending on the modeling of the turbulent shear stress, the mean-flow
momentum equation in conjunction with the similarity assumption, gives
different differential equations. An eddy-viscosity model leads to a
second-order linear differential equation, solutions of which are
known as Kummer functions. On the other hand, the mixing-length model
gives a nonlinear differential equation for which the solution is
obtained in terms of semi-convergent infinite series. The comparisons
of the results with the available data indicate that the eddy-viscosity
model is preferable to that of the mixing length. The former is
applied to compute the boundary-layer characteristics, and the results
are shown to be in good agreement with the available data.
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INTRODUCT LON

A turbulent boundary layer on a transversely curved surface has a
different structure from that of a flat-plate boundary layer if the
boundary-layer thickness § is of the same or higher order than that of a
typical transverse dimension of the body. This transverse-curvature
effect is of importance in computations of the boundary layer near the
tail of a body of revolution, in estimating the surface resistance of
ship models, or other three~dimensional elongated bodies. Since thin
boundary-layer approximations are not valid, these so-called thick
boundary layers need special treatment.

The growth of the turbulent boundary layer on a circular cylinder

of constant radius is a special case of the problem of transverse-
curvature effect, since the pressure gradient is almost zero every-
where and there is no strong interaction between the boundary layer
and the external flow. This problem has been studied in the past both
by experimental and theoretical methods, because of many engineering
applications in hydrodynamics, aerodynamics, instrumentation and
textile engineering, and also, because of the simple geometry which
isolates the effect of transverse curvature from that of the longitu-
dinal radius of curvature of other clongated axisymmetric bodies.

Although the effect of transverse curvature in laminar, axi-

syumetric boundary layers has been well established by Seban and Bond

o ST TSRS B A 0 ALY B e P -~ -




[1], Kelly [2] and by Glauert and T.ighthill [3], much less analytical

work has been done for the turbulent case. In 1949, Landweber [4]
investigated the transverse-curvature effect by using the 1/7-th power-

law velocity profile and the Blasius skin-friction law. He showed that,

at a given value of momentum-thickness Reynolds number, the skin fric-
tion on the cylinder was greater than that of a flat plate, and that
the boundary-layer thickness was correspondingly smaller.

Most of the investigators in this area were concerned only with
the inner layer, particularly with the logarithmic portion of the
law of the wall. They all assumed that the classical two-dimensional
law of the wall had to be modified. Some of them tricd to modify the
constants of the two-dimensional logarithmic law, and others modified
the argument of the function,but not the function itself. or example,
in 1957, Richmond [5] obtained a law of the wall for the axisymmetric

boundary layer by using Coles' streamline hypothesis in the region near

the wall where he assumed that mean flow is Jdominated by the wall.

Richmond proposed an expression for the nondimensional velocity
* o g o * ;
4 =u /;1{_ as a function of the argument y (1L + y/2a). He, then,

obtained the logarithmic law simply by replacing the argument of the
two-dimensional logarithmic law by this new argument. TIn 1967, Rao

[6] showed that the viscous-sublayer relation is not linear for axi-
e ; : & ; r : i
symmetric flows, but is given by u =a n — . With y replaced by
a

7 v

1 g 52N : =
- in y + B, he proposed a different form for the
o

Symbols are defined in the "list of symbols" and in the subsequent

chapters where they first occur.
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law of the wall, in which he kept the constants of the two-dimensional
law. lLater, however, the experiments of Rao and Keshavan [7] showed
that the universal constants of a flat-plate boundary layer are
"functions" of Rea and a* for axisymmetric flows. On the other hand,
Yu [8] and Chin et al. [9] kept the form of the two-dimensional loga-
rithmic law but teied to wmodify the constants.

Other work done in this acrea employed closure models of two-dimen-
sional Flows and the assumption of constant stress moment in the law-
of-tha-wall region. In 1963, Sparrow, Eckert and Minkowycz [10]
analyzed the turbulent velocity and thermal boundary layers on a
cylinder of constant vradius by using Deissler's eddy-viscosity model.
In 1972, Patel [11] obtained a solution for the inuner layer by using
a two-dimensional, mixing-length model given by Landweber and Poreh
]

Fable I.1 summarizes the velocity distributions in the logarithmic
portion of the law of the wall proposed by various authors.

Although the boundary layer on a long slender rod, when §/a >> 1,
is almost all a wake-like flow, very little attention has been paid to
the woke portion of the houndary layer. Rao and Keshavan [7] tried
to find a similarity variable for the velocity-defect region by trial

U =
and error, They found that the velocilLy defect D yields simi-
e (a + y)u S
larity in terms of the variable r = DA L | based on their
experimental data. On the other hand, Yu [8] and Chin et al. [9]

presented their measurements in classical two-dimensional defect-law

coordinates and tried to adjust the constants.




Tn 1972, White [13] approached the problem with a simple integral
analysis in which he assumed that the law of the wall suggested by
Rao [6] is valid throughout the boundary layer. Thus, the wake portion
of the houndary layer was not considered.

In 1970, Cebeci [14] solved the turbulent boundary-layer equations
by an implicit finite-difference method, applied after the momentum
equations had been linearized. In his treatment, Cebeci, used an
eddy-viscosity model of thin, two-dimensional boundary layers which
ignores the effect of transverse curvature on turbulence. [However,
Cebeci's solution is the only complete one available.

Tn 1976, Afzal and Narasimha [15] studied the problem at large
values of the frictional Reynolds number based on the radius of

% oY
cylinder a, a = Ql.’ with the boundary-layer thickness § of order a.
They used the equations of the wean flow and the method of matched
asymptotic expansions to show that the flow can be described by the
inner- and outer-layer concepts that are used in two-dimensional
turbulent boundary layers.

Some of the researchers, however, did only experimental work;
namely: Yasuhara [16], Willmarth and Young [17] and Willmarth, Winkel,
Bosar and Sharma [18]. But the only measurement of turbulent quanti-
ties (cxcept the wall-pressure fluctuations measured by Willmarth
et al. [17,18]) are given by Afzal and Singh [19].

Althoug!. a large nuuiber of measurements for the mean velocity
profiles are available, the similarity laws for the axisymmetric tur-

bulent flow along a circular cylinder have not as yet been well

D R R S S T 0 % e o o a =

e
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established. Hence, this study is mainly concerned with the determin-
ation of the similarity laws by using the mean-flow momentum equations
and closure relations for the Reynolds stress distributions, and their
application to improve the calculations of the boundary-layer char-
acteristics.

It is well-known that, for axisymmetric flows, the total shear
stress is not constant, but that the stress moment, rtT, may be
assumed to be constant in the law-of-the-wall region. The validity
of this assumption is analyzed in conjunction with similarity of the
flow, in Chapterv 1.

The wmeasurcments of Willmarth et al. [17,18], Afzal and Singh [19]
and Patel, Nakayama and Damian [20] veveal that the transverse-curva-
ture affects turbulence directly. The results indicate that turbulence
intensities, and the size of the large cddies and consequently the
mixing length are reduced compared to values for a flat plate. A
mixing-length model which takes these characteristics into account is
proposed in Chapter 1, and applied to deduce a law of the wall from

the mean-flow m mentum equations. The results are compared with the

data of Willmar et al. [18], and with other proposed forms of the
law of the wall.

When a/§ approaches zero, the cylinder may be considered as a
small vorticity-and turbulence-producing disturbance. Hence the flow
may be considered to be similar to an axisymmetric wake flow. The
important difference is that the drag generating the wake is not con-

stant, but a function of the longitudinal coordinate. With these




considerations, in Chapter 2, a similarity law has been derived for
the velocity-defect region, analogous to the axisymmetric turbulent
wake, both by using eddy-viscosity and mixing-length concepts. The
vesults are compared with the data of Willmarth et al. [18].

In Chapter 3, using the results of the law-of-the-wall and the
velocity—-defect law, an approximate method has been presented for

computing the boundary-layer characteristics.
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CHAPTER 1

'HE LAW OF THE WALL

1.1 General Remarks

For a thick boundary layer growing on a long, slender cylinder of
constant radius, due to the simple geometry, it is generally assumed
that:

i) The mean-flow streamlines remain almost parallel to the sur-

face regardless of the relative boundary-layer thickness. This

assumption implies that the normal component of the mean velocity

is much smaller than the longitudinal component, that is v << u,

and hence the induced pressure gradient is negligible.

ii) The magnitudes of Reynolds stresses are similar to those of a

[lat-plate boundary layer.

Under these assumptions, the boundary layer develops in a constant
pressure field. In terms of the cylindrical coordinates (x,y) shown
in Fig. 1, where x and y are the coordinates parallel and perpendicular
to the axis of symmetry of the cylinder, respectively, the boundary-

layer equac.ions for the mean flow are

du gu - L ¥
“ex " = dy pr Jy T M
Y (ur) o Ju v :
e o - < sl i = 2
=, 3y rv) 05 or r <Dx 5y v =0 (2)
- - . e TR T s i i WS e 2 — . e e e :‘:""";
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where u = u(x,y) is the mean velocity component in the x-direction.

v(x,y) is the mean velocity component in the y-direction.

r = a+ y, with a the radius of the cylinder.

T (x is the total shear stress, which is given b
bl ’ o

Here p and p are the density and the dynamic viscosity of the fluid,

and pu' v'

is the so-called Reynolds shear stress due to the fluctuating

components u' and v' of the instantaneous velocity.

The boundary conditions are

ulx,0) = 0 vilae, 0 =00, t(x,0) = 'rw(x) (4)

Lim u(x,y) = Ue 5 lim v(x,y) = 0 (53
y:"‘o y)oo

where UC is the velocity at t'e edge of the boundary layer.

Since it is assumed that the curvatures of the mean-flow stream-

lines are negligible, the interaction between the boundary layer and
(5] 5] b

the external flow wmay be assumed to be negligible also. Therefore,

once the external flow is specified, Eq. (1) and Eq. (2) can be solved

by using a proper closure relationship for the Reynolds stresses.

The simplest and the most commonly used closure relations are given

by the classical phenomenological theories, which relate Reynolds

stresses to the mean flow through the well-known concepts of mixing

length and eddy viscosity. Using the mixing-length concept, Patel([11]

gives the velocity distribution in the law-of-the-wall region as




}'* 2 + x '

R e e (6) ?
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here t = % G e 4 P i
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§

T = the shear stress at y = 0,

; W
)
\ L = mixing length,
For thin Dboundary layers, there are numerous formulations for the
mixing-icagth distribution. As discussed by Patel[[l], the most recent
and appropriate one, given by Landweber and Poreh[12], is
* * g 2 :'\".)4-.
L = ky /:mh(\ v ) (8)
!
where k = 0.418 is the Von Kdrmidn constant,
A = V/3/63 is a constant given by Patel[11]. !
" & ; §
For a flat-plate boundary layer, 1 is assumed to be unity and i
' i
fqs. (6) and (8) give the law of the wall. For an axisymmetric, tur- }
bulent boundary layer, however, it is well known that the total stress,
v, does not remain constant in the law-of-the-wall region, although,
under certain conditions, the stress moment (rt¢) can be assumed to be
constant and equal to (;u’w)-
L.2 Analysis of Shear-Stress Distribution
It is usually assumed that, in a turbulent flow along a smooth
o] wall, the velocity distribution, in the part of the boundary layer
§
5
{
4

W

. = a s T e ~ ———— - e
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nearest thewall, depends upon only the density, viscosity of the fluid
and the wall shear stress. Dimensional analysis, applied to the vari-
ables (v, y, a, T B v), then gives the functional relation

* Y

w =fLy ;a ) (9 '
Assuming that the functional relation given by Eq. (9) holds for a

thick axisymmetric boundary layer on a circular cylinder of constant

—

radius, Eqs. (L), (2) and (9) give an expression for r+ as follows:
Ju 3 A dur 3f “y* SE Ba
aus e 7 ) S kel o SO A - i - da
X o0x Yo (v ,a) dx u_[ *  9x : ®0x
dy da
2 - 1 N % _A
M e T g Wt T aE
% Re = ds * %
dx T 8y v dx ya v odx X )y a

The data of Willmarth et al.[18] show that the term 3Ff/da is almost
zero, as has been verified analytically in the solution obtained for
the law of the wall, which is presented in a subsequent section.

Therefore the above expression for du/dx can be approximated by

du _ d Yo aly £) (10) :

0xX dx Z)y" §
UZ

Jua <t of

Iy v * s

Jy

From Eqs. (2) and (10), one obtains

ot
w

; y du * 7
V = = = * S J fr D_(,y:'_f_)a dyx
ru dx o
| 0 oy

T o = - B R R e
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l or, integrating by parts,

E > * i

du ; y
Vv & 1 % *
v = - ~u - (]\(l‘ y £ - % J v £ dy (|2)

T £ a _I_ y O (,
|
|

Then Eqs. (9), (10), (11) and (12) give !
' Ju 3a du [ % 1 ' g y % % |
u :\x v e iy i-r- GRS A ) e e, oy J y fdy |
‘ (s} y E & a + y 0 ?
du 3 » ot y;“ ) .
E B, EL % ’ |
" W .lx(l A E 0 y fdy (13)

also, with t = tot "= pu't, the right-hand side of Eq. (1) becomes

{ P r 3 = * -

il o (1) =~ % < [(a +3 )1 ] (L4)
y a +y oy

Substitution of Eq. (L3) and (l4) into the boundary-layer Eq. (1) now

gives

9 * %+ % % 2 ' e
e e s e (e U ) y fdy (15)
oy

' U U x

chadic

where g = ac G = -2 Rit= el
wile z dR m > N v
X T

Integration of Eq. (15) by parts with respect to y gives

P

| b
' £?
| #.
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* % % 3
% . I ' ¥ . ot 92 & y ' Yy * % %
(a +y )t 0 - Q0 (a +y ) )fdy + £ y fdy dy
0 0 ‘0
= * ] * *
S P L Y 2 Y % %
= =g fa t dy H J Yoty e y fdy
0 0 0 ‘0
%
¥ % ;
- J vy £ dy*
0
: s + - # : ;
Since, at ¥y =0, t =1 and £(0,a ) = 0, the above equation yields
" a:‘: ; y.\ ¢ (y:‘c)
e e {1 ~ @ J E(E) SEECE) e F dg} (16)
ANy 0 a

% 1
For small values of y and o , such that the integrals in Eq. (16)

v + :
are negligible, T can be approximated by

K3
~

PRSI A (17)

w

it y"

On the other hand, if the inertia terms in Eq. (1) are neglected and

the remaining equation is integrated with respect toy, the same expres-
: + : ot : 2 s :

sion for T , given in Iq. (17), is obtained. Thus the integral term

in Eq. (16),

£CE) +

“(y;'\-’a:':’d') - U' I £(&) - g] dg (18)

represents the effect of inertia on the distribution of the shear stress

+ : : -
1 across the boundary layer at a given scction. The shear-stress

e~ - e e s o e ——————A
BERAR 0 TR RN R R
8

o - Gp e TR
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é distribution given by Eq. (17) has been used widely in the literature.
| It assumes that the inertia terms in the boundary-layer ecquation are ’
| |
; negligible, and hence that the stress moment, rt, is constant in the |
|
' |
law-of-the-wall region, at a given section. The relative magnitude of |
the 'inertia' term in Eq. (16) can be analyzed as follows. In the |
* * x |
blending zone, f£(y ) is less than y , but of order O(y ). Then |
|
% - % 9 |
y 2 % B . s * |
J Etdy 0 <y5'> s ( y fdy =0 yi‘
0 0 '
; Therefore, from Eq. (16),
5
| 1 % Y3 %3
| o a /. w
; B e =) (0 57 ) (19)
T Aty : :
lhis result can be obtained directly, without using similarity (1
assumptions, from the Taylor-series expansion of tlie stress moment, rr, 14
about y = 0,
2 2 3 3
1 ; T 20
BUEDREE i G S S 20)
W 2 5 2 5 3
dy y=0 b y-0
i d(rm) ; ; s :
since ——=+ = 0, as is seen from the nounslip condition and Eq. (1). £ |
y=0 H
Differentiation of Eq. (1) with respect to y gives | 4
2
10 age
u u 1o R R T -%-~§§-(rr) - ?<)§LI)< (21)
y xy A yy p dy pr” Yy
|
3'.' 3
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where each subscript in the above equation corresponds to either a first-
order or sccond-order partial differentiation with respect to the sub-

script letter used. From the nonslip condition at y = 0, u = v = u =0,

x
from Eq. (2) at y = 0, we have vy = 0. Therefore,
2
§—£f;)< =0 (22)
dy  |y=0

Differentiation of Eq. (21), again, with respect to y, with the nonslip

condition at y = 0, and Eq. (20), gives
3

1 4 (rr)

2u u + u v R
y Xy Y ¥y pa 3

dy =0

Differentiation of Eq. (2) with respect to y and setting y = 0 gives

<u by ) =0 (24)
Xy ¥ y-0
Also
Tw 1 dt
Yy V-0 Ry y=0 ¥y y-0

Therefore, From Eqs. (23), (24) and (25),

9 3_(,'7 £ i e dA w (26)
3 2 Yy odx
9y U
y=0

Substituting Eqs. (22) and (26) into (20) now gives the Taylor-series

cxpansion of the stress as

T N RS R YPTO  4a e ——— ~-

Y e SR T AT
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or, in nondimensional form,

+ ' % .
Tl ;.;*?“'—7.; (l = % oy 4 + ) (28)
a +vy

which is in agreement with Eq. (19).
'
A typical value for ¢ for a flat-plate boundary layer, from

> P = 1 . ! —6 o & . 0' *3 -/
RefJf120 “dsia « =6 % 108 . Therefone, at 'y = 30, S 0.054, and

hence, the error in using Eq. (17) for the shear stress distribution

*
would be order of 5.4%. As y 1in reases, the contribution from the

oo
w

% !
inertia term c(y ,a ,0 ) would increase. Consequently, the error would
be larger in using Eq. (17) for the shear-stress distribution rather

than Eq. (16).

1.3 Numerical Solution of the Law of the Wall
Under the assumption of similarity, Eq. (6), together with Eqs. (8)
and (16), defines the law of the wall for the axisymmetric turbulent

boundary layer. From Eqs. (6) and (8),

+
- S e e (29)
N N + . >
dy I = Z»sz 2t:mh(,\zy Z)'r |

N

"k ' y - w i
T+ = ",._::l‘*i;; 1 o) J E(E) JECE) + |(‘Y-g) £ dE (16)
a +y 0 a
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% '
For various values of a and ¢ , this pair of cquations has been

solved simultancously by using the modified Adams-Bashforth method and
Simpson's 1/3 rule, vespectively. The distribution of the shear stress
given by Eqs. (16) and (17) is shown in Fig. 2. The law-of-the-wall

. * *
range increases as a increases. For the largest value of y , where
the law of the wall is valid, estimated from Willmarth's data, the
contributions of the inertia terms to the shear-stress distribution for

' -5 %
¢ = 10 and for the various values of a 1is shown in Table 1.1.

TABLE 1.1 ERROR DUE TO INERTIA TERMS

4 yx 'r+ = a /(a +y ) 'r+ = (l ~-c) correction to ‘l‘+
o
e BN G U e e s S S e Tlop ol ey e ol e,
50 169 0.228 0.2265 0.794
100 244 0.2907 0.2372 1.203
500 444 0.5297 0.5196 1.893
1000 544 (15 6477 0.6333 2217
%W j
Also, knowing that c(y ,a ,0 ) is much less than 1, and writing

+ <
Eq. (16) in the form T = 1:(1 -~ ¢), then from Eq. (6), one obtains

i DU —
~

u

%
* Iy 2T (1 - v/Z)dy i kS *

, : .
0 1+£+4y26r Boca ey

Rk +
This shows that, the percentage error introduced by using L rather

oz Ly G ; ; :
than t = 1t (1 - ¢), is reduced by a factor of two in the nondimensional
O
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%
velocity distribution, u . Therefore the effect of the inertia terms 3

I on the shear stress and, consequently, on the velocity distributions

' -5 :
can be neglected if ¢ < 10 7, which is consistent with the assumed 3

*
functional formy, u = f(y ,a ). However, if the inertia terms are not

bl

o !

FrlF . 2 * * %
negligible, the functional form for u should ve f(y ,a ,0 ),
' ' %
where g = o (Rx,a ). Therefore, throughout the remainder of this

4
study, the inertia terms will be neglected in the law-of-the-wall 1

region. Hence the distribution of the shear stress may be approxi-

mated by Eq. (17).

1.4 Analysis of Distribution of the Mixing Tength
Generally, the flow in the so-called inner layer is subdivided
into three regions, namely: a) viscous sublayer, b) blending zone,
and ¢) fully turbulent zone. In the viscous sublayer, the Reynolds
stresses are generally assumed to be negligible compared to viscous

o

%
stresses; hence the mixing length is 2 = 0. With £ = 0 and

T =-—5—% , Eq. (6) gives the sublayer relation as

u = a all + yx/n“) (30)
For a flat-plate boundary layer, the viscous sublayer relation is:
W sy 3 ¥y =3 (3L)

Therefore, Eq. (30) represents a generalization of the linear relation
for axisymmetric boundary layers. For the fully turbulent region, the

viscous stresses are generally neglected in comparison with the
E . * *
t Reynolds stresses, and the mixing length is taken as £ = ky .
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For thin boundary layers, there are various mixing-length models.

*
The mixing-length model, 2 = Ky v(.mh()\ y’

'), given by Landweber and

Poreh{12], and discussed by Patel[11], gives the correct asymptotic

behavior and is continuous throughout the law-of-the-wall range. How-

ever, in the case of a thick axisymmetric turbulent boundary layer
developing on a cylinder of constant radius, it is more likely that
there is a direct influence of the transverse curvature on the turbu-
lence, and hence on the mixing length, so that it may not be realistic
to adopt mixing-length models established for thin boundary layers, as
has been done in the literature. Tndeced, the experimental results
presented by Patel, Nakayama and Damian [20], for the thick boundary
layer near the tail of a body of revolution showed that mixing length
is directly influenced by transverse curvature, and that the mixing
length decreases markedly as the boundary-layer thickness increases
relative to the l!ocal radius of curvature.

The mixing length is generally interpreted as the average distance

over which eddies transport momentum without losing their identity.

Also, it is known that the large cddies contribute more to momentum
transfer than small eddies. Hence the mixing length, 2, may be taken
to be proportional to the size of the large eddies, particularly to the !
dimension perpendicular to the direction of the main flow. Due to the
geometry, the circumference about the circular cylinder increases
linearly with the distance from the wall. Thus, in the inner layer,
eddies on a circular cylinder can stretch more Lransversely, and hence

are shorter in the dimension perpendicular to the dircction of the main 1

[

} 4 Pe3 STl 08 8 B e e e
e, e S WA T e &




flow compared to the eddies of cquivalent volume on a flat plate.
Consequently, it is reasonable to expect the mixing length to be
reduced for turbulent boundary layers growing on circular cylinders.

In other words, since the region influenced by the shear force on
circular cylinders increases as the distance from the wall, the
intensity of shear force will be decreased compared to the flat wall,
and hence the eddy size and consequently the mixing length will be
reduced. The experimental results of Singh and Afzal[19], also confirm
that oddy sizes about a circular cylinder are smaller than those of

a flat plate.

* *
For a thin boundary layer, the sublayer relation is: u =1y ,
. . . . . * 7“
and the mixing length in the fully turbulent region is: £ = ky .

For an axisymwetric turbulent boundary layer, the sublayer relatica
. * * £ h .
is: u =a wn(l +y /a ). Illence, this suggests, by direct analogy,

that in the fully turbulent region, the mixing length should be re-

placed by
% %*®.®
L =xa n(l+y /a) (32)

This analogy is reasonable, because:

i) For a thick boundary layer, Eq. (32) yields smaller v§lues
of the mixing length than for a thin boundary layer, as
required.

ii) It has the correct asyuptotic behavior, since

el

, B " 5 * 1 % 21 &
w w w 7
2im a gl + ¥y [fa ) = gim a X§ ~ i y; S f
a s arm la $
* * * *
and hence f2im va In(l +y fa) = xy
a w ven
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g 3
. ta e ! 5
i : o - (1L + a ) . i
i3d) l."un g g hL y:.:' :‘t“lm n e Y2 - g.lm e 0
a0 a a o a a%30 1 + ay
3
;
This is consisteat with the relaminarization process observed in axi=
symmetric turbulent boundary layers. Consequently, for the axisymmetric
turbulent boundary layer, Eq. (8) will be assumed to be given by
* b * . ‘Jwr‘; —;2#7;':2.
¢ =xa n(l + y.fa ) Ntanh(A y ) (33)
|
!
|

{ 1.5 Analytical Solution in the Fully Turbulent Region

Once the distribution of the shear stress and the mixing length

are established, the velocity distribution can be obtained from Eq. (6)

by using a proper numerical integration scheme. Substitution of Egs.

; (1L7) and (33) into Eq. ( 6) gives the velocity distribution as
1; . y x % ‘
| N - et A N A L N W ELE. SR
u : /2
| * % 2 %KD 2 * S 2 %D :
(a +y )1+ |L+4c a en (A+y /a )tanh(A"y ) “‘*""1' =
al ok
s (34)
In the fully turbulent region, from order-of-magnitude considera-
| tions, Eq. (34) can be simplified and integrated analytically. In the
{ , . ; 2 %2 !
- fully turbulent region, tanh(A"y 7) approaches unity and the term
2 %2 2 kK a* i
4¢"a “gn (1L +y /a) 7.;,—?'—-@*— is much great:r than one. Hence
I
Eq. (34) reduces to
A ¥ /"*‘ *
|’ ] * *
| u - i R ;_ B —a}.‘c’ 'd'}["— -"":T:"__;c"“ "‘ Br((l ) (35)
' . % * xa tn(l +y /[
: iR by an(l +y /a)
i |
| !
| |
-t !
{4
¥ |
{
: - - e - "’-W""" " o g".@tv‘;“ : ¥ 4
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i
% *
where Br(a ) is the integral of Eq. (34) from zero to y , the value
%
of y at which flow becomes fully turbulent. The change of variables, 1
2 & & ; :
z- =1+ y /a, transforms Eq. (35) to the well-known Logarithmic
integral [21]
z
* 1 dz *
== e - 36
u z [ A Br(a ) (36)
‘o
Since z = /1 +y fa > 1, Eq. (36) may be cxpressed as the well-
known Exponential integral [21],
% 1 TR %, % % :
== {E, + - E,[2 A : o
u . (bl[szl Y Aa ] l[ nA y0/1 ]) Sr(a )
or, alternatively, as
* 1 /"'”'2':"—% T
L B Ei[Qn Ay Al SEEE S () (37)
% -1 kR %
re B'(a ) =— E,[! + a’]l +
where B'(a ) . i[znA yo/ ] Br(a )
Also Ei(x) is given in terms of the infinite series
i | B
3 = 2
! Ei(x) =y + nx + Z g (38)
| n=1
|
i where y = 0.5772156 «++ is the Fuler constant. Therefore, in terms of
: the infinite series, the velocity distribution in the fully turbulent
region is given by
‘
|
1 ;
: £
- !
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|
H’ i
{ .
-
g{
| - ——

N
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B eterrrev= «

> —e ) 4 ; >'c/ ) ot %
w w w & 5 o) &
o = Lon fodl ¢ y7a"] sy ey fedl g +y

n=1 2 m e nl
(39)
7 b 1 *
When a > o | u z-; ¢n ¥y + B (40)
Comparison with the asymptotic form of Eq. (39) then yields
* 1 * %
Bhi(a ) + =’g ¢n 2a + B(a ) (41)

and hence FEq. (38) becomes

% & % % N =
u® =-l ¢n la” en (1 +~X; + 1 z Lon(l +y /a)] = Bila ) (42)
K E K n
a n=1 20 sl

[t is interesting to note that, in 1967, from purely heuristic
considerations, Rao [ 6] proposed that the logarithmic law for the

axisymmetric boundary layers should be given by

uK =~£ mn aﬂ on t 1+ XE + B (43)

a

where B is the usual constant for the flat-plate boundary layer. Rao

w
obtained this expression simply by replacing y 1in Eq. (40) by the

% %
sublayer relation a {n (l + l;) .
a

The infinite series in Eq. (42) converges very rapidly. For
% % 4 % %
y /a < 2, five terms and for y /a < 5, seven terms are sufficient to

% R R *
calculate u to five significant figures. Tor y /fa =5, and a = 100,

% A *
the first term of the series is 20% of f%nf[a 2n(l +y /a )], but as a

o % ": '_‘?J \'i?‘—i; ;3.




26

% ik A - PRI SR AR
incrcoses and y /a decreases, the contribution from the infinite series

The following table shows the contribution of the infinite

decreases.
* -
series for some typical values of y taken from Willmarth's data [18]. :
3
FABLE 1.2 COMPARISON OF RELATLVE MAGNITUDES
OF TERMS IN EQ. (42)
% * % % : i
a y y /a lIL Zt 3++ 4§ | 4
198.2 227.4 1.147 5.020 0.23820 0.4219 0.73%
198.2 < 323.3 1.632 5.2565 0.4839 0.5493 1.13% i
27 .4 32653 1.2023 5.3672 0.3948 0.4374 0.737%
1376 1981 1.4393 7oL123 0.4459 0.5009 0.72%
S * 0%
¢nfa 2n(l + y /a )]
I 1 * & " 1
5 en(l +y /a) (first term of series) 1
% x N 1
¥ i Dn(L+y /a ]
n=1 2" a .+ n!
5 % error due to neglecting the infinite series after the first term.
Equation {(34) has been integrated for various values of X and com-
pared with Willmarth's data [18]. The results show that A is constant
and cqual to V3/63. With this value of ), Eq. (34) gives the complete
relocity distribution in the law-of-the-wall region. Hence,using the

results from Eq. (34), the value of B(aw) can be calculated directly

% *
from Eq. (42). The variation of B(a ) with respect to 1/a is linear,

4 as shown in Fig. 3, and can be written as




4 l',' Z‘S‘& + 5 : 45 (/4 [;)

a

B(a ) = -

Also, as shown in Table 1.2, the largest contribution of the !
bl ’ O !
infinite series comes from the first term. Neglecting the rest of the

infinite series, Eq. (42) can be written as

o %
* * 4 5
W o % gn |a @ ‘Y',; gn (L + y?; i _"]':3138' b 343 (43
a a a

E
For y /a < 1, the argument of the logarithm can be expanded as

: e Sl % = L 2
! * x = X
| B i pleet o nig se o s e sl e e
[ a a a ; a
!
1 * 3 2 3
| il e = iy +_§ 2 e
5 a a a
!
' N 2 % 3
| g ol iy SNy 4
} =y 1 24 % F 24 % i3
a a

(46)

*

Therefore the argument of the logacvithm,Y , behaves very nearly like
% 3 . x %

y , even in the neighborhood of y /a = 1. Also

* % %
2 £(y ,a ) o 41.758

Ja da a

*
These results verify the assertion in Sec. 1.2 that 3f/da is negli-

gible.

etk feiny St PRRRANE A L et g G P ; T hhv oy ',‘q't*d . o &
R Pl Y

o T, ™




28

The data of Willmarth et al [18] are compared with Lq. (34) and
with the solution of Patel [11l] in Fig. 4-Tig. 8. A comparison of
Eq. (34) and Eq. (45) is also given in Fig. 4. As can be seen from
this figure, the analytical approximation of Eq. (34), i.e. Eq. (45),
is in cxcellent agreement in the range of the logarithmic portion of

% %
the law of the wall, even for the smallest value of a . Also, Fig. 9
compares the data of Willmarth et al [18] with Eq. (45) for various
x

values of a and §/a. It is important to emphasize that the argument
Ho %

Y given by Eq. (46) behaves very nearly like y in the neighborhood

* =

of y /f/a = 1. This explains why the Preston-tube technique with the
usual calibration curve gives good measurcments of the wall shear
stress, and why Some of the previous researchers, like Yu [8] and
Chin et al. [9], whose data are limited to &§/a < 2, were able to keep

the form of the classical two-dimensional logarithmic law.
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CHAPTER 2

THE VELOCITY-DEFECT LAW

2.1 General Approach

e

Unrestricted rotational flows which are of finite lateral exlent

and carried along by the mean velocity of the external free stream are

defined as wake flows. The retarded flow downstream of a solid body {
7 placed in a free stream of uniform velocity is governed by a constant
total force applied to the {luid by the solid body. It is this‘cnn—
stant drag force that determines the motion in the wake, when self-
preserving flow has been attained. Except for the inner boundary
condition, the equations of the mean flow u and the boundary conditions %
for an axisymmetric wake are exactly the same as the mean-flow equations

of a boundary layer growing on a cylinder of a constant radius, given

{ by Eqs. (1), (2), (3) and (4) in the previous chapter. A thick, axi- {
| ;

symmetyic boundary layer is attained on an infinitely long cylinder i
when the radius of the cylinder is very small relative to the distance

x from the nose. If the bou.dary-layer thickness relative to the

transverse radius of curvature is large, the cylinder may be considered

’ as a small vorticity- and turbulence-producing disturbance. Conse- E
quently, the flow might be considered similar to a wake flow with the

modified inner boundary condition. The important differcnce is that

the drag generating the wake is a function of the longitudinal coordi-

nate in the present problem. With these considerations, the

- AP OO s NG Wt VO * ins ClER
s DRSPS ST A AT, - o
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velocity-defect law has been derived in a manner similiar to that which
has been used for the axisymmetric turbulent wake under the following
assumptions:
i) As stated in the previous chapter, the curvatures of the
mean-—-flow streamlines are negligible; hence v << u.
ii) The velocity gradient, 3u/dr, is small in the region of the
velocity-defect law.
iii) Osecen's approximation is valid.
Under these assumptions, the mean-flow equation takes the follow-

ing form:

du

d 1 3
L T s p
e 09X pr or SBE) (47)
where uy = Ue - u satisfies the boundary condition
lim ud(x,r) =0 (48)
| e

The solution for the laminar boundary layer for the thick axi-
symmetric flow along a circular cylinder of constant radius, given by
Glauvert and Lighthill [ 3 ], suggests that the proper axial length scale

; ; ; 2 X :
for correlating a thick bo.ndary layer is § = —— , where Rea is the

aRe
a

Reynolds number based on cylinder radius a, and the free-stream
velocity Ue. On the other hand, the solutions for laminar and turbulent
wikes give the same mathematical form for the velocity profile if the

eddy-viscosity concept is used. Therefore, for the present problem, the

use of the following nondimensional quantities seems to be appropriate:




a2y

2=-_g<7_ P L R:LSV{' a
> aRe * d u, “ a
+ T - r
gl .
pu

With these nondimensional quantities, Eq. (47) becomes

2
[ .a}lg_ - e ,l_ fdE ('r'r+)
T = =
r Jr
wliere
6 5 o e Y
2 Re3/2 U
a

I1f the velocity variation across the boundary layer in the

38

(49)

(51)

velocity-defect zone is small compared with the free-stream velocity,

then the flow may be self-preserving. This suggests that the nondimen-

OO
sional velocity defect u, may then be of the scparable form

uy = x(8) £(n)

where

S £ =0

Then one obtains

(52)

(53)

(54)



IO ——em -
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e ORE 32 = XE(n) - -X[;‘i ne' (55)
where

BEr = k-4, e = & | (56)
and substitution of Eqs. (52) and (55) into Eq. (50) gives

B-%R« <>'(f xR nf') i (57)

£ R n on

Integrating Eq. (57) with respect to n from n to 1, and using

boundary conditions given by Eq. (54) yields, after some manipulation,

2

1
J nf dnp = nT+ (58)

& RX n

Equation (58) is the basic equation for the velocity-defect law.
In order to solve it, the variation of the shear stress neceds to be
modeled. Depending on the modeling of the shear stress, Eq. (58) gives
difforent differential equations for x(&) and f(n), as will be shown

later.

2.2 Eddy-Viscosity Approach
The numerical solution of Cebe i [14] showed that transverse
curvature does not affect eddy viscosity directly. Cebeci used the
free-stream velocity and the two-dimensional displacement thickness as

the characteristic velocity and the length scale, respectively, in his

R T SRR W TR
0 'O
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treatment. Tn general, for free turbulent flows such as jets and wakes,
eddy viscosity, as a function of the longitudinal coordinate, gives
very good results. Since it has been stated that the flow in the
velocity-defect region might be considered as a wake flow, the eddy
viscosity may be assumed to be a function of the longitudinal coordi-
nate, &, only. Hence, the distribution of the shear stress in terms

of eddy viscosity, €(§), is given by

T = pe o= = —pe 4 (59)

Substitution of the nondimensional quantities given by Eq. (49) and

the velocity defect given by Eqs. (52) and (53) into Eq. (59) gives

2k . e PNy s b Y o
o e s 0 oe —— —of (60)
/Re n YRe
or
+ Ue 2 2
P N S T ;§<B X g (61)
2 ——— aR Vv R
u_ /R

Substituting Eq. (61) into Eq. (58) and rearranging gives

oy Al
- -;{l-- g + (2 + I}*—) EEYE T R (62)

The similarity assumption requires that

2 4 B2 i op

, a constant (63)




a constant

The solution of Eq. (63), obtained by the method of separation of

variables, is

x(g) = cr?(®D (65)

where C is a constant of integration. | 4
In order to solve Eq. (64), it is necessary to know the function

c(£). TFor an axisymmetric turbulent wake, ¢/v is proportional to the
ol A ; -1/3 : 4

longitudinal coordinate x with a power law as x . Since, it has

been suggested that the flow in the velocity-defect region is analogous

to axisymmetric wake flow, ¢/v may be assumed to be

l .?‘;(;Q_ e (66)

where m and A are constants. IHence, after substituting Eq. (66),

U Y—

FEq. (64) gives the differential equation for the boundary-layer thick-

ness R as

RR = “% ¢ (67)

Integration of Eq. (67) gives

-1 —
R2 K- 4x ¢ 4 AZ gm%l &' A A

2 w1 2 ; o CER AEH

<

] i »
22 Dy W il c a i s oL
3 .v‘) %.'! W e




where K is a constant of integration. From Eq. (68), we obtain

mt1

: ~-1/2
e T g-
R
o Rl 2 x/a E :
After substituting & = B Eq. (69) takes the form
\
a

mtl
N -1/2
R = A ﬁéi 1+
a R

Equation (65) then becomes

m+1

¥ R V) e
x(e) = cfa (> <1 s 2)
a R
or
mt+1
¢ Bl (1-b)

where B = (;Az(b"‘l)'

From £q. (62), the equation for £(n) is

1
2
nf%-ZbJ nfdn+a2nf'=0
n

Differentiation of Eq. (73) with respect to n gives

ST nE? 4 (o® 4 nDIEY + 201 = b) wf = O
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(69)

(70)

(71)

(72)

(73)

(74)




The change of variables n = ar eliminates uz in Eq. (74), vwhich then

reduces to
CE 4 (L gDE + 2(1 - b)gE = 0 (75)
This satisfics the boundary condition

lim £(g) = 0 (76)

g

The assumptions of similarity and the eddy-viscosity model have led

to the second-order linear differcntial equation
() + (o + ) £16) + 201 - BYEGE) = 0 a7

where ¢ = n/a, and o and b are parameters to be evaluated from the
boundary coadition and the experimental data. This differential equa-
: : 7 e 1
tion has two singular points, at ¢ = 0 and g = ». Since, g(g + =)
g
/i ; ; ; -
=g + 1 is analytic and rcgular c¢verywhere, g = 0 is a regular sin-
gular point. ‘Therefore, Eq. (77) has at least one nontrivial solution

of the form
@ .
fe) =57 ) & g (78)
In order to determine the behavior of Eq. (77) at infinity, put

t = 1/r; then the behavior of Eq. (77) at infinity can be obtained as t

goes to zero. With the transformation t = 1/g, Eq. (77) then becomes

s e B i




4t
de 1 1 df 1
—— e e ] === - == fi = 79
2+(t 3> th+2(1 b) 5 £=0 (79)
dt t t
- 3 : 1 1 L =
which is not regular at t = Q0. Since t s 3 = 1 — 7 fherefore,
t e

t = 0 anl hence ¢ = » is an irregular singular point. Hence, a mnon-

trivial regular solution may or may not exist in the neighborhocd of

On the other hand, the exact solutions of Fq. (//) can easily be

obtained for the values of b = 0, 1/2, 1.

£+ (t; + ]‘4) f' + 2f = 0 (80)
which can be put into the form

d i 2

& = 8

de lgE’ + ¢ ] 0 (81)
Integration of Eq. (81) once gives

gf' + czf = C

82
k (82)
The solution of this first-order linear differential equation is
2
2 52
- /2 e

e r - > S - 5 83

() e (Cl J z dg + 02) (83)
This solution with €, = 0 corre 'onds to the wake-flow solution.

L
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£ + (c . i) £' =0 (84)

The solution of Eq. (84) is

£(g) = e'C2/4 <c L <Qg>4~c K <5E)) (85)
i 1 o\ 4 2 o\ 4

where IO(%K- and Ko( EE-)are the Bessel function of the first kind and
the modified Bessel function of the second kind, of order zero, respec-

tively.

Case 3: b =1
1 1 1
£ F <§ +-E) £' = 0 (86)

Separation of variables gives the solution as

e—cz/z
£(e) = ¢ J ----- e 6, (87)
or, in series form,
Cl C2 fz 64 C6
il ety T8 ol Stk ool T e T e Rl Thi o)

This case is impossible, according to Eq. (65), since the velocity

defect uy decreases and R(§) increases with increasing values of &3

i.e. b must be less than 1.
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The exact solutions of the differential equation for b = 0, 1/2, 1

suggest the form of £(g) to be
~F 2
£L) = e~ Flz) , 2= 22

Substitution of the transformation given by Eq. (89) into Eq. (77)

reduces the latter equation to
zF"(z) + (1L - 2z) F'(z) - bF(z) =0 (90)

Eq ttion (90) is a confluent hypergeometric differential equation,
particularly known as the Kummer differential equation. It has a
regular singularity at z = 0, and an irregular singularity at z = o,
The method of Frdbenius gives only one linearly independent solution.
In order to give a general solution of the differential equation, it is

necessary to find another linearly independent solution. The two lin-

carly independent solutions are given by Abramowitz and Stegun [21] as
Fl(z) 1Fl(b,l,z) = M(b,1,2)

@ (hy

(b,1,2z) tnz + ) —»~—r~‘—2—- [y(b +n)

1
F. (z) = U(b,l,2) = - =——— ¥ )
: E(b) 11 n=0 (n!)

- 20(1 +n)]p (91)
where

(b), = Bl + 1}(b + 2) svs b 4n =~ 1) , () =1 (92)

(b + n) is the logarithmic derivative of the gamma function, which is

known as the Digamma (psi) function, and given as




h7

1 ~~~~~ 1 o LAY l
1 B

| — R R P 1
P(b + n) = (n-1) +b (n-2) +b % 2 F

1
—f ———— 4 =+ 93
ok b ) (99)
where P (b) :-JL [2n T(b)] {is tabulated in Abramowitz and Stegun [21].
1Fl(b,l,z) is the confluent hypergeownetric function, particularly

known as the Kummer function. The other notations for Kummer functions

are M(b,1,2z) and ¢(b,1,z). In series form, LFl(b’l’z) is given by

B et o E (b +n) n (94)

e = BV e
e n=0 (n!)Z Pl n=0 (n!)2

M(b,1,2z) and

Tn the neighborhood of z = «, the solutions Fl(z)

FZ(Z) = U(b,1,z) have simple asymptotic expansions given by

w (1 ~b)n (1 —b)n

b-1 =z -n

F,(z) = M(b,1,2) =~ 2 e e z (95)
1 n!
n=0
Ly YD) iy
F.(z) = U(b,1,2) =~ 2z i -1 (-2) 3 (96)
2 n!
n=0

For z » =

T PIPBE) L z b-1 ; -1

by (2) = M(b,1,2) Fey © ? (1 + 0(]z] )] : (97)

- o =D -1

P,(2) = Uib,1,2) =2 "fL # o(lz| ] (98)
Thercfore, the general solution for £(n) is

£(n) = e 2 F(z) = e“z[c1 M(b,1,2) + C, U(b,1,2)] (99)

and, as z v», (n r»)
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b-1
F() & €, 2+ C, e 2 272 4 o(lz|™h (100)
1L 1'(b) 2
In the outer region of the boundary layer, it is assumed that the
mean flow behaves like an axisymmetric wake. The solution of an axi-
symnetric wake with the eddy viscosity assumption gives the defect-
velocity profiles in terms of an exponential function. Hence, if the

boundary layer behaves as an axisymmetric wake in the velocity-defect

region, the constant Cl must be zero. Therefore, the solution for

£(n) is
_-7 2
[(r\) =e U(b,].,Z) > & = LL—Z (lOl)
20,

From Eq. (52), (65) and (101), the velocity defect is

Sl R2(b~-.l.) o 2

q u(b,1,z) (102)

where b, C and o« are the constants to be determined from the experi-
mental data. On the other hand, the following analysis indicates the
possible range of the values of b,

The nondimensional displacement thickness for an axisymmetric flow

is defined as

8 R cu R u
L . [ e B J 4 ar + J 47 ar (103)
a 1 U a a 1 U Ue

where r, is the point of intersection of the two laws, the law of the

wall and the velocity-defect law., Since the flow area increases with




—————————— —————
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radial distance, the major contribution to displacement thickness comes

from the velocity-defect region for a thick axisymmetric turbulent flow.

Therefore, the nondimensional displacement thickness can roughly be

approximated by

§ R u
-_.l_ = .,_(1 AR N/
a J y v (104)
r e
e
EZ
Substituting Eq. (102) and z = ~5 5 into Eq. (104) gives
2R o
2 -2
8 ; La r
2D 2 -
L % a CR L e = u(b,1,z)dz , z = ——— (105)
a o 2 2
Z 2R a

o

Since the displacement thickness 61 increases with the boundary layer

thickness 6, b must be a positive number. Thus we have 0 < b < 1.

From Eqs.

written as

(91) and (94), the Kummer function U(b,1,z) can be

(k) z"

U(b,1,2) :-Fa;f é Z 'A-Jl«f— [onz + y(b + n) - 2y(1 + n)]p (106)

1=0 (n!)

This series is convergent for all values of z. Let N >> 1; then

u(b,1,2z) =

where

A =k 2" ;
- 56 nzo W [2nz + P(b + n) - 2 ;;(1+n)]+RN
: (107)
© (b) 2"
S T [fnz + Y(b + n) - 2p(1 + n)]} (108)
n=N (n!)

B e sp e ———
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since 0 < b < 1, (b)n=b(b+l)(b+2) ¢es (b+n - 1) <n!, H
n=1,2,3,++« and when n > «
1 1 1
g +n) = tn(b +n) - 57— - ———5 + ————— v Bt :
AR Stk ki a)t o 120(k # w) !
(b +n) < y(1 +n) ~ fa(n + 1) f;
5
Therefore t»
2" T ket |
]R l & = Z “—[tnz - Y(1 + n)] < —— it [2nz(n + 1)](L09) .
N r(b) HEN n! r(b) nzN n! -
i
fnfz@@ + 1)] . fnlz(a + D] & i
N n
Hence
S0 TRl SO SR
N ) (N - 1)! N NN + 1)
2 3
2" in[z(N + D] (1 R TR A PR
TN - 1)! he o 3
Z 22 1
For 2z < Ny 1 kg oce § sl s~
N 1 -3 |
N i
Therefore
t 1 ZN enfz(N + 1)]
Ryl < by Znlz DL (110)
¢ (N - (L -5) '
3 -6 |
292 % 10 5
For 2 = 5, N = 25, IRNI < - T |
’ }
i
g
i
E2 REE A TERARRG: WETH
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Therefore, the series in Eq. (106) can be truncated at n =25 for z < 5.
For larger values of z, the asymptotic expansion given by Eq. (96)

should be used. Also, as l/l » 0, one obtains

u(b,1,z) = - —~  (anz + y(b) + 0(]zenz|) (111)

-
r(b)
Fquations (70) and (1Ol) contain six undetermined constants;
namely A, m, K, b, C and a. These constants have been determined from
the data of Willmarth et al [18], and Keshavan [7]. 1In Eq. (69), as
£

® goes to zero, R goes asymptotically to one. Hence the constant K

must be of order unity. Consequently, for large values of R, the

1.
=
2 2
factor (l - KZ) in Eq. (70) is negligible. The plot of § = x/a
Re
R a
§ +a
versus R = ——— on log-log paper, for large values of R, then gave

&G

the value of m as 7/13, from the slope of the best straight line drawn
{ through the data, as shown in Fig. 10. Once the value of m had been
obtained, the values of K and A were evaluated according to Eq. (68),
by using all the available data. The values found were A = 18.5 and
K = -2,

The values of b, a and C (or B) were determined solely from the

data of Willmarth et al [18]. TLet

wn
i

S(z) = Ce 2 U(b,1,2)

- u st
ud—<1--U )»/I?ea

e

<
]

then, according to Eq. (102),

¥ = 8@} - N (112)
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Therefore, for each assigned value of z = Zi’ the graph of Y versus R on
log-log paper should give a straight line of slope 2(b - 1) and
intercept S(zi), according to Eq. (112)., Willmarth's data were

plotted according to Eq. (112) for various constant values of z(or n),

as shown in Fig. 11. The value of b, determined from the slope, was

b = 0.35. Therefore, from Eq. (72), X(£) becomes

S 5\0-65
ol s (- 3)

R

Hence, from Eqs. (52) and (101), the velocity defect becomes

2

aaliess
) o il e

—Z

e Vikhyt sz

After applying Eqs. (115) and (116), Eq. (114) becomes
Z = BT (117)

The values of 7Z were obtained from Willmarth's data. The values of T,

corresponding to the same values of n, were calculated from Eq. (116)




54

*q JO @9NTBA JO UOTIBUTWIDIA(Q

*IT @2an81y

0°00T 0°0T 0°1
m R 0°T
m
|

=1
d 3
m
| 0
” —_—
| 4
| i
| _

— 0°01
w
| 08°0 =
W 06°0 =
| A
| 0€0 = -
|
! -
m {
ﬁ -
« |
w ]

O o T G e o P




55

for a range of values of a. The value of « which gave the best
straight line passing through the origin was chosen. Consequently, the
slope of the best straight line gave the value of B. The results are

as follows:

— 5/13
e ¢ (x/a
R\/ == —18.)<Re> (118)
R a

u, - u - 5 (BB5 =

£ — = 4\/)(- (1 - —»2—) e ub,1,2) , z =1 (119)
e R 20

«=1/2 , b = 0.35

Comparisons with the data of Willmarth et al. [18], and Keshavan [7 ]

are shown in Figs. 12 and 13.

2.4 _The Mixing - Length Approach

The mixing length for the outer part of the boundary layer and the
wake is generally assumed to be constant and proportional to a charac-
teristic length at a given section. For this problem, the mixing

length ¢, in the velocity-defect region will be assumed to be given by
g=Xt= R R =—= (1.0
a ’ gt

where XZ is a constant to be determined from the available data. Then
the shear-stress distribution is given by

Z

2 o
LB a£> o ( d (121)
T pL (ar =pJ or

B e e D e LT S e S A
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[n terms of the nondimensional quantities given in Eqs. (49) and

(53), Eq. (l21) becomes

+ 2 Ui 3Gd )
kiR meg W i

u_ Re
¢ " a
or, by Eqs. (51) and (52),
+ '
T = ZAi »/Rea BZ X2 £ 2 (123)

Equations (58) and (123) define the velocity-defect law. Sub-

stituting Eq. (123) into Eq. (58) nd rearranging, one obtains

. e 1 :
e R g% . (2 i {“) I nf dnf = nf 2 (124)
2, /Re ~ &X Rx / 'n

The similarity assumption requires that

—'ngL‘"* -;£ = a constant (125)
22 /Re X
2 a
and
2 + %l S W, a constant (126)
RX

Substituting the solution of Eq. (126), which was given previously by

Eq. (65), with n = 2b, into Eq. (125) and separating the variables,

one obtains
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2
2-n s ) - .
. 27
R - VRea £ (127)

Integration of Eq. (127), then gives

7O AR A S b e

2

A C(3 - n)

3-n ekl el —_ 2
R +Q X \/Rea £ (128)

P ————r

where Q is a constant of integration. Cowmbining the group of the

constants into single constant and substituting the dimensional quanti-

i

ties, Eq. (128) yields the boundary-layer thickness in the form

B
3-m
a2 0y (129)
R
f From Eq. (65)
_2-n 2-n
3-n 3-n
= : o)
| % B L (1 + --3:;) (130)
i
; \jl{ea R
|
i Also, from Eq. (124), one obtains tlie equation for f(n),
1y 14
£ ° = ynf + l‘nl I nf dn (131) .

j n

The transformation, f(n) = yF(n) reduces Eq. (131) to one with a single

! parameter

. a P
| Bk J nF dn (132)
' n

g ety A . el
A PRI YRy




The boundary conditions are

at n=1, F(1) =F (1) =0

n=0and n = 2.

For n = 0, Eq. (132) reduces to

F /-
e 5
A

Integration of Eq.

the solution

5 o | 8f3 3
l‘o(n)~9(l n. )

This solution with ligs.

an axisymmetric circular wake.

€ase 2% n = 2

For n = 2, Eq. (132) becomes
1
1
nF 2. n2F + 2 J nF dn
3 n

' 1 '
nkF . 2 J nz F dn
n

(134) with the boundary condition of Eq.

Integrating by parts and using the boundary condition, Eq.

(133)

Fxact solutions of Eq. (132) can easily be obtained for the values

(134)

(133) gives

(135)

(129) and (130) corresponds to that for

(136)

(136) yields

(137)




Differcntiation of Eq. (137) gives 1

F (2nhF + F - ”2) =0 (138) |

|l " '
For F # 0, 2hF + F - n2 = 0 1is a linear sccond-order differential

cquation,of which the general solution is

E s /2 ol 3 %
bz(n) = cl + c2 n + 150 (139)

For F =0, Fz(n) = C3 = 0, according to the boundary condition (133),
an impossible solution. With the boundary conditions (133), the solu-

tion (139) becomes

i 1/2 3
F,(n) = 75 (5 - 6n g n-) (140)
2

Let n = (1 - 2)°, then (141)

JeRt. 53 g oy
F (2) = z (l - 2z + 3% g + 5 2 ) (142)

. 5 'S an - P TR
FZ(Z) =z (l - z + z° - 3 z- + 15 z ) (143)

L}
Here, the factor 22 assures that the end conditions F(0) = F (0) = 0

are satisfied.
The results for n = 0,2 suggest a solution for arbitrary values

of n of the form

P(z) = ] a o (144)
p=2 P
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Substitution of Eq. (141) into Eq. (132) gives
o
1
F 2(z) = 4(1 - z)AF - 8n J (1 - z)3F dz (145)
z

Differentiating Eq. (145), one obtains

1 ]
21% T A~ P B e s (146) |
Put
d 12 - P
—(F%) =) A z (147)
dz gl P
4 4 ] S
: Q- & > 7 52 (148)
p=1 P
S ,P £
(L-2)"F= ) C z (149) |
p=2 p ;

Then Eq. (146) yields

= : 150
Al 431 (150)

>
]

4 Bp - 8(2 - n) Cp y B = 2530 e (151)

where, by Eqs. (147), (148) and (149)

p+l
A = X (p+1) m(p-m+ 3) a
P m=2

m ap—m+3 RS |

T

T T TR, IR T R gy
TR T TR




= = A - - — - R o
Bp (p-fl)ap+l ‘P dp +6(p 1)ap_1 4(p Z)ap_2 A (p 3)ap_3

(153)

(154)

Then, from Eq. (150)

2
8a2 = 832

and hence a, = 0 or 1. From Eq. (151)

ptl
mZZ (p+1l)m (p —m-+3)am ap_ln+3 = 4(p4+1)ap+l -8 (2p+2 -~ n)ap

+ 24(p+1-n)a - 8(2p +2 ~3n)ap‘2 + 4(p+1-—2n)ap_3

p-1
B = 2,354,500

Lf a, = 0, then from Eq. (156), ag =8, = .. = 0 also, a trivial

solution. Hence, a, = 1. From. Eq. (156), for
-3 (6 - n)

1 2
= 36 (60 - 10n - n")

1 2 3
e (60 - 16n + 4n" - n7)

FOE P = 657,8,95:v0, the ap's can be successively obtained from




(|
|
|
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P
] 2
R T —- s 8 - — - 7 - —
ap+l e mZ} n(p -m F3)1m ap«ka T +1) (2p +2 n)ap

PO Tt SRS IR G TS R T

p(p +1) k “p-1 p(p +1) P p-2
- i +~ (p+1 -2n)a (160)

p(p +1) p-3

Therefore, the solution of Fq. (132) is the series given by
Eq. (144) with the coefficients given by Eqs. (157), (158), (159) and
(L60). TFor n = 0 and n = 2, this series solution gives exactly a
sixth~degree polynomial. TFor other values of n in the range 0 < n < 2
the series behaves as a semi~convergent one, which, if also truncated
at the sixth degree in z, gives results in excellent agreement with
step—-by-step numerical solutions of the differential equation.
Figure 14 compares the numerical solution of Eq. (132) and the series
solution with six terms for various values of n. Then, from Eq. (160),

for p =5,

) el LB 2 3 4
A6 = 8100 (900 + 168n -~ 596n~ + 299n hhn ) (161)

Thus the solution is given, with sufficient accuracy, by

F(z) ~ zz li —'% (6 -n)z + 5% (60 —lOn-—nz)Zz - 6% (60 ~16ﬂ’*4ﬂ2 —n3)23

+ 3-1%0- (900 +168n ~596n2 +299n° - azm[‘)z"] (162)
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From Eqs. (49), (52) and (130), we obtain

2-n

3-n
(1 +}> F(z) , n=(1-2°
Sh

(163)

Equations (129) and (163) contain 4 undetermined constants,
namely n, A, B and Q. The value of n = 2b = 0.7, was determined pre-
viously in Sec. 2.3. Also, the value of Q can be estimated by using
the results of the previous section. From Eq. (68), for small values
of £, R goes asymptotically to /5, a value of R which might be con-
sidered to give the virtual origin. Therefore, from Eq. (128), as g

3-n

%N
goes to zero, the value of Q is given by Q = -R = - (/2) P RS2

1

3-n
The value of A was determined by plotting [géé] versus
a

,\3-n
R (1 = -%ﬁi) . The slope gave A = 3, Tn order to find the value

R
of E, let
2-n _2-n
U -u -n 3-n
B T (1 5 ‘23‘:25> AR i
e = dke R
a
. 2
Z=7F() , n= {1 - &) (165)
Then Eq. (163) can be written as
Y = BZ (166)

2 S AL bl S
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The values of Y obtained from Willmarth's data were plotted
1 against the values of F(z) obtained from Eq. (162) with n = 0.7,
corresponding to the same value of z. The results plotted along a
straight line, but the line did not pass through the origin. This

discrepancy is due to an ill-defined boundary-layer thickness. Theoret-

i + a Uag - u
ically, as n = §~¥ = > 1 (as y » =), ’”ﬁ;"" = 0, But, for practical
T —
purposes,§is defined as the value of y where £§ﬁ~"2 = 0.01. There-
e

fore, Eq. (166) needs to be corrected to

where C = constant.
From the slope and intercept of the plot of Eq. (166), the

values of B and C are

B = 618

In summary, the results are

1 .
3-n 3-n
R [(1-52 = g 8 (167)
R /Re
-2-n 2-n
U - u /" 3-n 3-n
"U— — = {: X2 1 - —%i [618F(z) + 4.5]  (168)
e VRe /hea K o
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n = (1 - z)2 . n=20,7

GoE AL s o 85 8 g g L4
F(z) = z 1 30 2 + 24 % 9 z- + z (169)

Equation (169) has been obtained from Eq. (162) by substituting n = 0.7.
The comparison with Willmarth's data is shown in Figs. 15 and 16,

The comparison of Fig. 13 and Fig. 15 reveals that eddy-viscosity
model yields a better correlation of the data than the mixing-length
model. Consequently, the cddy-viscosity model was selected in the

subsequent analysis. }
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CHAPTER 3

RESULTS AND DISCUSSTON

3.1 Boundary-Layer Characteristics

3.1.1 Velocity Profiles

Two similarity laws for a thick, axisymmetric, turbulent boundary
layer growing on a long, circular cylinder of constant radius have been
established. As for the boundary layer on a flat plate, these are the
law of the wall and the velocity-defect law.

In Chapter 1, it has been shown that the logarithmic mixing
length, rather than the linear one, gives a better modeling of the

Reynolds <tresses for axisymmetric turbulent flows with zero pressure

gradient. Also, it has been shown that the logarithmic mixing length
gives the usual log region in terms of the Exponential Integral of
o/l + y/a. This has a series expansion in tcorms of the argument,
Y* = a*/{—li;algg-zn(l 1F y*/a*), which behaves like y* for y/a < 1.
This result explains why the cylinder data, when plotted in terms of
two-dimensional coordinates, as was done by Willmarth et al. [18], do
not deviate appreciably from flat-plate results. It also verifies the
use of a Preston tube to measure the wall shear stress for axisymmetric
boundary layers.

-As can be scen from Fig.9 , the logarithmic region extends far-

a

* %
ther to larger values of y as a increases. It also verifies that

%
a = aur/v, which is a measure of the effect of transverse curvature,
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is an important parameter for scaling the velocity distribution in the
law-of-the-wall region.

In Chapter 2, a siilarity solution has bLeen obtained analogous
to an axisymmetric wake in the velocity-defect region. The results
show that the velocity-defect profiles can be scaled by using two
parameters, x/a and R = § + a. In order to expect the boundaiy layer
to act like a wake, §/a has to be large conpared to unity, which, in
turn, is a result of the transverse-curvature effect. Willmarth's
data verify that the portion of the boundary layer which acts like a
wake becomes larger as §/a increases. The limiting case, that of a
flat-plate boundary layer, (a + ») is thus excluded from consideration.

In the case of the flat-plate boundary layer, the logarithmic
parts of the law of the wall and the velocity-defect law can be ob-
tained by assuming that there is an overla] bing region in which both
laws are valid. For the cylinder, however, the assumptions made to
obtain the solutions fail at the limits of the law of the wall and
the velocity-defect law. In the law-of-the-wall region, it is
assumed that the stress moment is constant. Hence the shear stress
is given by T+ = [/(a+y), which ignores the inertia terms in the
mean—-flow momentum equation. For large values of y*, however, the
inertia terms are no longer negligible. TFurthermore, in the deriva-
tion of the velocity-defect law, it is assumed that Oseen's approxi-
mation is valid, and that the velocity gradient 5u/dy and the radial
velocity v are small. On the contrary, as n becomes small, both of

these assumptions fail. Hence, the overlapping of the inner and the

B 1T T o R R et
L b ‘»}5‘:\;" ) :54' 1?“\‘ Wiy S
R PASR DA

T o s e e S
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outer laws, which requires continuity of the velocity gradient du/dy,
and consequently the continuity of the shear stress which depends on
the velocity gradient 3u/3y through phenomenological relations, does
not occur. However, the velocity profiles calculated from the law of
the wall and the velocity-defect law do intersect each other at an
angle which decreases as Rca increases. Figs. 17-19 compare the
velocity profiles calculated from theory with the Willmarth data. As
can be seen from these plots, the agreement is quite good except near
the intersection point. Willmarth's data reveal that the intersection
occurs at about y/(§ + a) = 0.125. For all practical purposes, the
velocity profiles can be predicted using the law of the wall and the
velocity-defect law, and should be smoothed by a french curve near the

intersection point.
3.1.2 Lstimation of the Wall Shear Stress
For the flat-plate boundary layer, the overlapping concept plays

an important role in deriving a skin-friction law. Since there is no

overlapping rcgion for the present problem, a similar procedure for

obtaining a skin-friction formula is not possible. For all practical
purposes, however, the will-shear stress can be determined from the
intersection of the two laws, by an iterative procedure.

The velocity-defect law gives the velocity profile, up to the
intersection point, by Eq. (119). After dividing and multiplying by

g = Ue/uT at the interscection point, Eq. (119) becomes

- 0.65 -z
40\/i (l - _2_) gy U(b,1,2z ) (170)
X R2 c

g - u (rc)

e L e . o st
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2
r

vhere 2z = 2n2 =2 —S— is the point at which the two laws
c (s + a)

intersect, indicated by the subscript c. From Eqs. (37), (41) and (44),

* Re
- a
with a = —= , we have
g
x - 1 Vg Be 41.76 Y e
u (r) =—=E_ [ta/r ] + = &n 2 — + 5.45 - g - - (L71)
c € (e) K o Rea K
Substituting Eq. (L71) into Eq. (170) and rearranging gives
1
oH +-; fng = P (172)
where
0.65 -z
Hel ¢ 2ld0 4\/E 1 e S U(b,1,z) (173)
Re X 2 c
a R
P = S.45 2 {E,[WE ] + 2n 2Re - y} (174)
K i c a

Given the values of x/a and Rea, R = (§ + a)/a can be computed from
Eq. (118) and consecquently, Z s ;c’ H and P. Therefore ¢ can be com-

puted by the iteration formula
1 1
o = S 175
(o] <P e in ci—-l) ( )

Table 3.1 compares the results computed by using the above pro-

cedure with Willmarth's measured values, and the values of ¢ obtained

from a Clauser plot.
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3.1.3 Shear-Stress Distribution
The distribution of the shear stress, as discussed in Section i L
: o :
can be approximated by t = a/(a + y) in the law-of-the wall region.
In the velocity-defect region, the shear-stress distribution in terms

of the eddy viscosity is given by Eq. (61),

2

+ £ o s ot

R £ (176)

v Re 3/2 R
a
where
o o A e e R - F iy e (177)
dn dz S dn ey a

Substituting Eqs. (113), (118) and (177) and the values of the con-

stants determined previously into Eq. (176), one obtains

29
~76 1 1)

2

+ 370 o x/a 2 - -~z

T = = 1 -5 /z e © U(b,2,2z) (178)
13/ Re /2 <Re ) < >

Figures 20 and 21 show the shear-stress distribution computed
from Eqs. (17) and (178) for two sets of Willmarth's data. Around the
point of intersection of two laws, there is a discontinuity in the
shear-stress distribution. As discussed in Section 3.1.1, this is
due to the invalidity of the assumptions made in obtaining the solu-
tions for the law of the wall and the velocity-defect law in the

neighborhood of y/(§ + a) = 0.125. For an axisymmetric, thick turbu-

lent boundary layer, the velocity profiles are much fuller compared
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to those of thin boundary layers. The axisymmetric, thick, turbulent
boundary layer profiles make an almost 90 degree turn at about

y/(§ + a) = 0.125. Thus, the classical, phenomenological theories which
relate the shear-stress distribution to the velocity gradient 3u/dy,
through either a mixing-length or eddy-viscosity concept, fail to give

a complete description of the shear-stress distribution if the usual

inner- and outer-layer concepts are used. Apparently, there is a third :

region between these layers which would have to be determined if more

i

H accurate and continuous shear-—-stress distributions are required.

3.1.4 Displacement and Momentum Thicknesses

The usual definitions of the displacement and momentum thickness

for an axisymmetric boundary layer flow are

at§ & &
61 = J (1 - >—-> ;’dr (179)
1 X .
and
a+é
g J E“— (1 - ﬁ‘i) idr (180)
a e e

Kelly [ 2], in 1954, showed that if the boundary layer is thick,
the displacement and the momentum thicknesses require new definitions
\

for cylindrical flow, and the physically coherent definitions are

a+d§
(6*+a)2—a2=[ (1-6“—) de?

{ a
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and
+3§
I TP o
(0 +a)° ~a =I A (l-l) dr? (182)
U u
a e e
*
The displacement thickness § and the momentum thickness 0 are
related to the displacement length 61 and the momentum length 91 by
%
A s (183)
1 2a
0. = o (1+i) (184)
1 2a
1f ;c is the intersection point where the law of the wall and
the velocity-defect law intersect, then Eqs. (179) and (180) can be
split into two integrals to be evaluated accordingly,
§ g R
1 u ~ = u\ - .-
——=J (l~——>rdr+J (1——~>rdr (185)
a U = U
1 e r e
c
or
T 1
Ve s S = Rk (186)
3
where .
(187)

(188)

T R e R
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Also, Eq. (180) gives
0 R u u
L d d = =
— T - + - —— .
= e I_ <1 U>U r dr (189)
r e e
c
where
;c
1 =—1~I W' 7 dr (190)
3 2
g ‘1
2
"a
Since, the tern1<ﬁ~> is very small in the velocity-defect region, it
e
can be neglected in the integral in Eq. (189). Hence
G
ha_-.-]:1+12_[3 (191)
Integrating Eq. (187) by parts and using the nonslip condition,
%*
u (1) = 0, gives
1 )-=2 * e du =2
neiidtde - 2 Pa (192)
1 or
Since,
* 5 %* * * i *
r=1+2=1+% Mo WL (193)
a — —
a or dy or oy
Also, in the log-region, Eq. (35) gives
SRR YR
3QI = R (194)
K = -
9y r nt
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Substituting Eqs. (193) and (194) into Eq. (192), we obtain

r i3

1 * c =3/2 -
=2 * o o
L o 2t 0 ) N [ S (195)
1 20 c c - K J= =
1 or 13 nr
- 63 : :
where r, = 1+ -5, is the point where the fully turbulent region
a
A
begins. The change of variables t = r yields
1 )2 * 1 5/2 5/2 L
s | ) Ziin el = ol = . du =
Il e rc u (rc) e (Ei[lnrc ] Ei[lnrl ]> J == 1 he
1 - ar
(196)

% _
In Eq. (196), u (rc) is given by Eq. (42) in Chapter 1, and the
: *, =
integral can be computed by a suitable numerical scheme with 3u /3r
obtained from Eq. (34).

The integrand of Eq. (188) is given by Eq. (119). Hence sub-
-2 2

stituting z = 2n2 =2 Ei-, or rdr= %?—dz reduces Eq. (188) to
R
- ML zE:
I, =4/— (1 - = R e " U(b,l,z)dz , z =— (197)
2 X 2 c 2
R z R

o

The integral in Eq. (197) is given by Magnus, Oberhettinger and Soni

[22]. Therefore,

3 ) 0.65 2 -2z -2
== <1 - —-—) R [e b z, U(b+ 1,2,zc) -2e U(b+1,2,2i]
; (198)

The integral I_, given by Eq. (190) must be evaluated by a numeri-

3
*
cal method with u obtained from Eq. (34).
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Table 3.2 compares the displacement and the momentum thicknesses,
computed by using the above relations,with Willmarth's data. In the
computati;ns, Simpson's 1/3 rule was used for the numerical integra- i
tions. The agreement is seen to be good except for the last three
conditions. A possible explanation for the discrepancy for these

conditions is that the flow was not axisymmetric for these cases, as

was indicated by Willmarth et al[l18].
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CHAPTER 4
CONCLUSILONS
E (1) For a thick, axisymmetric, turbulent boundary 'ayer on a
circular cylinder forms of two similarity laws, one a law of
:
the wall, the other a velocity~defect law have been derived.
(2) In the region of the law-of-the-wall, the logarithmic mixing

length is a better approximation than the linear one for the
Reynolds stresses for thick, axisymmetric turbulent flows. With
this logarithmic mixing length, the mean-velocity distribution,
expressed as an integral, Eq. (34), or by an approximation to it
which yields a logarithmic law in terms of the exponential

1 integral, Eqs. (42) and (45) shows excellent agreement with the
data. Eq. (45) is recommended as a simple, analytical repre-

sentation of the law of the wall for the thick, axisymmetric,

turbulent boundary layers.

%
(3) The frictional Reynolds number based on cylinder radius, a ,
is an important parameter in the law-of-the-wall region. For
*
large values of a , the law-of-the-wall approaches the classical

two-dimensional form.

%*
(4) Even for the intermediate values of a , in the region where

‘ *, %
| y /a < 1, the argument oflthe logarithmic law




(5)

(6)

(7
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* * //”“—mk * * ok *
Y =a Vl+y/a n(l+y /a) behaves like y . Therefore, the
Preston—-tube technique can be used to measure the wall-shear
stress in a thick boundary layer, with the usual calibration

curve, as was assumed by Willmarth et al [18].

The axial length scale, 52 = %éi , of the thick axisymmetric,
a
laminar boundary layer is also a proper scale for correlating a
thick, turbulent boundary layer. With this scale, the boundary-

layer thickness is well-correlated as power law or a wide range

of values of §/a, x/a and Rea.

A velocity-defect law, in separable form Gd = x(&) £(n), has
been obtained. This similarity assumption yields the nondimen-

2(1-b)

sional velocity defect, u, = CR f(n). This result shows

d
that the velocity-defect profiles depend strongly on §/a, as

indicated by Willmarth et al [18].

The eddy-viscosity concept for the velocity-defect region
appears to be preferable to that of mixing length, but the form
of the eddy viscosity needs verification by turbulent-stress
measurements. The eddy-viscosity model, in conjunction with
similarity, gives the velocity defect in terms of particular
confluent hypergeometric¢ functions known as Kummer functions.
The mixing-length model, on the other hand, leads to a nonlinear

differential equation, the solution of which is a semi-conver-

gent infinite series.

B e T SRR _—
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(8)

(9

(10)

The wake portion of the boundary layer increases as §/a
becomes larger and the wall region decreases correspondingly.
Approximately 1/8-th of the boundary layer obeys the law of the

wall.

The two similarity laws do not overlap. However, they
intersect at about-gagg = 0.125. Boundary-layer characteristics

computed by using this intersection point agree with the data

within an acceptable range of error.

There is insuificient data at large values of §/a, for a
variety of situations, to verify the accuracy of the velocity-

defect law obtained in Chapter 2. As stated by Willmarth et al

(18],

"Tn the future we may gain enough knowledge of the
effects of transverse curvature to consider the
possibility of creating an empirical formulation
for the mean flow in an axisymmetric boundary layer.
This was only possible in the two-dimensional case
after sufficient data and understanding had accumu-
lated, ..."

In the present work, such a formulation has been proposed, but,
in view of the paucity of the available data, it may be necessary i
in the future to modify the values of the constants when addi-

tional data become avaflable. 1
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APPENDIX

SOME PROPERTIES OF KUMMER FUNCTION U(b,c,z)T ]

The following properties of the Kummer function, U(b,c,z), were

applied in the text and were required in numerical evaluations.

e
€1y =——ifle
dzn

YA -Z

Ub,c,2z)] = (-1)" e % u(b,ctn,z)

(2) J o zc“l U(b,c,z)dz = e U(b+l,c+1,2)

= 5

(3) (b+z) U(b,c,z) + b(c -b=-1) U(+1,c,z) ~2zU(b,c+1,2z) =0

fMagnus et al. [22]




