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ON THE ZEROS OF EXPONENTIAL POLYNOMIALS ]

Cerino E. Avellar and Jack K. Hale

E | ABSTRACT: Suppose r = (rl,...,rM), rj

k=1,2,...,N, J = 1,2,...,M, vp°'T = ijkjrj' The purpose of this

>0, ij > 0 integers,

paper is to study the behavior of the zeros of the function 1

-A'Yk.r

h(A =
(A,r,a) 1 + ZJ -13;¢

where each aj is a real number. More specifically if
Z(r,a) = closure{Re A: h(A,r,a}, we study the dependence of Z(r,a)
; on r,a. This set is continuous in a but generally not in r.

i However, it is continuous in r if the components of r are ;

rationally independent. Specific criterion to determine when

0 £ Z(r,a) are given. Several examples illustrate the complicated
nature of Z(r,a).

F The results have immediate implication to the theory of |

stability for difference equations

x(t) - 2 A x(t - ) =0 |
== ]

where x 1is an n-vector, since the characteristic equation has the

form given by h(A,r,a). The results give information about the

preservation of stability with respect to variations in the delays.

79 02 28 155




The results also are fundamental for a discussion of the
dependence of solutions of neutral differential difference equations

on the delays. These implications will appear elsewhere.
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ON THE ZEROS OF EXPONENTIAL POLYNOMIALS

by

CERINO E. AVELLAR AND JACK K. HALE

1. Introduction. Let R = (-»,»), R; = (0,), R' = [0,=),
N

a = (ag,...,8y) €ER, T = (ry,...,T) € ®* ) P

YJk nonnegative integers, j = 1,2,...,N, k = 1,2,...,M,

1
of the real parts of the zeros of the function

Wi ile

-XY.-r

(1.1) h(A,r,a) = 1 + ZJ -13;¢ I
More specifically, if

(1.2) Z(r,a) = {Re A: h(A,r,a) = 0}

and Z(r,a) = cl Z(r,a), the closure of Z(r,a), we study the

dependence in the Hausdorff metric of Z(r,a) on r,a. It is s

Z(r,a) is continuous in a with a certain type of uniformity

It has been known for some time (see Melvin [6] or Henry [4]) t

f(r{gl is not continuous in r. However, we show that it is

continuous in r if the components of r are rationally indep

We also give a characterization of Z(r,a)

in a way which

amenable to computation. For the case in which N = M and the

function h(A,r,a) is given as

S oe!

Bt SeUID“ cC
O

J = (le""’YNM)!

Y. Ek 1 k Kk Our purpose in this paper is to study the behavior

+ion

hown that

in Y.
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N -Ar,
(1.3) h(A,r,a) = 1+ I} jaje ,

the characterization of Z(r,a) is more complete and the computation
of Z(r,a) can be given rather explicitly.

Finally, we give several characterizations of the property that
Z(r,a) N [-6,8= ¢, & > 0; that is, the polynomial h(X,r,a) is
hyperbolic. The case Z(r,a) C (-»,-6], 6 > 0 is also discussed
in detail. This corresponds to uniform asymptotic stability.

The implications of the results for difference equations are

immediate. In fact, consider the equation
(1.4) x(t) - M A x(t-r,) =0
k=1"k k

where x € R™ and each Ak is an n X n matrix. For any

$ €C = C([-h,O]JRn), h > max{rk}, there is a unique solution

x = x(¢) of (1.4) for t > -h which satisfies x(¢)(t) = ¢(t),

t € [-h,0). If we let x(¢)(t+9) = (S(t)9)(6), -h < & < 0, then
S(t): C+C, t >0, is a strongly continuous semigroup of bounded
linear operators. Furthermore, if

a(r,a) = inf{b: 3k with |S(t)| < ke®%)

then it is known (see Henry [4], Hale [2]) that

a(r,a)

h(A,r,a)

sup{Re A: h(A,r,a) = 0}

det[I - Z:=1Akexp(-krk)].

Therefore, the above results give information about the behavior of

o




the order o(r,a) of the semigroup S(t) as a function of r,a.
The results also have implications for neutral functional

differential equations of the type
(1.5) d x(e) - BN Ax(t-r)) = £(x,)
: dt k=1"k k t

where f: C »R"™ and xt(ﬁ) = x(t+8), -h < @ < 0. The solution
operator for Equation (1.5) can be written as a sum of a completely
continuous operator and the operator S(t) above (see Hale [2]).

If f is linear, this gives information about the spectrum of the
solution operator. One can then prove certain theorems on the
continuous dependence in the delays. Results of this type will appear

in Avellar and Hale [1].

2. Continuous dependence. In this section, we present some results

on the dependence of the set Z(r,a) on r,a. We need the Hausdorff

metric which is defined as follows:

For any sets E,FCIR and any point p e, let

(i) d(p,E) = inf |p-t|
teE

(ii) &(E,F) = sup d(p,F)
PEE

. (@ii) D(e,F) max{d(E,F), G(F,E)}a

The number D(E,F) is called the Hausdorff distance

between the sets E,F in R.

We need the following result from Levin [14, p. 268], the

proof of which is omitted.

e
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Lemma 2.1. For a given & < B, the following conclusions
hold: 1
(i) There is an integer p such that, for all real t,

there are no more than p zeros of h in the box
{(A: @ <cRe XA < B; t<Imi <t + 1},

(ii) For any & > 0, there is an m(8) > 0 such that;

whenever @ < Re A < B and X is at a distance > é§ from

every zero of h, one has |h(d)| > m(9§).

Our first objective is to obtain an interval which con-
tains Z(a,r). Observe that A = u + iv satisfies
h(A,a,r) = 0 if and only if
-qu'r -1VYk-r N '“Yk'rei(¢k'va'r)

a, e e 1 laygle
K Lok

where ¢k =0 if 2y ¥ Uy 0y @ W if ay < 0.

For further reference, let us state this result as

Lemma 2.2. If the equation h(u+iv,a,r) = 0 is satisfied for

“Hy ‘T
some real u,Vv, then the lengths {|ak|e k »k=20,1,...,N}

can form a closed polygon; that is, no one of these terms is

greater than the sum of the others:




-MY.°T -qu-r

J e
(2.1) Ia'Ie * z.la lc ’ et 0,1,...,N.
) kfj K
v Following Henry [ 4], define Dj = pj(a,r), S
& 2,...,N, if they exist, by the relations
' -0.Y: T -p.Y: T
J) J)
.le = a 5 3wl o e
(2.2) la; k;jl ile J =0,

It is easy to verify that each »p o) always exist, are

N,
unique and

2.3 Py = P if N=1, p. < p if N > 2.
(2.3) N 0 N 0 -

Lemma 2.3. If 0 < Yl-r < ... <Y,.r, then

j

Z(a,1) C [py(a, 1), pyla,n)].

Proof: Let wk'= YT From Relations (2.2) we have

- DN(wN-wk).

faal < 5 e e 5 haaps TR
a,| = a,le s la,]| = a,|e

we also have Wy T W >0, k=0,1,...,N - 1; W > 0,
*‘ k=1,...,N. So,
uwN N-1 -uwk

(1) w<py = lagle N> I [ae

= N "MW
(ii) wu > By = Iaol > 3 |ak|e e

l’_ : k=1




e

Lemma 2.2 implies h(u+iv,a,r) # 0 in either case, which

proves the result.

The complete structure of Z(a,r) is known for the case
when the components T are commensurable. This will be

stated as

Lemma 2.4. If rl,rz,...,rM are commensurable, that is,

r, = n.B for some B > 0 and integers Nys k=1,...,M, then

k
h(\,a,r) is a polynomial of degree Nny in e’BA,

Nny
» -AB
h(A,a, 1) = ay vrgll(e = Byl
and
Z(a,r) = Z(a,r) = (- %lnlrvl, vV =1,2,...,Nnl.

Proof: Obvious.

Theorem 2.1. E(a,r) is continuous in a in the Hausdorff
N
)

metric. Also, if S € GR: is a given set and there exist
a < B8 such that Z(a,r) C («,B) for w € S, then there exist

a &> 0 such that Z(b,r) C (2,8) for |b-a| < 6.

Proof: From the relation

N YT
|h(xob'r) i h(Asa’T)l f 2 Ibk'akle
k=0 ¢

for any € > 0, therc is a &6 > 0 such that




|[h(?,b,r) - h(2,a,r)| < € for Re ) € [pN(a,r) - €, po(a,r) + €],
|b-a] < &

that is, h(A,b,r) - h(A,a,r) -~ 0 as b + a uniformly for
Re X € [py(a,¥) - €, Py(a,T) + €].
If p € Z(b,r) then h(A+iv,b,r) = 0 for some V = V(b).

If, in addition, b - a, then every limit point o of the set
Z(b,r) as b+ a satisfies p, € Z(a,w) from Lemma .1.
This shows that é(f(b,r),f(a,r)) + 0 as b + a. Conversely,
if p € Z(a,r), then there is a & = Z(a) such that
h(p+i%t(a),a,r) = 0. Therefore, h(pP+i%(a),b,r) = 0 as B + a
and Lemma 2.1 implies P € E(b,r). Thus 6(Z(a,n),Z(b,r)) +0
as b + a and the continuity of Z(a,r) is proved.

The last statement of the theorem is also a consequence
of an argument similar to the above.

Our next objective is to discuss the dependence of Z(a,r)
E on r. The following example_given by Silkowski ['7], shows

this problem is much more difficult.

Example 2.1. Let

— hQ,1) = h(A,ry,1,) = 1+ ze leze 2
T For r = (1,2), that is,
l
i
[ » i
' h(A,1,2) =1+ 3¢ Yale?®,

TR R T T N T AN Ty




it is easy to see that the zeros of h(X,1,2) satisfy
Re A\ = -(ln 2)/2 < 0. Therefore, Z(r) = {-(1a 2)/2} if
r= (1,2).

-~

Now let us consider T = (;1’;2) close to (1,2). In
particular, take r = (1-1/(4n+3),2) where n is any non-
negative integer.

It is easy to verify that
h(i(4n+3)7/2, 1 - 1/(4n+3),2) = 0.

Therefore, Z(r) D {0} if Tt = (1-1/(4n+3),2) and so, Z(r)
is not continuous in r.

The numbers 00,92 for this example are po = 0,
Ry = -In 2 for r= (1,2). Also, po(r) = 0 for all r.
Therefore, Z(r) g_[oz(r),OJ where pz(r) + -1n 2 as
r.+ (1,2). v '

What is happening to the zeros of h, in Example 2.1, as
r varies? By Rouché's theorem, for any given r; and any
compact set K in € for which no zeros of h(k,ro) lie on
3K, there is an € > 0 such that Ir-rol < € implies
h(A,r) has the same number of zeros as h(A,rO) in K.
However, a small change in r does not necessarily give a
small change in h wuniformly in a strip as was the case
when the coefficients were varied as in Theorem 2.1. The non-
compactness of the strip plays an essential role when r |is

varied.

For the purpose of intuition, it is worthwhile to note the

| PEPPS RS —



following fact about Example 2.1. For r = (1,2), the zeros

of h belonged to a vertical line Re A = -(1ln 2)/2 and were

given by A = -(ln 2)/2 + i(tan V7 + 2km), k = 0, 1, 2,... .

For a small change in r, this vertical line of zeros is moved

a large distance. In fact, it may include Re X = 0. The

figure below is instructive
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We shall see below that it is actually po%sible for the

real parts of the zeros of h to fill an interval.




The above example shows that Z(r,a) is not necessarily
continuous in r. However, it is if the components of r are rationally |
independent. This is the content of the next theorem where we write
Z(r) = Z(r,a) since a is fixed. : ’
M
)

Theorem 2.2. If By € GR: is fixed and the components of Ty

are rationally independent, then Z(r) » f(ro) in the

Hausdorff metric as r - Ty.

Proof: Suppose P(r) € Z(r), h(e(r) + io(r),r) = 0 for some
real o(r). If r » r, We may assume p(r) -+ po.

Consider h(po+iv,r0).

%‘ 1 C'pon"’o e‘l"*k"o .
(.k =

h(DO+iV,r
k=0

0 -

N 0% T ~10(T) Y, T 1Y (o(r)r-Vr,)
a, e 0Tk 0 e k™ ok 0

N -(po+io(r))Yk'r epOYk-(r-rO) eiYk-(o(r)r-vro)

e

.

By Kronecker's Theorem, for any sequcnce rj * Ty choose

fv,. b, V. + © as 2 -+ =, such that

¥ cfolr.)r.~v. ..}
s F R e Ly e s,

By the diagonalization procedure, we can choose a subsequence

(Gj}, Gj +® as j + o, such that




.

11

iYk-(o(rj)rj-U.r

) s
e 170 g as g+ e,

Thus, h(po+i9j,rj) + 0 as j - « and cvery limit point
p of Z(r) satisfies P

0
G(T(r),f(ro)) +0 as r~>r

0 € T(ro). This shows that

0.

Conversely, supposec p € Z(r Then there exist a o

0)'
such that h(p+io,r0) = 0. We also have

B c(eiady or, -lerioly - Ger)
(3]

h(p+io,r) = } ae W) as T > T,
k=0

0

Therefore, 6(f(r0),f(r)) + 0 as r -+ ry- This proves the

theoren.

As an immediate consequence of Theorem 2.2, we have the

following result.

Corollary 2.1. Z(r) is lower semicontinuous in r; that is,

lim inf  Z(r) = 7(rY).
T

3.__Characterization of 7Z(r,a). The following characterization

of Z(r) = Z(r,a) was stated without proof by Henry [4].

Theorem 3.1. If

]




l.emma 3.5 (Henry (12]). If

N -.\Yk.r
h(x,r) = ag *+ kglake , T = (rl’rZ’
N -ka.r iYk'e
(3.1) H(p9e)r) = ao i g akc e .
; k=1
6 = (91’62"."61\[]’ 0 < eJ < 20

12

and the components of r are rationally independent, then

P € Z(r) if and only if therc is a 9 such that

H(e,b,r) = 0.

Proof: If h(p+tiv,r)
fH(p,8,r) = 0.

Conversely, if there exist 9 = (61,...,6M), Gj
= 1,...,M, such that

N ‘pYb'r iYP'e

A * ake e = 0.

By Kronecker's Theorem, there exists a sequence

such that

e : * 1

Therefore,

0, then 39 = vr such that

e 10,2m)

o,
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:yn
- . QTN .
ka r 3 1 fk r p

§ aoos S o
B rc-lYkeelYk (6-vir)

->

as n -+ ». But this implies that p € Z(r). ,

Theorem 2.2 states that Z(r) 1is continuous at those
vectors r with rationally independent components and

Theorem 3.1 gjves a way for computing Z(r) at such vectors T.

An iwportant consequence of Theorem 3.1 is the following

result.

Corollary 3.1. The following statements are equivalent i

(i) o0 € T(ro) for some rO with rationally independent

components.
(ii) 0 € Z(r) for all r with rationally independent

components.

Proof: Since H(0,6,r) in Relation (3.1) is independent of r,

it is clear from Theorem 3.1 that (i) => (ii). The other way is

i ——.

obvtous. P

Another easy consequence of Theorem 3.1 is |

Corollary 3.2. For any 1 € GR:)M, Z(r) 1is the union of a

finite number of intervals.

TV PEE NE RSP —



T Ty Ty

-y

14

Proof: If the components of r are rationally independent,
then Z(r) is characterized by the solutions of H(p,8,r) = 0.
Since these solutions are analytic varieties, it is impossible
to have the following property: there exists a p € Z(r)

{pJ.}°Ji’=1 c Z(r), Py > P as j e, (Pi,p5) N Z(r) = ¢. This

proves the corollary when the components are rationally independent.

For any r € aR:)M there exists a B ¢ GR:)q for some integer

q such that the components of q are rationally independent.
Apply the previous result to B to complete the proof.

Another easy consequence of Theorem 3.1 and Theorem 2.2 is

Corollary 3.2. If

o(r) = min{p: 30 ¢ R" with H(p,8,r) = 0}
o(r) = max{p 396 eZRM with H(p,0,r) = 0}
(3.2) 1. (r) = max{p(r) < p < 0: 36 ¢ RM with H(p,0,r) = 0}
if p(r) < O
t,(r) = min{o(r) > p > 0: 36 ¢ R" with H(p,8,r) = 0}

if o(r) » O.

Then p(r), o(r), t_(r), t,(r) are continuous in r, are either

# 0 for all r or =0 for all r, and

Z(r) C [p(T), T_(r)] U [1,(r),0(r)].

Furthermore, p(r), t_(r), 1,(r), o(r) € Z(r). if the components

of r are rationally independent. Of course, it is understood that

the interval ([p(r),T_(r)] (respectively, [T, (r),o(r)]) is not
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considered if o(r) < 0 (respectively, p(r) > 0).

We remark that one could give a finer structure theorem for
Z(r) than Corollary 3.2 by specifying a finite of number of
intervals which vary continuously with r and which coincide with
Z(r) when the components of r are rationally independent.
However, the number of disjoint intervals would not be constant
(examples will be given later) in r. On the other hand, the
structure theorem in Corollary 3.2 is independent of r. In fact,
for any r0 with rationally independent components, there is a
neighborhood U(ro) of r0 such that only one of the following

situations occur:

(i T (r) = 1. (r) =0 for all r; that is, Z(r) contains
zero for all r € U(ro).
(ii) . () <0 <t (¥} #for all ¢ £ U(ro); that is, Z(r)
contains elements < 0 and > 0 for all values of
r € U(ro).
(iii) 7t _(r) = o(r) (T+(r) does not exist); that is either
Z(r) N [0,®) = ¢ for all r € U(r’) or Z(r) N (0,») = {0)
for all r € u(r).
(iv) T,(r) = p(r) (t_(r) does not exist); either
Z(r) N (-»,0] = ¢ or Z(r) N (-~,0] = {0} for all
r e u(r?).

These remarks will be related to stability in a later section.

4. A special case. When the function h(A,r;a) has the special

form
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M -Ar.
(4.1) h(A\,r,a) = 1 + 2j=1aje J

one can give a more precise description of the set Z(r) = Z(r,a).

This corresponds to the case where N = M and ij =0 1f. 3¢ k]

ij =1, j =1,2,...,M. It is the purpose of this section to
discuss the zeros of the function h in Relation (4.1).

Theorem 4.1. Suppose 0 < Ty < ... < Ty and define Pose--sPy

If the set {rk, k=1,2,...,N} is rationally

independent, then p € Z(a,w) if and only if {Iaol.

-Pr
Iakle k kx=1,2,...,N} can form a closed polygon. Alsc,
[DN(a,r),po(a,r)] is the smallest closed interval containing
f(a,rj and E(a,r) is a finite union of closed intervals.

In fact, 1if I, C [pN(a,r),;b(a,r)], g = 1. 2eoesyN =3 S
-pr

J : -r,
the set (it may be empty) such that |a.|le 7 > I |a,]e -
j kfj &
s N-1
for o € Ij’ then Z(a,r) = [py, 0] \jEﬂIj.

Proof: 1If N =1, the theorem is trivial. Thus, assume N > 2

and define a =1, Ty = o0,

—pr. ‘prk
-  Ei0) # Ja e 7 - la, |e SR B % T S A
j j k#j K

-pr
The set {Iaol, lakle k, k=1,2,...,N} can form a closed

polygon if and only if fj(p) €9 Iorall = 0,1,2,..:;N. Thas

function H in Theorem 3.1 for (4.1) is




R ——— e
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It is clear that "fj(p) < 0 for all j and some p" is equivalent
to "there exist a 6 & RN such that H(e,8,) = 0". Thus,
the first part of the lemma is proved. The second part is
Corollary 3.2. The last part is simply writing down explicitly what

it means to have fj(p) > 0 for some j. This proves the theorem.

Corollary 4.1. Suppose 0 < ry < ... <1y and define po,...,pN

by Relation (2.2). If

A

Da(r) = max{pj(r) 0, j = 0,1,2,...,N}

v

pB(r) = min{pj(r) 0, § = @0, 8.0 .,8)
(one of these numbers may not exist), then Oa(r), pB(r) are con-
tinuous in r and are either # 0 for all r or =0 for all r.

Furthermore,

Z(r) C [pN(r)’pa(r)] U [pB(r)’po(r)l
and the end points of these intervals belong to Z(r) if the
components of r are rationally independent. Of course, it is

understood the interval is not considered if an endpoint does not

exist.

Proof: This is a consequence of Corollary 3.2.

§d
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S. Stability and hyperbolicity. In this section h(},a,r) is

the function defined in Relation (1.1); that is

N -AYk°r
(5.1) h(A,r,a) =1 + 2j=1ake :

We need the following definitions.

Definition 5.1. The function h(A,r,a) is said to be hyperbolic

at r° if 0 ¢ Z(r%,a). The function

h(A,r,a) is hyperbolic locally at r0 if there is a neighborhood

U of ro and 8 > 0 such that Z(r,a) N [-6,6] = ¢ for all

r € U. The function h(A,r,a) is hyperbolic globally in r if
0 £ Z(r,a) for each r € 0R+)M.

Definition 5.2. The function h(A,r,a) is said to be uniformly

asymptotically stable at 0 if h(l,ro,a) is hyperbolic and

T(ro,a) N [0,») = ¢. It is uniformly asymptotically stable locally

at ro, if it is hyperbolic locally at ro and Z(r,a) N [0,») = ¢

for r € U. It is uniformly asymptotically stable globally in r

if it is hyperbolic globally in r and Z(r,a) N [(0,®) = ¢

for all r.

We now prove the following fundamental result. In the statement

of the theorem, f(r),o(r),T_(r),T, (r) are defined in Relation {385«

PR




T TR T

Theorem 5.1. The following statements are equivalent.

(i) There is an r € 0R+)M, r = (rl,...,rM), with the set
{rj}?=1 rationally independent, such that the function h(A,r,a)
is hyperbolic at ro.

(ii) h(A,r,a) is hyperbolic locally at some ro.

(iii) h(Ar,r,a) 1is hyperbolic globally in r.

(iv) There is an rO € OR+)M and a neighborhood U of ro
such that h(A,r,a) 1is hyperbolic for every r € U with
the components of r commensurable.

(v) t_(ro) <0, T+(r0) > 0 for some r? e (JR+)M if these
numbers exist.
(vi) 1f

-Ar.

(5.2) h(A,r,a) = det(I - ):’J.‘=1Aje J

then

-i6,
(5.3)  (u(®): dettul - Ij_jA5e  J1 =0, 0 e®MNLu] = 1) = 0.

Proof: Let us first prove (v) <=> (vi). If h(X,r,a) is given by
Relation (5.2), then the function H(A,8,r) in Relation (3.1) is
given by

-

- .M 3.1
H(p,0,r) = detl[I zj-lAje e ‘).

The equivalence of statements (v) and (vi) is now immediate.

From the definitions of T_(r),T*(r) and the remarks following
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Corollary 3.2, we have (v) <=> (i), (v) <=> (iii) <=> (iv).
Obviously (iii) <=> (iv). To complete the proof of the theorem,
we show (iv) <=> (v). If (iv) is satisfied and (v) is not, then
T (r) = T+(r) = 0 for all r from the remarks after Corollary 3.2.
Since T_(r),r+(r) € Z(r) if the components of r are rationally
independent and Z(r) 1is continuous in r at these points, this
is an obvious contradiction. This proves the theorem.
Since stability is so important in the applications, we re-

state Theorem 4.1 for this case.

Theorem 5.2. The following statements are equivalent

(i) There is an r € @R+)M, r = (rl,...,rM) with the set
M
j
is uniformly asymptotically stable.

{rj} =1 rationally independent, such that the function h(A,a,r)

(ii) h(x,a,ro) is uniformly asymptotically stable locally at
some T, € 0R+)M.

(iii) h(r,a,r) is uniformly asymptotically stable globally
in r.

(iv) There is an r, € GR+)M and a neighborhood U of Ty
such that h(),a,r) is uniformly asymptotically stable for every
r ¢ U with the components of r commensurable.

(v) o(r) < 0 for some r € (R+)M.

(;i) If

-AT.

h(A,r,a) = det(I - Z?=1Aje 3

then
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M Ae J1, 0 erMy <1,

supl[u(9) |+ det(n(®)1 - §¥_1A,

Historically, Theorem 5.2 developed in the following way.
Melvin [6] proved the result for the scalar equation where

Condition (vi) becomes the simple condition
N
3 A.l <1 A. eRR.
2]:1' J| ’ J

Hale [3] proved (ii) <=> (iii) in the general case. Silkowski [7]

introduced the equivalent conditions (i) aad (vi).

6. Examples. In this section we collect some examples to

illustrate the above results. Throughout the section, the numbers
pj(r) are defined in Relations (2.2), the numbers f(r), o(r), 4

t_(r),7,(r) in Relations (3.2).

Example 6.1. Let us reconsider Example 2.1; that is, the function

h(A,r) = 1 +%e

We have seen that Oo(r) = 0 for all r and, for

r°-= a,2), E(ro) = {-(1n 2)/2}. Now, Theorem 4.1 implies
that, for any r = (rl,rz) with T,T, rationally
independent, [pz(r\,po(r)l = [pz(r),O) is the smallest
closed interval containing E(r) and pz(r) is continuous

.

in T, Dz(ro) = -1n 2. Furthermore,
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-Pr -Pr
% (e &, e 1) +' ¥ >0, fer p <0, r, €

Therefore [1 of Theorem 4.1 is the empty set and Z(r) =

(pz(r),O[. Thus, for any neighborhood U of Tg» there is
an r € U such that f(r) is a complete interval of length
approximately 1In 2 whereas for r = Ty Z(ro) is a single

point.

Example 6.2. As for Example 6.1, one shows that

f(ro) = [DZ,DO] ~ [-.27,.37] for the function

s =1 de s o™, Ve .

Example 6.3. Consider the equation

-)\I‘ -Arz

(6.1) h(A,r,a) =1 + ae 1, a,e =0

where 0 < r, <T, and a;,a, are real constants. The numbers

pP:y j = 0,1,2, are defined by

J
-p r -porl
= jagle ¥ % =1 - fa,|e
=pyr “P,r
1°2 1"1
(6.2) la,le = |a,|e -1
“Pp,T Py
& 2%2
lazle e Ialle .

SR pe——

e

" s 2
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As remarked earlier, Py € Pg. The constant Py may or may
not exist. From (6.2), it is clear that Pp < 0 iff

a + |a < 1. Thus, h(A,r,a) is uniformly asymptotically stable
2

!
globally in r if and only if Iazl > 1 + |all. This means
h(\,r,a) is hyperbolic globally in r and has Z(r) N (-»,0] = ¢
if and only if |a,| > 1 + |a1|.

Let us now analyze the other regions in the (al,az) parameter
space. I1f |a,| <1 + Iall (that is, p,(r) < 0) and
|a1| + lazl > 1 (that is, po(r) > 0), then we know from the
general theory that T _(r) < 0 (which automatically implies
T+(r) > 0) 1is equivalent to hyperbolic. The number 7T _(r) can
be related to the solutions Py of Jiquation (6.2). In fact, from

Theorem 4.1, T _(r) < 0 if and only if there is a solution

Dll(r) of Equation (6.2) satisfying oz(r) < pll(r) < 0 and

T

“Pyts s b

la,le < la;le -1 for pyy(r) <py < 0.
If Iazl < |ay| - 1, then there is a P11(r) satisfying the above
properties and h(A,r,a) is hyperbolic with Z(r) N (-=,0) # ¢,
Z(r) N (0,=) # 9.

If  |a,] > |a1| -1

then

-P,r -P,T
|azle 12, Ialle 1'1 .1 for |01| < 8
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for some & > 0. If, in addition, |a1| + |a2| > 1, |a2|< 1*-|all

then 0 € Z(r) by Theorem 4.1 if the components of r are
rationally independent. Thus, the function h(A,r,a) is not 1
hyperbolic globally in r.

In summary,

(i) h(),r,a) is uniformly asymptotically stable globally
in r if and only if |a1| + |a2| o

(ii) h(r,r,a) is hyperbolic globally in r with
Z(r) N (-=,0) # ¢ if and only if [a,| > 1 + [a;].

(iii) h(Ax,r,a) is hyperbolic globally in r with
Z(r) N (-=,0) # ¢, Z(r) N (0,») # ¢ if and only if
CREREE

(iv) h(A,r,a) is not hyperbolic globally in r if the co-

efficients ay,a do not satisfy one of the conditions

2
in (1)-€ixi).

The structure of the set Z(r,a} obviously changes as the
parameter a varies from the region in case (iii) to the region
in case (ii) above since two intervals had to merge as Z(r,a)
moved to positive axis. This structure can also change even when
the parameters always stay in a region corresponding to one case.

In fact, suppose |all + |a,| < 1; that is, uniform asymptotic

N
stability globally in r. Since |al| - 1< 0, there is an a,

sufficiently small so that the equation

-Pr -pr
Jaghe % n fugle "t -1

has two distinct negative solutions Dll(r) < plz(r) in

Al
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[pz(r),po(r)]. Theorem 4.1 allows one to conclude that Z(r,a)
consists of two intervals.

Let us make one other remark about this example. The number
of intervals in Z(r,a) may also change with r. In fact,
suppose |a2| = |a1| - 1. The function h(X,r,a) is not hyper-

bolic globally in r in this case. The equation

dgf i -Pr (he

2 s |
|a2|e - IaIIe

f(p,a,r) +1=0

has the solution P = 0. Since

of(0,a,r) _
o o laglEy & eyl
and f(p,a,r) + 1 as p = =, there will be a positive zero
of & 4f Iazlr2 > |a;|r. Since f(P,a,r) » += as
p + -= there will be a negative zero of f if |[a,|r, <
|31'r1°

Therefore, if ]azlr2 # |a1|r1, that is,
n # (|a2|/(1+|32|))12, r,T; rationally independent, the
set Z(a,r) will consist of two intervals. When
Ty m (|a2|/(1+|az|))rz the set Z(a,r) will consist of one

interval.

Example 6.4. Consider the equation

-Ael
(6.3) h(A,e) =1 - 2ce

,
Ra—




r’F‘..v. e - R —— ,._M_":1

k -

Let us study Z(¢) as € - 0 and always assume that

62 > el > 0.

As a first case, if €, = 2¢€ then h(X,€e) = 0 if and

-\E
2 1
only if 1 - ce = 0, Re A %I In|c|. Thus, if |c| > 1,

P

Re A\ » +o» 35 € 0; if |c| =1, Re A = 0 for all €3

if |c] <1, then Re A + -= as € +.0.

If ez > cl > 0, we know that Z(C) (@ [pz(e),po(e)] vhere

Py = pz(c), Po = DO(E), satisfy the equations

-€.p -€.p
(6.4 (a) 1 = 2|cle L9 gty €0
-€E_Pp -€E_P
i (b) L 2|c|e e
Now suppose
l-c2
(6.5) -le] < < }ej.

Z-

If relation (6.5 ) is satisfied, then 2|c| + 251 and

Po =-p0(e) >0, DO(E) + 40 as € » 0. Furthermore, if
Py 2 0, then
“C. B -€,p -€.P
1+2lc|e].2=c‘2e225c2e].2___‘,>
-€.p
1% (cz-zlcl)e $ < e - 2|c| =
2

L5 < -lel.




Thus, if Relation (6.5) is satisfied, then ¢, = CZ(EJ <0,
pz(E) + «m 38 €+ 0,

Also, if E, > € > 0 are rationally independent, then
[02(8),0 (e)] 1is the smallest interval containing Z(¢).
Thus, if Relation (6.5) holds, the smallest closed interval
containing Z(€) approaches (-»,+*®) as € =+ 0.

To determine when z(e) is a single interval, we should
find 91(8). The number 91(6), if it exists, must be a
zero of the function

~pE -p€

A o 2|c|e

£(p,€) = c‘e 1

# 1

this function has a unique minimum at a point given by

1 eli®y
& = in
e R

If |c| <1, then we can choose €, > €, such that

|c|e2/251 =1 and thus a = 0. Since £(0,€) = (|c|-1)z >0
if |c| < 1, it follows that £f(p,€) > 0 for all p and p,
does not exist. This means that Z(a,t) = [pz(e),pote)].

We can thus choose 61,62 + 0, €, < ez, so that

1
lc|&,/2¢; = 1 and Z(a,€) + (-=,»).
1f

l-c2
(6.6) 'Cl < —-2-——

then p,(€) < 0 and py(e) + -= as €+ 0. If

27
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2
(6.7) lc| = 1:€

then po(e) = 0 for all €y > € > o0, pz(e) < 0, pz(e) + -®

as € + 0 and the smallest closed interval [92(6),0],

t containing Z(E) approaches (-»,0] as E+0.
—Arl
Example 6.5. Let r, < r, <rg, h(A,r) =1 + ¢ +
-sz -Ars
e. + e oo (rl,rz,rs) are rationally independent,

then the smallest closed interval containing Z(Y) is

[ps,pol where

-p,T -p.r p,T
a5 s, §is e 1= . 3 2
=P P SPISAT PAT
§ean gf S " e g a-3
The numbers PysPy are defincd by

-p, T -pP,T -P,T

¢ ) e 259 i ) i - i3

=P, =P,r -P,r

8 " S ]+ @ L o 2" 3

if they exist. This implies necessarily that Py < 0, Py < 0.

On the other hand, for p < 0, the functions

-pr - pr -pr
e 3 +1 -¢ 1 + e

=Ppr “PfTr -pPTr
e 3 + 1 + e R e

2

n

f(p)
2

g(P)

o Ao
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are decreasing and positive for p = 0. Thus, P11 P, do not
exist and f(r) = [ps,ool if u“l,rz,rs) arec rationally
independent.

Suppose (rl,rz,rs) arc no longer rationally independent;
in particular, r = L, r, = 2, ry = T, Then [ps,pO]
[-.56,.60). What is the smallest interval [03,00]

containing f(ro), Ty h,2;%)2

From Theorem 3.1, we nced only determine 6 = (8.,6

such that

H(p,8) =1 +ePe 1+ afle Log®™s 2.4
that is,
é i® i9 i6

e % Npe el Ny ol e M

Geometrically, this says these two curves in the complex

plane must intersect

-




'
|
|
|
|

These curves interscct if and only if p € [03,0] where

03 is as above and o satisfies

30

Thus, T(ro) = lpg,0] = [-.56,.30) and (p,0] g [Py, Py
There is a definite shrinking of the interval when the delays

are not allowed to vary indepcndently.

L-




m—
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