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STABILITY RESULTS FOR A CLASS OF SYSTEMS WITH MULTIPLICATIVE STATE NOISE

GARY L. WISE and STEVEN I. MARCUS
Department of Electrical Engineering
University of Texas at Austin
Austin1 Texas 78712

~~~~~~~ 79 0152 ABSTRACT

The stochastic stability of linear systems with non—Gaussian multipli-
cative (state dependent) noise is analyzed. The particular noise processes

• considered are a form of filtered ~oisson processes. A technique is
presented for investigating the Pt moment asymptotic stability of linear
systems satisfying certain Lie—algebraic conditions. Several examples are
given to illustrate the technique.

INTRODUCTION

The analysis of linear systems with multiplicative or state dependent
noise (i.e. bilinear stochastic systems) has recently attracted a great
deal of attention (1—14]. in particular, the stochastic stability of such
systems for which the noise processes are Gaussian has been studied in some
detail. In this paper the stochastic stability of a class of linear
systems with non—Gaussian multiplicative noise is analyzed. The particular
noise processes considered are a form of filtered Poisson processes.

Our technique for investigating stochastic stability is based upon a
method used by Wilisky, Marcus, and Martin [1]. In the following sections
we describe a technique for investigating the stochastic stability of a
class of systems. The technique is illustrated with examples.

PRELIMINARIES

We are interested in systems of the form

F k 1
c(t) — ~A0 + E Aifi(t)I x(t)  , (1)

L i—i .1
where the A~ are known nxn matrices, x(t )  is an n d imensional vector , and

, f~(t) are noise processes. We assume that the noise processes

are independent of the initial condition x(O).
A Lie algebra of nxn matrices is a subspace of nxn matrices that is

closed under the coimsutator product (A ,B] A AR — BA. The Lie algebra
generated by a set of nxn matrices is the smallest Lie algebra containing
that set of matrices. A Lie algebra is said to be solvable if and only if
there exists a nonsingular matrix P (possibly complex valued) such that

PAP 1 is upper triangular for every A belonging to the Lie algebra (see
Eli). Let 2’ denote the Lie algebra generated by A0, A1, ... , A.~ and

assume that 2 is solvable. th
Let p be a positive integer and let xi(t) denote the i component of

the vector x(t). We say that the null solution of (1) is ~th moment asymp-
totically stable if, for all initial states x(0) possessing the desired
moments and independent of f1 (t), ... , f~(t), we have,.

u r n  E ~ [x1(t)] 
~~~ 

[x~ (t)] 
2 

[x~(t)] 
‘~ 

— 
~~~~~~~~~~~~~~~~~

t+~
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for any set of nonnegative integers Pj that sum to p. It is shown in El i
that, if 2 is solvable, then the ~th moment asymptotic stability of (1) is
equivalent to the first moment abymptotic stability of another system of the
form (1), also with a solvable Lie algebra. Therefore, we can confine our
discussion to the first moment asymptotic stability of (1), that is

u r n  El xi(t)} 
— o , i—i , ... ,

t-~~

DEVELOPMENT

We write the solution to (1) in the form

x(t) — •f(t,0) x(O)

where •f
(t,O) is the transition matrix for (1), thought of as an explicit

function of the processes fi(t). Since 2 ’ is assumed to -be solvable, we

know that there is a nonsingular matrix P such that

Bi — PAiP ’

is upper triangular for iu’O, 1, ... , k. The equation

I k 1
Y( t) — lB0 + E Bifi(t)I Y(t) , Y(O) — I , -[ i—l J

where Y(t) is an nxn matrix, can be solved by straightforward calculations.
Thus we have that

•
f
(t ,O) — P 1 Y(t) P

and we can see that •f(t,O) involves nothing more complicated than exponen—

tials of integrals of the fi(t), polynomials in the f~(t), and various

combinations, products, and integrals of such quantities. This was the
approach used in [1], where it was assumed that the f~(t) were mutually

Gaussian random processes. Using the properties of the Gaussian distribu-
tion, it was then possible to evaluate

E 1$f(t,0)} . (2)

Since E{x(t)} — E(~f(t~O)} E{x(0)}, we see that it is necessary to know the

quantity in (2) in order to investigate the first moment asymptotic
stability of (1).

In this paper we. will assume that the noise processes f1(t), ... ,f~(t)
are independent random processes and that each is a type of filtered Poisson
process. Specifically, we assume that a noise process has the following
form:

0 , Nt~~~
O

f(t) — (3)

~~ 
Uih(t,ri) ‘ N~ > 1

i—i

where N
~ 
is a Poisson counting process with intensity function A(t) > 0 ,

_ _ _ _  _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _
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is the ith occurrence time, and the amplitudes U~ are independent and

identically distributed and independent of Nt. It will be assumed that

A(t) is integrable over bounded sets and positive on a set of positive
Lebesque measure. Also, it is assumed that U1 possesses a moment generating
function. Finally, it is assumed that the impulse response, or weighting
function, h(t,t) is causal; that is, h(t,r) 0 for t < r. Noise processes
of this general type are a popular model for many physical phenomena.

The characteristic functional of the random process f(t) defined in
• (3) is given by the following [15]:

Cf(g) ~ E{exP [i J 
f(s)d~(s)]

} 
— exp
(j

t
X(r)[.(j

t 
h(s~r)d~(s))_l]dr)

(4)
where •(a) — E {exp(jaU 1)) is the characteristic function of U1. By the
proper choice of the function g( ), we can use the characteristic functional
in (4) to evaluate (2). We now illustrate the method with examples.

Example 1: Let n — k — 2 , and let
—2 1 

- 

1 0 1 —1
A - A - A-
0 —l o u o o o

In this case we can easily check that 2’ is solvable and that

O 1

1 —l

upper triangularizes the system. Letting y — Px, we have

—l+f (t) —l+f1(t) ~ ‘C
1 •

~ ( t )  — y ( t) .

0 — 1+f2(t) 
..~~~~~~ 

Thus we find that
D’s, ‘Wif lf

a11 t a12 t

y(t) — y(O) , j ,$i/  ~~~~~~~0 a22(t) [f/ /
where

I ,t 1
aii(t) 

— exp I— t+J fi(t) dr , i— i , 2
1 0  J

and

a12(t) 
— f exP [_ t  + 

.
~~ f1(t)dt+ f f 2 ( r ) d r ]  (_i + f1(s))ds

$ 
Assume that both of the noise processes have the form of (3) and that

for each of the noise processes the corresponding amplitudes (u~} have a

Gaussian distribution with zero mean and unit variance Let

79 0 2 28 097
a— — —~~



-

h1
(t,r) — exp (r—t) u(t—t) and h2(t,r) — u(t — T) — u ( t — r — 1 ) , where u ( •)

is the unit step function.
Using (4) we find that

Elaii(t)I — exP (_t + f A~ (t) {M (J h~ (s~t) ds)_1}dT
)

where M(a) — exp(a
2/ 2). Since

M (f  hj(s~t)ds) < if~ for all t,r,

we have that

E
~~
a
ii
(t)} < ex~ [_ t + (~c_l) 

f A~(r)dr]

Therefore, if

‘o 
Ai(~ 

dr (5)

or if

< 

i) 
for some u < 1 , (6)

• then we see that

lim E.Iaj~
(t)I — 0

Now consider the off—diagona l term:

a12(t) 
— — f exp ~ + j t 

f1 r dr + f2 t dr] ds

(7)

+ j  f1(s) exP[_ t + J~ f1(r)dr + f f2(r)d.r]
ds

The magnitude of the expectation of the first summand in (7) can be upper
bounded by

f exP [_ t + (i~
_ 1) f A

1
(T) dt + (1~ ) f 5 

drj ds . (8)

Thus we see that if A1 and A2 each satisfy either (5) or (6) then (8) 
goes

to zero as t approaches infinity.
To evaluate the expectation of the second summand in (7) we proceed

L ~~~~~~~~~~~~~~~~~~~~~~~~ 
- — .
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as follows. Using (4) we find that

E .{exP [rf i(s) + j ~~~~ dr]} 
— exp (j

t 
A 1(r) [M (r+l_ e

t_
t)~.1]dr)

Thus,

• 
E{f~(s) ex~[J 

f (.r) dr]
} 

— ~~ E {exP[r
f
i
(s) + J f j(r)dr]

} ~r — o

— exp [1t 
A1(q)[M (l_e

~~t)_1]dq] i: A1(c)  (l_e t t)M (l_ e
t_
t)dT

Therefore,

E{f1
(s) exp 

[f 
f (t) dt]}~ 

< ,

~~ f A 1(r )dr  exp 
[•
f A

1
(q) (1c_i) d~

}
(9)

If A1 satisfies (5), then (9) can be upper bounded by a constant. If A1
satisfies (6), then (9) can be upper bounded by 3(t—s) exp[a(t—s)].

Now consider

E {exP [f  f2(t) dt]~~.

• This can be upper bounded by

exp [(i c  
— 1) f A2(r) dr]

If A
2 

satisf ies (5) or (6), this can be upper bounded by a constant times
exp (as). Therefore, if A l and A 2 each satisfy either (5) or (6), 

then

E{a12(t)} goes to zero as t approaches 
infinity, and we conclude that the

system of Example 1 is asymptotically stable.
Example 2: Consider the following scalar equation:

~(t) — a x(t) + B x(t) f(t) (10)

where B ,I 0. The solution is given by

F ft
x( t) — z(0) expici t + B J f(r) dr

L 0

Assume that f(t) is a compound Poisson process; that is, in (3) ,
h(t,r) — u(t— r). Then, using (4), we have that

E 
{
exP[B f f(r) dr]} 1. exp (j

t 
A (r) (N{B i t—r ] _1)dr)
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where M is the moment generating function of U1. It is straightforward to
show that if P{BU1 > 0) > 0 then there exists a y > 0 such that for
t > t , M[B(t— r) ) > exp (y(t—1)]. Assuming that P{8U1 > 0) > 0, we have
that

E{ex~[BJ f(r) dr}J
> ex~

[ 
1

t 
A(t) (exP [Y(t_t )] _l) dr]

Notice that

d 
(j

t 
X(r) (exp [~

(t — r)] — i) dr) — y eTt f~ A(r) e~~’T dr . (11)

Since A(.) is positive on a set of positive Lebesque measure, we see that
(11) approaches infinity as t approaches infinity. This yields the
following result.

Theorem: Assume that f(t) is a compound Poisson process whose amplitudes
U1 possess a moment generating function and that the intensity function

A () is positive on a set of positive Lebesque measure. Also, assume that
P{~~U1 > 0) > 0 . Then (10) is not asymptotically stable.

Notice that if the support of the distribution of U
1 includes both

positive and negative numbers, then P{BU
1 

> 0) > 0

Example 3: Now consider the following 5th order system:

~~(t) — A0 x(t) + A1 x(t) f(t) (12)

where A0 and A1 are upper triangular nxn matrices and x( t) is an n
dimensional vector. Notice that the ith term of the diagonal of the

transition matrix •f(t~O) will be of the form

F t 1
explc&i 

t + B1 J f(r) dr , (13)
1 0 J

where a~ and B~ are the ~~ terms of the diagonals of A0 and A1,
respectively. If the initial state x(0) is a constant vector with a one

in the ~~~ position and zeros elsewhere, then the ith 
component of x(t)

will be given by (13). This results in the following corollary.

Corollary: If at least one diagonal element B of A1 is nonzero and if
f(t) satisfies the conditions of the Theorem, then (12) is not asymptoti—

cally stable.

L. _ _ _ _ _  _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _  - .
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Example 4: Consider the system (10) and let the noise process be
given by (3) where

h(t,r) — exP [_i(t_r)] u(t — r) , y > ~

Let M(.) be the moment generating function of U1. We find that

E {exP [8 f f(t) dT]} 
- exp 

[ 

f A (r) (M [~ (i_ exP [_Y(t _
t)I)I_l)dT].

Assuming that A(.) is integrable, we see that this quantity can be easily
upper bounded. In this case we see that (10) is asymptotically stable if
a < 0.

Example 5: Consider the scalar equation (10). Let f(t) be given by
(3) and assume that h is a function of the difference of its arguments, say

h(t,r) — h(t—r)

Assume that U
1 possesses the moment generating function M(’). Also,

assume that

f J i(t)~ dt < — . (14)

Then from (4) we see that

E {exP [B 
f f(r) dr}~ — exp [i

t 
A( r)  (M [B f

tt 
1 (s) dsj _l)dr}

From (14) we conclude that

M 
[B 

t—T 

~~~~ ds] < M~ <

Assume that the intensity function A(s) is such that

t
liii -

~~ 

f A (r) 4r — 0
0

Then we have that

_ _ _ _ _ _ _ _ _ _ _  j~
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E I x(t)~ < E Ix(o))~ exP [a
t + M0 f A (r) di] .

Thus we see that if a < 0 , the system is asymptotically stable.

CONCLUSIONS

We have presented a method for analyzing the pth moment asymptotic

stability of a class of linear systems with multiplicative state noise.

The class of systems considered were required to satisfy a certain Lie

algebraic condition. The noise processes were taken to be a form of

filtered Poisson noise. The utility of the method was illustrated with

several examples. We note that these methods can be extended in a

straightforward fashion to include noise processes having the form
considered In this paper plus an additive independent Gaussian component.
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