AD=A065 405

UNCLASSIFIED
| o |

GENERAL RESEARCH CORP SANTA BARBARA CALIF
FORTRAN AUTOMATED VERIFICATION SYSTEM (FAVS),
JAN 79 R A MELTON: D M ANDREWS

RADC=TR=78=268-VOL~-1

F/6 9/2
VOLUME I.(U)
F30602=76=C=0436

-- ;
=

R AN e M e RS H NI

- BRrs-2 éX-WLz/7

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE Sl LTS

T NUMBER / 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

D

é % 'AUTOHATED XBRIFICATION SYSTEM (FAVS) e ‘
O

=
Y l uie L. l
] -] 8. CONTRACT OR GRANT NUMBER(s)

KigH e +7 RS e opoi-re-cmiss]
4 & A. Melton F30602-76-C-0436
ooty ® H./Andrews ,J/"’}

[T FERPERITNTC ONCANI AND RESS 0. PROGRAM ELEMENT, PROJECT, TASK
1ZATION NAME AND ADDRE PROCRAN ELEME AooeRs

i &
General Research Corporation 63701B

P.0. Box 6770

Santa Barbara CA 93111 (/Z]}Z@mzo
11. CONTROLLING OFFICE NAME AND ADDRESS T — HW*H?

Rome Air Development Center (ISIE) (/Z M

Griffiss AFB NY 13441 é§ €S
. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED

1Sa. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

N/A

Y At AT A
O

e

g

e

2 by L

Same

1 3 16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, il different from Report)

] Same

DDC

18. SUPPLEMENTARY NOTES
RADC Project Engineer: Frank S. Lamonica (ISIE)

MAR 8 19719
f’ UistalSu U L

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)
Computer Software FAVS B
] E. Software Testing Automated Verification System .
1 Software Verification
] Software Documentation

= 20. %TRACT (Continue on reverse side If necessary and identity by block number)

The FORTRAN Automated Verification System (FAVS) is intended to reduce the
cost of assuring that software systems written in FORTRAN are comprehensively
tested. It consists of automated algorithms and techniques for verifying the
testing of FORTRAN software. FAVS supports testable programming in FORTRAN,
augments the static error detection performed by FORTRAN compilers, automates
the measurement of testing effectiveness, assists the manual design and _ﬁ

selection of test cases, and increases the mechanization of c':ertain aspects
(Cont'd)

fs

DD ,an'7s 1473 E€oition oF 1 NOV 68 1s OBSOLETE UNCLASSIFIED
in

“«9 U3 05 040

WS AR A NPT I

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Item 20 (Cont'd)

of software system maintenance. FAVS is a series of tools which provide -Af/
translation from DMATRAN (a uctured extension of FORTRAN) to FORTRAN and
from FORTRAN to DMATRAN, static detection of unreachable statements, set/
use errors, mode-conversion errors, and external reference errors, (ﬂ}a means
of measuring the effectiveness of test cases..m/:ss:lstance in the construc-
tion of test data that will thoroughly exercise the software, and automat
documentation. FAVS has been implemented for the analysis of computer softwar
written in the\RORTRAN V or DMATRAN language and is operational on the HIS-6180)
GCOS and MULTICS\computer systems at Rome Air Development Center at Griffiss
AFB, New York, thg UNIVAC 1100/42 computers at DMATC in Washington, DC, and
DMAAC in St. Louis)\ Missouri, and the CDC 6400 computer at General Research
Corporation in Santy Barbara, California, where it was developed.

JUR————

UNCLASSIFIED
SECURITY CLASSIPICATION OF Tu'® PAGE(When Data Entered)

!
i

R——

e T—

L]

et Yy S S
.

8 T S R - AW AR AN ORI 000 0 5 A 00 T 3 SRSl o et RRITR o TR

ACKNOWLEDGEMENTS

Many individuals contributed to the design and implementation of FAVS.
E. F. Miller, Jr., originated the work at General Research Corporation which
resulted in the methodology for FAVS. He, together with Michael Paige, Jeoff
Benson, Randy Urban, Rich Melton, Carolyn Gannon, Dick Wisehart, and others,
initially built RXVP, an automated verification system for FORTRAN, a product
of the Program Validation Project sponsored by General Research Corporation.

JAVS (JOVIAL automated verification system) was the immediate successor
to RXVP. In its development, the RXVP software testing methods were examined,
the algorithms were extended to JOVIAL constructs, and the JAVS software
itself was written in the JOVIAL language. JAVS was installed at RADC, and
user training was conducted. The major contributors to the JAVS project were
Jeoff Benson, Nancy Brooks, Carolyn Gannon, E. F. Miller, Jr., Ray Stone,
Randy Urban, and Dick Wisehart, all employees (at that time) of General Research
Corporation. The RADC Project Engineer for JAVS was Dick Robinson.

STRUCTRAN-1 and STRUCTRAN-2 were developed concurrently with the JAVS
project. STRUCTRAN-1 translates DMATRAN (a structured extension of FORTRAN)
to FORTRAN, and STRUCTRAN-2 translates FORTRAN to DMATRAN. The STRUCTRAN
software was installed at DMAAC in St. Louis, Missouri. The major contributors
to STRUCTRAN were Dorothy Andrews, Rich Melton, and Randy Urban. The RADC
Project Engineer for STRUCTRAN was Don Mark.

The development of FAVS integrated concepts from RXVP with STRUCTRAN-2,
incorporated certain capabilities of JAVS, extended the STRUCTRAN-2 capabilities,
and improved STRUCTRAN-1. The FAVS software is written in DMATRAN. FAVS has
been installed at DMAAC, DMATC, and RADC, and user training and maintenance
training have been conducted. The major contributors to FAVS were Dorothy
Andrews, Carolyn Gannon, Rich Melton, and Randy Urban. The RADC Project
Engineer was Frank LaMonica.

ACCESSION for
NTIS White Section

0DC Buff Section 3
UNANNOUNGED o
JUSTIFICATION

By .

DISTRIBEN72/ AVAILABIUITY CODES
[Tist__ AV/.i._and/or SPECIAL

Al

CONTENTS
SECTION PAGE
1 INTRODUCTION 1-1
2 OVERVIEW OF DMATRAN AND FAVS 2-1
2.1 DMATRAN Control Constructs 2-1
2.2 FAVS Processing 2-9
2.3 FAVS Analyzer Commands 2-18
3 USE OF FAVS IN SOFTWARE TESTING 3-1
3.1 Relationship Between Software Testing and Software 3-1
Validation
3.2 VWriting Testable Software 3-3
3.3 Systematic Single-Module Testing Verification 3-8
3.4 Systematic Software System Testing Verification 3-11
3.5 Summary 3-13
; REFERENCES R-1
|
¥
11 i

B T " g : " i i AR i o A 91 R P g Y o R e o e S A S i SRR

ILLUSTRATIONS
NO. PAGE
2.1 IF...THEN...ELSE...END IF Construct 2-2
2.2 DO WHILE...END WHILE Construct 2-3
2.3 DO UNTIL...END UNTIL Construct 2-5
2.4 CASE OF..CASE..CASE ELSE...END CASE Construct 2-6
z.5 DMATRAN Example of CASE Construct 2-7
2.6 BLOCK...END BLOCK and INVOKE Construct 2-8
2.7 FAVS Analysis 2-9
i 2.8 BANDS Report 2-12
2.9 COMMONS Report 2-13
2.10 LIBRARY DEPENDENCE Report 2-14 ;
2,11 Statement Profile 2-15 ;
2.12 Static Analysis Report 217 '
f 2.13 Execution Coverage Sequence 2-19
\ 2.14 SUMMARY Report: Multiple-Test DD-Path Execution, 2-21
: All Modules
3 215 NOTHIT Report: DD-Paths Not Executed 2-22
} 2.16 DETAILED Report: Single-Test DD-Path Execution, 2-23
? One Module
§ 3.1 Software Testing and Validation Using FAVS 3-1
% 3.2 Writing Testable Software Using FAVS 3=9
' 3.3 Single-Module Testing Verification Using FAVS 3-10
3.4 System Testing Procedure 3-13
1141

EVALUATION | s

Topographic Centers of the Defense Mapping Agency (DMA) with a capability
to test and verify FORTRAN software. A software tool, designated the
FORTRAN Automated verification System (FAVS), meeting DMA's requirements
was developed. It was installed and acceptance tested on the UNIVAC

f 1100/42 Computer System at each of the two DMA centers. FAVS will be
utilized internally by DMA for testing, verifying and documenting vender
supplied software.

‘sz;ailthls‘ll Z#C'Azaﬂiﬁé‘l
RANK S. LAMONICA

Project Engineer

The purpose of this effort was to provide the Aerospace and J

- . . " i ut Py ke . i

RSy e

1 INTRODUCTION

As part of its program for applying advanced technology to improve the

quality and reliability of software, and to provide testing tools for the
8 Defense Mapping Agency, Rome Air Development Center contracted with General
% Research Corporation for the design, development, installation, and documen-
tation of a FORTRAN Automated Verification System (FAVS). This system is
intended to reduce the cost of assuring that software systems written in
FORTRAN are comprehensively tested. The work involved the application of
practical and automatable algorithms and techniques to the verification of
FORTRAN software testing. The specific tasks were to engineer workable and
efficient ways to support testable programming in FORTRAN, augment the static
error detection performed by FORTRAN compilers, automate the measurement of
testing effectiveness, assist in the manual design and selection of test cases,
and increase the mechanization of certain aspects of software system maintenance.

This report (the final report for the project) describes the fundamentals
and application of a method for systematically and comprehensively testing
computer software. FAVS is a series of tools which provide:

® Translation from DMATRAN (a structured extension of FORTRAN) to
FORTRAN and from FORTRAN to DMATRAN

® Static detection of unreachable statements, set/use errors, mode-
conversion errors, and external reference errors

i @ A means of measuring the effectiveness of software test cases,
both individually and cumulatively

® Assistance in the construction of test data that will thoroughly {
exercise the software |

[Automated documentation

FAVS has been implemented for the analysis of computer software written
in the FORTRA¥ V or DMATRAN language and is operational on the HIS-6180 GCOS
and MULTICS computer systems at the Rome Air Development Center (RADC), Grif-
fiss AFB, New York, the UNIVAC 1100/42 computers at DMATC in Washington, D.C., |
and DMAAC in St. Louis, Missouri, and the CDC 6400 computer at General
Research Corporation in Santa Barbara, California, where is was developed.

Section 2 of this report summarizes the FAVS tools. Section 3 describes
methods for the effective utilization of FAVS in single-module testing, system
testing, and software documentation. ’

L
i
R—

B TTT——————

.

In addition to this report, a number of other reports have been
prepared as part of this effort:

FAVS (FORTRAN Automated Verification System) User's Manual
(CR-1-754, May 1978)

This report is an introduction to using FAVS in the testing
process. Its purpose is to acquaint the user with the application
of FAVS to program testing, so that an efficient approach to
program verification can be taken. The basic commands by which
FAVS provides this assistance are discussed in detail. FAVS
processing is described in the order normally followed by the
beginning FAVS user. The Appendixes include a summary of all
FAVS commands and a description of FAVS operation at RADC, DMATC,
and DMAAC with both sample command sets and sample job control
statements.

DMATRAN User's Guide (CR-1-673/1, January 1978)

This report describes the structured constructs and syntax of
DMATRAN, a structured extension to FORTRAN. It also details the
use of the DMATRAN preprocessor, which translates DMATRAN into
FORTRAN. Procedures for using the UNIVAC 1110 or the Honeywell-
6180 version of DMATRAN are included.

FAVS (FORTRAN Automated Verification System) Computer Program
Documentation: Vols. 1, 2, 3 (CR-2-754, January 1978)

These reports describe the FAVS software design, the organization
and contents of the FAVS data base, and for each FAVS component

its function, each of its invokable modules, and the global data
structures it uses. The report is intended for use in FAVS software
maintenance, together with the Software Analysis reports described
below.

FAVS Computer Program Documentation: Vol. 4, Software Analysis
This volume is a collection of computer output produced by FAVS,
not reproduced but on file at RADC. The source code for each
component of the FAVS software has been analyzed by FAVS itself
to produce enhanced source code listings of FAVS with indentation
and control structure identification, inter-module dependence,
all module invocations, module control structure, and a cross
reference of symbol usage. This volume is intended to be used
with Vols. 1-3 for FAVS software maintenance. It is itself also
an excellent example of the use of FAVS for computer software
documentation.

1-2

B 2 10D A I W 23 T A s N A

S

o AR

2 OVERVIEW OF DMATRAN AND FAVS

This section provides a summary of the DMATRAN language extensions to
support testable programming in FORTRAN, and describes the commands processed
by FAVS. DMATRAN and FAVS are implemented in three software tools.

[DMATRAN precompiler. DMATRAN constructs are automatically indented
on the source listing produced by the DMATRAN compiler. All DMATRAN
statements are translated into standard FORTRAN, and standard
FORTRAN statements are passed unmodified to the "intermediate
source" file, which is then compiled by the FORTRAN compiler.

® FAVS Processing. Favs provides static analysis, code restructuring,
instrumentation, testcase data generation assistance, retesting
and documentation assistance for FORTRAN and DMATRAN programs.
User-supplied commands control the FAVS processing.

° FAVS Analyzer. After the execution of software that has been
instrumented by FAVS, the FAVS Analyzer provides reports describing
the extent of testing coverage obtained. User-supplied commands,
similar to FAVS commands, control the Analyzer's processing.

The DMATRAN constructs are described in Sec. 2.1l; the use of the DMATRAN
precompiler is fully described in the DMATRAN User's Guide. The FAVS process-
ing and Analyzer commands are summarized in Secs. 2.2 and 2.3; they are
described in detail in the FAVS User's Manual.

2.1 DMATRAN CONTROL CONSTRUCTS

DMATRAN extends the FORTRAN programming language with five control con-
structs that replace FORTRAN controls. These statement forms can be intermixed
with ordinary FORTRAN non-control statements in the text which is processed by
the DMATRAN precompiler. DMATRAN statements are converted by the precompiler
to equivalent FORTRAN statements, and the resulting file can be compiled by
the FORTRAN compiler in the normal manner.

2.1.1 IF...THEN...ELSE...END IF (Fig. 2.1)

This construct provides block structuring of conditionally executable
statements. If <expression> is true, control transfers to the first statement
within the block; if false, to the next statement after the END IF. The ELSE
statement is optional. If it is present and <expression> is false, the state-
ments, following the ELSE are executed.

2.1.2 DO WHILE...END WHILE (Fig. 2.2)

This construct defines a repetitive operation which is to be performed
zero or more times. If <expression> is true, the statements within the block
are executed; if false, the next statement after the END WHILE. After the
statements within the block have been executed, the value of <expression> is

S S

IF (<EXPRESSION>) THEN

STATEMENTS TO EXECUTE IF <EXPRESSION> IS TRUE

ELSE

STATEMENTS TO EXECUTE IF <EXPRESSION> IS FALSE

END IF

‘ ELSE)

\

STATEMENTS TO EXECUTE
IF <EXPRESSION> IS FALSE

¥

|
END IF)=

IF EXPRESSION s

(<EXPRESSION>) x o 3

THEN 5

o

NOT. 3
<EXPRESSION>

STATEMENTS TO EXECUTE
IF <EXPRESSION> IS TRUE

FUNCTION SINC(X)
IF (X .EQ. 0) THEN
=1.

. SINC
ELSE
. SINC
END IF
RETURN
END

Figure 2.1.

2-2

SIN(X)/X

IF...THEN...ELSE...END IF Construct

. A AW b B

INITIALIZATION STATEMENTS
DO WHILE (<EXPRESSION>)

STATEMENTS TO EXECUTE IF <EXPRESSION> IS TRUE

END WHILE
& :
INITIALIZATION n |
STATEMENTS =
2
-C

DO WHILE
(<EXPRESSION>)

.NOT. <EXPRESSION>

<EXPRESSION>

STATEMENTS TO EXE-
CUTE IF <EXPRESSION>
IS TRUE

END WHILE

FUNCTION SQRT(A)

X=A

DO WHILE(ABS(X-A/X) .GT. 1,E-6)
X = (X+A/X)/2

END WHILE

SQRT = X

RETURN

END

Figure 2.2, DO WHILE...END WHILE Construct

2-3

checked again. Note that the iteration variable that controls the value of
<expression> must be explicitly initialized before the loop is entered, and
must be explicitly modified on each pass through the loop.

2.1.3 DO UNTIL...END UNTIL (Fig. 2.3)

This construct is like a FORTRAN DO loop in that it is performed at
least once and has its exit at the bottom of the loop; otherwise it is like
the DO WHILE. After the first execution of the statements in the block,
<expression> is evaluated; if it is false, the block is executed again, and
so on until <expression> is true. At that time control transfers to the next
statement after the END UNTIL.

2.1.4 CASE OF...CASE...CASE ELSE...END CASE (Figs. 2.4, 2.5)

This construct selects one of several alternatives by means of a computed
selection index. Each alternative is identified by a positive integer constant
called the CASE index. The value of <integer expression> (the selection index)
is computed; if any CASE index is equal to the selection index, control trans-
fers to the statements which follow that CASE. If there is no such CASE, and
the CASE ELSE statement is present, the statements following the CASE ELSE
are executed, and control then transfers to the statement after the END CASE.
If the selection index does not equal any CASE index, and CASE ELSE is not
provided, none of the blocks are executed.

2.1.5 BLOCK...END BLOCK and INVOKE (Fig. 2.6)

This construct provides an internal procedure which has access to all
variables in the routine which contains it. The BLOCK's <name> is a string
of characters of arbitrary length that may include imbedded blanks. The body
of the BLOCK must be a complete well-nested control structure.

The BLOCK is executed only if it is invoked by an INVOKE statement that
refers to its name identically. BLOCKs may appear in the code anywhere after
all INVOKEs that refer to them, but they are never executed directly (by
falling into them). BLOCK...END BLOCK constructs can be nested, but not
recursive (i.e., a BLOCK may not directly or indirectly invoke itself). A
BLOCK cannot be invoked from an external routine, nor can it be passed as a
parameter to another routine.

s

-

e p——

B

T

e ——
T —— - . -
L T S NN N A ST N T Bk P v 1 RS A R G M s e S L SR AT SN O ARSI AR i | DS ST e TN,

INITIALIZATION STATEMENTS

o

DO UNTIL (<EXPRESSION>) i
: STATEMENTS TO EXECUTE IF <EXPRESSION> IS TRUE

END UNTIL

&

INITIALIZATION
STATEMENTS

§ DO UNTIL
, (<EXPRESSION>)

: STATEMENTS TO EXECUTE
H IF <EXPRESSION> IS
FALSE

AN-47327a

.NOT.
<EXPRESSION>

<EXPRESSION>

FUNCTION CONVRG(XINIT, EPS, F)
EXTERNAL F
X = XINIT
i DO UNTIL (ABS(X-XOLD).LE.EPS)
- g XOLD = X
? . X = F(X)
f END UNTIL
CONVRG = X
RETURN
END

Figure 2.3. DO UNTIL...END UNTIL CONSTRUCT

2-5

CASE OF (<INTEGER EXPRESSION>) 1
CASE (1)
: BLOCK OF STATEMENTS
CASE ()

BLOCK OF STATEMENTS

.

CASE (N)

BLOCK OF STATEMENTS
CASE ELSE

BLOCK OF STATEMENTS
END CASE

AN-49312

o

CASE (1)

‘

(CASE (3))

|

CASE OF
(<INTEGER EXPRESSION>)

< CASE (N))

CASE ELSE

STATEMENTS TO
EXECUTE IF
<INTEGER
EXPRESSION>
EQUALS I

STATEMENTS TO
EXECUTE IF
<INTEGER
EXPRESSION>
EQUALS J

STATEMENTS TO
EXECUTE IF
<INTEGER
EXPRESSION>
EQUALS N

STATEMENTS TO
EXECUTE IF
<INTEGER

EXPRESSION> IS NOT
EQUAL TO I, J OR N

Figure 2.4.

CASE OF..CASE..CASE ELSE...END CASE CONSTRUCT

B———

SUBROUTINE XAMPL (ITYPE,NPARS)

CASE OF (ITYPE)
CASE (3)
CALL GETCRD(ITYPE)
CASE (5)
JTYPE = ITYPE + 3
CALL STRUCT(JTYPE)
CASE (9)
CALL IBALPR(ITYPE,NPARS)
CASE ELSE
CALL ERROR
END CASE
RETURN
END

Figure 2.5. DMATRAN Example of CASE Construct

INVOKE (<NAME>)
BLOCK (<NAME>)

BLOCK STATEMENTS
END BLOCK

|
;
!
{
i
|
3

N S ———

o
? L}
{ 2
{ BODY OF BLOCK...
END BLOCK

|

END BLOCK)

SUBROUTINE MLTPLY(A,B,C,N)
?IME?SION A(10,10),8(10,10),C(10,10)
DO WHILE (I .LE. N)

J =1

DO WHILE (J .LE. N)

SNVOKE (1C0HPUTE NEW ARRAY ELEMENT)
=J +

END WHILE

I=1+1
END WHILE
BLOCK (COMPUTE NEW ARRAY ELEMENT)
’ §=0.0

K =1

DO WHILE (K .LE. N)

s S =5+ A(1,K) * B(K,J)

K=K+ 1

END WHILE .
. C(I1,3) =S
END BLOCK
RETURN
END

N———

Figure 2.6. BLOCK...END BLOCK and INVOKE Construct

2-8

|
|
!

e e d

e T R RCRR——

T

T P —— e . ” R e o el s

2.2 FAVS PROCESSING

FAVS is a software system which reads as data the user's FORTRAN or
DMATRAN source code. The type of processing to be performed on the source
code is specified through commands that are input to FAVS. During an initial
run, a restart file is constructed which contains information about each module
submitted for analysis. FAVS has several components which extract information
from this file and produce reports. Figure 2.7 illustrates the basic elements
of a FAVS analysis.

- e .t e N R AN o NN NS AL A L B3 M AL 14 S 1 RS 12 B X TS P AT SRR i A S b 1

(ﬁCOMMANDS
x©
22 X
: L QT S
- RESTART ;
FAVS FILE S
r
YOUR
SOURCE
CODE
REPORTS INSTRUMENTED
SOURCE CODE
Figure 2.7. FAVS Analysis
2-9
SEE SR e e

There are eight basic FAVS commands:

RESTART.

EXPAND.

LANGUAGE=DMATRAN.
FILE,PUNCH=<file number>.
OPTIONS=<list>.

<list> may contain one or more of the following options,
separated by commas:

LIST
; DOCUMENT

! SUMMARY
STATIC
INSTRUMENT
INPUT/OUTPUT
REACHING SET
RESTRUCTURE

] FOR MODULE = (<namel>,<name2>,...).

TESTBOUND ,MODULE = (<name>),STATEMENT = <npumber>.

REACHING SET,MODULE = (<name>),TO = <DD-path number>,
FROM = <DD-path number>, {ITERATIVE}.

The commands are supplied to FAVS on cards; the format is free form,
with one command per card. Each command prescribes a particular function to
be performed by FAVS, described briefly in the following sections. Detailed
descriptions and typical complete analyses are given in the FAVS User's Manual.

2.2.1 Setup Commands

RESTART and EXPAND are commands used in saving the basic analysis
information for a set of modules from one FAVS run to the next, thus saving
execution time when a large number of modules is being analyzed more than once.
As a set of modules is processed (using any of the OPTIONS), a restart file is
created. If this file is saved, it can be used in subsequent FAVS runs which
further analyze the same modules (using other OPTIONS) by supplying either
RESTART or EXPAND as the first FAVS command. EXPAND performs the same functions
as RESTART and also permits additional modules to be added to the restart file.

LANGUAGE = DMATRAN sets up FAVS to accept source code that includes
DMATRAN constructs. The command is not necessary for FORTRAN source code,
since the default setup is to process FORTRAN.

FILE,PUNCH = <file number> is used to change the file to which FAVS
outputs an enhanced source code when either INSTRUMENT, INPUT/OUTPUT, or
RESTRUCTURE options are selected.

2-10

e — e shi” go RNt i
R D NN 5 S SV i 5 A AT R 5RO 5, sl B RS A L e i 3 s A R R S Rt R R e 4%

FOR MODULE = (<namel>, <name2>,...) causes single-module reports to be
produced only for a specified set of modules, rather than for every module.

2.2.2 Processing Commands

The command which controls the type of processing to be done by FAVS

is:
OPTION(S) = <list>

where <list> contains one or more of the option names, separated by commas.
The following sections briefly describe each option except for RESTRUCTURE.
Details and additional examples of the reports and all options are given in
the FAVS User's Manual.

LIST. This option causes an enhanced source listing of every module to
be produced. The listing has indentation of control constructs, defines the
logical structure in terms of DD-Paths, and is the reference for line numbers
used by the other reports.

DOCUMENT. This option causes six reports to be produced which describe
the system of modules ("library") being analyzed. For each module separately,
three reports are produced:

' ° READS Report: 1lists each READ statement, with its associated
§ format.
° INVOKES Report: lists all calls to externals (in the library or

not), and all calls from other modules in the library.

@ BANDS Report: Locates the module in the invocation hierarchy by
showing an upward and downward calling tree (Fig. 2.8).

For the system as a whole, three reports are produced:

@ COMMONS Report: displays two matrixes that show the location of
all references to common blocks (Fig. 2.9).

CROSS REF Report: cross-references all variable names in the
library, giving a list of all modules that reference each
variable, and a list of statement numbers where referenced in
each module with a marker on statements where the variable is set.

e o e i o o i I
L]

LIBRARY DEPENDENCE Report: shows the invocation structure of the
library in a matrix format (Fig. 2.10).

»
®

SUMMARY. This option produces an abbreviated library documentation
consisting of three reports: a statement profile (Fig. 2.11), and the COMMONS
Report and LIBRARY DEPENDENCE Report just described.

2-11

TRVOCATION SANOS SUBROUTINE FULCON (LABEL)
! 70 LEvEL 2
-’ LaveL] -0 -3 -2 =Y °

Past 29

FULCON
STRUCT
CONTRL

COnY
KEwPTY
PUTFTN

MovEwD
Kcome

INDENTY
ROVEND
hoVEWY
SPRYWD

library.

" Figure 2.8. BANDS Report

This report shows the selected module within the invocation hierarchy.
At the center is the selected module. Each successive band of modules from
the center to the left shows the calling modules; each successive band to the
right shows the called modules. The left (calling) modules reside on the
library; the right (called) modules can include modules external to the

running it.

parameters and type.

2-12

STATIC. This option causes '"static analysis'" of the software being
analyzed: that is, analysis of the source code, without compiling and

® Mode checking which identifies possible misuse of constants and
variables in expressions, assignments, and invocations.
v ° Invocational checking which validates actual invocations against
i formal declarations, checking for consistency in number of
[] Set and use checking which uncovers possible use-before-set

conditions and similar program abnormalities.

@ Graph checking which identifies possible errors in program control
structure such as unreachable code.

B

L

R S A

¥

.
s

e

sz

il

A R e Sl 14 o e— ST -
g;
% LABRARY COMMON BLOCK MATRIX LIBRARY COMMON SYMBOL MATRIX
§ LA LA LT L L L L L L DY et T P PP el bl Al L Ll bl DAL DI S I PR L DL L T]
@ C ®» » . s C ss * . L '
: C® o MODULE s CCE F KeM M P S = O % & MOODULE # C CEF KM MNP S :
ne o * 00 XUEWACUT » N 5 00X VEACUT)
¥ ve » s NNALMIVTIRS® LI S NNALMIYVTRS
; os o s T THMCPNEFUS Q8 o *TTMHCPNEFUS
¢ N ® . * R PUTe alCs N ® . SR POT, WwTCs
’ ® * *L LNY, CNT® » *# *L LNY, CNT =
) N ® . @ . ™ N ®* L] 5 . 4
5 C ® COMMON = » . . O * SYMBOL » » . .
i . s 3 * . s . s j
¢ e, feet,fevetcseeetasnRaeres cocncecaw b L b L e e DL AL L L P L L T
‘ ¢ = JECF sy 0. .
. 1 % ACCING s © .
) 2 a ciaos 3. 04 & 13 » INOON 00 a. UGo s
: 3 o CONSTN s O X Xe X X ® Y » INSTAK s C . X »
4 & FGRTRN * C X . X0 10 s ITYPE U 0 . 0OU =
2 & INTERN * X QL X 0% A4 » KABEL s C X pe COos=
€ ® INVOKE » C . X 4 & KEN6TH » (0 S A X0
7 . RECNII s Q < » A% * KFTN s QU ° LOYs
8 e SESE . C . . 13 » KQMFTN * C O 0. LU
Y » STACK * 0 ‘ X s S ® KSTMT =L o . LOos
10 * STATE * X) e 0= Al10 ® LABEL * 0 X Cus
11 » gyYPE s 0 o 0 s 3 & LEK s CU U, Vus
12 » TRACE * X . X - 10 » LENGTH s S 0 . Co=
13 & USEOPT * X 0 0. X X s 10 ®# LINBEG s U e 00 s
14 = wARNIN s C ° » 10 s LINENC s L i C 0=
l ERE LD P L L T e LR R L L L L L B D e L L] A‘o] LISY & o (7] . O Uuese
: 10 ®& LPCINT s C %% Cu e
p : A o LSTACK s Q0 . A ®
ELGEN
. t--s.E---------.--.-...-.--.---..-.-.-.- 10 » L"PE s X 0 M Qu=s
g 13 & LUNFOR = 00 o, UOos=
- 13 & LUNOUY s L O 0. Cu e
e o NUDULE
! i e s Bkt 10 MENGTH s C 0 . Ous
g X => AT LEAST ONE SYFMBOL REFERENCED 12 ¢ NALTER = C & v =
=> NG SYPBOL EVER REFLRENCEC A6 * NAMPED s 0 . U s v
i oy S * AFATER s U 8 s OD= :
: SYMBOLS VS. MGLULE 13 & NINONT = G O 0. X0ew
: b e RN i S s NIMS *S5 o . O0O0s
: X => SYMBOL SET AND USED & = noBE * G . X
§ 0 => syYvBOL NEVER SET OR USED At ® NOCBLOK o C . S
K A6 & NOINV s 0 . X =
g S => SYMBOL SELT ONLY
¢ U => SYNBOL USED ONLY 10 » NSTATE = X o . 00
§ € => SYvbOL EGUIVALENCEL (OVERLAID) ONLY B S R SR TR i P e i i
A => SYVBOL IS AN ARRAY

Two matrices are produced by this report. The first one lists all
common blocks encountered in any module in the library, and indicates which
blocks do and do not contain any symbols used by each module. Routines from |
which a common block may safely be removed are easily found. This matrix
assigns a number to each common block. L

The second matrix lists only the symbols which are used by some
module; the number of the common block in which each is found is printed
to the left. This report is an excellent aid when changes are being made |
in a software system. ‘

AN

Figure 2.9. COMMONS Report

2-13

e ki i,

-~

LIBRARY DEPENDENCE

R e R P P e e P P P P T
** INVOKEE » *

*
. % #CCEFKMMPS*AAABEEGGGGGGIIIIIIIKKMNNNNPSVY %
. » *00XUEAQUT*CCSGNREEEEEOFFGHNNIvWCLOADEEUPE
* * sNNALMIyTRaTTSSORNNNNTTCSRDOIIQAVMSWw TRR
. 2 *TTMCPNEFLU#12ICEOAGLVMSOACOELTTMSEOCLPIYBS
* - *R POT wTCx GARRSCAAT S UNEAHPSWRAAAFwAx
* * #. LNy ONT= NN S BRM E PTVLN 1u NBG DT=x
] *]
* * » *
* INVOKER *=» * *
IR R R R R R R 2 PR R T R P R P R P R R P R S PR PSSRt T]
* CONTRL =% X&XX XX X X X XX *
= CONT % % X = *
= EXAMPL % * .
& FULCON & X X X =» =
* KEMPTY * * * X »
& MAIN X * . *
* FQVEWC LI § % -
* PUTFTN * X® = X X X =
* STRUCT s X X Xsx X XXXXX XXXX X X X X X XXs&
R R R R R R R R R R R PR R R PR R P PR PSR ETYY

THE FOLLOWING MODULES ARE NOT INVOKED BY ANY MODULE ON THE LIBRARY
VAIN

THE FOLLOWING MOOULLES DO NOT INVOKE ANY MOOULE ON THE LIBRARY
EXAMPL KEMPTY

The interaction of all modules in the library is shown in the first
matrix. If the library contains all modules in the user's program, this
report provides a concise, complete picture of the module dependencies. If
the library contains only a part of the program, this report aids in de-
termining what modules do not interact with the part and might be better
suited for another part. The modules are listed in alphabetical order.

The second matrix shows external modules, not in the library. If the

library contains all modules in the program, the external modules will

r consist only of system routines. If the library contains only a part of
the program, this report shows the part's interfaces with other parts.

! | This report also identifies the "top" and "bottom" modules in the

system--those that are not invoked by, and those that do not invoke, any
other module.

Figure 2.10. LIBRARY DEPENDENCE Report

2-14

b g ;
@
i
?
STATENENT PROFILE SUBROUTINE ExAMPL (INFO, LENGTH)
t
: INTERFACE CHARACTERISTICS
ARGUMENTS 2
ENTRY 1
EXIT 1
INTERNAL PROCEDURES 2 |
INVOKES 4 !
WRITE 1
: STATEMENT STATEMENT
- ; CLASSIFICATION TYPE NUMBER PERCENT
E StesetaceTtt e tec et at et eage et raatratar ot rerafetetate o nerTeretesesetTeasvTattew
DECLARATION e
FORMAT 1 2.8
TOTAL 1 2.8
EXECUTABLE oo
ASSIGNMENT 4 11.1
3 CALL 1 2.8
CASE 2 5.6 '
CASEELSE 1 2.8 3
DOUNTIL 1 2.8
1 ELSE 1 2.8
ENCBLOCK 2 5.6
ENDCASE 1 2.8 J
ENDIF 2 5.6 {
} ‘ ENCWHILE 2 5.6
ENC 1 2.8
INVOKE 3 8.3
RE TURN 1 2.8
WRITE 1 2.8
‘ TOTAL 23 63.9
i DECISIONeee ?
: 8LOCK 2 5.6
CASEOF 1 2.8
¥ DOwMILE 2 3.6
: ENDUNTIL 1 2.8
£ IFTRAN=IF e 5.6
i SUBROUTINE 1 2.8
¢ TOTAL 9 25.0
:
A COMMENT 3 8.3
TOTAL 3 8.3

® TOTAL PERCENTAGE MAY BE MORE THAN 100 BECAUSt OF OVERLAFPING CLASSIFICATIONS

This report classifies each statement of a module as either a declar-
ation, executable, decision, or documentation statement. Under these clas-
sifications, a tabulation of the subtypes is listed.

Figure 2.11. Statement Profile

2-15

I R O S A g

A rigorous analysis of program variables, including inter-module checking,
uncovers subtle inconsistencies which lead to errors, such as:

° The number of parameters in a subroutine or function call does not
agree with those of the routine called.

® The mode of an actual parameter does not match that of the
corresponding formal parameter.

] A parameter is listed in the calling argument list as a non-
subscripted variable but is used in the routine as an array.

Another consistency check is performed on the structure of the program.
The graph for each module is checked to see that all statements are reachable
from the module's entry and that the module's exit is reachable from each
statement. Unreachable statements represent extra overhead in terms of memory
space required for a module, while statements from which the exit cannot be
reached represent potentially catastrophic system failures.

The output produced by this option is a Static Analysis report for each
module (Fig. 2.12).

INSTRUMENT. This option "instruments' the source code by inserting
"probe statements' at the entry and exit of each module and at each statement
which begins a DD-path. Each probe includes a call to a data collection
routine which records information concerning the flow of control when the
software is executed. A special probe is inserted at the end of the main
program to signal the end of test execution. The user can also have this
special probe inserted at other points in the code, which has the effect of
breaking one test execution into multiple test cases. The command TESTBOUND,
MODULE=(<name>) ,STATEMENT=<number>. causes the special probe to be inserted
after the statement specified. The instrumented source-code file can be
input to the FORTRAN compiler (after first being processed by the DMATRAN
preprocessor if DMATRAN is being used). The instrumented object code is then
ready for loading and test execution.

During execution of the instrumented program, the probes record (on the
LTEST file) a summary of execution data which result from processing the set
of test cases input for this run.

INPUT/OUTPUT. Additional information may be gathered during test
execution by inserting INPUT and OUTPUT statements into each module. The
INPUT statements list the global variables (either parameters or in common)
that are required to have a value whenever the module is invoked; the OUTPUT
statements list variables that will be assigned values in the module. An
INPUT variable may also be an OUTPUT variable. The INPUT/OUTPUT option provides
for tracing the values of the variables during execution, by translating the
INPUT and OUTPUT statements into comments followed by data-collection code
that is inserted in the FORTRAN or DMATRAN (along with the DD-Path probes if
INSTRUMENT is also selected). When the program is executed, the entry and
exit values of the variables will be reported.

2-16

STATIC ANALYSIS SUBROUTINE CIRCLE (AREA)
SEO NEST SOURCE UNKNOWN EXTCRNALS
2 SUBROUTINE CIRCLE (AREA)
2 COMMON / VALUES / DIAWTR
3 INTEGER AREA
. RAQIUS = DIAMTR / 2
- AREA = pl = RADIUS oe 2
. . MODE WARNING -
« LEFT HAND SIDE MAS MODE INTEGEARRISHT WAND SIDE HAS MODE REAL -
. IF (AREA 6T, 50) THEN
Tt o CALL PRANY { AREA)
- CALL ERROR -
- PRNT CALLED WITH 1 ACTUALLY HAS 2 ARGUMENTS 3
- CakL ERROR -
«=PARANETER 1 OF PRNT +ACTUAL PARAMETER HAS MODE INTEGER -
= +FORNAL PARAMETER HAS MODE REAL -
. ENO3F
’ RETURN
10 CALL STACK (RADIUS, AREA)
. GRAPH WARNING =
- STATEMENT 10 IS UNREACHABLE OR Is IN AN INFINITE LOOP - 3
STACK
11 END
STATENENT ANALYSIS SUMMARY ERRORS WARNINGS
............. .
GRAPH CHECKING 0 1
CALL CHECKING 2 0 p
MODE CHECKING ° 1
1ST TOTAL LAST IN/OUT ACTUAL PHYSICAL
NARE SCOPE nooE STHT USES STAT USE USE UNITS
AREA PARARETER INTEGER 1 ¢ 10 s0T™
UIANTR VALUES REAL 2 2 . INeUT
RaDIUS LOCAL REAL . 3 10
vy LOCAL REAL s 1 s
- SET/USE_WARNING . |
= VARIASBLE P} wAY BE USED BEFGNE BEING ASSIGNEN A VALUE - {
)
SYABOL ANALYSIS SumMARY CRRORS WARNINGS i
i et e
SET/USE CHECKING (] i

The Statement Analysis Summary contains the warning and error messages
interspersed appropriately in the code. Unknown externals--routines
called which are not in the library--are listed on the right side of the
printout. The numbers of errors and warnings are listed at the bottom.

The Symbol Analysis Summary shows the name, scope, and mode of each 3
symbol in any executable statement in the module. The actual use of global
variables is defined as INPUT, OUTPUT, or BOTH. For any variable that is
used before being set to a value, or set and not used, a warning indicates
the condition, which could lead to e:irsors.

Figure 2.12. Static Analysis Report

2-17

A S it — ” T,

REACHING SET. This option executes the "module retesting assistance"
process of FAVS. The user identifies a section of code he desires to exercise
by specifying the number of the DD-path to be "reached", and the number of a
DD-path from which it is to be reached. The user may specify either iterative
or non-iterative reaching sets to be generated. FAVS prints a list of DD-paths
that connect the specified points -- the "reaching set" -- and the actual program
statements on the paths. With this list, the user can identify which parts
of the program need to be executed (and therefore which program values need
to be modified) for the selected statement to be executed. Test cases can
then be constructed, and the user may rerun Test Execution to ascertain the
additional program coverage provided by the new set of test cases.

The basic command
OPTION = REACHING SET
must be followed by a command specifying a reaching set:
REACHING SET,MODULE=(<name>),TO= <DD-path number>,
FROM= <DD-path number>{,ITERATIVE}.

This command generates a non-iterative reaching set unless ITERATIVE
(preceded by a comma) is included; in that case, the reaching set which
includes all possible iterative paths is generated.

2,3 FAVS ANALYZER COMMANDS

The FAVS Analyzer produces coverage analysis reports, generated from
the data collected during execution by the probes inserted when the INSTRUMENT
option is selected. Figure 2.13 shows the execution coverage sequence
beginning with FAVS instrumentation of a program (compare with Fig. 2.7),
through the usual compilation and execution (shown inside dashes), to the
input of execution coverage commmands which then generate coverage reports.
The entire sequence can be performed in the same run.

During test execution the program operates normally, reading its own
data and writing its own outputs. The instrumented modules also accumulate
data on DD-path traversals. Each test execution may consist of a number of
test cases.

The coverage reports are controlled by two coverage commands, an option
selection and a module selection command. The type of report is specified
by the command:

OPTION(S) = <list>.

where <list> may be one or more of the three options: SUMMARY, NOTHIT, or
DETAILED.

2-18

FAVS
COMMANDS

FAVS

) O

RESTART
FILE

SOURCE ,
CODE
L REPORTS

AN-49089a

{

(INSTRUMENTED

SOURCE CODE

#

COMPILE

DATA 1 ‘ ‘-_.___.._

USER'S
EXTERNALS

1 EXECUTE

 ae— USER'S

OUTPUT

\/_J

| ggx&:ﬁgg o| ANALYZER

2-19

COVERAGE
REPORTS

N T

Figure 2.13. Execution Coverage Sequence

If the DETAILED option is specified, then the OPTION command must be
preceded by the module selection command:

FOR MODULE(S) = (<name-1>, <name-2>, ... <name-n>).
where each <name> is the name of a module (subroutine, function, or program).
The DETAILED reports will be generated only for the modules named in this

command.

Examples of the three reports are shown in Figs. 2.14, 2.15, and 2.16.

2-20

s T T

SO9INPOK TIV ‘UOTINDIXH YIed-qQ 3ISIL-oTdFITNN :310doy XAVWWAS °4T1°C 2and3g

oS 6s ot “ Lz 02 1 10t ss1lvss 1
1 1
°T°es ' 3 ot 1 ssL2 L2 t 1 " sSv1) 1
19°99 2 1 ot 1 ge°ce T 0 1 " Nivd I
' L 1 et
= t £+ 4
. i i 1
Ze0S 6§ 6 " 69°0¢ {3 1 10t ssVlvss 1
1 1
TS s] 6 1 19°0¢ ot T 1 " sSYYY) 1
19°99 2 1 6 1 ceese 1 ° 1 € Nivd 1
1 1 I 6
L °
e °
L4 —
» o~
)
o~
1 1 1
£9°9¢ Le € “ L6°2 £ 1 1) ss1lvss 1
; 1 1
t°ee s¢ 2 £ 1 n0°2 2z t 1 T3 sSY1 1 '
19°99 e 1 € 1 geece 1 (] T € NivW 1
1 1 1
SISSISE=SssEsss=2 t 3 1 33 t 3 t 3+ 33
1 1 1
h9°ce 9 z 1 c9°ng s¢ 1 10t ss1vss 1
1 1 1
69°0E 13 4 2 1 69°0¢ "e v 1 06 SSv1) 1t
19°99 2z T 2z 1 geece T 0 1 € Ntyw I
1 1 1 2
- ¥ 13 £ F 3 ==
1 1 1
86°T e T “ 96°1 z 1 10t ss1lvss I
1 1
LA 0 ° 1 1 00°0) ° 1 1 SSVY) 1
19°99 e 1 t 1 19°99 2 1 1 € NIvd 1
1 1 S
==3 sS=sSs=sS== = STSSSsssSSsSssSssssgs=ssSssSsszssSss=s=e = s=gz="T

39Vy3A02 03Sy3Avul SNOILVIOANT S1S31 40 I 39V¥3A0) 03Sy3Avyl SNOIL1VIOANT I SHivd 0-0
NIT4ON 1 IN3D ¥3d SHivd 0-0 40 ¥3R4ANN 1 40 NIAWNY

1 ¢
AYyHNunNnS 3ATLvVviInann 11831 S$I1HL == A¥dVYVYRHNAS I
1 1

e 3gs= === =z=z3==== i 14 =ssgs==s==3zs=

i T . Mo

Sl -

peanoexg 30N SyIeg-qd :310dSy IIHION °‘ST'Z 2anS1d

@6

L6 9 S6 26 9° SS9 he €9 T8 V@ O0R 6L LL TL OL R9 L9 29 6S €§
26 g 0S on Gh En 26 Th On AE Lc 9¢ wg 2€ 82 LT OT L 9 § I 1%

R6 Le 96 356 %6 Eg¢ 26 1g Ng 68 €@

L9 99 S@ he €9 29 Tg 08 6L LL 92 HL €L L 0L 99 (9 %9 SS9 29

6S Pg HG ¢gc 26 IS5 05 Bh Sh €h 2Hh THh Oh 6 P¢ LEg 9¢ S¢ e 2%
0 82 92 w2 22 12 02 61 BT LT 9T ST Ht €T 2t o' ¢ 9 S ¢ 1 1w

T MNund 1

1 ot I < SSvI>

L D et L e T T e L T e T T

1
4

- "
") e

H 10N
Hivd

J31nJ3x3 LO0M SHLVd NOISIIJ3I
== Sszssssassssz=zEs

S=3Is=zss=sssz=s=ssz===

T Nun 12
1 ot T < NIvd>

1 M384nN I 3avn
1S31 1 IMI04

1
SSSsSssssTssSs=s=ss=s==zsS=

2-22

T T

MECORD OF CLCISION TO DECISION tOC PATH) EXECUTION

MODULE sCLASS 3

TEST CASE NOo []

00 PATH
NUMBER

N0+ NOT EXECUTED

1 NUMBLR OF EXECUTIONS »- NORMALIZED TO MAXIMUM

Jeo*cncacs(,Yercrcci,*voocccf,vcvcnccf,>mcce"]100,

e

1 NUmBER OF
I EXECUTIONS

VBN B W

t
4
I
1
1
I
1
1
1
t
t
1
1
1
1
1
1
1
]
1
1
1
3

d
-
0 0 20 0d 2w St B

00000

] 00000
oo 00000
? 00000

10 04000

A? 00000
a0 00000
70 00000
n 0o0ovo
7 00000
oo 20000
° 00000

RXXNXRXARXXXRANBXAXRAARXRAN XXX
AXRAARARAX XN

xxxx
Xxxxxx

x
NAXXKHIANLRXARAAAXHRRAHRARARA RN KK NN NN ARN NN N XN

XXXxX
XXRXRXXAXXXXAXRXARAREAXAXNXRXXXXAXKKAAXXX XXX K

0 00 0ut 0t B0 B0 B0 6 B0 0 D B0 D Bug B B0 Bt g 0 B0 B0

ittt © O @

st ssatutets © @ @ 000t 0 20 00 6 D0 B0 B0 B Bt St P B0 00 B e Bt B4 D

N

7”2
”

-

900 000 0u6 00 Bug Bt B B0 Pt 00 00 00 B 0 Bea D B9 B0 Bt
[]

0 5t Bu B g 0w Do o
L

TOTaL OF 61 NOT EXECUTED

Figure 2.16.

TOTAL NUNBER OF DD PATH ExICutiONg @ s

EXECUTED 37/ %

PERCENT ExEcuitp = M7

DETAILED Report: Single-Test DD-Path Execution,

One Module

2-23

S —————

3 USE _OF FAVS IN SOFTWARE TESTING

The concepts implemented in FAVS address the basic problem of assembling
systems of hardware and software to achieve desired behavior. By the very
nature of a specification for a software system and the system built from it,
the system's behavior includes both specified and unspecified behavior. The
specified behavior may be acceptable (i.e., what was desired) or unacceptable
(i.e., not desired but an unforeseen consequence of the system's behaving as
specified). The unspecified behavior may be acceptable (i.e., fortuitously
providing a capability not included in the specification) or unacceptable.

Acceptable behavior in a software system is approached in two ways:
attempting to build software of inherently high quality, and attempting to
identify failure by testing the software at various stages. FAVS augments

the testing process.
1 |
3.1 RELATIONSHIP BETWEEN SOFTWARE TESTING AND SOFTWARE VALIDATION §
Figure 3.1 shows the relationship between a software system functional
specification, the software, and the process by which testing seeks to in-
vert, or "validate," the software implementation phase. Ideally an auto-
E mated verification system (AVS) would support software validation: the
PHASE 111: 2
=)
TEST -
L ANALYSIS TESTCASE Y
FUNCTIONAL DATA 3
SPECIFICATION OPTION = INPUT/OUTPUT
Q
L SOFTWARE é\@ =
— A =z
|E |iwpLemMENTATION S/ & | PHASE 11:
7 S/ TESTCASE |
SOFTWARE |7 £ S g é,
VALIDATION [@ f_}\ = GENERATION ;
zE L/ = |
E A = z
& < e |
& = %
, L y
& T STRUCTURAL f
SOFTWARE OPTION = REACHING SE TESTCASE |
PHASE 1I: SET |
TESTCASE
IDENTIFICATION
SYNTHESIS OF ANALYSIS
SOFTWARE OF SOFTWARE

Figure 3.1. Software Testing and Validation Using FAVS

demonstration of consistency between the software and its specification, in-
dependent of any specific testcases. The discipline of program proving
(which is not currently applicable to even moderate-sized software systems)
aims most directly at this ideal. Practically, an AVS should support test-

ing verification: the demonstration of correct behavior for a representa-

tive and thorough set of specific testcases.

Figure 3.1 also shows how FAVS fits the testing verification method-
ology. DMATRAN provides constructs for structured programming in FORTRAN,
supports top-down programming in FORTRAN, and provides data access asser-
tions. FAVS assists in partial software validation through the STATIC op-
tion and provides dynamic structural testing, untested-path identification,
output augmentation, and documentation to assist in testing verification.

The four phases described in the figure are implemented with FAVS as
follows:

® Phase I: Testcase Identification. The software is analyzed
for path sequences to execute specified DD-Paths, yielding
a collection of structural testcases. The REACHING SET
option identifies code for structural testcases.

® Phase II: Testcase Generation. Supplying specific input values
for a structural testcase converts it to an actual test. The
DOCUMENT option provides reports useful in generating specific
testcase data to execute some path sequence in a reaching set.

® Phase III: Test Analysis. The results of the test are then
analyzed for their relationship to the System Functional
Specification. The INPUT/OUTPUT option is useful to augment
the normal output of the software for test analysis.

@ Phase IV: Testing Verification. The audit file written by
the instrumented software (see Fig. 2.13) during execution of
the testcase data is processed by the FAVS Analyzer. DETAILED
or SUMMARY reports are available to identify the statements
and decisions which were executed. The NOTHIT option is most
useful in identifying particular unexecuted DD-Paths to be
analyzed for additional testing coverage.

This method augments the testing process by '"validating" the software
against a partial functional specification (all statements must be reach-
able, formal and actual parameters must match in number and type, etc.);
and by applying testing verification, with the set of specific testcases
used in functional testing augmented to give full coverage of all DD-paths.
Software validation using FAVS does not guarantee that the ssoftware analyzed
is error-free: programs which are consistent with the partial functional
specifications may not be consistent with their complete functional specifi-
cations. Nor does comprehensive exercise of a software system, as measured
by FAVS, guarantee that it is error-free. Nothing short of the impossible
goal of executing all instances of all testcase sets would provide this

3-2

g S ey S €

guarantee through testing. However, practical experience indicates that
software validation and testing verification supported by FAVS will locate
a very high proportion of errors. Hence, the use of partial software vali-
dation and testing verification as an approximation to full software valida
tion seems to be reasonable and practical.

3.2 WRITING TESTABLE SOFTWARE |- =

The problem of constructing software which performs its intended
function can be approached from both "synthetic" and "analytic" viewpoints.
This section concentrates on augmenting a broadly applicable "synthetic"
approach--writing testable software which is error-free the first time it
is tested. Although this is an ideal which cannot always be achieved, com-
mon sense and practical experience indicate that a carefully written system
will work reliably sooner and with less testing effort than a hastily im- ,
plemented system. p

In this section we discuss some widely accepted guidelines for soft-
ware implementation that reduce the cost of testing and improve the quality ‘ 3
of the software. Reference 1 gives additional guidelines for the prepara- '
tion of readable software.

We briefly list the guidelines and then go on to discuss how they are
implemented and checked with DMATRAN and FAVS. '

3.2.1 Structural Guidelines

Use Small Blocks of Code. The first guideline is the most important
of all. It is to keep each block of code as small as possible; at most
50 lines of code or one printed page. When a programmer believes that more
than one page of code is necessary to describe the functions in a block, the
block should be split in two.

Small blocks can be tested more thoroughly for a large set of values
than large blocks. While in a large system it is impossible to exercise
all possible combinations of paths, it is not unrealistic to assume that
all possible combinations can be exercised in each block individually.

Use Single-Entry, Single-Exit Control Structures. Much has been
written on the well-structured program.<~* It has been shown that three
control structures are all that is necessary to write any computer program,
that less time is required to write a program using structured-programming

techniques,6 and that the use of such techniques eliminates the need for |
flow charts.

The most important feature of a well-structured program is the re-
striction to single-entry, single-exit control structures. While this
] restriction is often recommended to improve readability and to eliminate
decision errors, it also eases testing.

— T ———— i L e - o —

Use Few Types of Control Structures. Modern programming languages pro-
vide a wealth of control structures. Moderation in the types of control
structures used simplifies both the testing and the understanding of a pro-
gram. A good guideline to the types to use is an article by Mills,’ who
stated that the only truly useful one beyond a DO loop and an IF decision is
a form of the CASE statement.

Use Few Paths. The guideline of keeping a block small helps keep the
number of paths small. Even so, it helps to pay explicit attention to the
number of paths. The amount of testing required for a program is an exponen-
tial function of the number of decisions; hence each unnecessary decision
point adds greatly to the testing effort.

Very often the designer of a program can decrease the number of paths
dramatically by altering an algorithm or choosing another one. An example is
in the use of trigonometric functions. All trigonometric functions can be
computed by algorithms that provide results only for the range 0 to 45°. But
then the program that uses the algorithms is forced to decide which functions
should be used, after mapping the angle into the range 0 to 45°. If the trig-
onometric functions are altered to respond to the full range of values that
the machine can calculate, the number of paths at the tester level is decreased.

Do Not Use Implied Loops. An implied loop is one which uses an IF test
and a GOTO to form a loop in the program. It is often used by programmers to
obtain loop features normally unavailable, such as:

1. Alteration of the control variable by uneven increments
2. Use of floating-point variables as control variables

3. Overlapped nesting of loops

4. Transfer of control into a loop

5. A loop structure not provided in the programming language

Implied loops are particularly susceptible to errors, especially infinite
loops. It is often not apparent to the tester that such a loop exists, and
therefore it will not be tested in the way that a loop would be tested.

Do Not Use Multiway Transfers. Some programming languages contain multi-
way transfers. The most notorious is the FORTRAN arithmetic IF statement. It
is a single-entry, triple-exit statement that should not be used because it is
hard to follow, and hard to test because it allows an arbitrary transfer of
control. In most cases a logical IF statement can replace an arithmetic IF,
reducing the number of paths to two and resulting in a well-structured program.
Where multiple paths are needed, a CASE construct or one of its equivalent
IF...THEN.. .ELSE...ENDIF constructs should be used.

Exclusive use of the DMATRAN control constructs assists in conforming to
all the structural guidelines for testable software. The first guideline,
"use small blocks of code,” may be difficult to follow in a large FORTRAN

34

g

N]

eCro At e YT

implementation. Software systems consisting of hundreds of separately com-
pilable modules often exceed an operating system's constraints, and may cause
maintenance problems. The DMATRAN BLOCK construct provides a solution to
this problem by allowing large routines to be internally modularized into
small, comprehensible blocks of code. DMATRAN provides five single-entry,
single-exit control structures, thus satisfying the guidelines "use single-
entry, single-exit control structures" and "use few types of control
structures". The next guideline, "use few paths,” can be largely enforced by
limiting indentation within any one block of code to a level of 6. Implied
loops and unstructured multiway transfers (which are prohibited in the last
two guidelines), cannot be written using the DMATRAN control constructs.

3.2.2 Symbolic Guidelines

The symbolic guidelines are intended to make the association between
names, objects, types, and physical quantities as clear as possible to a
tester.

Use Meaningful Names. Most programming languages today allow the use of
meaningful names such as TIME, SPEED, HEIGHT. A tester has a better feel for
the function of a program if such names are used instead of names like X1, X2,

< X3.

: Use One-to-One Matching Between Names and Objects. One name should re-
i fer to only one object, and one object should have only one name. Often, un-
j fortunately, one object has different names. For example, a FORTRAN equiva-
lence statement can allow the same area in memory to be referred to as A or {
as B . The excuse may be made that equivalence in FORTRAN is necessary to
allow the definition of table structures. However, there is no reason to use
it otherwise. Nor should multiple names be used in languages which allow
tables to be defined.

Identify Constants. When it is known that a name represents a constant,
the tester or test tool can make various simplifications. For example, it is
known that a predicate stated in terms of constants need not be traced back to
determine its value on input.

There are three types of constants that can be identified:
1. Preset by the compiler

2. Initialized by an assignment statement

3. Read as data from an external device

While provision has been made in some languages to identify the first, the
others need identification as well so that a test can be made that they are
P set only once and are indeed constants.

Use One Physical e for One Name. To save memory or to save names,
' programs are often written where a variable contains different physical quanti-
ties at different times in the program. For example, at one instant the

3-5

variable represents height in feet and at another height in miles. This mul-
tiple association between physical types and names should not be done, because
it confuses the tester, who has to keep track of the physical units from one
instant to the next.

Use One Data Type for One Name. In some languages a variable name can
be used to store either integer data or character data. This allows handling
characters in limited languages, but makes it difficult to test for legal
values in a variable. When a variable is to be used to contain characters,
its use should be restricted to characters only.

Use Local Variables in Preference to Global Variables. This guideline
is not intended to result in extra unnecessary variables, but to cut down on
the use of global variables as local variables. For example, temporary vari-
ables should always be local, never global variables. The number of global
variables should be kept at a minimum, since they are more difficult to keep
track of.

Separate Inputs from Outputs. Different variable names should be used
for the inputs and the outputs of a module. A module should not be called
with the same actual parameter in more than one parameter position. If a
variable is used both as an input and as an output, the invoking module may
require that the variable not be changed, which is a difficult problem to
trace. This guideline may increase the number of variables.

The guideline "use meaningful names" is reinforced by the ability to
give DMATRAN BLOCKS long, mnemonic names. This feature adds to the readabil-
ity of properly designed and implemented DMATRAN programs. The use of INPUT
and OUTPUT statements processed by DMATRAN and FAVS makes it apparent when
the guideline "separate inputs from outputs' has been violated.

3.2.3 Loop Guidelines

Limit Types of Loops. Most languages provide too many means of gener-
ating a loop structure. The best loop structure for testing and verification
analysis is the DO WHILE loop, with one integer control variable that changes
monotonically with equal increments. DMATRAN provides only two looping con-
structs.

Keep Invariant Conditions. In loops, indicate the invariant conditions
on the variables within the loop. Where there is a choice between making a
condition sometimes true and making it always true, change the algorithm to
make it always true. Such a condition is termed an invariant. The SQRT
function in Fig. 2.2 computes the square root by successive approximationms.
An invariant condition for the loop in SQRT is that the next approximation
is at least as good as the previous approximation. The condition

ABS(A - X ** 2) .GE. ABS(A - ((X + A/X)/2) ** 2)

inserted as a comment immediately after the DO WHILE statement would precisely
describe this loop invariant.

3-6

T I N ot At ety

R SN,

Maintain Monotonic Control Variables. If the control variable changes
monotonically on every path through the loop, one can then hope to prove that
the loop will terminate. Otherwise an infinite-loop condition can arise.

3.2.4 Interface Guidelines

Use Top-Dowa Design Techniques. There are arguments for both top-down
and bottom-up testing. Testing from the bottom up on a per-module basis 1is
worthwhile. However, it is only with top-down testing that the whole system
is tied together from the beginning. Bottom-up testing requires the design
of many drivers, interface errors remain hidden, and the operating system
interacts only late in the testing.

Use a Support Subroutine Library. The use of a subroutine library al-
lows testing on a module basis, as well as checking the correctness of each
module's interfaces, and encourages modularity. Well designed support sub-
routine interfaces can considerably decrease testing expense and effort.

State Data Access Rights. Data access rights for each global variable
and for each parameter can be listed with the DMATRAN INPUT and OUTPUT asser-
tion. The use of each such variable should be stated for each module.

Another use of the BLOCK construct is to support modular top-down pro-
gramming. Several major problems exist in using FORTRAN for top-down pro-
gramming. The first is that as additional detail is being added to the cur-
rent implementation, interfaces between related routines must be frequently
updated. This requires updating all instances of invocations to modified
routines and updating all instances of modified common blocks. Since the
BLOCK construct allows modularity within one compilable unit in which all
program variables are global, no such interface maintenance problems are en-
countered. Also the development history of a FORTRAN top-down design is
largely lost, while the long BLOCK name capability of DMATRAN allows some of
the history to be embedded into the implementation.

The FAVS STATIC option encourages the use of a support subroutine 1i-
brary by automatically detecting many errors in the invocation of support
routines. A restart file which describes the formal parameters of all support
subroutines can be constructed with the FAVS LIST option. Only the properties
of the formal parameters need be included in the source input to FAVS for
building the restart file. For instance, the FORTRAN support library routine
IABS (absolute value) can be described as

INTEGER FUNCTION IABS (I)
INTEGER I

INPUT (I)

RETURN

END

s alian

This defines IABS as an integer function with one formal parameter, which is
an integer variable that is used as input (see Sec. 3.2.2). Both system sup-
port library routines and user support library routines can be described on a
FAVS restart file for use in analyzing FORTRAN and DMATRAN routines.

3.2.5 Comprehensive Synthesis Approach Using DMATRAN and FAVS

A method for using the DMATRAN precompiler and the FAVS STATIC option
to implement high-quality DMATRAN source programs is shown in Fig. 3.2.
After the initial version of the software is written (according to guidelines
similar to those just discussed), an iterative process is begun which aims at
removing errors before the software is ever executed. The first step in this
process is performed by the DMATRAN precompiler. It produces a listing of
the DMATRAN source program which is automatically indented to show its struc-
ture, and has any invalid structure constructs flagged. The intermediate
FORTRAN source program produced by the precompiler is next checked by the
FORTRAN compiler for syntax errors. FORTRAN statements which are in error
can be traced directly to the corresponding DMATRAN source statements. Fi-
nally the STATIC option of FAVS is used to analyze the DMATRAN source pro-
gram, including all calls to support library subroutines. After a module has
passed all these error checks, single-module testing (Sec. 3.3) can proceed
with the expectation of minimum testing expense.

3.3 SYSTEMATIC SINGLE-MODULE TESTING VERIFICATION

The testing verification process for single-module coverage has a sin-
gle objective: to construct test cases which cause the execution of DD-paths
not yet executed. Testing is complete when all DD-paths have been exercised,
or when those which have not been exercised are shown by the program tester
to be logically unexecutable.

This precess is diagrammed in Fig. 3.3. The software must first be
prepared for testing (analyzed for its structural properties and instrumented
for testing). This is done by processing the software through the INSTRUMENT
option of FAVS. The resulting data base contains all information necessary
for subsequent testing activities. Selecting the DOCUMENT option at this
time provides the basic reference material to use in testcase data generation.
The testing process begins by executing whatever testcases for the module al-
ready exist; this iritial test, performed with the assistance of the INSTRUMENT
facility of FAVS, results in a coverage report which identifies the DD-paths
which have not been exercised (the NOTHIT option). If there are none, then
testing is finished.

The hext step is to choose a likely DD-path upon which to concentrate
the testing. After this choice is made (see below), the tools already de-
scribed are employed, as appropriate, to assist in generating testcases
which will increase the percentage of DD-paths that have been exercised.
These additional testcases are added to the previously generated ones, addi-
tional test executions are made, and the ANALYZER facilities are used to
provide the updated coverage report.

3-8

e e B N

SAV4 Suys @1emijos 2Tqe3say SUFIFAM °Z°¢ In8Ed

*211V1S
= NO11d0
AS1 314 *NVYLVWG

=-NQLLdO LuviSy = J9YNINVT
*SAV4 4_AU_ * ONVdX3
¥3116W0) 32408

*SAVS NVY1304 NVI L1804
o
W%&M 928..%% 328n0S ¥3114W003Yd
NVYL1404 Q3LN3ONI NV3LVWO
7 Q3LVWOLNY -
TVINW)
sanLs 2
AuvdsIl SY0YY3 SYoYY3 SH0¥Y3 324N0S
140ddns JILVIS XVINAS 3YNLINYLS NV31VWO
7
9NILSIL SYOYY3 NOILYDI4123dS
3IN00W INIS 1733402 INIWITdWI

66905 NV

FrovRee

1yvis

86205-NY

SAVd 3uys) UOTIBDTITIS) Bur3isal a[npoy-213urs

*€°¢ 2an83g

140d3¥ 4108 S13043Y
19W4IA0 Tl IN3WA00
I\J 114
L4043y NOILAD3X3 LVISTY
135 ONIHOV3Y
135 .
sy ONIHOVIY " INIWAO00
e = NO1Ld0 394N0S INFWNULSNI
‘LUYLSTY 3INIWNYLSNI = NOLLdO
*SAVA “SAVS
3LVWOLAY
TVONVH
viva 1393V1 V1VO
ISVILS3L HLVd-00 S I5VLS3L I7N0S
NN 193135 WILINI
viva
ISyI1s3lL auwwm ww— 18V1S
I1V¥INI9 .

s i

3-10

R

The effectiveness of this scheme for program testing verification de-
pends to some extent on the mechanism used to select the next target DD-path
for testcase generation. This testing target should be one of the unexecuted
DD-paths; when there is more than one untested DD-path to choose from, the
choice among them can affect the amount of "collateral testing", and thereby
influence the efficiency of the testcase set.

The DD-path selection criteria used should attempt to maximize collateral
testing. On the other hand, maximum collateral testing coverage may make
testcase data generation very difficult. The selection function actually
used should depend on the nature of the program being analyzed. The follow-
ing guidelines may be of value:

j I Choose a DD-path which resides on the highest possible decision
level.

a. This assures a high degree of collateral testing, since
after the target DD-path is executed the program must still
finish executing and, in the process, may hit a large num-
ber of other untested DD-paths.

b. If such a DD-path has not yet been executed, and all DD-
paths are to be exercised, then it will have to be dealt
with at some time anyway. Better sooner than later.

2. Choose a DD-path which is at the end of a fairly long reaching
sequence. The reasons for this are similar to (l.a), but involve
an additional observation: the more complex a set of logical con-
ditions dealt with in generating a testcase, the more likely that
the resulting testcase dataset will resemble data which corres-
ponds to the functional nature of the program being analyzed.

3 If a prior testcase carries the program execution near one of the
untested DD-paths, it may be more economical to determine how
that testcase can be modified to exercise the untested DD-path.

4. If the analyses required for a particular DD-path selection are
difficult, then attempt to choose a DD-path which lies along the
lower-level portions of its reaching sequence(s). Doing this
simplifies the analysis problem, but may still achieve a high
degree of collateral testing.

These analyses are supported by the FAVS DOCUMENT option (see Sec. 2).
3.4 SYSTEMATIC SOFTWARE SYSTEM TESTING VERIFICATION

The system testing verification effort can be organized according to
two fundamentally distinct strategies: (1) bottom—up system testing, and (2)

top-down system testing.

Bottom-Up Testing: This testing strategy attempts to provide comprehen-
sive system testing coverage by building test cases from the bottom of the

3-11

system invocation hierarchy first, and extending these test cases upward dur-

ing the continuing and concluding testing phases. Bottom-up testing may re-

quire the use of special testing environments (see below), but is likely to

achieve the best overall testing coverage.)

Top-Down Testing: This testing strategy deals with an entire software
system first, and, after subsystem (or component) testedness is measured,
proceeds downward through the software system's invocation structure. Test
case data is added only at the topmost level and, as a result, a set of sys- ;
temwide test cases is developed directly. i

The optimum system testing strategy for a particular system generally
combines the two strategies. The choice is based on the level of coverage i 1
achieved, the difficulty of proceeding upward or downward in the system organ-
ization, and the effort required to establish a testing environment in each

case. } 1
The basic ingredients of systematic software system testing are the | i
following: B
° The ability to perform comprehensive single-module testing for
each invokable module
® Knowledge of the system's invocation structure
° Previous (and initial) system testing coverage measures
° A next-testing-target selection function to allocate testing ?
effort. |

The general form of system testing is shown in Fig. 3.4, which emphasizes the
continuous use of a system testing coverage measure. The interaction between
the system testing coverage measure and the process of selective application
of the single-module testing procedure is described next.

Systemwide testing coverage can be measured in terms of the coverage
for each module, or in terms of the coverage for an identifiable subset of
related modules (i.e., a component). The coverage measure can be used to
select the best next testing target. The simple per-module coverage measure
will direct testing effort toward the module which is the least tested. The
per-component coverage measure directs testing effort toward the component
which is the least tested.

The measure actually used should depend on the internal structure, and
possibly the functional requirements, of the software system as a whole. The
measure should unambiguously identify the module(s) least tested, but should
tend to identify a number of possible testing targets. The choice between
them should be made within the confines of the invocation hierarchy, and by
considering the two important variations of testing strategy: top-down test-
ing, and bottom-up testing.

3-12

rw’_’_ e ———— —ar— - e mw“wm
‘fMMWM AT AR 2Tl 551

-
]
1
2

ANALYZE EXISTING

TESTCASE

COVERAGE

.%

ANY
UNTESTED
DD- P‘?THS

SELECT LEAST
TESTED MODULE

APPLY SINGLE- SELECTOR

MODULE TESTING;
ADD TO TESTCASE
SET

a J

Figure 3.4. System Testing Procedure

3.4.1 General Strategy

The best approach for systematically testing a large software system
will depend on the specifics of that system's elements; it is not possible to]
state a universally applicable strategy. Mixtures of the top-down and bottom-
up approaches may well cost the least, and may result in the greatest testing

; coverage. | 3
? FAVS has facilities which directly assist in the testing of large soft-

% ware systems. The DOCUMENT option includes analyses which assist the program

? tester in grouping modules into subsystems and in constructing suitable test-

§ cases (see Sec. 2).

3.5 SUMMARY

The many options offered by the FAVS commands permit the user to tailor _
FAVS processing for a particular testing activity. As an additional benefit, |
some of the FAVS reports can be very useful in software documentation and | 3
code optimization. As with many other software packages, how FAVS is utilized
varies greatly among users. Quite often several reports are used together to
provide more insight into the specific problem at hand.

For program testing purposes, a basic set of reference material for
each module is the following:

3-13

DD-Path Definitions
READS Report 4
INVOKES Report

BANDS Report

Static Analysis Report

For a system with many modules, the reference material should also include:
COMMONS Report

LIBRARY DEPENDENCE Report
CROSS REF Report f

These reports are produced by the combination of the INSTRUMENT, DOCUMENT,
and STATIC options. This same set of reports may be used for software docu-
mentation purposes.

AN R M Rt gt e

3.

5.

T T G 2 » & ; 4 Lad TR Y———

casini. L LT F S e O L SO A

REFERENCES
B. W. Kernighan and P. J. Pluger, The Elements of Programming Style,
McGraw-Hill, 1974.

0. J. Dahl, E. W. Dijkstra, and C. Hoare, Structured Programming,
Academic Press, 1972.

E. W. Dijkstra, "GO TO Statements Considered Harmful," Communications
of the ACM, Vol. 11, March 1968, pp. 147-148.

R. E. Noonan, "Structured Programming and Formal Specifications,"

IEEE Transactions on Software Engineering, Vol. 1, No. 4, December
1975, pp. 421-425.

C. Bohm and C. Jacopini, "Flow Diagrams, Turing Machines, and Languages
with Only Two Formation Rules," Communications of the ACM, Vol. 9,
May 1966, pp. 366-371.

F. T. Baker, "Structured Programming in a Production Programming

Environment," Proceedings of the International Conference on Reliable
Software, Los Angeles, April 1975.

H. B. Mills, "The New Math of Computer Programming,' Communications
of the ACM, Vol. 18, January 1975, pp. 43-48.

E. F. Miller, Jr., Methodology for Comprehensive Software Testing,

General Research Corporation CR-1-465, June 1975.

