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ABSTRACT

A Two—Dimensional Numerical Model of Dry Convection

With Three-Dimensional Dynamics. (August 1978)

James Charles Weyman, B.S., Grove City College

M.S.B.A., Metropolitan College

Chairman of Advisory Committee: Dr. Dusan Djuric

A numerical model for the study of dry , three-dimensional,

small scale, atmospheric convection is presented for use with a

two—dimensional grid in the vertical xz plane. All of the deriva-

tives in the horizontal y dimension are derived through the assump-

tions of cyclostrophic balance, symmetry of circular eddies, and

horizontal isotropy of derivatives. Variable eddy coefficients,

proportional to the deformation field and the square of the grid

interval, are used. Comparisons with a similar two—dimensional

‘model shows the thermals in this pseudo three-dimensional model

develop sooner and reach a larger ma~cimum vertical velocity faster.

These results are comparable to what other researchers of three-

dimensional models have found. The economy of computation of this

model will enable other investigators to make better use of

limited computer facilities.
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1. INTRODUCTION

Numerical modelling is one of the promising ways to study the

details of convective flow which cannot be practically observed. The

models that have been tested thus far have differed greatly in the

sophistication of the cloud physics and the numerical techn iques

employed. One of the earliest experiments was carried out in the

mid—1950’S at the Los Alamos scmentifmc Laboratory at the instigation

of J. von Neumann. The results of this model were later published

by Blair et al. (1959). Blair’s model involved the simulated over-

turning of an unstably stratified, two—layer, incompressible fluid

system. Then Lilly (1962) proposed a two-dimensional slab-symmetric

model of buoyant convection. This model, which qualitatively and

quantitatively resembled the convective thermals described by

Scorer and Richards (1959), did not exhibit the shape preserving

stage assumed in theoretical treatments and found by laboratory

experiments. Lilly attributed this to the neglect of the effects of

the eddies in the third dimension. Although Lilly met with limited

success, his list of twelve areas to be studied further served

as a guide for other researchers in the investigation of convective

processes by numerical simulation.

Using many of Lilly’s suggestions, a number of different models

were investigated in the 1960’s. Ogur a (1962) used an axially symmetric

model to simulate a buoyant mass of fluid embedded in an ambient

The format and style of this thesis follow those of the Journal
of Atmospheric Sciences.

I
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fluid of uniform density. The results from Ogura’s model exhibited

the shape preserving stage that Lilly ’s experiment could not. How-

ever, Ogura’s model was unable to handle wind shear. Ogura and

Charney (1960) developed a two-dimensional slab-symmetric model to

simulate a squall line. The serious disadvantage in their studies

was that the resulting downward motion began very close to the upward

thermal, thereby cutting off the supply of warm air necessary

for the upward motion. The thermal was greatly weakened after this

occurred. Squires and Turner (1962) used a one-dimensional model

to study cumulonimbus updrafts. They allowed for the entraining

of environmental air by assuming the inflow velocity was proportional

to the upward velocity of the plume. They also allowed for the

incorporation of latent heat of freezing by assuming the proportion

of ice to total condensed material varied linearly with temperature.

Squires’ and Turner ’s model yielded results which seemed r~asonab1y

consistent with observations, especially in regard to cloud shape.

However, since the model was one dimensional, it could not adequately

represeatt the horizontal variations of conditions within the cloud.

Orville (1964 , 1965) used a two—dimensional slab—symmetric model

to simulate mountain upslope winds. Although his results were

similar to the observations available, he believed that the two—

rather than the three-dimensional treatment may be the largest

drawback. The reason was that the downward vertical motion and the

energy budget were not sufficiently satisfied in the two-dimensional

model. Orville (1968) used an improved two-dimensional slab—symmetric

model to simulate the development of cumulus clouds over a mountain.

L 

~~ 
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Although Orville’s results were an improvement over his 1964 and 1965

work, he still specified his major problem was the missing third

dimension.

With the advent of larger and faster computers during the late

1960’s and early 1970’s, it became possible to construct three—dimen-

sional models. Deardorff (1970) was one of the first to model in

three dimensions when he investigated three—dimensional turbulent

channel flow at large Reynolds numbers. Although the resolution

was modest at first (24 X 14 X 20 grid points) , the cascade of

energy from large scales to smaller scales, which scarcely occurred

iii two dimensions, was very discernable in three dimensions. This

turbulence model was extended by Deardorff (1972) to the study of

neutral and unstable planetary boundary layers using a grid of

40 X 40 X 20 points. This model was further increased to 40 X 40 X 40

points by Deardorff (1973) to study the use of subgrid transport

equations in a three—dimensional model of atmospheric turbulence.

Following Deardorff’s work, a number of other investigators began

using three-dimensional models . Fox ( 1972) used a 12 X 12 X 54 grid

in a three-dimensional model to simulate a three-dimensional thermal.

Although Fox felt that three-dimensional simulation was a great improve-

ment over two-dimensional work , he stated that turbulent thermals

cou ld not be completely simulated without more powerful computers and

vastly more computer time. Other three-dimensional models have

been proposed by Steiner (1973) , Wilh elmson (1974) , Miller and Pearce

(1974) , and Schlesinger (1975). Schlesinger stated that the number

of three—dimensional models has not been larger mainly because they

I
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demand large amounts of computing storage and expenditures if

adequate resolution is to be achieved.

I From the above discussion, disadvantages of the present one— ,

two- , and three-dimensional models have been shown to limit the

I complete study of convective processes. An alternative model was

proposed by Deardorff (1965). He described a pseudo three-dimensional

model which allowed the third dimension to be simulated while the

computations were done in two dimensions. This method would combine

the advantages of the two- and three-dimensional models. Due to poor

results when treating convection at small Prandtl numbers and to

the significant advancement in computers during the late 1960’ s

- (Deardorff , personal communication) , Deardorff never continued this

research, but instead began h.L S three—dimensional model. However ,

Gruneberg (1975) decided to continue this research of a pseudo

three—dimensional model because of the limitations, suggested by

— Schlesinger (1975) and Fox (1972), of three—dimensional models to

most researchers. Although Gruneberg used Deardorff’ s idea of a

pseudo three-dimensional model, his physical and statistical

assumptions for the simulated third dimension (y) were different.

Gruneberg’s model produced results which were only slightly different

than conventional two-dimensional models. He contributed these

I results to his treatment of the pressure force. In Gruneberg’s model,

I the first derivative of pressure with respect to y was a statistical

parameter , and not based on the properties of the flow. The second

I derivative of pressure with respect to y was not included. Jenkins

(1976) working with Gruneberg’s model, remedied this situation..

~~~~ 

.

~ 
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The statement for the first derivative of pressure with respect to

y was based on the assumption that for convective processes, the

I magnitude of the local time derivative is much smaller than the

centrifugal force. Therefore , the cyclostrophic approximation was

I used . The inclusion of the second derivative of pressure was based on

the assumption that the pressure distribution in axially symmetrical

vortices was also axially symmetric.

Although Jenkins’ results were an improvement over Gruneberg ’s

findings when compared to three—dimensional models, serious problems

still existed. Numerical instability occurred after 15 mm of simu-

lated time which severely limited the usefulness of the results.

Also, large unexplained gradients in the vertical motion and potential

temperature fields developed near the bottom of the layer under

consideration. At present, no one has investigated these limiting

features of this potentially valuable model.

It is the purpose of this research , therefore, to determine

• if the two-dimensional assumptions may be replaced by pseudo

- three-dimensional assumptions in a numerical model to produce thermal

convection in better agreement with true three—dimensional models.

I

~1
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I
2. GOVERNING EQUATIONS

I 
The basic equations to be used in this model are the

horizontal and vertical equations of motion, the thermal diffusion

‘ 
equation, and the continuity equation. These equations are for a dry,

incompressible atmosphere.

U~ = -UU~ ~~~ ~ ~~ +F1 
(1)

j v
~ 

_Uv
x ~~~~~~ -wv

5 Py +F2 (2)

w = -uw -vw -ww -p +F +b (3)t x y z z 3

b
t 

= _ub
~ 

_Vb
y 
-wb5 +F4 

(4)

0 = u  +v +w (5)
x y z

a

The variables u, v and w are the components of motion in the x, y

and z directions, respectively. The use of subscripts refers to the

— partial derivative of the subscripted variable with respect to

the subscript. The variable p is the ratio of the pressure deviation

from a hydrostatic basic state to the density , b is buoyancy, F
1
, F2

and F3 are the friction terms and F
4 
is the thermal diffusion term.

The variables u, v, w, b and p are averaged values over an elemental

grid volume. The friction terms, the thermal diffusion terms and

buoyancy are defined as follows:

F1 
= . (K Vu) (6)

1 F2 = V . (K VV) (7)

F - V .  (K Vw) (8)

I F: 
= . (K.~Vb) (9)

b = 

~(—j ) (10)

I 
_ _ _ _ _

__________  —.—-- —. - .----—-. - — - :- .~~~~_ .-
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The variable g is the acceleration due to gravity, 8 is a constant

basic potential temperature, and e’ is the deviation from the horizon-

I tally Cx direction) averaged potential temperature. The explanation

of this choice for the formulation of buoyancy will be presented

I in Section 3. K
m 

and K
h 
are the eddy viscosity and thermal diffusivity

coefficients, respectively. These coefficients are allowed to

I vary with time and space, and are computed locally by
1/2

1 K = (cA)
2 

[l/2(~~~
_

~ ÷
~~~~~

-

~ ~ 
÷
~:~ )] 

(11)

= 3.0K (12)

The quantity ~ is the representative grid interval, c is a dimension-

less constant, and the indexes i and j have values of 1, 2 and 3.

This formulation, although at first was used for general circulation

models (Leith , 1965, Mintz, 1965, and others ),  was shown to be

- applicable when the inertial subrange exists on scales encompassing

- the grid interval by Lilly (1967), and Leith (1968), and Deardorff

(1970). The formulation of K
m 

and ~~ will be discussed more fully

in Section 3.

I In order to evaluate the pressure field, a balance equation for

pressure is formed. This is done by taking the divergence of (1)—(3)

I and by making use of (5). The result is

I + p + p div [-,4(v) +F ÷bkj (13)

I where A (V) represents the advective terms in C1)-(3) and k is the ver—

I
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- tical unit vector. Eq. (13) is a Poisson equation of the form

V
2p = F

which can be solved directly by the use of a Fourier transform, in

which the two-dimension problem can be reduced to a set of one-dimen-

sional problems.

I

H
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I
3. PSEUDO THREE-DIMENSIONAL ASSUMPTIONS

I In this model all of the computations involving the various terms

are done in the vertical x-z plane. Therefore, all of the y deriva—

I tives in the basic equations must be determined using other equations

or model assumptions. Eq. (5), the continuity equation for an

I - 
incompressible atmosphere was used once in the derivation of (13),

- the balance equation for pressure, but it may be used once more

in order to eliminate V
y
• When (5) is combined with (2), the

resulting equation is

v = -uv +v(u +w ) -Wv -p +F (14)
t x x~~~ z y 2

which is used in the basic equations instead of (2).

The second derivative of v with respect to y is also needed in

the basic equations. When the divergence of the advection terms

in (13) is taken, one obtains a term

- (vv ) -vv - vi,
y y  y y  yy

The continuity equation is used again to eliminate v~ ,. If the

1 partial derivative of (5) with respect to y is taken, the result is

1 v = — Cu ) — (wyy x y  zy

Then if the various functions are continuous, the order of differen—

tiation may be reversed and one arrives at

I v
if 

= _ (u
~
)
~ 

- (w~)5 .

I This can now be used in (13).

1
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1
The derivatives u , w , and b are treated as new variables forI which new equations are needed. These new equations are obtained

I by taking the derivatives of (1), (3), and (4) with respect to

y. Again assuming that the various functions are continuous, the or—

f der of differentiation is reversed. The resulting equations are

(u ) = -u(u ) - v(u ) -w(u ) -u u - u v -w u - (p  ) +(F ) (l5a)
y t ~~ x y y ~~ ~ Xj ~ .j~ y j~ 

z y x 1 y

(w ) = —u Cw ) — v(w ) -w(w ) -w u — w v -w w -(p ) +(F ) (l5b)y t x y y y z x~~ y y ~~ z y z 2 y

• - (b ) = -uCb ) - v(b ) -wCb ) -b u - b V -w b + (F ) (l5c)
y t x y y ~~ z x~~ ~~ y ~~ z 4 y

• In order to find the underlined y derivatives in these equations, the

assumptions of horizontal homogeneity and horizontal isotropy in free

- 

convection are made. These assumptions mean that the turbulence has

quantitatively the same structure in the two horizontal directions of

the flow field (horizontal homogeneity) and that the average value of

any function of the velocity components, defined in relation

to a given set of horizontal axes, is unaltered if the horizontal

axes of reference are rotated in any manner (horizontal isotropy).

Therefore, by making the assumption that the flow is isotropic

one obtains

—. 
_ _  _ _  _ _  _ _  

• 1

1~ 2 2 2 2
Cu ) = Cv ) (w ) = (w )

and x ~

‘

x

I (b)
2 

(b)
2 

(16)

(See Taylor , 1935)

J I

I
_ _ _ _ _ _  —----—--- - --~~~ -------— - ----------- ~~~~~~~~~~~~~~~~~~~~~~~~~~
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I
The Glossary of Meteorol~gy (1959) says that although atmospheric

turbulence is generally non—isotropic, isotropic turbulence forms the

basis of most theoretical analysis of turbulent flow. Hinze (1975)

states that a knowledge of the characteristics of isotropic turbu-

lence, notwithstanding its hypothetical character, may still form a

fundamental basis for the study of actual, non—isotropic turbulent

flows. He continues by saying that many features of isotropic turbu-

lence apply to phenomena in actual turbulence. In numerical work,

Deardorff (1965) uses the horizontally homogeneous and isotropic

turbulence assumption in a similar manner to what has been done in

this research. Therefore, these two assumptions are not expected to

be too restrictive.

After the values of u , w , and b are determined initiallyy y y
at the first time step or are found at the beginning of each

succeeding time step by the left-hand side of (l5a) , (lsb) , and

(15c), these values are adjusted so that the isotropic conditions

are satisfied. This is done by correcting u , w , and b in the
y y y

• following manner:

~~(v ) 21 l/2

U ( )  
= U 

[
~~~~~~U:

2j  
(17)

rc- 211/2
IL ( w )I x

W ( )  = W 

[

~~~~~~~~~~
)

2 
(18)

j ~~Cb )2 1/2

b ( )  b 

[
~(b~)2] 

(19)

_ _

•
~~~—‘ ~_:1. ••. _ 

~~~~~~~~ —~~~~~~
- -_—

~~~
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I

I The summations that are used in (17) — (19) are over a horizontal

row of grid points in the x direction. These equations alter u ,  W
Y
,

I and b in such an amount that (16) is satisfied.
y

I 
However, if horizontal isotropy is assumed, Deardorff (1965)

suggests that there should be constraints upon the lateral (y)

I • advection so as not to affect the mean values. This is due to the

fact that the failure to constrain the lateral advection terms could

I cause spurious instability. This will be discussed more fully later.

The reason for these constraints arises in the following manner.

The equation of continuity which has been multiplied by -b and the

advective terms of the thermal diffusion equation are

• 0 = -b Cu +v -i-w ) (21)x y z

b = -ub -vb -wb , (22)
* t x y z

respectively. If these two equations are added together, the flux

form,

I b
~ 

= 
_ (Ub)

~ 
-(vb) -(wb) , (23)

is obtained. If this were a true three-dimensional model, then the

average at each level over the horizontal plane (x-y) would be

I

I bt 
= -(ub)~~~

’ _ CVb)~~~
’ -(wb)5~~

’ 
. (24)

I

I 
_

II- — -~~- - - - ~~~- - . . ------------ --- -- - . —- _ _ _ _ _ _ _ _ _ _
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With cyclic boundary conditions in the x and y directions,

= 0x
and

(vb) ~
‘= 0

y

Therefore,

bt 
X~f _ (wb )’~~~

In this research all of the variables are defined only on the x—a

plane, and an average over the x—y plane is not possible. However,

an average of (23) can be taken in the x direction. This equation is

b = -(ub) ~ -(vb ) ‘~ -(wb ) ~ . (25)
t x y z

- Here

- -  

(ub)~~~~= 0  , (26)

because cyclic conditions are assumed in the x direction. Since the

• isotropic assumption assumes similar statistical properties on the
—U

average in the x and y directions, it is necessary therefore to make

. 1
(vb) ~~= 0  . (27)

y

I 
I. - - - -- ---- - --

~~
-
~~ ~~

- - - —_-- --- •_-_•—— ~~— - - -— - - - - - - - -— - —. -,. —-—— ---—-_-•_--- -- ..- .•--— . - ---- -. - • .  - - - •~~ 
.— - -.-- -.
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I
This requirement is analogous to the three dimensional case and

I assures that nothing different is going on in the y direction, on

the average, than in the x direction. Although it is true that

within a single x-z vertical slice of real three—dimensional motion one

does not expect (27) to hold precisely unless the slice extends very

far in the x direction, this condition should not be violated signi-

ficantly or systematically . Since (26) is exactly zero, it is

only consistent that (27) be made to hold as exactly as possible.

Nonlinear computational instability arises because of the non-

linear interaction between different wave modes in the numerical

evaluation of the advection terms. Lilly (1965) points out that to

insure stability in the absence of net boundary fluxes the finite

difference form of the advection terms should conserve linear and

quadratic quantities. There are no net fluxes in the x and y

direction for the true three-dimensional case (24) shown before,

because cyclic conditions are assumed in x and y. In this case

the mean values are correctly conserved in the horizontal, since

the averaged horizontal flux terms in (24) are zero. For the pseudo

three-dimensional model used in this research, there are no net

- 

fluxes in the x direction because of cyclic conditions, and the x

direction flux terms average to zero conserving the mean values.

1 The y direction flux terms should also conserve the mean values due to

I isotropic considerations and in analogy to the three-dimensional case.

There is no way to ensure this requirement unless (27) is satisfied.

I This condition also avoids the spurious instability mentioned by
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Deardorff (1965). A similar argument can be made for the quadratic

terms, and this will be covered later.

Therefore from (27), the constraint upon the lateral advection

so as not to affect the mean value of b is

vb = -by . (28a)y y

Similar constraints upon the lateral advection so as not to affect the

mean values of u, w, u , w , and b can be developed.
y y y

This is accomplished by multiplying the continuity equation first

by u to receive the first equation, then by w to get the second, by

u for the third, by w for the fourth, and by b for the fifth.
Y y y

Then the first equation can be added to the advective terms of (1),

the second equation can be added to the advective terms of (3),

and the third, fourth, and fifth can be added respectively to the

advective terms of Cl5a), (l5b) and ClSc). An average in the x

direction of the five resulting flux form equations is taken.

Because cyclic conditions are assumed in the x direction, and the

isotropic assumption assumes similar statistical properties on the

• average in the x and y directions, one obtains

vu —uv vu = — u v
- L  Y Y YY

VW —wv ‘1W - W Vy y yy y y

vb ~~= _ b v
Z 

. (28b)yy y y  
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Another important constraint is that for p .  If the continuity

equation is multiplied by -p and then added to the pressure force

terms of the kinetic energy equation, the result is a flux form

equation. A spatial average in the x direction of the resulting

equation is taken. Due to isotropy, the constraint for p is given

by

IC 
= -pv~~ . (28c)

This constraint is very important if p in (14) is to properly

simulate the transfer of kinetic energy (generated by buoyancy)

from the vertical component into the horizontal component of motion.

In addition to the constraints upon the lateral advection so

as not to affect the means, Deardorff (1965) suggests that there

should also be constraints upon the lateral advection so as not to

affect the mean squared or quadratic values. Even if the assumptions

connected with the lateral advection terms leave the x mean unchanged,

these advection terms could spuriously alter the mean squared

values. The formulation of these constraints is done in the

following manner. If (21) is multiplied by b and (22) by 2b and

the resulting equations are added together and averaged, one obtains

2 x
Cb -Cub -(vb ) -Cwb ) . (29)

Since the first term on the right-hand side of (29) equals zero

exactly due to cyclic conditions in x, the second term should also

II
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equal zero exactly. This is necessary because of the horizontally

isotropic and homogeneity assumptions as pointed out before and to

avoid the spurious instability as discussed previously. Therefore

the constraint upon the lateral advection so as not to affect the

mean of b2 is

v(b ) =-b v . (30a)
y y

Constraints upon the lateral advection so as not to affect the

mean of u
2
, w

2
, (u )

2
, ~ )

2
, and (b )

2 can be developed. These
y y y

constraints are

2 2T~~vUi ) = -uv v Cu)
y y y y  y y

2 x 2 X 2 2 x
v(w ) = -wv v (w) = - ( w ) v

y y y y  y y

2 2 x
v (b) = -(b)v (30b)

y y  y y

The values of u , w , and b , given in the first time step by

the initial conditions or after that found for a new step by the lef t—

lmnd side of (15a), (lsb) , and (l5c), were first adjusted for the

isotropic conditions by (17) - (19). Now these values must be

corrected for the constraints in (28a), C28b), (30a), and (30b).

This is done in the following manner.

I Since V is determined from the continuity equation, v can be

used to calculate

L ±:: i~ ’ ..~
t.- ._ 

.-- -



—-.----_ • -_ - - -.- 

~~

- - 

~~~~~~~~~~~~~~~~~~~~~~~~ 

--_-—-

~~~ 

. -- • - .

~~~~

- -

~~~

- - -

~~~~

- -----

~~~~~~~~~~~~

—_ _ ,

18

and-by 2
y -b y

Then, b can be corrected to satisfy the equations

x and
vb - 

-by v(b
2
) or 2vbb = -b

2
v . (31)

y Y y 7

The necessary corrections for b will be proportional to v and 2vb,

b = b  + k vy Cn ew) y 1

b b 4-k2vb , (32)
y ( rtew) y 2

respectively, where k
1 
and k

2 
are the correction factors. These

corrections are chosen, because it cannot be expected that these

averages,

—•—---xvb and 2vbb
y y

will tend to the correct values unless one of the members (b ) is
• y

corrected by a quantity (k
1
v or k 2vb) which is proportional to the

other member Cv or 2vb). If (32) is substituted into (31), the

result is

IC-by -vb
— 

_ _ _ _  _ _ _ _ _  _ _ _  ~“vb = vCb +k v)X = _ bv , k =
a y(new) y 1 y 1

and

II
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-by - 2vbb

2vbb 2vb(b 4k 2vb) = 2 , k =
yCnew) = y 2 — b y  2 

_ _ _ _ _ _

4v2b2

An overrelaxed iteration procedure is used to correct b , so that
7

a b is found that will satisfy both equations in (31).
y(new)

Similar procedures can be programmed to satisfy all of the con-

straints in C28a), (28b) , (3Oa), and (30b). Now that u ,  w , and

b have been adjusted for the isotropic conditions (17-19) and

corrected for the constraints in (28a) , (28b), (30a), and (30b),

they may be used in the right-hand side of (l5a), (lsb) , and (l5c)

to predict new values in time of u , w , and b respectively.

Also in (l5a), (15b) , and (l5c), values of u w , and b are
yY yy • yy

needed. As a result of enforcing the constraints of (28a),

C28b), (30a), and (30b), one is provided with a method to determine

these.

Egs. (11) and (12), the formulation for the eddy coefficients

used in this model, were first proposed by Smagorinsky (1963).

Tn this formulation the eddy coefficients are assumed proportional

to the magnitude of the velocity deformation field and to the square

of the grid interval. Lilly (1967) showed that this treatment is

consistent with the existence of a three—dimensional inertial sub—

range on scales comparable to and less than the grid interval. In

the same paper, Lilly (1967) also estimated the value of c in (11)

to be 0.23~(~”~ where ~‘is the approximate value of the Kolmogorov

I
: 1
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inertial-subrange constant. Deardorff (1971) shows for ~~~ = 1.41,

an averaged value obtained from Pond et al. (1963), Lilly’s

formulation give c = 0.176. However, Lilly (1966) found that when

the deformation field is obtained from finite differences across

single grid intervals, c increases 25% giving c = 0.22. Deardorff

(1970) found a similar value, 0.21, for the case of an unstably

stratified planetary boundary layer. Due to the staggered grid

arrangement in this research, it is necessary to take finite

differences across two grid intervals for about 50% of the terms

in the deformation equation. Therefore it is found that a value for

c of 0.25 or 13% larger than Lilly ’s value achieved the best results.

Deardorff (1972) improved this formulation when he discovered that

the ratio of K
u
/K had to be between two and three to a~,oid excessive

intensities in the temperature spectrum at large wave numbers. A

value of three for this ratio is used in this research.

In this treatment of the eddy coefficients and the diffusion

terms, an assumption is needed for the y derivatives so that they

may be included in this pseudo three-dimensional model. For example,

in Cl) F
1 
is defined as

F = (K u ) +(K u ) +(K u )
1 m x x  m y y  m z z

From previous assumptions U can be determined, but the quantity

(K u ) cannot. For this term it is assumed thatm y y

(K u )  — ( K u )i n y y  m y x

- 
~I
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I

I 
at each point. Since horizontal homogeneity is assumed, (K

m
U
y
)
y

should vary in space and time in a manner consistent with (K u )
m y x

I This assumption fulfills this requirement, whereas the other two

possibilities

I CK u ) = 0 , (K u ) 

-
= constant in y direction

• m y y  m y

1 .  and

(K u ) = K u , K = constant in y direction
m y y  myy in

- do not.

Another y derivative that must be determined is the first

derivative of pressure with respect to y. This is needed in (14)

to calculate v~. For the convection process under consideration, the

magnitudes of the local time derivative and the coriolis force are

much smaller than the centrifugal force. Hence, the cyclostrophic

approximation, where the centrifugal force balances the pressure

- force, can be used to calculate p .  The cyclostrophic balance can
a

be stated in the form

where C is the three-dimensional streamline curvature vector, and V

is the magnitude of the three-dimensional wind vector. The curvature

vector points toward the center of curvature with a magnitude of

1 hr. It is helpful at this point to introduce a natural coordinate

i system. The direction of the coordinates, s, n, and a , in this

system are defined by unit vectors t, n, and ~~, respectively. The unit

1

- .
~~~~~~~~~~~~~~~~~~~~~
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vector is parallel to the flow at each point, n is normal to the

flow and is directed toward the center of curvature, and k is

normal to the flow and equals t X . In this system the velocity

may be written as

V V t  or t =V / V .
~~~~ A. ~~ p.1

The rate of change of ~ following the motion may be derived from

geometrical consideration in a manner similar to that used by Holton

(1972) to find dV/dt.

Recalling that = 1, then

= ~s/R = = /V 
‘
and (~~V /V l)/ Is = h R  (34)

can be shown to be true from Fig. 1.

~v/V

~~~~~

‘I

Fig. 1. A small segment of flow in a natural
coordinate system (After Holton, 1972).

~ I
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I
By noting that~~~, is directed parallel to ,~, in the limit as

I S5-,. 0, the equation

~~—(V /V) =n / R C (35)
bs __

I is obtained from (34). After performing the necessary differentia-

tion, the curvature vector is given by

(36)

The derivatives along the streamline direction, s, are obtained by

j the use of the chain rule and by the use of the following relations.

I ~~
Thy Thy br br

p.1

I 
~~~~~~~~ 

=
-

~~~~~~ 

. -
~~ 

= ~~ / V

In these relations, r is the cartesian position vector, and —br

is a dyadic tensor. Eq. (36) now becomes

or ~~~ 

= ~~~~ ~~~V 

[

~~~~~F) .:~j - v 
[

~fv ) .  ~~~ ,

I c = ~~~~[v . v v - v  
[~~~~~~~~ 

.V v]~ . (37)

1 To resolve (37) into a n~ ’ .~ workable form , the approach of

I - Riesener (personal conununic ,n) is shown below. It can be shown

I that
1• 

~~
. 

-
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I
1 

~~~~~~~~~~ V ( V . v) _ iVV~~~V
V ~~ V _ _ V —— ~~

— and it follows that

V (V 2
) = v v  . (38)V — — — 2V ,..~ —

If (38) is substituted into (37),

~~~~~~ V V . V y . V 1  (39)
‘-‘ v2 L ‘

~~~~~~~ v2 
~~~~~~~

‘ 

~~~~~~~~

is obtained. Since V V/V
2 = 1, the first right-hand term of (39) can

be multiplied by this to produce

~~~~~=
L. ~~~~~ -~~— V V . V V • V 1

,w v2 L~’ ~~~~~
“ v2 v2 ”

~ 
‘
~~~~

‘ 
~~~—1

or

~~=!— f lV .~~~ V V _ V V . V V ]  .
~~~~~~ . (40)

— v4 L -
~ 

—
If A(V) is defined as VVV = Mv) , where A(V) represents thep., — ‘.‘ ,~~ ~~‘ — P.’

advection terms, (40) becomes

= 
~~

— TA (v)V - V A (V)1 V . (41)
— v4 L~

.’ ~~~~~~~ i.d
J

With the aid of the vector identity, (a x b) x c = (ba - ab)-.c, an

equation for C is found from (41) such that

C = 
~~

— r~ x A (V)1 X V  . (42)
— v4 L” %~~ J ~J

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . — --~~~~~~~ - . ~~~ - .  ~~~~~~~~~~~~~~



~~~~ -_~~~~~~~~~ -_~~-. - .  .-

25

With the aid of (33) and (42), the value of p may be specified as

~Py 
= V2C

2 = ~~~[u(uA 2
_vA

1 + wCwA 2—vA3)] 
(43)

and this value can be used in (14).

The last y derivative need for the basic equations is p .  The

second derivative of pressure with respect to y is essential for the

three-dimensional dynamics, since only a balance equation for pres-

sure with this term included can yield a realistic spatial distribu-

tion of pressure. r~n estimate of p can be obtained by the

assumption that the pressure distribution in axially symmetrical

vortices is also axially symmetric. Then the available elements

of the flow, y,and VV, give an opportunity to find p .  In solid

symmetrical vortices the curvature part of vorticity, VC, is much

greater than the deformation, def V, and the ratio,

VC
q - 

VC + def V

gives a measure of the part of the flow that can be represented

by a solid vortex. This ratio is approximately one when solid,

completely symmetrical vortices prevail. Here def ,~ is the familiar

three-dimensional deformation of the flow.

def V = 12(u 2+v 2
+w 2) +(u +v )

2 -s- (u +w ) 2 
~~~ +w ) 21 1/2

— L x 
~
j  Z y X Z X Z y j

and VC is the magnitude of the velocity vector multiplied by the

magnitude of the three-dimensional streamline curvature vector given

_ _ _ _
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in (42). On the basis of symmetry considerations, p is estimated as

2 2 1/2 vc
p = (p + p ) 

VC + def V 
COS (44)

where ~tis the angle between the computing plane and the axis of

rotation of the vortex. This estimate is realistic as can be seen

from the examples shown in Fig. 2. For the case showii in Fig. 2(a),

equals p ,  and p equals zero since the cos 900 equals zero,

for case 2(b), p equals zero, and p equals p .  In Fig. 2(c), the

general case is given where p is defined by (44). In (44) the square

root of the quantity in parentheses indicates p will be about equal

to the larger of p or p . Therefore, the sign of p will be made
xx zz yy

the same as that of either or depending upon which quantity

has the largest absolute value. The cos ~~may be calculated using

. r 2 ~~~~2 1/2J +)cos d = 2 2 2~ 
(45)

~~ 
+

-

~~ 
÷~

where3~~~ , and~ are the components of the rotation vector

V x C = h / V2 V x A C V ) .
e.’ •~ I — A’~~~~

With the use of (44) and (45), the balance equation for pressure, (13)

may now be written as

2 2 1 / 2
2 2 1/2 

_ _ _ _  _ _ _ _Pxx+Pzz = divE [~xx ~ zz VC+def V

In summary , the necessary assumptions so that the y derivatives

may be included in this pseudo three-dimensional model are (14)-(18),

f r

I
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Y ~~ / Y ~~ /
(a) (b)

Cc)

— Fig. 2. Examples of the various positions of the rotation vector
with respect to the xz plane. Case (a) is perpendicular,
case (b) is parallel, and case Cc) is at angle 1(After
Jenkins , 1976). 

—•---. _ _
~~~ - .- —~~~_-..-~~~ _ - - _~~~~---- ~~~~~~~~~ _ -  -~



(28), (30), (43), (44), and the assumption for (Ku). With these

assumptions, the basic equations can be solved step by step in time

to obtain u, v, w, and b.

After the y derivatives have been introduced in the described

way , it may be useful to give an explanation of the particular

choice of the formulation of buoyancy in this model. The reason

is that here the continuity equation does not ensure that the vertical

mass flux in the updrafts is matched by the downward flux between

the thermals. The continuity equation is here identically satisfied

and the continuity of mass must be controlled by the formulation of

buoyancy. If the buoyancy is defined as a deviation from a constant

value, difficulties appear, as was experienced in preliminary com-

putations. In such a case it depends on the choice of initial

conditions how w develops. In these experiments an unstable

stratification is used initially. Then the model automatically

assumes that the lower regions are warmer than the adjacent regions

in the y direction. Also, the upper regions are assumed colder than

their laterally adjacent regions in the y direction. The consequence

is that all lower regions acquire a positive vertical acceleration

and the upper regions a negative one. The flow develops the physically

uninteresting situation where whole horizontal belts within the plane

of computation arise, while other belts sink.

-. Therefore, in order to simulate ascending and descending thermals

side by side, the deviation from the horizontal average is used as

buoyancy in (3). In this way one actually uces the classical parcel

I

_______ 

I
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method, where the buoyancy is proportional to the difference in

temperature between the parcel and its horizontally adjacent en-

vironment, not the total environment (See Haltiner and Martin, 1957,

Eqs. 5—5,5—6).

One final assumption used in this research is that the values of

u, w, b, U , ~~~ and b in the computational xz plane are near the

maximum or minimum values with respect to the y direction. When

compared to Deardortf (1965), this is a less restrictive assumption.

He assumed that the values in the computational plane were the

maximum or minimum values. It was found through a number of test

runs that if the full y advection into the computational plane is used

the values in the v field increase significantly more with time than

the values in the u field. These large v values then dominate all

the other variables in the various equations. However, if the mag-

nitudes of the y advection terms in (1), (3), (4), and (15a)-(lSc)

are decreased to one—half their original value, this does not occur.

This decrease is quite reasonable if the magnitude of the variable is

already near a maximum or minimum, because one would not expect a large

amount of advection. Therefore if the advection is large it should

be decreased, and a decrease of one—half was found to be most

beneficial.

•1

I



1 
30

I
4. NUMERICAL CONSIDERATIONS

I 
The numerical calculation of convective flow is a rather

sensitive process since an elliptic equation with von Neumann

‘ 
boundary conditions must be solved at each time step. To handle

this an interlaced arrangement of grid points is used. The field

1 of computation is divided into computational boxes with the grid

points of pressure in the middle of each box and the velocity corn—

I ponents in the middle of the sides normal to the respective velocity

I 
components. Since all calculations are done in the xz plane, this

scheme leaves v in the same points as pressure. The buoyancy is

j given in the same points as w so that vertical accelerations can be

evaluated with the simplest centered differences. The sides of the

computational boxes are ~.x = A z = 40 in , so that the distance between

the nearest grid points is 20 in and the distance between the nearest

grid points with the same variable is 40 in. Fig. 3 shows this

I staggered grid arrangement. All results presented here are done

in a field of 20 x 20 computational boxes.

I The time extrapolation is done using the Adams-Bashforth scheme,

I which is

= ~
n 

+ ~~~~ 

~~
!-

~

-

~~~~ 

)
f l  

- ljbU)fl-l]

The time step is variable and is chosen automatically each step. The

I length of the time step varies accordingly to the Courant-Friedrichs—

I 
Lewy criterion for the advection terms or the von Neumann criterion

derived for the diffusion terms. These criteria are given by

I
I
_ _ _ _ _ _ _ _ _ _ _ _



31

i~ i9 i;20
w,b w,b

V Ip
u • ii . j=20

w b  w ,b

v,p v,p
u • .

w ,b w ,b
I I

I I I
I I I

w,b I w, b I w~b ~~~_ _ ~~
_

V ,p v ,p v,p
j 3 u  6 ~i 2 .i 5 ii

w~b w1b — 
w~~

v,p V,~ VIP
j=2 L1 3 i Q i 1 u

w,b w,b w b
_ _ _ _ _  _ _ _ _ _  —

i—i U ~~~~~~ 

~ 
v

,~
p 

~ 
v~p

w,b w,b wLb _____________________

i=l i=2 i=3

Fig. 3. Interlaced arrangement of grid points.
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2 2 2 1/2(u +v +w )

and

2

4K
h

respectively , where A =  a x  = Az.

Spatial derivatives ar approximated by upstream differences

for advective terms and centered differences for diffusion terms.

When cen tered d i f f erences are used for the advective terms, as Jenkins

(1976) did , large alternating temperature gradients are found near

the bottom of the model which were caused by the colder air in the

descending currents and the constan t temperature surface . These

gradients persist due to the centered differencing scheme . When the

upstream differencing scheme is used , these alternati ng gradients

do not appear .

As an example , the f in i t e  difference fo rmula for the advection

of the u-component of velocity is shown hero as

~ 
u1+ 2u~ u 3 U

Q
U
3 1

L 4 Ax

r v
- 

L 
2 YQ

r wQ+w2+w3 w6 U
Q
U
4]

— [ 4 
( t~z )j (46)

for the case where u and w are positive. The averaged quantities

A
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(V
Q 
+v

3
)/2 and (W

Q
+W

2 
+w

3 
+w
6
)/4

are specified this way due to the staggered grid arrangement, whereas

the average of

Cu +2u +u )/41 Q 3

is necessary to prevent non—linear numerical instability.

The lateral boundary conditions are periodic in x , and a solid,

frictional lower boundary and a solid, free—slip top boundary are

assumed. The boundary conditions fo r the lower and upper boundaries

are given by

u =  v = w = w  u — 0  a t z = 0
y y

and

w = b  = u  v w = Cu) 0 atz z
z z z y y z  top .

Harlow and Welch (1965) show that for a frictional boundary

the normal velocity at the first grid point below the boundary should

be equal in both magnitude and direction to the normal velocity at the

first grid point above the boundary . On the other hand, the tangen-

tial velocities below a frictional boundary should be equal in

— 
magnitude but opposite in direction to the tangential components

directly above the boundary. For a free-slip boundary the normal

velocity component directly above the boundary should be equal in

I
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magnitude but opposite in direction to the normal component directly

below the boundary. The tangential velocity vectors on either side

of a free-slip boundary should be equal. These requirements are

enforced in this model.

The initial fields of u, v, and w are set equal to zero, and then

they are overlaid with a perturbation field generated by a randcw

number program. This random number program provides a set of numbers

for each level whose mean is zero and whose range is ±0.1 m s~~.

The initial potential temperature field is obtained by setting

the surface potential temperature to 280.2 K, and then by decreasing

the potential temperature at a rate of 2.5 K km
1 
for the first

seventeen vertical grid intervals or to a height of 680 m. Then

f rom 680 in to 800 m , the potential temperature is increased at a rate

— 1 - -of 25 K k~u . This simulates an unstable layer beneath a very stable

layer. This field is then overlaid with a pnrturbation field with

a mean of zero and a range of ±0.1 K for each layer. Along the bottom

layer, which represents the surface, the temperatures are not per-

mitted to change. This procedure allows localized hot areas at the

surface to persist which initiate and maintain the convective thermals.

For U , w , T , U , w , and T , where P is potentialy y y yy yy yy

temperature, the initial fields are determined in the following manner.

These fields are first set equal to zero, and then they are overlaid

with a perturbation field generated by a random number program. This

program provides a set of numbers for each level whose mean is zero.

I
I
I 
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The range of the random numbers at each level is

r ~ 1/2

± 1  Cv ) I for ux y

r ~~~~~~l/2

± I ( w ) ~ I for
L X J
r 1

1/2

± I ( P )
2 I for P

L X J  y

r
± I (v ) 2 I for u

L Y X

r xl 
1/2

± I (w ) 2 
for w

L 

yx 
j  y~j

r
± I CT )

2 j for T .

L 
~~~~ 

J 

yy

The numerical procedure was tested for numerical stability

Using a small 3 X 3 grid network over an extended time period.

This represents a very severe test since there are eight boundary

points and only one interior point. The test, which ran for 1000

time steps representing slightly over two hours of simulated time,

demonstrated that the numerical solution is stable.
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5. RESULTS

The computer program of this model is constructed for the pseudo

three-dimensional model, hereafter referred to as 3D, described

earlier. However , if one variable is changed in this program , all

of the y derivatives are set equal to zero and the result is a

two-dimensional slab-symmetric model denoted here by 2D. This is

done so that the two models have the same initial and boundary

conditions. This allows direct comparisons to be made between the

2D and 3D cases. These comparisons are shown in Figs. 4-16.

Figs. 4 and 5 show the vertical velocity and potential

temperature deviation fields for the 2D case after approximately

5 mm of simulated t ime . Figs. 6 and 7 show the same fields for the

3D case at a similar time . The corresponding diagrams for the

2D and 3D models are very much alike . However upon close scrutiny,

one can see that the 3D case (Fig . 6) is slightly farther along in

development than the 20 case in Fig. 4 when both are compared to

what occurs at a later time . The secondary thermal at (19,6) which

will dissipate in later time steps, has a smaller vertical velocity,

0.238 ~ s~~ , in the 3D case compared to 0.418 m S
1 in the 2D model.

The downdraft at (11,5) in Fig . 6 which will also dissipate later,

has a minimum vertical velocity of -0.309 in s~~ , compared to a value

of -0.359 m S 1 
in the downdraft at (11,6) in Fig. 4. The maximum

w in the whole field is 0.875 ~ in the 3D model and only 0.824 m

for the 2D case. At about 10 mm  of simulated time, Figs. 8-il,

the difference between the two cases is more apparent . The maximum

I
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Fig. 4. 20 vertical velocity ( 10
_i 

m at 4 m m  46 s. Positive
values are represented by solid lines, while negative values
are shown by dashed lines. The tick marks and numbers in this
figure and the succeeding ones along the left hand side and
the bottom show the position of the vertical and horizontal
grid points, respectively.
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w for the 3D model is 17% larger and 80 in higher than that for the

2D model. A secondary thermal at horizontal grid point 4 in Fig. 10

is better organized with a maximum w of 0.43 in s ’ in the 3D case

compared to 0.29 in s~~ in the 20 case. The dowrmdrafts are also far—

-- ther along in development. The minimum w in the downdraft at

horizontal grid point 18 in Fig. 10 is smaller and 160 m lower

- than that for the 20 case. The major difference in the potential

temperature deviation fields at this time between the two models is

that warmer air is carried to a greater height in the 3D case. In

-- Fig. 11, a value of -0.18 K reaches the 600 m level compared to

400 m level for the 2D case. Continuing in time, Figs. 12-15 show

the two fields for the 2D and 3D cases at about 15 main , which f or the

20 case is the time of maximum development. For the 20 model

-. 
there are one updraft and two downdrafts giving a transverse roll

- circulation. These rolls with their axes normal to the plane of the

- model are similar to the circulation patterns that Steiner (1973)

-. 
found with his slab—symmetric model. He stated that these rolls

would not necessarily occur if three-dimensional circulation was

-. 
possible. This is confirmed in the computed 3D case, since the roll

circulation is greatly modified. The vertical motion and the poten-

tial temperature deviation in Figs. 14 and 15 show signs of being

j influenced from outside the computational plane. This is especially

noticeable for the two updrafts, one at (1,6) and another at

1 (6 ,12). These updrafts were initiated by warm air advection into

these areas from the simulated y direction. Likewise, cold advection

I 
_ _ _  

-
• 
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from the simulated y direction near the bottom of the model has

enhanced the two downdrafts at (5,1) and (18,1). Another note-

worthy feature of Fig. 14 is the secondary maximum that does not

appear in Fig. 12. Soong and Ogura (1973) found a similar secondary

maximum in their axisymmetric model which did not appear in the slab—

symmetric model used for comparison.

The time variation of the maximum w values at each time step

are given for the 2D and 3D models in Fig. 16. After 2 mis of

simulated time, the 3D maximum w values are larger than those of the

2D model, except for a brief period between 15 and 16 m m .  The

maximum difference occurs at 12.7 main when the 20 maximum w is only

0.82 of the maximum w in the 3D model. In order to compare the

two models, the ratio of the maximum w for the 2D model for the entire

time period to that of the 3D model is formed. In this research

the ratio is 0.90, while similar ratios found by other investigators

who have compared two— and three—dimensional models are 0.71

by Wiihelxnson (1972), 0.35 by Steiner (1973), and 0.51 by Wilhelmson

(1974). Although these values are quite different, they affirm

that the three-dimensional maximum w is always larger than the

two-dimensional case in similar circumstances. Fig. 16 also shows

that the maximum w, besides being larger, occurs sooner. In the

3D case the maximum w occurs at 12.7 mm with secondary maximums

at 14.8 and 16.4 m m .  In contrast, the maximum w in the 2D model

is not reached until 15 mm with secondary maximums at 12 and 16 m m .

Therefore the 2D model takes 18% more time to reach its maximum than

t

••
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the 3D case. This is in good agreement with other researchers

who have made similar comparison of this time difference. They have

found values of 22% (Wilhelmson , 1974), 7% (Steiner, 1973), and

13% (Soong and Ogura, 1973).

Another comparison that can be made between the 20 and 3D

models is the rate of ascent for maximum w. The level of maximum

w for the 2D case rises at 0.50 ~ 
1 
while for the 3D case the

ascent is 0.73 in s 1. The ratio of the 3D case to that of the 2D

is 1.46. This can then be related to the researchers’ work mentioned

before. Soong and Ogura (1973) found the rate of ascent for the

axisynunetric to be 2.24 in s~~, while the rate for their slab—symmetric

model was 1.52 ma s
1
. The ratio of these two is 1.47. Wilhelmson

(1974) found a similar ratio of 1.78. The lack of uniformity

among the rates of ascent among the various researchers could be

contributed to the different initial or boundary conditions,

whether moisture was accounted for and in what way it was handled

if it was included , or different lapse rates. However the important

part in the comparison of the 20 and 3D models is the ratio of the

ascent rates, and the ratio found in this research compares

favorably with others.

From these comparisons, one can see that the 3D thermals grow

faster, have a larger vertical motion, and reach this larger w value

faster than the thermals in the 20 case. Also the unlikely trans-

verse roll circulation formed in the 2D case is greatly modified

in the 3D model.
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6. CONCLUSION

The aim of this study was to show the possibility of including

the y derivatives in a two-dimensional model of convection in such

a way that a simulation of the three-dimensional flow is achieved.

The necessary y derivatives were included by assuming:

(a) horizontal isotropy of derivatives for u , w , b , u , w ,

and b , ~“ ~
‘ 

~‘ 
yy 

~‘~‘
yy

Cb) quasi-cyclostropic balance for p ,  and

Cc) symmetry of solid vortices for p .

By assuming horizontal isotropy of derivatives, additional constraints

arise so that the simulated y advection does not affect the mean or

the mean squared values. Jenkins (1976) failed to constrain

these terms, and he experienced numerical stability problems. After

these constraints were enforced in this research, the numerical

solution was stable.

The results of this research are quite encouraging and demonstra-

ted that the two-dimensional assumptions may be improved by pseudo

three—dimensional assumptions to produce thermal convection in better

- .  agreement with true three-dimensional models. However certain

limitations need further investigation. The vertical gradient

of the vertical velocity is stronger above the velocity maximums than —

- .  
below it. This is probably due to insufficient mixing in the model

in this area. Also it is found that the v value directly above the

-. maximum w is much smaller than the surrounding values which restricts

the y advection terms there. From a number of other experiments, these

- -—---5 - -- - - - - - - - - - --_~~~~~~~~
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two limitations have been shown to cause a slower ascent rate and

an overall smaller maximum w than other researchers have found.

These two limitations are possibly connected since v is determined

by the continuity equation in which w is a major term.

Another limitation is that no lateral spreading of the thermals

occur as they rise. Steiner (1973) reports a similar finding.

He felt there was insufficient dissipation and increased the value

of c which is used in the calculation of the eddy viscosity

coefficient to 0.42. This value or one between the present value

used and 0.43 should be tested. Experimental research is also needed

to determine why the ratio of minimum to maximum w in this model

is larger than those values reported by investigators of three—dimen-

sional models. The smaller y advection term in the vicinity of

w maximum mentioned previously may be the cause of this.

When the preceeding limitations are resolved , moisture may

then be added and the model extended to the study of convection which

is not horizontally isotropic . This extension would require the

introduction of empirical constants differ ing slightly from unity

which will relate the y derivatives to the x derivatives.

Should the simulation of atmospheric convection be successful

using a pseudo three-dimensional model, more researchers will be

able to investigate this process more fully with the computer

facilities readily available to them.
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