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FOREWORD

The research described in this report was carried out from July 1975
through May 1976 under the authorization of Task Area Number ZR000-01-01.
This represents part of a continuing investigation of coding techniques
being performed in conjunction with and partially funded by the Fuze
Exploratory Development Program, Task Area Number F32-3§2-501.

This report is released at the working level. Because of the con-
: tinuing nature of the coding research project, these results are subject
L to refinements and modifications. N
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ABSTRACT

Families of periodic sequences with small side-lobes and low cross-
talk (cross-correlations) are needed in many digital communication systems.
L. R. Welch has recently established a lower bound for the largest of the
side-lobes and cross-correlation coefficients associated with a family of
M distinct sequences of period L. In particular, for two sequences
there must occur a coefficient greater than (ZL)-%. As the number M of
sequences increases to approximately L&, this lower bound increases to
L-k. In this report several sets of periodic sequences utilizing complex,
ternary, and binary coded signal bits are constructed which nearly meet
Welch's bound for M approximately equal to %. In this paper's context,
ternary coding refers to three distinct phase signals, while complex coding
refers to phase levels relating to the nth complex roots of unity. Most
of these sequences contain only Lk non-zero entries. However, one type
of family consists of M = 2 binary (+1) sequences of period L = ™ = 1.
The maximum coefficient for this family is approximately one-half as large
as the corresponding maximum for the Gold sequences of the same period.
This represents a considerable improvement over the Gold codes for such

codes requiring an even number of shift register stages for generation.
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1. INTRODUCTION

The need for sets of sequences possessing low periodic cross correla-
tions and auto-correlation side-lobes frequently arises in communications
problems. A recent paper of Welch! presents a lower bound for the maxi-
mum absolute value of these correlation coefficients as a function of the
period L and the number M of éequences in the set. The Gold sequences,?
which have perfod L = 2% - 1, differ from the bound W(L,M) of Welch by
factors of approximately 2 and 28 for m even and m odd, respectively.
Rere we describe sets which achieve the bound W(L,M) as well as sets

which approach it as L increases.

The sets presented in Sections 2 and 3 are formed by combining'partial
difference sets in cyclic groups with Fourier or Hadamard matrices. A
partial difference set is a slight generalization of a planar difference
set, which gives rise to a finite cyclic projective plane.a'“ The planar
difference sets are used to construct optimal and near-optimal sets of
sequences. Additional near-optimal sequences are formed using certain
of the relative difference sets of Clliott and Butson.® With only one
exception the optimal sequences have complex entries. For each of these

sets, L 1s approximately equal to Kz, and M equals K or K + 1, where

1 L. R. Welch. "Lower Bounds on the Maximum Cross Correlation of
Signals," IEEE Trans. Inform. Theor., May 1974, pp. 397-399.

2 R, Gold. "Optimal Binary Sequences for. Spread Spectrum Multi-
plexing," IEEE Trans. Inform. Theor., October 1967, pp. 619-621.

3 L. D. Baumert. Cyclic Difference Sets. Berlin, Heidelberg, New
York‘ Springer-Verlag, 1971.

M. Hall, Jr. Combinatorial Theory. Waltham, Mass., Blaisdell,

1967.

$ J. M. E. Elliott and A. T. Butson. "Relative Difference Sets,"
Ill. J. Math., Vol. 10 (1966), pp. 517-531. .

3
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K is the number of elements in the underlying partial difference set,
and L is the order of the cyclic group. The largest correlation coef-
ficient has magnitude 1/K, and each sequence has exactly K non~zero

entries.

The sequences described in Section 4 are derived from binary, cyclic
error-correcting codes in much the same way as are the Gold sequences.
For L = 22m - 1, a certain cyclic error-correcting code of length L
and dimension 3m yields a near-optimal set of e binary sequences.
Like the Gold sequences, these have no zero entries and are easily gen-
erated by shift-register techniques. Their correlation bounds are easily
obtained from the code weight distributions given by Kasami, Lin, and

Peterson.®

2. DEFINITIONS AND NOTATION

2

We are interested in sets A = {al, &5 eae aM} of sequences of

period L. Each av is a complex L-vector (-a;, ey a:_l) of norm 1;

that is, av 5\’ = av 5\’
00 L-1 "L-1

jugate of a. The correlation coefficients are given by

=1, where a denotes the complex con-

L-1 o
cn(® 'Z A A+t
i=0
with subscripts reduced moduloL, 1<V, A<M, 0T <L-], A measure
of the correlation quality of the set A is c“x(A). the maximum over
all lch(T)l with Vv# A or 1 #0; 1i.e., the maximum over all of the
auto- and cross-corrclation coefficients except the "peaks" cW(O) = 1.
A principal result from Welch! is that for any such family A,
c-.x(A) # W(L,M), where

€ T, Kasami, S. Lin, and W. W. Peterson. "Some Results on Cyclic
Codes Which Are Invariant Under the Affine Group and Their Applications,"
Inform. and Contr., Vol. 11 (1968), pp. 475-496.

&4
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We define an (L,K) partial difference set to be a set
A= {dl’ et dK} of K distinct elements from the cyclic additive

group Z of integers modulo L, such that for every non-zero x in 2

L
there is at most one pair dr’ ds from A satisfying dr - ds = X.

L

From this condition one can easily show that L must be greater than
K? - K. Associated with the partial difference set A 1is the binary
sequence z(A) = (zo, Serara zL-l) defined by

1 if 1 €A

0 if 1 €4].

The requirement that dr - ds = x for at most one pair from A is

equivalent to forcing the xth

auto-correlation coefficient of 2z(A) to
be 0 or 1, for all x # 0. If all the side-lobes are, in fact, equal
to 1, then A 1is a planar difference set. In this case the family of
translates A+ t, t € ZL’- form the L lines of a cyclic projective
plane of order K - 1, (see Baumert3 and Hall“). (A planar difference
set 1s a special case of a cyclic difference set.3 For the general
cyclic differencé:get A, the side-lobes for the associated sequence

z(A) must be constant, but may be greater than 1).

Suppose A is an (L,K) partial difference set and E = (evi) is an
M X K complex matrix with each row of norm 1l.. We define a set A(A;E)
of M sequences of period L as follows. Each sequence av is zero
except for the entries corresponding to elements of ‘A. The K non-zero

entries in a’ are determined by the :vtB: rou of- ‘E.  More precisely

e if 4 = dr €A >

0 .4f 1¢A Fia e oy SRS
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Thus, P i:s formed by replacing the 1's in z(A) with the entries from
the corresponding row of E. Equivalently, one may consider the matrix |
E to be augmented by inserting zero-columns where zeros occur in z(4).
The rows of the resulting M X L matrix are the sequences av. The
correlation coefficients for the set A(A;E) are easily obtained from

the entries in E and EET. For T #0, c\»\(T) . &t eAj if 1 = dr
and jJ=1i+T-= ds, while c\))\(T) = 0 1if T does not occur as a

difference dr - ds. For v # A, one obtains

Wl
(0 =2 a; &
1=0

K
'Z €vr €ar °
r=1

)‘th T

which is the v entry in EE'.

For n a positive integer let F_ denote the Fourier matrix with

\):lth entry equal to w(v-l)(i-l), 1<v, 1{<n, where w is a prim-

itive nth

root of 1. “n will denote an n X n Hadamard matrix of
4+1's and -1's, having only +1's in the first column. We let F;

and H; be the n X (n-1) matrices resulting from deleting the first
column from Fn and Hn, respectively. From the fact that

FF =HH =nI, it follows that F (F)T = ne@)” = o1 - 3,

where In and "n are the n X n identity matrix and the n X n matrix

of +1's, respectively.

3. THE TERNARY AND COMPLEX SEQUENCES

For each of our sets A = A(AjE), A will be one of two algebraically
distinct types of (L,K) partial difference sets, and E will be QKF;EH'
al(“l.(+1' or ul(“l(’ where al& = KJ’. The scalar (ﬁ( normalizes the rows

=Y

of the resulting E's. In each case every entry of E has magnitude K “.

6
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Thus, the cc_')rrelation coefficients for T # 0 all have magnitude 1/K

or 0. Every off-diagonal entry of EET is 0 for E = QKHK’ and -1/K
= o o >
for E aKFK-H or aK“K«l-l' Therefore, lcv)‘(O)l < 1/K for v #A.
Whenever E 1is one of these three matrices, we have cmax(A) = 1/K.

= o
For E GKHK+1 or QKHK’ the resulting sequences are ternary with -QK,
0, and +(!K as entries. The sequences are complex-valued when

E = o,F°

K K+1°
o °
For a given A, setting E equal to GKFK+1 or 'ul(“l(+1 yields one
o L]
more sequence than setting E equal to aK}lK, since FK+1 and HK+1 are

(K + 1) X K matrices, while Hl( is a K X K matrix. The larger set can
always be obtained since Fn exists for all n. However, for some appli-
cations it may be desirable to have ternary rather than complex sequences.
This may not be possible with this method since Hadamard matrices Hn do

not exist for n not a multiple of 4, with the exception of n = 2.

The first type of partial difference set is the planar (L,K) set
with L = 1(2 -K+1, K-1 a prime ower.3s% For K = 2, we have
L=3 and A = {0,1}. Letting E = 2~ ; gives the three sequences

7%, 1, 0)
2 . 7%, W2, 0)

3 2-’5(w2

s W, 0)

where w 1is a cube root of 1 satisfying m2 +w+1=0. The auto-

correlations and cross-correlations for the set of three sequences are
atrala22,1, 1)
a *a --21-(2, w, m?)

a’ = -%(2, wz, w)

a *a = -;—(-1, wz, w)
1 2
a = -i(-l. w, w)

12 * g" = %(—1. 1, 1).

/0
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Therefore, jthis set achieves the bound W(3,3) = 1/2. This set of

sequences (fot K = 2) is the smallest one guaranteed by the following.

THEOREM 1. If K - 1 is a prime power, then there exists a

set of K + 1 distinct complex-valued sequences of period

L = K2 - K+ 1 with @ wice equal to the bound W(L,K+1) = 1/K.
The sequences of Theorem 1 are constructed from the planar difference
sets for the prime power K - 1, and the truncated (K + 1) X K Fourier

: -]
matrix aKFl(+1'

The second planar set occurs for K= 3, L =7, and A = {0,1,3}.

o %

We may let E = 3 FZ or 3 Hz, where
ISR O (S |
HAB 1 1-1-1
1-1 1-1
l1-~-1-1 1],
and A
I 12
¢ o )Y 2=
",
-1 1-1
=1 -1 .

For E = 3-!5H°4, the four sequences are

al - 3‘*( i, 5,0, 1,0, 6,0

a2 = 37%(1,-1, 0,-1, 0, 0, 0)

a3« 3%, 1, 0,41, 0, 0, 0

a¥ w §%¢1,41, 0, 1, 8, 0, 0).

The bound W(7,4) = 1/3 1is met by this set of ternary sequences.

/!




NWC T™ 2790

The onl? known planar difference sets are those for K - 1 a prime
power. Since 2 is the only prime power congruent to 2 modulo 4, the
four sequences above form the only ternary set resulting from this con-

struction which achieve the bound.

For K- 1 =3, the set A = {0,1,3,9} is a planar difference set
modulo 13. For this set, the matrix % H4 can be used to construct

four sequences

o %(1, 1, 0,1, 0,0, 0, 0,0, 1,70, 0, 0)

a . 311, 1, 0,-1, 0, 0, 0, 0, 0,-1, 0, 0, 0)

a = %(1)"1’ o, 1, 0, 0) 0, 0’ 0’_1) 0, 0, 0)

& %{1,—1, o,-1, o, o, 0, 0, 0, 1, 0, O, 0).

The correlation coefficients (excluding the auto-correlation peaks) are
1 1

all - Z, 0, or z’.

W(13,4) = (117)!i = 0.243. This set is the smallest of the type guaranteed

by

The Welch bound for this case is

THEOREM 2. If K - 1 is a prime power congruent to 3 modulo 4,
then there exists a set of K distinet ternary sequences of period
b i - K + 1 which nearly achieve the bound. In particular

g = 1/K; while W(L,K) = x 1)'}’.

The sets of Theorem 2 use E = qah(. The Hadamard matrix HK for
Theorem 2 may be constructed from the quadratic residues in the finite
field GF(K-1).3»"

For the second type of partial difference set K may be any prime
power, and L = K2 - 1. Tﬁese are special cases of the relative differ-
ence sets of Elliott and Butson.5 A maximal linearly recurring sequence
of degree 2 over the finite field GF(K) has period L = K2 - 1. Every

non-zero member of GF(K) occurs exactly K times in such a sequence,

while 0 occurs K - 1 times. The set A of positions at which the 1's

9
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occur form én (L,K) partial difference set. For K = 2 this set corres-
ponds to the planar set in Z3. For K = 3, the li;early recurring
sequence associated with the primitive quadratic x" + x + 2 is
(1,1,0,1,2,2,0,2). The resulting relative difference set is A = {0,1,3}
in 28. The following two theorems result from the relative difference

sets with K a prime power.

THEOREM 3. If K is a prime power, then there exists a set of
K + 1 distinct complex-valued sequences of period L = X - 1
with GO 1/K. If K =3 (mod 4), then a set of ternary
sequences with the same parameters exists.

THEOREM 4. If K is a power of 2, then there exists a set of
K distinct ternary sequences of period L = K2 - 1 with

& ™ 1/K.

The ternary sequences of the second part of Theorem 3 are constructed
using the quadratic residue Hadamard matrix over GF(K), that is,

= o i i i -
E uKHK+l' The Hadamard matrix HK required in Theorem 4 can be con
structed by the iterated tensor product

r
; Hzm=H2®Hm, w2 2, w123 .0 s
The sets of Theorems 3 and 4 approach the bound W(L,K) as K and L

increase. The bounds are

2

W(L,K+1) = (K/(K3 f,K -K - 2))% for Theorem 3,

W(L,K) = ((K—l)/(l(3 -.K - 1));i for Theorem 4.

Clearly each of these bounds approaches 1/K as K increases. Thus, the

sets for Theorems 2, 3, and 4 are "asymptotically optimal."

10
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4. THE BINARY SEQUENCES

In this section we construct sets of sequences of period L = sz -1
from linear cyclic error-correcting codes over GF(2) of length L.
For Y an element of GF(Z“) let u(Y) denote a linearly recurring
sequence associated with the minimal polynomial of Yy over GF(2). The
period 7(Y) of wu(Y) is the multiplicative order of Yy in GF(Z“), and
must divide 2" - 1. Let v(Y) be the (2“ - 1)-dimensional vector over
GF(2) formed by juxtaposing I(Y) periods of the sequence u(Y), where
I(y) = " -1)/n(y). If Y is a primitive element of GF(2"), then
I(y) =1, and v(Yy) together with all of its cyclic shifts generate an
n-dimensional cyclic code over GF(2) with minimum weight Zn-l. Now
suppose § = Yr, and let C(r) be the code generated by all cyclic shifts
of both v(y) and v(§). C(r) 1is a cyclic (n+d)-dimensional code, if
6 1is not conjugate to Y, where d 1is the degree of § over GF(2). Kasami,
Lin, and Peterson have computed the weight distributions of several such

codes.®

C(r) decomposes into classes of cyclically equivalent vectors.
By selecting one representative from each class of period 2" -1 and
replacing each 0 and each 1 with -(2" - 1)-li and +(2" - 1)-5,
respectively, a set A(r) of normalized binary sequences is obtained.

The Gold sequences result from letting

2(n+1)/2 +1 for n odd
r =
2(n+2)/2 +1 for n even]|.
In this case C(r) has dimension 2n, and the 22n - 1 non-zero code

words fall into 2" + 1 classes, each of period 2" - 1, provided r is
relatively prime‘to Ll T (When g.c.d. (r, 2" - 1) =s>1, C(r)
contains only 2" classes of period 2" - 1. The remaining 2" - 1 non-
zero code words have period (2n - 1)/s.) The family A(r) contains
M=2"4+1 sequences of period L = 2" - 1, with Sy ™ r/L (see
footnote 2). Thus, for the Gold sequences c¢ is approximately 2L-%.
2‘51.-!i for n even, odd, respectively; where;?XW(L,M) - N(Zn - 1.2“ + 1)
is approximately L-k.

11
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For our. sequences we let n = 2m and r = 2™ 4+ 1. The resulting
code C(r) ﬁas length L = 22m - 1, dimension 3m and minimum weight
2m-1(2m = 1). In fact the only non-zero weights occurring in C(r) are
2m-1(2m -1), 22m-1' and 2m-1(2m + 1), see footnote 6. Thus, the
cross-correlation coefficients and auto-correlation side-lobes for the
set A(r) of sequences of period L assume only the three values
2" - /L, -1/L, and (2" - 1)/L. It follows that c__ = (2" + 1)/L
= 1/(2" - 1). This approximates Cnax for Gold sequences of period

2m+1
2 = 1=2L+ 1, The 3m-dimensional code C(r) contains a single

class of vectors of period ) e | generated by 6. The remaining
23m 2m

- 2™ vectors fall into 2™ classes of period L = 2" - 1. Thus,
M= 2™ and the Beund fa WL = (62" = D} - 2 - 1)7, which 1s
approximately equal to L-%.

The first example of this construction is for m = 2, L = 15, M = 4.
Letting Y be a root of x4 +x+1, and § = YS, we have

viY) =(000100110101111),

v(§) =(011011011011011).

The four cyclically distinct vectors in C(r) are v(Yy) together with
v(Y) added to each of the three shifts of v(§). For the associated
set A(r) we have L =15, M= 4, and c¢ = 1/3; while

" max
W(15,4) = (3/59)° = 0.225.

12
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