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FOREWORD

The research described in this report was carried out from July 1975
thro~g~j lay 1976 under the authorization of Task Area Number ZR5 I O L
This represents part of a continuing investigation of coding techniqüés
being performed in conjunction with and partially fun~ed by the Fuze
Exploratory Development Program, Task Area Number F3Z~~~~—S0]..

This report is released at the working level. Because of the con-
tinuing nature of the coding research project, these results are subject
to refinements and modifications.

Reviewed by
H. A. BULCERIN

Head , Advanced Systems Division
Fuse Department

- Released by
• LEE E. LAKIN, JR.

Head , Computer Sciences Division
Systems Deve ioprnent Depar tment
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ABSTRACT

Families of periodic sequences with small side—lobes and low cross-

talk (cross—correlations) are needed In many digital communication systems.

L. R. Welch has recently established a lower bound for the largest of the
side—lobes and cross—correlation coefficients associated with a family of

H distinct sequences of period L. In particular , for two sequences
there must occur a coefficient greater than (2L)~~ . As the number H of

sequences increases to approximately L½, this lower bound increa ses to
L ½. In this report several sets of periodic sequences utilizing complex,

ternary, and binary coded signal bits are constructed which nearly meet

Welch’s bound for H approximately equal to L½. In this paper’s con text,
ternary cod ing ref ers to three dis tinc t phase signals , while comp lex cod ing
refers to phas e levels rela ting to the ~th complex roots of unity. Most

of these sequences contain only non—zero entries. However, one type

of family cons is ts of H 2m binary (±1) sequenc es of period L — — 1.

The maximum coefficient for this family is approximately one—half as large

as the corresponding maximum for the Gold sequences of the same period.

This represents a considerable improvement over the Gold codes for such

codes requiring an even number of shift register stages for generation.

2
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1. INTRODUCTION

The need for sets of sequences possessing low periodic cross correla-

tions and auto—correlation side—lobes frequently arises in communications

problems. A recent paper of Welch1 presents a lower bound for the maxi-

mum absolute value of these correla tion coeff icients as a func tion of the
period L and the number H of sequences in the set. The Gold sequences,2

which have period L 2m — 1, dif fe r  from the bound W(L ,M) of Welch by
fac tors of approx imately 2 and 2½ for m even and m odd , respectively.
Here we describe sets which achieve the bound W(L,M) as well as sets
which approach it as L increases.

The sets presented in Sections 2 and 3 are formed by combining partial
difference sets in cyclic groups with Fourier or Hadamard matrices. A

par tial dif fe re nce set is a slight generalization of a planar dif ference
set, which gives rise to a finite cyclic projective plane.3” The planar

difference sets are used to construct optimal and near—optimal sets of

sequences. Additional near—optimal sequences are formed using certain

of the relative difference sets of Elliott and Butson.5 With only one
exception the optimal sequences have complex entries. For each of these

sets, L is approximately equal to K2, and M equals IC or K + 1, where

~ L. R. Welch. “Lower Bounds on the Max imum Cross Correla tion of
Signals , ” IEEE Trans. Inform. Theor., May 1974 , pp. 397—399.

2 R. Cold. “Optimal Binary Sequences for. Spread Spectrum Multi-
plexing,” .IEEE Trans. Inform. Theor., October 1967 , pp. 619-621.

~ L. D. Baumert. Cyclic Difference Sets. Berlin, Heidelberg, New
York, Springer—Verlag, 1971.
‘ H. Hall, Jr. Combinatorial Theory . Waltham, Mass., Blaisdell,

1967.
~ 3. H. E. Elliott and A. T. Butson. “Relative Difference Sets,”

L . 
Iii. J. Math., Vol. 10 (1966), pp. 517—531.

3
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K is the number of elements in the underly ing par tial difference set,
and L is the order of the cyclic group. The largest correlation coef—

ficient has magnitude 1/K, and each sequence has exactly K non—zero

entries.

The sequences described in Section 4 are derived from binary, cycl ic
error—correcting codes in much the same way as are the Cold sequences.

For L 22~% — 1, a certain cyclic error—correcting code of length L

and dimension 3m yields a near—optima l set of 2m binary sequences.

Like the Cold sequences, these have no zero entries and are easily gen-

erated by shift—register techniques. Their correlation bounds are easily

obtained from the code weight distributions given by Kasami, Lin, and

Peterson.6

2. DEFINITIONS AND NOTATION

We are interested in sets A {a~, a
2
, ... , ~~~ of sequences of

V Vperiod L. Each a is a complex L—vector (a~) 4 ... , a~~1
) of norm 1;

that is, a~ ~~~~~ + ... + a~~~ 
~~~l 

— 1, where ~ denotes the complex con-

jugate of a. The correlation coefficients are given by

L-1
c
~~
(T) —E a

”
~ ~~~~i—0

with subscr ipts reduced modulo L, 1 1~~ V, X ~~M, 0 I~~~T ~~L_l. A measure

of the correlation quality of the set A is cmax(A)i the mex imum over
all lc~x

(T)l with v * A or 
~ 

# 0~ i.e., the maximum over all of the
auto— and cross—correlation coefficients except the “peaks ” c (O) — 1.

A principal result from Welch1 is that for any such family A,

C..~(A) >W(L,M),  where

~ T. Kasami~ S. Un, and W. W. Peterson. “Some Results on Cyclic
Codes Wh ich Are Invar ian t Under the Aff ine Gro up and The ir Ap plica tions ,”
Inform, and Contr. , Vol. Il (1968), pp. 475—496.

.4
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- (M _ 1 \ ½
W(L ,M )  = 

— 1)

We define an (L,K) p ar tial d if f erenc e se t to be a set
A {d1, ... , d~) of K distinct elements from the cyclic additive

gro up Z
L 

of integers inodulo L, such that for every non—zero x in Z
L

there is at most one pair d
r~ 

d5 from A satisfying d
r 

— d5 — x.

From this condition one can easily show that L must be greater than

K2 — K. Associated with the partial difference set A is the binary

sequence z(A) — (z0, ... , z~_~) defined by

1 if i EA  - 
-

a1 —

0 if i~~~A

The requirement that d
r 

— d
~ 

= x for at most one pair from A is

equivalent to forcing the ~
th auto—correlation coefficient of z(A) to

be 0 or 1, for all x * 0. If all the side—lobes are , in fact , equal

to 1, then A is a planar difference set. In this case the family of

translates A + t , t E form the L lines of a cyclic projective

plane of ord er K — 1, (see Bauinert 3 and Hal1~’). (A planar difference

set is a special case of a cyclic difference set.3 For the general

cyclic difference set A ,. the side—lobes for the associated sequence

z(A) must be constant, but may be greater than 1).

Suppose A is an (L,K) par tial d if f erenc e se t and E (e
~i

)  is an
H X K complex matrix with each row of norm t. We define a set A (A;E)

of M sequences of period L as follows. Each sequence a~
’ is zero

excipt for the entries corresponding to elements of A. The K non—zero

entries in ~~ are determined by the 
.
V

t h 
row of B. - More prec isely

e if i — d  € A ~~yr I
I

0 i! t~~~A J .  
.

. . ::

::~ii. 4
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Thus, a~
’ is formed by replacing the l’s in z(A) with the entries f rom

the corresponding row of E. Equivalently, one may consider the matrix

E to be augmented by inserting zero—columns where zeros occur in z(A).

The rows of the resulting H X L matrix are the sequences a
v
. The

correlation coefficients for the set A(A;E) are easily obtained from

the entries in E and EET. For ‘t * 0, c~,1(’r) = eVi e1j 
if  i — d

r
and j I + T d , while c

~~
(T) = 0 if T does not occur as a

dif f e r e n c e d — d . For V ~ A , one obtainsr $

L-l v ..Ac~1(o) =E ai a~
i=0

evr eXr
r 1

which is the ~x th entry in EET. -

For n a positive integer let F denote the Fourier matrix with
th (v—l)(i—l) ‘~

vi entry equal to w , 1 ~~v, I ~~n, where w is a prim—

itive n~~ root of 1. En 
will denote an n X n Hadamard matrix of

+1’s and —l’s, having only +1’s in the first column. We let F~
and H~ be the n X (n—i) matrices resulting from deleting the first

column f r om F and H
n~ 

respectively. From the fact that

F ~ H ET nI , it follows that F (j0)T = flO (HO)
T 

= nI — j
n f l  n n  n n n n n  n n

where I and J are the n X n identity matrix and the n X n matrixn n
of +1’s, respectively.

3. THE TERNARY AND COMPLEX SEQUENCES

For each of our sets A — A(A;E), A will be one of~, two algebra ically
dis tinc t types of (L ,K) partial difference sets, and E will be

or U
K
E
K
, where 

~K 
- K~~. The scalar normalizes the rows

of the resul ting B ’s. In each case every entry of E has magnitude K~~
.6
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Thus , the correlation coefficients for I � 0 all have magnitude 1/K

or 0. Every off—diagonal entry of E~
T is 0 for E U

K
HK4 and —1/K

for E = cI
K
F
K+l or a

K
H
K÷1

. Therefore, I c vx (0) I ~ 1/K for V :�: A.

Whenever E Is one of these three matrices , we have c (A) — 1/K.max
For E c&

K
H

J~+l 
or a

K
E
K, the resulting sequences are ternary with

0, and as entries. The sequences are complex—valued when
E - cL

K
F
K+l

.

For a given A , setting E equal to a
K
FK+l or .U

K
H
~+l yields one

more sequence than setting E equal to O
K

II
K~ 

since F
~+l and 

~~,41 are

(K + 1) X K matrices, while H.~ is a K X K matrix. The larger set can

always be obtained since F exists for all n. However, for some appli-

cations it may be desirable to have ternary rather than complex sequences.

This may not be possible with this method since Hadamard matrices do

not exist for n not a multiple of 4, with the exception of n 2.

The first type of partial difference set is the planar (L K) set

with L = K2 — K + 1, K — 1 a prime ~ower.
3’~ For K 2 , we have

L — 3 and A = {o l) .  Letting E 2~~P gives the three sequences

a
1 

— 2~~ (l , 1, 0)

a
2 

— 2~~ (W , w2, 0)

2~~ (w2, w 0)

where w is a cube root of 1 satisfying + w + 1 0. The auto—

correlations and cross—correlations for the set of three sequences are

* a~ — +(2, 1, 1)
2 2 1  2
~ * a —~~ (2 , w,w,)

a3 * ~3 
— +(2, w

2 w)
1 2 1  2

~ * 5 —~~ (—l , w , w)

1 3 1  2a * a — - ~(—1,w,w )
• 2 

* ~3 — •~~(—1 , 1, 1).

7
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Therefore, this set achieves the bound W(3,3) 1/2. This set of

sequences (for  K 2) is the smallest one guaranteed by the following.

THEOREM 1. If K - I is a prime power, then there exists a
set of K # I distinct complex-valued sequences of period
L = - K + 1 with 0m~~ 

equal to the bound W(L ,K+1) = 1/K.

The sequences of Theorem 1 are constructed from the planar difference

sets for the prime power K — 1, and the truncated (K + 1) X K Fourier

matrix ct
K
FK+l.

The second planar set occurs for K = 3, L = 7, and A {O ,i,31.

We may let E = 3’~~F~ or ~~~~~ where

1 1 1
I i 1 —1 —l

H — i
1 —l 1 —l

Ll —l —l 1

and

r’ ’n
H0~~ 1 1 1 1 1

4 i— ’ i — ~~
L1 -l LI.

For E 3~~H°4, the four sequences are

— 3 ½( 1, 1, 0, 1, 0, 0, 0)

— 3 ½( 1,—l , 0,—i , 0, 0, 0)

a
3 

— 3 ½(_ 1, 1, 0 ,— I , 0, 0 , 0)

— 3~~(—l,—1, 0, 1, 0, 0, 0).

The bound W(7,4) — 1/3 is met by this set of ternary sequences.

.8
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The only known planar difference sets arc those for K — 1 a prime

power. Since 2 is the only prime power congruent to 2 modulo 4, the

four sequences above form the only ternary set resulting from this con-

struction which achieve the bound .

For K — 1 = 3, the set A = {O,l,3,9) is a planar difference set

modulà 13. For this set, the matrix 
~h 
H
4 

can be used to construct

four sequences

a’ = ~ (l, 1, 0, 1, 0, 0, 0, 0, 0, l, O, 0, 0)

~2 = +(l, 1, O,—l , 0, 0, 0, 0, 0,—i , 0, 0, 0)

a3 
= ~ (1,— l , 0 , 1, 0, 0, 0, 0, 0,—i, 0, 0, 0)

a4 
= ~(l ,—l , 0,—l , 0 , 0, 0 , 0 , 0, 1, 0 , 0, 0).

The correlation coefficients (excluding the auto—correlation peaks) are

all — 
~~~, 0 , or -k- . The Welch bound for this case is

W(l3,4) = (j
i
y) ½ 

= 0.243. This set is the smal lest  of the type gu ar anteed

by

THEOREM 2. If K - 1 is a prime power congruent to 3 modulo 4,
then there exists a set of K distinct ternary sequences of p eriod
L =  K2 

- K + I which nearl y achieve the bound. In particular
= I/ K, while W(L ,K) = (K ~ +

The sets of Theorem 2 use E = ~~~~ The Hadamard matrix H~ for

Theorem 2 may be constructed from the quadratic residues in the finite

field CF(K—l). 3.’

For the second type of partial difference set K may be any prime

power, and L — K2 — 1. These are special cases of the relative differ-

ence sets of Elliott and Butson .5 A maximal linearly recurring sequence

of degree 2 over the finite field CF(K) has period L = K2 — 1. Every

non—zero member of CF(K) occurs exactly K times in such a sequence ,

while 0 occurs K — 1 times. The set A of positions at which the l’s

9
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occur form an (L,K) par t ia l  d i f f e rence  set. For K 2 this set corres-

ponds to the planar set in Z3. For K = 3, the linearly recurring

sequence associated with the primitive quadratic x2 + x + 2 is

(1,1,0,1,2,2,0,2). The resulting relative difference set is A = {O,1,3}

in Z8. The following two theorems result from the relative difference

sets with K a prime power.

THEOREM 3. If K is a prime power, then there exists a set of
K + I distinct complex-valued sequences of period L = - 1
with C

m~.x 
= 1/K. If K 3 (mod 4) , then a set of ternary

sequences with the same parameters exists.

THEOREM 4. If K is a power of 2, then there exists a set of
K distinct ternary sequences of period L = - 1 with

o = 1/K.max

The ternary sequences of the second part of Theorem 3 are constructed

using the quadratic residue Hadamard matrix over CF(K), that is,

E U
K
B
K+l• The Hadamard matrix 11

K 
required in Theorem 4 can be con-

structed by the iterated tensor product

M
2
U f lj

H.. = 11
2 0 11 , in = 2~

’ 
>2 , r = 1,2,3...

The sets of Theorems 3 and 4 approach the bound V(L,K) as K and L

increase. The bounds are

W(L,K+l) = (K/ (K
3 +K 2 — K — 2))½ for Theorem 3,

W(L,K) = ((K—l)/(K
3 

—
• K — 1))½ for Theorem 4.

Clearly each of these bounds approaches 1/K as K increases. Thus, the

sets for Theorems 2, 3, and 4 are “asymptotically optimal.”

10
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• 4. TUE BINARY SEQUENCES

In this section we construct sets of sequences of period L 22m —

from linear cyclic error—correcting codes over CF(2) of length L.

For y an element of GF(2”) let u(y) denote a linearly recurring

sequence associated with the minimal polynomial of y over GF(2). The

period ir(y) of u(y) is the multiplicative order of y in GF(2”), and
must divide 2” — 1. Let v(y) be the (2” — 1)—dimensional vector over

CF(2) formed by juxtaposing 1(y) periods of the sequence u(y), where
1(y) = (2” —1)/u(y). If y is a primitive element of GF(2”), then
1(y) = 1, and v(y) together with all of its cyclic shifts generate an

n—ln—dimensional cyclic code over GF(2) with minimum weight 2 . Now

suppose ~ = ~r and let C(r) be the code generated by all cyclic shifts

of both v(y) and v(6). C(r) is a cyclic (n+d)—dimensional code , if

6 is not conjugate to y, where d is the degree of S over GF(2). Kasami,

Lin, and Peterson have computed the weight distributions of several such

codes.6 C(r) decomposes into classes of cyclically equivalent vectors.

By selecting one representative from each class of period 2n — 1 and
replacing each 0 and each 1 with —(2” — l)~~ and +(2” —

respectively, a set A(r) of normalized binary sequences is obtained .

The Gold sequences result from letting

2(n+l)/2 + 1 for n odd

r —
(n+2) /2
2 +1 for n even

In this case C(r) has dimension 2n, and the 22n — 1 non—zero code

words fall into 2” + 1 classes, each of period 2” — 1, provided r is
relatively prime to 2” — l~ (When g.c.d. (r, 2” — 1) = s > 1, C(r)
contains only 2!~ classes of period 2” — 1. The remaining 2” — 1 non-

zero code words have period (2” — 1)/s.) The family A (r) contains

N — 2
i
~ + 1 sequences of period L 2n — 1, with c — r/L (see

max
footnote 2). Thus, for the Gold sequences c is approximately 2L ‘

,max
‘
~~~

— ‘
~ n n2 L for n even , odd , respectively; whereas W(L,M) — W(2 — 1,2 + 1)

is approximately L~
½.

11 
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For our. sequences we let n — 2m and r — 2~ + 1. The resulting

code C(r) has length L = 2 2m 
— 1, dimension 3m and minimum weight

2
m..3.(2m — 1). In fact the only non—zero weights occurring in C(r) are

— 1) 22m—l and 2
m_l

(2m + 1), see footnote 6. Thus, the

cross—correlation coefficients and auto—correlation side—lobes for the

set A(r) of sequences of period L assume only the three values

(_2in 
— l)/L, —l/L, and (2in 

— l)/L. It follows that Cmax 
— (2in + l)/L

— 1/(2m — 1). This approximates C for Cold sequences of period
22~~

1 
— 1 — ZL + 1. The 3m—dimensional code C(r) contains a single

class of vectors of period 2m — 1 generated by 6. The remaining
3m in in 2m
2 — 2 vectors fall into 2 classes of period L = 2 — 1. Thus,

N f’ and the bound is W(L,M) = ((2 in 
— 1)/(23m — 2

m 
— j ))½, which is

approximately equal to L ½.

The first example of this construction is for in = 2, L — 15, M = 4.

Letting y be a root of x4 + x + 1, and 6 = y5, we have

v(y) = (0 0 0 l O O l l O l O l l l l ) ,

v(6) — ( 0 1 1 0 1  1 0 1  1 0 1 1 0 1 1 ).

The four cyclically distinct vectors in C(r) are v(y) together with

v(y) added to each of the three shifts of v(6). For the associated

set A(r) we have L — 15, N — 4, and Cinax 
= 1/3; while

W(l5,4) = (3/59)½ 0.225.

12
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