
~~~~~~~~ Ob5 352 DEFEN SE cOM M UN I c A T I ONS E N G I N E E R I w 6 cEN T ER REs TON vA F,G g,2

CEC—TN I1— DIE— AD —E100 172UNCLASSIFIED

END

4 — 7 9-
not



C. -. . - —- 
• -- - . - -

•:~i~h ‘
1

TN 11-78

~~~ ~1w% ~ *i~
*

t~~~~w

~~~ DEFENSE COMMUNICATIONS ENGINEERING CENTER

II TECHNICAL NOTE NO. 11-7 8

4
501-370 LANGUAGE
RE FERENCE MA NUA L

C-)
LU

C-,

SEPTEMBER 1978 D D C
?~G~JEfl~ Ill?I!:~ MAR 7 1vm
_ _ _ _ _

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

_ .
~~~~~~~~~~~~~~

. ~~ Q~~~16 ..~Oi~ _

r ~~

-

~~

—

~~~~~~
— - -

~~

UNCLASSIFIED June 1978
SECURITY CLASSIF~CA T ION OF THIS PAGE (1~~.n Dat. En .r.d) 

__________________________________

BEDA
~~

Y 
~~~~~~~~~~~~~ 

nA ~~~~
READ iNSTRUCTIONS

I’. !~~J1~~I W’..UM I~ I ~~ I ~~~~~~ ~~~~~ BEFORE COMPLETIN G FORM

/ ,. EPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER

(. DCEC—TN— 1l—78 / ____________________________

~~~~~ uBTt1lSJ —~~~~~~ .~ . TY PE OF REPORT & PERIOO C0VEREO

• ( jQ~.—37 O Language Reference Manuals J ~~~~ ~ Tectnica1
,

.~~te~~ /
.

~ 

•- . 
6. PE~~FORMING ORG. REPORT NUMBER

7. AUTHOR(•) . . S. CONTRACT OR GRANT NUMSER(.)

H Ulfers (1 ~ / ‘~ ~ I L I  - / 
- 

— 

/

4. PERFORMING ORGANIZATION NAM E AND ADDRESS tO. PROGRAM ELEMENT. PROJECT . TA SK

Defense Coitinunications Engineering Center AR EA & WORK UNIT NUMBERS

Computer Systems Division, R800
1860 Wiehie Ave., Reston, VA 22090 N/A
II. CONTROLLIN G OFFICE NAME AND ADDRESS . RE

Same as 9

14. MONITORING AGENCY NAME & ADORESS(I( different (torn Controlling Of f i c e )  15. SECURITY CLASS. (of this report)

N/A 7 

~ 
/ / ~ ~ ~\ UNCLASSIFIED

-~~ ~~.
. -.

~~~~~~~ ~~~— ~~ a. DECLASSIFICATION/DOWNGRADING
—-

~~~~~~~~~~ -_.•- - - -
~ SCHEDULE

_____________________________________________ N/A
IS. DISTRI BUTION STATEM ENT (of  this Report)

A. Approved for public release; distribution unlimited.

‘7. DISTF~:BU lION STATEMENT (of II,. abstract .nt.,.d in Block 20, II differen t fr~rn Report)

a

N/A D D C
IS. SUPPLEMENTARY NOTES ~~~~~~~~~ p
Review relevance 5 years from submission date. lIJ ~ ~
IS. KEY WORDS (Continue on reverse aide if nec.aaa~~ end Identify by block n~~~ber) 

~~~~~~~~~~~~~~~ U ~SOL—370 Language
SOL Model
Arithmetic Language
Syntax Description
Simulation

20. ABSTRACT (Continue on revers e aid. If n.ceauty and ld.ntify by block nurøb.t)

L_-47 This document describes the SOL—370 algorithmic language, which is used to con-
struct general systems models for simulation. After the language syntax is des—
cribed , several sample models are given. This document replaces DCEC TN 25—75 ,
on the same subject.

/ ‘ ‘,-‘ .
~~

— I

~~~ ~~~~~ ~~~~~~~ ~~

_ _ _ _ _ _ _ _ _ _  

U, I 
•

~

______-. - 

DD ~~~ 147 3 Pr EDITION OP INOV 43 IS OBSOLETE 

OF THIS PAGE (ITh.n Del. E

_ _ _ _ _ _  4



r -
~~~~
--, - ..• - -

~~~~~
---.--

~~~~~ - • 
--

~~
.

SECURITY CLASSIFICATION OF THIS PAGE(IThen Data Znt.?Sd)
-

.
5

a

I)

S /

SECURITY CLASSIFICATION OF THIS PAGE($P,en Dee. Frir.- . - d

—
-- -- • • - - •- -•

.

-
~~~~~~~~~~~~

• TECHNICAL NOTE NO. 11-78

SOL—370

LANGUAGE REFERENCE MANUAL

a

Sept 1978

Prepared by:

Horst Ul fers

Appro for P bl i ation :

- 
( fl~, ‘

~ $

ROBERT E. LYONS
Chief, Computer stems Division

FOREWORD

The Defense Communications Engineering Center (DCEC)
Technical Notes (TN ’s) are published to Inform Interested members
of the defense community regariilng technical activities of the
Center, completed and in progress. They are Intended to stimulate

• thinking and encourage i nformation exchange; but they do not
represent an approved position or pol icy of DCEC, ana should not
be used as authoritative guidance for relateo planning and/or
further action.

Coimi~ents or technical inquiries concerning this document are
welcome , and should be directed to:

Director
Defense Comunications Engineering Center
186Li Wiehie Avenue
Reston, V i rginia , 22090

L ________ ___________________________
— —~~~~~~ __ _ __ J_~~~ __ —- - • - • - • S



—-5---- — - —

TABLE OF CONTENTS

Page
I. INTRODUCTION 1

II. SOL SYNTAX 2

1. The Syntax NotatIon 2

• 2. The Model Structure 4

3. IdentifIers and Constants 5

4. Expressions and Relations 6

5. FacilIties and Associated Commands 8

6. Stores and Associated Commands 10

7. Trunks and Associated Commands 11

8. Transactions and Associated Commands 13

9. Special SOL Statements 15

10. Compouno and Conditional Statements 17

III. SAMPLE MODELS 18

BIBLIOGRAPHY 30

•
• - -

- - — -

F’
- .

lii _ _

_ _



-~~~~~ - - • -• -~~• • - S -  •5- • • - —------- - - -- •

I. INTRODUCTION

This manual replaces TN 25-75, SOL—370 Language Reference
Manual and Users ’ Guide. The syntax description in this document
reflects the latest updates as implemented in SOL-370 Rel. 6/78.

SOL—370 is a dialect of the SOL-simulation l anguage as
developed by Knuth and McNeley* . The original SOL l anguage has
been extended to accomodate algorithms essential for the
simul ation of communications networks and systems. Furthermore,
SOL— 370 has been impl emented as an extension of the PLII
l anguage. This allows for a free Intermixing of SOL—370 and PL/I

• l anguage statements.

SOL—370 is an algori thmic l anguage used to construct model s
• of general systems for simulation in a readable form. The model

bui lder describes his model in terms of PROCESSES whose number
and detail are completely arbitrary and defi nable wi thin the
constraints of the language elements. A SOL model consists of a
number of statements and declarations which have a character

• similar to that found in programming languages such as PL/I and
ALGOL.

The model is not built to be executed in a sequential
fashion, as ordinary programing languages requi re. Rather, the
processes are written ana executed as though all were running in
parallel . Control among processes is maintained by the
interaction of GLOBAL ENTITIES anu by control and communications
instructions within the different processes. At the initiation

• 
• of the simul ation all processes are begun simultaneously.

Variables decl ared within a process are cal led LOCAL
VARIABLES. Within a given process it i s possibl e to have several
actions occurr ing at once ; therefore , to v isual i ze the process ,
we may think of several objects on which the action takes place ,
each In its own pl ace in the process at any given time. These
objects will be referred to as TRANSACTIONS. A set of local
variables corresponding in number to those declared in the
process i s “carried with” each transaction of that process.
Transactions situated wi thin one process may not refer to the
local variables of another process nor to the local variables of
another transaction in the same process.

GLOBAL ENTITIES are of four major types: GLOBAL VARIABLES ,
• FACILITIES , STORES , and TRUNKS. Gl obal variables can be

referenced or changed by any transaction from any process in the
system , and the variable possesses only one val ue at any given
time .

* U. E. Knuth and J. L. Mci~ley, “A Formal Definition of
SOL ,” IEEE Transactions on El ectronic Computers, EC—13
No. b (Aug 19b4) pp 4u9-414

1



r

II. SOL SYNTAX

1. THE SYNTAX NOTATION

The Backus Normal Form (BtF) Is used to describe the syntax
of the SOL language. The following rules expl ain the use of this
notation.

a. The Notation Variabl e. A Notation Variabl e Is the name
for a class of elements used In a programming l anguage. It
consists of letters and hyphens and is enclosed in ‘less thane a

and “greater than ” symbol s.

EXAMPLES :

<digit> This denotes the occurrence of a digit , which may
assume a val ue within the range of I) through 9.

<facility name> This denotes the occurrence of a Notation
Variabl e of tne class Facility Name.

<do statement> This denotes the occurrence of a DO
• statement.

b. The Notation Constant. A Notation Constant is the
literal occurance of a string of characters. It is represented
In capital letters.

Example:

STORE This denotes the literal occurrence of the word
“STORE ”.

c. The Syntactical Unit. A Syntactical Unit is defined
as a si ngl e variabl e, a constant , or any collection of notation
var iab les , notation constants , and syntax language symbols. The
vertica l stroke “ I” separating two Syntactical Units indicates a
cho ice , which can be made between the two. Anything enclosed In
brackets denotes an option. The syntax within the brackets may
be used or left out.

EXAMPLES :

<identifier> FIXED I FLOAT This denotes an identi fier which
may have the attribute FIXED or
FLOAT.

<loentifler>L (<constant>)] This denotes an identi fier which
may optionally be subscripted by
a number.

2



r ~~~~~~~~ 

- -

- • - - • •• - -•~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S.•• •- - -5 ---

d. General Format. The syntax statement is composed of
- a notation variable separated from the following syntactical unit

by the definition symbol “ ::z ”

EXAMPLE :

<go to statement> ::= GO TO <label>;

3

-S - ~~~~~~ 
• 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-5 5 —- 5 • - • • S, _~~•_ .__~~~~~~~~~~~~~ ~~~~~



_____________________ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ •~~ •S 555 5—.,- 5---’ ---—.-,’5- -

P
2. THE MODEL STRUCTURE

When coding a SOL model the format below should be fol lowed:

<global variable declarations> ~
<resource declarations> ~ GLOBAL DECLARATIONS
<table declarations> J
<process declaration> 1
<process statements> ~ FIRST PROCESS
<end statement> J MODEL

<process declaration> 1
<process statements> ~ SECON D PROCESS
<end statement> J

<end statement>

First , all global declarations should be lis ted. The order
• of the global declarations Is arbitrary . The oraer in which

processes are listed shoul d be selec ted carefully, since the
first process will be started first and if any val ues are read
for global variable initialization , this should be done in the
first process. The program should be fol lowed by an END
statement. If not included , the system will provide this
statement.

a. Process Declaration

<process description>: :=PROCESS <identi fier>
[,T=<constant>] [,R=<constant>];

Each process is bracketed with the process declaration and
an END statement. The two optional parameters allow the modeler
to specify the maximum number of simul taneous transactions I and

S the max imum number of resources R (fac ilities , stores , and
trunks) encountered by any one transaction. This feature is
Important in optimizing the model ’s core requi rements.

EXAMPLE:

• PROCESS SWITCH , T=luU, R=4;

4

- ________

b. Vari able Declaration. Vari ables are declared either at
the beginjilng of the program outside the processes as GLOBAL
VARIABLES , or at the beginning of each process as LOCAL
VARIABLES.

<gl obal vari able declaratlon>:=cvariable declaration>

<variable declaration>: INTEGER <identifier list>
I REAL <Identi fier list>;

When declared INTEGER , their Internal representation will be
fixed blnary; when declared REAL , floating decimal .

EXAMPLES:

INTEGER A , B, C , D;
REAL X , Y , Z;

/
/ INTEGER AR (16);

INTEGER BAR((J :100);

c. Resourc e Decl arations

<resource declaration> : := <facility declaration>;
I <store declaration>;

S
I <trunk declaration>;

• All resources must be declared ahead of the process declarations.
For details see the discussion for the specific resource.

3. IDENTIFIERS AND CONSTANTS

<letter>::=A IBICIDI...IZ
<digit>: :0 1112 131... 19
<constant> : :=<constant>l<decinial constant>
<constant> : :=<digit>
<time>:: — I +
<decimal constant> : : <constant>.<constant> [E<sign><constant>]
<identifier> : :=<letter>I<identifier><letter> l

<letter><di git>

Specific i dentifiers are usea as the names of global
var i ab les , resources , statistical tables, processes, and
procedures. A specific identifier can be used for only one
purpose in a program. Constants are used to represent Integer
numbers; decimal constants represent real numbers. Identifiers
must be declarec before they are used el sewhere. All SOL
coni~iands ana variables starting wi th ‘

$
‘ are reserved woras and

should not be used as identifiers.

5

~~~~ - - • - • • — -  - - -



__________________________________________  —-5-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~

4. EXPRESSIONS AND RELATIONS

<name> : : <identifjer>I<identlfjer>~(<expression> )

By vari abl e name , facility name , etc ., we will mean that the
S identifier in the name has appeared in a vari able declaration ,

• facility declaration , etc., respectively.

<primary>: :=<varlable name>I<store name> I
<constant> I <decimal constant> I TINE I
(<expression>)IABS(-<expression>)I
DISTRIBUTION ((a)x ,(b)y,...(c)z) I
NORMAL ( <expression> ,cexpression >) I
EXPONENTIAL ( <expresslon>) IPOISSON ( <express lon>) I

• GEOMETRIC( <expression> ) I RANDOM
<term>: :=<primary> kterm><prlmary>I<term>,<primary> I

MOD ( <term> , <primary> )
<sum>: :=<term>I+<term>I-.<term>I<sum>+<term>I<sum>_<term>
<unconditional expression> : :=<suni>I<aigit> :<digit>
<expression> : :=<unconditional expression> I

if <relati on> THEN (expressi on> ELSE (expression>

The meaning of an ari thmetical operation inside an
expression is identi cal to the meaning in PL/1.

• The new elements here are “MOD(a,b),” the positive remainder
obtained upon dividing a by b ; “MAX(a ,b,c,.....)” and
“MIN (a,b ,c,...),” whi ch denote the max imum and minimum val ues ,
respectively, of the expressions in parentheses; and there are
also notations for expressing random val ues. The expression
DISTRIBUTI ON ((a)x ,(b)y,...(c)z)) indicates a random selection
between i ntegers x , y, and z with the respective weights a,b, and
c.

EXAMPLE :

A=DISTRIBUTION ( (4)1,(2)2,(3)4,(9)9);

The expressions NORMAL(M ,S), POISSON (M), GEOMETRIC (M), and
EXPONENTIAL(M) i ndicate random val ues with special distributions
which occur frequently in applications. A random number drawn
from the normal distribution with mean M and standard deviation S
is denoted by NORMAL (M,S) and is a real (not flecessarily integer)
val ue. A number drawn from the exponential distribution wi th
mean M is denoted by EXPONENTIAL(M) and is al so of type real.
The poisson distribution signified by POISSON (M), on the other
hand, yields only integer val ues; e.g. the probability that
POISSON(M) = n is (e”M”/nU. The geometric aistribution with
mean M, aenoted by GEOMETIUC(M), also yields integer

6

- - - - - -~~~~~~~~~— •~~~~~~~~~~~~~ — ~~ - -~ - - •  - .~~~~ rn• - ~~~~
- -- • -- - • •  ~~~~~~~~~~~ - -~~~~~~~~~~ - - 



val ues , where the probability that (iEOMETRIC(M)=W-1 is
l/N(1—1/M). The symbol RANDOM denotes a random real number
between 0 and 1 having a uniform distribution. Finally,the
notation a:b denotes a random Integer between the limits a and b.
The normal , exponent ial , poisson , and geometric distr ibutions are
mathematically expressible in terms of random distributions as
fol l ows :

NORMAL(M,S) = S * y’~—2 ln (RANDOMI * sin(2n*RAP400M) + M

EXPONENTIAL(M) = - M ln(RANDOM)

POISSON(M) = n i f e M (1+M+M~/2!+.....+M’~~/(n_1)!)
< RANDOM < e41(1#1 + ... +M”/ffl) -

GEOMETRIC (M) = (1 + ln(RANDOM)/ln (1—1/M)).

As examples of the use of these distributions , consider a
population of customers coming to a market with an average of one
customer every M minutes. The distribution of waiting time
between successive arrival s Is EXPONENTIAL(M). On the other
hand , if an average of M customers come in per hour, the
distribution of the actual number of customers arriving in a

• given hour is POISSON (M). If an individual performs an
experim ent repeatedly wi th a chance of success, I/M, on eac h
independent trial , the number of trial s needed unti l he first
succeeds is GEOMETRIC (M).

The special syr,ibol “TIME” indicates the current time;
initially, time is zero. The val ue of a store name is the
capacity remaining in the store.

<relational operator> :: = I ~~
= I < I > I > I

<rel ation primary> : := <unconditional expression>
<relational operator> <unconditional expresslon> I
<facility name> BUSY kfaclllty name> NOT BUSY I
<store name> FULL I <store name> NOT FULL I
<store name> EMPTY I <store name> NOT EMPTY I
PROBABILITY <expression> I (<rel ation>)

<relation> : : =  <rel ation primary> $
<rel ation primary> I <relation primary> I
<rel ation primary> & <relation primary> !
~<rel ation primary>

These relations have obvious mednings except for the
construction “PROBABILITY e ,

“ which stands for a random
condition that is true wi th probability e. (Here e-must be less
than or equal to 1.)

IF PROBABILITY 0.12 THEN(12% of the time) ELSE(88% of the time). 
-

7

~ 

-



5. FACILITIES AND ASSOCIATED COI~V4ANDS

A FACILITY Is a gl obal element which can be controlled by
only one transaction at a time. Associated with each request for
the facility is a “control strength,” and if a requesting
transaction has a higher strength than the transaction
control ling the fac ility, an Interrupt will occur. Interrupts
may be nested to any depth. If the requesting transaction is not
of greater strength than the controlling transaction , then the
requesting transaction stops and waits for the facility unti l the
controlling transaction releases its control.

The fol lowing declarations and commands are associated
wi th facilities.

a. Facility Declaration

<facil ity declaration> : := FACILITY <facility name list> ;
<facility name list>::=<facility name>[,<facll ity name list>]
<facility name> : : <name>[(<constant>)]

Facil ities are declared at the beginning of the program ahead of
the processes. Facilities may be declared as one—dimensional
arrays.

EXAMPLES: FACILITY TERMINAL ;
FACILITY LINE (16);

b. SEIZE Statements

<seize statement>::= SEIZE <facility name>;I
• SEIZE <facility name> , <expression>;

The first form is equivalent to “SEIZE <facility name> , 0.” This
statement i s usually rather simple, but there are situations when
complicati ons ari se. If the facility is not busy when this
statement occurs , then it becomes busy at this poi nt and remains
busy until l ater released by this transaction. (Note : If this
transaction creates another transaction , the new transaction does
not control the facility.) The <expression> in the SEIZE
statement represents the ‘control strength” which is normally
zero. Allowance is made, however , for one transac tion to
i nterrupt another. For example, if the facility Is busy when the
sei ze statement occurs , let CS be the control strength with which
the facility was seized and let HS be the control strength of
this seize statement. If HS <= CS , the transaction executing
the SEIZE statement waits until the facility is not busy. If HS
> CS , however , interrupt occurs. The preempted transaction is
handled according to the last INTERRUPT statement it executed.
The transac tion, A , wm lch had control of the facility, Is stopped
wherever it was in its process, and the present transaction , B,
seizes the facility . When B releases the facility , the following
occurs :

B 

~~~~~~ ----—- ~~~~~--- -~~~~~


(1) If A was executing a wait statement when
interrupted, the time of wait is increasea by the time which
passed during the interrupt.

(2) There may be several transactions waiting but not
attempting to seize this tacility. If any of these has a higher
control strength than CS, then A is interrupted again. The
transaction wh icn I nterrupts is chosen by the normal rules for
deciding who obtains control of a facility upon release, as

S described in the section for the RELEASE S.rATEMENT.

The control strength in the present implementat ion of SOL
must be an integer between 0 and 15. This allows interrupts to

S

be nested up to 15 deep.

EXAMPLES:

SEIZE TERMINAL , PRIORITY CLASS ;
SEIZE LINE, 10; —

SEIZE PUMP;
SEIZE TERMINAL , 1:10; 5

SEIZE LINE , EXPONENTIAL (15);
SEIZE LINE, A*(B_C);

• c. RELEASE Statement

<release statement>::=RELEASE <facility name> ;

This statement is permitted only when the transaction is
actually controlling the facility because of a previous seizure.
When the facility is released, there may be several other
transactions waiting because of seize statements. In this case,
the one which gets control of the facility next is chosen by

-

•

consideration of the following three quantities in order:

(1) Highest control strength

(2) Highest PRIORITY

(3) First to request the facility .

EXAMPLES:

RELEASE TERMINAL ;
RELEASE LINE ;
RELEASE PUMP;

• • - -

_ _

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

d. Testing the Status of a Facility

< fac i lity status > ::z BUSY I NOT BUSY

The status of a facility can be tested for the condition BUSY
or NOT BUSY. The facility status can be used in any
compound statement as a relation primary.

EXAMPLES:

IF TERMINAL BUSY THEN CANCEL ;
IF LINE NOT BUSY THEN GO TO LOAD ;
WAIT UNTIL TERMINAL NOT BUSY;

6. STORES AND ASSOCIATED COMMANDS

STORES are space-shared rather than time-shared global
elements and they are assigned a specific storage capacity. As
long as there is sufficient storage to accommodate the requesting
transaction the request for space is satisfied; otherwise, the
transaction waits for the space. A facility may be regarded as a
store which has a capacity of one unit only, except for the fact
that no interrupt capability is provided for stores.

S The following declarations and control statements are
associated with manipulati ng stores:

a. STORE Declaration

<store declaration> ::=STQRE <store list> ;
<store list> :: <capacity> <store name> [,<store list>]
<store name> : :=  <name>[(<constant>)]
<capacity> : := <constant>

STORES are declared at the beginning of the program ahead of the
processes. STORES may be aeclared as one-aimensional arrays.

EXAMPLES : STORE 10 STACK;
STORE 512 CORE, 10 BUFFER(5);

b. ENTER Statement

<enter statement>::= ENTER <store name>;I
• ENTER <store name> , <expression>;

The first form is an abbreviation for “ENTER <store name> ,
1.” The val ue of the expression is truncated and represents the
number of uni ts requested of the store. The transaction will
remain at this statement until that number of units becomes 

•

available and unti l all other transactions of greater or equal
• priori ty which have been waiti ng for storage space have been

S serviced.

10 •

— —-—---5 ---- .~~ - ~~~~fl ~~~~p -



EXAMPLES:

ENTER STACK;
ENTER CORE, 25b;
ENTER CORE , BYTE * LENGTH ;

c. LEAVE Statement

<leave statement> ::= LEAVE <store name> ; I
LEAVE <store name> ,<expression>;

- The first form is an abbreviati on for “LEAVE <store name> , 1.”
This statement returns the number of uni ts equivalent to the
val ue of the (truncated) expression.

• EXAMPLES:

LEAVE STACK;
LEAVE CORE , 128;
LEAVE BUFFER (NODE ), LENGTH ;

d. Testing the Status of a Store

• <store status> = FULL I NOT FULL I EMPTY I NOT EMPTY;
The status of a store can be tested for the following conditions:

FULL , NOT FULL , EMPTY , NOT EMPTY.

In combination wi th other SOL or PL/I statements a variety of
compound statements may result.

EXAMPLES:

IF SW ITCH FULL THEN WAIT PAUSE;
IF SWITCH NOT FULL THEN ENTER SWITCH;

7. TRUNKS AND ASSOCIATED COMMANDS

TRUNKS are space-shared global elements similar to STORES.
However , in contrast to stores , trunks allow for preemption. As
long •as there is sufficient storage to accommodate the requesting
transac tion, the request for space is satisfied wi thout further

• action . Each transaction holding space in a trunk is assigned a
specific hol ding strength, which may be different from the

• preemption strength. Thus , a transacti on wi th a low preemption
• strength once assigned space in a trunk can have a very hi gh

holding strength ; therefore, preemption of it becomes unlikely.

11

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——~~~~~~~~~~~~~ ~~~~~~~~~~~~ — • —• ;• —~~~~~ —~~~~ -—_ • • • 2••—~~
,
~~

• a— •~ - —— • •— - — • •_ •— — • • - J



—---I’

a. TRUNK Declaration

<trunk declaration>::=TRUNK <trunk l i s t> ;
<trunk list> : : <capacity> <trunk name>[,<trunk list>]
<trunk name>::= <name>[(<ceostant>)]

TRUNKS are declared at the beginning of the program ahead of the
S processes. TRUNKS may be declared as one-dimensional arrays.

All elements of a TRUNK array assume the same capacity val ue.

EXAMPLES:

TRUNK 96 SWITCH (16);
TRUNK 1000 CORE;

b. DEMAND Statement

<demand statement>::= DEMAND <trunk name> , <capacity>,
<demand strength’, <hold strength>;

<trunk name>: := <name>N<constant>)] I<name>(<varlab i e>)

The demand statement is a request for a number of unIts of a
trunk. If the units requested are available in the trunk, they
are assigned to the transaction. Associated wi th the resource
allocation is the hol d strength specified in the demand
statement.

If the requirea number of units is not availabl e, then the
fol lowing takes place:

(1) The number of units needed through preemption Is
calculated.

(2) The sum of the space held by other transacti ons at
a hol d strength less than demand strength of the demanding
transaction is aetermined.

(3) If the total available and preemptable space is
sufficient to satisfy the demand , transactions are preempted as
required to free enough space. The demanding transaction is then
allocated the space with the associated hol d strength and
continues in sequence. Note that the Interrupted transactions
are handl ed according to the setting of their interrupt action
indicator.

(4) If there is not enough preemptable space in the
• trunk, the transaction is queued up on demand strength.

EXAMPLES:
S 

DEt,AND LINK (15), TRANSM RATE , 4, lu;
DEMAND CORE(NODE), 512, A , (A + C)/B;

• 12

• 

-
-

_____________________ ~~~~~~~~~~~~~~~~~~ -~~~a ~~~~~~~~~~~~~~~~~~~ ~~~~ • •-



_ _ _ _ _ _ _ _ _ _ _ _ _  ---~~~~~——-~~~—

c. YIELD Statement

<yield statement> : :=  YIELD <trunk name> , <capacity> ,
<hol d strength>;

<trunk name> ::= <name>E (<constant>)] I<name> (<vari able> )

The yiel d statement releases the specified number of units In
the trunk at the specified hold strength. If the number to be
released is greater than the number currently held by the
transaction at that hol d strength, the simul ation terminates with
an error..

EXAMPLES: YIELD LINES(5), 400, 10;

d. CAPACITY Function

<primary>::=CAPAC ITY (<trunk name>, <demand strength>)

The capacity function is provided to test the status of a
trunk. The capacity function returns the number of units
availabl e for a demand of the capacity of the specified demand

- •  strength. No resources are allocated and the current state of
- • the trunk is not touched. This function allows the simul ation to

interrogate the state of the trunk prior to attempting a demand
• statement upon it.

8. TRANSACTIONS AND ASSOCIATED STATEMENTS

Transactions represent aiscrete elements “flowi ng” through
the model . They are l ocal to a particul ar process and may have a
number of descriptors (local vari ables). For example, in a road

• network simulation a transaction may represent individual
vehicles. The properties of these vehicles , such as speed,
number of passengers , fuel consumption, etc., are described by
the local vari ables. Each transaction has its own set of
local variaDles. The fol lowing statements directly control the
creation, disappearance, queuing, or transfer of transactions.

a. ~jj~flon Of TransactIons., At the beginning of
simul ation there i s one transac tion present for eac h
process described. Each of these Initial transactions
starts at time zero and is positioned at the beginning of
the process. More transactions may be created by usin9 “start
statements.”

<start statement>:: NEW TRANSACTION TO <label>;

This statement, when executed, creates a new transac tion (whose
local var i ables are the same in number and val ue as those of the
transaction which created it). The new transaction begins
executing the program at l abel while the original transaction
continues in sequence.

13 

-_ •  —--5 -~~~~~~~-~~~~~~~ — ~~~~~~~~~~~~~~~~~~~ — —5-  —•• -



b. Disappea rance of Transactions. Transactions udie w when
they execute a cancel statement.

- :  <cancel statement>::=CANCEL;

An implied cancel statement Is at the end of every process, so
cancel statements need not always be explicitly
written. Transactions are also cancelled when they are preempted
anu the global variable INTERRUPT has been set to CANCEL (see
discussion of ‘Interrupt’).

c. - Queuing Of Tranj~cfl~~L~ Whenever a transaction
encounters a blocked resource such as a full store, a busy
facil ity or a full trunk, It automatically enters the queue
associated with this resource. Besides these situations the
following wait conditions may be programmed for:

(1) WAIT Statements

<wait statement>::=WAIT <expression>;

The expression is truncated , and then
this statement advances “TIME” by MAX(O ,<expression>), as far as
this transaction Is concerned. All time delays in a simul ated
process are, in the last analysis , specified by using wait
statements.

EXAMPLES :

WAIT 400;
WAIT SIMULATION TIME ;
WAIT (A + B) /C;~

(2) WAIT UNTIL Statements.

<wait—until statement>: :=WAIT UNTIL <relation>;

This causes the transaction to freeze at this point until
the <relation> becomes true (because of actiQn by other
transactions). The relation must not invol ve expressions which
have a random value ; e.g., it Is not legal to write “WAIT UNTIL
PROBABILITY 10” or “WAIT UNTIL A = 1:4 ,“ etc.

EXAMPLES:

WAIT UNTIL SWITCH EMPTY;
WAIT UNTIL TIME > SIMULATION_TIME;

14

£. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



• — — -•—--•• - - - - - -5 -— - - ——-——• --•5— • —55— •--•-m5~ .—--— 
--

_ - -• - -

d. ~~~~~~~~~~~~~~~~~
(1) GO TO Statements

<go to statement> : :=  GO TO <label>;

• This statement Is used to transfer to another point in the
program;. statements are usually executed sequentially.

(2) INTERRUPT Statement

INTERRUPT = WA IT;ICANCEL; I<label>;

INTERRUPT is a global vari able which specifies the action to
be taken for a preempted transaction. Whenever the interrupt
variable has been set, the action for all subsequent preemptions
any place within the program is specified unless the interrupt
variable is reset.

INTERRUPT = WAIT;
If the interrupted transaction is executing a WAIT statement

when i nterrupted, the wai t time i s i ncreased by the time whi ch
passed duri ng the i nterrupt. If the interrupted transaction was
executing anything other than a WAIT , the transaction i s —

• 
• cancelled. - :

INTERRUPT = CANCEL ;
The interrupted transaction is unconditionally cancel led.

(Refe r to cancel statement).
INTERRUPT = <label>;

The interrupted transaction is started immediately at the
statement specified by l abel and the transaction no longer
controls the preempted facility .

9. SPECIAL SOL STATEMENTS

a. PRIORITY Statement. If by coincidence two transactions
attempt to do something at precisely the same time, they may
be in conflict; that is , they may both want to sei ze a facility ,
to change the val ue of the same gl obal vari able , or one
may want to change it while the other is using its val ue.
Actually, in such cases of confli ct, the simulator does
choose a specific oraer for execution ; no two things actually
happen at the sanie instant , as we oeal more proper ly w ith
infinitesimal differences of time between the discrete units .
The choice of order is fairly arbitrary except when a
difference of priori ty is specified; in that case, the
transaction wi th higher priori ty (lower value) will be
acted on first. Each transaction has a priority , wh ich is• Initially zero; priori ty is changed by the statement

PRIORITY = <expression>;

15

- - • - - - - 5---- 



The declaration TMinteger PRIORITYTM is implied at the
beginning of each process; i.e., PR IORITY i s treated as a l ocal
variable. In the present impl ementation of SOL, the priority
must be between 0 and 15.

b. STOP Statement

<stop statement> : :  STOP;

A stop statement causes simul ation to terminate iimnedlately,
and all transactions cease.

c. Checkpoint - Restart

(1) The BREAKOUT Statement. For long simul ation
runs it becomes necessary to ji’ogram checkpoints to save
Intermediate results for possible later restarts. Checkpoint
data are saved whenever a BREAKOUT statement is executed.

<breakout statement> :: BREAKOUT TO <label>;

If a label is specified, the transaction executing the
breakout statement will be restarted at this label at restart
time, but will continue Its execution after a checkpoint in
regular fashion. Checkpoints are numbered sequentially and the

• simul ation may be restarted at any of them. The PARM -
•parameter in the execution card is used to specify the restart

point.

(2) The RESTART Statement. The restart statement serves
• to save val ues of vari ables not declared within the SOL syntax.

S In this way, val ues of regular PL/1 variables declared with
a P1/i declare statement may also be saved at a checkpoint.

• <restart statement> ::= RESTART <variable list> ;

The variable l ist contains only the names of PL/1 variabl~sand not the dimensions of variable arrays.

EXAMPLE:

DCL (A,B,C,D) FIXED BIN(15),
E(5) BIT (3), •

F(O:100,O:2) FLOAT DEC;

RESTART A ,B,C,D,E,F;

16



- 

- 

•

d. Collection of H1sto~rarn Data. The tabulate statement in
conjunction with the table declaration Is the vehicle for
col lecting data to be displayed in histogram format.

(1) TABLE Deci arati on 
-

• <mm > ::= <constant>
<m c> ::= <constant>
<max> : := <constant>
<table decl aration> : :=

TABLE(<min> BY <m c> TO <max> ) <table name>(<constant>);

The table Is used in conjunction wi th the TABULATE statement
to collect data for histographical representation. The histogram
can be specifiea by Its dimensions , mm , m c , max.

EXAMPLE : TABLE (0 BY 100 TO b OO ) TIMETABLE (5) ;

(2) TABULATE Statements

<tabulate statement>::TABULATE <expression> IN <table name> ;

The val ue 0f the expression is recorded as a stati stical
• observation in the table specified.

EXAMPLES: TABULATE (STARTIME—TIME ) IN DIFFTABLE ;
TABULATE TIME IN TIMETABLE ;

10. COMPOUND AND CONDITIONAL STATEMENTS

Both of those statements are legal in SQL as well as in
PL/I. Because of their relati ve importance and frequent use ,
they are listed separately.

a. Compound Statements Several statements may be combined
into one , as fol lows :

<statement list> : :=<statement’ ; [<statement list>];
<compound statement>::=BEGIN <statement list> END; (

(<statement list> )

0. Conditional Statement

<condltlon>::= IF <rel ation> THEN <statement>;I
IF <relation> THEM <unconditional statem ent> ELSE (statement> ;

17



r - - 

• 

-

III. SAMPLE MODELS

This section contains a description of nine sample model s,
including listi ngs of the source language code. Most listi ngs
are sel f-descriptive. However , a more detailed explanation has
been provided for MODEL bE.

1. MODEL 1A: Single Server Queuing Model Wi th Constant Arri val
Rate.

CARDS----
v FACILITY

INTERNAL CARD : NONBLOCKING
CARD QUEUE TRANSMITTER ----TRANSMISSION LINE >

.

PROBLEM: Punched cards are arriving at a card transmitter
station with a constant interarri val interval of 36
seconos. The transmitter can handl e only one card at a
time and needs 40 seconds to process one card. The
simu l ation is to stop after 5 minutes.

2. MODEL 1B: Single Server Queuing Model with Poisson
Di stributed Arrivals.

PROBLEM: As in Model 1A , except punched cards are a r r i v i n g
poisson distributed with an average arrival rate of 100
cards/minute.

3. MODEL 1C: Single Server Model with Parameterized Input.

PROBLEM: Same as in lB. exce pt time cons tants are to be
replaced by variables which are to be assigned values from a data
set.

4. MODEL 1D: Si ngl e Server Queuing Model with Priority

18

________________________________________ — ~~~~~~~~~~~~~~~~~~~~ —•~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~ ••~~ • • • - —
~~~

-
~

~—~ ------~ —~—~~-~~

PROBLEM: Same as In 1C , except cards are assigned
priorities between 1 and 8 on a random basis. The
transmitter Is to select cards f rom the input queue according to
its priority strength. A message is to be pri nted, when card is
received.

5. MODEL 1E: Single Server Queuing Model with Preemption.

PROBLEM : Same as in ID, except preempt level s between 1 to 4
are to be assigned randomly. The preempted messages are to be

• cancelled after a message has been printed.

6. MODEL iF: Single Server Queuing Model with External Queue

CARDS--.
V

EXTERNAL .--->. CARD ~~~~~~~ NON-BLOCKING >
CARD QUEUE . . TRANSMITTER . TRANSMISSION LINE

PROBLEM: Same as in 1E, except the STORE resource ‘QUEUE ’ i s
• used to model a physical queue ahead of the transmitter.

This QUEUE is used to monitor the queue bui ldup duri ng
the simul ation, si nce the internal queue of the facility is not
accessibl e to the user. Furthermore, a separate process
‘CONTROL ’ Is used to read in variable values and control
the length of the simul ation .

7. MODEL lii : Network hoael - 5 Moces Fully Connected, but
PIonblocking Links.

PROBLEM: Each node is modeled as a combination of a
card transmitter as described in lG and a card receiver of
a similar type. The network is fully connected and
nonbi ocking. The originating nodes and the terminating nodes are
picked at random. Each message is to be assigned an
identification number.

8. MODEL 1H: Network Model wi th Blocking Li nks.

PROBLEM: Same as In 1G except that blocking on links
• is considered. All links are to have eight channels. No

alternate routing will be considered. The connecting
matrix ‘CONN ’ provides for cross-reference between nodes
and links.

_ _ _-

l~

-5 --- _~•- •
~~~~~~~~

-
~~~~~~~~~~~~

— — 5 - ~~~ -

r -

2 3 4 5

i l O 1 2 3 U

~~~I 1  0 4 U 5

3 1 2  4 0 0 6

4 1 3  U 0 U 7

5 1 0  5 6 7 ~

9. MODEL ii: Network Model with Alternate Routing.

PROBLEM : Same as in 1H. Network has the following connectivity
(Links are numbered from 1 to 7):

1
(i ). .. . . . . . . . . . . . . . . . . . . . . . (2)

. .2 4. .

:3 :5

. .6 .

C ) . . . . . . . C )
7

The alternate routing will be of the fol l owing type:

Each node has a primary plus two alternate next nodes to
choose from for routing a message. The selecti on will simply be
based on the blocking of the links. The modeler may assume that
the routing al gorithm has been precoded as a function named
‘ROUTE ’ with two arguments representing the current node and the
destinati on node.

<variable>= ROUTE (<orig. nocle> ,<term. node>);

The funct ion wil l return the next tandem node number of the
val ue ‘0’ if blocking occurs.

20

• • - •--- - — -  A



-—

1* MOOEL1A - SINGLE SERVER QUEUING MODEL */
/* WITH UNIFORMLY DISTRIBUTED ARRIVALS ~/
FACILITY TRANSMITTER ;
PROCESS TRANSMIT , T=lO , R=1;
START: IF TIME > 3000 THEN STOP;

NEW TRANSACTION TO SEND;
WAIT 360;
GO TO START;

SEND : SEIZE TRANSMITTER ;
WAIT 400;
CANCEL;

END;

1* MODEL1B — SINGLE SERVER QUEUING MODEL ~/
/* W ITH POISSON DISTRIBUTED ARRIVALS */

• FACILITY TRANSMITTER ;
PROCESS TRANSMIT , T=b0, Ri;

• START: IF TIME > 3000 THEN STOP;
WA IT EXPONENTIAL (360);
NEW TRANSACTION TO START;
SEIZE TRANSMITTER ;
WAIT 400;
CANCEL;

END;

/* MODEL1C — SINGLE SERVER /PARAMETERIZED INPUT ~/
INTEGER SIMTIME ,INTTIME ,SERTIME;
FAC ILITY TRANSMITTER ;
PROCESS TRANSMiT, ThIO, R 1;
GET FILE(CARD) LIST (SIMTIME,INTT IME,SERTIME);
START : IF TIME > SIMTIME THEN STOP;

WAIT EXPO PIENTIAL (INTTIME);
NEW TRANSACTION TO START ;
SEIZE TRANSMITTE R;
WAIT SERTIME ;
CANCEL;

END ;

/~ MODEL1D — SINGLE SERVER WITH PRIORITY HANDLIN (~ ~/INTEGER SIMTIME ,INTTIME ,SERTIME;
FACILITY TRA NSMITTER ;
PROCESS TRAtiSMIT , T40, Ri ;
GET FILE(CARD) L IST (SIMTIME,INTTIME ,SERTI IIE);
START: IF TIME > SIMTIt4E THEN STOP;

WAIT EXPONENTIAL(INTTIME);
NEW TRANSACTIO N Tu START;
PRIORITY = 1:8;
PLIBEGIN ;
PUT EDIT (‘CARD RECEIVED AT ‘ ,TIME)(A(i7),F(6)) SKIP;
PLIEND ;
SEIZE TRANSM ITTER ;
WAIT SERTIME ;
CANCEL ;

END ;

21

______________________________________________ •

4 ~~~~~~~~~ ~~~— —



10 /* MOOEL1E — SINGLE SERVER QUEUING MODEL */
20 /* WITH PREEMPTION */
30 INTEGER SIMTIME ,INTTIME ,SERTIME ;
40 FACILITY TRANSMITTER ;
50 PROCESS TRANSMIT, T=iO, R=1;
60 INTEGER STRENGTH;
70 GET FILE(CARD) LIST(SIMTIME ,INTTIME,SERTIME);
80 INTERRUPT = FINISH;
90 START: IF TIME > SIMTIME THEN STOP;
100 WAIT EXPONENTIAL(INTTIME);
110 NEW TRANSACTION TO START;
120 PRIORITY = 1:8;
130 STRENGTH = 1:4;
140 PLIBEGIN;
150 PUT EDIT (‘CARD RECEIVED AT ‘,TIME)(A(17) ,F(6)) SKIP;
160 PLIEND ;
170 SEIZE TRANSMITTER ,STRENGTH;
180 WAIT SERTIME ;
190 CANCEL;
200 FINISH :
210 PLIBEGIN;• 220 PUT EDIT(’PREEMPTION OCCURRED AT ‘,TIME) (A(23),F(6)) SKIP; S

230 PLIEND;
240 CANCEL;
250 END ;

EXPLANATION TO MODEL 1E. CODE

STATEMENTS 10, 20. 1* MODEL IE - SINGLE SERVER QUEUING MODEL*/
WITH PREEMPTION

The fi rst two statements contain explanatory text. Since i t
is bracketted wi th /* • . . . *1 it will be ignored by the
translator.

STATEMENT 30. INTEGER SIMTIME , IPITTI t4E, SERTIME ;

This statement declares the gl obal variables SIMTIME ,
INTTIME , and SERTIME. Within the model these variables will
assume the fol l owing meaning.

SIMTIME = Simu l at ion time, the time after which the
simulation is to oe terminated.

INTTIME = Interarri val time for transactions.

• SERTIME = Server time , the time a transaction will !eize a
facility until it is served.

22

~~~~~


r • •

~
- —

STATEMENT 40. FACILITY TRANSMITTER ;

This statement declares one nonsubscribed facility with the
name TRANSMITTER.

STATEMENT 50. PROCESS TRANSMIT, T=1O, R=1;

This statement declares the process with the name TRANSMIT.
T=10 specifies that not more than 10 transactions will be active
at any one time during the simulation. An active transaction is
a transaction which has been created and not yet cancel led.

R=1 specifies that no transaction will use more than one
resource. During model checkout , these parameters should be kept

•
to a minimum to optimize core utilization .

• STATEMENT 60. INTEGER STRENGTH;

This statement declares STRENGTH as a local variable within
the process.

STATEMENT 70. GET FILE (CARD) LIST(SIMTIME , INTTIME, SERTIME);

This statement is a PL/1 statement which has been inserted
into the SOL route to read the f i le named ‘CARD ’ and ass ign the
fi rst three numerical val ues to the global variables SIMTIME,
INTTIME , SERTIME.

STATEMENT 80. INTE~RIIPT = FINISH;

This
S
statement specifies that any preempted transacticn is

to be sent to Label ‘FINISH ’.

STATEMENT 90. START: IF TIME > SIMTIME THEN STOP;

This compound statement, identified by the l abel ‘START ’,
tests the global variabl e SIMTIME agai nst the built—in global
variable TIME. TIME is a reserved word wi thin SOL and represents
the current time of the simul ation. If TIME exceeds the val ue
for SIMTIME , the simulation will be terminated , as specified by
the STOP statement.

STATEMENT 100. WAIT EXPONENTIAL(INTTIME);

This statement specifies that the transaction is to be
placed into the wait queue for the time specified by the bui l t—
In function EXP . Tne EXP function will sample a val ue from an
exponential distri bution wi th the average val ue INTTIME.

23

- • ~~ .4

r ~~~~~~~
_ _ _ _ _ _ _ _ _ _ _ _

STATEMENT 110. NEW TRANSACTION TO START;

This statement specifies that a new transaction with the
same local variables Is to be created and to be sent to the label
‘START ’. The original transaction will continue to run until It
encounters a wait status. Then the new transaction will start
executing.

STATEMENT 120. PRIORITY 1:8;

This statement assigns a random integer between 1 and 8 to
the built—in local variable ‘PRIORITY ’. The local variable
PRIORITY is used by the system to resolve any conflicts between
transactions requiring the same action at the same time. In this
case , it wi ll control the seizing of the facility TRANSMITTER by
transactions which have entered a queue because the facility was
busy.

STATEMENT 130. STRENGTH = 1:4;

This statement assigns an integer value between 1 and 4
• to the local variable STRENGTH.

STATEMENTS 140 to 160. PLIBEGIN; PUT EDIT (‘CARD RECEIVED AT’,
TIME) (A(17), F(b)) SKIP; PLIEND;

These three statements represent a PL/1 block which
was Inserted to send a message to the SYSPRINT f lie. The PL/1
PUT statement has been bracketed by PLIBEGIN and PLIEND. In this
way the enti re PL/I block is bypassed by the translator and
the associated text Inserted unaltered.

STATEMENT 170. SEIZE TRANSMITTER , STRENGTH ;

One of the fol lowing actions takes place:

a. If the facility TRANSMITTER Is not busy, the transaction
simply seizes the facility and marks it busy. An entry is placed
Into the log file.

b. If the facility is busy with a transaction of holding
strength equal to or higher than the local varIable STRENGTH
of the calling transaction , the calling transactIon enters
the wait queue for this facility.

c. If the facility is busy with a transaction of lower
holding strength, this transaction Is preempted and sent to the
action l abel FINISH as specifIed In the INTERRUPT statement.

24

-5- _rn - --.- ~-- •--
_
~--- -~ 5— ~~

_ - • - I~~~J_ r~55__ • _ •—
~~~~~~~~~~~



. 5-— - —--------- •5----~ -.~~~~.

STATEI’~ENT 180. WAIT SERTIME ;

The transaction encountering this statement will enter the
wait queue for the period specifiea by the value of SERTIME. The
next transaction in the time queue will then start executing.

STATEMENT 190. CANCEL;

• This statement will cause all resources the transaction is
using to be freed and the transaction to be deactivated.
Corresponding entries are maae in the log file.

-
• STATEMENT 200. FINISH ;

This is a simple l abel statement that has been specified as
the action l abel for an i nterrupt.

STATEMENTS 210 to 230. PLIBEGIN ; PUT EDIT (‘PREEMPTION OCCURRED
AT’,TIME) (A(23), F(6 )) SKIP; PLIEND;

These three statements represent a PL/I block, similar to
statements 140 to 160, whi ch will cause a message to be sent to
the SYSPRINT file whenever a transaction is preempted.

STATEMENT 240. CANCEL;

This statement will deactivate the transaction.

STATEMENT 250. END;

The END statement identifies the en i of the process and is
ignored by the transactions.

25

______ _____ • . • _ _ _ —•--—~~~~~ -

-5 5-— -5-~~~ - ~~~ -— 5-— 5--~~ 
— ——-

~~~~~~~~~~~~~ • — •.•
~~~~~ —~ - • -,~ •_~



/~ MODEL1F — SINGLE SERVER QUEUING MODEL *1
1* WITH EXTERNAL QUEUE
INTEGER SIMTIME, INTTIME ,SERTIME ;
FACILITY TRANSMITTER ;
STORE 1000 QUEUE;
PROCESS CONTROL ,T=1 ,RU;
GET F ILE(CARD) LIST(SIMTIME,INTTIME,SERTIME);
WAIT SIMTIME ;
STOP;
END;
PROCESS TRANSMIT , T=1O , R=2;
INTEGER STRENGTH ;
INTERRUPT = FINISH;
START;

WAIT EXPONENTIAL(INTT IME);
NEW TRANSACTION TO START;
PRIOR ITY = 1:8;
STRENGTH = 1:4;
PUT EDIT (‘ CARD RECEIVED AT ‘ ,TIME)(A(17),F(6)) SKIP;
ENTER QUEUE;
SEIZE TRANSMITTER , STRENGTH ;
WAIT SERTIME ;
CANCEL;

FINISH: PUT EDIT (’PREEMPTION OCCURRED AT ‘,TIME ) (A (23 ) ,F(6 )) SKIP;
CANCEL;
END;

1* MODEL1G — SINGLE SERVER QUEUING MODEL WITH EXTERNAL QUEUE */
INTEGER SIMTIME, INTTIME,SERTIME ;
FACILITY TRANSMITTER (S) ,RECEIVER (5);
STORE 1OuO SENDQUEUE(5), 1000 RECEIVEQUEUE (5) ;
PROCESS CONTROL , T=1, R0;
GET FILE(CAR D) LIST(SIMTIME ,INTTIME ,SERTIME);
WAIT SIMTIME ;
STOP;
END;
PROCESS TRANSMIT , T=10, R=4;
INTEGER STRENGTH ,ORIG ,DEST ,NUMBER;
INTERRUPT = FINISH ;
NUMBER =0;
START;

WAIT IEX PONENTIAL( INTTIME);
NEW TRANSACTION TO START;
NUMBER = NUMBER+1;
PRIORITY = 1:8;
STRENGTH = 1 :4;
ORIG = 1 :  5;
DEST = 1 : 5;

PLIBEGIN;
PUT EDIT (‘CARD ‘,NUMBER,’ RECEIVED AT NODE ,ORIG,
• AT TIME ‘,TTIME) (A(5),F(4),A(18) ,F(2),A(9) ,F(6)) SKIP;

PLIEND ;
ENTER SENDQUEUE(ORIG)

26



SEIZE TRANSMITTER (ORIG) ,STRENGTH;
ENTER RECE1VEQUELJE(DEST);
SEIZE RECEIVER(DEST ),STRENGTH;
WAIT SERTIME ;
CANCEL;

FINISH;
PLIBEGIN;

PUT EDIT( ’CARD ‘ ,NUMBER,’ PREEMPTED AT TIME ‘ITIME)
(A(5),F(4) ,A(19),F(6)) SKIP;

PLIEND;
CANCEL;
END;

• INPUT PARAMETER LIST FOR STATISTICS. SOL.DATA(STATIN)

NO
0,

NO
NO

CLASS(Z) OUTPUT OF STATISTICS STEP ‘SOL(S)’ FOR MODEL1G

NAME OF FACILITY TIME FRACTION OF TIME IN USE
TRANSMITTER ( 1) 20866 0.0958
TRANSMITTER ( 2) 20866 0.1114
TRANSMITTER ( 3) 20866 0.1534
TRANSMITTER C 4) 20866 0.1342
TRANSMITTER ( 5) 20866 0.2210

RECEIVER ( 1) 20866 0.1725
RECEIVER C 2) 20866 0.1279
RECEIVER ( 3) 20866 0.0958
RECEIVER ( 4) 20866 0.1150
RECEIVER ( 5) 20866 0.1725

NAME OF STORE TIME CAPCTY MAX USD TOTAL OCCP AVG UTL
SENDQUEUE C 1) 20866 1000 1 2000 0.0001
SENDQUEUE C 2) 2u866 1000 2 2324 0.0001
SENDQUEUE C 3) 20866 1000 1 3200 0.0002
SENO QUEUE C 4) 20866 1000 1 280u 0.0001
SENDQUEUE C 5) ~u866 1uuU 2 4933 u.0002

RECEIVEQUEUE( 1) 20866 1000 2 3655 0.0002
RECEIVEQUEUE( 2) 20866 1000 1 2669 0.0001
RECEIVEQUEUE ( 3) 20866 1000 1 2000 0.0001
RECEIVEQUEUE( 4) 208b6 1000 1 2400 0.0001
RECEIVEQUF’IE( 5) 20866 1000 2 4222 0.0002

27 

- _ _ _ _ _ _ _



— - —v— .- 5- 5- 

- 
—

CLASS (Y) OUTPUT OF MODEL1G

CARD 1 RECEIVED AT NODE 1 AT TIME 470
CARD 1 RECEIVED AT NODE 3 AT TIME 716
CARD 1 RECEIVED AT NODE 5 AT TIME 962
CARD 1 RECEIVED AT NODE 5 AT TIME 1051
CARD 1 RECEIVED AT NODE 2 AT TIME 1185

S CARD 1 RECEIVED AT NODE 4 AT TIME 1525
CARD 1 RECEIVED AT NODE 4 AT TIME 2261
CARD 1 RECEIVED AT NODE 5 AT TIME 3501
CARD 1 RECEIVED AT NODE 4 AT TIME 3855
CARD 1 RECEIVED AT NODE 3 AT TIME 4066
CARD 1 RECEIVED AT NODE 1 AT TIME 4601
CARD 1 RECEIVED AT NODE 3 AT TIME 5137
CARD 1 RECEIVED AT NODE 3 AT TIME 5987
CARD 1 RECEIVED AT NODE 5 AT TIME 6319
CARD 1 RECEIVED AT NODE 3 AT TIME 6869
CARD 1 RECEIVED AT NODE 5 AT TIME 7065
CARD 1 RECEIVED AT NODE 5 AT TIME 9217
CAR D 1 RECEIVED AT NODE 2 AT TIME 9835
CARD 1 RECEIVED AT NODE 5 AT TIME 9957
CARD 1 RECEIVED AT NODE 2 AT TIME 10104
CAR D 1 RECEIVED AT NODE 3 AT TIME 10282
CARD 1 RECEIVED AT NODE 3 AT TIME 11004
CARD 1 RECEIVED AT NODE 2 AT TIME 11465
CARD 1 RECEIVED AT NODE 4 AT TIME 12102
CARD 1 RECEIVED AT NODE 2 AT TIME 12447
CARD 1 RECEIVED AT NODE 1 AT TIME 13239
CARD 1 RECEIVED AT NODE I AT TiME 14493
CARD 1 RECEIVED AT NODE 4 AT TIME 14932
CARD 1 RECEIVED AT NODE 5 AT TIME 14933
CARD 1 RECEIVED AT NODE 4 AT TIME 15340
CARD 1 RECEIVED AT NODE 3 AT TIME 15512
CARD 1 RECEIVED AT NODE 4 AT TIME 16097
CARD 1 RECEIVED AT NODE 5 AT TIME 16307
SIMULATION TERMINATED - I/O ERROR

CONTENTS OF FILE SOL.DATA(GOIN ): 2000, 500, 400

28

-— — . — —-5 ~~~~~t=_-~~ 
_

•— • - • _- ~~~~~~~~~~~ —• . —,-.--—~~—~ — _ _~~ 5- • • — — 

j S



- - 5- - • —

1* MODELIH - 5-NODE FULLY CONNECTED NETWOR K WITH BLOCKED LINKS */
INTEGER SIMTIME ,INTTIME ,SERTIME ,NUM;

• PLIBEGIN;
DCL CONN(5 ,5) FIXED BIN(31);
PLIEND ;
FACILITY TRANSMITTER (S) ,RECEIVER(5);
STORE boo SENDQUEUE(5), 1u0O RECEIVEQUEUE(5), 8 LIP4K(10);
PROCESS CONTROL , 1=1, R0;
GET FILE(CARD) LIST (SIMTIME,INTTIME,SERTII4E,CONN);
WAIT SIMT IME;
STOP;
END;
PROCESS TRANSMIT , T=50, R=5;
INTEGER STRENGTH ,ORIG,DEST ,NUMBER;
INTERRUPT = FINISH;
NUM=O;

START :
WAIT EXPONENTIAL ( INTTIME);
NEW TRANSACTION TO START ;
NUMBER,NUM = NLJM+1;
PRIORITY = 1:8;
STRENGTH = 1:4;
ORIG = 1 : 5;

RET: DEST = 1 : 5;
- IF DEST = ORI(1 THEN GO TO RET;

PUT EDIT (‘CARD ‘ ,NUMBER ,’ RECEIVED AT NODE ‘,ORIG,’ AT TIME ‘
,

TIME ‘
, TO ‘,DEST) (A(5),F(4),A(18),F(2),A(9),F(6),A(5),F(2)) SKIP;
ENTER SENDQUE LJE (OR lii);
SEIZE TRANSMITTU~(ORIG) ,STRENGTH;
ENTER LINK (CONN (ORIG ,DEST));
ENTER RECEIVEQUEUE (DEST);
SEIZE RECEIVER (DEST) ,STRENt.iTH ;
WAIT SERTIME ;

CANCEL;
FINISH: PUT EDIT (’CARD ‘ ,NUMBER ,’ PREEMPTED AT TIME ‘,TIME)

(A(5),F(4),A (19),F(6)) SKIP;
CANCEL;
END;

• Inpu t Dataset SOL.DATA(GOIN):

• 20000,100,500,
0,1,2,3,4,
1,0,5,6 ,7,
2 ,5~ 0 ,8,9 ,

• 3,6,8,U,lu,
S 4,7,9,1O,u,

29

— 5- •~~~



BIBLIOGRAPHY

1. D. E. Knuth and J. L. McNeley, “SOL - A Symbolic
Language for General Purpose Systems Simulation ,“

IEEE Transactions on Electronic Computers, IC-13,
No. 5 (Aug 1964) pp 401-408.

2. R&D Technical Report ECOM-3U85 (AD-85O159L), “MALLARD
Traffic Simulation, Results and Analysis , Final Report ,”
James A. Armstrong and Horst E. Ulfers , Feb 1969.

3. J. Armstrong, H. Ulfers, 0. Miller H. Page, NSOLPASS -
• A Simul ation Oriented Language Progranmiing and Simul ation

System,” Proceedings of the Third Conference on
Applications of SImulat ion , Dec 1969k

4. R&D Technical Report ECON-0043-F , “SOL Compiler Design,”
H.C. Page, D.J. Miller (Patterson & Smith m c), Feb 1968.

5. Horst E. Ul fers, “PACKNET - A Packet Switch Network
Simulator,” Proceedings of the 1975 ICC , June 1975.

6. C. G. Guffee and H. E. Ulfers , “SOL-370,” Proceedings
of the 1975 Summer Computer Simul ation Conference,
Jul y 1975, pp 1—11.

7. DCEC TN 10—78, “SOL—370 User’s Guide,” Horst E. Ul fers,
July 1978.

_ _ _ _ _ _ _ _  - -5



• •

H

DISTRIBUTION LIST

STANDARD:

R100-2 R200-1
R102/R1O3/R1u3R - 1 R300 - 1
R1O 2M - 1 R400-1
R1O2T - 9 R500 - 1
R104-1 R700-1
R i b — i  R800-1
R123 — 1 NCS—TS - 1 

• 

-•

• R 124A-1

205 — 20

DCA-EUR - 1 (Defense Communications Agency European Area
ATTN : Technical Di rector
APO New York 09131)

OCA-PAC - 1 (Defense Communications Agency Pacific Area 
S

ATIN: Technical Di rector
Wheel er AFB , HI 96854)

USDCFO - 1 (Ch ief , USDCFO/US NATO 
- •- 

APO New York 09667)

SPECIAL: •

R830 - boO

L 

— _____________________________________ _______________________________ ——

• —-----5--..-—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


