AD-A065 352

SOL=370 LANGUAGE REFERENCE MANUAL. (U)

SEP 78 H ULFERS
DCEC=TN=11-~78

UNCLASSIFIED
| oF |

DEFENSE COMMUNICATIONS ENGINEERING CENTER RESTON VA

SBIE=-AD=-EL100 172

F/G6 9/2

END

DATE
FILMED

4 -79.

LTS

NL

" 55 —4'
-

ADAQ 65352

U0 FILE coPg

TN 11-78

»

¥

DEFENSE COMMUNICATIONS ENGINEERING CENTER

\Wm

TECHNICAL NOTE NO. 11-78

ez,

SOL-370 LANGUAGE
REFERENCE MANUAL

SEPTEMBER 1978

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

“9 02 16 0149

po s

AN TR

UNCLASSIFIED _ June 1978

SECURITY CLASSIF:CATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

L

[{. TYPE OF REPORT & PERIOD COVERED

‘Technical ote

6. PERFORMING ORG REPORT NUMBER

£%JE§QL-37O Language Reference Manual, ;

7. AUTHOR(s) Ay il . 8. CONTRACT OR GRANT NUMBER(s)

H. Ulfers (;-\{/ lonst /uLi§er } /// .._,;, 7

-

e e ar te Shsna oo e

9. PERFORMING ORGANIZATION NAME AND ADDRESS / 10. PROGRAM ELEMENT, PROJECT, TASK
Defense Communications Engineering Center BEARMORIC UNIT-NUMBERS
Computer Systems Division, R800
1860 Wiehle Ave., Reston, VA 22090 N/A
11. CONTROLLING OFFICE NAME AND ADDRESS . RE N

; - Sy 78
Same as 9 <EE/ GES

4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)

NA ([1%); (o O /) U) =¥ ff /’Q\UNCLASSIFIED
\ . 3 [75a. DECL ASSIFICATION/ DOWNGRADING
i N SCHEDULE N/A

16. DISTRIBUTION STATEMENT (of this Report)

A. Approved for public release; distribution unlimited.

H *7. DISTR:BUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

N/A

18. SUPPLEMENTARY NOTES

Review relevance 5 years from submission date.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
SOL-370 Language

SOL Model

Arithmetic Language

Syntax Description

Simulation

20. ABSTRACT (Continue on reverse aide If necessary and identify by block number)

This document describes the SOL-370 algorithmic language, which is used to con-
struct general systems models for simulation. After the language syntax is des-
cribed, several sample models are given. This document replaces DCEC TN 25-75,
on the same subject. & J ¥ ,

FORM
DD ,an 7 1473 K eoition or 1 nov 65 1S OBSOLETE UNCLASSIFIED
O : 7 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

—— -

LT P e

e adaa) e e o

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

.

PN ——

SECURITY CLASSIFICATION OF THI5S PAGE(When Data Enternd

M—u‘ . e i b A RS

£

A SO ET

TECHNICAL NOTE NO. 11-78

SOoL-370
LANGUAGE REFERENCE MANUAL

Sept 1978

Prepared by:

Horst Ulfers

for Publication:
25 B éés AN—

Chief, Computer

stems Division

FOREWORD

The Defense Communications Engineering Center (DCEC)
Technical Notes (TN's) are published to inform interested members
of the defense community regarding technical activities of the
Center, completed and in progress. They are intended to stimulate
thinking and encourage information exchange; but they do not
represent an approved position or policy of DCEC, ana should not
be used as authoritative guidance for relatea planning and/or
further action.

Comments or technical inquiries concerning this document are
welcome, and should be directed to:

Director

Defense Communications Engineering Center
186U Wiehle Avenue

Reston, Virginia, 22090

ii

B e — U ——

TABLE OF CONTENTS

R ER Ty

p———

I. . INTRODUCTION
II. SOL SYNTAX
1. The Syntax Notation
. 2. The Model Structure

3. Identifiers and Constants

4. Expressions and Relations

5. Facilities and Associated Commands
6. Stores and Associated Commands

7. Trunks and Associated Commands

3 8. Transactions and Associated Commands
9. Special SOL Statements

1. Compound and Conditional Statements

s

III. SAMPLE MODELS

BIBLIOGRAPHY

iii

TR EN O e

A A o

Page
1

@@ o " a2 NN

10
11

15
17

18

30

b O B ARSI o AN VI ¥ G NN AN 1 SR o s

I. INTRODUCTION

This manual replaces TN 25-75, SOL-370 Language Reference
Manual and Users' Guide. The syntax description in this document
reflects the latest updates as implemented in SOL-37V Rel. 6/78.

SOL-370 is a dialect of the SOL-simulation language as
developed by Knuth and McNeley* . The original SOL language has
been extended to accomodate algorithms essential for the
simulation of communications networks and systems. Furthermore,
SOL-370 has been implemented as an extension of the PL/I
language. This allows for a free intermixing of SOL-370 and PL/I
language statements.

SOL-370 is an algorithmic language used to construct models
of general systems for simulation in a readable form. The model
builder describes his model in terms of PROCESSES whose number
and detail are completely arbitrary and definable within the
constraints of the language elements. A SOL model consists of a
number of statements and declarations which have a character
similar to that found in programming languages such as PL/I and
ALGOL . '

The model is not built to be executed in a sequential
fashion, as ordinary programming languages require. Rather, the
processes are written and executed as though all were running in
parallel. Control among processes is maintained by the
interaction of GLOBAL ENTITIES ana by control and communications
instructions within the different processes. At the initiation
of the simulation all processes are begun simul taneously.

Variables declared within a process are called LOCAL
VARIABLES. Within a given process it is possible to have several
actions occurring at once; therefore, to visualize the process,
we may think of several objects on which the action takes place,
each in 1its own place in the process at any given time. These
objects will be referred to as TRANSACTIONS. A set of Tlocal
variables corresponding in number to those declared in the
process is "carried with" each transaction of that process.
Transactions situated within one process may not refer to the
local variables of another process nor to the local variables of
another transaction in the same process.

GLOBAL ENTITIES are of four major types: GLOBAL VARIABLES,
FACILITIES, STORES, and TRUNKS. Global variables can be
referenced or changed by any transaction from any process in the
system, and the variable possesses only one value at any given
time.

* D. E. Knuth ana J. L. McNeley, "A Formal Definition of
SOL," IEEE Transactions on Electronic Computers, EC-13
No. 5 (Aug 1904) pp 4uy-414

BEEPOP 7 S RN R

Ll Sl) 4o

II. SOL SYNTAX

1. THE SYNTAX NOTATION

The Backus Normal Form (BNF) is used to describe the syntax
of the SOL language. The following rules explain the use of this
notation.

a. The Notation Variable. A Notation Variable is the name
for a class of elements used in a programming language. It
consists of 1letters and hyphens and is enclosed in "less than"
and “"greater than" symbols.

EXAMPLES :

<digit> This denotes the occurrence of a digit, which may
assume a value within the range of 0 through 9.

<facility name> This denotes the occurrence of a Notation
Variable of the class Facility Name.

<do statement> This denotes the occurrence of a DO
statement.

b. The Notation Constant. A Notation Constant is the
literal occurance of a string of characters. It is represented
in capital letters.

Example:

STORE This genotes the literal occurrence of the word
"STORE".

c. The Syntactical Unit. A Syntactical Unit is defined
as a single variable, a constant, or any collection of notation

variables, notation constants, and syntax language symbols. The
vertical stroke "|" separating two Syntactical Units indicates a
choice, which can be made between the two. Anything enclosed in
brackets denotes an option. The syntax within the brackets may
be used or left out.

EXAMPLES:

<identifier> FIXED|FLOAT This denotes an identifier which
may have the attribute FIXED or
FLOAT.

<identifier>[(<constant>)] This denotes an identifier which
may optionally be subscripted by
a number.

d. General Format. The syntax statement is composed of
a notation variable separated from the following syntactical unit
by the definition symbol "::=" ,

EXAMPLE:
<go to statement> ::= GO TO <label>;

et AT W £ SRS =<

2. THE MODEL STRUCTURE

When coding a SOL model the format below should be followed:
<global variable declarations> :
<resource declarations> GLOBAL DECLARATIONS
<table declarations>

<process declaration>

<process statements> FIRST PROCESS
<end statement> > MODEL
<process declaration>

<process statements> SECOND PROCESS
<end statement>

<end statement>

First, all global declarations should be listed. The order
of the global declarations is arbitrary. The oraer in which
processes are listed should be selected carefully, since the
first process will be started first and if any values are read
for global variable initialization, this should be done in the
first process. The program should be followed by an END
statement. If not included, the system will provide this
statement.

a. Process Declaration

<process description>::=PROCESS <identifier>
[,T=<constant>] [,R=<constant>];

Each process is bracketed with the process declaration and
an END statement. The two optional parameters allow the modeler
to specify the maximum number of simultaneous transactions T and
the maximum number of resources R (facilities, stores, and
trunks) encountered by any one transaction. This feature is
important in optimizing the model's core requirements.

EXAMPLE :

PROCESS SWITCH, T=1lul, R=4;

et L

b. Variable Declaration. Variables are declared either at
the beginning of the program outside the processes as GLOBAL
VARIABLES, or at the beginning of each process as LOCAL
VARIABLES.

<global variable declaration>:=<variable declaration>

<variable declaration>:=INTEGER <identifier list> ;
| REAL <identifier list>;

When dzclared INTEGER, their internal representation will be
fi;ea’binary; when declared REAL, floating decimal.

EXAMPLES:
INTEGER A, B, C, D;
REAL X, Y, Z;

INTEGER AR(16);
INTEGER BAR(0:1006);

c. Resource Declarations

<resource declaration> ::= <facility declaration>;
| <store declaration>;
|

<trunk declaration>;

A1l resources must be declared ahead of the process declarations.
For details see the discussion for the specific resource.

3. IDENTIFIERS AND CONSTANTS

<letter>::=A|B|CID|...|Z
<digit>::=0[1]2]3]...19
<constant>::=<constant>|<decimal constant>
<constant>::=<digit>
<time>::= - | +
<decimal constant>::=<constant>.<constant>[E<sign><constant>]
<identifier>::=<letter>|<identifier><letter>|
<letter><digit>

Specific identifiers are usea as the names of global
variables, resources, statistical tables, processes, and
procedures. A specitic identifier can be used for only one
purpose in a program. Constants are used to represent integer
numbers; decimal constants represent real numbers. Identifiers
must be declareac before they are used elsewhere. All SOL
commands ana variables starting with '$' are reserved woras and
should not be used as identifiers.

R

4. EXPRESSIONS AND RELATIONS
<name>::=<identifier>|<identifier>!{<expression>)

By variable name, facility name, etc., we will mean that the
identifier in the name has appeared in a variable declaration,
facility declaration, etc., respectively.

<primary>::=<variable name>|<store name>|
<constant>|<decimal constant>|TIME|
(<expression>) |ABS(<expression>)|
DISTRIBUTION((a)x,(b)y,...(c)z)|
NORMAL (<expression>,<expression>)| -
EXPONENTIAL (<expression>) |POISSON(<expression>)|
GEOMETRIC(<expression>) |RANDOM
<term>::=<primary>|<term><primary>|<term>,<primary> |
MOD (<term>,<primary>)
<sum>: :=<term>|+<term>|-<term>| <sum>+<term> | <sum>-<term>
<unconditional expression>::=<sum>|<digit>:<digit>
<expression>::=<unconditional expression> |
if <relation> THEN <expression> ELSE <expression>

The meaning of an arithmetical operation inside an
expression is identical to the meaning in PL/1.

The new elements here are "MOD(a,b)," the positive remainder
obtained upon dividing a by b ; "MAX(a,b,C,.....)" and
"MIN(a,b,c,...)," which denote the maximum and minimum values,
respectively, of the expressions in parentheses; and there are
also notations for expressing random values. The expression
DISTRIBUTION ((a)x,{b)y,...(c)z)) indicates a random selection
between integers x, y, and z with the respective weights a,b, and

EXAMPLE :

A=DISTRIBUTION((4)1,(2)2,(3)4,(9)9);

The expressions NORMAL(M,S), POISSOW(M), GEOMETRIC(M), and
EXPONENTIAL(M) indicate random values with special distributions
which occur frequently in applications. A random number drawn
from the normal distribution with mean M and standard deviation S
is denoted by NORMAL(M,S) and is a real (not necessarily integer)
value. A number drawn from the exponential distribution with
mean M is denoted by EXPONENTIAL(M) and is also of type real.
The poisson distribution signified by POISSON (M), on the other
hand, yields only integer values; e.g. the probability that
POISSON(M) = n 1is (e™M"/n!). The geometric aistribution with
mean M, aenoted by GEUMETRIC(M), also yields integer

— - ‘ ‘"*ﬂm____——i=============mmaaﬂm--'-—_r‘

values, where the probability that GEOMETRIC(M)=N-1 s
1/M(1-1/M). The symbol RANDOM denotes a random real number
between 0 and ! having a uniform distribution. Finally,the
notation a:b denotes a random integer between the limits a and b.
The normal, exponential, poisson, and geometric distributions are
mathematically expressible in terms of random distributions as
follows:

NORMAL(M,S) = S * v =Z Tn(RANDOM] * sin(2n*RANDOM) + M
EXPONENTIAL(M) = - M 1n(RANDOM)

POISSON(M) = n if e"™M(1+4eM¥/21+.....+M" ' /(n-1)1)
<= RANDOM < e™(1#M + ... +M"n!)

GEOMETRIC(M) = (1 + 1n(RANDOM)/In(1-1/M)).

As examples of the use of these distributions, consider a
population of customers coming to a market with an average of one
customer every M minutes. The distribution of waiting time
between successive arrivals 1is EXPONENTIAL(M). On the other
hand, if an average of M customers come in per hour, the
distribution of the actual number of customers arriving in a
given hour 1is POISSON(M). If an individual performs an 3
experiment repeatedly with a chance of success, I/M, on each
independent trial, the number of trials needed until he first
succeeds is GEOMETRIC(M).

The special symbol “TIME" indicates the current time;
initially, time is zero. The value of a store name is the
capacity remaining in the store.

<relational operator> ::= = | %= | <= | >= | > [<

<relation primary>::= <unconditional expression>
<relational operator> <unconditional expression>|
<facility name> BUSY |<facility name> NOT BUSY |
<store name> FULL | <store name> NOT FULL |
<store name> EMPTY | <store name> NOT EMPTY |
PROBABILITY <expression> | (<relation>)

<relation> ::= <relation primary>|
<relation primary> | <relation primary>|
<relation primary> & <relation primary>|
™<relation primary>

These relations have obvious meanings except for the

“construction "PROBABILITY e ," which stands for a random

condition that is true with probability e. (Here e must be less
than or equal to 1.)

IF PROBABILITY 0.12 THEN(12% of the time) ELSE(88% of the time).

5. FACILITIES AND ASSOCIATED COMMANDS

A FACILITY is a global element which can be controlled by
only one transaction at a time. Associated with each request for
the facility is a "control strength," and if a requesting
transaction has a higher strength than the transaction
controlling the facility, an interrupt will occur. Interrupts
may be nested to any depth. If the requesting transaction is not
of greater strength than the controlling transaction, then the
requesting transaction stops and waits for the facility until the
controlling transaction releases its control.

The following declarations and commands are associated
with facilities.

a. Facility Declaration

<facility declaration> ::= FACILITY <facility name list>;
<facility name list>::=<facility name>[,<facility name 1ist>]
<facility name>::= <name>[(<constant>)]

Facilities are declared at the beginning of the program ahead of
the processes. Facilities may be declared as one-dimensional
arrays.

EXAMPLES: FACILITY TERMINAL;
FACILITY LINE (16);

b. SEIZE Statements

<seize statement>::= SEIZE <facility name>;|
SEIZE <facility name>, <expression>;

The first form is equivalent to "SEIZE <facility name>, 0." This
statement is usually rather simple, but there are situations when
complications arise. If the facility is not busy when this
statement occurs, then it becomes busy at this point and remains
busy until later released by this transaction. (Note: If this
transaction creates another transaction, the new transaction does
not control the facility.) The <expression> in the SEIZE
statement represents the “control strength" which is normally
zero. Allowance is made, however, for one transaction to
interrupt another. For example, if the facility is busy when the
seize statement occurs, let CS be the control strength with which
the facility was seized and let HS be the control strength of
this seize statement. If HS <= CS , the transaction executing
the SEIZE statement waits until the facility is not busy. If HS
> CS , however, interrupt occurs. The preempted transaction is
handled according to the last INTERRUPT statement it executed.
The transaction, A, wiiich had control of the facility, is stopped
wherever it was in its process, and the present transaction, B,
seizes the facility. When B releases the facility, the following
occurs:

(1) If A was executing a wait statement when
interrupted, the time of wait is increasea by the time which
passed during the interrupt.

(2) There may be several transactions waiting but not
attempting to seize this tacility. If any of these has a higher
control strength than CS, then A is interrupted again. The
transaction whicn dinterrupts is chosen by the normal rules for
deciding who obtains control of a facility upon release, as
described in the section for the RELEASE STATEMENT.

The control strength in the present implementation of SOL
must be an integer between 0 and 15. This allows interrupts to
be nested up to 15 deep.

EXAMPLES:

SEIZE TERMINAL, PRIORITY CLASS;
SEIZE LINE, 10;

SEIZE PUMP;

SEIZE TERMINAL, 1:10;

SEIZE LINE, EXPONENTIAL(15);
SEIZE LINE, A*(B-C);

. RELEASE Statement
<release statement>::=RELEASE <facility name>;

This statement is permitted only when the transaction is
actually controlling the facility because of a previous seizure.
When the facility is released, there may be several other
transactions waiting because of seize statements. In this case,
the one which gets control of the facility next is chosen by
consideration of the following three quantities in order:

(1) Highest control strength

(2) Highest PRIORITY

(3) First to request the facility.
EXAMPLES:
RELEASE TERMINAL;

RELEASE LINE;
RELEASE PUMP;

I —r

d. Testing the Status of a Facility

<facility status> ::= BUSY | NOT BUSY

The status of a facility can be tested for the condition BUSY
or NOT BUSY. The facility status <can be used in any
compound statement as a relation primary.

EXAMPLES:

IF TERMINAL BUSY THEN CANCEL;
IF LINE NOT BUSY THEN GO TO LOAD;
WAIT UNTIL TERMINAL NOT BUSY;

6. STORES AND ASSOCIATED COMMANDS

STORES are space-shared rather than time-shared global
-elements and they are assigned a specific storage capacity. As
long as there is sufficient storage to accommodate the requesting
transaction the request for space is satisfied; otherwise, the
transaction waits for the space. A facility may be regarded as a
store which has a capacity of one unit only, except for the fact
that no interrupt capability is provided for stores.

The following declarations and control statements are
associated with manipulating stores:

a. STORE Declaration

<store declaration> ::=STORE <store list>;

<store list> ::= <capacity> <store name>[,<store list>]
<store name> ::= <name>[(<constant>)]
<capacity> ::= <constant>

-STORES are declared at the beginning of the program ahead of the
processes. STORES may be aeclared as one-dimensional arrays.

EXAMPLES: STORE 10 STACK;
STORE 512 CORE, 10 BUFFER(5);

b. ENTER Statement

<enter statement>::= ENTER <store name>;|
ENTER <store name>, <expression>;

The first form is an abbreviation for "ENTER <store name>,
1." The value of the expression is truncated and represents the
number of units requested of the store. The transaction will
remain at this statement until that number of units becomes
available and until all other transactions of greater or equal
priority which have been waiting for storage space have been
serviced.

10

EXAMPLES :

ENTER STACK;
ENTER CORE, 250;
ENTER CORE, BYTE * LENGTH;

C. LEAVE Statement

<leave statement> ::= LEAVE <store name> ; |
LEAVE <store name>,<expression>;

The first form is an abbreviation for "LEAVE <store name>, 1."
This statement returns the number of units equivalent to the
value of the (truncated) expression.

EXAMPLES:

LEAVE STACK;
LEAVE CORE, 128;
LEAVE BUFFER (NODE), LENGTH;

d-Xesting the Status of ia Sfore
<store status> = FULL | NOT FULL | EMPTY | NOT EMPTY;
The status of a store can be tested for the following conditions:
FULL, NOT FULL, EMPTY, NOT EMPTY.

In combination with other SOL or PL/I statements a variety of
compound statements may result.

EXAMPLES:

IF SWITCH FULL THEN WAIT PAUSE;
IF SWITCH NOT FULL THEN ENTER SWITCH;

7. TRUNKS AND ASSOCIATED COMMANDS

TRUNKS are space-shared global elements similar to STORES.
However, 1in contrast to stores, trunks allow for preemption. As
long as there is sufficient storage to accommocdate the requesting
transaction, the request foir space is satisfied without further
action. Each transaction holding space in a trunk is assignea a
specific holding strength, which may be different from the
preemption strength. Thus, a transaction with a low preemption
strength once assigned space in a trunk can have a very high
holding strength; therefore, preemption of it becomes unlikely.

11

a. IBpNK De;[gratipg

<trunk declaration>::=TRUNK <trunk list>;
<trunk list>::= <capacity> <trunk name>[,<trunk 1ist>]
<trunk name>::= <name>[(<capstant>)]

TRUNKS are declared at the beginning of the program ahead of the

processes. TRUNKS may be declared as one-dimensional arrays.

A1l elements of a TRUNK array assume the same capacity value.
EXAMPLES:

TRUNK 96 SWITCH(16);
TRUNK 1000 CORE;

b. DEMAND Statement

<demand statement>::= DEMAND <trunk name>, <capacity>,
<demand strength>, <hold strength>;
<trunk name>::= <name>[(<constant>)] |<name>(<variabie>)

The demand statement is a request for a number of units of a
trunk. If the units requested are available in the trunk, they
are assigned to the transaction. Associated with the resource
allocation is the hold strength specified in the demand
statement.

If the requirea number of units is not available, then the
following takes place:

(1) The number of units needed through preemption is
calculated.

(2) The sum of the space held by other transactions at
a hold strength 1less than demand strength of the demanding
transaction is determined.

(3) If the total available and preemptable space is
sufficient to satisfy the demand, transactions are preempted as
required to free enough space. The demanding transaction is then
allocated the space with the associated hold strength and
continues in sequence. Note that the interrupted transactions
are handled according to the setting of their interrupt action
indicator.

(4) If there is not enough preemptable space in the
trunk, the transaction is queued up on demand strength.

EXAMPLES:

DEMAND LINK(15), TRANSM RATE, 4, 1u;
DEMAND CORE(NODE), 51z, A, (A + C)/B;

c. VYIELD Statement

<yield statement> ::= YIELD <trunk name> , <capacity>,
<hold strength>;
<trunk name> ::= <name>[(<constant>)] |<name>(<variable>)

The yield statement releases the specified number of units in
the trunk at the specified hold strength. If the number to be
released 1is greater than the number currently held by the
transaction at that hold strength, the simulation terminates with
an error..

EXAMPLES: YIELD LINES(5), 400, 10;
d. CAPACITY Function

<primary>: :=CAPACITY (<trunk name>, <demand strength>)

The capacity function is provided to test the status of a
trunk. The capacity function returns the number of units
available for a demand of the capacity of the specified demand
strength. No resources are allocated and the current state of
the trunk is not touched. This function allows the simulation to
interrogate the state of the trunk prior to attempting a demand
statement upon it.

8. TRANSACTIONS AND ASSOCIATED STATEMENTS

Transactions represent aiscrete elements "“flowing" through
the model. They are local to a particular process and may have a
number of descriptors (local variables). For example, in a road
network simulation a transaction may represent individual
vehicles. The properties of these vehicles, such as speed,
number of passengers, fuel consumption, etc., are described by
the 1local variables. Each transaction has its own set of
local varianles. The following statements directly control the
creation, disappearance, queuing, or transfer of transactions.

a. Creation of _ Transactions. At the beginning of
simulation there is one transaction present for each
process described. Each of these initial transactions
starts at time zero and is positioned at the beginning of
the process. More transactions may be created by using "start
statements."

<start statement>::= NEW TRANSACTION TO <label>;

This statement, when executed, creates a new transaction (whose
local variables are the same in number and value as those of the
transaction which created it). The new transaction begins
executing the program at label while the original transaction
continues in sequence.

b. Disappearance of Transactions. Transactions "die” when
they execute a cancel statement.

<cancel statement>::=CANCEL;

An implied cancel statement is at the end of every process, so
cancel statements need not always be explicitly
written. Transactions are also cancelled when they are preempted
and the global variable INTERRUPT has been set to CANCEL (see
discussion of 'Interrupt').

C. _Queuing Of Transactions. Whenever a transaction
encounters a blocked resource such as a full store, a busy

facility or a full trunk, it automatically enters the queue
associated with this resource. Besides these situations the
following wait conditions may be programmed for:

(1) WAIT Statements

<wait statement>::=WAIT <expression>;

The expression is truncated , and then
this statement advances "TIME" by MAX(0,<expression>), as far as
this transaction is concerned. All time delays in a simulated
process are, in the last analysis, specified by using wait
statements.

EXAMPLES:

WAIT 4003)
WAIT SIMULATION TIME;
WAIT (A + B)/C;

(2) WAIT UNTIL Statements.

<wait-until statement>::=WAIT UNTIL <relation>;

This causes the transaction to freeze at this point until
the <relation> becomes true (because of actian by other
transactions). The relation must not involve expressions which
have a random value; e.g., it is not legal to write "WAIT UNTIL
PROBABILITY 10" or "WAIT UNTIL A = 1:4 ," etc.

EXAMPLES:

WAIT UNTIL SWITCH EMPTY;
WAIT UNTIL TIME > SIMULATION_TIME;

R R ST P 11 TSR SRR TYP NN

d. Transfer Of Transactions

(1) GO TO Statements
<go to statement> ::= GO TO <label>;

This statement is used to transfer to another point in the
program; statements are usually executed sequentially.

(2) INTERRUPT Statement

INTERRUPT = WAIT;|CANCEL;|<1abel>;

INTERRUPT is a global variable which specifies the action to
be taken for a preempted transaction. Whenever the interrupt
variable has been set, the action for all subsequent preemptions
any place within the program is specified unless the interrupt
variable is reset. '

INTERRUPT = WAIT;

If the interrupted transaction is executing a WAIT statement
when interrupted, the wait time is increased by the time which
passed during the interrupt. If the interrupted transaction was
executing anything other than a WAIT, the transaction is
cancelled.

INTERRUPT = CANCEL;

The interrupted transaction is unconditionally cancelled.

(Refer to cancel statement).

INTERRUPT = <label>;
The interrupted transaction 1is started immediately at the
statement specified by label and the transaction no longer
controls the preempted facility.

9. SPECIAL SOL STATEMENTS

a. PRIORITY Statement. If by coincidence two transactions
attempt to do something at precisely the same time, they may
be in conflict; that is, they may both want to seize a facility,
to change the value of the same global variable, or one
may want to change it while the other 1is using its value.
Actually, in such cases of conflict, the simulator does
choose a specific oraer for execution; no two things actually
happen at the same instant, as we deal more properly with
infinitesimal differences of time between the discrete units.
The choice of order 1is fairly arbitrary except when a
difference of priority is specified; in that case, the
transaction with higher priority (lower value) will be
acted on first. Each transaction has a priority, which is
initially zero; priority is changed by the statement

PRIORITY = <expression>;

15

,

) . I——

The declaration “integer PRIORITY" 1is implied at the
beginning of each process; i.e., PRIORITY is treated as a local

variable. In the present implementation of SOL, the priority
must be between 0 and 15.

b. STOP Statement

<stop statement> ::= STOP;

A stop statement causes simulation to terminate immediately,
and all transactions cease.

c. Checkpoint - Restart

(1) The BREAKOUT Statement. For long simulation
runs it becomes necessary to program checkpoints to save
intermediate results for possible later restarts. Checkpoint
data are saved whenever a BREAKOUT statement is executed.

<breakout statement> ::= BREAKOUT TO <label>;

If a 1abel 1is specified, the transaction executing the
breakout statement will be restarted at this label at restart

time, but will continue its execution after a checkpoint in
regular fashion. Checkpoints are numbered sequentially and the
simulation may be restarted at any of them. The PARM

parameter in the execution card is used to specify the restart
point.

(2) The RESTART Statement. The restart statement serves
to save values of variables not declared within the SOL syntax.

In this way, values of regular PL/1 variables declared with
a PL/1 declare statement may also be saved at a checkpoint.

<restart statement> ::= RESTART <variable list>;

The variable 1ist contains only the names of PL/1 variables
and not the dimensions of variable arrays.

EXAMPLE:
DCL (A,B,C,D) FIXED BIN(15),
E(5) BIT(3),
F(0:100,0:2) FLOAT DEC;

RESTART A,B,C,D,E,F;

16

d. Collection of Histogram Data. The tabulate statement in
conjunction with the table declaration is the vehicle for
collecting data to be displayed in histogram format.

(1) TABLE Declaration

<min> ::= <constant>
<inc> ::= <constant>
<max> ::= <constant>

<table declaration> ::=
TABLE (<min> BY <inc> TO <max>) <table name>(<constant>);

The table is used in conjunction with the TABULATE statement
to collect data for histographical representation. The histogram
can be specified by its dimensions, min, inc, max.

EXAMPLE: TABLE (0 BY 100 TO 1000) TIMETABLE(5) ;

<tabulate statement>::=TABULATE <expression> IN <table name>;

The value of the expression is recorded as a statistical
observation in the table specified.

EXAMPLES: TABULATE (STARTIME-TIME) IN DIFFTABLE;
TABULATE TIME IN TIMETABLE;

10. COMPOUND AND CONDITIONAL STATEMENTS

Both of those statements are legal in SOL as well as in
PL/1. Because of their relative importance and frequent use,
they are listed separately.

a. Compound Statements Several statements may be combined
into one, as follows:

<statement list>::=<statement>; [<statement list>];
<compound statement>::=BEGIN <statement 1ist> END;|
(<statement list>)
b. Conditional Statement

<condition>::= IF <relation> THEN <statement>; |
IF <relation> THEN <unconditional statement> ELSE <statement>;

17

e i s v

I1I. SAMPLE MODELS

This section contains a description of nine sample models,
including listings of the source language code. Most listings
are self-descriptive. However, a more detailed explanation has
been provided for MODEL 1E.

1. MODEL 1A: Single Server Queuing Model With Constant Arrival
Rate.

CARDS -~~~
v FACILITY
: INTERNAL CARD : NONBLOCKING
. CARD QUEUE TRANSMITTER -=--=TRANSMISSION LINE~-<---

PROBLEM: Punched cards are arriving at a card transmitter
station with a constant interarrival interval of 36
secondas. The transmitter can handle only one card at a
time and needs 40 seconds to process one card. The
simulation is to stop after 5 minutes.

2. MODEL 1B: Single Server (Queuing Model with Poisson
Distributed Arrivals.

PROBLEM: As in Model 1A, except punched cards are arriving
poisson distribputed with an average arrival rate of 100
cards/minute.

3. MODEL 1C: Single Server Model with Parameterized Input.
PROBLEM: Same as in 1B, except time constants are to be
replaced by variables which are to be assigned values frem a data
set.

4. MODEL 1D: Single Server Queuing Model with Priority

18

)

T

e

PROBLEM: Same as in 1C, except cards are assigned
priorities between 1 and 8 on a random basis. The
transmitter is to select cards from the input queue according to
its ipriority strength. A message is to be printed, when card is
received.

5. MODEL 1E: Single Server Queuing Model with Preemption.

PROBLEM: Same as in ID, except preempt levels between 1 to 4
are to be assigned randomly. The preempted messages are to be
cancelled after a message has been printed.

6. MODEL 1F: Single Server Queuing Model with External Queue
CARDS-- .
v

. EXTERNAL .--->. CARD © —== NON-BLOCKING=---->
. CARD QUEUE . . TRANSMITTER . TRANSMISSION LINE

PROBLEM: Same as in lE, except the STORE resource 'QUEUE' is
used to model a physical queue ahead of the transmitter.
This QUEUE is used to monitor the queue buildup during
the simulation, since the internal queue of the facility is not
accessible to the user. Furthermore, a separate process
'CONTRCL' is usea to read in variable values and control
the 1length of the simulation.

7. MODEL 1G: Network Moael - 5 Nodes Fully Connected, but
Nonblocking Links.

PROBLEM: Each node is modeled as a combination of a
card transmitter as described in 1G and a card receiver of
a similar type. The network is fully connected and
nonblocking. The originating nodes and the terminating nodes are
picked at random. Each message 1is to be assigned an
identification number.

8. MODEL 1H: Network Model with Blocking Links.

PROBLEM: Same as in 1G except that Dblocking on links
is considered. A1l 1links are to have eight channels. No

alternate routing will be considered. The connecting
matrix "CONN' provides for cross-reference between nodes
and links.

19

2 s ol e s B

|
|
1 : v 1 2 3 U
2 : 1 0 4 0 5
3 I 2 4 0 0 6
4 | 3 v 0 0 7
|
5 | 5 6 7 0

9. MODEL 1I: Network Model with Alternate Routing.

PROBLEM: Same as in 1H. Network has the following connectivity
(Links are numbered from 1 to 7):

1
(1)-.-ooooooooo.oooocoooooo(Z)
S 50 PN TR
.3 i A - 5
; % B
P SRR T T
7

The alternate routing will be of the following type:

Each node has a primary plus two alternate next nodes to
choose from for routing a message. The selection will simply be
based on the blocking of the links. The modeler may assume that
the routing algorithm has been precoded as a function named
'ROUTE' with two arguments representing the current node and the
destination node.

<variable>= ROUTE (<orig. node>,<term. node>);

The function will return the next tandem node number of the
value '0' if blocking occurs.

/* MODEL1A - SINGLE SERVER QUEUING MODEL */
/* WITH UNIFORMLY DISTRIBUTED ARRIVALS */
FACILITY TRANSMITTER;
PROCESS TRANSMIT, T=10, R=1;
START: IF TIME > 3000 THEN STOP;
NEW TRANSACTION TO SEND;
WAIT 360;
GO TO START;
SEND: SEIZE TRANSMITTER;
WAIT 400;
CANCEL ;
END;

/* MODEL1B - SINGLE SERVER QUEUING MODEL */
* WITH POISSON DISTRIBUTED ARRIVALS */
FACILITY TRANSMITTER;
PROCESS TRANSMIT, T=10, R=1;
START: IF TIME > 3000 THEN STOP;

WAIT EXPONENTIAL(360);

NEW TRANSACTION TO START;

SEIZE TRANSMITTER;

WAIT 400;

CANCEL ;
END;

/* MODEL1C - SINGLE SERVER/PARAMETERIZED INPUT */
INTEGER SIMTIME, INTTIME,SERTIME;
FACILITY TRANSMITTER;
PROCESS TRANSMIT, T=10, R=l;
GET FILE(CARD) LIST(SIMTIME, INTTIME,SERTIME);
START: IF TIME > SIMTIME THEN STOP;

WAIT EXPONENTIAL(INTTIME);

NEW TRANSACTION TO START;

SEIZE TRANSMITTER;

WAIT SERTIME;

CANCEL ;

END;

/* MODELID - SINGLE SERVER WITH PRIORITY HANDLING */
INTEGER SIMTIME,INTTIME,SERTIME;
FACILITY TRANSMITTER;
PROCESS TRANSMIT, T=10, R=1l;
GET FILE(CARD) LIST(SIMTIME,INTTIME,SERTIME);
START: IF TIME > SIMTIME THEN STOP;
WAIT EXPONENTIAL(INTTIME);
NEW TRANSACTION TO START;
PRIORITY = 1:8;
PLIBEGIN;
PUT EDIT ('CARD RECEIVED AT ',TIME)(A(17),F(6)) SKIP;
PLIEND;
SEIZE TRANSMITTER;
WAIT SERTIME;
CANCEL ;

10 /* MODEL1E - SINGLE SERVER QUEUING MODEL */

20 /* WITH PREEMPTION */
30 INTEGER SIMTIME, INTTIME,SERTIME;

40 FACILITY TRANSMITTER;

50 PROCESS TRANSMIT, T=10, R=l;

60 INTEGER STRENGTH;

70 GET FILE(CARD) LIST(SIMTIME,INTTIME,SERTIME);

80 INTERRUPT = FINISH;

90 START: IF TIME > SIMTIME THEN STOP;

100 WAIT EXPONENTIAL(INTTIME);
110 NEW TRANSACTION TO START;
120 PRIORITY = 1:8;

130 STRENGTH = 1:4;

140 PLIBEGIN;

150 PUT EDIT ('CARD RECEIVED AT ',TIME)(A(17),F(6)) SKIP;
160 PLIEND;

170 SEIZE TRANSMITTER,STRENGTH;
180 WAIT SERTIME;

190 CANCEL ;

2V0 FINISH:

210 PLIBEGIN;

220 PUT EDIT('PREEMPTION OCCURRED AT ',TIME) (A(23),F(6)) SKIP;
230 PLIEND;

240 CANCEL;

250 END;

EXPLANATION TO MODEL 1E. CODE

STATEMENTS 10, 20. /* MODEL 1E - SINGLE SERVER QUEUING MODEL*/
5 WITH PREEMPTION =

The first two statements contain explanatory text. Since it
is bracketted with /* */ it will be ignored by the
translator.

STATEMENT 30. INTEGER SIMTIME, INTTIME, SERTIME;
This statement declares the global variables SIMTIME,

INTTIME, and SERTIME. Within the model these variables will
assume the following meaning.

SIMTIME = Simulation time, the time after which the
simulation is to be terminated.

INTTIME = Interarrival time for transactions.

SERTIME = Server time, the time a transaction will seize a

facility until it is served.

22

STATEMENT 40. FACILITY TRANSMITTER;

This statement declares one nonsubscribed facility with the
name TRANSMITTER.

STATEMENT 50. PROCESS TRANSMIT, T=10, R=1;

This statement declares the process with the name TRANSMIT.
T=10 specifies that not more than 10 transactions will be active
at any one time during the simulation. An active transaction is
a transaction which has been created and not yet cancelled.

R=1 specifies that no transaction will use more than one
resource. During model checkout, these parameters should be kept
to a minimum to optimize core utilization.

STATEMENT 60. INTEGER STRENGTH;

This statement declares STRENGTH as a local variable within
the process.

STATEMENT 70. GET FILE(CARD) LIST(SIMTIME, INTTIME, SERTIME);

This statement is a PL/1 statement which has been inserted
into the SOL route to read the file named 'CARD' and assign the
first three numerical values to the global variables SIMTIME,
INTTIME, SERTIME.

STATEMENT 80. INTERRUPT = FINISH;

This statement specifies that any preempted transacticn is
to be sent to Label 'FINISH'.

STATEMENT 90. START: IF TIME > SIMTIME THEN STOP;

This compound statement, identified by the 1label 'START',
tests the global variable SIMTIME against the built-in global
variable TIME. TIME is a reserved word within SOL and represents
the current time of the simulation. If TIME exceeds the value
for SIMTIME, the simulation will be terminated, as specified by
the STOP statement.

STATEMENT 10U. WAIT EXPONENTIAL(INTTIME);
This statement specitfies that the transaction is to be
placed into the wait queue for the time specified by the built-

in function EXP. Tne EXP function will sample a value from an
exponential distribution with the average value INTTIME.

23

STATEMENT 110. NEW TRANSACTION TO START;

This statement specifies that a new transaction with the
same local variables is to be created and to be sent to the label
'START'. The original transaction will continue to run until it
encounters a wait status. Then the new transaction will start
executing.

STATEMENT 120. PRIORITY = 1:8;

This statement assigns a random integer between 1 and 8 to
the built-in local variable 'PRIORITY'. The local variable
PRIORITY is used by the system to resolve any conflicts between
transactions requiring the same action at the same time. In this
case, it will control the seizing of the facility TRANSMITTER by
:ransactions which have entered a queue because the facility was

usy.

STATEMENT 130. STRENGTH = 1:4;

This statement assigns an integer value between 1 and 4
to the local variable STRENGTH.

STATEMENTS 140 to 160. PLIBEGIN; PUT EDIT ('CARD RECEIVED AT',
TIME) (A(17), F(6)) SKIP; PLIEND;

These three statements represent a PL/1 block which
was inserted to send a message to the SYSPRINT file. The PL/1
PUT statement has been bracketed by PLIBEGIN and PLIEND. In this
way the entire PL/I block is bypassed by the translator and
the associated text inserted unaltered.

STATEMENT 170. SEIZE TRANSMITTER, STRENGTH;
One of the following actions takes place:

a. If the facility TRANSMITTER is not busy, the transaction
simply seizes the facility and marks it busy. An entry is placed
into the log file.

b. If the facility is busy with a transaction of holding
strength equal to or higher than the local variable STRENGTH
of the calling transaction, the calling transaction enters
the wait queue for this facility.

c. If the facility is busy with a transaction of lower
holding strength, this transaction is preempted and sent to the
action label FINISH as specified in the INTERRUPT statement.

'4
1
:

STATEMENT 180. WAIT SERTIME;

The transaction encountering this statement will enter the
wait queue for the period specified by the value of SERTIME. The
next transaction in the time queue will then start executing.

STATEMENT 190. CANCEL ;

This statement will cause all resources the transaction is
using to be freed and the transaction to be deactivated.
Corresponding entries are made in the log file.

STATEMENT 200. FINISH;

This is a simple label statement that has been specified as
the action label for an interrupt.

STATEMENTS 210 to 230. PLIBEGIN; PUT EDIT ('PREEMPTION OCCURRED
AT',TIME) (A(23), F(6)) SKIP; PLIEND;

These three statements represent a PL/I block, similar to
statements 140 to 160, which will cause a message to be sent to
the SYSPRINT file whenever a transaction is preempted.

STATEMENT 240. CANCEL ;
This statement will deactivate the transaction.

STATEMENT 250. END;

The END statement identifies the enu of the process and is
ignored by the transactions.

4.

/* MODELIF - SINGLE SERVER QUEUING MODEL */
" WITH EXTERNAL QUEUE */
INTEGER SIMTIME, INTTIME,SERTIME;
FACILITY TRANSMITTER;
STORE 1000 QUEUE;
PROCESS CONTROL,T=1,R=u;
GET FILE(CARD) LIST(SIMTIME,INTTIME,SERTIME);
WAIT SIMTIME;
STOP;
END;
* PROCESS TRANSMIT, T=10, R=2;
INTEGER STRENGTH;
INTERRUPT = FINISH; .
START;
WAIT EXPONENTIAL(INTTIME);
NEW TRANSACTION TO START;
PRIORITY = 1:8;
: STRENGTH = 1:4;
! PUT EDIT ('CARD RECEIVED AT ',TIME)(A(17),F(6)) SKIP;
ENTER QUEUE;
SEIZE TRANSMITTER, STRENGTH;
WAIT SERTIME;
CANCEL ;
FINISH: PUT EDIT('PREEMPTION OCCURRED AT ',TIME) (A(23),F(6)) SKIP;
CANCEL ;
END;

E /* MODEL1G - SINGLE SERVER QUEUING MODEL WITH EXTERNAL QUEUE */

INTEGER SIMTIME, INTTIME,SERTIME;

FACILITY TRANSMITTER(5),RECEIVER(5);

STORE 1000 SENDQUEUE(5), 1000 RECEIVEQUEUE(S);

PROCESS CONTROL, T=1, R=0;

GET FILE(CARD) LIST(SIMTIME,INTTIME,SERTIME);

WAIT SIMTIME;

STOP;

END;

PROCESS TRANSMIT, T=10, R=4;

INTEGER STRENGTH,URIG,DEST,NUMBER; q

INTERRUPT = FINISH;

NUMBER=0; :

START ; :
WAIT EXPONENTIAL(INTTIME);
NEW TRANSACTION TO START;
NUMBER = NUMBER+1;

~ PRIORITY = 1:8;
i STRENGTH = 1:4;
, ORIG =1 : 5;
DEST =1 : §5;
PLIBEGIN;

f PUT EDIT ('CARD ',NUMBER,' RECEIVED AT NODE ',ORIG,
‘ ' AT TIME ',TTIME) (A(5),F(4),A(18),F(2),A(9),F(6)) SKIP;

ENTER SENDQUEUE (ORIG))

i PLIEND;

26

o

-~ BT e N R

SEIZE TRANSMITTER(ORIG),STRENGTH;
ENTER RECEIVEQUEUE (DEST);
SEIZE RECEIVER(DEST),STRENGTH;
WAIT SERTIME;
CANCEL ;

FINISH;

PLIBEGIN;

PUT EDIT('CARD ',NUMBER,' PREEMPTED AT TIME ',TIME)

(A(5),F(4),A(19),F(6)) SKIP;

PLIEND;

CANCEL ;

END;

INPUT PARAMETER LIST FOR STATISTICS. SOL .DATA(STATIN)
NO
0,

NO
NO

CLASS(Z) OUTPUT OF STATISTICS STEP 'SOL(S)' FOR MODEL1G

NAME OF FACILITY TIME FRACTION OF TIME IN USE
TRANSMITTER (1) 20866 0.0958
TRANSMITTER (2) 20866 0.1114
TRANSMITTER (3) 2UB66 0.1534
TRANSMITTER (4) 20866 0.1342
TRANSMITTER (§5) 20866 0.2210
RECEIVER (1) 20866 0.1725
RECEIVER (2) 20866 0.1279
RECEIVER (3) 20866 0.0958
RECEIVER (4) 20866 0.1150
RECEIVER (5) 20866 0.1725
NAME OF STORE TIME CAPCTY MAX USD TOTAL OCCP AVG UTL
SENDQUEUE (1) 20866 1000 1 2000 0.0001
SENDQUEUE (2) 20866 1000 2 2324 0.0001
SENDQUEUE (3) 20866 1000 1 3200 0.0002
SENDQUEUE (4) 20866 100U 1 280u 0.0001 g
SENDQUEUE (5) 20866 1uul 2 4933 v.0002 |
RECEIVEQUELE(1) 20866 100V 2 3655 0.00V02 7
RECEIVEQUEUE(2) 2ub66 1000 1 2669 0.0001
RECEIVEQUEUE(3) 20866 1000 1 2000 0.0uVul
RECEIVEQUEUE(4) 20806 1oLV 1 2400 0.0001
RECEIVEQUFUE(5) 20866 1000 2 4222 0.0002
|
27

CLASS(Y) OUTPUT OF MODEL1G

CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD

Pt ot et ot Pt et Pt et b P et Pt et Gt P Pt Pttt P b b bt et fd Pt b b e b et b

RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT
RECEIVED AT

SIMULATION TERMINATED -

CONTENTS OF FILE SOL.DATA(GOIN): 2000, 500, 400

NODE AT TIME
NODE 3 AT TIME
NODE AT TIME

NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE 5
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE
NODE

T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
T TIME
NODE 4 AT TIME
NODE 5 AT TIME
1/0 ERROR

WHEANEREENEBENWWNONONWLWNWWHREWARAONEENAGCIW -
>rr>rH»>r>PrePIPPrI>>2>I>>I>D>>>

470
716
962
1051
1185
1525
2261
3501
3855
4066
4601
5137
5987
6319
6869
7065
9217
9835
9957
10104
10282
11004
11465
12102
12447
13239
14493
14932
14933
15340
15512
16097
16307

/* MODEL1H - 5-NODE FULLY CONNECTED NETWORK WITH BLOCKED LINKS */

INTEGER SIMTIME, INTTIME,SERTIME ,NUM;

PLIBEGIN;

DCL CONN(5,5) FIXED BIN(31);

PLIEND;

FACILITY TRANSMITTER(S),RECEIVER(5);

STORE 1000 SENDQUEUE(b5), 1000 RECEIVEQUEUE(5), 8 LINK(10);

PROCESS CONTROL, T=1, R=0; P
GET FILE(CARD) LIST(SIMTIME, INTTIME,SERTIME,CONN); :
WAIT SIMTIME;

STOP;

END;

PROCESS TRANSMIT, T=50, R=5;

INTEGER STRENGTH,ORIG,DEST,NUMBER;

INTERRUPT = FINISH;

NUM=0;

START:
WAIT EXPCNENTIAL(INTTIME);
NEW TRANSACTION TO START;
NUMBER ,NUM = NUM+l1;

PRIORITY = 1:8;
STRENGTH = 1:4
ORIG =0 2 .5;

RET: DEST =1 : 5;
IF DEST = ORIG THEN GO TO RET;
PUT EDIT ('CARD ',NUMBER,' RECEIVED AT NODE ',ORIG,' AT TIME ',
TIME ', TO =',DEST) (A(5),F(4),A(18),F(2),A(9),F(6),A(5),F(2)) SKIP;
ENTER SENDQUEUE (ORIG);
SEIZE TRANSMITTER(ORIG),STRENGTH;
ENTER LINK(CONN(ORIG,DEST));
ENTER RECEIVEQUEUE (DEST);
SEIZE RECEIVER(DEST),STRENGTH;
WAIT SERTIME;
CANCEL ;
FINISH: PUT EDIT('CARD ',NUMBER,' PREEMPTED AT TIME ',TIME)
(A(5),F(4),A(19),F(6)) SKIP;
CANCEL ;
END;

Input Dataset SOL.DATA(GOIN):

20000,100,500,
0,1,2,304,

29

1.

2.

3.

it B ail o Al e iy oo o el

e e s

BIBLIOGRAPHY

D. E. Knuth and J. L. McNeley, “SOL - A Symbolic
Language for General Purpose Systems Simulation ,"
IEEE Transactions on Electronic Computers, IC-13,
No. 5 (Aug 1964) pp 401-408.

R& Technical Report ECOM-3085 (AD-850159L), "“MALLARD
Traffic Simulation, Results and Analysis, Final Report,"
James A. Armstrong and Horst E. Ulfers, Feb 1969.

J. Armstrong, H. Ulfers, D. Miller, H. Page, "SOLPASS -
A Simulation Oriented Language Programming and Simulation
System," Proceedings of the Third Conference on
Applications of Simulation, Dec 1969.

R&D Technical Report ECOM-0043-F, "SOL Compiler Design,"
H.C. Page, D.J. Miller (Patterson & Smith Inc), Feb 1968.

Horst E. Ulfers, "PACKNET - A Packet Switch Network
Simulator," Proceedings of the 1975 ICC, June 1975.

C. G. Guffee and H. E. Ulfers , "SOL-370,” Proceedings
of the 1975 Summer Computer Simulation Conference,
July 1975, pp 1-11.

DCEC TN 10-78, "SOL-370 User's Guide," Horst E. Ulfers,
July 1978.

30

et

DISTRIBUTION LIST

STANDARD :

R100 - 2 R200 - 1
R102/R103/R1VU3R - 1 R300 - 1
R1U2M - 1 R400 - 1
R102T - 9 R500 - 1
R104 -1 R700 - 1
R110 - 1 R800 - 1
R123 -1 NCS-TS -1
R124A - 1

205 - 20

DCA-EUR - 1 (Defense Communications Agency European Area
ATIN: Technical Director
AP0 New York 09131)

UCA-PAC - 1 (Defense Communications Agency Pacific Area
ATIN: Technical Director
Wheeler AFB, HI 96854)

USDCFO - 1 (Chief, USDCFO/US NATO
APO New York 09667)

SPECIAL:
R830 - 100

