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A coherent optical processor for displaying a
signal's ambiguity function is described. The re-
quired time delay is simulated by 45 degree rota-
tions of two identical input transparencies, and the
doppler shift by a subsequent one-dimensional Fourier
transformatfon. The entire ambfguity function is dis-
played in the output (doppler shift-time delay) plane.
Examples of the optically computed ambiguity function
for single and double pulse signals are shown to be {n
excellent agreement with theory. Advantages of this
approach over other schemes, and possible extension to
real time processing, are also discussed.

Introduction

The ambiguity function, first introduced by Wood-

nrd‘. has been applied in radar in predicting the ca-
pability of a given signal to simultaneously determine
the range and velocity of a target. The range is de-
termined by the time delay, t, and the velocity by the
doppler shift, v. The ambiguity function for a given
signal, f(t), 1s

x(ver) = 12 £(t)F(t - t)exp(-J2uvt) dt (1)

In optics, Papoulis has employed the ambiguity function

in analyzing diffraction phenomenaz.

In this paper, we describe a rather easily imple-
mented coherent processor capable of generating the
akbiguity function in magnitude. A similar, yet some-
what more elaborate, scheme for generating x(v,t) n
both magnftude and phase 1s also presented,

Such a scheme, Tor example, would need to be utilized
when further coherent processing of the ambiguity func-
tion is required. i

Cutrona et.al.%"% and Preston® have proposed a

coherent amdbigufty function processor‘ which utilizes
multiple channels to display the ambiguity function
for discrete values of t. The scheme of Casasent et.

al.’ generates one-dimensional "slices” of the ambigu-
ity function in the (v,t) plane. Similar one-dimen-
sfonal displays have also been electronically

producod’. Our method, as described in the following

sections, (1) displays Ix(v.t)lz in a continuous
(rather than quantized) form over the entire (v,t)
plane, (2) has the capacity for extension to real time
processing, and (3) 1s easily implemented.

Implementation Scheme

The coherent processor capable of displaying the
ambiguity function (in magnitude) is pictured in Fig 1,
The field amplitude, U(v,t), in plane P, is related

to the coherently 1lluminated transparency, S(t,t) in
plane ’l by a one-dimensional Fourier transform:

Ulv,r) = exp(-J2nrtv?) £5 S(t,=c)exp(-J2uvt) dt

where A is the wavelength of the spatially coherent
111umination, f is the focal length of both lenses 4

7 9 i; 3 ) 8

(2)
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and Lz. and the spatial frequency v is related to the
horizontal displacement, Xy, ON plane Pz by9

v = x,/Af (3)

By an appropriate choice of an input, this coherent
processor will be shown to have the capability of ambi-
guity function display,

Consider, then, the one dimensional temporal
signal f(t) in Fig. 2a and its representation on the
(t,*) plane [Fig.2b]. By rotating this function coun-
terclockwise about the origin an angle of o [Fig.2c],
we generate the function

f(tcose + tsine]

Thus, for a rotation of 45 degrees, we obtain

f((t + t)//2}, and for a rotation of -45 degrees, we
obtain f{(t - t)//2). If we cascade transparencies of
these two functions, in the input plane of the proces-
sor of Fig.l so as to Bm the product

f(t + v)/72]) f[t - x)//2], then, from Eq.2, the resul-
ting output {s
U(v,t) = exp(-janvz)

o« /° f t-r
e
=2 exp[-J2xv(t + Afv)]

1o F(t')F(t - /Zx)exp[-J2x(/2v)t'] dt'

f F/'[LL]“D(-JZ'“) dt

(4)

where we have made the change of variable

t' = t+<r

2

The intensity distribution associated with Eq.4 is im-
medfately recognfized as a scaled version of the
squared modulus of the ambigufty ﬂuu:ﬁon:‘o

2
I(Voi) . 'u(vo‘)l

. 2|x(/Bv,/20)|" (s)

Experimental Results

To evaluate the performance of the proposed pro-
cessor, the ambigufty functions for a single and doub-
le pulse signal are evaluated analytically and com-
pared to the corresponding optical system outputs. In
practice, the processor output is magnified by conven-
tional means for observation and photographic purposes.

For a Single Pulse
For a single pulse, (Fiq.3a), we may write

f(t) = rect (t/27)
Mpproved for public release !
dietrivulion unlimited,

(6)
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where 2T {is the pulse duration and

Vi |t] €172
0; t > 172

rect (t) 2

The geometric interpretation of f(t), f("é %), and

f(-(%;—'l)f(-(-td—'—'l) are shown in Figs.3b, 3c and 34

respectively,
Substituting Eq.6 into Eq.1 followed by eva.uation
-yields the ambiguity function

Cx(vet) =4 (2T = |])sinc w(2T = |v])exp(-Javr); |« |e2T
0 ilels2r
(7)
where sinc v § (sin =v)/xv. The corresponding output
intensity is

lt] € 21
Ief 3 21 (8)

Ix(vee)|® -ﬁzr - el stnc (2T - Jx]) 5

For purpose of identification, it is instructive
to examine the locus of points where the ambiguity
function is identically zero. From Eq.8,this zero val-
.ue locus may easfly be shown to be

vse T'_‘j;r H Iv] s 21 (9)
where n 1s any non-zero integer. The piecewise hyper-
bolic nature of these curves is shown in Fig.4.

The ambiguity function for a single pulse is gen-
erated by appropriately rotating two identical thin
slits 1in plane P.l of the coherent optical processor of

Fig.2. The result 1s shown in Fig.5. As can be seen,
the coherent processor output compares quite nicely
with the theoretical result in Fig.4. A three-dimen-
sfonal computer graph of the corresponding ambiguity
function modulus may be found in Fig. 6.6 of Rfhac-

zek. V!
For a Double Pulse

For a double pulse, (Fig.6a), we write

f(t) = rect((t + 2T)/2T) + vrect{(t-2T)/2T) (10)

'whcn. for convenience, the pulse separation, 2T, has
been chosen to be equal to each of the pulse widths,
The geometrical interpretation of

f(h&;-'lmﬁ-;—'l) fs shown in Fig.6b. The ambiguity
(']
function assocfated with the double pulse is

(vor) =4 2(27 = |ePsinc v(2T - {x|)
? ) | I bcos(h'l’v)elp!-]“v) MUKE i
(2T = |1|)sinc v(2T - |t Dexp(=Jurv)
s 2T ¢ |‘l| ¢ AT (")
(6T = |t|)sinc v(6T - |r|)exp(=Juty)
: 4T ¢ |v]| s 67
0 s It] 3 67

The corresponding output intensity is

Ie(vo0)]? Jaer - le1)2sincu(2T - |1])
2 cos:(th) s |t| s 27

(27 - |1]) sinc v(2T - |2])
" s 2T s || s 47

(67 -|t]) sinc v(6T - |t|)
: 4T ¢ |1| s 6T
0 3 |t] 3 6T

(12)

o

The equatfons describina the zero-value loci are easily
shown to be

ve (2m+ 1)/8T ;
ve=n/(|t] -27) ;
v =n/(6T - |t]) ;

|e] & 21
It] ¢ a7
4T ¢ |t| ¢ 67

(13)

where m is any integer and, as before, n is any non-
zero integer. An {1lustration of these zero-value loci
is presented in Fiq.7.

By appropriately placing two identical double
slits in planes l’l and Pz of the coherent processor,

the ambiguity function for the double pulse is gener-
ated. The result, shown in Fig.8, again compares quite
favorably with the theory.

An Alternate Scheme

The coherent processor just discussed, fs capable
of displaying the ambiguity function only in magnitude,
That 1s, quadratic and 1inear phase factors are present
on the output plane [see Eq.4].

A processor capable of generating the ambiguity
function both 1n magnitude and phase is presented in
F1g.9. In plane Pl' we place the transparency

f(-('TQ'_—t)-) which is formed by the previously discussed
45 degree rotation of f(t), followed by coordinate re-
versal (rotating f(-(‘—'é'—')-) 180 degrees about the t and

v axes). The scaling lenses I.‘ and Lz have respective
focal lengths related by

f1* 2 f, (14)

The field amplitude incident on the left of plane Pz is

the desired f(t - v). This will multiply the transmit-
tance f(t) in plane '2 to give immedfately to the right

of P, the field amplitude f(t)f(t - «). The geometrical

interpretation of this roduct in the (t,r) ghm. for
the case of a single pulse, 1s shown in Fig.10.

With reference to Eq.1, 1t remains to form a
Fourier transformation with respect to t. is 1s ac-
complished with cylindrical lenses L.. Lb' and "c which

have respective focal lengths of

o, == 2f, (15)

One sees that, from plane '2 to P,. imaging is perform-
ed in the vertical direction by l. and "e while Fourier




transformation is independentiy performed in the hori-
Zontal direction by L,. Thus, the field amplitude,
U(v,t), in plane P 3 fs” a scaled versfon of the ambigu-

ity function:

U(v,t) = f(t)f(t - t)exp(=j2svt) dt (16)

= x(v,v)

e e e it R et

where v is related to the horfzontal displacement, X30

Fig.1. A coherent processor for ambiguity function

in P, by display. Both the lenses have focal length f.
Fourier transformation is performed in the

vse ,3/19 (17) horizontal direction and imaging in the verti-

cal directfon.

This ambfguity function processor, which is more t
elaborate than that shown in Fig.2, need be used only
when the ambiguity function's magnftude and phase are
requi;ed final b

s a final note, we observe that the scheme we g [—j 1
propose assumes that f(t) s real valued. If, in S 0 S 89
fact, f(t) is complex, then we need to generate
f*(t - t)in the integrand of Eq.1 in order to properly
generate x(v,t). Some additional work appears needed
for the case of a general complex-valued f(t).
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play for a single pulse, as generated by the
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Fig.8. The amoiguity function (modulus squared) dis-
" glly for a double pulse as generated by the co-
erent processor of Fig.2.
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