AD=AD65 285

UNCLASSIFIED

STANFORD UN1V CALIF DEPT OF COMPUTER SCIENCE F/6 12/1
SPARSE AND PARALLEL MATRIX COMPUTATIONS.(U)
DEC 78 F T LUK DAHCOU4=75=6=0185

STAN=CS=78-685 NL I

e 2 Jl2s

o

' 12
"”l=—— i I 22
i 3% S
ok =
""l o 20
bl & =
* b b
==

f

122 Bt pie

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OFf STANDARDS»I%J-"I

LEVEL —

SPARSE AND PARALLEL MATRIX COMPUTATIONS

by

Franklin Tai-cheung Luk

STAN-CS-78-685
DECEMBER 1978

A

-

o>
(-
Ll
-
.
2
=
[s

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

$t e
e

3 A TR A AR A

SPARSE AND PARALLEL MATRIX COMPUTATIONS

by

Franklin Tai-cheung Luk) .:' ,) 4

S / ,
- : ¢ ’k.\ /, //
te Peiiey N ”." ’
ans Wiite !f : Qt y“ 4/
‘ nee put Secttaw I3 \ :'
i S ARNCERSES O
{ ST IBH TN coocmnrmresmsnsrereos

ciramiomavenrisenersye oenssetness

o Rl S R e
‘ : ; FE T G ant Vap boon approved !
g : ; i for pubiic rekme_af-d pclo; 13 {
i { L dan is unlizited. i
) . ; diapibul

e

Research supported in part under U. S. Army Research Office grant
DAHCO4-75-G-0185.

R R N T

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enterod)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T REPORT NUMBER = 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
STAN-CS-78-685
4. TITLE (and Subtltlo) 4 5. TYPE OF REPORT & PERIOD COVERED
/é/) S__PARSE AND PARALLEL MATRIX COMPUTATIONS , Technical, December 1973

B

= _PERFORMING ORG. REPORT HUMBER
4 V|sTaN-cs-78-685

T NUMBER(S)

7. AUTHOR(s)

/¢ "IT.FEE'?}Fl,in Tai'Cheun%Auk ;EAHC@-YS -G-0185 //

/'
/
v

o S

9. PERFORMING ORGANIZATION NAME AND ADDRES, 10. PROGR&A:-vi ERLEME'NTT, PROJEESST" TASK
AREA ORK U Ut
Computer Soience Departmen e P

Stanford University

Stanford, California 94305

e i1
11. CONTROLLING OFFICE NAME AND ADDRESS /.‘Z.J{ T REPORT DRAFTE—
U.S. Army Research Office [Decomber ¥§75 J
Box 12211 1 I GES
Triangle Park, N.C. 27709 \)‘ .
14. MONITORING AGENCY NAME & ADDRESS(if dilferent from Controlling Olffice) | 45— SECURITY CLASS. (of this report)
Unclassified
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) 3 —-—’-—""‘
v‘/ } > i ’ O A 1§ .7
Releasable without limitations om dissemination. —

17. DISTRIBUTION STATEMENT (o the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. A%’RI\CT (Continue on reverso side If necessary and identify by block number) -

This thesis deals with four important matrix problems: (). the application
of many variants of the conjugate gradient method for solving matrix equations,
(2) the solution of lower and upper bounds quadratic programs associated with
] M-matrices, (3) the construction of a Block Lanczos method for computing the
greatest singular values of a matrix, and (4) the computation of the singular
value decomposition of a matrix on the ILLIAC-IV camputer.

DD | %05 1473 Eoimion oF 1 noV 6515 oBsoLETE uNcLASSTFIED O 7/

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
T ———N

PRI v 3 :
" . S

ABSTRACT.

This thesis deals with four important matrix problems: (1) the
application of many variants of the conjugate gradient method for
solving matrix equations, (2) the solution of lower and upper bounds
quadratic programs associated with M-matrices, (3) the construction
of a Block Lanczos method for computing the greatest singular values
of a matrix, and (4) the computation of the singular value decomposition

of a matrix on the ILLIAC-IV computer.

e

ACKNOWLEDGMENTS

I am deeply indebted to Professor Gene Golub for teaching me
about numerical linear algebra and for providing guidance and support
throughout my years of graduate study.

I appreciate the suggestions of Professors Joseph Oliger and
James Wilkinson which have greatly improved my presentation.

Three researchers have aided me in essential ways. The many

discussions with Professor Marcello Pagano led to the work on quadratic

programming. Dr. Louis Hageman and Professor David Young shared with
me their knowledge of iterative methods.

I would like to thank all the Serra House residents,
particularly Mr., William Coughran and Mrs. Janet Wright, for thei.-
help and friendship.

The expert typing and editing skills of Miss Rosemarie Stampfel
have made my task of writing much easier.

With sincere gratitude I wish to thank my parents, for starting
me on my studies in this country; Gene and Rosemarie, for making life

so pleasant; and my wife Vivian, for her love.

| iii

TABLE OF CONTENTS

i ENTRODUGPBTION " |isisie cinioin s ns sinlais siainisisl s aim o e e -
TE. CONJUGATE GRADIENT ACCELERATION OF ITERATIVE
MEFHODS ..ccc.-e o4 o laliaiat/ale & e Bis e alis Salielsie o B e
2.1 TIntroduetioneceleceeacass S e iR ateRe eIty e
2.2. Conjugate Gradient Method alste
2.5. Preconditioned Conjugate Gradient Method...
2.4, Equivalence Results LR
2.5. Block Jacobi Methodscc0.. A OO
2.6. A Compressed Method and Cyclic
Reduction IO ChE R A o ls/olnte
2.7. Computer Implementation oo s s anilaie o e
2.8. Applications of the RS-CG Method E
REEErences o i viia v «slsimsietors st sisois siele e e
FEE . QUADRATIC PROGRAMMING WITH M-MATRICES St
Daly TOCTOARCHION 5l i cicie e siels e aloiniaia i st aisinis e
. 3.2. Linear Complementarity Problem
3.3. Lower and Upper Bounds Problem .,..........
3.4, Problem with Non-finite Bounds
3.5. Numerical Examples e S
o MR R S R P
RETErenees . :.cissessnsocs O o e .
: EV, A BLOCK LANCZOS METHOD FOR COMPUTING SINGULAR
] VALUES: s s s saems s s T R s A o s 5
K3, IOCPOMUEtIGE wavvcosovvossinmassnnsswasis .
] L4.2. Block Lanczos Method for Symmetric
MECTE SO 1l 5o ot ers fora shir el S o s S e 8 s .
4.3, Block Bidiagonalization Algorithm
L. L, Error Bounds for the Singular Value
APPTOXIMELIONS o vwsvvosmnonassesss e s
L.5. Iterating to Improve ACCUTACY .+.eeveeevees
L, 6. Block Bidiagonalization Method with
Reorthogonalization s v
4,7. TIterative Block Lanczos Method @
4.8, Teat BRXONDIOE .ocvessvsscsorssrasnin e

ROTSYOHCBR uwv b voviemsesssioue st s e

iv

16
22
28

32
L1
50
59

102

108
114

118
122
125
132

BT S

146wy S e A

TABLE OF CONTENTS Continued

PAGE

COMPUTING THE SINGULAR VALUE DECOMPOSITION
O PHE TELEAE TV ouevvannnmennsssmnsnassns 13k
Sl INETOIUCEION Luveevunsasnessns Stk et 134
5.2, The ILLTAC IV COMPULET ...vnvecossscnons 125
5.3. Programming Languages for the ILLIAC..... 136
5.4. A Row Orthogonalization Method 157
5.5. Least Squares Solutions o 1L6
5.6, Dote SEPOOEBEBE . ouvsineisomvsissesunssss gliss
5.7. Numerical Propertiesccceeeceecoss - 155
5.8, "Hent HERIE oo i s e i 154

REfCRENEER. it tire o e vis v iore e s i 158

TR

1T,

ITE,

TABLE OF ALGORITHMS

CONJUGATE GRADIENT ACCELERATION OF ITERATIVE METHODS

Algorithm 2.1.
Algorithm 3.1.
Algorithm 3.2,

Algorithm 4.1,
Algorithm 4,2.
Algorithm 6.1
Algorithm 6.2
Algorithm 7.1.
T2
(5.
T

.
o Lo

Algorithm
Algorithm
Algorithm

Precondltloned CG method or

CG-accelerated single method.........
CG-acclelerated double method........
Derived CG-accelerated double method,

CJ-CG method AN o a ot mla
RS=CGmethod <ici:saninsnseseoniosss -
CG method " e ceiunics ehalsaiaes s e e e
Preconditioned CG method .,..........
Generalized CG method00c00. o

RS=CGrmethod = . idia. lofe chlciores o aroieis

QUADRATIC PROGRAMMING WITH M-MATRICES

Algorithm 2.1.
Algorithm 2.2,
Algorithm 2,3,
Algorithm 3,1,
Algorithm 3.2,

A BLOCK LANCZOS

Algorithm 2,1,
Algorithm 3.1.
Algorithm 5.1,
Algorithm 6.1,

Algorithm 7.1,

Chandrasekaran's method .,..........
Modified Chandrasekaran's method....
Pang s method Felatetehetslenolors e sisla SHetete 2is
Modified Pang's method

METHOD FOR COMPUTING SINGULAR VALUES

Block Lanczos method evele
Block Bidiagonalization method......
Block B1d1agona11zatlon method

with Reorthogonalization
Iterative Block Lanczos method......

COMPUTING THE SINGULAR VALUE DECOMPOSITION ON THE

ILLIAC-IV

Algorithm 1,
Algorithm 2,

SVD. seowivesevnvnnenaosismes cseebesas
MENEEE" covcvrsscvsvovonsvesns oo

vi

PAGE

68
n
5

81

98
106
117

121
124

142
148

il P

- o o e e AP 1 e 1 Y

Abbreviation

CG method

J-CG method

DJ-CG method

CJ-CG method

RS-CG method

SVD

MINFIT

TABLE OF ABBREVIATIONS

Name

Conjugate Gradient method

CG-accelerated single block Jacobi method
CG-accelerated double block Jacobi method
Compressed J=-CG method

CG method applied to reduced system
of linear equations

Singular Value Decomposition

Algorithm for Least Squares problems

First
appears

on page

1
&9
29
k-5

36
134
148

o

I. INTRODUCTION

This thesis consists of five chapters. In the next four
chapters, we discuss the solution of four important matrix problems
under the assumption that they are all of large order. For the first
three problems we construct algorithms which exploit the sparsity of
the associated matrices. We use a computer with parallel processing
abilities to solve the fourth problem.

Chapter 2 of this thesis deals with the many variants of the
conjugate gradient (CG) method for solving matrix equations., First,
we describe a new preconditioned CG method and derive its many
attractive nroperties. Second, we introduce the CG-accelerated single
and double methods and give conditions for their mathematical equiva-
lence, Third, we apply the equivalence result to systems of linear
equations possessing 'Property A'. Fourth, this original result is
used to show that a new method based on conjugate gradients and
cyclic reduction is equivalent to a popular method of Reid. Fifth,
we demonstrate that our new method is more efficient than Reid's
method in both work and storage.

In Chapter 3 we study the problem of quadratic programming
with M-matrices. We describe (1) an effective algorithm for the
case where the variables are subject to a lower bound constraint,
and (2) an analogous algorithm for the case where the variables are
subject to lower and upper bounds constraints., We demonstrate the

special monotone behavior of the iterate and gradient vectors.

AT T T L W AT M Y

)

¥

The result on the gradient vector is new. It leads us to consider
a simple updatine procedure which preserves the monotonicity of both
vectors. The procedure uses the fact that an M-matrix has a non-
negative inverse. Two new algorithms are then constructed by in-
corporating this updating procedure into the two given algorithms, We
give numerical examples which show that the new methods can be twice
as fast as the original ones.

A Block Lanczos method is introduced in Chapter 4 for computing §
a few greatest singular values and associated vectors of a matrix,
We present a theoretical development of the method and give a theorem
on its rate of convergence. The practical implementation aspects
are then discussed and particular attention is paid to the choice of
block size., We believe that all our results are original, We are -
in fact unaware of any other algorithms which solve this problem,

In the fifth chapter, we study the computation of the singular
value decomposition of a matrix on the ILLIAC IV computer. We
describe the architecture of the machine and explain why the standard

Golub-Reinsch algorithm is not applicable to this problem., We then

present a one-sided orthogonalization method which makes very efficient

b use of the parallel computing abilities of the ILLIAC machine. Our

method is shown to be Jacobi-like and numerically stable. Finally,

a comparison of our method on the ILLIAC IV computer with the

Golub-Reinsch algorithm on a conventional machine demonstrates the
great potential of parallel computers in the important area of

matrix computations.

II. CONJUGATE GRADIENT ACCELERATION OF ITERATIVE METHODS

2.1. Introduction

In this chapter we are concerned with the application of the
conjugate gradient method (CG method) as an iterative solution procedure
(cf. Reid [8]) for large and sparse sets of linear equations.

Let us consider the system

A5 = B) (l.l)
where A 1is a given n X n nonsingular matrix and b a given column
vector., We assume that the matrix A is large and sparse. Instead

of (1.1) we may solve the modified system

clax = ¢y, (1.2)

where C is some n X n nonsingular matrix such that it is a simple

computing task to solve the system
Cz = g ‘

We usually choose C so that the new system (1.2) is "better-conditioned"

with respect to inversion than the original system (1.1) (ef. f11); S.e,

e(c™Iny < k(a)

]M-lH for any nonsingular matrix M. We refer to

where «(M) = M|

k(M) as the condition number of M with respect to inversion (and

). The matrix C is frequently

with respect to the matrix norm

an approximation of A so that the condition number of C-;A is I

small, e.g.,C can be a product of sparse triangular matrices (see [7]). .
We wish to apply the conjugate gradient method to the solution

of the preconditioned system (1.2). We refer to the new method as the

preconditioned conjugate gradient method (preconditioned CG method).

This problem has been studied by many researchers (see [1] for a biblio-

graphy), who considered the case where A and C are both symmetric

and positive definite matrices. We make a slightly weaker assumption

here,

ASSUMPTION 1. There exists some nonsingular matrix S of order n

such that the matrix SC-]'AS-1 is symmetric and positive definite.

We call S a "symmetrization” matrix, The next lemma shows that

Assumption 1 is meaningful.

LEMMA 1,1. Suppose that both matrices A and C are symmetric and

positive definite, If we choose the matrix S such that StS =C,

then Assumption 1 is valid.

Proof. Let B = SC™'AS™'. The matrix B is symmetric because
B = g(5%9)"las™" « g lytast

and is positive definite because

xtﬁx = (S-l‘x)t A(S-%x) >0 for ¥ ¥‘g ¥ O

This apparently new concept of a "symmetrization" matrix mekes it a
straightforward exercise (in Section 2.3) to derive the properties
of the preconditioned CG method from those of the CG method. We see
in the same section that the matrix S need not be formed explicitly
and that only the product StS is required for the preconditioned

CG method. For many problems, several choices of the "symmetrization" ;
matrix are possible (see, e.g., Section 2.4). An interesting problem |
is therefore to determine the effect of the "symmetrization" matrix

on the convergence rate of the preconditioned CG method.

Letting
G=1I-c"ta (1.3)
and
k=cyp, (1)
we can rewrite the syctem (1.2) as
(I o G)z =§) (115)
from which we derive the iterative scheme
i+l i
5()=%()+§ for £ =01, ve; (1.6)

0
where 5() is some initial approximation to X. We refer to (1.6)

as the single method for the system (1.5). Let us write the matrix

A as
A=D+L+VU,

5

where D is a (block) diagonal matrix, L is a strictly lower tri-
angular matrix and U 1is a strictly upper triangular matrix. We then
call (1.6) the (block) Jacobi method if C = D, the (block) Gauss-
Seidel method if C =D + L, or the symmetric (block) successive over-

relaxation method (SSOR method) if
-1
C=(D+al) D (D +) ,

where ® 1is a scalar parameter, Other choices of C 1lead to other
well-known single methods.

We can combine the iterates from the single method to define
a more general iterative procedure

w(i) = i v(i) x(j) Porh R —N@Ees (1.7)

(1)

where the Vj 's are constants such that

il

bl vg.i) =1 for 1L =0,1,.v0 « (1.8)
j=0

We call (1.7) a semi-iterative method with respect to the method (1.6)

(cf. [11]). A particular instance of (1.7) is the second-order procedure

(L) _ (1) (1) (1-1)
x =0, (B (a7 + k) + (1 -B)x]+ (1 -0y,,)X ,
(1.9)
for 1 = 0ilyuwe 5
where o, = 1. Many methods can be expressed in the form of (1.9),

e.g. the Chebyshev semi-iterative method and the Richardson second=-
order method (see [L4]). In the next section, we show that we can also
express the conjugate gradient method in this three-term recurrence

form. We refer to (1.9) as the CG-accelerated singlé method if the

iteration parameters {ai} and [Bi} are chosen based on the CG

method.

‘hu;#ihﬂ

Combining two iterations of the single method (1.6), we

obtain the double method

x(lﬂ) = ng(i) +G+k for 1 e0;Liee (1.10)
where x(o) = 5(0). The iterative procedure (1.10) can be accelerated

by the second-order procedure

x(i+1) 2 (i-1)

= yi+l[pi(G x(i) + Gk + k) + (l-pi)x(i)] + (l—ri+l)x

(1.11)
for 1 =0,1,c.0

where Yl = 1. We want to use the CG method to compute the iteration
parameters h—i] and {pi], in which case the procedure (1.11) is

referred to as the CG-accelerated double method. We need the following

assumption.

ASSUMPTION 2. There exists some nonsingular matrix T of order n

such that the matrix T(I - G'?)T-l is symmetric and positive definite.

It can be easily checked that T =S 1is one possible choice.
We have five goals to accomplish in this chapter: (1) to
describe the preconditioned CG method and to derive its many nice

properties, (2) to determine conditions under which the CG-accelerated

single method and the CG-accelerated double method are "virtually-

equivalent," i,e.

3(21) = x(i) for & «0,1¢es (1.12)

(3) to apply the equivalence result of (2) to the case of the block

Jacobi method when the coefficient matrix A is symmetric and positive

definite, and can be written in partitioned form as

Mz = d . Ke384

are easy to solve, (h).to introduce a new method based on conjugate
gradients and cyclic reduction for the class of matrix equations con-
sidered in (3), and to use the result of (3) to show that our new
method is mathematically equivalent to a generalization of a method due
to Reid [9], and (5) to demonstrate that our new method is more
efficignt than the generalized Reid's method in both work and sterage,
and thus is an effective solution procedure for an important class of

matrix equations. We believe that all five results are original.

2.2. Conjugate Gradient Method

Let us consider the system

Ax = b . (1.1)

~

We assume that the matrix A is symmetric and positive definite,
and that the matrix C has been chosen as the identity matrix. Our

goal is to use the conjugate gradient method to compute the iteration

8

——— B < . i P g

AW R U

parameters (ai} and [Bi) in the second-order procedure

(1+1) (1) (1) (i-1)
l(‘ = ai_'_l[Bi(G% + 5) + (1-61)5] + (l-ai“'l)z s
(1.9)
for 1 =0,1,.¢s ;
where x = 1. We define the residual vector g(i) by
3(1) = h - Ags(i) Zor 4 =0, Lnn s (2.1)
As we have
G=I-A and k=b,
it follows that
CO TP R C
and the procedure (1.9) becomes
3 x(1+1') =q (B r(l) + x(l)) + (l -)x(i-l) l
~ i+1'7i~ ~ i+l’~ .
(2.2) ;
|

for = 0lsove 5

where a = 1. Using the notation

t
(p:9) =p 9,

we can express the conjugate gradient method for solving the system

(1.1) as follows (cf. Rutishauser [10]).

ALGORITHM 2.1 (CG method)

(1) Let 5(0) be an initial approximation to x. Compute

0 oy gl

~

and
~u>u5&m>+gm_
Let Q = 1 and i :=0,
* (2) Repeat until s(i) = 0:
(a) Let
b o= T |
(b) Compute
P N gt
(5(1)’ z(l))
B, := -
I . (gm,Asm)
and ;
(2(1) (i))

5 -1
a - = 1 - Bi —]-'—
i+l ° Bi1 (S(i-l),é(i-ljgg' oy .

(¢) Compute

(i+1) _ o

4]

1+1[Bi£(i) x4 - ai+l)§(i'1)

The residual vectors satisfy the well-known orthogonality

property (see [6])

PLC S ¢) S

0

Thus, in the absence of round-off errors the solution vector is obtained

in at most n iterations of the CG-method. But the computed residuals

are not orthogonal in practice. Our approach is to permit the gradual

loss of orthogonality and with it the finite termination property of

the method, We are concerned primarily with the iterative aspects of

the CG algorithm, In fact, when used for solving large sparse sets i
of linear equations arising from the discretization of elliptic partial
differential equations, the CG method often converges within a number
of iterations small compared with n (see, e.g., [2]). Nonetheless,
this orthogonality property (2.3) is of theoretical importance for 1

it characterizes the CG method among all second-order procedures of

the form (2.2).

THEOREM 2.1. The second-order iterative procedure

§(i+l)

n

= ai+1(815(1) + 5(1)) + (1 - ai+l)5(i'l) OF i 201540 5

where a1 =1 and

for i =0,1,...,

reduces to the conjugate gradient method (Algorithm 2.1) if and only if

(g(i), z(j)) =0 for 1 43.

Proof. We only have to prove the sufficiency part. Let i = 0.

From (2.2), we obtain

@) =g 5@ 4 (O

Ll

Thus,

H

which becomes

2(1) = r(o) - BOAS(O) . (2.4)

~

As (5(0), z(l)) =0, we find Ei

bols (E(o)) I(o)) L BO(E(O)’ AI(O)) g
It follows that (s(o), 3(0))

(r{Oj Artoj) 3

~ IR

Bo

Now let i > 1. From (2.2), we get
(i-1)

z(i+1) » ai+1('BiA£(i) i E(i)) # (1 =0,z . {2.5)
Therefore,
0= ai+l[-Bi(£(i), ar(ty 4 (g(i), 5(1))]
because
D, (1)) | () (1)) o
Consequently,

(r(i), r(i))

" T,

From (2.5), as (z(i'l), £(i+1)) = (E(i'l), £(i)) =0, we get

Y1), (81 5

0 = -ai+1Bi(£(i-l))A£(l)) o (l - ai+1 r

Since o, =1, we can replace i by i-1 in (2.5) to obtain

O S C IR G PRl

or, equivalently,

L 1, (1) (i-2) (1-1)]
5 _-51-1{0‘1 y ek . AEAL ;
Therefore,

(E(i-l): Az(i)) = (Ag(i'l), £(i))

= _,1_(5(1), z(i))

i"i-1

(2(1-2), L1y . (5(1-1)» (1),

because I 2 = 0. We can now simplify (2.6)
to
& B, ; :
R . (1) (1) (i=1) _(i-1)
Lo @B LA Rl T > X)

or equivalently,

o, W,y
hs [‘51-1 (E(i-l), s(i-l)) o 1] o T G

We conclude that
B- (r(i)’ r(i))

5 1 ~

-1
> i
i1 = [1 TP (D, LD, ozi] ‘ @

From the recurrence relations (2.4) and (2.5), we can verify

by induction that

i (i1
Pt VL BBENE o 2@ for 1-0,1,..., (.7
‘20 J
dJd
where the a§i+l)'s are constants. As

£(1+1) - 0 _ -A(z(m) - %9

~ ~ ’

13

it follows that

. i i
£ L0 1 7 D M0 e b w00 . 2.8)
jo 3 |

The conjugate gradient method is therefore a special instance of the

polynomial acceleration procedure

§ﬁﬂ)=gm+PJMém for 1 =0,1,..0 (2.9)

where Pi(A) is a matrix polynomial in A of degree i. Let us define

an error function

@) = (g -x Mg -%), (2.10)

where M 1is some n X n positive definite matrix, The conjugate
gradient method possesses the following optimality property (see

(3, B 39C1).

THEOREM 2.2. Among all polynomial acceleration procedures of the form
(2.9), the conjugate gradient method generates an iterate 5(1) that

minimizes the error function fA(g(i)) of (2.10), for 1 =1,8,,:s &

A few interesting results follow from Theorem 2,2. Let us
assume that the matrix A has only p < n distinct eigenvalues.

Then there exists a matrix polynomial Qp(A) of degree p so that

Q,(8) =0.

14

Therefore,

and the CG method converges in at most p steps. The same result
also holds if the matrix A has a large number of distinct eigenvalues

but the initial error vector

L) _ ()

s z -
lies in a subspace generated by the eigenvectors associated with only
p of these eigenvalues, The CG method is thus optimal for the
particular eigenvector mix of the initial error g(o). As the iteration
proceeds, the extreme eigenvalues are approximated especially well and
the CG procedure would then behave as if the corresponding eigen-
vectors were not present, Hence we often observe a superlinear con-
vergence rate for the CG method (see, e.g., [2]). It follows that
for rapid convergence the eigenvalues should be sparse at the extremes
and dense in the center, Convergence would be slow if the eigenvalues
were packed in the extremes.

Another consequence of Theorem 2.2 is an error estimate of
the CG method. Assume that the eigenvalues of matrix A are included

in the interval [q,B], where « > 0. Then by choosing an appropriate

Chebyshev polynomial acceleration, we get (see [3, p. 428])

i\p=-a

where Ti is the i-th degree Chebyshev polynomial of the first kind.

15

Since

(vk + 1)i » (vk - l)i
vk -1 vk + 1

TRUE =1

o, 1O
2Ti(6 -a)

where « = B/a, the inequality (2.11) becomes

: 24
fA(g(l)) < u(ffé-z—%) r fA(g(o)) y {2.12]
K +

For fixed i, the error bound of (2.12) decreases as « decreases,
and is thus tightest when o and B are the extreme eigenvalues of
A, in which case the number « is the condition number of A with
respect to the spectral norm. The bound is, however, pessimistic
asymptotically.

The above convergence properties of the CG method are
important when we consider the choice of a preconditioning matrix

in the next section.

2.5. Preconditioned Conjugate Gradient Method

We wish to apply the conjugate gradient method to solve the

preconditioned system

clax = ¢y . (1.2)
We construct the matrix equation
sc”las™ly = sc7hy (3.1)

where u = 8x and S is the "symmetrization" matrix of Assumption 1.
Now we apply the conjugate gradient method to the system (3.1).

16)

ALGORITHM 3.1.

(1) Let 5(0) be an initial approximation to u. Compute
£ o scly - selas™H(@
o (5(0)’ 2(0))
and
ofEF o glokl o)

Let Q) := 1l and i :=0.
(2) Repeat until M - g

(a) Let

s O e

(b) Compute

w4 - | - i
2 sl - ety

~

GO ;(i))

™

S e e

and

-(1) -(') -1
o, :=[1 - i = . i] .

i+l 1 -1 (r(l-lT, -(1-1)) o,

(c) Compute

(i+1) _ (1) , @) (i-1)
1 t= 0y (BT +)+ (1 -0y i
Let us define the iterate vector 5(1) by
st ey for 1=0, 1, ..., (3.2)

(1)

and the pseudo-residual vector 2z by

17

Z(i) = C-IB = C'lAz(i) for 1 =0,.1, cue » (3.3)

~

suvstituting st for uP ana sV for FY) in Algorstmm 3.1,

we get an iterative procedure for

e w g™y (1.2)

(Preconditioned CG method or CG-accelerated single method)

ALGORITHM 3.2.
Solve the system

(0) te an initial approximation to x.

(1) Let x
L o Y
Compute
(SE(O)’ SE(O))
Pa 25 (529, scaz®))
and
0 o g g 4 500

Let o, :=1 and i := 0.

(2) Repeat until g(i) = Ot

(a) Let 1 :=1+ 1L,
(b) Solve the system

(C) Compute (Sz(i)’ Sz(i))

; R e T
%n T TBLL (gD, s D) &

18

A R G S O e e 5 A N TN S - b e

and

(i-1)

i+
x(1 : 4 N & - TR

X : iﬂ(Big(i) + 5(1)) + (1 - a,

1+1)

Observe that we need not form the matrix S explicitly. It
suffices to have the product StS. Also, note that the preconditioned
CG method reduces to the generalized CG method of Concus et al, [2]
if A and C are symmetric and positive definite matrices, and if

sbs = c.

From (2.3) and (3.3), we get that the pseudo-residual vectors

satisfy the conjugacy property
(21, 529 = 0 for 143 . (3.4)

Since the matrix StS is symmetric and positive definite, the precon-
ditioned CG method therefore terminates in at most n steps in exact
arithmetic. In practice, the calculated pseudo-residuals do not
satisfy (3.4) due to round-off errors. Our approach is to permit the
gradual loss of conjugacy and to consider primarily the iterative
aspect of the preconditioned CG method.

The next theorem, a direct consequence of Theorem 2.1, states
how the conjugacy property of (3.4) characterizes the preconditioned

CG method,

19

T

THEOREM 3.1. The second-order iterative procedure

i+l i i i-1 .
ﬁ() =ai+1(51.§() +§(Y+ (- °‘1+1)’~‘(' for 1=0L.e
where a = 1 and
31 ool - aglt) for 1 =0,%, .0 ;

reduces to the preconditioned conjugate gradient method (Algorithm 3.2)
if and only if

52V, 29y = 0 for 1 # 3. o

From the relation (2.8) we get

G L 0) 5 () g3p20) gy
J=0

3eess

where H =35c"1As™’ and the T§i+l)'s are constants. Thus,

sx (1) _ 52 (0) o g 5 (1 lgd 1571, (0) g

or I =0, 3
j=0

1

where K = C A, so that

i
L) 0) s (341)dy, (0) for Vel « 155

The preconditioned CG method is therefore a special instance of the

polynomial acceleration procedure

£ 504 q ;) 29, (5.6)

~

20

e

TOTTE—T

where Qi(K) is a matrix polynomial in K (= C'lA) of degree i, Recall

the error function

£,(p) = (¥ - % M(x - x)), (2.10)
where M 1is a positive definite matrix. As

(W -y, selast W o) = -y, stsetat) -),

the following optimality property of the precondition CG method can

be derived from Theorem 2.2,

THEOREM 3.2. Among all polynomial acceleration procedures of the
(1)

form (3.6) , the preconditioned CG method generates an iterate X
that minimizes the error function fB(gg‘(i)) of (2.10), where BEStSC'lA,

for i-= 1,2,.0- .

We can draw from Theorem 3.2 conclusions similar to those

lAs-l is symmetic

from Theorem 2.2, The assumption that the matrix SC~
and positive definite implies that the eigenvalues of C-lA are all
real and positive. Had the matrix C A only p <n distinct eigen-
values, the preconditioned CG method would converge in at most p steps.
The eigenvalue distribution of C'lA determines the rate at which

the method converges. Convergence would be fast if the eigenvalues
were sparse in the extremes and dense in the interior. We often

observe that the method converges superlinearly.

21

Using arguments similar to those in [3, p. 428] and the last

section, we obtain an error estimate for the preconditioned CG method:

Vik + 1

2i
fB(z(i)) s “(‘/—K——i) fB(z(O)) , (3.7)

t

where B = s’sc™l

A and k 1is the spectral condition number of C-lA.
A good preconditioning matrix C should therefore have the
following features:

(a) it is a simple computing task to solve matrix equations with
coefficient matrix C,

(b) the matrix C-lA has a favorable eigenvalue distribution, i,e.
either that the eigenvalues are sparse in the extremes and dense
in the interior or that only a few of them are distinct, and

(c) the spectral condition number of C-lA is much smaller than

that of A,

2.4, Equivalence Results

Consider the double method

) _ (1) g 4 for i=0,1,..., (1.10)
where x(o) = 5(0). Recall that
e2I-cla (1.3)
and
k=cTp. (1.4)
22

- A Y- NN A SRR TN

The procedure (1.10) can be regarded as the single method for the system

(I-6%)x=0k+k

.
~ ~

(k1)

Suppose that we have chosen a nonsingular matrix T such that the
metrix T(L - G°)T™' is symmetric and positive definite. Let us

apply the conjugate gradient method to the system

[T(T - Ge)T'l]Tg = T(Gk + k) .

ALGORITHM 4.1, (CG-accelerated double method)

(1) Let
NORNON
Compute
e S | 30 |
(26(®), 74(©)
i (1), (1 - A)
and

Let Ty i= 1 and i :=0,

(2) Repest until w) = o:

(a) Let

(b) Compute

(¢) Compute
e (Tﬂ(i)x T,E(i))

5), W))

g = = = —
i+l Pi1 (T;(:\. l), TE(i 1)) Ty
3
and
(iv1)" (1) (1) (i-1)
X = Tpleg® + 3] v (er, 0¥ . O
We now assume that the condition

Bi =1 for & =0,1;0 5 (k.2)

holds for the CG-accelerated single method (Algorithm 3.2). The three-

term recurrence defining the method thereby simplifies to

Q”U=a (%u)+y+(l-%ﬂ&h4)fw i=0,L...,

(k.3)

i+l

where @, = 1. Replacing i by 2j +1 in (L.3), we get

23 Lo (gx(23*)

2j+2 +k) +(1-qa A

242’ %

Also from (L4.3), we obtain

G%(23+l) s

1
Q

and

1-a,, :
ax(BI-1) - a1_ £2d) (B \5(2a-2) -x

T

It follows that

(25+2) _ 2 (23)
X = O 540% 541 (65 + G+ K)
(0]
0§42 (23)
+[l+—a-g;—(l-a2'j+l) "a2.j+2]£

(9 S8

23 oge1) (1 = Opy) S

We use (4.4) to define one more iterative scheme.

ALGORITHM 4.2. (Derived CG-accelerated double method)

(1) Let
NONENON
Compute
$9) e g (e B Y,
Po.« ¥~ Ut
and
v g 50 4 (0
~ o ~ ~
Let
= 0 .
(2) Repeat until ﬁ(i) = 0:
(a) Let
i1 e=314+1,
(b) Compute

1
|
!

ﬁ:__.a————-—————-——-—-—-—-——-.‘"f — — ,

(¢) Compute

(0}
- G 2i+2 (o _ >
sy 1= 3 ¥ il Qpipp) (1= 0)
21
g %i+o Poi+1
. Ti+1
and
(i+l) _ o ~ I\(i) (i) o (i-l)
x :—Yi+1[°iE +x] g (l-Yi"’l) x . B3

We observe that Algorithms 4.1 and 4.2 are identical in form.

Our goal is to prove that they are mathematically equivalent, i.e.

x(i) _ x(i) I N T T

Because of Theorem 3.1, we only have to show that
(Tir(l), ng(J)) =0 for 143,
where

E(l) = Gk + 5 - (1~ Gg) x(l) for 1i=0,1,... .

Let us define the spectral radius of ann X n matrix M by

the number
Q(M) = max lki| ’
1<i<n

where %1, aoe 3 %n are the eigenvalues of M, We make the assumption:

ASSUMPTION 3. o(G) <1.

The matrix (I + G) is therefore nonsingular because all its eigenvalues

are bounded away from zero, We now choose the "symmetrization" matrix

T of Assumption 2 as

26

e

y-L

T=8(I+G) ", (L.5)

where S is the "symmetrization' matrix of Assumption 1. It remains
to verify that the matrix B = T(I - Ge)T-l is symmetric and positive

definite. As

(I - G2)T-1 =3 =~ (SGS'l)2 ’

the matrix B is symmetric. Hence the eigenvalues of B are real.

By Assumption 3, the eigenvalues of (SGS-l) are all less than unity

in modulus. Therefore, all the eigenvalues of B are positive.
Since the derived CG-accelerated double method has been con-

structed directly from the CG-accelerated single method, we have that

(1) o 421)

~

for I =0,l.e4

Now,
g cag e+ - @- 6 g
= (T +0 5(21) for 4 =0,1,.es 5

where

231 < k - c‘1A5(21) for ¥ =0,L.ee s (3.3)
Thus,

Tﬁ(i) ~ 32(21) h

But from Theorem 3.1, we see that

522V, 553y < 0 for 1437 .

We have thereby proved the desired equivalence result.

27

5

e A ——————

4 e S A AN M

THEOREM 4.1,

The CG-accelerated single method and the CG-accelerated
double method are "virtually-equivalent" if the iteration parameters

{Bi} of the single method satisfy

Bi =1 for 1 =0,1,.00 5

and if the "symmetrization" matrices S and T of Assumptions 1 and 2
are chosen so that

7 = 80T + 67 .

Al

Note that another possibility for the "symmetrization" matrix T is
P=8 5

but then the above "virtual-equivalence" result no longer holds.

2.5. Block Jacobi Methods

In this and the ensuing section, we consider symmetric and

positive definite matrices of the form

(5.1)

where M1 and M2 are square matrices such that the systems

Mo =4 - o2 = % :

are easy to solve, Many matrices can be described by (5.1), e.g.

those matrices that possess "Property A" [1l1].

28

The block Jacobi method corresponds to the preconditioning

matrix

C = : ’ (5.2)

As both matrices Ml and Mé are symmetric and positive definite,

it follows that C 1is, too. We have

0 | -M{lF
G e (5.3)
=M lF I 0
2
and
M,
5 = . (50)"')
w2,
Our goal is to show that the CG-accelerated single block Jacobi
method (J-CG method) and the CG-accelerated double block Jacobi
method (DJ-CG method) are "virtually-equivalent,"
There exist matrices Sl and 82 such that
8% = and s¥s. = (5.5)
11 Ml 272 - *
(5.6)

All is well because StS =C (see Lemma 1,1). Also, let

B = sctas™t,

29

o T— e —

S g

Since

I

Tt t.-1 ’
(s)rsT] I

its eigenvalues are either unity or of the form 1 + 02, where o
is some nonzero real number, As the matrix B 1is positive

definite, it follows that o> < 1. Now,

6=1-88",

and so the eigenvalues of G are either zero or of the form + 02.
Hence

p(@d) <1,
i.e. Assumption 3 is valid. We can therefore choose the matrix
S(T + G)-1 as the "symmetrization" matrix for the double method.

Finally, we must show that
B. =1 o R0 . o s (4.2)

for the J-CG method. We write (1.1) as

=
=
4]

b
- =g, (5.7)

2 22

]
=
e

Following Concus et al, [2], we choose the initial vector

oy .
x(o) X, is some approximation to Xy

~

(5.8)

Eéo) = M (b, - Ft§£0)) ,

so that

.

As
LSRN

= - - for i =0,1,..., (Algorithm 3.2)
i (E(l)’ AE(I))

we see that

BO =i
From the recurrence relation

5(i+1) £(i-1) :

8, (x4 + (-85 1 + Loy, x

1+l

for i =0,1,... , (1.9)

where o, =1, we get (ef. recurrence relation (2.5))

E(i+l) l+]_B (1-c A)z(l) +{1- B)Z(l)]'i'(l °‘1+1) (i'l)’
or equivalently,
2 (1+1) o I_M-lF (1) ,(1)
~l = ai+1 Bi (]-Ft 1 N(i) + (l‘Bi) N:(Li)
(i+1) M, l s Zo Z
)
(1-1)
%1
A (1+ai+l}((i-l) for 1 = 0,1,... . (5-9)
%
It follows that
2 =g,
Thus,
Bl 1

Using (5.9), we readily prove by induction that

oL

(i) _ 3
zE =0 and Bei 1
for i =0,1,... . (5.10)
(2i+1) _ %
Z, =Q and B2i+1 =1,

THEOREM 5.1. The J-CG method with "symmetrization" matrix S defined
-1
by (5.6) and the DJ-CG method with "symmetrization" matrix S(I + G)

are "virtually-equivalent" if the initial vector is chosen by (5.8).

2.6. A Compressed Method and Cyclic Reduction

In this section, we first give two special methods for solving

the system
M| F X b
1 ~1 ~1
5 = : (5.7)
RSN S R

and then use the result in the last section to show that the two methods
are equivalent.

The first method is based on a procedure introduced by Reid [9].
We consider the J-CG method with the special initial vector

©)
Lo) . (5.8)

(- T”)

~

We have seen that

By =1 for i =0,10vs & (k.2)

32

Thus,

Q
(21+2) _ 2 (21) _2it2 (21)
x = 44y (G T + CE+ k) + 1+ Gy (%2141) " %gan | X

PR ik hnteia o ial

2i+2 2i+1 i
oéi+2

%y

(L -y, - aei)é(gi-g)

for I=0,l0ec & (L. k)
Since

G25(21) £ OE+ K - 5(21) - (I+6) 5(21))

we can simplify (L.4) to

ghatay 5(21)

~

5l (e1) 1 ot} (21-2)
R e Al |

for 1 =0,1,. 50 o (6.1)

To save work, we update only 5§21) in (6.1). If we desire 5é21)

2

we solve the system

(1) _ rb(21) !
Me BTy i
as gigl) = 0. We update the pseudo-residual vector E(l) recursively
by the formula of (5.9)
(21+1) t (21) (2i-1)
2 Gte P gy * (L - %i+1) 2 ’
for 1 = 0yl
(21+2) (21i+1) (21)
% 21+2M11F PO B

where al==l. We can now present what we call the compressed J-CG

method (CJ-CG method).

M ALGORITHM 6.1. (CJ-CG method)

(1) Let x(o) be an initial approximation to x,. Solve the system
1 (0) t, (0)

Moo " =R =T Xy

53

R

(2)

Compute

~(0) (0)
51 b, - ?5.]_ -F

and solve the system

Let
is=-1
and let 5(-2) be an vector not equal to 550).
Repeat until (x(21+2) ~§21)) = 0:
(a) Let
2L o
(b) Compute
-
1 ’ i=0,
a2i+l 7 4 ((21) A(gl)) B
e (z(2i 1) 2(21-i7; At L2
\ ~2 2
and
A(2i+1) t._(21) a(21=1)
=%F Bt (1-a,08 .
Solve the system
M (21F1) _ 5(2i+1)
2&2 =% 3
(¢) Compute
((2ﬁi) A@ru)) -1
a | %2 » %2 1
2142 * (21) A(21)
(z Q
> B 2i+l
and (
s 21+2) (2i+1) s(21)
= %i40F2 tl e Bl By
Solve the system
(21+2) A(21+2)
Z1 =%

3L

(d) Compute

(2i+2) _ x(2i))

’
\El

Ooi41 o4

and

§£21+2) ” 5](-21'.) + (§£21+2) B 5(21)) {

(3) Let 5£2k) be the accepted approximation to X,. Solve the system

(2k) _ t_(2k)
e STt .

Let us turn our attention to the double method. It can be

viewed as the single method for the matrix equation

(I-6%)x=0k+k. (4.1)
As
ik
i B I-Ml]‘FMELF’ ot ,
0 lI-MglFMllF

the system (4.1) is the uncoupled equations

(1 - w7 W Fx, = e, - ME ST, (6.2a)
(1= M;]TtM;lF) x, = Mglge . M;lFtMI]'Bl ; (6.20)

We refer to the equations of (6.2) as the cyclic reduction (ef. [11])

of the matrix equation

-1

e aeag%m[&fi) * (1 - =) (1 - 51-) (_:éei) -é?i-?))]

M |F =1

b

= it L B ' (5.7)
Fr LM\ 5 L2

In the last section, we have chosen the matrix S(I + G)-l as the

"symmetrization" matrix for (I - G°). As

[8(x + 64 (1 - Syar.+ &t = sl -)™

and

(5.6)

we see that the matrix

5, (1 - MllFMElFt)Sil

is symmetric and positive definite.

An effective procedure for solving the matrix equation (5.7} |
consists of
(a) applying the CG-accelerated single method to solve the reduced
system (6.2a) with "symmetrization" matrix §,, and

(b) solving the system

(k) _ t_ (k)
B “R-FE
where ggk) is the accepted approximation to 51 in (a).

We call this procedure the RS-CG method.

ALGORITHM 6.2 (RS-CG method)

(1) Let

Solve the system

Mlﬂ(o) =k - FM;IP'E o T FM;]Ft)xim '

Compute

2 (0) Mlg(O)
;. (g(o), (m, - m'Fgl))

and

S0 L ol oy

Let Ty = l and i :=0,

(2) Repeat until g(o) = Q2

~

(a) Let

(b) Solve the system

M9

(¢) Compute

) ot

(g7, Mg
e, o - e,

@ o, (g, wgtt)
LS S (9(1-1Y RESN ri

Py

37

o R FM;L% -y - FM;]Ft)X£i) .

s

and

i+l i i ! 1-1
¥£ " Y1+1[919(4 x§ 1+ - Yi+1)¥§ &

(3) Let x(k) be the accepted approximation to x Solve the system

1 il

(k) _ t_(k)
e *h-FEH - B

We proceed to show how we can derive the RS-CG method from the
DJ-CG method, Theorem 5.1 states that the J-CG and DJ-CG methods

are "virtually-equivalent," i.e.

5(21) i X(i) B e o

n

for i

Also we know that

22 - g for i

~

ks aare., 2 (5.10)

Now, let us use the DJ-CG method to update xgi):

X§i+l) = Yi+1(013£i) 5 ¥§i)) +(1- Yi+1)¥§i-l) etk

(6.3)

where ¥y = 1. As

W 1+ o)k - @ - o)yt

125

(1 +6)k - (1 -®x?)y
(T + G)g(zi) ’

38

we get

¥ for f =01 ... i
Let
H=1-M mF
and
p e u'y, - mE'y,
Then

5 M{%gl x£2i) - M{lFM;l(be thizi))
=h - (I H)§£2i) 3

(1)

We define the residual vector q

g(i) =h - (I- H)x(i) for 1 -=10,1,..¢ o

1
Thus,

for izo,l,.oo

g1 - glen) |)

so that the recurrence relation (6.3) becomes

@) o 0 0

i-1
= v (P8 + gy)Z(:

il
xgl : BRETS

Ior I =0slscve 3
where ¥y = 1. Now,

i (Slﬁiei)’ 315{21))

(1)

- @, wg®)

39

(6.4)

(6.5)

(6.6)

for the reduced system (6.2a) by

(6.7)

(6.8)

(6.9)

o e

and
(), 2(1-c??) - (sz(e”, s(-?)z?Y)
Therefore, the iteration parameters {oi] and {ri] in the DJ-CG ’

method can be given by

MIS(1)

, = 2 {59 , (6.10)
; ,MﬂI-mgGJ)]

(1 1= 0.,

i . (6.11)

Teer = < [1 pi (ﬂ(i): Mlg(i)) .]-1 :
L™ R @0,y]

and

v
r

The iterative scheme (6.9) with its iteration parameters given by
(6.10) and (6.11) is a second-order procedure for solving the reduced

system (6.2a). Since

(1) (J'))

(319 ¥ Slg (S (21), S (EJ))

1%1

0 for i #J,

we conclude that the procedure is identical to the CG-accelerated
single method (Theorem 2.1),

We have therefore derived the CJ-CG method from the J-CG
method, and the RS-CG method from the DJ-CG method. As the J-CG
and the DJ-CG methods are "virtually-equivalent" by Theorem 5.1,

we have proved our desired result:
Lo

THEOREM 6.1. The CJ-CG and the RS-CG methods are "virtually-

equivalent,"

2.7. Computer Implementation

There are two popular versions of the conjugate gradient method.
One is the original two-term version due to Hestenes and Stiefel [€],

the other is a three-term recurrence version due to Rutishauser [10].

We have given our algorithms in the second version for expository
purposes. In [8], Reid compared the two versions and found that
the Hestenes and Stiefel version is more efficient in both storage

and computational work.

Let us present the Hestenes and Stiefel version of the conjuge'e

gradient method for the system
Ax = b, (1.1)

where the matrix A is symmetric and positive definite.

ALGORITHM 7.1. (CG method)

(1) Let 5(0) be an initial approximation to x. Compute

Let

2@ 1o O

Compute

and

Let

(2) Repeat until r

(a) Let

(b) Compute

(e¢) Compute

and

(d) Compute

and

ite= & 3,

2(1-1)

1), s(i'l) - By

~

(E(i)’ £(i))

by 7a (2(1-1)’ E(i-ly)

ko

T ——)

Algorithm 7.1 requires one matrix-vector product Ap and

5n multiplications per iteration., We have to store four vectors X,
r, p and Ap, in addition to the matrix A, The three-term version
of the CG method (Algorithm 2.1) requires n more multiplications per
iteration and one more vector of storage.

Proceeding in a similar manner as in Section 2.3, we derive
from Algorithm 7.1 the two-term version of the preconditioned CG method
for the system

clax = ¢y . (1.2)

ALGORITHM 7.2 (Preconditioned CG method)

(1) Let 5(0) be an initial approximation to x. Solve the system

C5(0) =g Az(o) y
Let
© ,_
and solve the system
5(©) - 2@
Compute
(E(O): stsz(0))
. (B(O)’ StSE(OT)
and
LS P) Y o
Let
L =0 o
L3

(2) Repeat until z(i) = or g(i) = 0:

14

10

(a) Let
O R, 8 S

(b) Compute

(1) orgieB) - 2is=1)
~ i-

N

(¢) Compute
(z(i), StSz(i))
i’=2;G,U;§%ZG-D3'

(d) Compute
(1) (1) (i-1)

B =2 * R

-and solve the system

(e) Compute
(E(i)’ Sth(i))
9 (éli)’ Stsé(i))

and

x(1+1) = x(l) ag c.g(l) . o
~ ~ 1
An iteration of Algorithm 7.2 requires three matrix-vector
products Ap, StSE and stsé, one matrix equation solution with
coefficient matrix C, and 5n multiplications. Storage is required

for the three matrices A, C and Sts, and for the five vectors

X, %, p» p and Sth. We can store the vector StS§ in Sth.

Gt s

In the special instance where Sts = C, Algorithm 7.2 reduces

to the generalized CG method of Concus et al. [2]:

ALGORITHM 7.3 (Generalized CG method)

(. Teb- 27 e an EaEkial apsreelinetin x. Compute

L(0)

~

(0)

:=b - Ax
and solve the system
c5(®) = ()

~ ®

Let
N R
Compute (z(o), z(o))
S 2,)
and
NCIRNONRON
Let
1 5=0
(2) Repeat until g(i) =0 or g(i) = Q:
(a) Let
p ISR (5

(b) Compute
(i) r(i-l)

I =
~

and solve the system
C5(1) -

C t X -
(¢) Compute (5(1), (1))

ey 0:-“'1), E(i-ﬂ) :

it

(d) Compute

B(i) e E(i) % TiB(i-l))
(e) Compute
(z(i), r(i))
s D, apD))
and |
z(i+1) ey ?S,(i) i ciz(i) : o *

Algorithm 7.3 requires one matrix-vector product Ap, one matrix
equation solution with coefficient matrix C and 5n multiplications
for each iteration. We have to store the two matrices A and C, |
and the four vectors x,,r, p and Ap. We can store the vector z
in Ap.

We now consider solution procedures for the system

14
o’

. (5.7)

o’

i (5.2)

Lé

i

As the RS-CG method is the CG method applied to the reduced system

(6.2a), we can convert it to the two-term form without much difficulty:

Algorithm 7.4. (RS-CG method)

(1) Let x§°)

be an initial approximation to X - Compute
~(0) .. - -1ty (0)
g =y, - By, - () - PCEO)y)

Solve the system

Ml9'(0) - 309,

Let

.Bio) el 9(0)
and

§£0) biE! g(o))
Compute ©, g(o))

96 =" (go)’ ﬁio) 5 FM?'thio))
and
it o= g® ol .

Let

k7

(2) Repeat until either gg?) =Q or g(i) = 03

(a)

(o)

(e)

(a)

(e)

Let
i =1k 1,
Compute
alt) - wlisd) i-1)
C AR - 0yafh "
Solve the system

Mlg('l) gl g('l) ;
Compute) -
(3(1)’ §(1))
B (gﬁaﬁzaﬁfn))
o) cm 1) 4 £ g1
and 5 .
:§§_l) - g(l) < Ti§£l-l) :
Compute : '
(g(l), a(l))
- <z§?7; 31 - nC'FY (1
and

E£i+1) o x{i) & °12§i) :

(k)

(3) Let b be the accepted approximation to x.. Solve the

~1

system

(k) _ p (k)
e =R%q - o

An iteration of Algorithm 7.L requires one matrix-vector
product with F and another product with FU, one matrix equation
solution with coefficient matrix Ml and another solution with M2,
and 6nl multiplications, where ny is the order of the vector %

We must store the matrix A, the four n,-vectors y,, § s By and

il

El’ and the two (n-nl)-vectors necessary for computing FMglFtEl. The

vector g can be stored with one of the two (n-nl)-vectors.
It is not straightforward to convert the CJ-CG method to the

two-term form., Since

,(21)

&0y (5.10)

and the method is "virtually-equivalent" to the RS-CG method, we
conclude that any two-term version of the CJ-CG method would be
essentially Algorithm 7.4. Every two steps of the CJ-CG method
(Algorithm 6,1) requires the same number of matrix-vector products
and matrix equations solufions as the RS-CG method, plus 3n + 2nl
multiplications. Storage is required for the two n-vectors 2z and
2, and for the two nl-vectors Xy and 651, in addition to the
matrix A.

In the following table, we summarize the work and storage
requirements of the four CG-based methods for solving the matrix
equation (5.7). We give the necessary work for one step of each
method. As one step of the RS-CG method is equivalent to two steps

of the other three algorithms, we halve the work requirements for

that method,

L9

e e e~

N AB a0 - aii

i

—

——-

Matrix-vector products Solve
Method | F AN A ' Mult. Storage
G 1 y 1 ¥ 1 0 0 5n Ln
J-CG 1 31 1 1 i 1 5n Ln
CJ-CG 0.5 1 0.5 0 0 0.5 0.5 L.5n+n, | 5n
RS-CG 0.5 | 0.5 (0] 0] €5 0.5 3nl 2n + 2n,

It is obvious that the CJ-CG or the RS~-CG method is about twice as

fast as the J-CG method. In the next section we give three examples

showing how a (block) diagonal matrix preconditioning (= J-CG method)

can greatly accelerate the convergence of the CG method. As .

can be chosen so that n, = n/2, the RS~-CG method is always more efficient

than the CJ-CG method in that about n fewer multiplications

1

are required per iteration.

2.8. Applications of the RS-CG Method

The conjugate gradient method is already well established as
an effective iterative solution procedure for large and sparse matrix
equations, We wish to show here that the CG method, coupled with
cyclic reduction, can be particularly useful for solving certain
classes of matrix equations which arise in elliptic partial differential
equations problems.

Our presentation here is very similar to that of Hageman [5].
We consider the second-order self-adjoint partial differential equation

-(a(x,y)u), - (a(x,y)uy)y + olx,y)u = £(x,¥), (x,¥) €R (B.1)

50

defined in a bounded rectangular region R and subject to the boundary

conditions

—é—dl)-au’; =0 or u(x,y) = constant, (x,y) < 3R . (8.2)

We assume that the given functions a and ¢ are continuous in

R=RUOR with
a(x,y) >0 and (x:y) >0, (x)y) ER. (8.3)

A spatial mesh is then imposed on R. Discretizing (8.1) and (8.2)
with a five-point difference approximation [11, p. 183], we obtain

the matrix equation
Ax =b, (1.1)

where the n x n matrix A is symmetric and positive definite.

{ We divide the mesh points into two sets, one set consisting
of square (or black) mesh points and the other consisting of circle
(or red) mesh points. The division is done by first making the lower
left corner point a circle point and then proceeding by making square
points of the four nearest neighbors of the circle points and making
circle points of the four nearest neighbors of the square points.

We index the mesh points by indexing first all the square points |

consecutively by rows and then all the circle points consecutively

E by rows., This ordering is called a point red/black ordering. We give

an example in Figure 1.

m+1l s+m+1l m+2 s+m+2 2m s+2m
& T
1 I\ LR
Lr \J
s+1 1 s+2 2 s+m m
FIGURE 1.

With the point red/black ordering, the matrix equation (1.1)

can be written in partitioned form as

D | H b
FIEHE. e
BN B f NEa L2

where Dl and D2 are diagonal matrices. We have shown in Section 2,6

that the system (8.4) can be cyclically reduced to the lower order

matrix equations

(1 - o]'® D3 'H%)x, = D'y, - DJ'H D]y, , (8.58)

(1 - D;'E"0" H)x, = 03'p, - D3'EOD]'D, . (8.5b)

2
The two sets of equations are disjoint, one set involving only

the square points and the other involving only the circle points.

Let us consider the system (8.5a). Because of our use of the five-point

i Loy

difference approximation, the matrix (I - D1 5) corresponds to

a nine-point difference approximation, Figure 2 illustrates the

typical coupling of a (shaded) square mesh point to the eight

(darkened) neighboring square mesh points.

52

| it s

.1—%}, f

FIGURE 2

We proceed to describe another way to order the mesh points.
Assume that there are p# horizontal mesh lines. We split the p
blocks of successive £ horizontal mesh lines into square blocks
and circle blocks; we make the first block a circle block, the second

one a square block, the third a circle block, and so on. We index the

blocks from 1 to p by indexing first all the square blocks con=-

secutively and then all the circle blocks consecutively, as shown

in Figure 3.

2 &

a2 O [

1 e |

a+tl O [} ¢ 1lines

FIGURE 3.

Within each block, the mesh points are indexed consecutively by rows.

This ordering is called an £-line red/black ordering.

Let £ = 1. With the l-line red/black ordering, the matrix

equation (1.1) can be written in partitioned form as

T | H b
FACC)
ot BT AT o

where T, and T2 are tridiagonal matrices. The cyclically reduced

1

systems obtainable from (8.6) are

(1 - e Yy, = oy, - e, (B.78)

n

(1 - ;') x, = To'p, - MR, . (8.7)

The system (8.7a) involves only the square mesh lines. Indeed, the
5 -lHT-lHﬁ . 2 .
matrix (I - Ty o) corresponds to a three-line difference approxi-

mation, as illustrated in Figure L,

sl O
o
- all the mesh
points on the
o 3 square lines
are caupled,
s=1 O

FIGURE L,

g

We wish to compare the CG, J-CG and RS-CG methods for the

numerical solution of the differential equation (#.1). The CJ-CG
method is not included because it is both "virtually-equivalent" to
and less efficient than the RS-CG method. We have written three }
computer programs in the ALGOL W language implementing the three E.
methods. Our programs were run on an IBM %70/168 computer at the
Stanford Linear Accelerator Center. The time we give is machine
execution time in seconds.

We choose the functions a, o and f, and the boundary con-
ditions so that the exact solution to the discretized problem is known.
Also, we choose the initial vector 5(0) so that each component of
the vector is a random number from a uniform distribution in the open

3

interval (-107, 105). Each method has a different initial vector.

The iterative procedure terminates when the maximum norm of the error

5

vector is less than 10 -,

EXAMPLE 1. o

2
Rl
L9
du _
\k\\.sﬁ =0
Region R, R, R3 R),
a(x,y) 5 & 9 1

25

We choose o(x,y) = 0 and f(x,y) = O so that the null
vector QO 1s the solution to the discretized problem. We use the

point red/black ordering.

n = 1152
Method Iter Time
CcG 262 Lo, 61
J=-CG 136 25.61
RS-CG 66 9.19
EXAMPLE 2.
u=1
25 V4
18 4
u:l/ w=1
R2 _‘//
7+
Ry ¥
1

u=1l
Region Rl R2
a(x,y) 2 500

0.05 and f(x,y) = 0.05 so that the

1l

We choose o(x,y)
vector e = (l,l,...,l)t is the solution to the discretized problem.

We use the point red/black ordering.

56

n = 576
Method Iter Time
cG Loo 33.34
J=CG 78 7.52
RS-CG Lo 2.80
A EXAMPLE 3.
u=0
33 x
u = d// w =0

We choose a(x,y) = 1, o(x,y) = 0 and f(x,y) = O so that

the null vector solves the discretized problem. We use a 1l=-line
red/black ordering. The tridiagonal systems of linear equations are 11

solved by Gaussian elimination; pivoting is not necessary because the

systems are positive definite.

n = 1024

Method Iter Time
CG 86 12,89
J=CG 62 18,05

RS-CG 3L 4,55

Our examples show how a (block) diagonal matrix preconditioning
can greatly improve the convergence rate of the CG method, especially
for the case where the diagonal elements of the coefficient matrix are
of different orders of magnitude (see Example 2). The RS-CG method,
as expected, requires about half as many iterations as the J-CG method.
The saving in machine execution time is, however, even more substantial.
It is thus fair to conclude that the RS-CG method is an effective

procedure for the numerical solution of self-adjoint elliptic partial

differential equations.

i
|
|
|
|
I
i
i
|
|
£

g

REFERENCES

[1] Axelsson, 0., "Solution of linear systems of equations: iterative

[2]

[5]

[6]

[10]

(11]

methods," Chapter 1 of Sparse Matrix Techniques, Copenhagen
1976, Springer-Verlag, Berlin (1977),

Concus, P., Golub, G.H., and O'Leary, D.P., "A generalized
conjugate gradient method for the numerical solution of
elliptic partial differential equations," in Sparse Matrix
Computations (J. R. Bunch and D. J. Rose, Ed.),

Academic Press, New York (1976), 309-332,

Faddeev, D.K., and Faddeeva, V.N,, Computational Methods of Linear
Algebr , Freeman, San Francisco (1963).

Golub, CG.H., and Varga, R.S., "Chebyshev semi-iterative methods,
successive over-relaxation iterative methods and second order
Richardson iterative methods," Numer. Math. 3 (1961),
147-168, o

Hageman, L,A,, "Block iterative methods for two-cyclic matrix
equations with special application to the numerical solution
of the second-order self-adjoint elliptic partial differential
equat.ons in two dimensions," Report WAPD-TM-327, Bettis
Atomic Power Laboratory (1962).

Hestenes, M., and Stiefel, E., "Methods of conjugate gradients
for solving linear equations," J. Research NBS L9 (1952),
L09-L36. e

Meijerink, J.A., and van der Vorst, H.A., "An iterative solution
method for linear systems of which the coefficient matrix is
a symmetric M-matrix," Math. Comp. 31 (1977), 148-162,

Reid, J.K., "On the method of conjugate gradients for the solution
of large sparse systems of linear equations," in Large Sparse
Sets of Linear Equations, (J. K. Reid, Ed.), Academic Press,

New York (1971), 231-25L,

Reid, J.K., "The use of conjugate gradients for systems of linear
equations possessing 'Property A'," SIAM J. Numer. Anal. O

(1972), 325-332.

Rutishauser, H., "Theory of gradient methods," Chapter 2 of
Refined Iterative Methods for Computation of the Solution and
the Eigenvalues of Self-adjoint Boundary Value Problems,

M. Engeli, Th. Ginsburg, H. Rutishauser and E. Stiefel,
Birkhauser, Basel (1959).

Varga, R.S., Matrix Iterative Analysis, Prentice-Hall, New York
(1962).

59

e

III. QUADRATIC PROGRAMMING WITH M-MATRICES

3.1. Introduction
In this chapter, we address the lower and upper bounds

quadratic program

min % tAz - ztg
X (1.1)

subject to ¢ <x<4d,

where A 1is an n X n M-matrix and 3, ¢ and 4 are n-vectors. An
important special case of (1.1) is the linear complementarity problem,
in which ¢=Q and g =%

min 3 x'Ax - x°b

subject to X (1.2)

v

9.

We assume that the matrix A is large and sparse. The problems (1.1)
and (1.2) find applications in the numerical solution of free boundary
problems for elliptic partial differential equations, Such problems
include various types of Dirichlet problems with obstacles ([7] and
'10]), and models of the journal bearing (5] and of the application of
torsion to a bar [1].

We define an M-matrix as follows.

DEFINITION 1.1 (11, p. 85]. A real square matrix A = (aij) with

a,. <0 forall i # j is an M-matrix if A is nonsingular, and

ij =
A"l so.

s R

--n--——-—-nuI!l-ll!IlIllIluI!lIlIlIlll'-llllllll.Flllll-.lll-lllllI.'.

We lose no generality by restricting our attention to symmetric
M-matrices, for we can replace the matrix A Dby its symmetric part

(A + At)/e in the quadratic form of (1.1) or (1.2) without changing

the value of the quadratic form. The next lemma states that a symmetric
M-matrix is positive definite. Thus, the problem (1.1) or (1l.2)

always has a unique solution.

DEFINITION 1,2 [11, p. 85]. A real square matrix A = (aij) with

aij < O forall i % j 1is a Stieltjes matrix if A 1is symmetric

and positive definite.

LEMMA 1.1 (11, p. 35 and 87]. A symmetric M-matrix is a Stieltjes

matrix and vice versa.

There are many good algorithms for solving problems (1l.1) and
(1.2) when the matrix A 1is positive definite (see [4]). However, it
is possible to exploit the special properties of an M-matrix to obtain

more efficient special algorithms. Chandrasekaran [2] proposed an

algorithm for the‘linear complementarity problem (1.2), and Pang [8]
developed an analogous algorithm for the lower and upper bounds problem

(1.1). . Cottle and Goheen [L4] performed an extensive comparison of

the latter method with four other well known algorithms. Their results

indicate that Pang's method is the most efficient. They also described

a preprocessing scheme that could be used with the method. Their scheme

E would identify some of the variables which will be at their bounds in

61

the optimal solution. Those variables could then be eliminated from
further consideration,

In this chapter, we study the algorithms of Chandrasekaran
and Pang. We demonstrate the special monotone behavior of the iterate
and gradient vectors. The result on the gradient vector is new. It
leads us to consider a simple updating procedure which preserves the
monotonicity of both vectors. The procedure uses the fact that an
3 M-matrix has a nonnegative inverse. Two new algorithms are then con-

structed by incorporating this updating procedure into the two described

algorithms, Numerical tests show that our new algorithms can be twice
as fast as the original methods (see Section 3.5).

We also consider the extension of problem (1.1) to the case
when some components of the bounds are infinite., We show how we can
compute finite a priori bounds on all the variables and reduce the
extended problem to one with finite bounds (see Section 3.4). This

result is new.

Let
v(z) = 5 x°Ax - 2B (1.3)
and
g(x)=Ax -D, (1.4)
L85 v(g) is the value of the gquadratic form at P and 5(5)
is the gradient vector of the quadratic form at x. The solution
x for problem (1.1) must satisfy the optimality conditions:
if X3 = ¢y then gi(g) >0
if e, <x,< d; ‘then gi(z) =0 (1.5)
i X = di then 81(5) <0,
62

for i =1,2,...,n. The solution x for problem (1.2) must satisfy

the optimality conditions:
if x; =0 then gi(5) >0

(1.6)
i x>0 then gi(g) =0,

forr &= 1;2,.

The following lemma and notations are used in this chapter,

DEFINITION 1.3 (11, p. 30]. A principal submatrix of an n x n

matrix A 1is any matrix obtained by crossing out any j rows and

the corresponding j columns of A, where 1 < Jl < n.

LEMMA 1.2 [11, p. 86]. Any principal submetrix of an M-matrix is

an M-matrix,

NOTATIONS.

(1) = (1,0,...,0).

(2) J=N\J for any subset J of N, i.e. J is the complement

of J in N.

(3)

4]

JE (x-)xj seeesy X,), where

Yr 98 Ip
J={Jl’J2’..I’JP}§N a.nd Jl<J2<ooo<Jp.
(4) AJK = (crs)’ where

crs = ajrks, J = {Jl}Je,"‘JJP) SN L

K= [kl’kQ""’kq_} c N, J1< 32 = el = jp and kl<k2<"'< kq.

63

T e .
.

e —

3.2. Linear Complementarity Problem

In this section, we consider the linear complementarity problem

min i xtAg - 5tg
X (1.2)
subject to x>0,

where A 1is a symmetric M-matrix. We assume that b contains both

positive and negative components to eliminate two trival cases,

LEMMA 2.1.

(1) If <0, then x

~

0 solves (1.2).

(2) If b >0, then x =A™'b solves (1.2).

Proof.
(1) Assume x solves (1.2) with o Q and x =0 for some

nonempty set P C N. The optimality conditions (1.6) give

gp(x) = AppXp - bp =0 .

Hence
x =AYb <0 because AT.>0 and b, <Q.
~p " Tppp =~ PP = <P = ~
Contradiction.
(2) We have
X = A-lg >0 Dbecause " >0 and b>0,
and
glx) =Ax -b=0.
Thus, x solves (1.2). o

We proceed to prove two more lemmas and an important theorem,

6l

LEMMA 2.2. Suppose we have a Stieltjes matrix A and a nonempty

subset I of N. The matrix

V=A_-A A A

e E
is a Stieltjes matrix.
Proof. The matrix V is symmetric because A _ = AE . Let w=a"l
II AEE
Since A 1is a positive definite matrix, so is W. A fortiori, so are
W and W.I. But V = Wl "6, p. 99]. The matrix A is an M-matrix
131 II 1 1T
by Lemma 1.2. Hence A:} > 0. The off-diagonal elements of V are
IT
therefore nonpositive because the off-diagonal elements of AII are
nonpositive, and A _ <O, A:E >0 and A_ <O, o
E P B

LEMMA 2.3. Suppose we have vectors x and y with X5 = X and

X_< Yy_ for some nonempty subset J of N. Then gJ(x) > EJ(X)°
J J ~ —_—

Proof.
By(x) = Agpxs + AJwaj =~ 2
=Ao s+ Asz'j e AJ_(§3 ¥ X,J)
" & AJ?T(EJ : MJ)
> g;(¥)
because A <O and x -y <0. a

JJ b J

THEOREM 2.1. Assume A"L]I'QJ >0 for some nonempty subset J of N.

Define a vector x with = A-lb and x

Xr * Y55

0. Let K and L

AR

be two sets partitioning J so that gx(g) 0 and EL(E) >0,
If the set K 1is empty, then
(1) x solves (1.2),

else

"

(2) let Q:=J UK. Comstruct y with g Agcby and g = Q.
We get

! (a) ¥;2%;>2 ¥ >9

1 ®) g () < g, (%)

and

ol
N
=3
N
1
N
o’

(¢) w(y) < v(x). (Remember v(g) =

Proof.

(1) The optimality cenditions (1.€) are satisfied because gJ(g) =)

and g _(x) > 0.
J
(2a) From the system
Aspls * Amlg = By o
+* =
Besls + Bl = Bg o
we obtain

Sl o .
T = (Aeg = Aehrhne) (B - AKJAJ‘]I-EJ) .

But

Bg - AKJAJ(]I—EJ = Bp = Axsks

O
(82N

Thus,

Also,

=
(=1
|

v

(2b) We have

L=JUK and ¥L=’~‘L=°'

BT
Mg r5h k)

by Lemma 2.2.

xK>>g.
AT P
I35 = A5 ok
ATk beosume A>3 0, Ao €0 88 >0
JJ~J JIE7r S = g = =
Xy
9 .

shown in (2a) that Yy > %; and Y >0 = Xp. Let

~

satisfied and therefore EL

(2¢) 2-v(y)

t t
Yhaalq ~ Mol

+
b ehagie < (g - Ag
’~‘3AQQ’~‘Q ' 2?5«39@1

Q™Q

The conditions of Lemma 2.5 are

5%

)" Aoalia ~ Aaa) - Reaele

Let Z denote the index set of the constrained (zero) components
of the iterate vector and P the index set of the unconstrained (positive)
components. We can describe the lower bound algorithm in [2] as

follows,

ALGORITHM 2.1 (Chandrasekaran's method)., Let

P:=[i€N|bi>O] and Z :=5 .

lb and x, = Q0. Let J be a nonempty set.

Define X so that %p = APP~P 7

Repeat until either set Z or J 1is empty:
zp%p = Bz
2. Let J :={(j€ z|gj < 0}.

1. Compute By = A

3. If set J 1is nonempty, then

(a) Let P:=PUJ and Z :=2Z\JJ.

(b) Reconstruct x so that Xp = AP;BP and %, = Q. =

Part (2a) of Theorem 2,1 says that the iterate vector is non-

decreasing in value. Thus, a positive component stays positive and
no element leaves the index set P. We enlarge set P when we release
variables with negative gradients from their constraints. If no such
variables exist, then we have computed the solution (Part (1) of

Theorem 2.1), Hence Algorithm 2.1 always terminates. It is a descent

method by Part (2c) of the same theorem,

Most of the work in an iteration of Algorithm 2.1 is spent in
the solution of a matrix equation. We can use an iterative method.
The conjugate gradient method (cf. [9]) or its generalized variant
(ef. [3]) is particularly effective for solving a large sparse set
of linear equations when the coefficient matrix is symmetric and
positive definite. Furthermore, we can construct a good starting
vector from the solution to the matrix equation in the previous iteration.
A straightforward strategy is to place zeros in the new positions.
In many cases, the quadratic program (1.2) arises from an approximation
to a continuous problem and some sort of interpolation and extrapolation
schemes can be successfully exploited.
It is obvious that we do not need to solve the matrix equations
to full accuracy in any but the last iteration, This gives another =
reason for using an iterative method instead of a direct method for
solving the matrix equations.
The intent of solving the matrix equation is to go from the
minimum of one subspace S1 to the minimum of a larger subspace S

2

that contains S The computation of the minima increases the size

1°
of the index set P rapidly. A disadvantage is that the cost involved
can be substantial. Thus, we are interested in the possibility of
using some simple computing process that lets us enlarge the set P

with very little work., It will take more iterations to determine the

final index set P, but the total cost may be lower because of the

smaller amount of work per iteration.

Suppose we are at the start of an iteration of Algorithm 2.1.
Let x and 5(5) be the iterate and gradient vectors, respectively.
Let P be the index set of positive components of x and J be the

index set of zero components with negative gradients, i.e.,

Poamifie Zole >0 and J:={je Plg.<0).
(3 €2,[x;>0) {j € Plgy < 0]

Assume set J is nonempty. Let Q := P U J. We construct the new

iterate X so that X =x and EQ = y, where y solves the matrix
equation
A =Nl 2k
o’ = % g
Let us consider a cheaper way to construct g : update only

the j-th components, where j €J. In other words, 2_ =ixd and
gJ = z, where 3z solves the matrix equation

BE = -gJ (2.2)

and B is an M-matrix of order equal to the size of J. Thus 2z > Q.
We can choose B as AJJ, but a better strategy is to choose B so
that the matrix equation (2.2) is easily solvable. Regardless of which
B we choose, it is very important that the new iterate g satisfies
the inequality

<A (2.3)

X chi'ﬁm

If (2.3) does not hold, then the gradients of some constrained variables

70

r

may have decreased too much in value (cf. Lemma 2,3) and those variables
may be erroneously released from their constraints.
We propose to choose B as CJJ, where C 1is an n X n M-matrix
so that C > A, The next theorem shows that the inequality (2.3) always holds
for these choices of B and C. We now give a simple way to construct

the matrix C.

LEMMA 2.4 [11, p. 85]. Let A be an M-matrix, and let C be any
matrix obtained from A by setting certain off-diagonal entries of the

matrix to zero. Then, C is also an M-matrix.

A possible choice for C is therefore a (block) diagonal matrix

with the same (block) diagonal part as A.

ASSUMPTION 2.1. We have chosen an M-matrix C such that C > A and

that matrix equations with C or a principal submatrix of C as the

coefficient matrix are easily solvable,

LEMMA 2.5. Suppose there is a vector x >0 such that x. =0 and

J

gJ(g) < Q0 for some nonempty subset J of N. Construct a vector y

so that y_=x_ and y. =-C}§§J(g). Then g (y) < Q.
J

J

Proof, C.. is an M-matrix by Lemma 1.2. Hence c}} >0. But

33
AJJ < CJJ. Thus,
-1 -1
i TR
which implies
-1
I-ACi20.

ik

T

Finally,

8500 = Aggy + AJ.TM..T - B

=i
A5Crsky(E) *A X -D
JI° 3383 75 I

1{e)

-1
- + =
AJJCJJEJ(g) gJ('}s) because X5

s AJJCE}) 85(x)

IN

0 because 5J(§) <0. m]

LEMMA 2.6. Suppose there is a nonempty subset J of N and two
vectors x and y such that §3 =0, 5J(§) =0, xj =Q and SJ(X) < 0.
Then X5 > pAS

Proof.
Bss(%5 = Xg) = Aggls - By = (Bt - by)
= g;(x) - g;(x)
>0.
Hence

THEOREM 2.2, Assume we have a vector x > 0. Let P := [j€N|xJ.>0]
and J :={j € ﬁlgj(lc') < 0}. Suppose that both index sets P and J are
nonempty, and that 51:(5) < 0. Construct a vector Y such that

L5 = -C:I'}gJ(g) and xJ = 53. Let K := P\ J. Then

72

(1) gp(¥) < gp(x) <0, g;(y) <0 and g (y) < g(x) .

(2) Xq S Aaégq, where Q =P UJ ,

(3) v(x) < v(g).

Proof.

(1) By Lemma 2,5, gJ(x) < 0. Since Ly >0 = X5

we get g (y) < g (x) by Lemma 2.3. But J =P UK.
J J

(2) Define a vector z so that Zy = AQéEQ and ZQQ = XQ = 0.
Hence gQ(g) = Q.- Prom Pext (1}, gQ(x) < Q. Thus, zo >y, by
Lemma 2.6.

1.t t t
(3) V(M) = V(z) =5 XJAJJXJ & XJA3353 - XJRJ

3 -1

=5 LP55(-Cr85 (%)) + XE(A X_ - by

JJ J

t il -1

= 45T - 3855055 £;() -

We have shown that I - AJJC-} > 0. Hence (I - (AJJC"I%)/E) >0

and equality is not possible. Since I3 >0 and gJ(ﬁ) <0, we get

v(g) < v(x). O

We now have the tool to modify Algorithm 2.1. Instead of going
from one constrained minimum to another through solving matrix equations
E involving the unconstrained variables, we take descent steps through
solving very simple matrix equations involving only those just released

variables, We call our technique "partial updating". It lowers the

75

gradients of some constrained variables and we can again release those
variables with negative gradients from the lower bound using the same
technique. The process is repeated until the gradients of the con-
strained variables are all nonnegative. Then we compute the constrained

minimum by solving the matrix equation

Appl = Bp e

and defining the new iterate x so that X = X and x_=0Q. The
2
iterate vector from the "partial updating" is usually a very good

initial vector for solving (2.4) using an iterative method.

ALGORITHM 2.2, (Modified Chand?asekaran's method). Let

J:={j€Nlbj>O}, P:=J,

Repeat until either set Z or J is empty:
1. Repeat until either set Z or J is empty:
-1
(a) Compute X5 = -CJJgJ .
o= -+
(b) Update gy = 8y AZJ%J'

(¢) Redefine J := {j € z}gj < 0}.

n

(d) Let P:=PUJ and Z :=Z \J.
2. Compute Xp = AP;EP'
3. Compute g, := A, X, - Db, .

L. Redefine J:=[y€Z|gj<O]. Let P:=PUJ and 2Z:=2\J.

Tk

We can easily extend Algorithm 2.2 to solve the general lower-

bound quadratic program

min 5 'A% - 5%,
&
{2.5)
subject to xX2c.
ALGORITHM 2.3. Let
P:=¢, Z :=N, X = c, and g :=Ac-Db.

Set J:=(j€ Zlgj < 0).
Repeat until either set Z or J is empty:

1. Repeat until either set Z or J is empty:

-1
(a) Compute X5 := &5 = Cys8s -

(b) Update & =8yt AyXy -

(n

(c) Redefine J := {j Z]gj < 0].

(d) Let P:=PUJ and Z :=2Z\ J.
2. Compute = Ao0Th A e)
¢ Xp = “pp\8p ~ “pglg/e

b

3. Compute gy = AZ x_ + A by .

pRp T “g28z T

4, Redefine J := {j < Z(gj < 0}.

5 DLet P:=PUJ and Z:2\J. O

Y ———————— -

3.3. Lower and Upper Bounds Problem

In this section, we consider the lower and upper bounds gquadratic

program
min 3 x°Ax - x'b
= (1.1)
: subject to e<xz<d,

We introduce an index set U denoting the variables constrained
at the upper bound d. The index sets P and Z denote the unconstraine.
variables and the variables constrained at the lower bound ¢,
respectively.

Our lower and upper bounds algorithm starts with the iterate

vector x at the upper bound d and the index set U equal to N,

We examine the gradient vector g(z) = Ax - b, and release those vari-
ables whose gradients are positive. Let P denote the just released
variables and let U := P. We solve the lower bound quadratic program

=

) t t
min 7y Appy = ¥ (Bp = Apydy)

P
subject to N Sp -

(3.1)

The iterate vector x 1is redefined so that Xy = SU and X = X

the solution to (3.1). The indices of the components of x at the

lower bound are moved from set P to set Z. We start a new iteration

by releasing those variables at the upper bound whose gradients have

..

now become positive.

THEOREM 3.1. Suppose we have a vector x and two nonempty index

sets U and P partitioning N such that x, =4, and X, =y,
where y solves (3.1). Let J :={j € U]gj(z) >0},

If the index set J 1is empty, then
1. x solves the lower and upper bounds quadratic program (1.1), else
2. Yet P :={j€ P]xj > cj}, Zas={3 € P[xj = cj], K:=P UJ and

L 2

UNJ. Define a vector y so that y =4, y, =¢, and

g = R where p solves the lower bound quadratic program

t
(

T
min 5 pAgR - 0 (B - Agd)

subject to R 2 Sk
Then
(a) Xy < a5 and yo < X5.
(®) g (y) >g(x) and g,(y) >g,(x) 2Q.
(e) v(y) < v(x).

Proof.

(1) The optimality conditions (1.5) are satisfied because g;(x) <0
and Xp solves (3.1).

(2a) The inequalities hold trivially for those components of Xk
that are at the lower bound. The gradients of the other components
equal zero and we can prove the inequalities using a technique
similar to that of Part (2a) of Theorem 2.1.

(2b) We have shown in Part (2a) that Ik < X As xﬁ = ER by
construction, we get g_(z) Z_gk(g) from Lemma 2.3. But

K

K=L UZ.

7

(2¢) Since gz(x) >Q by Part (2b), the vector g = Ix yg Solves

the lower quadratic program

i1 t
"R 2 3 he8 - 37k Agrdy)

subject to g > SQ »

where Q =K UZ. But L =4q, Y, = %, 8nd ¥ # x. Hence

v(y) < v(x). O

ALGORITHM 3.1. (Pang's method). Set x :=d and compute g := Ad-Dh.

~

Let J,:(j—:m|gj>o},P:=J,U:=3 and Z := ¢.
Repeat until set U or P or J 1is empty:

1. Reconstruct x so that Xy = gU, X, =<

Sz and Xp = Xo» where

y solves the lower bound quadratic program (3.1) (we may use

Algorithm 2.3).
2. 8et K := (k€ P|x, =c). Let P := P\ K and 2 :=2Z UK.

Aol * Aupde * uziz T Rur

{j€U|gJ.>O). Set P :=PUJ and U :=U\J.

3. Compute &y ¢

L4, Redefine J :

Part (2a) of Theorem 3.1 says that the iterate vector is non-
increasing in value. Hence once a variable leaves its upper bound it
never returns, and once a variable enters its lower bound it never
exits. Since we release variables from their upper bounds when their
gradients become positive, there is a flow of variables from the upper

bound to the unconstrained region, and then to the lower bound. If

78

O

WE——

there is no outflow of variables from the upper bound, then the iterate
vector is the desired solution (Part (1) of Theorem 3.1). Thus,
Algorithm 3.1 always terminates. It is a descent method by Part (2c)

of the same theorem, Algorithm 3.1 is essentially the algorithm pro=-
posed by Pang (8], except that he releases variables from their upper
bounds when their gradients are nonnegative. The difference is so minor
in real arithmetic that we expect both algorithms to produce identical
results for almost all problems. Indeed, the two algorithms behaved
identically in all our test examples.

We are interested in a "partial updating" technique that is
similar to the one in the previous section. Such a technique may save
many expensive solutions of lower bound quadratic programs. However, the
presence of a lower bound restricts our choice of a "partial updating"
matrix to a diagonal matrix. Recall that a positive definite matrix has

a positive diagonal.

ASSUMPTION 3.1. We have chosen a diagonal matrix D such that D > A,

t t
NOTATION. If v = (vl,vg,...,xp) , then y = (wl,w ,...,wb) i

where %y max(vj,o) for 3§ = 3800350,

LEMMA 3.2. Suppose there is a vector x with ¢ < x < d such that

%y =4; end EJ(E) > 0 for some nonempty subset J of N. Construct

a vector y so that . "= and Yr=6; ¢ (d. - (RS R, (x)1,.
JJJJJJJJ§J+

~

Then gJ(x) > 0.

Proof. There exists a diagonal matrix B > DJJ such that

A=l
® [.@J -¢y;-0D EJ(E)] s

~
Hence D > A and this lemma can be proved in the same way as

II
Lemma 2,5. O

Note that Lemma 3.2 may not hold if we replace D by a non-

diagonal M-matrix E with E > A,

THEOREM 3.2. Suppose we have a vector x with ¢ <x <4 and two
nonempty index sets U and P partitioning N such that Xy = Q'U’
%p < dp and 5P(§) >0. Let J :={j€ Ulgj(g) > 0) and assume that
it is not empty. Construct a vector y such that y =x and

=3

-1
- r - - .=
;=& * (45 - &5 DJJgJ(g)]+. Let K := U\ J. Then

(1) g(¥) 2 ge(®), g;(y) 20 end gp(y) > gpx) 29

(2) Yp > 9, where g solves the lower bound quadratic program (3.1).

(3) v(y) < v(x).

Proof.

(1) By Lemma 3,2, 5J(x) >Q. Since y <d; =x. and xj =X,

we get g (y) > g_(x) by Lemma 2.3. But J=KUP.
J J

(2) The inequality is trivial for those components of g that are at
the ‘loWer bound. Since the gradients of the other components of g
equal zero and gp(x) >0 from Part (1), we can complete the proof

using a technique similar to the one in Lemma 2.6.

80

e ——————————

(3) Let D > DJJ be the diagonal matrix such that

=1
¥y =&+ [QJ “&y =D 5J(?§,)]

A -

=1
=D gJ(g). Then

e
o
ot
N

Il

and

1
vigh = vg) =R 8nE - B, + 5T

n
Y I
b Nc+
>

o
.1}
o
N
&
1
N
.o
C‘/\
L8

It is easy to show that I - (A JJ:IS']') /2 >0, equality excluded.

Since z > 0Q and 5J(5) > 0, we get V(;‘L) - v(g) < 0% O

ALGORITHM 3.2. (Modified Pang's method). Set x := ¢ and compute g :=Ad -p.

Let J :={j€ N|gj >0}, P:=J, U:=J and Z :=¢.
Repeat until set U or P or J is empty:
1. Repeat until set U or J is empty:
-1
(a) Update x; := Sy * (45 = &5 = DysBslee

(b) Let K:=[k€Jhk=cﬁ,Z:=ZUK and P := PU(J\K).

(¢) Update By = &y - AUJ(gJ - EJ)'

(d) Redefine J :={j € U|gj >0). Let U :=U\'J.

| 81

2. Reconstruct x so that Xy = QU’ X, =S and Xp = X where y

solves the lower bound quadratic program (3.1) (we may use

Algorithm 2,3).

3. Set K :={k€Plx =c Let P :=P\K and Z :=2 UK.

e

4. Compute g, := Ay + Appkp *+ Ay - By

{,jeUng.>O]. Let P:=P UJ and U :=U\J.

n

5. Redefine J :

3.4, Problem with Non-finite Bounds

O

In this section, we consider the lower and upper bounds quadratic

program
min % X Ax - ztg
~ (1.1)
subject to c<x<d,

where some components of the bounds are infinite. We show that we can

compute finite bounds on all the variables.

LEMMA 4.1, Consider the quadratic program (1.1) with d = o, Assume
gJ = =0 and ¢ > -» for some nonempty subset J of N. Let x be

~ 3 ~ ~
the solution vector. Then

<1
L2055k =8) «

JJ

-1
Proof. Define a vector p with p.=A_(b. -A c) and p =g¢_.
N R A R - o i
By construction, 5J(R) = 0. Define another vector q with gJ = BJ

and gj = 53. Since gj > Bj, we get gJ(g) < gJ(g) from Lemma 2.3,

82

Also gJ(g) = 0 by the optimality conditions (1.5). Thus,

Az, =ps) =B, x +A x -Db = (A, p.+A x - DB
g7 %5 = Ry JIXT Py JoRy T VR T R

g5(2) - g5(9)

1V

0 .

Hence

LEMMA L4.2. Consider the quadratic program (1.1) with ¢ = =», Assume

E QJ =o and d <= for some nonempty subset J of N. Let x be the
J

solution vector. Then

!
L S8yt 2 20

X
Tl

5 i 5

Proof. Similar to that of Lemma 4,1, O

e

We now have the tools to handle the problem when both bounds

have infinite components.

LEMMA 4.3, For problem (1.1), assume dy=2 &and d <= for some
J
nonempty subset J of N, Let x Dbe the solution to (1.1) and X

be the solution to the lower bound quadratic program

TR t
r min 3 ¥ Al - X (RJ -A 4)

T3
(k1)
b subject to Y= gJ o
Then
! Xy <X -

} 83

IR Y

Proof. The inequality is trivial for those components of ?SJ that are
at the lower bound. Let K := {k € J|x > ¢,). Then 51((5) = 0.
Now define a vector p with BJ =Yy @and BJ = QJ. Hence

SJ(B) > Q by the optimality conditions (1.5). Define another vector

ith = and =x . Since < p , we get (g) > g.(p)
g L Sl 33 s 33 Bj £5\9 J
by Lemma 2.5. It follows that g .(q) > 0.

Let L :=J \K. Then X, =£L SBL’ or equivalently,

Xy, = B, £ 0. Thus,

A (g = R =B + Apx + AKJ-?S- - k)
= (Agely * Arp + ijl‘j = by) - A (- pp)

gx(2) - ge(g) - A (% -)

< 0 because A <0,

KL
Hence
¥ "Bg 8. ©
LEMMA L. L. For problem (1.1), assume Sy=-2 and ¢ > = for

dJ.
some nonempty subset J of N. Let X Dbe the solution to (1,1) and

Y Dbe the solution to the upper bound quadratic program

Sk 5 v
min > y'A o Al * & ¢)
2 I g7 oS

(4.2)
subject to X< SJ .

Then

Proof, Similar to that of Lemma 4,3, O

We can solve the lower bound quadratic program (k.1) by first

using Lemma 4,1 to compute finite lower bounds for those variables with

84

|

o —

constraints and then applying Algorithm 2.3. The upper bound problem
(4.2) can be solved in a similar fashion using Lemma 4.2 and Algorithm 2,3.
Note that an upper bound problem is reduced to one with a lower bound

if all its variables are negated.

3.5. Numerical Examples

We have chosen four representative problems to study the
effectiveness of our 'partial updating" technique. We use the
conjugate gradient method as our matrix equations solver.

Our programs were written in FORTRAN and run on an IBM 370/168
computer at the Stanford Linear Accelerator Center. The codes

were compiled with optimization level 2 of the H EXTENDED compiler.

EXAMPLE 1. Let us consider the linear complementarity problem

min % xhx - 5

X

e (1.2)
subject to x>0 .

The matrix A is chosen as

and the vector b 1is generated by

by = 8 - 20r; for A= 1,2, .0, B
where ro is a random number from a uniform distribution in the open

interval (0,1). The "partial updating" matrix C 1is chosen as

We define an iteration to bea sequence of "partial updates"
followed by a solution of a matrix equation with coefficient matrix APP'
The scalar |P| gives the number of elements in the index set P at
the end of an iteration. The other scalar u gives the number of
"partial updates" in an iteration. Time is machine execution time

in seconds.

86

Algorithm 2.1

Algorithm 2.2

Iteration |P| u, |P|
i 382 2,456
2 499 2,52k
3 535 1550
n 539 1,542
5 5Lo
Time 26T 2.540
n = 1500
Algorithm 2,1 Algorithm 2.2 1
Tteration || u, |P|
1 585 2,692
2 763 2,806
p) 82l 3,838
L 837 2,848
5 8Ls5 2 951
6 8483 1,853
1 850
8 852
9 853
Time 8.L43 6.49
n = 2000
Algorithm 2.1 Algorithm 2.2
Tteration |P| u, |P|
T 782 2,925
2 1020 2,107k
3 1098 23,1118
L 1119 &, 1151
2 1128 2,1136
6 1133 1,1138
i LL55 i RAEE
5 Wl
9 1158
Time 11.79 9.92

87

AD=AD65 285 STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE F/6 12/1
SPARSE AND PARALLEL MATRIX COMPUTATIONS.(U)
DEC 78 F T LUK DAHC04-75-9-0135
UNCLASSIFIED STAN=CS~=78-685

... END

-

B

] |\|
'.fg !

i< 128 |ii2.5
e 2

o

=ik
"lll Il &, = iz
1= s

kS s pis

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF sTANDARDS-l%J-’i

b o

EXAMPLE 2. This example is the same as the previous one, except that

the matrix A has been chosen as the Laplacian 5-point finite differ-

ence operator:

-I B -I
B e e i g
Gl P
-I B
where
L -1
o e
B= .. .o .. =
O -1 L a1
.1 4/ mxm

Let n = m?. We consider two different choices of the "partial updating"

matrix:
4 O
L
(1) C=DE .o b
O u nxn
and
B
i O
(2) C=T= 3 ’

88

n = 900
Algorithm 2.1 Algorithm 2.2 Algorithm 2,2
(c = D) (c=1T)
Tteration |P| u, |P| u, |P|
i 349 2,416 2,416
2 450 2,462 2,462
3 463 1, 465 1, 465
I L65 1, k66 1, 466
5 L66
Time 7.54 6.73 6.70
n = 1600
Algorithm 2.1 Algorithm 2.2 Algorithm 2.2
(C = D) (¢ =1)
ITteration |P| u, |P| u, |P|
X 620 2,730 2,730
2 798 2,828 1,828
3 837 1,842 1,842
L 8Lo
Time 17.08 15.29 15.41

89

We observe that both choices of C have produced essentially

identical results, This is not surprising if we look at the index
set J of the variables eligible for "partial updating." Rarely
do we find two consecutive indices in J. Thus, the tridiagonal
"updating" matrix reduces to a diagonal "updating" matrix in almost
all cases.

We construct a different example with n = 900 and another

choice of the vector b:

-6ri for i = 301, 302. ... 5 600

8ri otherwise,

where ry is a random number from a uniform distribution in the open

interval (0,1).

n = 900
Algorithm 2.1 Algorithm 2,2 Algorithm 2,2
(c =D) C=17)
Iteration |P| u, |P| u, |P|
1 300 2,307 2,307
2 366 2,380 3, 506
3 396 2,k01 2, 4os
I Lo6 1, ko6 1, ko7
5 Lo7 1, 407
Time 24,97 25.08 23.80

This is also an example where the "partial updating" technique is not

particularly efficient due to the very special structure of the vector b.

90

EXAMPLE 3. We address the lower and upper bounds problem

t

(5.1)
subject to Q <x< g "

The matrix A is chosen as the tridiagonal matrix in Example 1. The

vectors b and d are generated by

(=5
]

11 - 20r.,
L

for: i = 1,2 ..., 0,

By = T8y

where ry and s, are random numbers from & uniform distribution in
the open interval (0,1). The "partial updating" matrix C 1is the
diagonal matrix with the same diagonal as A, We use Algorithm 2.1 (2.2)
to solve the lower bound quadratic program in an iteration of Algorithm
5.1 (.21

An iteration is defined to be a sequence of "partial updates"
followed by a solution of a lower bound quadratic program with the
matrix App. The 3-tuple (12|, |P|, |U|) gives the number of elements
in the index sets Z, P and U, respectively, at the end of an

iteration. The scalar u gives the number of "partial updates" in

the iteration.

Algorithm 3.1 Algorithr 3.2
Iteration (lZl,lPl,lUl) u,(|Z|,|P|,|U|)
1 (234,216, 550) 3, (307,275, 418)
2 (310,283, 40T) 1, (311,292,397)
3 (313,291, 396) 1, (313,291,396)
Time 1.80 1.63
n = 1500
Algorithm 3.1 Algorithm 3.2
Iteration (|z] |P|,|U|) u:(lzi,{Pl’lUl)
z (366, 324, 310) 3, (489,396, 615)
2 (L92, 408, 600) 1, (495, 416, 589)
3 (495,415, 590)
4 (495, 416, 589)
Time 4,13 2.09
n = 2000
Algorithm gk Algorithm 52
Tteration (1z], |®|, |u]) w, (2], |2[, |U])
1 (452, 452,1096) 3, (590, 560, 850)
2 (602,579, 819) g2, 5605, 602,793)
3 (605,602,795) 1, (605,603,792)
L (605, 603,792)
Time T+Dk 5.01

92

EXAMPLE L, This example is the same as Example 3, except that
(1) the matrix A 1is chosen as the discretized Laplacian operator

of Example 2, and (2) the upper bound d is generated by
di = 3s, for i = 1,2, 00,0 .

We have changed the upper bound so that the three index sets are of roughly
equal size in the final solution.

We use Algorithm 2.1 (2.2) to solve the lower bound quadratic
program in an iteration of Algerithm 3,1 (3.2). Both choices:
(1) ¢C=D and (2) C =T (see Example 2) are considered for

Algorithm 2.2,

n = 90
Algorithm 3.1 Algorithm 3.2
Iteration (21,121, juh w, (12], 2], |u])
1 (274,168, 458) 3, {307,223, 3710)
2 (325,277,298) 2, (325,29L4,281)
3 (325,29k4,281) 1, (325,296,279)
L (325,296,279)
Time 6.79 5.97 (C = D), 5.94 (C =T)
n = 1600
Algorithm 3.1 Algorithm 3.2
Tteration (2, 2], |u)) u, (12|, [2], [u])
1 (478,277, 8L45) 3, (552, 430, 618)
2 (582,L487,531) 2, (585, 52k, L97)
3 (585,520, 495) 1, (585,526, 489)
L (585, 526, 489)
Time 17.72 15.35 (C = D), 15.28 (C = T)

95

3.6. Conclusion

It is evident from the work of Cottle and Goheen [L] that
the algorithms of Chandrasekaran [2] and Pang [8] are very effective
schemes for solving lower and upper bounds quadratic programs
associated with M-matrices. We have seen in the last section how
our "partial updating" technique can cut the execution time of the
two algorithms by 10-50%. Thus, our new schemes (Algorithms 2.2
and 3.2) are highly competitive for solving this important class of
quadratic programming problems.

Our other contribution of this chapter is the introduction
of a technique to handle the special case of the quadratic program

when some components of the bounds are infinite.

gk

(1]

[2]

(10]

(11]

REFERENCES

Ceé, J., and Glowinski, R., "Sur des methodes d'optimisation par
relaxation,”" RAIRO R-3 (1973), 5-32.

Chandrasekaran, R., "A special case of the complementary pivot
problem," Opsearch 7 (1970), 263-268,

Concus, P., Golub. G.H., and O'Leary, D.P., "A generalized
conjugate gradient method for the numerical solution of
elliptic partial differential equations," in Sparse
Matrix Computations (J. R. Bunch and D.J. Rose, Ed.)
Academic Press, New York (1976), 309-332,

Cottle, R. and Goheen, M., "A special class of large quadratic
programs," Report SOL-76-7, Systems Optimization Lab.,
Stanford University (1976).

Cryer, C.W., "A survey of trial free-boundary methods for the
numerical solution of free-boundary problems," MRC Report
1693, Mathematics Research Center, University of Wisconsin,
Madison (1976).

Froberg, C.E., Introduction to Numerical Analysis, Addison=-
Wesley, Reading, Massachusetts (1965).

Levati, G., Scarpini, F., and Volpi, G., "Sul trattemento
numerico di alcuni problemi variazionali di tipo unilaterale,"
L.A.N, Pub. 82 (197L). :

Pang, J.S., "On a class of least-element complementarity problems,"
Report SOL-76-10, Systems Optimization Lab., Stanford
University (1976).

Reid, J.K., "On the method of conjugate gradients for the solution
of large sparse systems of linear equations," in Large Sparse
Sets of Linear Equations, (J.K. Reid, Ed.), Academic Press,

New York (1971), 231-25k,

Scarpini, F., "Some algorithms solving the unilateral Dirichlet
problems with two constraints," Calcolo 12 (1975), 113-1L9,

Varga, R.S., Matrix Iterative Analysis, Prentice Hall, Englewood
Cliffs, New Jersey (1962).

IV. A BLOCK LANCZOS METHOD FOR COMPUTING SINGULAR VALUES

L.1. Introduction

In this chapter, we construct aBlock Lanczos method for the

problem:

Compute the k greatest singular values and
associated vectors of a large and sparse m X n matrix A,

where k 1is much smaller than m or n,

which finds applications in factor analysis, regression and image
enhancement (cf. [L4]).
We assume without loss of generality that m > n. For

i =2 et et oy be a singular value of A, and let 4 and

¥y be the corresponding left and right singular vectors, respectively.

The singular values are ordered so that

g >0’ >co'>0 = (l.l)

Let us exploit an idea of Lanczos [8, Chap. 3] and consider

(52) |
A= - 1.2
At 0 ;

whose eigenvalues are + 0y + Opy eve s + Oy plus (m-n) zeros.

the (m+n) x (m+n) matrix

We address the equivalent problem:

9.

Compute the k algebra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>