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ABSTRACT.

This thesis deals with four important matrix problems: (i) the

application of many variants of the conjugate gradient method for

solving matrix equation s , (2) the solution of lower and upper bounds

quadratic programs associated with M-matrices , (3) the construction

of a Block Lanczos method for computing the greatest singular values

of a matrix, and (14 ) the computation of the singular value decomposition

of a matrix on the ILLIAC-IV computer.

_ 
-. .~~~~~ S. .- ~~~~~~~~~~~ .-.



. 5. 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

. -5- - - -
~~~

- 
-~~~~ 

.
~~~~~

ACKNOWLEDGMEIffS

I am deeply indebted to Professor Gene Golub for teaching me

about numerical linear algebra and for providing guidance and support

throughout my years of graduate study.

I appreciate the suggestions of Professors Joseph Oliger and

James Wilkinson which have greatly improved my presentation.

Three researchers have aided me in essential ways. The many

discuss ions with Professor Marcello Pagano led to the work on quadratic

programming. Dr. Louis Hageman and Professor David Young shared with

me their knowledge of iterative methods.

I would like to thank all the Serra House residents,

particularly Mr. William Coughran and Mrs. Janet Wright, for thet.

help and friendship.

The expert typing and editing skills of Miss Rosemarie Stainpfel

have made my task of writing much easier.

With sincere gratitude I wish to thank my parents , for starting

me on my studies in this country; Gene and Rosemarie, for making life

so pleasant; and my wife Vivian, for her love.

iii

L — ~~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~ _. ~~~~ . — -“S~~~~~-
— - . .

~~~
-.



~

TABLE OF CONTENTS

PAGE

I. INTRODUCTION 1

II. CONJtJGATE GRADIENT ACCELERATION OF ITERATIVE
METHODS 3

2.1. Introduct ion 3
2.2. Conjugate Gradient Method 8
2.3. Preconditioned Conjugate Gradient Method i(
2.14. Equivalence Results 22 V

2.5. Block Jacobi Methods 2~2. 6. A Compressed Method and Cyclic
Reduction 32

2.7. Computer Implementation 141
2.8. Applications of the RS-CG Method 50

References 59

III . QUADRATIC PROGRAMMING WITH M-MATRICES 60

3.1. Int roduction 60
3.2. Linear Complementarity Problem 614
3.3. Lower and Upper Bounds Problem 76
3.4. Problem with Non-finite Bounds 82
3.5. Numerical Examples 85
3.6. Conc lusion 9)4

References 95

IV. A BLOCK LANCZOS METHOD FOR COMPUTING SINGULAR
VALUES

14.1. Introduction 9~
~4.2. Block Lanczos Method for Symmetric

Matr ices 97
14.3. Block Bidiagonalization Algorithm 102
14.14. Error Bounds for the Singular Value

Approximations 108
14.5. Iterating to Improve Accuracy 11)4
14.6. Block Bidiagonal izat ion Method with

Reorthogonalization 1113
4~7. Iterative Block Lanczos Method 122
14.8. Test Examples 125

References 132

iv

. . . 

~~~~~~~~~~~

--. - -,

~

.---.

~

rn . .-

~ 

S-~~~~~~~-.-  ~~~~~~~~~~~~~~~ - . -  ~~~~~~~~~~~~~~ -~~~~~~~--



~ ~~~~~~~~~~~~ .- -- .,---—--.—-,.-—--

TABLE OF CONTENTS Cont inued

PAGE

V. COMPUTING THE SINGULAR VALUE DECOMPOSITION
ON TIlE ILLIAC IV 1314

5.1. Introduction 131~
5.2. The II1LIAC IV Computer 1.35
5.3. Programming Languages for the ILLIAC 136

~.4. A Row Orthogonaliz.ation Method 137
5.5. Least Squares Solutions 1146
5.6. Data Structures 151
5.7. Numerical Properties  153
5.8. Test Results 1514

References 

158v



F~~ 
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ r - .~. 

.. 
.
~~~~

.. — S.—.

~~~~~~~~~~~
.. .- . - .~~- - - . .. -.5.-

TABLE OF ALGORITHMS

PAGE

II. CONJUGATE GRADIENT ACCELERATION OF ITERATIVE METHODS
Algorithm 2.1 CG method 10
Algorithm 3.1 17
Algorithm 3.2 Preconditioned CG method or

CG-accelerated single method 18
Algorithm 14.1 CG-acclelerated double method 23
Algorithm 4.2 Derived CG-accelerated double method 25
Algorithm 6.1 CJ-CG method 33
Algorithm 6.2 RS-CG method 37
Algorithm 7.1 CG method 141
Algorithm 7.2 Preconditioned CG method 143
Algorithm 7.3 Generalized CG method 45
Algorithm 7.14 RS-CG method 147

III. QUADRATIC P~~GRANMING WITH M-MATRICES
Algorithm 2.1 Chandrasekaran ’ s method 68
Algorithm 2.2 Modified Chandrasekaran’s method 714
Algorithm 2.3 75
Algorithm 3.1 Pang’s method 78
Algorithm 3.2 Modified Pang’s method 131

IV. A BLOCK LANCZOS METHOD FOR COMPUTING SINGULAR VALUES
Algorithm 2.1 Block Lanczos method 98
Algorithm 3.1 Block Bidiagonalization method 106
Algorithm 5.1 117
Algorithm 6.1 Block Bidiagonalization method

with Reorthogonalization 121
Algorithm 7.1 Iterative Block Lanczos method 1214

V. COMPUTING THE SINGULAR VALUE DECOMPOSITION ON THE
ILLIAC -IV

Algorithm 1. SVD 1142
Algorithm 2. MINFIT 148

vi

,. 
¶~~. . ~~~~~~~~~~~ *~~~ ..~~

,

--~~~~~~~~~~ .-~~~~~~-S ,, . ~~~~~~~~~~~~ V . .-~~~~~~ ~~~~~“- . ~~~~~~~~~~~~~~ -~~~~~~ ~~~~~~ 
~~~~~~ S— . . —

~~~~



-5 ---.- — -

TABLE OF ABBREVIATIONS -

First -

appears
Abbreviation Name on page

CG method Conjugate Gradient method 1

J-CG method CG-accelerated single block Jacobi method 29 V

DJ-CG method CG-accelerated double block Jacobi method 29

CJ-CG method Compressed J-CG method 33

RS-CG method CG method applied to reduced system
of linear equat ions 36

SVD Singular Value Decon~position 134
V 

MINFIT Algorithm for Least Squares problems lL~

vii

, —..— .— .- -

~

. -
V. - 

— 
1

V

~
.J 

..
.. , 

.

~~
, . • ~~~~~~~~ .,

I

~~~~~~~~~~~~~~~~~~~~~ 
V..~~~ ~~~~~~~~~ -5_S. ~~~~~~~~~~ ~~~~~~~~~~ 

5-5 __________5_~~~~~~~~ _5_5~~~_~._ _  ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1~~~



r’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V - _~ SV ~ .~~ 
-. 

V ~~~~~~~~ __

I. INTRODUCTION

This thesis consists of f ive chapters. In the next four

chapters, we discuss the solution of four important matrix problems

under the assumption that they are all of large order. For the f irst

three problems we construct algorithms which exploit the sparsity of

the associated matrices. We use a computer with parallel processing

abilities to solve the fourth problem.

Chapter 2 of this thesis deals with the many variants of the

conjugate gradient (CG) method for solving matrix equations. First,

we describe a new preconditioned CG method and derive its many

attractive r roperties. Second, we introduce the CG-accelerated single

and double methods and give conditions for their mathematical equiva-

lence. Third, we apply the equivalence result to systems of linear

equations possessing ‘Property A ’. Fourth, this original result is

used to show that a new method based on conjugate gradients and

cyclic reduction is equivalent to a popular method of Reid. Fifth,

we demonstrate that our new method is more efficient than Reid’s

method in both work and storage.

In Chapter 3 we study the problem of quadratic programming

with M-matrices. We describe (1) an effective algorithm for the

case where the variables are subject to a lower bound constraint,

and (2) an analogous algorithm for the case where the variables are

subject to lower and upper bounds constraints. We demonstrate the

special monotone behavior of the iterate and gradient vectors.

1
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The result on the gradient vector is new. It leads us to consider

a simple updatinir procedure which preserves the monotonicity of both

vectors. The procedure uses the fact that an M-matrix has a non-

negative inverse. Two new algorithms are then constructed by in-

corporating this updating procedure into the two given algorithms. We

give numerical examples which show that the new methods can be twice

as fast as the original ones.

A Block Lanczos method is introduced in Chapter 14 for computing

a few greatest singular values and associated vectors of a matrix.

We present a theoretical development of the method and give a theorem

on its rate of convergence. The practical implementation aspects

are then discussed and particular attention is paid to the choice of

block size. We believe that all our results are original. We are

in fact unaware of any other algorithms which solve this problem.

In the f ifth chapter, we study the computation of the singular

value decomposition of a matrix on the ILLIAC IV computer. We

describe the architecture of the machine and explain why the standard

Golub-Reinsch algorithm is not applicable to this problem. We then

present a one-sided orthogonalization method which makes very efficient

use of the parallel computing abilities of the ILLIAC machine. Our

method is shown to be Jacobi-like and numerically stable. Finally,

a comparison of our method on the ILLIAC IV computer with the

Golub-Reinsch algorithm on a conventional machine demonstrates the

great potential of parallel computers in the import ant area of

matrix computations.

2
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II. CONJUGATE GRADIENT ACCELERATION OF ITERATIVE METhODS

2.1. Introduction

In this chapter we are concerned with the application of the

conjugate gradient method (CG method) as an iterative solution procedure

(cf. Reid [8]) for large and sparse sets of linear equations .

Let us consider the system

A x = b , (1.1)

where A is a given n x n nonsingular matrix and h a given column

vector. We assume that the matrix A is large ar~ sparse. Instead

of (1.1) we may solve the modified system

C 1AX = ~~~~ , (1.2)

where C is some n x n nonsingular matrix such that it is a simple

computing task to solve the system

Cz = d

We usually choose C so that the new system (1.2) is “better—conditioned”

with respect to inversion than the original system (1.1) (cf. [13), i.e.

< i (A)

where K (M) IMj I.IIM~~IJ for any nonsingular matrix M. We refer to

as the condition number of M with respect to inversion (and

with respect to the matr ix norm Il~P I) . The matrix C is frequently

3
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an approximation of A so that the condition number of C
1A is

small, e.g.,C can be a product of sparse triangular matrices (see [7]).

We wish to apply the conjugate gradient method to the solution

of the preconditioned system (1.2). We refer to the new method as the

preconditioned conjugate gradient method (preconditioned CG method).

This problem has been studied by many researchers (see [13 for a biblio-

graphy), who considered the case where A and C are both symmetric

and positive definite matrices. We make a slightly weaker assumption

here.

ASSUMPTION 1. There exists some nonsingular matrix S of order a

V 

such that the matrix 5C 1AS 1 
is symmetric and positive definite.

We call S a “symmetrization” matrix. The next lemma shows that

Assumption 1 is meaningful.

LEMMA 1.1. Suppose that both matrices A and C are symmetric and

positive definite. If we choose the matrix S such that S~S = C ,

then Assumpt ion 1 is valid.

— — 1 — 1Proof. Let B SC AS . The matrix B is symmetric because

B = s(sts)~~As~~ = (s _l ) tAs~~

and is positive def inite because

tB (5 1
,y)

t A (S~~~ ) > 0 for ~~ 2 . 0

14
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This apparently new concept of a “symmetrizat ion” matrix makes it a

straightforward exercise (in Section 2.3) to derive the properties

of the preconditioned CG method from those of the CG method. We see

in the same section that the matrix S need not be formed explicil~ly

and that only the product S~S is required for the preconditioned

CG method. For many problems, several choices of the “symmetrizat ion”

matrix are possible (see, e.g., Section 2.14). An interesting problem

is therefore to determine the effect of the “symmetrization~’ matrix

on the convergence rate of the preconditioned CG method.

Letting

G - C~~A (1.3)

and

k m  C~~b , (1.4)

we can rewrite the syctem (1.2) as

(I — G)x = k  , (1 . 5 )

from which we derive the iterative scheme

= ~~~~~ + k for i = 0,1,..., (1.6)

where is some initial approximation to ~~. We refer to (1.6)

as the single method for the system (1 . 5) .  Let us write the matrix

A as

A = D + L + ’ U ,

5

~ ~~~~~~~ ~~~~~~~~~~~
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where D is a (block) diagonal matrix, L is a strictly lower tri-

angular matrix and U is a strictly upper triangular matrix. We then

call (1.6) the (block) Jacobi method if C = D, the (block) Gauss-

Seidel method if C = D + L, or the symmetric (block) successive over-

relaxation method (SSOR method) if

c = (D + ~L) D~~ (D + ~iJ)

where w is a scalar parameter. Other choices of C lead to other

well-known single methods.

We can combine the iterates from the single method to define

a more general iterative procedure

= 
~~ ~~~ for i = 0,1, . . . ,  (1.7)
j=O J

V where the v~~~~
s are constants such that

~~ = 1 for i = 0,1 (1.8)
j =0 3

We call (1.7) a semi-iterative method with respect to the method (1.6)

V 

(cf. [11]). A particular instance of (1.7) is the second-order procedure

( 1+1) 
= ~~~~~~~~~~~~~ + ~

) + (1 - ~~~ )
(i) ] + (1 -

(1.9)

for i = 0,1,...

where a1 
= 1. Many methods can be expressed in the form of (1.9),

e.g. the Chebyshev semi-iterative method and the Richardson second-

order method (see [14 ] ) .  In the next section. we show that we can also

express the conjugate gradient method in this three-term recurrence

form. We refer to (1.9) as the CG-accelerated single method if the

iteration parameters (cz1) and (~~ ) are chosen based on the CG

method .

_  _ _ _ _ _
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Combining two iterat ions of the single method (1.6), we

obtain the double method

~~~+l) 
= G

2
~~~ + Gk + k for i = 0,1,..., (1.10)

V 
where ~ (o) ~ (o) The iterat ive procedure (1.10) can be accelerated

by the second-order procedure

~ ( i+l) 
= 1i+l

[p
i
(G2~~~ + Gk + k) + (l_p

~
)
~~~~

] + (lT )~~
il )

(1.11)
for i = O ,l,...

where = 1. We want to use the CG method to compute the iteration

parameters (y1
) and (n . ) ,  in which case the procedure (1.11) is

referred to as the CG-accelerated double method. We need the following

assumption.

ASSUMPTION 2. There exists some nonsingular matrix T of order n

such that the matrix T(I - G2)T 1 
is symmetric and positive definite.

It can be easily checked that T = S is one possible choice.

We have five goal s to accomplish in this chapter: (1) to

describe the preconditioned CG method and to derive its many nice

properties, (2) to determine conditions under which the CG-accelerated

single method and the CG-accelerated double method are “virtually-

equivalent,” i.e.

~ (2i) 
= ~~(i) for i = 0,1,..., (1.12)

7
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(3) to apply the equivalence result of (2) to the case of the block

V 

Jacobi method when the coefficient matrix A is symmetric and positive

definite, and can be written in partitioned form as

V / M F \
A = ~~~~

V \F M2/

V where M1 and M
2 

are square matrices such that the systems

M1z1 = 
~l 

and M2z2 =

are easy to solve, (14) to introduce a new method based on conjugate
V gradients and cyclic reduction for the class of matrix equations con-

sidered in (3), and to use the result of (3) to show that our new

method is mathematically equivalent to a generalization of a method due

V to Reid [9], and ( 5)  to demonstrate that our new method is more

efficient than the generalized Reid’s method in both work and storage,

and thus is an effective solution procedure for an important class of

V matrix equations . We believe that all five result s are original.

2.2. Conjugate Gradient Method

Let us consider the system

A x = b . (1.1)

We assume that the matrix A is symmetric and positive definite,

V 
and that the matrix C has been chosen as the i’~enttty matrix. Our

4 goal is to use the conjugate gradient method to compute the iteration

8

~~~~~ ~~~~~~~~~~~~ 
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parameters (ar) and (~~
) in the second-order procedure

(i+l) 
= aj+l ~~~~~~~ + ~) + l~~i~~~

i
] + (l~~1~1

)X
(i-l) 

,

(1.9)
for i = O ,1, . . .

where = 1. We define the residual vector by

- 

b - ~~~~ for i = 0,1 (2.1)

As we have

G = I - A  and k = b ,

V it follows that

Gx~~ + k = + r ( i)

and the procedure (1.9) becomes

V 

(i+l) 
= ai÷1(

~ i~~~~ + x~~~ ) + (1 - a ) x
U_l ) 

(2.2)

for i = O ,l,...

V where a1 = 1. Using the notation

t

we can express the conjugate gradient method for solving the system

(1.1) as follows (cf . Rutishauser [10]).

V 9
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ALGORIThM 2.1 (CG method)

(1) Let ~
(0) be an initial approximation to x. Compute

°~ :~~~~~-~~x~°~ * 

V

V 

(r(O) r(0))

and

~
(l) 

~~r
(O) 

+ 
(0)

Let a1 := 1 and i := 0.

(2) Repeat until = 0:

(a) LetV i : i + l .

(b) Compute V

r(i) : b - Ax~~

(E
~
1
~ ~~~~

V := 
(~~

1 Ar i
) V

and V

(r~~~ 
( i) ) —l

V a1~1 := - ~~—~~_ 

(r(i l) r(il)) 
~ 

]

(c) Compute

(i+l) 
:= a~+1

[
~~E~~ 

+ x (i) ] + (1 - a~÷1)~~~~~~ . 0

The residual vectors satisfy the well-known orthogonality

property (see [6])

(r~~ 
~~~~ = 0 

10 
for I 

~~ 
j . (2.3)

-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V

.
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Thus, in the absence of round-off errors the solution vector is obtained

in at most n iterations of the CG-method. But the computed residuals

are not orthogonal in practice. Our approach is to permit the gradual

loss of orthogonality and with it the finite termination property of

the method. We are concerned primarily with the iterative aspects of

the CG algorithm. In fact , when used for solving large sparse sets

of linear equations arising from the discretization of elliptic partial

differential equations , the CG method often converges within a number

of iterations small compared with n (see, e.g., [2]). Nonetheless,

this orthogonality property (2.3) is of theoretical importance for

it characterizes the CG method among all second-order procedures of

* 
the form (2.2). V

THEOREM 2.1. The second-order iterat ive procedure

V 
(i+l) 

= a1÷1(~i
r
~~ 

+ x~~~ ) + (1 - a1÷1)x~~~~ for i = 0,1,...

where a1 = 1 and

r (i) 
= - Ax~~~ for i = 0,1 

reduces to the conjugate gradient method (Algorithm 2.1) if and only if

(r (i)  
~~~~~ = 0 for i ~ j  *

* 

Proof. We only have to prove the sufficiency part . Let i = 0.

From (2.2), we obtain

~
(l) 

= ~ r~°~ +
—V. .~~

11
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V Thus ,

b - Ax~~~ = 
_
~0A~

(0) 
+ b - ~~ °) , 

*

which becomes 
I V

r (1) 
= - ~~~~~~ . (2.4)

As (r(0) r(l)) = 0, we find

0 = (r~~~ r (0) ) - ~~~~~~~~ Ar (0)
)

It follows that 
(0) (0)

0 = 

~~
O),A~~

0
~~

Now let i > 1. From (2.2), we get V

(i+l) 
= ~~~~~~~~~~~~ + 

( i) ) + (1 - ai+i
)r~~~

1)
. (2.5)

V Therefore ,

0 = a1÷1[-~~ (r~~~ , Ar~~~ ) + (r~~~ r (i) ) ]

because 
V

(r~~~ £~~~~
) = (r(i) r(~

_l)
) = 0

Consequently, Ci) (i)(r , r
= 

(~~~~,Ar~
t
~)

From (2.5), as ~~~~~ r~~~~~ ) = (r~~~~~ , r~~~ ) = 0, we get

0 = _ai+l~i( 
i_1)

,Ar~~~) + (1 - a~~1)(r~~~~~, r~~~~~) . (2.6)

Since a1 = 1, we can replace i by i-l in (2 .5) to obtain

12
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r (i )  
= ai

(_ ~ i l A.~~~
_ 1) 

+ £~~~
1) ) + (1 — aj)~~~

_21

or, equivalently,

= — 
1 1 ~~(i)  — (1 — a1)~~

1_2)
] - r ( i—

~~~ . V

~~~~~
_ . ~

ai

Therefore,

(r
(i_ l), Ar~~~) = ~~~~~~~~ r ( i) ) 

V

= - 
1 

~~~~ r~~~)i i—l

(~~~~2), r~~~) = (
1_fl

, r~~~ ) = 0. We can now simplify (2.6)

0 = (r~~~ r (i) ) + (1 - a
~+l ) ( ,  r (

~~
l) ) ,

or equivalently, I
~~~~ r (i) ) 1 

V

0 = 

(r(i l) z~~~
) 

~ 

- a~÷~ + 1 .

We conclude that J

I 
~~~~. 

(r~~~ ~~~~~
= - 

~~~ ~~~~~~ r(~
_l)
) 

cxjJ . 
0

From the recurrence relations (2.14) and (2.5), we can verify

by induction that

r(i+1) = £
(0) 

- A[ E 
(i+l) 

Ai](0) for i = 0,1, . . . ,  (2.7)
j~~~~

j

where the ~~~~~~~ are constants. As

~~~~~~ r (0) A( ( i+1) (0) )

~~~~~~~~~ ~~~~~~~~ 

V
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V
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it follows that

~
(i+l) 

= ~(o) 
+ ~ ~ (i+1) Ai ]r (O) for i = 0,1 (2. 8)

j=O J

The conjugate gradient method is therefore a special instance of the

polynomial acceleration procedure

* (i+l) 
= ~(o) 

+ P~(A)~~°~ for i = 0,1,... , (2.9)

where P
~
(A) is a matrix polynomial in A of degree i. Let us define 

V

an error function

(
~ 

- x , M(~ - x ) )  , (2 .10)

where N is some n x n positive definite matrix. The conjugate

gradient method possesses the following optimality property (see

[3, p. 397]).

THEOREM 2.2. Among all polynomial acceleration procedures of the form

(2.9), the conjugate gradient method generates an iterate that

minimizes the error function fA (x~~~
) of (2.10), for i = 1,2 

A few interesting results follow from Theorem 2.2. Let us V

assume that the matrix A has only p < n distinct eigenvalues .

Then there exists a matrix polynomial Q~(A) of degree p so that

Q (A) = 0 .
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Therefore,

~~~~~~~~ 
= 0

and the CG method converges in at most p steps. The same result

also holds if the matrix A has a large number of distinct eigenvalues

but the initial error vector

(0) (0)
~~ 

=
~~~ 

_

~~~~~

lies in a subspace generated by the eigenvectors assoc iated with only

p of these eigenvalues. The CG method is thus optimal for the

particular eigenvector mix of the initial error e(0). As the iterat ion

proceeds, the extreme eigenvalues are approximated especially well and

the CG procedure would then behave as if the corresponding eigen-

vectors were not present. Hence we often observe a superlinear con-

vergence rate for the CG method (see, e.g., [2]). It follows that

V for rapid convergence the eigenvalues should be sparse at the extremes

and dense in the center. Convergence would be slow if the eigenvalues

were packed in the extremes.

Another consequence of Theorem 2.2 is an error estimate of

the CG method. Assume that the eigenvalues of matrix A are included

in the interval [a,~~], where a > 0. Then by choosing an appropriate

Chebyshev polynomial acceleration, we get (see [3, p. 1428])

T~~(~~~~~~~) 

fA (~~
0) ) , (2. 11) V

where Ti is the i-th degree Chebyshev polynomial of the first kind.

15
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Since

2.T (~~ +a\ (
~~~~~~+ 1 \ i ~~~~~

(
~~~~~~~

_ 1 \
1

i\~~~-a/ \~4~ - i /  \~~~~ + l/

i

V where K = n/a, the inequality (2. 11) becomes

< 
- ~~

2j 
(0) (2.12)

For fixed i, the error bound of (2 .12) decreases as K decreases,

and is thus tightest when a ax~d ~ are the extreme eigenvalues of

A, in which case the number K is the condit ion number of A with

respect to the spectral norm. The bound is, however, pessimistic

asymptotically.

The above convergence propert ies of the CG method are

important when we consider the choice of a preconditioning matrix

in the next section.

2.3. Preconditioned Conjugate Gradient Method

We wish to apply the conjugate gradient method to solve the

preconditioned system

C~~Ax = C~ ’ . (1.2)

We construct the matr ix equation
V 

SC 1AS~~u SC~
1
~ , (3. 1)

where U = Sx and S is the “symmetrization” matrix of Assumption 1.

Now we apply the conjugate gradient method to the system (3.1).

16

- ~~~~~~~~~~~~~~~~~~~~~

L. .. _ _ _.___— .. —5 •_~~~~

__ 
.— . -.- ---—- V —--.-S.—.--.- —.— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . 5-—-- _—~~~~~~..--. — -5..- -- —~~.——~ 

‘_— - - ~~~_ , -  -~~~~



5— 
~~S5-~~~~~~ 

_——~~~~~~- • . . .... - . _ _ _ _

ALGORITHM 3.1.

(1) Let ~
(o) be an initial approximation to u. Compute

* (o) 
:= SC~~ - SC

_1
AS

_
~J0)

(~ (O) ~(O))
V 

(~
(O)

A~
(OY )

V and
(i) 

: + 
(0)

Let a1 := 1 and i : 0.

(2) Repeat until = 0:

(a) Let

i : i + l .

(b) Compute

: SC~
’
~ — SC AS~~~~~

(;
( i )  ~~( i )

)
: 

(
(i)  SC

_i
AS

_
~~~~~)

and

~ ( ( i )  _ (i)
) 

—l

a.~ 1 :=[
i - 

(
..(i..l; ..(i..l)

)

(c) Compute

~
(i+l) 

:= a1÷1(~1~~~ 
+ ~~~ + (1 - a.÷1)~~~~~ . o

Let us define the iterate vector by

for i = 0, 1, ... , (3.2)

(i)and the pseudo-residual vector z by

17 -
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C~~ — ~~~~~~~~~~~~~ for i = 0, 1 .  (3.3)

sx~~ for and for ;(‘) in Algorithm 3.1, 
V

we get an iterative procedure for

V 
C 1Ax = C~~b . (1.2)

V ALGORITHM 3.2. (Preconditione d CG method or CG-accelerated single method)

(i) Let ~
(o) be an initial approximation to x. Solve the system

c~’ = b - Ax~

Compute

(Sz~~ 
~~~0))

(Sz~
0
~~, SC~~A~~°~ )

and
(1) 

: ~~
(o) 

+

Let a1
:=l and i : 0 .

(2) Repeat until ~~i) = 9:

(a) Let I := I + 1.

(b) Solve the system

= b - ~~
(i) ~

(c) Compute (i) (i)(Sz , S~ )

(SZ (i) , SC
_ 1

A~~
i
~~)

I (Sz~~~ , S~
(i) ) l i

_I 
V

ai+l : [l 
- 

~~

. 

(Sz(
i_l)

, ~~~~~ 
au

18
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V~~.

and

~
(i+1) 

: a1~1(~1
z~~ 

(i.)~ + (1 - a.~~1)x~~~~~ . o

Observe that we need not form the matrix S explicitly. It

suff ices to have the product Also, note that the preconditioned

* CG method reduces to the generalized CG method of Concus et al. [2]

if A and C are symmetric and positive definite matrices, and if
V 

S
t
S = C .

From (2.3) and (3.3), we get that the pseudo—residual vectors

satisfy the conjugacy property

(sz~~
i)  

~~~~~~~~ = 0 for i / j  . (3.14)

Since the matrix is symmetric and positive definite, the precon-

ditioned CG method therefore terminates in at most n steps in exact

arithmetic. In practice, the calculated pseudo-residuals do not

satisfy (3.14) due to round-off errors. Our approach is to permit the

gradual loss of conjugacy and to consider primarily the iterative

aspect of the preconditioned CG method.

The next theorem, a direct consequence of Theorem 2 .1, states

how the conjugacy property of (3.14) characterizes the preconditioned

CG method.

19
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THEOREM 3. 1. The second-order iterative procedure

~~~+l) 
~~~~~~~~~~ + 

~~~~~~~~ 
+ (1 - a1÷1) 

i-l) for i = 0,1,...

where a1 = 1 and

V 

~
(i) 

= C~~ (b - A~~~~) for i = 0,1,...

reduces to the preconditioned conjugate gradient method (Algorithm 3.2)

if and only if

~~~~~~ ~~~~ = 0 for i ~ j . 0

From the relation (2.8) we get

~
(i+1) 

= ~~
(o)  

+ [ E ~~ H~ ]~~ °~ for i = 0,1,...
j=O J

V 
where H 5C 1AS 1 and the T i f l t s are constants. Thus,

= ~~~
(o) + s[ E T~~~

1) KJ ]S 1SZ (0) for i = 0,1,...
j=O ~

where K C 1A, so that

= ~
(o) + ~ 

~ 1(~~~~~~~]~~(0) for I = 0,1,... (
~~~~~

)

j=O j

The preconditioned CG method is therefore a special instance of the

polynomial accelerat ion procedure

~
(i+l) 

= 
(o) 

+ Q1(K) ~
(o) 

, (3 6)

20
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where Q1(K) is a matrix polynomial in K (m C~~A) of degree i. Recall

V 
the error function

- x, M(~ - x))  
, 

(2.10)

V 
where M is a positive definite matrix. As

* 

(Ci) 
-~~~~, sC~

lAs-~~~
(i) ) )  = (Ci) sts C A (~~~ ~~~

V the following optimality property of the precondition CG method can V

be derived from Theorem 2 .2.

THEOREM 3.2. Among all polynomial acceleration procedures of the

form (3.6), the preconditioned CG method generates an iterate

that minimizes the error function 
~~~~~~~~ 

of (2.10), where B~~StSC~~A ,

for i = 1,2 

We can draw from Theorem 3.2 conc lusions similar to those
V 

from Theorem 2.2. The assumption that the matrix SC 1AS 1 is symmetic

and positive definite implies that the eigenvalues of C
1A are all

V 
real and positive. Had the matrix C 1A only p < n distinct eigen-

values, the preconditioned CG method would converge in at most p steps.

—lThe eigenvalue distribution of C A determines the rate at which

the method converges. Convergence would be fast if the eigenvalues

were sparse in the extremes and dense in the interior. We often

observe that the method converges superlinearly.
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Using arguments similar to those in [3, p. 1428] and the last

section, we obtain an error estimate for the preconditioned CG method:

~~~ 

~(~~: 
i)2i 

~~~~~~~ 
(3.~ )

where B E S
tSC 1A and K IS the spectral condition number of C 1A .

A good preconditioning matrix C should therefore have the

following features:

(a) it is a simple computing task to solve matrix equations with

coeff icient matrix C,

(b) the matrix C~~A has a favorable eigenvalue distribution, i.e.

either that the eigenvalues are sparse in the extremes and dense

in the interior or that only a few of them are dist inct, and
V 

Cc) the spectral condition number of C 1A is much smaller than

that of A.

2.14. Equivalence Results

Consider the double method

= ~~~~~ + G~ + for i = 0,1,... , (1.10)

where ~~
(o) 

= ~
(o) Recall that

V G~~~I - C ~~A (1.3)

V and
k C~~b . (1.14)
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The procedure (1.10) can be regarded as the single method for the system

(I - G2 )x = Gk + k . (4.1)

V Suppose that we have chosen a nonsingular matrix T such that the

• / 2 — 1 .matrix T~l - G )T is symmetric and positive definite. Let us

apply the conjugate gradient method to the system

[T(I - Q2)T~~]Tx = T(Gk + k)

ALGORITHM 14. 1. (CG-accelerated double method)

V (1) Let

* 
~(0) := .

Compute
- 

~~
(o) 

: ~~~ + ~ - (I -

(~~
(0) Tw (0) )

(0) 2 (0)(Tw , T(I-G)w )

and

(1) (0) (0)z : = p 0~~ +
~~~~~

V Let yl := 1  and i := 0.

(2) Repeat until = 0:

(a) Let
i : i + l.

(b) Compute

~ (i) 
:= Gk + k - (I - G

2
)~~

1
~

V 
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Cc ) Compute (j

(Tw’ 
) , ~~ 

)
)

p1 
~~~~~~ T(I - G2) 

ii)
)

f p . (Tw~~~, Tw~~~ ) 1 

V

1i+1 := 
[
~1 - 

~i-l ~~~~~~ 
~~.~i_1)) 1i

and

(j + 1) 
: i

~~1
[p
~
w
~~ 

+ ii) ] + (l_y.
+l) 

i1)

V We now assume that the condition V

= 1 for I = 0,1,... , (4.2)

holds for the CG-accelerated single method (Algorithm 3.2). The three-

term recurrence defining the method thereby simplifies to V

V 

(i+l) 
a~~1

(G~~~ + k) + (i - a~÷1)x~~~~ for i = 0,1,...

V (14.3)

where a1 = 1. Replacing i by 2j + 1 in (4.3), we get

~
(2j+2) 

= a2.~2(Gx
(23
~~ + k) + (1 - a2 .~ 2 )x (2

~~

Also from ( 14.3), we obtain

= a2j÷1(G
2
~~
2
~~ + G& + (1 - a

2~~1) G~~
2J
~~~

and

Gx (2j
~~~ 

1 
~
(2j) 

- 

( 

1 - a
2j \ ~~(2j_2) - k

a2j /

14
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It follows that

V 

* 

~(2j+2) = a2~÷2a2~~1(G
2x(2i) + Ok ÷ k)

+ 

[1 
+ 

a
2~~~2 (1 - a

2~÷1
) - a2j÷2J ~

(2j) 

V

- 

a
2~~~2 (i - a2 ~~~~ 

(1 - a2~) 
(2j 2) (14.14) V

We use ( 14.14) to define one more iterat ive scheme.

ALGORITHM 14.2. (Derived CG-accelerated double method)

(1) Let

* ~~
(o)  

~~~~~~

Compute

: G1c + k - (i - G2) ~~

~~~ 
: = a

2
a
1

and

~
(1) 

:= 
~~ 

~~(o) 
+ ~~(o)

Let

i := 0

(2) Repeat until ~(i) = 0:

(a) Let

i : = i + l .

V (b) Compute

~(i) := Ok + k - (I - G2) ~~~ .

25

,~~~~.. ~~~~~~~~~~~~~~~ 

V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~ V~~~~~~~~~~~ S. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~

V

~~~

5__

V

~~

5 - V 5 .. 

V.



(c) Compute

~i+l 
: 1 + 

21+2 
- a21÷1)(l 

- a2~)

a
2~32 a

2~~~1
p1 

:=
1+1

V 

and 

rj+l[o i ~
(i) + 

Ci)] + (1 - 
~i4l~ 

~
(i-1) 

V

We observe that Algorithms 14.1 and 14.2 are identical in form.

Our goal is to prove that they are mathematically equivalent, i.e.

(i) 
= 

(I) for i = 0,1 

Because of Theorem 3.1, we only have to show that

(~~Ci) ~~~~~ 
= 0 for i 

~ 
j

where

= Gk + k - (I - G2) ~~~ for I = 0,1,...

Let us define the spectral radius of an n x n matrix M by 

V

the number

p (M) max
1< i<n

where ‘ 2’n are the eigenvalues of M. We make the assumption: L

ASS~Th~TION 3. 
p(G) < 1

The matrix (I + G) is therefore nonsingular because all its eigenvalues

are bounded away from zero. We now choose the “symmetrizatiofl~’ matrix

T of Assumption 2 as
26
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T = s(i + 0)
_i (14.5)

where S is the “ syinmetrizat ion” matrix of Assumption 1. It remains

to verify that the matrix B T(I - G2)T 1 is symmetric and positive

definite. As

T(I - G2)T 1 
= i - (5~~

_l
)
2

the matrix B is symmetric. Hence the eigenvalues of B are real.

By Assumption 3, the eigenvalues of (SGs~~) are all less than unity

in modulus. Therefore, all the eigenvalues of B are positive.

Since the derived CG-accelerated double method has been con-

structed directly from the CG-accelerated single method, we have that

~
(i) 

= ~
(2i) for i = 0,1 

Now,

= Gk + - (I - 02) (2i)

= (i + 0) ~~~~ for i = 0,1,...

where

k — c 2~ for i = 0,1 (3 3)

Thus,

= 5~
(2i) ~ V

But from Theorem 3.1, we see that

(sZ (2
~~, sZ (2i) ) = 0 for i 

~ 
j

We have thereby proved the desired equivalence result.
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THEOREM 14.1. The CG-accelerated single method and the CO-accelerated V

double method are “virtually-equivalent” if the iteration parameters

of the single method satisfy 
V

= 1 for i = 0,1,...

and if the “syinmetrization” matrices S and T of Assumptions 1 and 2

are chosen so that

T = s(i + 0)
_ i

Note that another possibility for the “symmetrization” matrix T is

T = 5 ,

but then the above “virtual-equivalence” result no longer holds.

2.5. Block Jacobi Methods

In this and the ensuing section, we consider symmetric and

positive definite matrices of the form

/ b L I F  \
A = I  L f  I , (5. 1)

~~F
t M2

where M1 
and M2 

are square matrices such that the systems

= 

~l 
and M2z2 

= 

~ 2 
. V

are easy to solve. Many matrices can be described by (5.1), e.g.

those matrices that possess “Property A” [11].

28
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The block Jacobi method corresponds to the preconditioning

matrix

c= (  
1 J (5.2)

2

As both matrices M,1 and M2 are symmetric and positive definite,

it follows that C is, too. We have

G = 

( 

~M~~~
t

and
JM~~~bl-’l (5.14)

\M~~~2

Our goal is to show that the CG-accelerated single block Jacobi V

method (J-CG method) and the CO-accelerated double block Jacobi

method (DJ-CG method) are “virtually-equivalent.”

There exist matrices S
1 

and 
~2 

such that

S~S1 
= M1 and 

~~~~ 
= M2 . (5.5)

We choose the “symmetrization” matrix S as

O \
~= 1 1 (5 . 6)

\0 
~2J

All is well because = C (see Lemma 1.1). Also, let

B 8C 1AS 1
.

V 
29
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Since

B — 1k
” (5*1

)
tFS l\

— 

k(S
l
)
tpts

l

its eigenvalues are either unity or of the form 1 ÷ a
2 where a

is some nonzero real number. As the matrix B is positive

V definite, it follows that a2 < i. Now,

G = I - S B S~~~,

and so the eigenvalues of 0 are either zero or of the form + a2

Hence

p(G) < 1 ,

i.e. Assumption 3 is valid. We can therefore choose the matrix

s(i + G)~~ as the “syinmetrization” matrix for the double method.

Finally, we must show that

= 1 for i = 0,1,... , (14.2)

V for the J-CG method. We write (1.1) as

( ~~~~~ 
F 

~~ (
~~5i\ ~ ~ . (5.7)

\F M
2 / \~~2J \~~2J

Following Concus et al. [2], we choose the initial vector

- 

is some approximation to
— 

— 

~~0) = M~~(b2 
- Ft40) ) 

(5.8)

so that

30
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As 

(0) 
~

(z (2
~ , Cz~~~)

= 

~~~~ 
for 1 0,1,..., (Algorithm 3.2)

(z , Az

we see that

From the recurrence relation

(i+l) 
= ai+i[~ i(G~~~ 

+k) + (l-~~.)x~~~] + (1_a
~+i
) ~~~

•l)

for i = 0,1,... , (1.9)

where a1 = 1, we get (cf. recurrence relation (2.5))

(1+1) 
= a
~+1[~~

(i - c_l
A)~

(i) 
+ (1 - ~~~)

( i ) ] + (1-

or equivalently,

(~ ) = a~÷~ [
~ 

(~~ I~~ ) (:~ ) 
+ (i- ~~ (:~)-J

/ ~(i~l) \
+ (l÷cxi.~l

)(
~~~~i._l) ) for i = 0,1 (5.9)

It follows that

~
(l) 

=

Thus,

~l
l

Us ing (5.9), we readily prove by induct ion that
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V (21) 
= 0 and 

~21 
= 1 ,

for i = 0,1,... . (5.10)
(21+1) 0 and 

~2i+l 
= 1 

‘ V

THEOREM 5.1. The J-CG method with “symmetrization~
’ matrix S defined

by (5.6) and the N-CO method with “symmetrization~’ matrix s( i  +
* 

are “virtually-equivalent” if the initial vector Is chosen by (5.8).

2.6. A Compressed Method and Cyclic Reduction

In this sect ion, we first give two special methods for solving

the system

(M 1~~~
F 

~~(~~l (~~l~~

\F M
21\x2/ \~~2/

and then use the result in the last section to show that the two methods

are equivalent.

The first method is based on a procedure introduced by Reid [9].

We consider the J-CG method with the special initial vector

~
(0) 

= 
. (5. 8)

— 

M~~(~~- Ft4
0)
) 

V

We have seen that

= 1 for 1 = 0,1 (14.2)
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Thus,

~
(2i+2) 

= a21 ÷2
a2i ÷1

(G2x(21) + Gk + k) + 
[1 

+ 2 
(l-a21÷1) 

_a
21÷2] 

~
(2i)

- 

a2 1~~2 (1 - a2.÷1)(1 - a ) x (2i_2 )

for i = 0,1 (14. 14)

Since

G2x (2]* ) ÷ + ~ - 
~(2i) = (I + G) (2i)

we can simplify ( 14. 14) to

(21+2) (2i)

V = a21~2
a2.~ 1 [(I + G) ~

(2i) + 
(1 a 1 )  (1 1) (

(2i) X(2i-2)
)] V

for i =0 ,1 (6.1)

V (21) - . (2i)To save work, we update only in (6.1). If we desire 
~2 ‘

we solve the system

(2i) 
— Ft (21)M2

x
2 ~~~2

(2i) . (i)as 
~l 

= 0. We update the pseudo-residual vector z recursively

by the formula of (5 .9)

(2i+l) 
— a M

_l
Ft (2i) + ~l a ~

(2i_l)
— 

2i+l 2 ~l 
- 

21+1’ —2

for 1 = 0 ,1,...
(2i+2) 

— M 1
F (2i+l) 

+ ~l a ~ (2i)
— a2j÷2 1 ~2 

“ 
- 
21+2’ ~1

where a1 
= 1. We can now present what we call the compressed J-CG

method (CJ-CG method).

ALGORITHM 6.1. (CJ-CG method)

Ci) Let ~~0) be an initial approximation to 
~~ 

Solve the system

~~~~O) 

~2 
- Ftx~

0)

33



~~~.J t J  -j II 
V
II . 

V
~~~~~V S • V V~ • VV ~~~ __ S V _ 

_
~ **~~

_
~
_ .5 V_V~ VV_V_-V V V V V~ *V 

V.

Compute

~ (o) 
:= 

~l 
- M

1
x1 

- F~~
0) *

and solve the system

M z~~~ — ~(o)
1—1 —l

Let

V and let ~
(_ 2) be an vector not equal to ~

(O)

V 
(2) Repeat until (~

(2i+2) 
- X(2i)) = 0:

(a) Let
i : i + 1

(b) Compute

[1 , i = O ,

I (2i) ~(2i) 
-l

I I  ‘~l ‘ .
~ ].1 — 

(21—1) ,.(2i—l) ‘ ~~~ 1
, z

2

and
V A(2i+l) •-  a Ft (21) 

+ ~~ 
- ~~ ~~(2i-1)

—2 21+1 ~l 2i+l’—2

Solve the system

M ~
(2i*

~~
) 

— 2
(2i-i-l)

2—2 —2

(c) Compute

r ~
* (21+1) A(2i+1) 1—1

I ‘~2 ‘~~2 ____: ~‘i — 

(z(2~~ ~*~(2i)-~ aL ‘—1 ‘~~ l 
‘ 21+1 V

and 
2(21+2) • a F (2i+l) + i a 2(21)—l 2i+2 ~2 

“ 
— 

2i+2’ —l V

Solve the system

~
(2i+2) 

— 
A(2i+2)M11 ~l

I

, 3)4
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1
(d) Compute

(2i÷2) (2i)
-
~~~~. 

)

+ (~ - a2~÷i) (1 - )  (
(21) X(21 2)

)J

and

(21+2) -— (2i) 
~ 
(2i+2) (21)

- — — 

~i 
)

(3) Let x~
2
~~ be the accepted approximation to x1. Solve the system

M2x~
21
~ = - ~~~~~~ .

V 

Let us turn our attention to the double method. It can be

viewed as the single method for the matrix equat ion

(i - = Ok + ~~~~~ . (14.1)

As

2 (I_M ~~TFM~~F
t

0 I~~~M~~F M 1
L
F

the system (14.1) is the uncoupled equations

(I - M~~~F M~~F
t)x

1 
= M

1
1
b
1 
- M~~~F M~~~b2 

(6.2a)

(I - M FtM~~F) ~~ = M~~~b2 
- M~~ F

t
M~~~b

1 
. (6.2b)

We refer to the equations of (6.2) as the cyclic reduction (cf. [ii])

of the matrix equation
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(M 1 
F~~~(xl~~~~ (b 1~~ .

\F M
2/\~~~~/ \~~2J

In the last section, we have chosen the matrix S(I + 0)
_i 

as the

“symmetrizat ion” matrix for (I - 0
2
). As

{s(I + G)~~] (I - G2)[S(I + G) 1]
1 

= s(i - G2)S~~

and
V I s  ~~\

~ 
) , (5.6)

2

we see that the matrix

- M F M ~~F
t)S~~

is symmetric and positive definite.

An effective procedure for solving the matrix equation (5 . 7)

consists of

(a) applying the CG-accelerated single method to solve the reduced

system (6.2a) with “symmetrization ” matrix 
~i’ 

and

V 
(b) solving the system

M2x~~~ 
= - Ftx~~

where is the accepted approximation to in (a).

We call this procedure the RS-CG method.

3,6
Li

- . ~~~~~~~~~~~~~~~~~~~~~~~~ V I

~ 

*5 - -~~~~~~~~~— -



ALGORITHM 6.2 (Rs -CG method) V

.

(i) Let

(o) (0)zl - -~s~

Solve the system

* 

M
1~~
°~ = - FM~~~~2 

- (M
1 

- FM~~~t )~~0) 
. 

V

Compute

(s
(O)

, ~~~~O))
P0 : 

(~
(0) 

(M~ - FM~~~t)~~0))

and
V 

(1) 
— 

(0) (0)
V 

~~ 
.— p O~ + X l

Let 
~l 

:= 1 and i := 0.

(2) Repeat until ~ (o) 
= 0:

• (a) Let

i : i + 1.

(b) Solve the system

~~~~~ = 

~l 
- FM~~~b2 

- (M1 - FM
t
)~~~

1
~

(c) Compute

(~~(i)  M
1~~~~)

(Ci) (~ - FM~~Ft)qW)

I Pi (Ci) M~3~~~) Ti
Ti+l - ~~~~ 

(~
(il) ~~2

(i_l)
) Yj J
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V - S

and

(i-i-i) (i) (i) , (i—i) *
+ x~1 ] + ~1 - ~i+l~~l

(3) Let be the accepted approximation to x
1
. Solve the system

M
2~~

’
~ = - ~~~~~

We proceed to show how we can derive the RS-CG method from the

DJ-CG method. Theorem 5.1 states that the J-CG and DJ-CG methods

are “virtually-equivalent,” i.e.

~
(2i) 

= ~(i) for i = 0,1,...

Also we know that

~
(21) 

= for i = 0,1 (5.10)

I~w, let us use the DJ-CG method to update

(1+1) , (i) (i) (i—i)
= 

÷ “~~~~. 
+ x1 ) + (l - 

~~~~~~~~~ 
for 1 = 0,1,...,

(6.~)

where = i As

~(i) = (I + G) [k  - (I - G)~~~~ J
= (i + G)[k - (i - G)X(2~~]

= (x + 0)(2i)
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we get

~
(i) 

= ~
(2i) for i = 0,1 . (6.14)

Let

H I - M1
LFM

2
1
Ft (6.5)

and

- M~ TM~~b~ . (6.6)

Then

~
(2i) 

= - 
(21) 

- zç
]
T

( 2 i )

= M~~~b1 
- ~

(2i) 
- M~ TM 1

(b2 
- F

t
x~
2
~~)

= h - (I — H)42]*)

• We define the residual vector for the reduced system (6.2a) by

Ii - (I - H)~~~~ for i 0,1 (6.7)

Thus,

= ~
(2i) 

= for I 0,1, . ..  , (6.8)

so that the recurrence relation (6.3) becomes

(i+1) 
= T~~1(P~~ 

+ 
(i)
) + (i -

for i = 0,1,... , (6.9)

where -r1 = 1. Now,

~~~(i) T~~~
’) = (s~ (2i) sZ C2i) )

— ~ 
(21) (2i)

‘ 
~~~~

= (2~~ 
~~~(i))
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and

(Tw
(i) T(I_G2)~~

i
~ ) = (SZ(2i) s(I_ G2)~~

2
~~)

= 
~~~~ M,L

(I_H)2
~~~
) .

Therefore, the iteration parameters (p 1) and {-r1) in the DJ-CG

method can be given by

(~
(i) ~~~~i)) V

p. = (j\ , i > 0 • .10)1 
~~ 

~~~ M~(I
_ H)~ ’ ‘) 

—

and
/ i = O ,

~~~

(6.11)
1
~1+1 

= 

I (~~( i)  

~~~~ 1 
1_i V

- 

~~~~ ~~~~~~~ ~~~~ i-1)~ ~~~~ j  
‘ 

i 
~ 

1.

The iterative scheme (6.9) with its iteration parameters given by

(6 .10) arid (6.11) is a second-order procedure for solving the reduced

system (6.2a). Since

(5~~(i) 5~~(i) ) = (s1~~
2
~~, s142~

))

= (s~(2i) SZ(2i)
)

=0 for i~~~j, 
V

we conclude that the procedure is identical to the CO-accelerated

single method (Theorem 2.1).

We have therefore derived the CJ-CG method from the J-CG

method, and the ES-CO method from the N-CO method. As the J-CG

and the DJ-CG methods are “virtually-equivalent” by Theorem 5.1,

we have proved our desired result:
)4Q
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THEORE~4 6. 1. The CJ-CG and the RS-CG methods are “virtually-

equivalent.”

2.7. Computer Implementation

There are two popular versions of the conjugate gradient method.

One is the original two-term version due to Hestenes and Stiefel [6],

the other is a three-term recurrence version due to Rutishauser [10].

We have given our algorithms in the second version for expository

purposes. In [8], Reid compared the two versions and found that

the Hestenes and Stiefel version is more efficient in both storage

and computational work.

Let us present the Hestenes and Stiefel version of the conjuga e

gradient method for the system

A x = b , (1.1)

where the matrix A is symmetric and positive definite.

ALGORITHM 7.1. (CO method)

(1) Let ~~
(o) 

be an initial approximation to x. Compute

£~
°
~ 

: = b - A x ~
°

~

Let
• 

~~°) : r ~°~ .
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Compute

: A~~0)

(r(0) ~~~~
~(o) ~(0))

and

(1) (0) (o)
~ : x

Let

i : 0 -

(2) Repeat until = 0 or = 0:

(a) Let

i := i + 1.

(b) Compute

(i) 
- (1-1) (i-l)r :-r

(c) Compute 
(r(i) r~~~)T~ := 
(i i)

and

~(i) : + ~~~
(i_ l)

(d) Compute

~(i) : ~~~~

(r~~~ r~~~)

and 

~~~ i) ~ (i) )

~~
(i-I.l) 

: + • 0
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A lgorithm 7.1 requires one matrix-vector product A~ and

5n multiplications per iteration. We have to store four vectors x ,

~ and A~, in addition to the matrix A . The three-term version

of the CG method (Algorithm 2.1) requires n more multiplications per

iteration and one more vector of storage.

Proceeding in a similar manner as in Section 2.3, we derive

from A lgorithm 7.1 the two-term version of the preconditioned CG method

for the system

C 1Ax = C~~b . (1.2)

ALGORITHM 7.2 (Preconditioned CG method)

(1) Let ~
(0) be an initial approximation to x. Solve the system

= b - Ax(0)

Let

(0) 
~
(o)

and solve the system V

= A~~
0)

Compute

(Z
(0) 

3
t
3 (O)

)

~~(O) 5
t
5~(O))

and

(i) (0) (0),~ :~~~ ~~~~~

Let

I : 0

143

- - ---V  ~~~~~55

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV S 5 - . 5  ~~~S V~~~~~~~~~~_V-S_._~~~~~~~~~~~~~~~~~~~~~~ *V V - S V V . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
A



V - V ., ,  V V . V V_V_-V VS .5~~~~~~~~~~~V

(2) Repeat until = 9 or = 0:

(a) Let

I := I + 1

(b) Compute

~
(i_i) 

- a.— — i—l

(c) Compute
V - 

(
Ci) stS~ (I) )

1 
1 (z T,S

tSz~~
_1
~)

(d) Compute

( 1) 
+

and solve the system
- 

= ~~~~

(e) Compute

(Z
(i )  

S
t
SZ(i))

: 
(2(i) 5

t
5
_ (i)

)

and

~ (i÷ 1) 
: + ~~~~~~~~~~~~~~

An iteration of Algorithm 7. 2 requires three matrix—vector

products A2, S~S~ and ~~~~~ one matrix equation solution with

coeff icient matrix C, and 5n multiplications. Storage is required

for the three matrices A, C and and for the five vectors

x, z , 2’ ~ and S~Sz. We can store the vector i S~Sz.

1414
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V 
In the special instance where = C, Algorithm 7.2 reduces

to the generalized CG method of Concu.s et al . [2]:

ALGORITHM 7.3 (Generalized CG method)

V (1) Let ~
(0) 

be an Initial approximation to x. Compute

- Ax~~~
and solve the system

c~
(0)  

= 
(0)

Let

2
(0) 

:=~~~~~~

Compute
(z’ ~~

, r’0~)
V 

a
~ (2(0), A2~°~)

and

(1) (0) (0)
X : X

Let

i : =  0

(2) Repeat until = 0 or = 0:

(a) Let

i := i + 1

(b) Compute

— a
i i

A~~
1_ 1)

and solve the system

V = r(i)
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(c) Compute Ci ) C i )
(z , r

(~~~) 
r(i~~

)) V

(d) Compute

C i ) ( i )  ( i —i )
2 : = z  + - ç 2— 1

(e) Compute
(i) (i)C _~

~~~ A2~~~)

V and

( 1+1) 
:= ~(i) + ~~~~~

Algorithm 7.3 requires one matrix-vector product A2, one matrix

equation solution with coefficient matrix C and 5n multiplications

fbr each iteration. We have to store the two matrices A and C,

and the four vectors x,,r, 2 and A2. We can store the vector z

in A2.

We now consider solution procedures for the system

/M i F\ Ri\ /~ l\
I I I  1 = 1  I . (5 .7)
\F

t 
M2
/ \2S 2 / “~~2

’

The J-CG method is Algorithm 7.3 with the preconditioning matrix

(M ~_I o \
c = (  F- 1 .  (5.2)

\O 1 M 2 /
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As the RS-CG method is the CG method applied to the reduced system

(6.2a), we can convert it to the two-term form without much difficulty:

Algorithm 7~. 14. (Rs-CG method)

(1) Let ~~0) be an initial approximation to x1. Compute

~~(o)  
- FM~~b2 - (M1 

- FM t
)~~
0)

Solve the system

M1~~
°~ =~~(°) .

Let
(0) (0)

Li : 2

and

,.(O) ~ (o)
21 ~~~

Compute (0) ~~(o)(
~ ‘ 2:= 

~~ O) ,. (o) _l
Ft (0)‘2i ~~~~ 

-FM,~ Li )

and

:= ~~(o)  +

V 

Let

I := 0
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(2) Repeat until either = 0 or = 9:

(a) Let

i := i + 1.

(b) Compute

~(i) ,~(i—l) A(i 1)
2 ~= 2

V Cc) Solve the system

= ~(i)

Cd) Compute

~~~~~ 
~ (i))

(2(1_i) ~,(i—l))

Ci) Ci) (i—i)
2~ 

:=~~~ 
+ T .21

and

L~ 
:~~~~~ 

+ TiLl

Ce) Comput e
Ci) ‘~(i)(2 ,q

(2(i) ~~i)_ FM~~F
t
2~

2
~ )

and

(1+1) 
— 

(i) + 
C i )

cT~~1

(3) Let be the accepted approximation to x1. Solve the V

system

~~~~~ = 
~ 2 

- Ft~~~ -

143

L 

V . V .J

•
,:~ .

~. :. .~ ‘ . ~~~~

V V V 5 - V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S~~~~ ’ V~~~~~ V 5 . 5  V V~~~~~~~~~~~~~~ 5 V-~~~~~~~~~~~~~ -~~~~~~~~~ .



_______________________________________________________________________________ V

An Iteration of Algorithm 7•)4 requires one matrix-vector

product with F and another product with Ft, one matrix equation

solution with coefficient matrix M1 
and another solut ion with

and 6ri1 multiplications, where n1 is the order of the vector x1.

We must store the matrix A , the four n1-vectors ~~ 
and

and the two (n-n 1)-vectors necessary for computing FM~~F
t
21. The

vector ~ can be stored with one of the two (n-n1)-vectors.

It is not straightforward to convert the CJ-CG method to the

two-term form . Since

~(2i) 
= 0 (5.10)

and the method is “virtually-equivalent” to the ES—CG method, we

conclude that any two-term version of the CJ-CG method would be

essentially Algorithm 7. 14. Every two steps of the CJ-CG method

(Algorithm 6.1) requires the same number of matrix-vector products

and matrix equations solutions as the RS-CG method, plus 3n + 2n
1

multiplications. Storage is required for the two n—vectors z and

~~~, and for the two n
1-ve

ctors 
~ 

and in addition to the

matrix A.

In the following table, we summarize the work and storage

requirements of the four CG-based methods for solving the matrix

equation (5.7 ) . We give the necessary work for one step of each

method. As one step of the RS-CG method is equivalent to two steps

of the other three algor ithms, we halve the work requirements for

that method.
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V Matrix-vector products Solve

Method F Ft M1 
M
2 ç1 ~~~ Mult. Storage

CO 1 1 1 1 0 0 5n

J-CG 1 1 1 1 1 1 5n

CJ-CG 0.5 0.5 0 0 0.5 0.5 l.5n + n
1 3n

RS-CG 0. 5 0.5 0 0 0.5 0.5 3n1 
2n + 2n1

It is Obvious that the CJ-CG or the RS-CG method is about twice as

fast as the J-CG method. In the next section we give three examples

showing how a (block) diagonal matrix preconditioning (m J-CG method)

V can greatly accelerate the convergence of the CO method . As

can be chosen so that n1 < n/2, the RS-CG method is always more efficient

than the CJ-CG method in that about n
1 fewer multiplications

are required per iteration.

2.8. Applications of the ES-CO Method

The conjugate gradient method is already well established as

an effective iterative solution procedure for large and sparse matrix

equations. We wIsh to show here that the CG method, coupled with

cyclic reduction, can be particularly useful for solving certain

classes of matrix equat ions which arise in elliptic partial differential

equations problems .

Our presentation here is very similar to that of Hageman [5].

We consider the second-order seif-adjoint partial differential equation

-(a(x,y)u )  - (a(x~~)u~)~ + a(x,y)u = f (x , y ) ,  (x ,y)  R, (8.1)

50
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defined in a bounded rectangular region R and subject to the boundary

conditions

~u(x,y) = 0 or u(x,y) = constant, (x,y) ~R - (8 .2)

We assume that the given functions a and q are continuous in

~~~~~~~~~ with

a(x,y) > 0 and (x,y) > 0 , (x,y) € ~ . (8.3)

A spatial mesh is then imposed Oii L Discretizing (8.1) and (8.2)

with a five-point difference approximation [11, p. 183], we obtain

the matrix equat ion

(1.1) V

where the n x n matrix A is symmetric and positive definite.

We divide the mesh points into two sets, one set consisting

of square (or black) mesh points and the other consisting of circle

(or red) mesh points. The division is done by first making the lower

left corner point a circle point and then proceeding by making square

points of the four nearest neighbors of the circle points and making

circle points of the four nearest neighbors of the square points.

We index the mesh points by indexing first all the square points

consecutively by rows and then all the circle points consecutively

by rows. This ordering is called a point red/black ordering. We give

an example in Figure 1.

~
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£
FIGURE 1.

• With the point red/black ordering, the mat r ix equation (1.1)

can be wrItten in partitioned form as 
V

( D~ H 
~~~~~~~ =(~‘) , (8.14)

\ H D2/\x2/ ~~2

where and ID
2 

are diagonal matrices. We have shown in Section 2.6

that the system (8.4) can be cyclically reduced to the lower order

matrix equations

(I - D~~~ D;~~
t
)X1 

= D~\ 
- D~~~ D~~~~2 , (8.5a)

(I - D~~H
tD~~ H)x2 

= D~~b2 
- D~~H

tD~~b1 . (8.5b)

The two sets of equations are disjoint, one set involving only

the square points and the other involving only the circle points.

Let us consider the system (8.5a). Because of our use of the five-point

difference approximation, the matrix (I - D1
LILD

2
1
H
t
) corresponds to

a nine-point difference approximation. Figure 2 illustrates the

typical coupling of a (shaded) square mesh point to the eight

(darkened) neighboring square mesh points.
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FIGURE 2

We proceed to describe another way to order the mesh points.

Assume that there are p2 horizontal mesh lines. We split the p

blocks of successive £ horizontal mesh lines into square blocks

and circle blocks; we make the first block a circle block, the second
V one a square block, the third a circle block, and so on. We index the

blocks from 1 to p by indexing first all the square blocks con-

secutively and then all the circle blocks consecutively, as shown

in Figure 3.

2 0 L

q+2 0 L
1 0 1

q+l O L £ lines

FIGURE 3.
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Within each block, the mesh points are indexed consecutively by rows.

This ordering is called an 2-line red/black ordering.

Let £ = 1. With the 1-line red/black ordering, the matrix

equation (1.1) can be written in partitioned form as

( T 1_ H_~~~~~l~~~~~
(

~~1~~ (8 .6)
\ H  T2 / \ x 2 / \~~2 /

where T1 and T
2 

are tridiagonal matrices. The cyclically reduced

systems obtainable from (8.6) are

(I - T~~H T~~Ht)x1 = T~~1D1 
- T~~HT~~b2 , (8 .7a)

(I - T~~H
t
T~~H) 

~~2 
= T~~b2 

- T~~H
t
T~~b1 . (8.7b)

The system (8.7a) involves only the square mesh lines. Indeed, the

matrix (I - T1~HT~~H
t) corresponds to a. three-line difference approxi-

mation, as illustrated in Figure ~

s+1 0

0
______________________________ all the mesh

5 0 
points on the

0 3 square lines
are coupled.

s-l 0

FIGURE 4.
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We wish to compare the CG, J-CG and RS-CG methods for the V

numerical solution of the differential equation (‘ .1). The CJ-CG 
V

method is not included because it is both “virtually-equivalent” to

and less efficient than the RS-CG method. We have written three

computer programs in the ALGOL W language implementing the three

methods. Our programs were run on an IBM 3TO/l68 computer at the

• Stanford Linear Accelerator Center. The time we give is machine

execution time in seconds.

We choose the functions a, c~ and f , and the boundary con- V

ditions so that the exact solution to the discretized problem is known.

Also, we choose the initial vector ~
(0) so that each component of

the vector is a random number from a uniform distribution in the open

interval (-lO~~, io~). Each method has a different initial vector.

The iterative procedure terminates when the maximum norm of the error

vector is less than lO~~.

EXAMPLE 1.

23
18 R

3 u = O
u = O  12 R

6 R
0 

~~ 
=

1

0

F 
Region R1 R

2 
R14

a(x ,y)  5 14 9 1
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We choose o-(x,y) 0 and f (x ,y) 0 so that the null

vector 0 is the solution to the discretized problem. We use the

point red/black ordering.

n=l152

Method Iter Time

CG 262 142.61

J—CG 136 25.61

RS-CG 66 9. 19

EXAMPLE 2.
u =  1

25

18 - - _ _ _ _ _ _ _ _ _ _ _ _

u = 1 — ~~~~~
” 

u = 1
R2

7 .

R

I
i I

o 7 18 25
u =  1

Region R1 R
2

a(x,y) 2 500

We choose c-(x,y) 0.05 and f(x,y) 0.05 so that the

t .vector e (1,1,. ..,l) is the solution to the discretized problem.

We use the point red/black ordering.
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n = 576

Method Iter Time

CO ~4O0 33.314

J-CG 78 7.52

V 
RS-CG 140 2.80

EXAMPLE 3.
~~u = 0

/
u = 0 u = O

0 ~ 

V

= 0

We choose a(x,y) 1, a-(x,y) 0 and f(x,y) 0 so that

the null vector solves the discretized problem. We use a 1-line

red/black ordering. The tridiagonal systems of linear equations are

solved by Gaussian elimination; piv iting is not necessary because the

systems are positive definite.

n = 10214

Method Iter Time
I

V CG 86 12.89
V J—CG 62 12.05

V 
ES-CO 314 14. 55
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Our examples show how a (block) diagonal matrix preconditloning

can greatly improve the convergence rate of the CG method, especially

for the case where the diagonal elements of the coefficient matrix are

of different orders of magnitude (see Example 2). The ES-CO method,

as expected , requires about half as many iterations as the J-CG method.

The saving in machine execution time is, however, even more substantial.

It is thu s fa ir to conclude that the ES-CO method is an eff ect ive

V procedure for the numerical solution of self—adjoint elliptic partial

differential equations -
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III. QUADRATIC PROGRAMMING WITH M-MATRICES V

3.1. Introduction

In this chapter, we address the lower and upper bounds

quadratic program

. i t  tmm ~~
- x Ax - x b

(1.1)
subject to ~~ , V

where A is an n x n M—matrix and b, C and d are n-vectors. An

important special case of (1.1) is the linear complementarity problem,

in which c = 0 and d =

• l t  tmmn~~~x A x - x b
x V

subject to x > 0 1.2

We assume that the matrix A is large and sparse. The problems (i.i)

and (1.2) find applications in the numerical solution of free boundary

problems for elliptic partial differential equations. Such problems

include various types of DIrichlet problems with obstacles ([ 7] and

l0]), and models of the journal bearing [5]  and of the application of

torsion to a bar [1].

We define an M-matrlx as follows.

DEFINITION 1.1 [ii, p. 85]. A real square matrix A = (a..) with

ai~ 
< 0 for all i 

~ 
j is an M-matrix if A is nonsingular, and

4 —l
V 

A > 0.

6o
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We lose no generality by restr icting our attent ion to symmet ric

M-niatrices, for we can replace the matrix A by its symmetric part

(A + At)/2 In the quadratic form of (1.1) or (1.2) without changing

the value of the quadratic form. The next lemma states that a symmetric

M-matrix is positive definite. Thus, the problem (1.1) or (1.2)

V always has a unique solution.

• DEFINITION 1.2 [11, p. 85 ]. A real square matrix A = (a~~) with

< 0 for all i ~ j is a Stieltjes matrix if A is symmetric

V
. 

and positive definite.

LEMMPL 1.1 [II, p. 35 and 87]. A symmetric M-inatrix is a Stieltjes

matrix and vice versa.

There are many good algorithms for solving problems (1.1) and

(1.2) when the matrix A is positive definite (see [14]). However, it

is possible to exp loit the special properties of an M-matrix to obtain

more efficient special algorithms. Chandrasekaran [2] proposed an

algorithm for the linear coniplementarity problem (1.2) ,  and Pang [8]

developed an analogous algorithm for the lower arid upper bounds problem

(1.1).. Cottle and Goheen [14] performed an extens ive comparison of

the latter method with four other well known algorithms. Their results

indicate that Pang’s method is the most efficient. They also described

a preprocessing scheme that could be used with the method. Their scheme

would identify some of the variables which will be at their bounds in

6i

V
• • 

~~~~~~~~~~~~~~~~~
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the optimal solution. Those variables could then be eliminated from

ftrther cons iderat ion.

In this chapter, we study the algorithms of Chandrasekaran

and Pang. We demonstrate the special mor~ tone behavior of the iterate

and gradient vectors. The result on the gradient vector is new. It

leads us to consider a simple updating procedure which preserves the

monotonicity of both vectors. The procedure uses the fact that an

M-niatrix has a nonnegative inverse. Two new algorithms are then con-

structed by incorporating this updating procedure into the two described

algorithms. Numerical tests show that our new algorithms can be twice

as fast as the original methods (see Section 3 . 5) .

We also consider the extension of problem (1.1) to the case

when some components of the bounds are infinite. We show how we can

V 
compute f inite a priori bounds on all the variables and reduce the

extended problem to one with finite bounds (see Section ).~ ) .  This

V result is new.

Let
i t  tx Ax - x b (1.3)

V and

~~(x) A x - b , (1.14)

i. e., v(~~) is the value of the quadratic form at x and g(x)

Is the gradient vector of the quadratic form at The solution

x for problem (1.1) must satisfy the optimality conditions :

if X
i 

= c
~ 

then g1(& ~ 0

if cj < x~ < d~ then g
1(x) = 0 (1.5)

if = d . then g
1(x) < 0
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for i = l,2,...,n. The solution x for problem (1.2) must satisfy

the optimal ity condit ions:

if x. = 0 then g.(x) >01 1 — 

(1.6)
if X i > 0 then g1(x) = 0 ,

for i = 1,2,..., n.

The following lemma and notations are used in this chapter.

DEFINITION 1.3 LI-l, p. 30]. A principal submatrix of an n x n

V matrix A is any matrix obtained by crossing out any j  rows and

the corresponding j  columns of A, where 1 < j  < n.

LEMMA 1.2 [11, p. 86]. Any principal submatrix of an M-niatrix is

an M-matrix.

NOTATIONS.

(1) N m  (l ,2 , . . . ,n) .

(2) J N\J for any subset J of N, ~~e. ,~~ is the complement

of J in N.

(3) x,1. (x . ,x . ,...,x . ), where
*L ~2

J = (i1~i2,...,i~) C N and j 1 < j2 < < j~.

(4) A,~~ (cra ),  where

c 55 a . k , J = fj1,j2,...,j ) C N  ,

K = ~~~~~~~~~~~~ CN, i1 < < • • •  < and k1< k 2
< .~~.<  kq•
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3.2. Linear Complementarity Problem

In this section, we consider the linear complementarity problem

l t  t
mm ~- x Ax - x b

(1.2)

subject to

V where A is a symmetric M-matrix. We assume that b contains both

positive and negative component s to eliminate two trival cases.

LE~ 4A 2.1.

(1) If b < 0, then x = 0 solves (1.2).

(2) If b > 0, then x = A~~b solves (1.2).

Proof.

(1) Assume x solves (1.2) with x~ > 0 and x = 0 for some
P

nonempty set P C N. The optimality conditions (1. 6) give

- = 0

Hence

x = A~~b < 0 because A
1 > 0 and b~ < 0

V 
—P PP’-~P— ~~ 

PP—

Contradiction.

(2) We have

x = A~~b > 0 because A~~ > 0 and b > 0

and

V 

g (x)=Ax -~~~=~~~.

Thus, ~ solves (1.2). 0

We proceed to prove two more lemmas and an important theorem.
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LEMMA 2.2. Suppose we have a Stieltjes matrix A and a nonempty

subset I of N. The matrix

V 

V m A  -A  A 1
AII 11 11 11

is a Stieltjes matrix.

V Proof. The matrix V is symmetric because A 
- 

= At . Let W A 1
.

V II II
Since A Is a positive definite matrix, so is W. A fortiori, so are

W11 and W~~ . But V = w~~ 
r~~ p. 99]. The matrix A _ is an M-matrIx

II
by Lemma 1.2. Hence A 1 

> 0. The off-diagonal elements of V are
II

therefore nonpositive because the off-diagonal elements of A
11 are

nonpos it ive, and A 
- 
< 0, A 1 > 0 and A_ < 0. 0

II ii II

LEMMA 2.3. Suppose we have vectors x and ~~ with = and

x <~~~~~ for some nonempty subset J of N. Then ~ (x) > ~ 
(~) .

J J J J

Proof.

~~ (x) = ~~~~~ + A x  -

= ~~~~~ + A - b3. + A - 
~L
_) 

VJ J J  JJ J J

~~ (~~) + A (x -~~
)

JJ~~~ ~

2 ~ (~)

because A < 0 and x - < 0. 0
JjV

_ -
~ ~ — —
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TEEDREM 2.1. Assume A~~~bJ 
> 0 for some nonempty subset J of N.

V Define a vector x with = A~~bJ 
and x = 0. Let K and L

b~ two sets partitioning ~ so that ~~ (x) < ~ and ~~(~) > 0.

If the set K is empty, then

(1) x solves (1.2 ) ,

else

V (2) let Q := J U K. Construct ~ with = A~~~Q 
and ZL 

= 2-
We get

(a) ~~~~~~~~~~~~ ~K > 9 ’

(b) ~~~~

and

(c) v(~ ) 
< ~~~ (Remember .

~~
) 1 tA - 

tb)

Proof.

(1) The optimali-by cenditioris (l.E) are satisfied because ~~(~) = 2
and 

~
_(& >0.
J

(2a) From the system

~~~~~ + A,~~~K 
=

AK,~~J 
+ A

~~~K 
=

we obtain

V = (A~~ - ~~~~~ l~~~ )~~l 
~~ 

- A~~A~~b~)

But

- AK~~J~~J = 

~K 
- A

K~~ J

4 
~~~~~~ 

>2

V

i 

- 

_ 5V

~~~~~

- -

~~~~~~~~

V

- -
1;~ ~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~ I

V ~~~~~
_5V
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and

(A~~ - A
K~~~~~~~

)
~~ 2 

0 by Lemma 2. 2.

Thus,

> -
Also,

= A~~bJ 
- A

~~
A
J~~K

• 2 A~~~bJ because A~~~> 0, A~~ < 0 and 
~K > 2

=

>0 .

(2b) We have shown in (2a) that > x,~. and > 0 = X
~K~ 

Let

L = J U K and 
~L 

= = 0. The conditions of Lemma 2.3 are

sat isf ied and therefore ~~(~) <~~~ (x ’) .

(2c) 2 v(Z) = 4AQQ~Q - 2$~~

= -b~~A~~~~ < (~~ - A~~~~)
t A~~(~~ 

- A~~~~) 
- ~~A~~~Q

=~~~AQ~~~~
-2~~~~

= 2.v (X). 0
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Let Z denote the index set of the constrained (zero) components

of the iterate vector and P the index set of the unconstrained (positive)

components. We can describe the lower bound algorithm in [2] as
V follows.

ALGORITHM 2 .1 (Chandrasekaran’ s method) . Let

P := [i E Nfb . > 0) and Z :=

Define x so that x~ = A~~b~ and x~ = 0. Let J be a nonempty set .

Repeat until either set Z or J is empty:

1. Compute ~~ : Azp~p -

2. Let J := [j  € Z i g .  < 0) .

3. If set J is nonempty, then

(a) Let P : = P U J and Z := Z\J .

(b) Reconstruct x so that = ~~~~~ and = 0

V 

Part (2a) of Theorem 2.1 says that the iterate vector is non—

decreasing in value. Thus, a positive component stay s positive and

no element leaves the index set P. We enlarge set P when we release

variables with negat ive gradients from their constraints . If no such

variables exist, then we have computed the solution (Part (1) of

Theorem 2.1). Hence Algorithm 2.1 always terminates. It is a descent

method by Part (2c) of the same theorem.
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Most of the work in an iteration of Algorithm 2.1 is spent in

the solution of a matrix equation. We can use an iterative method.

The conjugate gradient method (cf. [9]) or its generalized variant

(cf. [3]) is particularly effective for solving a large sparse set

of linear equations when the coeff icient matrix is symmetric and

positive definite. Furthermore, we can construct a good starting

vector from the solution to the matrix equation in the previous iteration.

A straightforward strategy is to place zeros in the new positions.

In many cases, the quadratic program (1.2) arises from an approximation

to a continuous problem and some sort of interpolation and extrapolation

schemes can be successfully exploited.

It is obvious that we do not need to solve the matrix equations

to full accuracy in any but the last iteration. This gives another V

reason for using an iterative method instead of a direct method for

solving the matrix equations.

The intent of solving the matrix equation is to go from the

minimum of one subspace S~ to the minimum of a larger subspace S
2

that contains S1. The computation of the minima increases the size

of the index set P rapidly. A disadvantage is that the cost involved

can be substantial. Thus, we are interested in the possibility of

using some simple computing process that lets us enlarge the set P

with very little work. It will take more iterations to determine the

final index set P, but the total cost may be lower because of the

smaller amount of work per iteration.

~ 
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Suppose we are at the start of an iteration of Algorithm 2.1.

Let ~ and ~(~) be the iterate and gradient vectors, respectively.

Let P be the index set of posit ive components of x and J be the

index set of zero components with negative gradients, i.e.,

P := (j € Z i x . > 0) and ~ := (~ 
€ < 0)

Assume set J is nonempty. Let Q := P U J. We construct the new

iterat e ~ so that ~ = x and ~~ = ~~~, where ~ solves the matrix
V ~~~~~~~~~~~~

equation

A
Q~~ 

= . (2.1)

• Let us consider a cheaper way to construct ~ : update only

the j-th components, where j €J. In other words, ~ = x and
J 3

= z, where z solves the matrix equation

Bz = —

~~~~~ 

(2.2)

and B is an M—matrix of order equal to the size of J. Thus z > 0.

We can choose B as A33, but a better strategy is to choose B so V

that the matr ix equation (2.2) is easily solvable. Regardless of which

B we choose, it is very important that the new iterate ~ satisfies

the inequality

(2.3)

If (2.3) does not hold, then the gradients of some constrained variables
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may have decreased too much in value (cf. Lemma 2.3) and those variables

may be erroneously released from their constraints. V

We propose to choose B as C33, where C is an n x n M-matrix V

so that C 2 A. The next theorem shows that the inequality (2.3) always holds

for these choices of B and C. We now give a simple way to construct

the matrix C.

V LEWA 2.14 [II, p. 85]. Let A be an M-matrix, and let C be any
V 

- matrix obta ined from A by setting certain off-diagonal entries of the V

matrix to zero. Then, C is also an M-matrix.

A possible choice for C is therefore a (block) diagonal matrix V

with the same (block) diagonal part as A.

ASSUMPTION 2.1. We have chosen an M-matrix C such that C 2 A and

that matrix equations with C or a principal submatrix of C as the

coefficient matrix are easily solvable.

V LEMMA 2.5. Suppose there is a vector x >0 such that = 0 and

g3
(x) < 0 for some nonenipty subset 3 of N. Construct a vector

so that = x and 
~~ 

=_ C~~ 3(x). Then gj.(~) < 2 .

Proof. C3,~. is an M-matrix by Lemma 1.2. Hence C,~~ 2 0. But

A33 
< C33. Thus,

A C~~ C C~~~-IJJ JJ~~ JJ JJ
_

which implies

I - AJJC~~ 2 0
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Finally,

= A
3~~3 

+ A~~~ - b
3

= -A33C~~~ 3(x) + A x  - 
~I

V = - A C ~~~~(x) + 
~
(x) because = 0

—l
= (I - A

33
C
33) ~~~

<0 because ~3(x) < 0 • U

LEMMA 2. 6. Suppose there is a nonempty subset 3 of N and two

vectors x and ~ such that x = 9~ ~~(& = 2~ L = 2 and ~~C~) < 2-
3 3

Then x
3 2

Proof.

A33(x 3 - ~~ = A
3~ c3 - 

- (A 33~3 - 
V

= ~~~~ 
-

> 0 .

Hence
0

THEOREM 2.2. Assume we have a vector x >0. Let P := (j€Nlx >o)

and 3 := (j € ~~g.(x) < 0). Suppose that both index sets P and 3 are

nonempty, and that ~~(x) <0 . Construct a vector ~ such that

= -C~~~3(x) and = x .  Let K P \ 3. Then
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(1) ~~(~ ) <~~~ (x)  < 9 ,  ~~(~ ) < 2 and 
~~~~~ ~ -

V 

(2) ~~~~~ < ~~~~~ where Q = P U J -

(3) v(~ ) <

Proof .

(1) By Lemma 2.5, ~~(~) < 9. Since > 0 = and =
3 3

we get ~~(~) <~~~(~) by Lemma 2.3. But ,~~ = P U K.
3 3

(2) Define a vector z so that z = A~~b and z = = 0.
V -4 QQ-~Q —

Hence ~~(z) = 0. From Part (1), ~~(~ ) < 0. Thus, 2 by

V Lemma 2.6.

(3) v(~ ) 
- v(~ ) = + ~~. A x  -

= ~~
- ~~.A33(-C~~~ 3( x ) )  + ~~ ( A x  - 

~~

t I -

‘V 

= ~~(i - ~~
- A
33
C33) ~3(x)

We have shown that I - AJJC~~ 2 0. Hence (I - (A
33
C~~ )/2) 

~ 
0

and equality is not possible. Since > 0 and 
1(x) < 0, we get

< v( ~~) .  0

We now have the tool to modify Algorithm 2.1. Instead of going

from one constrained minimum to another through solving matrix equations

involving the unconstrained variables, we take descent steps through

solving very simple matrix equations involving only those just released

variables. We call our technique “part ial updat ing” . It lowers the
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gradients of some constrained variables and we can again release those

variables with negative gradients from the lower bound using the same

technique. The process is repeated until the gradients of the con-

strained variables are all nonnegative. Then we compute the constrained

minimum by solving the matrix equation

V ~~~~ = (2.14)

and defining the new iterate x so that = and x = 0. The
P

iterate vector from the “partial updating” is usually a very good

initial vector for solving (2.14) using an iterative method.

ALGORITHM 2.2. (Modified Chandrasekaran’s method). Let V

3 : (j E Nib . > 0) , P :

Z := ~~~, x = 0 and ~ : -b.

Repeat until either set Z or 3 is empty :

1. Repeat until either set Z or J is empty:

(a) Compute 
~~ 

:

(b) Update 
~ 

+ Az~~j
(c) Redefine 3 := (j € Z~g~ < 0) .

(d) Let P := P U J  and Z := Z \J.

2. Compute x~ = A;~~p.

3. Compute 
~~~~ 

:=  A
~p~p 

-

.. Redefine 3 := (y € ZI~~ < 0) .  Let P : = P U 3 and Z := z \3 . 0
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We can easily extend Algorithm 2.2 to solve the general lower-

bound quadratic program

l t  t
mm ~~ - x Ax - x b

x
— 

(2.5)

subject to x >  c

V 
ALGORITHM 2.3. Let

P : ç ~, Z := N , x = c , and

Set 3 : (i € Zl~~~<O) .

Repeat until either set Z or 3 is empty:

1. Repeat until either set Z or J is empty:

-l(a) Compute x3 := C
3 

-

(b) Update ~~~~~ := + Azj~j

(c) Redefine 3 := [j Zfg . < 0) .

(d) Let P : = P U 3 and Z : = Z \ 3.
2. Compute x~, := A~~(b~ - Ap~~z

) .

3. Compute 
~~ 

:= A
~pxp + A

z~~z 
-

V 4. RedefIne 3 : (j E Zt~~ < 0) .

5. Let P := P U J  and Z :Z\J .  0

75

V i 
V . - . -  .V VVS_7_ V _5

~~~~~~~~~~~~ 
-
~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

V - V 5 V V ~~~5-5- ~~~~~ S . - V V V~ V ~~~~V -S~~~~~~~~~~~~~~~V-~~~~V -V
~~
-S S.-— -V

~~~~~~~
5 - - V

~~~ ~~~ 
~~~~~~~~~ S-VS.



- 
... 

~~~~~~~. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- . ... 
~~~~~~~~~~ 

~~~~~~~~~~~ ~~~~~~~~~~~~ S._ ~~~~ __ V5V V_ V_V-VVV V__ V -S V_S

3.3. Lower and Upper Bounds Problem

In this section, we consider the lower and upper bounds quadrat ic V

program
- l t  tmmn~~~x A x - x b

(1.1)

subject to c < x  < c i

V 

- 

We introduce an index set U denot ing the variables constrained

at the upper bound d. The index sets P and Z denote the unconstrain€ .

V variables and the variables constrained at the lower bound e,

respectively.

Our lower and upper bounds algorithm starts with the iterate

vector x at the upper bound d and the index set U equal to N.

We examine the gradient vector ~ (x) Ax - b, and release those vari-

ables whose gradients are positive. Let P denote the just released

variables and let U := P. We solve the lower bound quadratic program

- l t  t
V mm 

~
-y ~~~~ - ~ 

(~~ - ~~~~~
(3.1)

subject to >

The iterate vector x is redef ined so that x.
~ 

= d~ and =

the solution to (3.1). The indices of the components of ~ at the
V lower bound are moved from set P to set Z. We start a new iteration

by releasing those variables at the upper bound whose gradient s have

now become positive.
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ThEOREM 3.1. Suppose we have a vector x and two nonempty index

sets U and P partitioning N such that = d~ and =

where ~ solves (3.1). Let 3 := (j € U~g .(x)  > 0) .

If the index set 3 is empty, then

1. x solves the lower and upper bounds quadratic program (1.1), else

2. let P := [j € P ix . > cj, Z := (j € P I x ,~ = c .), K := P U J  and

V 

- 
L := U \3. Define a vector ~ so that ZL = 

~~~~~
‘ 

~~ 
= and

= ~ , where solves the lower bound quadratic program

- l t  t
nan~~~~~A~~~~-p  ~~K

AIQ~A)

subject to 2

Then

(a) 
~~ 

< and < x ~.

(b ) g3,(y) >~~~(x) and ~~(~) >~~~ (x) 2 2~
(c) v (X) <

Proof .

(1) The optimality conditions (1.5) are satisfied because ~~~~ < 0

and x~ solves (3.1) .

(2a) The inequalities hold trivially for those components of

that are at the lower bound. The gradients of the other components

equal zero and we can prove the inequalities using a technique

similar to that Qf Part (2a) of Theorem 2.1.

(2b) We have shown in Part (2a) that < X
K • As = x by

V construction, we get ~ (~ ) 2 ~ (x) from Lemma 2.3. But

K = L U Z.
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(2c) Since ~~(~ ) ?Q by Part (2b) , the vector = 
~K U Z  solves

the lower quadrat ic program

mm ~~~ ~
tA

Q~ 
- 

t(b - A~~~~)

subject to 2

V 

- 

where Q = K U Z. But ~~ = ~~~ = XL and ~ x. Hence
V 

v(x ). 0

ALGORITHM 3.1. (Pang ’ s method). Set x := d and compute ~ := A d - b .

Let J := (j ~ N a g .  > 0),  P := J, U := J and Z :=

Repeat until set U or P or 3 is empty:

1. Reconstruct x so that = 
~~~~‘ ~ = and = ~~~,, where

solves the lower bound quadratic program (3.1) (we may use

Algorithm 2.3) .

2. S e t K : = [k
~~~

PIxK
= c

K).
Le t P : =P \K a n d Z := Z U K .

3. Compute : = A~~d~ + A~~x~ + Auz12z -

14. Redefine J:= [j € Ujg . >O). Set p : =P U J  and U :=U\J. 0

Part (2a) of Theorem 3.1 says that the iterate vector is non-

V 
increasing in value. Hence once a variable leaves its upper bound it 

V

never returns, and once a variable enters its lower bound it never V

• exits. Since we release variables from their upper bounds when their

gradients become positive, there is a flow of variables from the upper

bound to the unconstrained region, and then to the lower bound. If

78

- V _.
___ 

.S_V ~~. •~V_ V~ —. %_V 
- 

~
_ — . --

__ _



rT~
T . ~~~~~~~~~~~~~~~V -V. 5 . 5--S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

there is no outflow of variables from the upper bound, then the iterate

vector is the desired solution (Part ( i )  of Theorem 3. 1). Thus ,

Algorithm 3.1 always terminates. It is a descent method by Part (2c)

of the same theorem. Algorithm 3.1 is essentially the algorithm pro—

posed by Pang [8] , except that he releases variables from their upper

bounds when their gradients are nonnegative. The difference Is so minor

in real arithmetic that we expect both algorithms to produce identical

results for almost all problems. Indeed, the two algorithms behaved

identically in all our test examples.

We are interested in a “partial updating” technique that is

similar to the one in the previous section. Such a technique may save

many expensive solutions of lower bound quadratic programs. However, the

presence of a lower bound restricts our choice of a “partial updating”

matrix to a diagonal matrix. Recall that a positive definite matrix has

a positive diagonal.

ASSUMPTION 3.1. We have chosen a di agonal matrix D such that D 2 A .

NOTATION. If V = (v1,v2,...,v ) t
, then = (w1,w2,...,w~)

t
,

where w~ = max(v~~O) for j = l,2, . . . , p.

LEMMA 3.2. Suppose there is a vector x with c < x  < d such that

= d
3 

and ~3(x) > 0 for some nonempty subset 3 of N. Construct

a vector so that = x and = C
3 

+ [d
3 

- C
3 

- D~3g
3

(x) )~.
Then ~~~~ 2
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Proof. There exists a diagonal matrix D> D33 
such that

= c,~. + [d 3 - -

Hence D 2 A11 and this lemma can be proved in the same way as

V Lemma 2.5. 0

V - 

Note that Lemma 3.2 may not hold if we replace D by a non-

diagonal M-tnatrix B with B 2 A.

THEOREM 3.2. Suppose we have a vector x with c < x  < d and two

nonenipty index sets U and P partitioning N such that x.~ 
= d

~ ,

< d~, and ) (x) 2 0. Let 3 := (j € u~g.(x) > 0) and assume that

it is not empty. Construct a vector such that = x and
~

= + [d 3 - - D~~~3(x)]~ . 
Let K := U\  3. Then

(1) 
~~~~~ 

?~~(&~ ~~(x) 20 and ~~~ 2~~ (& 22-
(2) 

~~ 
> ~~~, where solves the lower bound quadratic program (3.1).

(3) v(~ ) < v (X) .

Proof .

(1) By Lemma 3.2, ~~~ 2 0. Since < = and =
J 3

we get £_ (~
) 2 ~_ (~~) by Lemma 2.3. But J = K U P.

3 3

(2) The inequality is trivial for those components of that are at

the 1b ,er b~und. Since~the gradients of the other components of ~

equal zero and g~,(~) 2 0 from Part (1), we can complete the proof

using a technique similar to the one in Lemma 2.6.

‘5 . V V ~~~~ - — 
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(3) Let ~ 2 D33 be the diagonal matrix such that

= + 

~~ 
- 2,~- -

—‘-1= d 3 - D  ~~~~

Let z D~~~1(x). Then

= 
~sJ 

-

and

i t t t
v(Z) - v(~~) = ~~

- z A33z - z A
33x3 + z

l t  ‘— -1 -t
= ~~

- z A
33D ~~ (x) - z 

~
(x)

t 1 “—1
= -~~ (I 

_
~~~A3~

D ) 
~~(&

It is easy to show that I - (A 3~~
1
)/2 2 0, equality excluded.

Since z > 0 and ~3(x) > 9, we get v(~ ) 
- y (X)  < 0. 0

ALGORITHM 3.2. (Modified Pang’ s method) . Set x := d and compute ~~:=Ad-~~.

Let 3 := (j € NI~~ > 0}, P := 3, U := ~ and Z :=

Repeat until set U or P or 3 is empty:

1. Repeat until set U or 3 is empty:

(a) Update x := C~ + [d 3 
- e,~. -

(b) Let K := (k € 3Ix,~ 
= c,~) ,  Z : = Z UK and P := PU(J\K).

(c) Update : 
~~~~ 

- xi) .  
V

(d) Redefine 3 := (j € UI~~ > 0) .  Let U := U\ J.
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2. Reconstruct x so that x~ = 
~~~~~
‘ ~~ 

= and x~ = ~~~, where

solves the lower bound quadratic program (3.1) (we may use

Algorithm 2.3).

3. Set K := (k € P f x k = ck
). Let P := P \K and Z := Z UK . 

V

14. Compute ~~ : = Au.~$j + Ajjp~p + A
~~~z 

- 

~
U.

5. Redefine J := [ j  € U I~~ > 0). Let P : P U 3 and U := U\J. 0

3.14. Problem with Non-finite Bounds

In this section, we consider the lower and upper bounds quadratic

program
i t  t

mm ~~
- x Ax - x b

(1.1)

subject to c < x < d ,

where some components of the bounds are infinite. We show that we can

compute finite bounds on all the variables.

LEMt”IA 14.1. Consider the quadratic program (1.1) with d = ~~ . Assume

c = -
~~~ and c > -~~ for some nonempty subset 3 of N. Let x be
-a -~~

the solution vector . Then V

x3 > A 33(b3 - A  c )  . V

JJ 3

Proof. Define a vector p with ~ = A
1 
(b - A c ) and 2 = c •3 3J -.-J 3j r.a~

By construction, ~~(~) = 0. Define another vector with =

and = x . Since 2 2’ we get ~~~ <~~j(2) from Lemma 2.3.
3 3 ~ J
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V Also £3(x) = 2 by the optimality conditions (1.5). Thus,

A
33(~3 

- £~
) = A3,~x3 

+ A x  - - (A
3323 

÷ A~~~~ -

= ~~~~ -

> 0 .

Hence

~S3 23 2 2 .  0

LEMMA 14.2. Consider the quadratic program (1.1) with 2 = -~. As sume

= w and d <~~ for some nonempty subset 3 of N. Let x be the
3

solut ion vector. Then

x~ < A ~~ (b3 - A x )  -

V Proof . Similar to that of Lemma 14.1. 0

V We now have the tools to handle the problem when both bounds

have infinite components.

LEMMA 14.3. For problem (1.1), assume d3 = ~ and d <~~ for some
J

nonempty subset J of N. Let x be the solution to (1.1) and

be the solution to the lower bound quadratic program

mm ~~
- ~ A3~~ - ~ (b 3 - A d )

(14.i)
subject to 2 •

Then
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Proof. The inequality is trivial for those components of x3 that are

at the lower bound. Let K := (k € JIxk > ca). Then 
~
.K (x) = 0.

Now def ine a vector 2 with and = 
~~~~~ 

Hence

£j(2) 29  by the optimality conditions (1.5) .  Define another vector

~ with = ~~ and = x .  Since 2 < 2 ’ we get 
~j(9) 2

by Lemma 2.3. It follows that 
~K~
S) 2 0.

Let L := J\K. Then XL ~L ~~2L’ 
or equivalently,

~L 2 L ~~~2 
Thus , 

V

A~~(~~ - 2K) =~A~~~~ + A
~~XL + A x  - 

~~ 
V

+ A
~aJ~L 

+ A x  - 
~~ 

- A~~(~~ - £L )

= 

~~~~ 
- z~(2) - A~~(~~ - 2L)

< 0 because A~~~< Q

Hence

LEMMA 4.4. For problem (1.1), assume c
3 = -~ and c > -~ for

J.some nonempty subset 3 of N. Let x be the solution to (1.1) and
V ~ be the solution to the upper bound quadratic program

i t  tcan ~~
- ~ A3~~ - ~ (b 3 - AJ33

(14.2)subject to <

Then

Proof . Similar to that of Lemma 14.3. 0

We can solve the lower bound quadratic program (4.i) by first
using Lemma 14.1 to compute finite lower bounds for those variables with

-5- 
-
~ V--S .5 -. 5-
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constraints and then applying Algorithm 2.3. The upper bound problem

(4 .2) can be solved in a similar fashion using Lemma ~4.2 and Algorithm 2.3.

V 
Note that an upper bound problem is reduced to one with a lower bound

if all its variables are negated.

3.5. Numerical Examples

We have chosen four representative problems to 
study the

effect iveness of our “partial updating” technique. We use the

conjugate gradient method as our matrix equations 
solver.

V 

Our programs were written in FORTRAN and run on an IBM 370/168

computer at the Stanford Linear Accelerator Center. 
The codes

were compiled with optimization level 2 of the H EXTENDED compiler.

EXAMPLE 1. Let us consider the linear complenientarity problem

- i t  t

(1.2)

subject to ~~~~~ 
V

The matrix A is chosen as 
V

V 

2 - 1  Q
-1 2 -l

A =

—V .~~ V V V V V V ___ — S..~~ V — V

V V~ ~~~~~~~~~~~~~~~~ V V 

V _ _ _ _ _
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and the vector b is generated by

bi 
= 8 - 2Or~ for i = 1,2,..., n

where r
~ 

is a random number f rom a uniform distribution in the open

interval (0,1). The “partial updating” matrix C is chosen as

2 

2 

-

0 2

We define an iteration to bea sequence of “partial updates”

followed by a solution of a matrix equation with coefficient matrix ~~~

The scalar IPI gives the number of elements in the index set P at

the end of an iteration. The other scalar u gives the number of

“partial updates” in an iteration. Time is machine execution time

in seconds.
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V 
n=1000

Algorithm 2.1 Algorithm 2.2

Iteration P 1 u,

1 382 2,456
2 499 2,524

3 535 1, 539
4 539 1,542
5 542

Time 2.67 2.40

n = 1500

~A1gorithm 2.1 Algorithm 2.2

Iteration I~ I u,

1 585 2,692
2 763 2,806
3 824 3,838
4 837 2,848
5 845 2,851
6 848 1,853
7 850
8 852 V

V 

853

Time 8.43 6.49

V. 

n=2000

V Algorithm 2.1 Algorithm 2.2

Iterat ion P 1 u, Fl

1 782 2,923
2 1020 2, 1074
3 109.8 3, 1118
4 1119 2, 1131

5 1128 2,1136
6 1133 1, 1138

7 1135 
V V

8 1137
9 1138

Time 11.79 9.92

87 

, V V

—- S. ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~ 5-5-V ~~~~5. V- .55 ~~ V - S . 5 -  ~~~~~~~~~~~~~~~~~ ....~~ , ~~~~~

.• -
~~~~ ~~

V V 5 - 5 -  V V



AD—AO 65 265 STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE 
- — - 

FIG I.2I1
SPARSE AND PARALLEL MATRIX COMPUTATIONS. (U)
DCC 76 F T LUK DAHCO’4—75—G—0165

UNCLASSIFIED STAN—C5—76—665 Nt. 12~~~2
28~

Ia! I 

II~~~~~~ ,

__  
Il

END
DATE

E! tME 0

4 -- _79-
AbC

p __



• I .c:~ ~ Hli~

~ ~: IIIII~
2

I I’
IIJH~11)111 

~~~~~~~~ 11II1~
.
~ ~

MICROCOPY RESOLUTION TEST C~1~~T
NATIOt4AL BUREAU OE STA NDA RDS - i 963- ,~



9

EXAMPLE 2. This example is the same as the previous one , except that

the matrix A has been chosen as the Laplacian 5-point finite differ-

ence operator:

,

B -1: 2 2
-] : B

where

4 -l

—l 14 —l 0
B = . .

-1 ~ -l

-l 4 m x m

Let n = in2. We consider two different choices of the “partial updat ing”

matrix:

0 ’
14

(i) C = D E
0

and

j B  0
B

(2) C = T ~~

\o B
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11 = 900

Algorithm 2.1 Algorithm 2.2 Algorithm 2.2
_ _ _ _ _ _ _ _ _ _ _  

(c = D) (c = T)
Iteration IPI u, I~I u,

1 3149 2,1416 2, 1416
2 450 2,1462 2,1462
3 463 1, 1465 1,465
4 465 1,466 1,466
5 1466

Time 7 .54 6.73 6.70

n=1600

Algorithm 2.1 Algorithm 2.2 Algorithm 2.2
(c = D) (e = T)

Iterat ion ~~ u, P1 u, IPI
1 620 2,730 2,730
2 798 2, 828 1, 828
3 337 1, 3142 1,8)42
4 842

Time 17.08 15.29 15.41

4

89

- --~~ - . .~~~~ -- . —- --

- . —~~~~~ —-~~~~~~~~~~~~~ - - - ~~~~--- -—~~~~
-- 

~~~~~~~~~~~~~~ ~--~~~~~~~~ -—-
~
.- .-  -

~~~~~ -



______________ — —  --—-
--.- — ~___ _ _ _ _

~; 
- -

~

We observe that both choices of C have produced essentially

identical results. This is not surprising if we look at the index

set J of the variables eligible for “partial updating.” Rarely

do we find two consecutive indices in J. Thus, the tr idiagonal

“updating” matrix reduces to a diagonal “updating” matrix in almost

all cases.

We construct a different example with n = 900 and another

choice of the vector b:

-6r. for i = 301, 302, .. . , 6oo

b . =
1

8r. otherwise,1

where r. is a random number from a uniform distribution in the open

interval (0,1).

= 900

Algorithm 2.1 Algorithm 2.2 Algorithm 2.2
_ _ _ _ _ _ _ _ _ _  

(c = D) (c = T)

Iterat ion ~ u, J~J u, IPI
1 300 2,307 2,307
2 366 2,380 3,386
3 396 2,~40l 2, 1405
14 1#o6 1, 1406 1, 407
5 1407 1, 1407

Time 24 .97 25.08 23.80

This is also an example where the “partial updating” technique is not

particularly efficient due to the very special structure of the vector ~~.

90

L ~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



EXAMPLE 3. We address the lower and upper bounds problem

l t  tmm x Ax - x b
x— 

(5.1)
subject to 0 < x < d

The matrix A is chosen as the tridiagonal matrix in Example 1. The

vectors b and d are generated by

b. = II - 20r.,
1 1

for i = 1,2,..., n,
d. = 7s~,

where r
~ 

and s~ are random numbers from a uniform distribution in

the open interval (0,1). The “partial updating” matrix C is the

diagonal matrix with the same diagonal as A . We use Algorithm 2.1 (2.2)

to solve the lower bound quadratic program in an iteration of Algorithm

3. 1 (3 .2) .

An iteration is defined to be a sequence of “partial updates”

followed by a solution of a lower bound quadratic program with the

matrix ~~~ The 3—tuple (IZI, l~l, UI) gives the number of elements

in the index sets Z, P and U, respect ively, at the end of an

iteration. The scalar u gives the number of “part ial updates” in

the iteration.

-~1
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U = 1000

Algorithm 3.1 Algorithm 3.2

Iteration ( ( z ( , I P I , t U I )  u , ( l Z I , I P I , I U I )

1 (234,216,550) 3, (307,275,1418)
2 (310,283,407) 1, (311,292,397)
3 (313,291,396) 1, (313,291,396)

Time 180 1.63

n = 1500

Algorithm 3.1 Algorithm 3.2

Iteration (Izi IP !,IUI) u,(IZ~,1 PI ,l U I )

1 (366,324,910) 3, (489,396,615)
2 (492,1408,600) 1, (495,1416,589)
3 (14 95, 415 , 590 )
4 (1495,1416,589)

Time 4.13 2. 09

n = 2000

Algorithm 3.1 Algorithm 3.2

Iterat ion ( Iz I , IPI , IU I) u,(lZI,IPI, (UI )

1 (1452,1452,1096) 3, (590, 560,850)
2 (602,579,819) 2,(605,602,793)
3 (605,602,793) 1, (605, 603,792)
14 (605, 603,792 )

Time 7.51 5.01 
-

4
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EXAMPLE 14. This example is the same as Example 3, except that

(1) the matrix A is chosen as the discretized Laplaciari operator

of Example 2, and (2) the upper bound ~ is generated by

= 3s
~ 

for i l,2,...,n

We have changed the upper bound so that the three index sets are of roughly

equal size in the final solution.

We use Algorithm 2.1 (2.2) to solve the lower bound quadratic

program in an iteration of Algorithm 3.1 (3.2). Both choices:

(1) C = D and (2) C = T (see Example 2) are considered for

Algorithm 22.

n = 900

_.Algorithm 3.1 V Algorithm 3.2

Iteration (~ Z~ ,~ P~ , 1 U 1)  
- 

u,(1Z1,IPI,IU1)

1 (274, 168,1458) 3, (307,223,370)
2 (325,277,298) 2,(325,29~4,28l)
3 (325,294,281) 1, (325,296,279)
14 (325,296,279)

Time 6.79 5.97 (C = D), 5.914 (C = T)

n = 1600

Algorithm 3.1 Algorithm 3.2

Iterat ion (IzI,IPI,luI) u,(IZI,IPI,IUI )

1 (1478,277,845 ) 3,(552,430,6l8)
2 (582,487,531) 2, (585, 5214,1497 )
3 (585,520,1495) 1,(585,526,1489)
4 (585, 526, 1489)

Time 17.72 15.35 (C = D), 15.28 (C = T

93 
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3.6. Conclusion

It is evident from the work of Cottle and Goheen [4 ] that

the algorithms of Chandrasekaran 12] and Pang [8] are very effective

schemes for solving lower and upper bounds quadratic programs

associated with M-matrices. We have seen in the last section how

our “partial updating” technique can cut the execution time of the

two algorithms by 10-50%. Thus, our new schemes (Algorithms 2.2

and 3.2) are highly competitive for solving this important class of

quadratic programming problems.

Our other contribution of this chapter is the introduction

of a technique to handle the spec ial case of the quadratic program

when some components of the bounds are infinite.
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IV. A BLOCK LANC ZOS !€THOD FOR COMPUTING SINGULAR VALUES

14.1. Introduction

In this chapter , we construct a Block Lanczo s method for the

problem:

Compute the k greatest singular values and

associated vectors of a large and sparse in x n matrix A,

where K is much smaller than in or n,

which f inds applicat ions in factor analys is, regress ion and image

enhancement (ef. [4]).

We assume without loss of generality that m > n. For

i = l,2,...,n, let be a singular value of A, and let U . and

be the corresponding left and right singular vectors, respectively.

The singular values are ordered so that

a1 > c
2
)’. > c .  (1.1)

Let us exploit an idea of Lanczos [8 , Chap . 3] and consider

the (m + n) x (mi- n) matrix

,~~ / 0  A \
A = (  

~ 1’ (1.2)
\ A O F

whose eigenvalues are 
~ 

c1, ~ 
•
~~~~ 

± en, plus (in-n) zeros.

We address the equivalent problem:

96~
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Compute the k algebraically greatest eigenvalues

and corresponding eigenvectors of the large and sparse

matrix A of (1.2).

An efficient scheme for this eigenproblem is the Block Lanczos method

developed by several researchers, in part icular, Cullum and Donath

([1] and [2]), Golub and Underwood ([ 7 ]  and n
14]), Lewis [9] and

Ruhe [11]. We choose to consider the variant of Golub and Underwood.

We are going to present a theoretical development of the Block

V 

Lanezos method and give two theorems on its convergence rate. The

pract ical implementation aspects are then discussed and particular

attention is paid to the choice of block size. We believe that all

our results are original. In fact, we are unaware of any other

procedures which solve the same problem.

In this chapter, we use the Euclidean vector norm

t 1/2II~II = II~II~ = (i~s &

and refer to an n x b matrix X with n > b as an orthonornial matrix

if 

xtx 1 .

14.2. Block Lanczos Method for Symmetric Matrices

Suppose that we desire accurate approximations to the K

algebraically greatest eigenvalues of a large, sparse and symmetric

matrix B of order £, where k is much smaller than 2. Let b

and s be two given integers such that b > 1, s > 2 and bs < 2 .

It Is usually the case that bs << 2. We can define the Block Lanczos

method of Golub and Underwood ([ 7 ]  and [14]) as follows.

97
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ALGORITHM 2.1. (Block Lanczos method)

I. Let X1 be a given 2 x b orthonormal matrix . Compute

V 

M
1 := X~BX

1

2. For i = 2,3,...,s, do

(a) Compute

~ BX~~-X 1M1 for 1 = 2 ,

Z1 : 

~ BX. 1-X .1
M.1 -X . 2

R~~1 
for i >3.

(b) Factorize Z. so that

Z. :=X .R.,
1 11

where X . is orthonormal and R . is upper triangular. If

is rank def icient , choose the columns of X~, so that they

are orthogonal to those of all previous X ’ s.

(c) Compute

M. :=X~BX . . U
1 1 1

The value b is thus the order of the block, and the value S

the number of blocks. The Block Lanczos method is characterized by the

matrix equat ion

~ =~~M +~~~ , (2.1)S s s  si-i

where

4

98

- - - -V

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V 
~~~~~~~~ V • ~~~~ V~~~~~~~ V V~~~~~~~~ V~~~ - -  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV V



_______ ~~ — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V — 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~_ ~~~~~~~~~~~~~~~~~ VVV V VV~VVV V

R
t

I l  2

R2 
M
2 

R~

(2.2)

R
i
M 

l ’~

= (x 1, x2, ... , x )  , (2.3)

= (o , ... , 0, z ÷1) (2. 14)

and

z = B X  - X M  - x  Rt (2.5)si-i s s s  s—i s

We can prove that the columns of the matrix form an orthonormal set.

The Block Lanczos method thus generates a symmetric block tn-

diagonal matrix M of order bs. As the R , ’s are upper triangular

matrices, the matrix fi is also a band matrix with bandwidth 2b + 1.
S

We consider only the case where bs is small, so that standard

techniques can be applied to the computation of the eigenvalue decom-

pos it ion of V.15 (see [121 and [15]).

• Suppose that is an eigenvector corresponding to

the eigenvalue 
~~~~

. Let

i s i

- 
V 
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From equation (2.1), we obtain

Bx. = ~.x + Z V .
~ i i”i s+l”i

or equivalently,

Bx. = 
~~~~~~~~ 

+ Z
÷1f. , (2 . 6)

where is the vector of order b consisting of the last b coin-

ponents of 
~~~~

• Therefore , 
~~ 

and x~, would be an eigenvalue-eigenvector

pair of the matrix B if we had that Z5÷1f1 = 9. The power of the

Block Lanczos method lies in the fact that the elements of the vector

z +1f. are usually very small for the extreme eigenvalues of This

• observat ion is substantiated by a theorem given by Underwood ~~~ pp.

37-38] .

V 

THEOREM 2.1. Let 
~ ~2 

> > be the eigenvalues of an

£ x 2 symmetric matrix B with corresponding normalized eigenvectors

z1~ ~~ ~~~~
. Assume that > Let 

~i ~ ~2 ~ ~ ~bs

be the eigenvalues of the bs x bs matrix generated by the Block

Lanczos method with an initial £ x b orthonormal matrix X
1
. Suppose

that the b x b matrix

W = G ~X1,

where

= 

~~l’ ~2’ ~~ ‘ Zb ) 
‘

100 
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is nonsingular so that its smallest singular value T is positive.

Note that ‘r < 1. Then, for i = 1, 2, ... , b, we have that

~~~ ~~ ~
L
i ~ 

- E.

where

2 
— 

(7~ - 7)~~ tan2 e

2 
_ _ _ _

• 
T5 1~~1 - 

~~~~ 
/

• -l6 = c o s r ,

_ 7’i 2”b+l

1 £

and

T 1 
is the (s-l)-st Chebyshev polynomial of the first kind.

EXAMPLE 2.1. (cf. [14, pp. ~3-44 1)

Suppose that B is an £ x £ symmetric matrix with eigenvalues

= 1.0, ?.2 
= 0.9, = 0.5, ... , = 0.0. Let us apply the Block

Lanczos method with b = 2 and s = 10. Then

— 
1.0 — 0.5 

— 
1

— 
1.0 - 0.0 

- 
2

— 0.9 - 0.5 - 14
- 
0.9 - 0.0 9 ‘

/ 1 + y \ 6
T
9I~. i 1

1

) 
=T

9
(3) ~~3.9 ’< lO

and l + y
T
9( 1  - 

2 
= T

9
(2.6) 9.8 x
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Let T = o.o14, so that

tan2 B = 6 24 .

Now,
2 . l.Ox 6 214 . -11

1.5 x 10

and

2 . 0. 9 x6 2 4  
~
- 8 lO~~~~2 

— 

9.6 ~ 10
11 X

Consequently, the two algebraically greatest eigenvalues 
~l 

and

of the matrix W~ satisfy the inequalit ies

-11
1 ? ~~ ? ?\l - ~4.1 x 10

and
~2

>~~2
> A

2 - 5.8 x 1O~~
0
.

14.3. Block Bidiagonalizat ion Algorithm

We apply the Block Lanczos method to the (mi- n) x (m+n) matrix

/ 0  A \
A =  t (1.2)

V \ A  o /

with the initial ( m i - n )  x b  orthonorinal matrix

/ 0  ~xl = (\ )
~ 

(3. 1)

where

is an n x b  matrix .
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It follows that

M1 = X ~~X1 = O ,

, AQ1
z = (1 

~ o

and

x2 = (  J ,
‘ O f

where

P1 
is an m x b matrix.

Thus,

M2 
= X~~X2 = 0

Using the relations defining the Block Lanczos method (Algorithm 2.1),

we can prove by induction that, for j  = 1,2, . . .

= ( :~ ) and M2~~ 1 = 0 (3.2)

where

Q. is an n x b orthonormal matrix,

and

V x2~ = ( ~ ) and M2~ = 0 (3.3)

where

P.  is an m x b orthonormal matrix.a

Since the X~
t s form a sequence of mutually orthonormal matrices, i.e .
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for i / j ,

we deduce that the P
a ’s and Q~ ’s form two sequences of mutually

orthonormal matrices.

Let us carry out 2s steps of the Block Lanczos scheme. We

obtain the matrix equation

~~2s 
= ~25T2 + 

‘ (3. 4)

where

R
~ 

0

T25 
. . . 

,

0
R2 1  

0 R
2 1

R25 0 /
X2s 

= (N ]! X2, ... , X~~ ),

... ‘ 
o,

and
0

= ( 
~ 

. (3.6)
A P - Q R

2 /
Let

= 
~~~ ~~~ P5) (3j )

and

~~l’ ~2’ ‘ . (3.8)
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We can rewrite equation (3. 4) as

10 A \ / ~~ ~ \ I~ o \ / o  j \  Io  o\
I 1 = 1  ~ II ~ ~J i-

~~~~~d I , (3 .9)
\A

t oJ  \ o  
~ 

/ \0  
~s / \J 5 0 /  \

Z2 ÷ 1  0/

where

R2 

R~

= 
. 

(3. 10)

Q R2 5 2

and

= (o , ... , 0, z~ 5÷~ ) . (3.11)

Furthermore, the matrix equation (3.9) is reducible into two lower-order

matr ix equations :

(3. 12)

and

At
~ ~~J3 + z

2s+l • (3.13)

The Block Lanczos method therefore generates a block bidiagonal

matrix J5 of order bs . As the R
1

t s are upper triangular matrices,
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the matrix J5 is also a band upper triangular matrix with b super-

• diagonals. Therefore, we have constructed a scheme that produces a

block bidiagonal matrix J from a given rectangular matrix A.

ALGORITHM 3.1. (Block Bidiagonalization method).

1. Let be a given n x b orthonormal matrix.

Compute

: AQ1

and factorize W1 so that

:= P1R2 ,

where P1 is orthonormal and R2 is upper triangular.

2. For i = 2,3,...,s, do

(a) Compute

Z~ := A
t
P. -

and factorize Z. so that
1

Z~ := Q. R2 .1 ,

where is orthonormal and B2 .1 is upper triangular.

(b) Compute

W~ := AQ1 
- P. 1R~11

and factorize W~, so that

W~ := P.R2i

where P1 is orthonorinal and R21 is upper triangular. U
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In Algorithm 3. 1, if the matrix Z . were rank deficient, we

would choose the columns of Q. so that they are orthogonal to those

of all previous Q~’s (cf. Algorithm 2.1). The remedy is similar for

a rank-deficient matrix W..
1

We assume that bs is small , so that we can use standard

techniques (see [3] and [6]) to compute the singular value decomposition

of A thorough discussion of various ways to compute the singular

value decomposition of a band upper triangular matrix is given in [5],

Suppose that is a singular value of with corresponding

left and right singular vectors and z,, respectively. Let

p. = P w.
~,1 ~~~~

and

= Q z .
1 S~~1

From (3.12) and (3.13), we get

= (3.14)

and
A

A p. = ~~~~~~~~ + Z w.
~~1 1 1 2s+l—i

or equivalently,

A
t
e. = 

~
1i~ i 

+ Z25÷ihi (3. 15)

where the vector is a vector of order b consisting of the last b

components of w1. Accordingly, if we had that Z21i-1,h1 = 0, then

the value would be a singular value of the matrix A with
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corresponding left and right singular vectors and 
~~~~

, respectively.

In the next section, we give erro r bounds which indicate that the

greatest singular values of 
~~ 

are usually accurate approximations

to those of A.

4. 4. Error Bounds For the Singular Value Approximations

Let us cons ider the mat rix

/ 0 A \

t J .  (1.2)
A 0/

V 
Its (b+l) algebraically greatest eigenvalues are C

1 
> C

2 
> >

and its algebraically small est eigenvalue is -c 1. For i = 1,2,.. .,b,

the normalized eigenvector of A corresponding to the elgenvalue e1

is
/u.

1 1
~i

= _ _
V~

: 
\~~~i

Now, the eigenvalues of the block tridiagonal matrix T2 of (3.5)

are 
~l ~ ~2 ~ ~ ~ ~ ~2 > But the matrix

T2 is generated by 2s step s of the Block Lanczos method applied

to ~ with initial matrix

= 

(
° ) .

If we let

108

- - - :~~~~~
- •

V
•~ 

- $



r
~~r~T~~

V_

~~

_VV VV ~~~~~V -- ~~~~~~~~~~~~

then

G~X1 
= —i— V~Q~

The next theorem is a direct consequence of Theorem 2.1.

THEOREM 14.1. Assume that > °b+]! Let 
~1 ? 

~2 
a 

~ ~
1bs 

be the

singular values of the bs x bs matrix generated by the Block

Bidiagonalization method with an initial n x b orthonommal matrix

Suppose that the b x b matrix

l tW —

where

= 

~~~~~~ ~2
’ ‘ 

~b~’

is nonsingular so that its smallest singular value T is positive.

Note that t < i/~ /~ . Then, for i = 1,2,..., b, we have that V

2
a. > ~~~. > a. - € . ,1 —  1 —  1 1

where

2 
— 

(.~~~~~ — e1) tan2 e

~~ T~ 
( l + y- . \

2s—1~ 1 — r1 /

—lU = cos -r

— 

Cj  -
Y j  

— 
+

and

T2 5 1  Is the (2s-1)-st Chebyshev polynomial of the first kind.
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EXAMPLE 4.1.

Suppose that A is an in x n matrix with singular values

= ~~~~~ 
~2 

= 0.9, = 0.5 Let us apply the Block Bidi—

agonalization algorithm with b = 2 and s = 5. Then

1.0 - 0.5
= 1.0 + 1.0 = 0.25 ,

0.9-0.5 . 2112 9 +  10

(1+y \ 14
T
9 ~l - 

1 

~~ 

T
9
(l.67) i.o x 10

and
i +y  \

T
9 - 

T
9
(l.53) 3.7 x io~

Let
I = x o.o14

so that

tan2 & 1 12149.

Thus,
2 2.0 x 12149 1 2.5 “< l0~~

1.0 x 10

and

1.37 x 10

The two greatest singular values and M2 
of J therefore

sat isfy the inequalit ies
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~ ~l ~ 
- 2.5 x lO~~

and
if2 >~~2 >i f2

- l .7XlO .

However, we suspect that the bounds of Theorem 4.1 may be

gross overestimates. Suppose that

V
1

Then we have
1

and 

T

tan 0 = 1

The last value is quite unsatisfactory for an init ial matrix cons isting

of the correct singular vectors .

We seek to construct tighter bounds. From the matrix equations

A~ = F5J5 (3 .12)

and

A
t
P
5 

= ~~Jt + 
‘ (3.13)

we get

AtA~ = AtP J
5 s s

~~J
t
J + Z J .

s s s  2s+l s

Thus,

AtA~ s = ~~J~J + (0 , ... , 0, z25~1
R
25
) . (4.1)

4
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We observe that the matrix is orthonommal and that the matrix

is block tridiagonal. It can be proved (cf. Chapter 2 and [ 143 )

that the matrix equation (4 .i) characterizes an application of the

Block Lanczos method to the matrix AtA with the initial matrix Q~~~
.

Since the matrix AtA has eigenvalues > a-~ > ... > a- and

corresponding normalized eigenvectors 
~~~~

, 
~2’ 

, v~ , we obtain

the next result from Theorem 2.1.

THEOREM 14.2. Assume that °b > a-b+l~ 
Let 

~~ 
a 

~2 
a a 

~bs be

the singular values of the bs x bs matrix 
~~ 

generated by the

Block Bidiagonalization method with an initial n x b orthonormal

matrix Q1. Suppose that the b x b matrix

W = V ~Q1
,

where

V1 
= 

~~~~~~ ~2’ 
‘ 
~~

is nonsingular so that its smallest singular value i is positive.

Note that T < 1. Then, for i = 1,2,.. .,b, we have that

2 2 1/2
,

or 
2

for 4<1 ,

where
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2 2 2
2 i a-n~ 

tan 9 . -

— 

T~ 
(1 + ‘

s_ l \ l _ r ~ / 
—

—1O = c o s  T~~~

2 2

- 

0’i 
-

2 2

and

is the (s-l)-st chebyshev polynomial of the first kind.

EXAMPLE 4.2.

We use the same given data as in Example 14.1, with the additional

assumption that a-n 
= 0.0. Thus,

V a-~ = 1.00, a-~ = 0. 81, a-~ = 0.25, ... , a-~ = 0.00

so that
1.00 - 0.25

11 = 
1.00 - o~ö~ 

= 0.75

0.81 - 0.25
12 081 0.00

0.6 ,

/l+ y \ 14
T4~~1

’
) 

=T 4(7) ~~l.88 x lO

and

/l + y  \
T~41 - :~ ~ 

T4(5.145) 1 6.82 ‘
~< lO~

Also,

4 tan2 ~ = 6214.
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Consequently,

2. l.00x6214 . -6
3 l.7 )< 10

3.55 x 10

and

2 . o. 8i x 624 . -5
€ = = 1.lxlO

4.65 x 10

As

2a-1 1

and

1 2 . —6
— E  = 6.8xlO
2a-2 2

the two greatest singular values and 
~2 

of J therefore

satisfies the inequalities

a-1 a > a-1 
- 9.0 x

and

a-2 ~ ~2 
> a-2 

- 6.8 <

We observe that the bounds given by Theorem 14.2 are much smaller

than those given by Theorem 4.i.

4.5. Iterating to Improve Accuracy

Let us restate our computational procedure. We use the

Block Bidiagonalization method to generate a block bidiagonal matrix

of small order, and then apply standard techniques to compute

the singular value decomposition of J5. Our convergence test

depends on the next two lemmas.
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LE~4,(A 5.1 (Weinstein’s Inequality) [10, p. 56].

Given a symmetric matrix B and a normalized vector x,

if there is a scalar M such that

IlB~ 
- 
~xlj ~ 5

then there is an eigenvalue ?~ of B within 5 of ~.

LEMMA 5.2. [10, pp. 59-60].

Let B be an £ x £ symmetric matrix with eigenvalues

~l’ 
~~~~~~ ... , and let IIB~ - ?~x II < S for some normalized vector

x. Suppose that

- 7~j  > d >0 for i 
~ 

j

Then B has a normalized eigenvector corresponding to

such that

II~~~ 
- 

~iI < 1(1 + ~
2 1/2

where r = 5/ct.

From equations (3.114) and (3.15), we obtain

(o 
A /

~~. \ 1
/~~ .\ 

+ I ~ . (5.1)

\ At 0/ \ ~~ 
/ \~~~ / \ z2 ÷ 1h .J

S
V Thus, if

IIz25i-1~ II < s (5.2)
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for some given tolerance S, then there is a singular value

of A such that

- a . I < 5

If it is also true that

- > d > 0  for K 
~~ 

j  ,

where a
1, 

a~, ... , a are the singular values of A, then A has

normalized left and right singular vectors and V., respectively,

corresponding to such that

2 2 2 2I I~ — ~ I I + iI
~ 

- 

~j
II ~ i 

(1 + 1 )

where r = 5/d. For the more complicated case of multiple singular

valnes, we refer the reader to an excellent paper of Stewart [13].

Suppose that our procedure has not computed all the K

greatest singular values to the desired accuracy. In Theorem 4.2,

the error bounds contain the term tan 0, where U is the angle

between the two subspaces spanned by the columns of V1 and

Let

~~~~~~~~~~~~~~~~~~~~~~~
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The results of the last section indicate that the matrix

can be a better approximation to the matrix V1 
than the init ial

matrix Q1. Thus, we expect to compute ~~re accurate approximations

to the greatest singular values of A if we reapply the Block

Bidiagonalization method with the initial matrix This idea leads

to the following iterative scheme, where we assume that b equals k.

ALGORITHM 5.1.

I. Let b, s and S be given parameters and let be a given

n X b orthonornial matrix.

2. Repeat until all b greatest singular values have converged:

(a) Use the Block Bidiagonalization method with initial matrix

to generate the matrices J , F and 
~~~
.

(b) Compute the singular value 
~~~

. and corresponding left and

right singular vectors and z~, respectively, of

for i = 1,2,..., bs.

(c) Estimate the accuracy of as an approximation to

for i = 1,2,..., b (cf. inequality (5.2)).

(d) Let

~~l’ ~~~~~~
‘

where

= 

~s~ i 
for i = l,2,...,b. 0
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This iterative algorithm provides a convenient means for

estimating the accuracy of the computed singular values. We can show

that the i-th column of the matrix in the Block Bidiagonalization

method computed in each iteration of Algorithm 5.1 after the first

is the residual vector for the singular value computed in the

previous iteration. It is thus possible to determine at the start

of an iteration the accuracy of the singular values computed at the

end of the previous iteration. We also observe that the matrices P
1

and R
2 

of the Block Bidiagonalization method are readily available

from the prior iteration.

However, once a few singular values and singular vectors

have converged, we need not iterate with them any longer. Since the

desired singular values may have different rates of convergence, as

indicated by the error bounds of Theorems 4.1 and 14.2, we should

modify Algorithm 5.1 so that (I) it does not iterate with those

singular values and singular vectors that have converged, and (2) it

— allows the values of b and s to change from one iterat ion to the

next. We are going to examine these issues in the next two sections.

4.6. Block Bidiagonalization Method With Reorthogonalization

Suppose that we are given accurate approximations to the k
0

greatest singular values a1, a , ... , ~ and corresponding singular
2 k0

vectors of the matrix A. Let Po and be the in x k0 
and

n x K0 orthonormal matrices consisting of those given left and right

singular vectors, respectively. We want now to compute the next

V 
(k-k0

) greatest singular values of A.
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Let us consider the matrix

/ 0 A \
I . (1.2)

~~A
t 
0/

If we apply Algorithm 2.1 to compute the eigenvalues ± Ck +1’
+ Ck +2, ... , + of the matrix A, then we must maintain the

orthogonality of the matrices X1, X2, ... , X5 with respect to the

eigenvectors corresponding to the eigenvalues + a1, + a2, ... , ÷
0

(cf. [114]). But these eigenvectors are accurately approximated by

the columns of the matrix (see [8, Chap. 3])

1 (
~0 

P
0

v~ \%
We have that

I ~~ ~0 1 / ~O P
0 \ ~ - (I - P

0
P~ 0

0

Therefore, if we want to apply the Block Bidiagonalization method to

compute the (k-ks) next greatest singular values of A, we need to

maintain the orthogonality of the matrices 
~l’ ~2’ 

, P5 with

respect to P0, and the orthogonality of the matrices 
~~~ ~2’

with respect to %. We are thus computing the (k-k0 ) greatest
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singular values of the “ deflated” matrix

= (I - P
0
p
~) A (I - %Q~) (6.1)

Suppose that

V 

IIA% - P0
E
0fl1 + I~A

tP0 - < ~2 , (6.2)

where is the Frobenius matrix norm and = diag(a1,,2,...,c~ ).
0

Note that if both matrices P
0 

and had been computed by the

Block Lanczos procedure (cf. equation (3.12)), then

IA% - PQEQ II = mk
0 

o(€ )  , (6 .3)

V where € is the machine precision. Using arguments similar to those

in Underwood’s thesis [14, pp. 62—66], we get from (6.2) that the

(k-k0) greatest singular values of A differ from the (k-k0)

next greatest singular values of A by quantities which are less

than 15 1 in modulus.

Now, the Block Bidiagorialization method may be numerically

unstable. Although the matrices Pt’s and Q~’s form two sequences

I
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of orthonormal matrices in exact arithmetic, they lose orthogonality

rapidly in practice due to the loss of figures in the computation of

the matrices Zr’s and W
i
’s. To maintain stability in the scheme,

we choose to reorthogonalize the matrices P~ and with respect to

all the previous P !s and Q. ’s, respectively (cf. [14]).

We have incorporated the two reorthogonalization procedures

into the next algorithm.

ALGO RITHM 6.1. (Block Bidiagonalizatlon method with Reorthogonalization)

1. Let be a given n x b orthonorinal matrix.

Compute

W1 
: A Q

1

Orthogonalize W
1 with respect to P

0
. Factorize W

1 
so that

:= P
1
R2

where P1 is orthonormal and B2 is upper triangular.

2. For i = 2, 3, ... , s, do

(a) Compute

._
~~~

p Rt
i-l 

- Q~ 1 2i-2

Orthogonalize Z~ with respect to %, ~~~ •~~ 
V

Factorize Z~ so that

Z~ := Qi
R21_1 ,

where is orthonormal and R211 is upper triangular.
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(b) Compute

W~ := AQ
i 
-

Orthogonalize W1 with respect to F0, P1, . ..  , P~~1.

Factorize W~ so that

W
~ 
: P~R2.

where P~ is orthonormal and R
2i 

is upper triangular. 0

In case of rank deficiency of the matrix Z~ or W., we apply a

remedial procedure similar to that for Algorithm 3.1.

4.7. Iterative Block Laxiczos Method
V 

We should point out that the reorthogonalization process of

the last section not only requires a large number of arithmetic

operations but also requires that each of the P
s
’s and Q~’s be in

memory during each step of Algorithm 6.1. Since in and n are

large numbers in this application, the available computer memory places

an upper bound c on the product bs. It is then necessary to determine

optimal values for b and s subject to this upper bound constraint. - -

But the error bounds of Theorem 14.2 indicate that we need accurate

V 
knowledge of the singular value spectrum of the given matrix, which

is precisely the same information we are trying to obtain.

A good initial choice of the block size b is the number k

of singular values to be computed (see [2] and [14]). This may not be
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the best choice, as we can see from Example 4 of the next section.

Our experiments have shown that it seldom pays to have b > K (cf.

Example 3 of the next section). Underwood [114] made the same observa-

t ion, but be used a different way to update the block size.

Having chosen b, we compute the number s of blocks by

V 

s :=
[
~~
J

where LaJ denotes the integer part of a real number a. If S

is less than 2, we compute

and

i ds :~~,~’j

The last computation is necessary so that S would equal 3 if the

value of c were 3.

L~t us describe how we update the values of c, b, s and

k. Suppose that k0 
singular values and associated singular vectors

have converged in an iteration. Then

c := c - k0

because those computed singular vectors must reside in the computer

me~~ry for the reorthogonalization process. Now, if b > k, then we

decrease the value of b by K
0, 

i.e.

123
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b := b - K0

otherwise we choose the new block size as the smaller value of the old

block size and the number of singular values left to be computed, i.e.

b := inin(b, k - k
0
)

We update the value of K by

k := k - K0

The new value for S is then computed in the same manner as described

in the previous paragraph, with the same modif ication to the value

of b if necessary. Our scheme for updating b differs from

Underwood ’s [i4] only in the case where b > K.

ALGORITHM 7. 1. (Iterative Block Lanczos method)

1. Let c, b, s and 5 be given parameters and let Q1 be a given

n x b orthonormal matrix. The matrices P
0 and are null.

2. Repeat unt il all K singular values have converged:

(a) Use Algorithm 6.1 with initial matrix Q~ to generate the

matrices j
5

, P5 and 
~~

.

(b) Compute the singular value ~~~~ and corresponding left and

right singular vectors and 
~~ 

respectively, of

for i = 1,2,..., bs.
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(c) Estimate the accuracy of as an approximate singular

value, for i = 1,2,..., bs. Assume that k0 
singular values

have aonverged.

(d) Update the values of c, b and s.

(e) For i = 1,2,..., ~~ + b, compute

n. :=Pw.A.1 S~~ 1

and

:=

(f) Let

V P0 
:= (P0 I~1, ‘

and

(Q0 l~1,

(g) Let

= 
~~k0

÷1’ ~k0
+2’ ~~ ~ ~k0

-4-b~ 
0

4.8. Test Examples

Rectangular diagonal matrices are chosen for all our examples.

Such matrices are sufficiently general for the Lanczos method which

does not transform the given matrix. We can thus specify the singular

value spectrum and study the behavior of the algorithm as a function V

of b and s.

A set of FORTRAN routines has been written to implement

Algorithm 7.1 (see [5]). We ran our tests on an IBM 370/168 computer
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at the Stanford Linear Accelerator Center. The code was compiled

by the H EXTENDED compiler with optimization level 2.

• The computed singular value 
~~~
. and associated singular

vectors and are accepted if they satisfy the ineqtlality

( IIA~ - 

~i2i~
2 

+ IIA t~j  - k1~~ I l 2 l/2 
<

In Sections 14.5 and 14.6, we have described a way to test for con-

vergence with very little additional work. We have chosen the upper

bound c for the product bs to be 12.

The following notations are used in the examples:

a1, c
~2~ 

a~, ... are the computed singular values in

the order of convergence.

Iter = total number of iterations.

Time = machine execution time in seconds .

in’ - n  = m x l 0~~.

EXAMPLE 1.

A is a 905 x 9014 matrix with diagonal elements -1.00,

-0.99, -0.98, and 0.000 , 0.001, ... , 0.900.

k = 3  b = 3

i. o o — 4 ’  — 7

0.99-9’ -9
O.98-3’ - 6

Iter 5

Time 11.36
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We note that the computed singular values, as Rayleigh quotients,

are accurate to twice the number of digits of the error tolerance.

EXAMPLE 2.

A is a )05 x 9014 matrix with diagonal elements

V 
-1.000, -0.999, -O.9Q8, and 0.9000, 0.9001, . ..,  0.9900. This example

is essentially the same as the previous one except that the gaps

between the singular values have been reduced by a factor of 10.

k = 3

C
l 

1.000 - 9’ -7

0.999-4’ - 6

0.998-2’ - 8

Iter 6

Time 13.83

The first two examples illustrate the fact that the convergence rate

of the Lanczos algorithm depends on the relative spread of the singular

values (cf. Theorems 4.1 and 14.2).
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EXAMPLE 3.

A is an 806 x 805 matrix with diagonal elements

1.0, -1.0, O.
V V V

~, -0.~ , and 0.000, 0.001, . . - , 0.800.

k = l  b = 1  b = 2

- 
01 

1.0 — 3’ - 10 1.0 - 1’ — 12

Iter 1 5
Time 2.35 6.52

- k = 2  b = l  b = 2

a1 1.0 — 3’ — 10 1.0 — 1’ - 12

a2 0.9 - 3’ - 16 1.0 - 1’ - 11

Iter 2 3

Time 14.27 6.52
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EXAMPLE 3 continued

k = 3  b = l  b = 2  b = 3  b = 4

a
1 

1.0 - 3 ’  — 10 1.0- 1’ -12 1.0— 3 ’  — 8  1.0 - 1’ -

0
2 

0.9 + ~~ — it 1.0 — F - 11 1.0 — 14’ - 9 1.0 — 8’ - 7

1.0 + D’ - it 0.-~ - 1’ - 9 0.9 - 3’ - 9 o. - 6’ -

Iter 5 4 14

Time ~.6O 8.28 8.23 10.53

k = 4  b = l  b = 2  b = 3  b = 4

a1 
1.0 — 3’ - 10 1.0 — 1’ — 12 1.0 — 3’ — 8 1.0 - 1’ — 7

0
2 

0.9 + 3’ - 16 1.0 - 1’ - 11 1 0 - 6’ — 8 1.0 - 8’ - 7
1.0 + 0’ - 16 0.9 - 3’ - 8 0.9 - 2’ - 7 0.9 - 6’ - 9

a4 0.9 + 6’ - 14 0.9 — 7t - 8 0.9 + 8’ - 10 0.9 - 2’ - 7

Iter 7 5 5

Time 12.70 10.00 9. 59 10.38
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These tests illustrate a couple of important points. First, the

Lanczos method does not always compute the greatest singular values

(cf. the case where k = 2 and b = 1). Second , the supposition

of Theorems 4.1 and 4.2 that > a~ ÷~ is not necessary for the

convergence of the Lanczos method.

EXAMPLE 4.

A is a 902 x 901 matrix with diagonal elements 0.000,

0.001, . . .  , 0.900.

k = 3  b = 1  b = 2  b = 3

01 0.900 - 5’ - 6 0.900 - 1’ - 5 0.900 - 9’ - 6

C2 
0.899 + 3’ - 6 0. 899 - 2’ - 6 0. 899 — 9’  — 6

V 
03 

0.898 - 2’ - 5 0.898 - 4’ - 7 0.398 - 7’ — 5

Iter 13 27 23

Time 28.73 61.85 52.53

Thts example of a dense singular value spectrum is one in which the

point algorithm (b = 1) works better than the block algorithm (b > 2) .
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Our Iterative Block Lanczos method is therefore a good pro-

cedure for computing a few greatest singular values of a matrix.

A block method with an appropriate block size can (1) have a fast

convergence rate, and (2) handle well the case of multiple singular

values (see Example 3). For problems where the given matrix has to

be read from secondary storage, economics may dictate that we multiply

the matrix into a block of vectors and thus choose a block method.
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V. COMPUTING THE SINGULAR VALUE DECOMPOSITION ON THE ILLIAC IV

5.1. Introduction

We study the computation of the singular value decomposition

on the ]ILIAC IV computer. Suppose that we have a real m x n matrix A.

Its singular value decomposition (sVD) can be defined as

A = U EV t (1.1)

with

V U~U = = ‘k and E = diag(o-1, ... , a~~)

where

K = min(m,n) . (1.2)

The matrices U and V consist of the orthonormalized eigenvectors
. . t tassociated with the k largest eigenvalues of AA and A A,

respectively. The diagonal elements of ~ are the non-negative

square roots of the k largest eigenvalues of and are called

the singular values. We assume that

~1~~~~2 ? ? ~~r
> O  and a~~1 =~~” ~k

0’ (1.3)

i.e. the rank of A equals r• An alternat ive def inition of the

singular value decomposition is

A = U E V t 
(1.14)

with

U~U = VtV = ‘r and E = diag(a
1, ‘ ~~~
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The singular value decomposition is a very useful matrix

decomposition (see [7]). Various methods have been proposed for

its computation. The standard method was introduced by Golub and

Kahan in 1965 [6]. They use first the Householder transformation

to bidiagonalize the given matrix, and then the QR method to compute

the singular values of the resultant bidiagonal form. Their method

superceded a one-sided orthogonalization method given by Hestenes

in l958[10]. Hestenes’ method is, however, easily adaptable to

V special purpose computations. It was suggested by Chartres (1962)

[2] for a computer with a magnetic backing store, and was implemented

on a mini-computer by Nash [12]. In this chapter, we study the

implementation of Hestenes’ method on the ILLIAC IV computer and show

that the method makes very efficient use of the parallel computing

abilities of the ILLIAC machine.

We are going to use the Frobenius norm for matrices, i.e.

h A D = II A II F = (
~~ a~ .)~~

1’2 
for A (a..)

1, J

and the Euclidean norm for vectors, i.e.

t i/~I I~h I = hI~II~ = (
~ ~

) -

5.2. The ILLIAC IV Computer

The ILLIAC IV computer was built by the Burroughs Corporat ion

and is located at NASA/Ames Research Center, ?.bffett Field, California.

The computer consists of 64 synchronous processing elements (PR ’s)
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under the direction of a single control unit (CU). Each PE has 20148

words of 64-bit memory with an access time of 188 nanoseconds, and

is capable of performing a general floating-point operation in about

1.7 microseconds and a typical bookkeeping operation in about 1.2

microseconds. The FE instruction set is similar to that of conven-

tional machines with two exceptions. First, each PR can communicate

data to four other PR’ s through routing instructions. Second, the

PE’s can set their own mode registers to effectively disable or

enable themselves. The CU takes about 0.7 microseconds to perform a

bookkeeping operation .

The main memory of the ILLIAC is logically a 16-million word

drum, which is divided into 52 bands and has a 140 millisecond rotation

period. Data transfers to or from the FE memory are program initiated

and are performed in blocks of 1024 words. The transfer time for

1024 words is about 66 microseconds; it takes about 14.2 milliseconds

to refresh half the FE memory.

A floating-point number on the ]ILIAC consists of a 1-bit sign,

a 15-bit exponent to the radi~ 2, and a normalized 148-bit mantissa.

The machine precision € is thus about 3.55 x ~~~~~ A fixed-point

number has a i-bit sign and a 148-bit mantissa.

5. 3. Programming Languages for the fl~LIAC

There are three languages available for programming the

ILLLAC; its assembly language, ASK; a FORTRAN-like language, CFD

[151; and an ALGOL 60-like language, GLYPNIR [11]. Both CFD and
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GLYPNIR do not hide the basic 64—wide architecture of the ILLIAC.

We must restructure our data and algorithm so that the computat ion

can be done in parallei in “strips” of width 614 or less.

Let us briefly describe the dat a declarations in GLYPNIR.

The PE memory of the ILLIAC can be viewed as a two-dimensional

structure where each word can be addressed by an ordered pair which

specifies the FE memory module and the address within that module.

A group of 64 words, each in a different module but each having the V

same address within its module, is called a superword or sword. We

can divide the variable types in GLYPNIR into two major categories.

The first represents words or vectors of words; they are called the

CU variables. The second represents swords or vectors of swords;

they are called the FE variables. There are also the Boolean variables

and the so-called ADB variables. F

A sword vector of length n represents an indexable vector

of swords. It is thus in some sense an n x 614 array. A GLYPNIR

program cannot directly handle two-dimensional arrays whose row

and column dimensions exceed 64 .

5.4. A Row Orthogonalization Method

There are two reasons why the standard SVD method of Golub

and others (see [6] and [81) may be undesirable on a parallel processor.

First, although the Householder transformation is inherently parallel, the V

effective vector length decreases at each step, causing inefficiencies.
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Second, the parallel QB method [14] may be numerically unstable (see

[9]) .  In contrast, the one-sided orthogonalization method of

Hestenes [101 is easily adaptable to computation on a parallel machine.

The method of Hestenes consists of generating an orthogonal

matrix V such that the non-null column vectors of the matrix

H = A V

are mutually orthogonal and non-increasing in norm. The nonzero

columns of H are then normalized so that

0
H = (U 10) ( r

• \ 0  0

with

U
~
Ur = ‘r and = diag(o-1, ~~ ‘

Consequently,

A = U E V t 
, (1.4)

whe~.e

Vr is an n x r matrix consisting of the first r columns

of V.

Nash [12 ] followed Hestenes ’ approach , but Chartres [2] chose to

orthogonalize the rows of the given matrix A. We have decided on

the row orthogonalizat ion scheme, for it is easily adaptable to

solving overdetermined linear equations.

tWe aim to generate an orthogonal matr ix U so that the non-

null row vectors of the matrix
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K = U
t
A

are mutually orthogonal and non-increasing in norm. We then normalize

the nonzero rows of K to obtain

/~ o \ I v ~K = I  r I I__ L~\ o  o J \ o

with

Er 
= diag(a~1, °r~ 

and VtV =

It follows that

A = U E V t
, (1.4)

r r r

where

U is an a x r matrix consisting of the first r columns

of U.

We are going to construct the matrix U as a product of plane

rotations. Let us write the matr ix A as

t

at
A =  , (4.1)

ta

where

4 is an 1 x n row vector, for i = 1,2,..., a.
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Given any two rows 4 and a~, with i < j. We would consider them

orthogonal if

hlAj il < € or hI a . h1 < € , ( 14.2)

where € is the machine precision, or if

t

1a 11 < ~ (4 .3)

where r is a previously chosen tolerance. We do not transform

orthogonal rows, but would permute them if

ha. < h Ia .It—i —‘3

Suppose now that the two given rows do not satisfy the orthogonality

condition (4.2) or (4 .3). Let us cons ider the act ion of a plane

rotation: V

J cos p s i n p \  J a t \ / a~~\j —i 

~ =1 ~ I . ( 14.4)

\~
sin cp cos cp / \ a~ / \ ~ /

The idea is to choose ~ such that

= 0 and I&~II > I I & V .D

The second condition ensures that the computation always proceeds

towards an ordering of row norms . Following Nash [12], we let

i4o

V VrS_V V_ _ V__V V
~_ ,~ - ~~~~~~~ —
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a = 2a~a . 

-

~

= h i~~h I~ 
— , ( 14 .5)

and

(
2~~~~2)

1/2

Note that y is positive since a is nonzero. Then , if ~ is positive,

V we compute - 
~l~2

_ _ _  
a

C05 ~ = 

~ 2y / and sin ~ = 2y cos c~
) ‘ (4. E )

otherwise we let

1/2 
_ _ _ _ _ _ _ _sin cp = (i ;~) and cos = 2y sin ~ 

(4 .7)

In ( 14.4), we could use the Fast Givens transformations (see

[4 ] )  which requires only 2n multiplicat ions, an apparent 50% work

reduction. But a heavy overhead in maintaining the scaling factors

eats up the savings unless the row length n is moderately large [ic].

As in the traditional Jacobi algorithm, the plane rotat ions

are performed in a set sequence called a sweep, which cons ists of

the [m(m-l)]/2 plane rotations on the row pairs

(1,2), (1,3), . . .  , (1,m), (2,3), . . .  , (~ ,m), (3, 14), ... , (m-1,m).

The iterative procedure terminates if (1) all the rows are pairwise

orthogonal, and (2) no row permutations have occurred, in one

complete sweep.
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Our orthogonalization method is in essence the Jacobi method

implicitly applied to the matrix AA
t to compute its eigenvalues.

We can refer to the literature [17 ] for the convergence properties

of our method. We see that the convergence is quadratic and takes

the order of 6 to 10 sweeps, i.e. from 3m
2 to Sm

2 plane rotations

(see [13]).

We now present our method in its entirety. Two Boolean

variables are introduced:

withu true if matrix U is desired, false otherwise.

withy true if matrix V is desired, false otherwise.

We make the arbitrary choice that

-12t~~~l0

V and write the matrices U and V as

U = 
~~1’ ~2’ 

, ( 14.8)

and

V = 
~~~~~ ~2’ 

• •  
~~

ALGORITHM 1 (svD).

I. Initialize:

(1) Let

€ := 3.55 x lO~~~,
-12r := 1O

and
c : = O

(2) If (withu) then let U := I.
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II. Repeat until c = [m(m—1)]/2:

(1) Let c := 0

(2) For (i,j) := (1,2), (1,3),..., (1,m), (2,3),..., (2,m),

(3,14),...,(3,m),...,(m-l,m) do

If Ii~ hI < € then

(a) Let c : c + l .

Else if h Ia. hI < € then
-‘1

(a) Exchange 
~~~ 

and a .

(b) If (withu) then exchange 
~~ 

and

Else if a~ a .

ha . II
~
_
~i 3

then

(a) Let c:= c + l .

(b) If II~ hI < then

(i) Exchange a~ and a ..

(ii) If (withu) then exchange u
~ 

and ii ..

Else

(a) Compute

ta = 2a.a.
‘~~

2 2
~~~~ a4 -

and

y : (a
2 

+ ~
2
)
l/2 

V

(b) If ~~> O  then

(i) Compute
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cos cP :=
k 2r / ‘

and 

sin 
~ 2y cos p

Else

(1) Compute

I 1.~~~W’2
Sifl

~P : k 2 /
and

c o s P . _
2 1 ~~~

(c) Compute

w : C o S~~~ .a 1
+ sin (p .a . ,

• := —sin p . a
1 + cos p . a .,

and
V a. :=w .-‘1

(d) If (withu ) then

= cos ~p - + sin p . u

: -sin ~ + cos c~ .
and u. :=z

III. Compute singular values:

(1) Let i := 1.

(2) Repeat until I > m or < € :

(a) Let :=

(b) Compute :=

(c) Let i : 1. + 1.

(3) Let r : = i - 1 .

1414
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We wish to compare the required work of Algorithm 1 and the

Golub-Reinsch method [8]. One sweep of Algorithm 1 takes about

(7n + Ilm)m2/2 multiplications if the U matrix is desired, and

7nm2/2 multiplications otherwise. We assume that

m < n ,

tfor we can compute the SVD of A if a > n. We further suppose that

V our Jacobi-like method takes 8 sweeps to converge and that only two

QR steps are required per singular value for the Golub-Reinsch

algorithm (cf. L l]). The following table gives the number of multi-

plications required by the two methods in four different cases.

~atrices Desired Algorithm 1 Golub-Reinsch

V U , Zn ~r 28m2n + l6€~ 7m
2
n + l1~~/3

U , Er 
28m2n 4. 

~~~ 7m
2
n - a3

E , Vr 2~3m2n 2mn +

28m n 2m n - 2m /3

We see that Algorithm 1 is about four times slower than the standard

SVD algorithm in computing the full singular value decomposition.

However, the special architecture of the ILLIAC IV computer can reduce

the number of required multiplications by an asymptotic factor of 614.

Our Jacobi-like algorithm is therefore very efficient on a parallel

computer. We should mention that Chan [11 described a modified Golub-

Reinsch algorithm that could save up to 50% of machine execution time

if m<< n.
1145
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5.5. Least Squares Solutions

We refer to an n x in matrix S as the pseudoinverse of an

a ~‘< n matrix A if S satisfies the following four conditions~

( i )  A SA = A ,

(ii) SAS = S (5. 1)

(iii) (As)
t 

= AS,

and (iv) (SA ) t = S A

Let us denote the pseudo inverse by A
+
. Now, we have def ined the

singular value decomposition of A as

A = UEVt (1.1)

V 
- We can therefore write the pseudoinverse as

A~ = Vc1Ut , (5.2)

where 2 is an n x a matrix to be determined. Using the four conditions

of (5.1), we easily determine that 2 is given uniquely by

j~~ -i 

o.

. 0
O~~ -i 

_r 
_ _ _  . (5 .3)

0 0
I
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An important application of the pseudoinverse is in solving

linear equat ions

A X = B , (5. 4)

where B is a given m x s matrix. We assume that

m > n , (5.5)

and we seek an n x s matrix X such that

IIB — AXII = mm . (5 .6)

The solution matrix X is not unique unless the matrix A is of full

rank. We therefore impose the condition that we want the matrix X

of minimum norm in the solution space. It is well known (see, e.g.,

[ E l )  that X is unique and is given by

X =A
4.
B . (s .7)

Thus, we have that

V 
X = V2C , (s.8)

where

C = U
tB .

The matrix C can be generated by applying to the rows of B those

plane rotations that we use to orthogonalize the rows of A . It

is unnecessary to accumulate the plane rotations.

We now present an algorithm based on Algorithm SVD for

computing the minimum norm solution to the overdetermined system (5. 14).

There is an input parameter “ cutoff.” Our method sets to zero all

those singular values of A that are smaller than “ cutoff.” The 1 x s

row vector 4 denotes the i-th row of B, for i = l,2,...,m.
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ALGORITHM 2. (MINFIT )

I. Initialize:

(1) Let

—15
€ : 3.55 x 10

-12
T := 10

and
c := 0

II. Repeat until c = {m (m—l)J/2:

(1) Let c : 0.

(2) For (i,j) := (1,2), (1,3),..., (l,m), (2,3),..., (2,rn),

(3,4), . . - , (3, m), - . . , (rn—i, a) do

If lIa .h I < € thenl~~3

(a) Let c : = c + 1 .

Else if II ,~ ll < € then

(a) Exchange a~ and .

(b) Exchange bi and b~ .

Else if

at a..-~‘i ’j <~~~
“.~i1’ It~ II

then

(a) Let c := C + 1.

(b) If I1~~I I < I~~I I then

(1) Exchange and aj .

(ii) Exchange b~ and

Else

(a) Compute

a := 2Vata ..-. i.-..3
: I I~~h I 2 

— Ii!-j 11 2 
‘

and 
: = (a2 

+ ~
2 
~ 
1/2 

-
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(b) If ~~>O then

(i) Compute
+ ~ \l/2

cos P : 
~~~ 2y /

and

sin c p : a
2y cos p

Else

(i) Compute

sin p :=( 12;~~~
)

1/2

and 

C05 
~ 2~ sin ~

V 
(c) Compute

a. : -sin p . a~ + cos p - a .

and a~ := w.

(d) Compute

z := cos p . + sin p - b .

‘b . s= —sin p . b + cos p • b .

and
2=

III. Compute least squares solut ion:

(i) Let
V : 0 ,

Y : 0
and

4 
i . 1.
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(2) Repeat until i > xi or Ra~II < cutoff:
(a) Compute

and

(b) Let i : = i + l .

(3) Let r : = i — l .

(4) Compute X : yE.

One sweep of Algorithm 2 takes about 7m2n/2 mult iplications.

We neglect the terms involving s because s << n in most applications.

With the same assumpt ions on convergence rates as in the last section,

the required work for our MINFIT algorithm is about 28m2n multiplications

while that for a similar method based on the Golub-Reinsch algorithm

2 3 . .  .(see [8]) is about 2mn + 14n mult iplications . If m >> n, it saves

work to first reduce the regression matrix A to upper triangular 
V

form using Householder transformations, before applying the MINFIT

algorithm (cf. [1]). Such a two-stage scheme requires about mn2+ 83n2/3

mult iplications. Fortunately, the parallel computing abilities of the

ILLIAC machine reduce the work of our algorithm by an asymptotic factor

of 614. Thus, our Mfl’IFIT algorithm is an effective solver for least

squares problems.
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5.6. Data Structures.

Let us first assume that n < 614. As our algorithms access

A by rows, we lay out the rows of the matrix across the processing

elements of the ]ILIAC. We thus represent the matrix by a sword

vector A[*] of order a.

We work with the rows of A to compute (a) the pairwise inner

product, and (b) the new rows after a plane rotation. The GLYPNIR

language provides a built-in function ROWSUM that sums the 64 numbers

of a sword in 6 additions. The GLYPNIR expression

ROWSUM(A[I] *A[J])

computes the inner product of the i-th and j -th rows of A. If xi < 64,

we must disable the last (64 — n) processing elements when we call the

ROWSUM function. An alternative is to apply our algorithms to an

a x 64 matrix A, given by

= (A l o)

The following lines of GLYP1~IR code compute the new i-th and

j-th rows of A at the end of a plane rotation:

T : A [I] * COSPHI + A [J] * SINPHI

A[J] := -A[I] * SINPHI + A [J] * COSPHI

A[I ]  : T

where P is a sword used for temporary storage .

We now consider the case when n > 64. Let

i.e. £ equals the smallest integer > n/64. We construct an m x 642

matrix A, given by
151
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~~= (A I o) .

The rows of A are then divided into £ equal segments:

‘5

A = (A
1~
A
2~

.-- IA 2 ) .

Thus, we represent the matrix A by the 2 sword vectors

A2[*], each of order m. 
V

The GLYPNIR expression

ROWSUM(Al[I] * Al [J] + ... + A2 [I] * A21J])

computes the inner product of the i-th and j-th rows of the matrix A .

Plane rotations are applied to individual segments of the rows. For

example, we write the £ lines of code V

Al[J] : -Al[I] * SINPHI + A1 J] * COSPHI ;

A2[J] : -A2 [I] * SINPRI + A2 [J] * COSPHI ;

A2[J] := —ALl] * SINPHI + A2 [J] * COSPHI

to compute the new vector

a. := -a..sin c p + a . cosP .

Since the columns of the matrix U are transformed in the

same manner as the rows of A, we lay out U so that its columns lie 
V 

-

across the processing elements. Thus, we represent the matrix by a

sword vector U~*] of dimension a. For the two different cases of

- 

m < 64 and m > 64. we apply techniques similar to those discussed

in the previous paragraphs.
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The rows of the data matrix B are modified in an identical 
V

fashion as the rows of A . Therefore, we lay out the rows of B

across the processing elements. The two cases of column dimension

s <. 64 and s > 64 for B are dealt with in the same manner as

the corresponding cases for the matrix A . We note that the execution

t ime of Algorithm MINFIT is independent of s, for s -< 64. If V

s is much greater than a, then the execution time will be proportional
r sto -

5.7. Numerical Properties

Let us examine the question of numerical stability. An error V

analysis of the action of plane rotations on a matrix was given by

Wilkinson in his classic text [18]. His error bounds were later 
V

improved by Gentleman [5]. We use their results to study the effects

of the plane rotations in one sweep of our algorithm.

Let

M = ~~~ m(rn-l) , (7.1)

and let R . represent the j -th plane rotation, for j = 1,2,...,M.

We can show that the computed matrix AM after one sweep of rotations V

satisfies the inequality 
V

~ R1AII < 2
148(m+n~~2)(1+2

_48
)
m+ n _ 2

hIA II . (7.2)
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The right-hand side of the inequality (7.2) is an extreme upper bound.

We expect the statistical distribution of the rounding errors to reduce

the error to well below the level of the bound ; for this reason alone,

a factor of the order of (rn+n_2)~~
2 

in place of (m +n-2) might

be more realistic. We see that our algorithm is extremely stable.

V As the matrix U is formed as a product of plane rotations ,

we examine here the deviation from orthogonality of such a product.

Let ~~ represent the computed product of the plane rotations in one

V sweep . We have the inequality that

R~ I I < 2
_48 

m
l/2

(m÷n ~~2)(l+2
148
)
m
~~~~~

2 
- (7 .3)

Again statist ical considerat ion indicates that a factor of the order
1/2 . 1/2of a (m+n-2) instead of m (m+n-2) is probably more

realistic. The matrix U is thus very close to an orthogonal matrix.

The tolerance -r controls the accuracy of the solution.

At convergence of our algorithm, we have that

IIh 1~ mr - III < r ~~2T . (7 . 4)

Indeed, our numerical experiments show that the accuracy of the computed

singular values and vectors of A is of the order of -r.

5.8. Test Results

We have written two GLYPNIR programs implementing Algorithms SVD

and MINPIT. Tests were carried out on the ILLIAC IV computer.
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EXAMPLE 1 (see [8]).

We have chosen the following matrices:

22 10 2 3 -l 1 0

114 7 10 0 8 2 -l 1

—l 13 —1 —11 3 1 10 11

A =  -3 -2 13 -2 14 , B =  4 0 14
9 8 1 -2 4 0 —6 -6

9 1 - 7  5 — 1  —3 6 3

2 —6 6 5 1 1 11 12

4 5 0 -2 2 
V 
0 -5 —5

The singular values of A are ~~~~~ 20, v’~~T, 0 and 0. Our

SVD program computed those values to machine precision. The minimum

norm solution to the overdetermined system

AX = B

is given by

/
-i~~~~~0 - i ~~~~~

\

0 0 0

1~~~ 1
-
~~ 0

1 1
12 0 12

1 1

Our MINFIT program returned a solution accurate to 14 decimal digits.
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EXAMPLE 2 (see [6]) .

We have chosen the matrix
V 

I
1 —1 —l —1 —l

1 —l —l —l

1 -1 -1

A =  1 -1 ...

Q 1 ...

.- . i n ~~~ n

which is ill-conditioned as it has a very small singular value.

The matrix becomes singular if we add _2~~
+2 

to its (n,l) position.

We applied our SVD program to this choice of A for diff erent

values of n. For comparison, we have chosen the SlID subroutine in

the EISPACK eigenvalue package from the Argonne National Laboratory [3].

The EISPACK routine implements the,method of Golub and Reinsch [8]

and has been coded for high execution efficiency. We applied the

routine to the matrix A on an IBM 370/168 computer at the Stanford

Linear Accelerator Center. The code was compiled by the FORTRAN H

EXTENDED compiler with optimization level 2.

ILLIAC IV IBM 370/168 ]ILIAC TIME

xi iter time t ime IBM TIME

16 7 0.26 0.101 2.57

32 8 1.25 0.57 2.19

48 8 2.89 1.76 1.64
64 9 5.57 4.o5 1.38
96 10 15.94 12.81

128 9 26.~~~l 29.68 0.90
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We should point out that the GLYPNIR compiler produces very

inefficient code. We have written another program in CFD implementing

our SVD algorithm. The ILLIAC execution time with xi = 64 was

3.31 seconds, a saving of 14i% over the GLYPNIR code.

it is unfortunate that due to certain limitations we were not

able to run examples with larger values of n on the ILLIAC. Nonethe-
V - less, we observe that our ILLIAC routine becomes more efficient relat ive

to the EISPACK routine with increasing values of x i .  The execution

time of the former is crudely proportional to

(
iter x 1~1xn 2) ,

and that of the latter to n3. There is thus a great potential in

matrix computations of a parallel computer with many processors.
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