AD=AD65 284

UNCLASSIFIED

STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE F/6 5/2
STORING A SPARSE TABLE, (V)
NOV 78 R E TARJAN NO0O14=T6=C=0688

STAN=-CS=78-683 NL

END

DATE
FILMED

4-79

Do

o

L
==

122

EE
el
s

i< e
L)

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-

‘-

ADAOQ 65284

oPg:

DDC FILE O

LEVEL

STORING A SPARSE TABLE
by

Robert Endre Tarjan

STAN-CS-78-683
DECEMBER 1978

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

A : " rnnwwq-unan-!nn-u-uq-q!

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORF COMPLETING FORM
1. REPORT NUMBER / 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
STAN-CS-78-683 e

/ q. TITLE (and Qubrllln) YPE OF REPORT ﬁ P IOD COVERED
/ ;lSTORING A SPARSE TABLE -« ; \ Technlcal
J ~ 18 PERFORMING ORG. REPORT NUMBER :
- ; /LN | STAN-Cs-78-083 7 ,
“47. AUTHOR(s) i \ J,W
(| Robert Endre-Tarjan \NOOOLL-T6-C-0688 »
% - 3 = A0 1 i
\\\k f £ o ——
PCRFOR\HNG ORGANIZATION NAME AND ADDRESS t 10. PROGRAM ELEMENT, PROJECT, TASK
/ AREA & WORK UNIT NUMBERS

Computer Luieu o
"tanrord Univereity
Stanford, California 943 »

11. CONTROLLING OFFICE NAME AND ADDRESS REPORT DATE

Office of Naval Research | Novessr 1978
Department of the Navy \ 13. NUMBER OF PAGES T
i Arlington, Va. 22217 B 25 o 1. _

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Ollice) 15. SECURITY CLASS. (of this report)
ONR Representative: Philip Surra

Durand Aeromautics Bldg., Rm. 165 Unclassified
Stanford University 15a. DECL ASSIFICATION/ DOWNGRADING
Stanford, Ca. 94305 SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Releasable without limitations on dissemination.

17. DISTRISUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identlfy by block number)

20, ABSTRACT (Continuo on reverss side if necessary and Identify by block number)

(see reverse side)

] 79 03 01 168

DD , Jf:"” 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSI_FIED

SECURITY CLASSIFICATION OF THIS PAGE (ithen Data Entered)

SUTPRC TSI & ST U

UNCLASSIFIED

SUCUKITY CLASSIFICATION OF THIS PAGT (When Data Entsrod)

The problem of storing and searching large sparse tables arises in
compiling and in other areas of computer science. The standard technique
for storing such tables is hashing, but hashing has poor worst-case
performance. We consider good worst-case methods for storing a table of
n entries, each an integer between O and N-1 . For dynamic tables,
in which look-ups and table additions are intermixed, the use of a trie
require: O(kn) storage and allows O(logk(N/n)) worst-case access time,
where k is an arbitrary parameter. For static tables, in which the entire
table is constructed before any look-ups are made, we propose a method
which requires O0(n log(z) n) storage and allows o(2 logn N) access time,

*
where £ is an arbitrary parameter. Choosing ¢f = log n gives a method

with 0(n) storage and O((log n)(logn N)) access tine.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(ihan Data Entersd)

il

Ll

Storing a Sparse Table

Robert Endre Tarjanf/

Computer Science Department
Stanford University
Stanford, California 94305

August, 1978

Abstract.

The problem of storing and searching large sparse tables arises in
compiling and in other areas of computer science. The standard technique
for storing such tables is hashing, but hashing has poor worst-case
performance. We consider good worst-case methods for storing a table of
n entries, each an integer between O and N-1 . For dynamic tables,
in which look-ups and table additions are interm}xed, the use of a trie
requires O(kﬂ) storage and allows O(logk(N/n)) worst-case access time,
where k 1is an arbitrary parameter. For static tables, in which the entire
table is constructed before any look-ups are made, we propose a method
which requires O(n log(l) n) storage and allows O(Z logn N) ‘access time,
where (1is an arbitrary pérameter. Choosing ([= log* n giﬁéé-q,metnod

e

with 0O(n) storage and 0((Log™ n)(logn_N)) access Fime{

CR Categories: L.3L, 3.7L4, k.12, 5.25

A

f/ This research was supported in part by National Science Foundation
grant MCS75-22870-A02 and by Office of Naval Research contract
NOOO1L-76-C-0688. Reproduction in whole or in part is permitted
for any purpose of the United States government.

s

L. Introduction.
The following table searching problem arises in many areas of computer

science. Given a universe of N names and an initially empty table, we

wish to be able to perform two operations on the table: E.
enter(x): Add name x (and possibly some associated information)

to the table.
lookup(x): Discover whether x is present in the table, and if it

is, retrieve the information associated with it.

Compilers require such a table to store names of variables [2]. Methods
for LR parsing [2], sparse Gaussian elimination [6], and finding
equivalent expressions [3], require such a table to store ordered pairs

of integers.

In considering this problem we shall distinguish between the dynamic
case, in which entries and lookups are intermixed, and the static case ‘
in which all entries occur before all lookups. We shall use a random
access machine with uniform cost measure [1] as the computing model.

We assume that the names are integers in the range O through N-1 and
that each storage cell in the machine can store an integer of magnitude
o(n) .

An ideal solution to the table searching problem would be a methed
which requires O0(1) time per operation and which does not require
substantially more than O0(n) space, where n is the total number of
entries made in the table. If we use an array of size N to store the

table, each operation requires O(1) time, but the storage is excessive

if n<< N . (Note that the solution to exercise 2.12 in [1] allows

us to avoid initializing the array.) If we use a balanced binary tree

[4] or similar structure to store the table, the storage is 0(n) but

each operation requires O0(log n) time. The best method in many practical
situations is the use of a hash table [4], which requires 0(n) space to
store the table and achieves an 0(1l) time bound per operation on the
average, though not in the worst case.

Although for most practical purposes hashing solves the table lookup
problem, it is of interest to know how far the storage required for the
table can be reduced while maintaining an O0(l) worst-case time bound
per table access. Reduction of the storage to O(n+—wﬁ€) » for instance,
would allow storage of a \/-N_ X '\/E matrix with n entries in O(n+ «[ﬁ)
space with 0(1) access time. If the method is simple enough we may be
able to beat hashing for some applications. Surprisingly little work
has been done on this problem; see for example iS5

/1In this papea we examine two good worst-case methods of storing sparse
tables. For the dynamic c?se, a trie data structure/LkT/;;;uires 0(kn)
feo vt £
storage while allowing O(ljngN/n)) access time, where k is a parameter
whose value is chosen in advance. The method supports table deletions as
well as insertions. “We discuss this method in Section 2. vy Tk
g awluda

In Section 3 we presengféimore sophisticated metho;;yﬁich handles the
static case.A\By precomputing the storage scheme before béginning the
lookups, the method achieves an O(n log(l) n) f/ storage bound with
oz log, N) access time, where { is a parameter whose value is fixed

* *¥
in advance. By choosing (¢ = log n ——/ we get a method

ot
-
(9}
m
—~
~—r
I

log2 ot log(i+l) n = log(i)(loge B) e

2 log" n = minfi]log(i) n<1j.

with 0(n) storage and 0((103* n)(logn N)) access time. The method
combines the trie structure discussed in Section 2 with repeated application
of a method for compressing tables by using double displacements. This
double displacement method is an elaboration of a single displacement method
suggested in [2,7] for compressing parsing tables.

In Section 4 we mention some applications of our results and make a

few additional remarks.

R ——

-
e e e e e ————————

2. Storing a Dynamic Table.

To store a dynamic table, we use a trie [4] with n -way branching
at the root and k-way branching at every other node, where k >2 is
an integer whose value is selected in advance. Each node in the trie
contains one table name and either n or k pointers to nodes one level
deeper in the trie. (Some or all of the pointers may be null.) Figure 1
gives an example of such a data structure.

[Figure 1]

To look up a name X in the trie, we divide x by n and then
repeatedly by k . We use the successive remainders to specify a search
path in the trie. For instance, to search for 190 in the trie of
Figure 1, we look for 190 in the root. Not finding it, we divide 190
by 8 , leaving 23 with remainder 6 , which leads us to node e .
Again not finding 190 , we divide 23 by 4 to get 5 with remainder 3 .
This leads us to node i , where we find 190 . To insert a name in the
trie, we first search for it. The search leads to an external node, in

which we place a pointer to a new node containing the new name. See 3

Figure 1.

Our tries differ from those discussed by Knuth [L4] only in that we

allow the root to have a higher branching factor than the other nodes; 3

this reduces the time required by the method without increasing the space
bound, bdbut requires that we know n (at least approximately) before we
begin to construct the table. It is straightforward to implement the

method, and we leave the details as an exercise. Note that by choosing

the branching factors to be powers of two, we can replace division by

shifting, and we can allocate space for the pointers out of a single array,

avoiding initialization by using the solution to exercise 2.12 in [1].

e vy

The total space required by the method is O(kn) in the worst case.
The time required for either a look-up or an insertion is proportional
to the length of the search path, which is rlogk(N/n)W in the worst

case. On the average, the method requires O0O(1) look-up and insertion

time, since it is at least as fast (ignoring constant factors) as hashing
with separate chaining [}].

If we add to each trie node a list of the non-null pointers in it,
then our data structure will support deletions. To delete a given table
entry, we first search for the node containing it, say p . We then
locate some external node g which is a descendent of p . We replace
the entry in p Dy the entry in q and delete node gq . If p itself
is an external node, we merely delete p . See Figure 1. With careful

implementation this method requires O(logk(N/n)) time in the worst case

for a deletion.

5 Storing a Static Table.

Section 2 shows that by using tries the worst-case time to access a
table can be decreased as much as desired, at the expense of additional
storage. If the table to be stored is static, i.e., all the entries take
place before all the look-ups, then we can improve the method of Section 2
substantially. We shall show that for an arbitrary value of ¢ , it is
possible to store n entries selected out of N in O(n log(e) n) space

with 0(2 log, N) access time.

For simplicity we shall assume that N is a perfect square, i.e.,
N = m2 for some integer m . We can represent the table to be accessed
by an mym array A . Position (i,j) in the array corresponds to
name k , where i= |k/m|+l and j=kmodm+ 1 . Position (i,J)
contains the information associated with k if k 1is present in the
table and contains zero if k is absent from the table.

We shall describe a method for compressing A into a smaller
array C , by giving a mapping from positions in A to positions in C
such that no two non-zeros in A are mapped to the same position in C .
Our mapping is defined by a displacement r(i) for each row i ;
position (i,3J) in A is mapped into position r(i)+j in C . The
idea is to overlap the rows of A so that no two non-zeros end up in
the same position. See Figure 2.

[Figure 2]

Each entry in C indicates the position in A (if any) mapped
to that position in C , along with any associated information. To
look up a name k , we compute i = |k/mj+l1 and j=kmodm+ 1 .
If C(r(i)+j) contains k , we retrieve the associated information.

If not, we know k is not in the table. The access time with this

method is O(l) ; the storage required is m for the row displacements

plus space proportional to the number of positions in C . Aho and
Ullman [2] and Ziegler [7] advocate this scheme as a way of compressing
parsing tables, but they provide no analysis.

To use this method, we need a way to find a good set of displacements.
Ziegler suggests the following "first-fit" method: Compute the row
displacements for rows 1 through m one-at-a-time. Select as the
row displacement r(i) for row i the smallest value such that no

non-zero in row i is mapped to the same position as any non-zero in

a previous row. An even better method, also suggested by Ziegler, is
to sort the rows in decreasing order by their number of non-zeros and
then apply them first-fit. We shall employ this "first-fit decreasing"

method. See Figure 2.
Theorem 1. Suppose the array A has the following "harmonic decay"
property:

(H) For any £ , the number of non-zeros in rows with more than [

non-zeros is at most n/(f+1) .

Then every row displacement r(i) computed for A by the first-fit

decreasing method satisfies 0 < r(i) <n .

Proof. For any row i , consider the choice of r(i) . Suppose r(i)

contains (¢ >1 non-zeros. By (H) the number of non-zeros in previous

rows is at most n/f . Each such non-zero can block at most f choices
for r(i) . Altogether at most n choices are blocked, and
o<r(d)sn. 0O

The following algorithm is a straightforward implementation of the
first-fit decreasing method. Input to the algorithm is a list of the

non-zero positions in A .

First-Fit Decreasing Algorithm.

Step 1: flor 1 = 1 until m 22

A~~~

count(i) := 0; list(i) := P od;

for each non-zero position do

~~

add one to count(i); put j in list(i) od;

Step 2: for ¢ := O until n do bucket(c) := P od;

for i := 1 until m do put i in bucket(count(i)) od;
Step 3: for k := O until ntm-1 do entry(k) := false od;
for ¢ := n step -1 until O do

for each i in bucket (c) do
r(i) = O3
check overlap: for each j in list(i) do
"iT entry(r(1)+3) then
Bl e BUETRL: go to check overlap fi od;

for each j in list(i) do

entry(r(i)+j) := true od od od;

A A

After Step 1, list(i) is a list of the non-zero columns in row i
and EEEEE(i) is a count of these non-zeros. Step 2 is a radix sort of
the rows by their number of non-zeros. The initialization in Step 3
assumes that A has harmonic decay, which is the case in which we shall
be interested. If A does not have harmonic decay, more space must be

allocated for C .

Theorem 2. If A has harmonic decay, then the first-fit decreasing j

algorithm requires O(n2+m) time to compute row displacements for A .

4

SV By S W RAR p o b ‘
AR T AR " PR i

|

R———

Proof. Steps 1 and 2 and the initialization in Step 3 require O(n+m)
time, For 1 <i<m, let row i contain li non-zeros. Then the

time to compute the displacement for row i is O(nzi) , and the total

m
time to compute row displacements is O(b3 nli+m) = O(n2+m) AR
i=1

If the array A has harmonic decay, then the row displacement
method provides O(1l) -time table access while requiring only nt2m-1
storage, not counting storage of the information associated with each
name. If A does not have harmonic decay, we must smooth out the
distribution of non-zeros among the rows of A before computing row
displacements. To accomplish this we apply to A a set of column

displacements c(j) , mapping each position (i,j) into a new position

(i+e(j)»J) . This transforms A into a new array B with an increased

number of rows (namely max c(j) + m-1) but with the same number of
J

columns. See Figure 3.
[Figure 3]
We choose the column displacements so as to satisfy an exponential
decay condition defined as follows. Let Bj be the array consisting of

the first j shifted columns of A . Let nj be the total number of

non~-zereos in Bj . Let nij be the number of non-zeros in Bj which
appear in rows of Bj containing more than 1 non-zeros. Let b be

an arbitrary integer.
Ej(b): For 0<1<b, nijgn./z .

Note that Em([_log2 nJ) implies B = Bm has harmonic decay. To

satisfy Ej(b) for all j , we employ the first-fit method as follows:

10

st o e———,

SR

Compute the displacements for columns 1 through m one-at-a-time.

Select as the column displacement c(j) for column j the smallest

value such that Bj satisfies Ej(b) . See Figure 3.

Theorem 3. The set of column displacements c(j) computed by the first
fit method to satisfy Ej(b) for all Jj is such that

0<ec(j) <bn log, b + oy for 1L)<m,

Proof. For any column j , consider the situation when c¢(j) is chosen.
In order for a possible choice of c¢(j) to violate Ej(b) » there must

i(2-nj/n)

be some i such that n.. >n./2 . Since E. .(b) holds,
iJ J J=d

i(2—n._l/n)
By oy S a)e J . Each row of B, with i non-zeros in the
ij-1-—="3-1 3

first j-1 columns and an additional non-zero in column Jj contributes

343 Tol B =i

. FEach row of B. with more than 1 non-zeros in
g~ J

the first j-1 columns and an additional non-zero in column j contributes

L To Wy e=h.. Thus there must be more than

st agleal o

(n-/ei(e-nj/n) o

i(2-n._l/n)
j J._1/2 ! //(i+l) rows in B, with more than

i-1 non-zeros in the first Jj-1 columns and an additional non-zero in

column Jj . Since column j contains exactly nj-n. non-zeros, i >0 .

j-1

We also have

i(2-n./n) i(2-n; ,/n)
(nj/e J - n,j-l/2 s)/(i+l)

i(nj-nj_l)/n

i(2-n. 2
(nj-l/el(nJ'l/n)) nJ - = /(i+l)
j-1

(nj_l/ei(e-nj'l/n)) (ei(nj-nj‘l)/n : l)/(i+l)

v

v

v

R o
o "3/ (1(agmn,) n 2)/m) / (200

i(2-n,

_1/m)
(i nj_l(nj-nj_l) In 2)/ (2 I

n (i+l)) .

v

Consider the set of ordered pairs whose first element is a row of
Bj-l with more than 1i-1 non-zeros and whose second element is a non-zero
of column j . There are at most ni-lj-l(nj-nj-l)/l such pairs. Each

i(2-n./n)
choice of c¢(j) for which 5 g > nJ./2 . accounts for more than

i(2-n,_,/n)
(i nj_l(nj-nj_l) In 2) (2 J n (i+1)) distinct pairs. Thus

i(2-n./n)
the number of choices of ¢(j) for which ngy > nj/2 J is
bounded by
i(2-n, ./n)
= j-1 g
ni-lj-l(nj nj_l)e n (i+l)
2
i"n, .(n,=n; In 2
J-l(J J'l)
i(2-n, ./n)
n, ;2 d=k (i+1)
< - by By ()

2 J
T SV VIS —.

b

(2-n

5 ,j-l/n)

B(*) < (b 10g, e)n(1+1)/s? |

<
s 1 1n 2

Suming over i, we find that at most

b

T (4 log, e)n(i+1)/i® < (& log, e)n(ln b + 1 + £ /6)
i=1
< Ln log, b + 0O(n)
choices of c¢(j) are blocked, and 0 < c¢(j) < bn log, b + oln) . O

It is not hard to implement the first-fit method so that it computes
column displacements to satisfy Ej(b) for all j in O(n2+m) time,
We leave the details to the reader.

By combining row and column displacements, we obtain the following

table storage scheme.

Table Construction.

Step 1. Construct a set of column displacements c(j) for array A
by using the first-fit method to saticfv EJ.(Llog2 n]) for
all Jj . Compute the transformed array B .

Step 2. Construct a set of row displacements r(i) for B by using

the first-~-fit decreasing method. Construct the transformed

array C .

Table Look-up.
Let k be the name to be accessed. Compute i = |k/mj+l,

j=kmodm+ 1, and k' = r(ite(§))*j . If C(k') contains k ,

retrieve the associated information. If not, k is not in the table.

13

With this method, the access time is 0(l) , the storage is m

for the column displacements plus Ln log2 log2 n+m+ O(n) for the !
row displacements (by Theorem 3) plus nt+m-1 for C (by Theorem 1), »
not including space required to store the information associated with !

E each name. The total space is thus Ln log, log, n + 3m + 0(n) . The

time required to construct the storage scheme is O(n2+m) . i
If we are willing to allow a little slower access time, we can
further decrease the space required to store the table. We construct

not just one set of row and column displacements, but several. Each

set of displacements is used to compress a different part of the table.
To look up a name, we use each set of row and column displacements in
turn until either finding the name or running out of mappings to try.
The algorithm, described below, uses a parameter [whose value

determines the time-space trade-off.

Table Construction.

= rlog(l) n] and for 2<h< 1y,

é Initialization. Let by
b
h-1
let b, =2 . Let A

stored. For h from 1 to / , repeat the following steps.

be an array representing the table to be

Step 1. Construct a set of column displacements ch(J) for Ah
by using the first-fit method to satisfy Ej(bh) for all j .
Compute the transformed array Bh .

Step 2. For each row i of Bh containing more than bh

non-zeros, let rh(i) =)\ . Construct a set of row displacements
rh(i) for the remaining rows of Bh (those containing at

most b, non-zeros) by using the first-fit method. Construct 5

h

the transformed array Ch for these rows.

1k |

Step 3. Form a new array Ah+l by replacing with a zero each

non-zero in Ah mapped to a position in Ch . (The non~zeros
replaced are exactly those mapped into rows of Bh with at

most b, non-zeros.)

h

Table Look-up.

Let k be the name to be accessed. Compute i = | k/m |+l and

j=kmodm+ 1. Let h be minimum such that rh(i+ch(j)) £ A .
*

Compute | rh(i+ch(j))+j o EE Ch(k) contains k , retrieve

the associated information. Otherwise, k 1is not in the table.

This multiple displacement method requires O(n24-lm) time to
construct the table and allows 0(¢) access time. The next theorem

bounds the space required.

(£+1)

Theorem 4. The multiple displacement method requires O(n log n+ fm)

space to store the table.

(2-h+1) a7

Proof. For 1<ty bh > [log In particular

bl > ['log2 nl . Furthermore, since Bh satisfies Em(bh) ,» at most

b
n/2 N non-zeros appear in rows of Bh containing more than bh
non-zeros. This means A, ,, contains at most n/2 N n/bh+l non-zeros.
The storage required for the first set of displacements is m for

(4+1)

the row displacements plus O(n log n)+m for the column
displacements (by Theorem 3) plus O(n)+m for C, . For 2< Bty
the storage required for the h-th set of displacements is m for the

row displacements plus O((n/bh) log bh)4-m for the column displacements

plus O(n/bh)4~m for C, .

(£+1) ni el

Suming over h we find that the total

storage is 0O(n log

We now combine the multiple displacement method with the tree
structure of Section 2 to obtain a static table storage method good
for arbitrary values of n and N . Our first step is to construct
a trie as in Section 2 with k = |/nj-1 . The trie has O(log, N)
depth and contains n+(n-l)(L;ﬁ;J-l) < n5/2 pointers, of which
only n-1 are non-null. We can regard the pointers in this trie as
consisting of a table of n-1 entries selected from n5/2 possible
names; O(logn N) look-ups of pointers in this table are required
to look up an entry in the original table. We use the multiple
displacement scheme with m = an/hW to store the pointer table.
We thus obtain a method which requires O(n log(f) n) storage space
and allows O(¢ log, N) access time. If m grows only polynomially
with n , the access time is 0(4) . Choosing 1/ = log* n gives

an 0(n) -space method with 0((log" n)(logn N)) access time.

4. Remarks.

There are several possible applications of our table storage schemes.
The dynamic algorithm of Section 2 can be used to keep track of the
fill-in when carrying out sparse Gaussian elimination [6] and to keep
track of signatures when finding equivalent expressions [3]. The static
algorithm of Section 3 can be used to store tables for LR parsing [2,7].
In all these applications N = O(n2) . Although we have not studied
the practicality of our methods, they are simple enough to be competitive
with hashing in some situations. Indeed, the row displacement method
described in Section 3 has been proposed as a practical way to store
parsing tables [2,7]. It is important to note that our bounds are
worst-case and that the worst cases are unlikely in practice.

Our algorithms meke use of array storage; they cannot be implemented
using only list structures as storage. Thus they indicate a difference
in power between random access machines and pointer machines. They also
suggest a time-space trade-off for the table storage problem, at least
in the dynamic case. Whether such a time-space trade-off exists is a
question deserving further study. For the static case, an affirmative
answer to the following question would imply the existence of an
0(n) -space, O(logn N) -access time storage scheme:

Is there a constant c¢ such that, for any mxm array A

containing n non-zeros, there is a set of column displacements

selected from {0,1,2,...,cn} for which the transformed array B

has harmonic decay?

Acknowledgment.

My thanks to Yossi Shiloach for extensive discussions which contributed |

greatly to the ideas presented here. "1

[1]

(2]

E (3]

References

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, Mass., 197L.

A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-

Wesley, Reading, Mass., 1977.

P. J. Downey, R. Sethi, and R. E. Tarjan, "Variations on the common

subexpression problem,'" submitted to Journal ACM.

D. E. Knuth, The Art of Computer Programming, Volume 3%: Sorting

and Searching, Addison-Wesley, Reading, Mass., 1973.

R. Sprugnoli, "Perfect hashing functions:
method for static sets," Comm. ACM 20 (1977), 841-8L9.

R. E. Tarjan, "Graph theory and Gaussian elimination," Sparse Matrix

a single probe retrieving

Computations, J. R. Bunch and D. J. Rose, eds., Academic Press,
New York (1976), 3-22.
S. F. Zeigler, "Smaller faster table driven parser,'" unpublished

manuseript (1977).

19

* Y opou 233Tap

pue ¢)T £q o ur QOGT oovTdex ‘Y Aes ¢ © Jo JUBPUSDISSD B ST YOTUM 9pou TBUIDIXD
ue 93BO0T ¢ @ 9pPOU UT 3T 93BIOT M ¢ OGT 939TSp Ol °POJBOTPUT SB SPOU MBU B JJI9SUT
aM axayM ¢ T opou 03 PBIT ¢ pue 9 sJaepurtBWAeI YL * 0 « O N ¢« 0% SBuralg ¢ 1 £q

T e 5
ATpejeadsa pue g £q 0¢ SPTATP oM ¢ O¢ 3IISUT OF * 662 € €02 “ 06T “HLT “OST “OST ‘TR ¢ ¢

S9TIqUs pue ‘aIaymesTa Juryouraq Lem- ¢300a ouy3 3B BuryoUBIq fem-g ¢ TG =W Y™ STI3 V *T 2anSTd
T T T 7T 1
L L. A bok.d
™ ;
06T HLT
F) P b} q
¢] 4 0ST ¢oz o<t 18
- R S
il d (L] ¢
) S f G T O)

20

e,

QR O RSl R e SRS RSOl

Figure 2.

Row displacements computed for an array using "first-fit
decreasing" strategy. Asterisks denote non-zeros;

dashes denote zeros. FEach position in array C contains
the position in A (if any) mapped to that position

in C . Positions in A are numbered row-by-row starting
from zero. Row displacements are computed in the order
291s35,5: 5 ,

2l

Figure 5.

- - = - *
* * - * =
A * - * o =
& i s * -
* - - A *
i i 2 & *
* " = 2 =
* - * " =
- - - - - e(l) =0
* = = - * c(2) =5
B
= = = - = c(3) =0
» * - - - c(l) =6
- - - * - ¢(5) =0
s - = * «

Column displacements computed using first-fit to satisfy
EJ.([_log2 nj) for all j . This constraint requires no
rows with more than one non-zero in B2 » at most one
such row in B5 and Bh , and at most two such rows

T B

>

ol

T

I A TR S NSNS L AR T S s S WIS

A
"

ot

