
I N

~ AD~AObS 263 STANFORD UNIV CALI F DEPT OF COMPUTER SCIENCE FF9 12/1
SLY REPRE SENTATION AND SET INTERSECTION. (U)
NOV 78 I. T PARDO N0001’ 76—C—O330

UNC LASSI F IED 5TAN—C5’46 481 Nt.

_ 1~~Ifl
_ _

-

~~~~~~~ 

I I& ASk .
.

. ‘
~~~~~~~~~‘

I U UtL i~ j
I

r .

Iii
~~TE

Soc

O L.~ HHI2.8 11112.5
I. L~~~~

t_

~~~~~ 
~~~~~ IOll~0

HH~hil l ’ ~ lL•~ HIO~
.

4

MICROCOPY RESOLUTION TEST CI1A~ T
NATIO q~AL BUREAU OF STAN DARDS- I963-~

- -

LEVEI(
SET REPRESENTATION AND SET INTERSECTION

by

(
uis ra ar I

D D C
f~f?fE~iE[a[JL?fl
Ir~ MAR 6 1979 (1

STAN~CS~78..68i
~~t~;mwtr~rT4J

~~-e.

~~LUr — J

C.,
C O M P U T E R S C I E N CE DE PA R T M E N T

School of Humanities and Sciences
STANFORD UNIVERSITY

~9Ju~i~~~

o ~

9 03 01

Set Representation and Set Intersection

Luis Trabb Pardo

Computer Science Department
Stanford tJnivers ity

Stanford, California 91~3O5

Abstract.

This work discusses the representation and manipulation of sets based

on two diff erent concepts: tr ies, and hashing functions.

The sets considered here are assumed to be static: once created, there

will be no further insertions or deletions. For both trie- and hash-based

strategies, a series of representations is introduced which together with

the availability of preprocessing reduces the average sizes of the sets

to nearly optimal values, yet retains the inherently good retrieval

characteristics.

The intersection procedure for trie-based representations is based

on the traversal in parallel of the tries representing the sets to be

intersected, and it behaves like a series of binary searches when the sets

to be intersected are of very different sizes. Hashed intersection runs

very fast. The average time is proportional to the size of the smallest

set to be intersected and is independent of the number of sets (except

for the intersection set itself which has to be checked for every set).

This research was supported in part by National Science Foundation grant
MCS-77-23738, by Office of Naval Research contract NOOOl1i~-76-C-O33O, and
by IBM Corporation. Reproduction in whole or in part is permitted for
any purpose of the United States government.

~R9 03 ~~j

_ _ _ _ _

UNCLASSIFIED
SE CURITY CLASSIFICATION OF THIS PAGE (%Th.n Oat. Entered)

~~~~~~~~~~~ ~~~~~
h ’ H E k

~~~~
,_ h ,’

~~
bA (~E READ INSTRUCT IONS

t~~ rur~ U IJULUM !~ I MI I~JI” ~~~~~~~~ BEFORE COMPLETING FORM
1. REPORT NUM BCR 2. GOVT ACCESSIO N NO. 3. RECIPIENT~S C A T ALO G NUMBER

STAN-CS -78-681

4. TIT LE (and SubtItle) 5. TYPE OF REPORT & PERIOD COVERED

SET REPRESENTATION AND SET INTERSECTiON,’ Technical , November 1978

ç ~~ • PERFORMISIO OQ~~~~~~PO~~~~ (UMBER
-

~! ‘j STAN-CS -78-681 7
7. AiJTH OR(s) ~~~~~~~~~~~ 8 ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

/Lu1s Trabb~~~~~~7 7- L~009±~ 7~~±~~~~
9. PERFORMING O R G A N I Z A T I O N NAME AND ADDRESS 10. PROGRAM ELEMENT . PROJECT . TASK

A R E A & WOR K UNIT NUMB E RS

~~~~~ Soienoe Department
~1. ~-tnford Univereity

~‘~tford. California 94305 - ___________________________
I I çQI~ TROL LI.N~~ OFFL CE NAME AN Q ADDRESS I&. REPORT PATE

Ouice ot 1~ava.L Research ( / 1  Nov~~~.i~~~~8Department of the Navy “----‘ 
13 N UM B E R O F P ES

Arlington, Va. 22217 ~~
14 . MONITORING AGENCY NAME & AO DRESS(If different from Controll iné Offi ce) 15. SECURIT ASS. (aL

ONE Representative: Philip Su.rra Unclassified
Durand Aeromautics Bldg., Bin. 165
Stanford University 15.. D ECLASSI F ICAT I O N / D O W NG P A D I N G

Stanford, Ca. 9i~
.3O5 

SCHEDULE

16. D ISTRIBUTION S T A T E M E N T  (of this Report)

Releasable without limitations on di.sseminati~~~~__-~~-•——-- /
z)  ~ ..::_ .~.I . 

~~~~~~~~~~~~~~~~~~~ /

17. DIST RIBU 10N S T A T E M E N T (of the abstract entered in Block 20. If different from Report)

19. S U P P L E M E N T A R Y NOTES

19. K E Y WORDS (Conti nua on reverse side if necessary and Identify by block number)

20. AB S T R A C T (ContInue on reverse aide if necessary and identity by btock number)

(see reverse side)

DD I j~~ 4 7 3 ~473 EDITION OF I NOV GS IS OBSOLETE UNCLASSIFIED
~J / ‘/ ~

..
~

SECURITY CLASSIFICATION OF THIS PAGE (When Data Ent.r. d)

-. , . . . ,. ~~~1_ _.. _L V . 4


~~~~~ 
~~~~~~~~~~~~~~~

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE($3i wt Data Ent.r.d)

This work discusses the representation and manipulation of sets based

on two diff erent concepts: tr ies, and hashing functions.

The sets considered here are assumed to be static: once created, there

will be no further insertions or deletions. For both trie- and hash-based

strategies, a series of representations is introduced which together with

the availability of preprocessing reduces the average sizes of the sets

to nearly optimal values, yet retains the inherently good retrieval

characteristics.

The intersection procedure for trie-based representations is based

on the traversal in parallel of the tries representing the sets to be

intersected, and it behaves like a series of binary searches when the sets

to be intersected are of very different sizes. Hashed intersection runs

very fast. The average time is proportional to the size of the smallest

set to be intersected and is independent of the number of sets (except

for the intersection set itself which has to be checked for every set).

~~
.•

.

-

:-
UNCLASSIFIED

- . . SECURITY CLASSIFICATION OF THIS PAGE(1Th.n Data ~ nt.~~d)

..
~~~~~~~~~~~~~~~~~~~~ 

. -



_________________________ _____________________________________ 

Acknowledgments

A Man1~, Abuela y Papo.

Five years ago I was very happy about doing my academic work under

(and supported by) Don Knuth. Today, after f inishing this thesis, I am

even happier, but also for other reasons: Don not only taught me about

canputer science and guided and encouraged me in my research, but he also

offered me his friendship and understanding (to the point of letting me

go at my own pace ... ). I am very deeply indebted to him for all that.

I want to thank Bob Tarjan and Gio Wiederhold for reading this thesis

and providing many useful suggestions. Persi Diaconis introduced me to

very interesting results in probability theory.

I want to thank Phyllis Winkler for the many times we laughed

toget~~r. Phyllis nagged the manuscript out of me and then typed it

beautifully.

Chris Van Wyk (Wyke?), world renowned proofreader, did a wonderful

job on this thesis.

There is a big old house in Palo Alto where I lived for four years:

La Cocotera of Cowper. There (and elsewhere) I shared many things with

the many people that maybe did not do much for this thesis but did so much

for me : Cr istina, Elspeth, Elizabeth, Miguelo, Laurent, Myriam, Manolo,

Richard, Margie, Memo, Alan, Kanuto, Mary and David, Dan, Chr iso, Arnoldo,

et al.

And Ellen and Jonathan .

And Barbara and Jacobo. N
And Pata. 3 / /



- -

U

Table of Contents

1. Introduction 1

2. Trie Representation of Sets 6

2.1 Binary Tries 8

2.2 Other Representations Based on Tries 20

3. The Trie Intersection Algorithm 22

3.1 Wasting Effort in the Finite Uhiverse 

3.2 The Infinite TJ~iiverse Model 29

3.3 Asymptotic Behavior 

~.14 Overall Bounds on Trie Intersection 37

1~. Hashed Representation and Intersection of Sets 140

Ll Storing the Sets 141

L2 Hashed Intersection 14.8

5. Conclusions 59

Appendix A  63

References 80

iii

•i
_ _ • ’

~.~~~~~~~~
_ _ ‘ ~~~~~~~~~~~~~~

~

. - - .-. .—-- ~~— ---- . - — —. —,-—*-—— ------- . __a_,__ —. —— 44



~ - -~ -.- —---~ —

1. Introduction.

Probably nothing would be closer to a “computer sciences panacea”

than a general purpose, all-efficient representation for sets. Fortunately

the problem has not been solved yet so there are lots of topics for research

(and more work for computer scientists ...).

And thus this thesis deals with sets: how to represent them

(discussing two different representation techniques) and how to perform

sane basic operations (intersection in particular) on them.

On Sets and Their Representation.

Throughout this work a set P will be a subset of a universe U

Usually that universe will be the set of positive integers that can be

represented with s bits: U~ = [O,2~ ) . But as a limit case, useful

for obtaining asymptotic results, an infinite universe of real numbers will

also be considered: U = [0,1)

Since most of the results deal with average cases we need to define

our random set P of size = n

(i) In the case of the finite universe U
5 = [O,2~) we will assume

all the sets of n elements to be equally probable:

Prob[P = 
~~l~~2’ ‘~ n1’ 

= 1 / (  ) . (1.1)

(ii) For the infinite universe U = [0,1) , we will consider the

elements of P as independent, uniformly distributed real numbers

1

1
—

~ 

- ~~~- - - ~~~~~~~ - — — ~~ —-~~ -~ — -— --- —~~-~-- -~ ~~~~ - . ._.-.----~ -— -- — -_ -.- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



in U , so that

for any interval [a,~~) c u , and for any xcP ,

(1.2)
Prob [x c [a,~~)] =

One of the characteristics of a representation that will be

investigated is the size of the average set. We will consistently

discuss theoretically attainable estimates of the number of bits needed

to store the set . Given actual machine id.iosyncracies ( addressing,

bit handling capabilities, etc .)  whoever implements the algorithms

might be forced to store bit strings within byte or word boundaries,

thus increasing the actual sizes.

The sets will be static, in the sense that once created they don ’t

change, or they change so infrequently that updates may be processed

as creation of new sets. (This is the case of many big dat a bases

organized by means of inverted files. Updates are usually kept in a

“news ” li st, and batch-processed periodically. ) The importance of this

point is that it allows for a reasonable amount of preprocessing when

creating each set , making possible faster operations on the sets.

On Set Intersection.

Intersection is the set operation we will investigate in most detail,

and again we need to define a statistical model in order to obtain

average behaviors.

B’tt, why not simply assume that the set s are random as defined above?

We cannot, and the reason is that such an assumpt ion would produce a

randomly small intersection, and. that is not the case . In general,

Jane Q. User has some knowledge of the existence and size of the

2 

~~~~~~~~~~~~

L - — -._~~~~- . ~-,-- ~~~~~-—---

- 1 _—,-,_. -—-.-
~~

— — .-— —_-, .—~-.--_- -- ——-— -———-

intersection: for instance, in a library model (where sets are inverted

files of books with a certain attribute) it is very rare that a user will try to

retrieve books under both the keywords “Russian literature” and “Ostriches”.

Thus somehow the intersection size has to be thrown into the equation.

Assume that we want to intersect the sets P1,P2, ~~~ . Let

P = <1
~l1’ 21’””~~m

1> be the sequence of sizes and

= ~~~~~~~~~~ f l P~fl , (Q~ = q, the intersection to be computed.

We will define the average intersection time, I(P,q) , according to the

following model :

• the intersection set, Q , is any arbitrary set of size q (with

the obvious restriction that ~~~~~~~~~~~~~~~~~~~~~~~~~~~),

• the subsets W . = P. - Q are random subsets of U - Q in the sense

that for all x€U

lW. I1Prob [x€W .J = . (1.3)
I U - Q I

Notice that given the above definition there is a chance that the Wi ‘ s

do actually yield a nonenipty intersection. But that will only mean that

we are getting a larger intersection for the price of a smaller one.

Given the above model, the average intersection time can be divided

into

• V(~ ,q) , the time needed to veri±~r that Q is a true subset of

all P1
t s, plus

• t(~ ,q) , the time needed (or “wasted”) to verify that the intersection

of the W~ ‘ s is empty.

3

- ~~ --~~~~-~~~~~~-

~1
- _ - ~-‘~~~~

-
~~~~~

————
~~~~ -— __- _ i___ _______ .__ - — _-—-——-_

Thus

I(~,q) = V(~ ,q) + t(~,q) . (1.14)

The above discussion does not imply that intersections will be computed

in two distinct steps, on the contrary, both algorithms introduced in

this work proceed without any knowledge of what Q. is and what belongs

in the Wi ‘ s. But Equation (1. 14.) underlies the methodolo~ r used to obtain

b ounds for the intersection times.

On the other hand, v(P, q) may be seen as a measure of the “productive

time” : a user will usually be glad to know that s/he has to pay v(P, q)/q

per element found (in the intersection). Similarly t(~ ,q) is a measure

of the “risk” involved in computing the intersection and finding nothing.

On Set Union.

In certain representations, computing the union of two sets

requires essentially the same time as computing their intersection.

Though this work will not present any detailed account of algorithms

to compute unions, a short discussion, mainly for purposes

of comparison with current result s, will be included in the last chapter.

A Gourmet Guide to the Contents.

Two representations of sets are discussed in this thesis.

The first one, based on tries, is covered in Chapters 2 and 3. Chapter 2

discusses issues about trie representation (this chapter relies heavily

on Appendix A, which presents some needed counting results about tries)

arid Chapter 3 discusses the trie intersection algorithm.

~~~~~ 

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
- - :

~~~ - -—~~~~~~~ - . ——-~~~~ - - _~~~~ -~~~~~ ~~~- --~~~~ ——-- -- - - -~~~~~ - — — ~~~~~- _ - ~~~~~~~~~~~~~~~~~~~~~ -



-

The second representation, based on hashing techniques, is presented

in Chapter 1i. Again the representation proper is discussed first

(Section 14.1) after which come the interser~tion methods (Section L2).

Finally, Chapter 5 presents the conclusions aI~ic.. practical considerations.

It is traditional for the first chapter of a thesis to state how much

of the material is “new” as opposed to well-known. In this case, essentially

all of the algorithms and analyses to be discussed appear to be new, except

for some auxiliary formulas that are quoted from the literature. The basic

ideas of hashing and trie representation are, of course, well known, and.

the analysis of these basic methods are stated in order to demonstrate the

improvements being made.

Notation and Background.

The notation used throughout this thesis is pretty standard (so it

will not be discussed further) with the exception of some sort of “vector-

like” notation required in Chapter 3 (where it is duly presented).

Both the concepts of tries and hash functions are excellently covered

by ~rnth in ~Knuth 751 (Section 6.3 covers tries and Section 6 .14~ hashing)

and the interested reader is referred. to it for further details about the

above data structures.

5

L ______________________



_ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~ -~~~—- --

2. Trie Representation of Sets.

1~iowing the bounds of the universe (and a total order relation over

its elements) is the key to representing any subset of such a universe as a

trie, and this chapter discusses different ways of doing that.

Throughout this chapter we will be concerned with represente~ions

and their space requirements, leaving the efficiency of intersection

to Chapter 3.

When talking about space requirements, a measure of the minimum space

needed to represent a set is always handy. Let the univ-~rze be

U = [O,2~)

and M(s,n) the minimum average number of bits req~ired to represent a

subset S ~ U of = n elements.

Since there are 
(~ ) subsets of size n it is obvi ous that

M(s,n) 
~ [lg(

2)~~ > l~
(
~~~
)

. (2.0.1)

And assuming relatively small subsets (n < 2
S
/5 will suffice) we obtain

M(s,n)
� n(s - ig n + - ig n + 0(1) . (2.0.2)

But since lg ri < s we can state that

M(s,n)
~ n(s

- ig n + - c (2.0.3)

where c is some appropri ate constant .

Each different representation presented below will be associated with

a subscript and. for each one some of the following average values will be

investigated:

L

6

~~~-. - - ~~~~~~ —- -—~~~~~~~~~~~~ 
4



—-~-~~ — -—---
~~—————-— ‘-—- 

-~~

t
1(s,n) : size of tag bits per node,

b
1(s,

n) : size of a node in bits,

A1(s,
n) : number of nodes,

P1(s,n) : 
total number of bits used to store pointers,

T1(s,n) : total number of bit s used to store the set elements,

and B1(s,n) : total size in bits.

(The above quantities refer to “Representation i “, and to subsets of n

5
elements from the universe [0,2 ) .)

Also if R is a set, the quantities t1(s,R) , b1(s,R) , P1(s,R)

A. (s,R) and B~ (s,R) will denote the actual values for the

set R , not averages.

A certain imjthical representation that asymptotically realizes the

op timum M( s ,n) will be our representation 0; thus

B0 (s ,n) = n(s  
- ig n + . (2.O.1~)

For comparison purposes, the good old sequential allocation

(with each cell viewed as a node) will be representation 1 , and

t
1(s,n) = 0 P1(s,n) = 0

b1(s,n) = s T
1(s,n) = ns (2.0.5)

A1 (s,n) = n B1(s,
n) = ns

The following example will be used throughout this chapter.

Example 2.0.1. Let the universe be the set U8 = [0,2
8
) ; we wii. use

the subset

S = [3, 25,5O ,5l ,l3O ,l89,20O ,232,21~93 ,

or in octal S = [003 , 031, 062 , 063,  202 , 275 , 310, 350, 3713 . Notice

that ~~ = 9 and the sequential representation of S requires

~~(8,s) = 8 x 9  = 72 bits. The optimum in this case is B0(8,9) = 56.5 .

7 

•..- -—— — —.
~~~~

¶~~~ ~~- / . ! . ~~~~~~~~ ~~~~~~~

2.1 Binary Tries.

Bisecting the universe sounds like the most “natural” kind of partition

and thus binary tries are born.

The obvious way, representation 2 , uses the data structure depicted

in Figure 2.1.1. Under such representations each node requires space for

two tags (one bit each) and two fields large enough to hold either a value

or a pointer, hence

b
2
(s,n) = 2(s+1) . (2.1.1)

The average number of nodes present s us with some difficulties, since

there appears to be no reasonably simple expression for it. The analysis

in Appendix A (Section A.1) shows that

A2 (s ,n) = (2~ -1) -

(2 5)
[2

i(2
5
-~~5~~i

)~~~

2s(2
s~~ s~i)] , (2.1.2)

a really horrible expression.

Fortunately, we can bound A2(s,n) , since in general

~~(s+l,n) > A~(s,n) (see Appendix A, Lemma A.2.1), and by Lemma A.2.3

u r n A
2(s,n) = A(n) (2.1.3)

5

where A(n) is the number of node s in a trie representation of a random

set of n elements in U = [0,1)

In practice the difference between A2 (s,n) and A(n) is very small,

since usually the sets to be represented are much smaller than the universe

(it is possible to prove that

A2(s,n) = A(n)(l-O(ns/(25-n))) ,

see Appendix A, Section A.6, and thus the leading term of A (n) applies to

A2(s,n)
when n = 0(2s/2) , the usual case in practical applications).

8

- -. •. --—~~ — .~—— ~ - - ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~ ~

~

—--— .------- -

~

- ----.--—----. - --— --• - --- - —~~~- - - -- ~~~~ -~~---- . -S .--~-’. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - -

_ _ —•---- .•--~

~~
_—

1N14, I ~J

ININI m ull] I N I N I ~ I I

_ / \
IN IN 1 i I ‘~ 1 [~]T ~

202 (275] ~
T IN I 310

r T I T I 003 1 0311 I N I N I n u u I] I T 1 T I 3 5 0 I 3 7 1 I

I N I N I /~~ I null i

LNINI
/

I nUlh I

I ~~(8,s) = 13 nodes
[N 1N J n u UI ill

b
2

(8,S) = 2+16 = 18 bits/node

—l B2
(8,S) = 13x18 = 2314. bits

[T J T I 062 1 063 1

Figure 2.1.1. Representation 2 .

Tag fields store values N (nontermina.l subtrie) or T (terminal

subtrie). The other fi elds store either a pointer (including the

null one) or a set element. A pointer is used when there is more

than one element to be represented. The left subtrie at level k

represent s the subset with bit k equal to 0 , the right subtrie

represent s bit k equal to 1, where bits are numbered 0 . . . 7 from

left to right . Notice that the set elements appear in octal notation.

9

• : - .~~~~~~ ~~~~~~~~~~~~~ - .

— . . . ~~~~~~~~~~~~~~~~~~~~~~~

For the rest of the chapter we will adopt the estimates for tries

in the infinite universe U = [0,1) for the actual case U5 = [0,2~~)

whenever the quantities for the infinite universe are upper bounds for

the corresponding one in the finite case.

(The interested reader is referred to Section A.3 for further

discussion of asymptot ic results for the infinite universe case.)

So we will adopt

•
A2 (s ,n) = n/ln 2 , (2.1.14.)

giving

B
2(s,

n) = j~~
-
~

(s~1)n = n(2.88s + 2. 88) . (2.1.5)

Space requirements for the above basic representation do not look very

good, and they certainly can be improved. A first (and easy) improvement,

representation 3, is to e1iminat’~ the space wasted in null pointers. (There

are A2(s,n) -n+l null pointers requiring s bits each.) Figure 2.1.2

illustrates representation 3.

Both left and right tags now need to take three different values

(terminal , nonterminal, or null subtrie), hence

t
3

(s,n) = ~ bits . (2.1.6)

The number of nodes is still

A
3

(s,n) = A2 (s ,n) = . (2.1.7)

And since A
3
(s,n)-1 pointers are needed

P
3
(s,n) = s-s (2.1.8)

10

* - - .;, ,~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - - - - -
~~~~~~~~~~~~~~~

-‘-
~~~~~

--

L N I N~~~. I I

~N I X I I 1~~I N I ~~ I 1

_ _

Z N
[NINI -, J ç] I T I T I 2 O 2 I 2751 I T I N I 3 1 O I 1

IT J T I 003 I 0317 [x N f ~~ I~F~ I 350 3711

[N i X ! I
~~ (8,s) = 13 nodes *

Fx IN I T I B3 (8,s) = 13 x 1~ + 12x8 + 9 x 8

I = 220 bits

FIT I 062 063]

Figure 2.1.2. Representation 3

Tags notation

N = nonternìinal subtrie

T = terminal subtrie

X = null subtrie.

11

.~- - - - - - - -
~~~~~~

.-—-

~~~~~~~~~~~

-_- .-- -

•
~~

-
~~~~~

-

~ ~~~~~~~~~~~~~~~



—
~~~

-- ,- - .
~~~~ 

-

and.

T
3
(s,n) = n’s . (2.1.9)

So

(s,n) = ~ ~~~~~
-

~~~~~+ n(j~~-~~÷ 1)s = n(2.14i~s+5.77) . (2.1.10)

Another way to improve on representation 2 is to store the nodes in

some fixed order (Preorder mit Variazionen), thus requiring at most one

pointer per node (since the left sibling of a node is always stored right

after the node itself). This is representation 14.~ and is depicted in

Figure 2.1.3.

Only six different tag combinations are possible, hence

t 14. (s,n) = 3 bits . (2.1.11)

The number of nodes is still the same

A~(s,n) = J~~(s,n) = . (2.1.12)

A pointer is needed only when both subtries are nonterininal . The analysis

in Section A. 14 shows that about one of every four node~ has two rionterminal

siblings, so

P~(s,n) = ~ . s . (2.1.13)

In order to store the set elements we need

T~(s,n) = n.s . (2.1.1 1.)

Finally, —

-

B~(s,n) = 3 ~~~~~
_

~~~~~
+ 

~ ~~~~~~~~~~~~~~ n .s  = n(l.36s+l~.33) . (2.1.15)

The previous representations dealt with fixed size fields, and. not

much more can be done by way of improvement. On the other hand, using

12

- .
-~ ~~~~. - - 

-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - -  - - - . --- - - - - •~~~~~~~~~~~~~~~~~~ —,rn - -~~~~~



—

Broken arrows denote N N

co iguously stored 
-

I N I X I N N

N N 1 T 1 T 1 2 0 2  1 275] T N 310

• [~~~T 003 I 031 I X N T T I 3501371]

~,x I

IN~~ I
II

A14 (8, s) = 13 nodes

I x I N  I B14(8,S) = 13 x 14 + 3 x 8  + 9 x 8

= 1 148

062 ~o63

Figure 2.1.3. Representation 14- .

Possible tag c~thinations are NN , NT , TN , TT , NX and XN

Pointer/value field is used as a pointer when tag is I’IN , and as

a value if tag is TN or NT • When the tag is TT the two set

elements follow the node. The nodes are stored in preorder except

that a terminal right subtrie precedes its nonterminal left brother.

13

.,- . .*~
- 4..I



_ .~~

__
~ z~~~~~ _ .~

_.•.— --.—~.—._______-__________-_--__•--•____-_-_ ___ -_•----_---—___ --____ -_ -__ --- •_ 
_______________________

~~

--

variable length fields we can improve the storage requirements in two

ways :

(i) Using the information implicit in the trie structure allows us to

store only that suffix of each set element that has not been defined

by the path from the root to the parent node .

(ii) Defining pointers as displacements from the current node (and, of

course, storing nodes in, say, preorder) requires pointers of size

proportional to the logarithm of the number of elements in the

subtries.

And so we get to representation 5, similar in organization to

representation 14 but with variable length pointer and set element fields

(refer to Figure 2.1.14).

Tag size and number of nodes remain the same as before

t
5
(s,n) = 3

(2.1.16)

~~(s,n) =

The space required to store the set elements also needs some thought :

we will estimate

T
5
(s,n) = n~s-n . (average depth) (2.1.17)

where the average depth of a terminal element in the trie has already been

discussed by Ithuth (I~iuth 73, Section 6.3] for the case 5 = ~ . Actually

the quantity “ n. (average depth) “ above is the average total number of bit

inspections needed to look up the n keys in the set (that is C~ as

defined by Equation 6 .3(5 ) in [}~iuth 73]), so we obtain

114

•• . • :~. - - 

- --~~ 



Broken arrows denote bits

[T I T [0011 1 1001] X N I Tf T J iooo I 1001 1

(“003”) (“031”) (“350”) (“37 1”)

1/ -

N X A5 (8, S) = 13 nodes

B5 (8, S) = l3x3~~I X I N I
\\ + 16 (for pointers)

+ 31 (for set elements)

T~~T~ = 86 bits
Implicit : (“062”)(” 063”)

Figure 2.1.14. Representation 5

Pointer sizes were assigned arbitrarily, for completeness sake.

(They depend on the pointer encoding scheme used. )

15

L - —- --—-.——• -----
~~~ 

.---— . .

T
5
(s,n) = n[s - ig n - ~~~~~~~~~~

-

~
] (2.1.18)

A pointer will now measure the displacement (in bits) fr~~ the current
node to the given (right) subtrie.

Given a node of height d (d is s minus the distance from the

root) and with a left subtrie of k elements we will encode the pointer

to the right subtrie as a pair (k,~~) so that (k.d-~~) bits is the

size of the left subtrie, and thus the distance to the right one. Not ice

that the set represented by the left subtrie needs at least (kd - k lg k)

bits on the average, and therefore, also on the average

~ < k l g k

so that ~ can be encoded with (l+s) lgk bits (where t is a small

positive constant less than l/(e . in 2)).

So we have discovered that with the above convention, the

size of the pointers becomes independent of the size of the universe, so

that the root node for a set of n elements requires a pointer of size

(2÷E)lg n . (The term cig n also absorbs any overhead due to the

variable length encoding scheme for the quantities n and ~ . See

[Even and Rodeh 78] for a possible encoding scheme.)

So now we may compute

p = (l_ ~ flQ
_ 5~~)(2+C)l~ n + 2l-n

k>2 (~~
)Pk (2.1.19)

as a good estimate for the total pointer space requirements, P5
(s,n)

(Notice that we assign pointer space to every node, even thou~~ in practice

many nodes don’t need it.) Again Appendix A provides us with the answer

(Section A.5) and we dutifully adopt it as

16

‘- .--.
~~~ 

;-- - _____

- - - --

~

- -- -

~

—•

~

-. - - ---— --

~

- - -  --~~~~~~~~~ -- — - -—~~~ - - - - -..•- - -~~~ - . -— - - . -—-~~~~~~~~~ -. - - .-



—- 
~~~~~~~

-
~~~~~~~~~~~ -~ .—~~

- - - - -— .---— ~~~~~~~~~~ - 
— - -  - -------

~ =--- -••‘---
----- 

- — --- . - - •
— —- 

- - *. _____

P
5
(s,n) = (2+E) .2.96n (2.1.20)

(a remarkable result: about 6 bits per element are needed for pointers).

So allowing ~ to increase P
5
(s,n) up to, say, 7n , we obtain

3n ~ 
1

B
5
(s,n) = E-~~

+ 7n + n  s - l g n - ~~ j--~~-~~

= n(2-lgn+1O) . (2 .1 .21)

Tries include chains of one-way branching nodes, whose only function is to

convey path information. This clearly suggests the possibility of representing

that path as a bit string and getting rid of such nodes, and that turns out

to be our representation 6.

In this representation, each node includes a (possibly empty) prefix

field, that replaces any eliminated chain immedi ately preceding the current

node, as may be seen in Figure 2.1.5. Representation 6 is somehow related

to the idea behind Patricia tries presented in [Morrison 68].

The tag size is

t
6(s,n) = 2 (2.1.22 )

and the number of nodes

A6(s,n) = n-l (2.1.23)

Pointer and set element space are (as in the previous case)

P6(s,n) = P
5
(s,n) = (2+€) •2.96 n < 7n

(2. 1. 214)

T6(s,n) = T
5
(s,n) = n(s - ]g n - -

17

~

-- -

~

- - —- — --- -- ~~ -.-- -- -- - - - --—-~~~~---- ~~~~~~ - - -



_ _ _ _ _ _ _ _ _ _ _  ~~~~~~~ -‘. - ~~w-~~ . - -• -~~~~~ -- -~~~- - - ~~~~~~~~~~~~ -•---- —---- --—-- 
- — -  - -.-.•---•-

~~~~~~~~

I

Broken arrows denote

contiguously stored nodes

prefix

prefix A,~~ pre~~~~~~~~~~
E O O I I N E N I \] L 1J~4N I .~‘l

prefix h’ PrefiX yf p~~~~X

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
~~~ prefix

0011 1001 00010 J’~ uloll [ 01000 ~~ IJj T I T I
(“003”) (“031”) (“202”) (“275”) (“310”) ~~ ..

pref ix

0100001 T T 1000 1001 J
Implicit: (“O62”)(”063”) ( “350”) ( “371”)

A6(8,s) = 8

B6(8,S) = 8x2 (tags) + 1( (prefixes)
+ 16 (pointers)

+ 31 (set elements)

= 79 bits -

Figure 2.1.5.  Representation 6.

Each node has two descendant s, hence possible tag values are N and T

A prefix Z1
Z2...z is coded as

“O z Oz ...Oz 1” .1 2  p

(The empty prefix is simply “ 1” .)

I

18

~ ~~~M -~~- .• -
~- -~~~~ 

- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • -

- -



-~ - - - - _

Each one-way branching node in, say, representation 5 generates two

bits of prefix space, and there are [A
5
(s,n) -n] of those nodes. So

after including the stopper- string “ 1 “, the space required to store

prefixes comes to

Prefix(s ,n) = 

~~ 
- n) x 2 + n = ~~~~~~ - . (2 .1 .25 )

Finally,

• B6(s,n) = 2(n-l) + 7n ÷ n s - ig n - 
~~~~~~~~~~ 

- + n - i

= n(s - ig n + 9.56) . (2.1.26)

And thus we complete our rather prolonged tour through binary trie

representation of sets.

~ closing remark : it is interesting to notice that it is possible

to encode the set and the trie structure and still come within (c .n)

bits of the lower space bound (2.0.3).

19

~~~~~~~~~~~~~~~~~~~~~ 
4 :•~~~~~~~~~~~~~

-
- - - 

-~~~~~
. ~~---~~~ - —-~~~

—-
~~

-
-— —.



— 

- - - 
- 

- -‘ 
~~~~~~~~~----- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 

- -

-

2.2 Other Representations Based on Tries.

Several variations on the basic binary trie may be used, and this

•
section will simply state some of them without further analysis.

First, there is an obvious generalization of binary to M- ary tries.

An M-ary trie representation reduces the average number of nodes to

approximately n/ CM in 2) , but it forces an increase in the size of

each node. Further, storing the nodes in a fixed order (as in the last

• three representations of Section 2.1) will only save one out of M

pointers. A way to produce more economical M-ary tries is to store only

the non-null pointers, though a price is paid in the increase in time

needed to process each node for set operations.

An interesting way to represent M-ary tries (compressed tries or

C-tries) is presented by Maly [Maly 76] . A C-trie stores only a pointer

to the first sibling of each node, and stores all the siblings sequentially.

As an important consequence of using M-ary tries, the parameter M

may be chosen in order to minimizc the “waste ” if the data structure is

to be stored within byte or word boundaries.

A second idea follows the old paradigm “keep small things simple...”:

there is no better way to store a small set than a simple one (e.g., a

sequentially stored list). More precisely, store small subsets (those of

size less than a certain parameter q) sequentially. Thi s scheme will

certainly reduce the overall complexity of the data structure, though it

complicates the implementation of some set operations.

A combination of the M-ary trie and the small subset sequential storing

ideas is analyzed by Knuth [Knuth 73, Exercise 6.3.20]. That analysis shows

that the average number of nodes is reduced to n/(M.q.ln 2) . Further

savings are obtained by storing only the suffixes of the element s of each

20

- • - ~~~~~ ~~~~~~~~~~~~~~~ - . - . -4_fl - .i•_I~~
- ~~~~~~ ~~~~~~~~~~~~~~

-•

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • - - . _ —~~~~_ . --1~~~ -—-

small set, and an example of such a “combo” technique is presented in

Figure 2.2.1.

— -

~~~~~~~~~~
LN yes no yes ~esJ

LHz~~~ 
L:~. LsL

~ I -

N.

N yes yes no yes T 000010,111101 T 001000, 101000, 111001

“202 ,275” “310,350,371”

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

T 0011 T J 1001] [T oo~o,oo~~i} M = 14

“003” “031” “062,063” q = 3

Figure 2.2.1. A “combo” representation, combining an M-ary

trie and the representation of sets of size

less than q as sequential lists of the suffixes

of each element.

21

“~~ . ~~~~~~~~~~~~ ‘
~~~~~~~~~ 

-

• - -—-—-~~~~ -—— —- —~~~~~~~- — ~~-~~~~--———-- - —~~~~~~~—~~~~~~~ • -- • —~~~~~~ — — -— . •-—. -- — -
~~~ 

~ .— — — —

- .~~~~~~~~

3. The Trie Intersection Algorithm.

Once two or more subsets of a given universe U have been represented

as tries in a consi stent manner, it is possible to take advantage of such

representations for the purpose of computing their intersection (or their

union, though the union algorithm will be discussed later).

Let us assume two subsets P1 and P2 of a universe U ; both P1

and P2
are represented as tries according to the partition U = If’ U U”

• (thus P1 has subtries P~ = Ij f l U ’ and P~ = P1fl IY’ and, similarly,

= ~ 2~~~ Tj’ and P~ = ?
2 fl 1J”). Now the intersection P

1f lP2 (within

the universe U) can be computed as follows:

Intersection(P1, ~~ U)

= intersection(P~~P~~u’) ij intersection(P~,F~~U”) (3.0.1)

but since both intersections on the right hand are disjoint, the union

is simply a juxtaposition, requiring constant time.

The above recursion should proceed until the computation becomes trivial,

either because both set s are small enough or because one of them is empty.

And that is where the savings are: when either one of the sets is empty,

the other one can be disregarded immediately. On the average the above

situation arises very often , especially if the starting sets are of

different sizes.

In order to analyze the method, a measure has to be introduced, and

the number of trie nodes visited seems plausible since the amount of work

work at each node is bounded by a constant.

So we will now pick up the discussion about intersection time started

in the introduction. Again, assume the sets
~l’~~2’~~~~’~ m are represented

as binary tries within a universe U , with ~ = ~~~~~ ~~~~~~ l1~m~ > the

22

—-

_ _ _ _ _ _ _

sequence of sizes and Q, , = q , their “arbitrary” intersection.

We will estimate the average intersection time (given in Equation (1.14))

as

I(P,q) < v(P ,q) + t (~) (3.0.2)

where v(~ ,q) is as before and t(~) is a bound on the wasted effort

t(~ ,q)

In order to bound t(F,q) , notice that since

• = ~P~~- Q ~ < ~~~ , (3.0.3)

verifying that the intersection of the random subsets W
I is empty and

must take less time than comput ing the overall intersection of totally

random sets of sizes ~P1~
(that is, sets whose intersection size is not

arbitrarily preset)

t(~,q) < I(P,O) = t(~) . (3 . 0 .1 4)

Thus, Section 3.1 analyzes t(~) as the running time of the algorithm

over random sets in a univer se U = [O,2~) , and produces a hopelessly

inscrutable answer, so Section 3.2 analyzes the limiting case of the

universe of reals U = [0,1) that allows for an asymptotic expansion

for t(~) (pre sented in Section 3.3). Finally, Section 3.14 analyzes the

overall intersection time and discusses some examples.

A Bit of Notation.

Most of the equations in this chapter will deal with m-tuples, and

a concise notation is needed. An m-tuple will be denoted by a letter with

an overbar; let A = (a1,
a
2,...,a) and ~ = (bl,

b
2
,...,b) . A scalar v

will expand to the m-tuple V = (v,v,...,v) .

23

•~•~~
‘;:~ ~~~~

~~~~~~~~~~~~ - 
- - -‘



Operators will be extended to apply to m-tuples

A * ~ = (a1 * b1, . . .  , a~ * bm) for “~~~~~~ “ denoting basic arithmetic

operations
- b b-B 1 mA = (a1 ~~~~~~~ ~AB 

= 
~
“a b  ‘“ ‘~~a b  ~11 m m

A : =  (a
~~~

,..., am > C) =

Operations on scalars and m-tuples will denote the coercion of the

scalar to the corresponding m-tuple followed by the operation itself.

For instance:

Ca) = (
~
) =

Finally some operators will map m-tuples onto scalars

2~~ A = a1
+ ... + a fl A = a1 ... a

A < ~~ = (a1 <b1)A ...A (a < b)

A ~~ = (A <
~~~

) fs, ((a
i ~ 

b~) v ... v (am ~ b))

3.1 Wasting Effort in the Finite Universe.

Assume that the sets P1,P2, . . ., P~ are random subsets of the universe

= [0,2~) , and. have sizes P = (p1,p2,.. ~~~~ 
respectively. We are

• interested in the running time t
5

(P) of the intersection algorithm

for random sets P1, P2, . . 
~ ~m

2~4

--~~-.- —
~~~~~ - •‘ - - -,- , •~ . , • - - • - .•.

~‘— L_i - -- ~~~~~~~~~~~~~~~~~~~~

- _ • _ -•

~

-•-

~

- - — • — • -_ _ - •

~

- -- -- -~~~~~~~~~~~- - -~ - •

- ~~~~~~~~~~ — — — - — ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Given that the binary trie representation partitions the universe

into U’ = (0,2
s1
) and U” = [2~~~,2~) , we have that for any sequence

of sets
~~~~~~~~~~~~~~~ 

, such that = p. , the algorithm will

take the lower half partitions P~ = P1fl U’ , . . .  , P~ = P flU’ and

intersect them, and then do the same for the upper half partitions

= P .  nu”

Hence, assuming non-empty sets, Ô P < 2~~ , and s 
~~ 
1 ,

• t (P) = 
- - 

~~rt(P,~ , s) . [t  
~~~ 

÷ t 1(P-~) } + v (3.1.1)

O < R < P

where

Part(P,~~, s) : probability of a partition B (lower half) and P-B

(upper half) of a sequence of sets of size P

time required to visit the m roots of the tries

representing the sets.

Equation (3.1.1) does not cover the cases where at least one of the

sets to be intersected is empty, or the boundary case when the universe

is of size 1. So

for F: ~ai, = 0 let t (p) = 0

(the intersection is known to be empty) (3.1.2)

for s = O t0 (~) = o

Now the probability of a set P
1

(of size
~~

) splitting into upper

and lower subsets P! and P’.~ (of sizes p and. p’.’ =
~~~~~~~~~~~ 

) is

25

• • ~~~~ ~~~~~ ~ • - ‘~ 
•
~~~~~•


4
— •-

~~~~

-- ---

~

—  — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

‘U’

r
2
s~r\ (2~~~

~~ pi) I3~P~-P~

• (2~~\
\44~ Pi)

Then

(2
5_l\
(2~~~

-

in -

Part(P,~~,s) =
~~ R I

$
\. P-R (3.1.3)

(2
TI’

and obviously part(P,~ , s) = Part(~,P-R,s) , so E quation (3.1.1) becomes

for a > 0 r2~ -~ (2~~~ ~
t (P) = 2

- -
~~

2~

~~~ ~~~~ . t(~) + v . 
~~~~~~~~~~~~~~~~ 

(~.1.14)

1 < R < P

(Notice that the lower bound 1 in the sum is a consequence of Equati ofl (3.1.2).)

A further simplification can be obtained by defining

(2S
\

T5(P) = TT(-)
.t

5(~) (3.1.5)

‘- P
yielding

26

‘ ; v - ~~~~ ~~

—- - — - - • - - — —
~~

-- — -• — — — -
~~~~~~

- — -
~~~~~~~~ 

—- s •- ~~~~ ~~~~~~~~~~~~ —— — — •~~~~— .— — - S—.- —

F -

for s > O

- f2
51

\ f2~~\
= 2

i<~ <P
~~~~ )Ts...i(~

() + v .  1I~~ 
~~ 

) 
. ir(l-~~~~)

— — (3.1.6)

T
0

(P) = 0

Now Equation (3.1.6) can be solved by means of the generating function

= E T (P) in(~~~~) (3.1.7)

where z denotes the “m-variable ” ~z1
,z
2,...,z) 

and thus

P ~l 
p
2 p

11(z ) = z
1 ~z2 

. ... .~~~
m

So

-

= E 2 
~ 

1T

(b 
- - )T5i(~ ) in(~~)i~z~ ~~~~~<p P-R

(251
’
\ -

+ v E - I ir(~’~) . (5.1.8)
- -l<P ‘..

5
(2 \  - s

Defining A = Z~ in - 
~~~P) = frr(1÷~)1

2
= ~2 , where

P \b~~ J

= iT(1+~) , and noticing the convolution in the first sum of (3.1.8):

= 2 A
~~i

-.
~
‘ + v . B5

where
(2~~\ -

B
~

= L rn(_ ~ 11(
P
)

~~P)

27

rIIl. :_,
~ ~~~~

- •
~

.-- _ — ~~~ ——— — . • - — - - -- -~~.~~~~

It is now a matter of iterating Equation (3.1.9),

•

.
= 2 A51(2 A52 ~~-2

+ v • B
1)

+ v B

= 2
2
A51 A5 2 T5_2 +2vA 5_1 B5_1+ v B 5

= A51 A~~2
... As k TS_k +v

O< j<k
2~ A5_ 1 ... A5_ ~ B5_ ~

k+l k
= 2 A5_1 A52 ... As_k As_k_ i Ts k l +2 v A

1... As_k B$k

~ 23 A ... A .B .

O< j<k
s-i

~-3
S-J

And now, recalling that T~-~ = 0 ,

•
= v• E 2~ A

5 1
. . . A

5
. B

5
. . (3.1.10)

O< j<s

A5_1 ...A5~~ = ~~~~~
~~~~~ 

= 
~~
2
~~~_ 2~~~~~

i

=

~
[
~

+ ~~]
and

(2 S i \ - r

B5~~ = ii E

~) ~ =

~~~ 
-1

1<P

giving

28

— ——---•— - • • - - •  - — - - ———•-—-— —•—-•- - — —  --—- — —  -. -t 

~~~~~~ --~~~ -. -•~~~- -- 


- - -~~~~~~~

= v . ~~~ 2” • 11 L~
1÷ _)2 - (1+)

2

O< j<s

r (2~~\ - [2 S 3 \ -

= v. ~ 2’~ ii i ~ I - I~ - ~i:; I - 1 ~~
O< j<s L P \~ J k.. ~)

r (2 5
~\ c2~~ Vi -

= v •~2 !‘ 2~ ITJ I -) - (- J 11(~
P
) . (3.1.11)

P
O<j<s L~~~~

) \. ~~ IJ

That yields

r r 2 5
~ 12~~~~~~~

T (P)=v E 2
~~T I I (_ I - I

O< j<s
~~~~ ~ F

and

t (P) = 
~~~~ O<j<s 

2
j - (2;

~~)] . (3.1.12)

Equation (3.1.12) is a solution to the original recurrence, but not a

very useful one. Not only does it not yield a more reasonable closed form

or an asymptotic expansion, but it is very difficult to compute, due to the

explosive combinatorial terms it contains~

Hence, something has to be done.

3.2 The Infinite Uhiverse Model.

We will now analyze the behavior of the intersection for the limiting

case universe U = [0,1)

Let t(~’) be the average running time of the intersection algorithm

for random subsets
~i’~ 2’”’~m

, of sizes P =

~~~~~~~~~~~ 
respectively.

29

- •~~~~~~~~~---— --~~~~~~~~~~~ ---~~~~~~- - - - -  --•- —~~~~~~~~-— -- - -- -~~~~~ --- -—
~~
---

~~
- _ _



____ ~~~~~~~~~~~~~~~~~~~~ ~~• 

No simple argument could be found to prove formally the rather

• intuitive fact

t5(P) < t(P) .

(The fact that the average number of nodes of a trie representing a random

set grows with s (see Section A.2 for a detailed argument ) strongly

supports th’s intuition).

In any case it is easy to see that the probability Part(P,R,s)

(as defined in Equation (3.1.1)) of a partition tends to the limit case

u r n  Part(P,R, s) = part(~,~~)s_ .-~

where Part(~,~~) is the probability of a partition in the infinite

universe U (refer to Equations (A.2.9) and (A.2.1O)).

Consequently

u r n  t (p) = t (P )
5

and we shall adopt t(F) as an estimate of t

5

(P) without further

discussion.

In order to compute t (F) we observe that the intersection will

proceed by considering both halves of U : U’ = [0,1/2) and U” = [1/2,1)

But both U ’ and U” are similar to U in the sense that the partition

probabilities have the same distribution in the three cases.

Hence, by looking at all possible partitions, we arrive at the following

recurrence:

t(~ ) = ~~ part(P,~~){t(~ ) + t(P-R)J + v (3.2.1)

O < R < P

where v is the time required to visit the m roots of the tries.

30

— - •~~~-~~ 
- •

~~ -~ — ~‘-~ -~~~~-~~



-- -— -—--

The boundary condition is simply

for P: ~i, p1 = 0 t(P) = 0 . (3 . 2 . 2 )

And the probability of a random set c U 
‘ = p1 

to be of the form

(P i

~P. fl U’~ = r. is
2

1

and thus

-

Part(F,~~) = 11( - ) 2~~~ = I1~ - - ~
. 2~~~~~ . ( 5 . 2 .3 )

~~~~RJ  ~P-RJ

So Equation (5.2.1) becomes

- fp \~
t(F) = 2 ~ 2~~~ in~ - J . t (F) + v . i n (1~) . (3.2.14)

%~RJ
P0

1<ZR<P

An exponential generating function will take care of Equation (3.2.1#):

I _p

7 = 7(i) = ~ t(~) ir i~j _)

= 2 Er ~ ~(~) .t(~) 1 - ___

R J \~2~.p

1z_P -\
+ v .

E . (3 . 2 . 5)

1~~P

The first term of the previous equation results from the convolution of

(-P \

e2 = ~ iii z and T(1/2 z) .

~~,

51

~~~~~~~~ ~~~~~~ 
~ 

~~~~~~~~~~ 
•

~

-—-—

~

_ -

~

- _
~ ~~~—

r~
r~~~ - —•- --—•- _ —

So

T(~~) = 2.e~
~~~ 

+ v-ff(e~ -l) . (5 2.6)

Iterating (3.2.6)

= 2
k e(12~~~~ . 7(2

kz) + v - E e(12~~~~ 2~ fl(e
2 ~ -1) . (5.2.7)

O< j<k

The first term of (5.2.7) vanishes with k -. ~ , since

him 2k ~~~~~~~~~ 7(2
k

= e~~ him r2k . ~~~~~~~~~ (5.2.8)
k~.x L  p 2kEP ~~:) J

which goes to zero at least as fast as e~~ 7(z) . (1/2
k
)
m-l given

that ~~ > m for any t(P) ~ 0 - Thus we have obtained

“1 2~~ 
-

7(z) = v • E e~ 
- )EZ 2i 11( Z

1~
0<j

= v . e~~ E 2~ 
.fl(l e 2 3Z

) . (3 .2 .9 )
O<j

32

* 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J
_ _ _ _ _

The sum in (3.2.9) is

E 2~ . TI(i - e 2 3
~~

O<j

— 3
= E 23(_l)

m .TI(e
Z

1)
O < j

= E 2J (_ 1)m . ~~ 1 - in i ~~

—

• O< j j <~~~~ (_ 2 ~~)~~~
~~ R!

= E rI~-~ (1)~ R+m E (
~

~~~~~~~~~

= E in(~~
—

~~~ (~ l)~~~m . (3.2. 10)
l < R ~~RI 1’ 1~~2~~~~

1

Performing the convolution of (3.2.20) with e~~ we finally obtain

LR+m
t(P) = v

~
. ~~~ -

. (3.2.11)

i < R ~~~~ l - 2~~~~~

Yet another horrible expression, but this time good enough to yield

some asymptotic results.

35

Il-I

_ _ _ _ _ _ _ _ _ _ I

—•---_ —~~ -----• _ - - - — ~~~~~~~ — ‘
-
~~

•—•---_ — -•--- - —,—----
~

.—
~~~~

,---• --_ — --

3.3 Asymptotic Behavior.

The function

= 

k>2 (~~~) 2
k1 1 

(3.3.1)

that appears very often in the study of binary tries will be the basis

for the asymptotic expansion of Equation (3.2.11), since it is possible

to express t(P) in terms of -

First we need to get rid of the products of combinatorial numbers

in Equation (5.2.11) by noticing that for any P and x

P1 
p

~~ 1T~~~~~~
) 

= [(l+x) -1] .. [(l+x) rn _ h]

J E J = j

~ (l÷x)Z~~ (-l)~~~
0< € <1

L (i)~
1
~~~ ~

~
_ (~~~

)(_i~
”+
~~ . (3.5.2)

j

[Notice that the index € in 0 < € 1 ranges through all the m-tuples

of 0’s and l’s.]

314

- • , .

r ‘ T ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-~~~~~~~~~r~~~~~~-~~-- -*

Looking at the first and last expressions in (5.3.2) it is easy to

see that

I
E IlL) =

.)(
~~~1f ~~~~~~~~ .

EJ=i o<~~zi ‘~
l<J

Now we can massage (5.2.11) into better shape:

(P\ ( 1~~R+m 11~~~m (p
• t ( P )  ~ v .  E - J ~ - = v -E 

~ ~ 
in ( -

~~~~~~ 
\ R) 1 _ 2 ~~~~~~

1 m<r 1-2 ~~~~

v . E (~l)~~m
~ in(~~)+v E (1)~~ rn (

~
)

m<r R m< r 2 -1 R

~R= r ER=r

The first sum is Equation (3.3.2) with x = -l and an extra factor

of V.(_l)m , hence its value is v

The second sum ’s index, r , ranges from m , but since the inner

suxa is zero for 2 < r < m ,

- , ri-rn (p
= i -’- E -

2<r 2 -1

ER=r

= 1 + E
(~1)~~

m
E

2< r 2”~ -1
- j r

= 1 + E (-h)~ E ~~~ (
~~P)

O < c < l 2 < r 2 -1 r

55

• ~~~~~ ~~~~~~~~~~~ ~~~~- . •
~~~~~~~~~ •~~~~~~~~~

•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- ••• —
~~~~

- 2r~1~~ 
--

~ Thus

j  t(P ) v . 
~ (-i)~~ U -_ + v . (3.

~~~~•5)

E€P

Now Equation (3.5.5) can be expanded using

u1.~ = n[lg n + f(n)1 + cn + 0(1) (3 .3 .6)

where f (n) is a strange periodic function of “average value” zero

(see Section A.3 for further details) such that

• I~
(
~

) l < f0 < 2 x 10 7
-

So, discarding the lower bound € = ~~ in (3 .3 .5)

t(p) v . E (-i)~~~ E€P[1g ~~~~~~~~~~
f(~€P)J + 0(1) (~~~~~~~~~~~~~)

since c E (-i)~~ ~~ cancels itself out.

Equation (3.3.7) provides us with the means to visualize the behavior

of trie intersection. To account for the fft€P) terms, we first notice

that

~~ (1)
E€

2 f(z~P) < r0 - E = ~0
• ~m-1 EF (3.3.8)

6 1

which shows that, even without considering cancellations, we can safely

ignore the contribution of the f(
~€P) terms when intersecting sets of

size 0(1/f0) , and thus

t(P) = v . Z (-i)~~~ ~~~P lg EcP ÷ O(mnall) , (3.5.9)
o~~~~i

where O(smail) stands for the periodic terms that we will henceforth

discard.

36

~

— - I

3.4 Overall Bounds on Trie Intersection.

Equation (3.3.9) has fina11~, provided us with a more manageable

bound on the “wasted effort” for the trie intersection algorithm. But

we still have to estimate the time v(P,q) spent verifying that an

arbitrary intersection Q = P
i

fl P
2 ~~~ ~ ~m

is a proper subset of

each set.

Consider a set P and a proper subset Qc P ; Figure 3.~4 .l shows

the binary trie representation for P , the shaded nodes would also

appear in the trie for Q

In order to verify that Q c P we need to

• traverse all the shaded nodes (the trie for Q

• every time that the boundary is reached we need to follow a path to

the element in P that belongs in Q

Trie for Q

::r:::

;lg~~~

Trie for
Average height ig ~~

Figure 3.14.1. A trie for a set P and a proper subset Q,C P .

_ _ _ _ _ _ _ _ _ _ ~~~~~
-

~~~~~~~



- ~~~~~~~~~~~~~~~~~~~~~ -

Thus we can estimate that the average time v(p, q) for random

set P , I~I = p , and subset Q < P , IQ I = q is

v(p,q) = ~~~~ + q ( 1 gp - ig q)

= q(~~~
-
~~+’g~~~) (3.14.1)

yielding

v(P, q) = E ~(p1, q) = m - + q L lg(p ./q) . ( 3 . 1 4 . 2)

• Combining Equations (3 .3 .9) and (3 .14.2) results in

I(P ,q) < v - E (-l)~~ 2cP ig P

o~~~~~~~~~~~~ i

+ 
q[~~~

—
~~~

+ ~ l~(r~/q)]
(3 .14.3)

our final bound for the trie intersection algorithm.

Lastly, let us discuss a couple of particular cases.

Intersecticn of two sets: Equation (3 . 14.3) becomes

I(p1,p2,q) < v p1 1~(1 + + v p2 l~ (l +

+ q(j ~~~ + 1g
Pi.P

2) . (3 . 14 . 14)

It is interesting to analyze the “wasted effort” I(p1,p210)

separately:

for p1 << p
2

: I(p1
,p
2,0) = 0(p1 ig p2)

for p1~~ p2 : I (p1,p2,0) = 0(p1 + p
2

)

for p1 >> p
2
: I(p1,p2,0) = 0(p2 lg p1)

38

.
.•

•

~~
. .

~
.‘

~~~~
• i



In other words, when the sets are different in size, trie intersection

behaves like a series of binary searches and as they become comparable in

size, the intersection time becomes the usual ordered list intersection time.

Intersection of sets of equal size: Assume P = p , and that the

time v to visit a given node is simply m , then

I(~,q) < p . r n .~~~t q . m . r ~~~~+~~~~ ] ( 3 . 14 . 5 )

where

= E (rn)( l)i~~~~~~~
j>2 ~

The factor I~ does not seem to decrease fast enough (see Table 3. 14.2

below) to make the parallel computation of the intersection competitive

with a sequence of intersections (intersect P1flF2 , 
then (p

1nP2)

with P
3 

, and so on) that would very quickly “weed out” the elements

that do not belong in Q - But three-way intersection may be better than

two.

m L r n - L
in rn

2 2.0 14.00

3 1.25 3.714

14 0.98 3.92

5 0.314 14.21

10 0.58 5 .85
20 0.145 8.98

Table 3.14.2. Tabulation of I~ -

39

‘,,
~ 

-
•

~ •~~~
•
~~; 

• - • 

•• 

~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~•• ~~~~ ••  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —~~~~~— -


ii. Hashed Representation and Intersection of Sets.

Searching for an element in a given set can be a very fast operation;

this suggests the following intersection procedure:

Let P and R be the sets to be intersected. Choose the smallest

one (say F), and search for each one of its elements in R

The average t ime to intersect the ab’ vc~ ~~~~ sets is

t(P,R) = C(R). ~~ (1~.0.1)

where C(R) is the average time to search for a~ €~iernent in R . And

every practitioner of the arcane mysteriei of computing knows that hashing

methods require (on the average) only a constant time per search, so

the intersection of two set s P and B of sizes p and r will

require

t(p,r) = c .m in (p , r) . (4. 0 . 2)

So hashed intersection, as we shall call the intersection method loosely

described above, seems difficult to beat: its runniug time is proportional

to the size of the smallest set and the constant c can be made duly

small by choosing a good enough hashed representation.

But not every-thing is rosy: accessing a hash table is usually done

in a random fashion, thus requiring a large working set for the algorithm;

further, the worst case running time can be very bad (as bad as 0(p.q)).

The first part of this chapter deals with different hashed representations.

The second part refer s to the hashed inter~ec ti-rn algorithm, especially to

the problems that we have just stat ed, presenting solutions to them and

discussing some of the trade-offs involved.

140

- - - p -_---— - - — - _

~~~~~~
- _ _ --- _ - - - -

~~~~~~
- - - -_ -•

~~~
-- - •  - _ - -

14 .i Storing the Sets.

This sect ion discusses different ways of representing unchanging set s

utilizing hashing techniques.

In order to represent a set S C U , we need

• a hash array T = (t
0
, t

1
, .. .,tM l )

• a hash function h : U -. [0, M)

and • anunhash ftnction h~~ : [0,M )xT — U .

Now the elements of S are hashed into ~‘ by means of the hash function

h and a suitable collision resolution strate~ r. Enough information about

each element is stored in T so that further retrieval is possible by means

of the unhash function h 1 
-

We will further assume that all the hash functions chosen are - - :

probabilistically “fair”, in the sense that for all x,y€U and for all

a€ [0,M) : Prob[h(x) = a] = Prob [h(y) a] = 1/M

The problem of optimal storage of unchanging sets by means of hashing

techniques has very seldom been addressed (see [Greniewski and Turski 63]

and [ Sprugnoli 77]).  One possible reason for this absence of interest is

that normal hashing techniques are reason ably good for static sets.

We will nevertheless investigate some basic techniques and discuss

some of the extra advantages resulting from the availability of preprocessing.

Throughout this section and as a means of comparison we will use the

same Example 2.0.1 used in Chapter 2. We will also refer to a universe

U = f 0,2~ ) and a subset S = 

~~~~~~~~~~~ 
cU5 . Also, given a hash

function h , hash(h,S) = (h(s1), h(s2),...,h(s~)) will be the hash

sequence of S -

-

•

rT~-~-
~~~~~~~~~~~~~

-

~~~

-

~~~
---  

--

Again we will be interested in measuring the number of bits B
~

(s ,n)

that representation i requires for random sets of size n - Also, the

average retrieval times R
1(s,

fl) (for a successful search) and R.(s,n)

(unsuccessful search) will be presented. Retrieval time will be measured

in terms of the number of hash function evaluations and/or comparisons

needed.

The Basic Representation.

For fast retrieval and simplicity, nothing beats hashing with collision

resolution by separate chaining (see [Knuth 75, Section 14 ]) .  The i-th

entry t~ of the hash table T is of the form

t .  = (tag1, v1, li nk1)

where

tag1 is occupied if ~x €  S: i = h ( x )

is free otherwise;

v1 is an element of the set S (or a special empty value);

link , points to the next element in the chain that hashes to

h(v.) (or it is a special null value).

(Figure 14.1.1 shows the sample set represented in this fashion.)

The size of the table M and the size of the set 
~ S l  = n determine

the load factor

a = n/M . (14.1.1)

142

— - -  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~—~~~•-  - -~~~~~~ ---- - -  ---~~~~~ -- .- - - -  -—-~~~-- - -~~~~- -


- ~~~
-

-
-

- -~

So we have

B1(s,n) = M(s + ig Wi)

= ~ .! (s + ig n - lg a + 1) . (4.1.2)

And the retrieval times are

a 1
R1(s,n) = 1 + -

(14.1.3)

R.j (s,n) = e~~ + a + o(M~~) .

The above retrieval times could be improved by sorting the collision chains

but the improvement is minimal. (Notice that even with a full table,

a = 1 , retrieval requires fewer than 1.5 probes on the average.)

A More Economical and Flexible Representation.

The fact that an element hashes to a given address provides information

about that element that can be used by the unhash function, thus requiring

less information to be stored in the v -fields of the table. Roughly

speaking, the hashing addzess provides us with ig M bits of information

and only about (s - lg M) bits that need to be stored. (This idea is

due to Butler Lampson, see [Knuth 75, p. 518].)

For instance, if the hash function is h(x) = x mod M , then we only

need to store Lx/MJ , since x = Lx/MJ + x mod M , and Lx/MJ requires

only (s - lg M) bits.

There is also a useful trade-off between space and retrieval time:

by separating the hash table and the value fields and storing the values

sorted by hash address we can vary the size of the hash table at will,

changing the retrieval times correspondingly.

143

-~~~• - - -
~~~~~~~~~~~~~~~~~~~~~~~ ~.

- -.~, -
-•-

•
~~

,
• - . -•-~~ - - ~~~•

-. -- .-‘-• ‘.



- -

Two tables are needed: the hash table proper, T , with entries

t. = (link1) 0 < i < M

link, points to the value table (if the entry is free,

link1 points to the first value of the chain

corresponding to the next occupied entry, thus

link. = link.
1 1+1

and a value table, V , lv i  =

y
R 

= (rk)

r is such that if h(x) = I and link. < k < link. ,
1—  i+1

then h 1
(i,rk) x

(see Figure 14.1.2 for an example).

The above representation makes unhashing of a single element a rather

difficult task (since given an entry k in V , the corresponding hash

address i must be figured out by searching T for link . < k < link .÷1 ),

but the intersection aJ~~orithm requires unhashing of whole sets only, and

that is easily accomplished in 0(n) time.

The ordering of the v fields, a simple preprocessing task, is

important for two reasons : first, it eliminates the need for pointers in

the V table and, second, it cut s the unsuccessful search time by about

half, since the search in the collision table is now a search on an ordered

list.

The space requirements are

B2(s,n) = M(lg n) + n[ s - ig Ml

= n[s - (lg n)(l - + ~~~ a] . (14.1.14)

14 14

— 

~~~~~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _

-
—-——

~~~ ~~~~~~~~~~~~~~~~~~~~
--

~~~
-—

i tag. V . link.1 1 1

0 occ. null

1 0cc. 130 null M = n = 9 a = 1

2 free 232 null h(x) = (97x) mod 9
3 0cc . 3 null

—1h (i) = v.
‘-4 occ. 25 1

5 0CC. 200 null B
1

(8 ,9) = (l + 8 + 1 4) x 9
6 occ. 51

_______ = 117 bits
7 free 21~9 null ~
8 occ, 50 nii1~l

Figure 4 .1.1: Hashing with separate chains.

T V

(link .) (rk) element

0
_ _ _ _ ~ 5 (25,

1 — 10
—

50, = 9/5

- -

() :~~I:kT :°:r:÷i

I’ Q (~~~~)
B

2
(8,9) = (5+1) x3 (for T~

1 37 (189, + 9 x 6 (for V~
149 2149) 72 bits

Figure 4.1.2: Separate hash and value tables; abbreviated

value fields.

145

I:%~~
.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ‘1 
~~~~- ~~~~~ —  -- -- - --~~~~--—--—-- ~~~~~~~~~ — ~~--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


~ ‘-

The retrieval times count the average number of accesses to both T

and V , and are

a -1
R2
(s,n) = 2 + + 0(M)

-a (4 . 1.5)

R~(s,n) = 2 + - + O(Ma)

(see [Knuth 73], Exercise 6.14-35).

Coping With Worst Cases: Persistent Hashing.

Everybody knows that one of the best ways to punish-a computer scientist

is to make her/him meditate about the incredibly horrendous worst case of

hashing, without the protection of probabilities. So it might seem that

little can be done about worst cases, but a recent result in probability

theory together with the availability o± preprocessing helps in the case

of static sets.

Hashing fits into the traditional probabilistic model of throwing n

balls into N urn s (the hash table), each ball falling into any urn with

uniform probability 1/I-I - The hash function acts as a randomizing agent

that distributes the n elements of the set more or less uniformly. The

problem is that the maximum nunTher of balls falling into an urn can be

as high as n - Here is where a result that follows from research done

by Persi Diaconis and David Freeman [Diaconis and Freeman 78] is useful.

Theorem D. In the occupancy model defined above, let a = n- ’~-: and

a << ig n . Let I-10
(n) be the maximum number of balls falling into

any single urn, then

— - -

~
—i-

~ --
~~~~

-

~~~~~

--

~
--

~~~~ 

------ 
——--w—---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-•

u r n  Prob [O < M~(n) - m
*(n,a) < 2] = 1

n

where m*(n,a) o( 1~~~ ) 
.

In short, the worst case of hashing is almost always going to be

less than the logarithm of n

But what happens if not? i- or example, a hash function like h(x)  = x mod

• yieldsaworst case of n f r  t~~of thc form ~~= [a + i:.:i:~~< i < r A

The answer is: change the ha~~ ur~ t io~ . If we have a good set of

hash functions we can l~ k~e~ tr~ i~ g until wo b~t ~~e tha Is  gcod

enough.

And thus, persistent ha~hi~ -: given a fas~ily H of hash functions

and a set S , randoYJ :; choose a hash function h € H • How hash the set

— 
S with h and check for the worst case; if this turns out to be worse

than in n then pick another }i~ €l j at random and repeat the procedure

until the worst case condition is satisfied.

Given the above procedure, we could assign the ‘truly randomizing~

blue ribbon to the family H if , for any set S , independently random

hash sequences hash(h1,S),
hash(h2,

S),... are produced where the hash

function s h1,h2, . ..  are randomly chosen within H . Not ice that in

this case the expected number of trials (of differen ; hash functions)

would be just 1

Further research is required to characterize the behavior of

practical hash families with respect to persistent hashing. (J. L. Carter

and Mark N. We~nan [Carter and Wegman 771 , developed a related idea:

universal classes of hash functions, for the usual case of changing sets.~

47

- , T ’ ~~~~~~~ ~~~~~~~~~~~~~~~~~ - 

— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— --- ----- --

~~~
-—- .- _ -~~~~~~~~~~~~~ . - -

-~~~~~~~~~~ —-~~~~~~ --—~~~~~~~~
-

~~~~~~ 

1

And finally, recursive hashing.

The previous paragraphs presented a technique (persistent hashing)

to partition a set S into subsets of at most in I S I  elements. The

recursive application of persistent hashing to each one of the partitions

of S until reaching an acceptable number of collisions is what we will

call recursive hashing. (A particular instance of this technique can be

found in [ Sprugnoli 77] . )

For instance, Figure 14.1.3 shows the representation of Figure 1~.l.2,

with the first collision list also hashed.

Notice that the bounds for space and average retrieval time are at

least as good as the second representation considered, but the worst case

can be considerably improved.

An interesting open problem is to investigate the trade-off: in-solved

in choosing load factors for the hash tables at different levels.

14.2 Hashed Intersection.

Time Bounds for Multiple Set Intersection.

In order to intersect m sets, we simply intersect the two smallest

ones, then the resulting intersection with the third smallest, and so on.

So assume the sets 
~~~~~~~~~~~ 

of sizes P =
~~~~~~~~~~~~ 

and that

the sobs are ordered by size so that 
~ 
p2 ~ ~m 

Let also

= F1fl P2 fl... n P
m 

be the intersection (~~ Q( = q) , and W~ = F
1 

-

be all the elements of that do not belong in the intersection.

148

- 
, —

~ - -~; :~rT’—’ -
~’~

-
~

- ~~~~~~~~~~ - - ~~~~~~~~--~~~ -—- -- - - - — -~~~~ 
— •—



r’~ ~~~~~~~~~ - - 

—
~~ ~~~~~~~ T~~~~~~.__ - 

— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 

-

~~~~

- -

1 •— ~ 
io (51)

2 
- 

.— (232)

3 °— H 
0 (3)

14 o— 37 (189,

5 149 2149)

h(x)  = x mod 5 for this table: h 1(i,k) = Srk
+i

0 
- 

o— -
~ 10 (14f) . . . 200

- 1 (5) - . . 25

2 ..... 2 (10, . . .  50

3 .— ——.~ 6 26 ) . . .  130

14 _ 
_

h1(y) = y mod 14 for this table:

h1
1
(i,k) = (14rk+i) x5~~O = 2Or k + S i

Figure 14.1.3. An example of recursive hashing.

‘*9

~ 
• .,

-

~~
- ‘ 

~~~~~~~~~~~ 
-

—--— -~~~~ -- - - -~~~~~~~- -~~- ----~~~~~~ -- — ‘ - -~~~~~—-~~~~~~~ -

— - - — - —~~~--- u- .-- —— — —- - — -

According to our discussion in the first chapter, the average

intersection time can be analyzed as

i(P,q) = t(~,q) + V(~’,q) (14.2.1)

where t (f’, q) : average wasted time (time to verify that

W1fl W2 f l . . . f l W = Ø)

and V(P ,q) : time needed to verify that each element of Q

belongs to each one of Fi~
P2~ • • • ~ Pm

In order to evaluate t(~,q) we use the hypothesis that the

subsets W. are random subsets of Ti- Q , that is:

for all x s U-Q : Prob [x€W .] =

i

~ W1~

i
, (14.2.2)

which means that the expected sizes of the intersections W
1

and

will be

1W11 1W
2 1

E (IW1flW I) = x x i’ - Qi2 Lu - Q i lu -Q i
or in general

E(Iwln w 2 n...n
~ k I) =

(U IWH
)

(u_Q 1
_k+

~ (14.2.~)

and since

<
IW ~~~ I~~~~ IQ I l~~i

l u - Q i — i U -Q i + I Q I
—

IUL
—

2~

we get

E(lWlnW 2 n . . . nW kl) < 2~~

l< ~~~~~<k
(pi/2

s
) = 1 2<~~<k

(p./2
5
)

(14.2.14)

50

~~~~~~~~ - ---~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~



So now we are ready to evaluate

t(T’,q) = L E ( L W l r W ,
~f l . . . f l Wk I )  • R ( s ,Pk÷l ) ; (14.1.5)

l<k Km

that is, the k-th step of the intersection requires the time needed to

retrieve each element in W1PW 2 fl • . .  f l W~~ from Wk+l ‘

t (~~
, q) < C~ 

. p1
. 

~~ fl (p~~/2
5 ) (L .: .6~

2(i(k

where C* = maximum average retrieval time (succes::u~ or unsucco~-::ul~

over all sets.

The sum in ( 14.2.6) is easily bounded by

TT (~~~~/~T~~ ) 
~~ 

k-i

l-(k<m 2<i<k - l- -- k < m -•

1 (14.2.7~— 1 - Pm/2

yielding

t (~,q) < C~~~P 
. 1 (L . : . E )

— 

1 / 2
S

m

The time needed to verify the intersection equals the time needed

to intersect Q and each F .  , thus

V(~,q) < C • m ~ q (L2 . 9 ;

where C = maximum average successful retrieval time over all sets.

So we obtain

I(P,q) < C .p • + C - m -  q . (‘*.2.lC~
1 - p/ 2

51

- 

- -~~~~~~~ ~~~~~~~~~~~ :- - ~~
‘
~~ .~~~~

:. - -
.

—

~

--—--—-- - -

~ 

- - - - - - ~~~~~~~~~~~~- -~~~~~--~~~~-- - - ~~~-—-~~~~~~~—--~~~~~~~~ - - ~~~~~~~—~~~~- - -  -



r
Finally, we should notice that if the sets to be intersected belong

to a given family p of sets (the indexes of a library, for instance)

we can define the global maxima

C(p): maximum successful retrieval time over all

sets of p

C*(p): idem, both successful and unsucces sful (14.2.11)

p = max [ I P L / 2 51
P € p

so that

I(P,q) < c~(p) p —~~~~_ +  C(p)m q (14.2.12)— 1 i_ p

that Is; the intersection time is linear on

. the size of the smallest set to be intersected;

• the product of the number of sets and the size of their intersection.

The Working Set Size.

In most practical cases the sets to be intersected will be stored in

a hierarchical memory system (some kind of paging scheme, a convent ional

file structure, etc.) and it is crucial to minimize the total number of

transfers between memory hierarchies (the overall working set size).

In the case of trie intersection, the algorithm run s through the

tries in preorder. By sequentially storing the trie nodes in that order,

a simple preprocessing task, the working set is minimized since once a

given block of information (a page or a physical block in a file) is used,

it will not be required again. ~ut hash tables are accessed in a. basically

random fashion so that the same block of information might be required at

different times when computing the intersection.

52

~ 

~--. -

~~~

- -.-- . - - -

If no preventive measures are taken, the number of transfers is going

to be exactly the quantity t(~,q) evaluated before, Equation (14.2.10), ~iIt ” i

the constants C and C* taking the value of the average number of

transfers required for a retrieval operation.

But suppose we want to intersect the sets P1 and P2 (stored

using hash functions Il
l

and h
2

): if we managed to look for the

elements of P1 in the same order that they are (or would be) sequentially

stored in P2 , then we would have minimized the number of transfers

involved. This idea can be utilized in two ways:

(i) Sort P
1

using the set of values h
2(P1)

as sorting keys. Now,

may have been preprocessed so that an orderly (according to h
2)

traversal minimizes the number of transfers (for instance: the

second representation considered in the previous section does it).

But a solution like this introth~-~-s a sorting step with the

logarithmic factor attached to It.

(ii) Make h1 and h
2

define compatible orderings, in the sense that

h1(x) < h1(y)
iff h

2
(x) < h~~(y) . (For instance, define a unique

global scrambling function h*: ii [0,1) , and if h
1: U -. [0,M~)

then h . (x) = L h
*(x) *M i j .) Such a strate~~r eliminates the possibility

of choosing a better hash function by “persistent hashing”, though

we still may use a scheme like “ recursive hashing” with the h. ‘ a as

first level hash functions for all the sets.

There is yet another way of dealing with the working set problem:

reduce the size of the data structure used to compute the intersection .

A technique to do so is analyzed in the next subsection.

53

-

~~~~~~~~~~~~~~ ~~~~~~~~~~~ 



The Use of Hashed Maps.

A hash function h : Ti [0,M) induces a partition of the universe

U into M equivalence classes. Given a set S , h(s) will be the

h-map associated with it. (Normally h(s )  will be represented as a

bit string of M bits.)

The important point about hashed maps is that if a given element x € U

hashes into h(s) , that is h(x) £ h (S)  , then the probability of x

belonging to S is larger than the usual probability I~ l/ (u l
Thi s last fact was originally exploited by Burton H. Bloom [Bloom 70]

in a method for reducing the number of accesses to secondary

storage when dealing with very large hash tables. (Current research by

Robert W. Floyd [Floyd 77] also deals with hashed maps.)

The intersection of two sets P
1 

and P2 may now be computed as

follows:

(I) Hash the elements of P
1 

using h
2 

. Let P~ be the

subset of P1 that hashes into h2 (P2 )

(ii) Perform the usual intersection between P~ and P2 - (Notice that

the subset P
1 

- P~ that does not hash into h2(P2) , does not

intersect P2

If 
~2 

is the probability of falsely accepting x , that is

~2 
= Prob[h

2(x) 
c h2

(p
2

) and x~~P2]

then the first step will weed out a fraction (1 - “2~ 
of the elements

of P
2 

that do not belong in the intersect ion, thus reducing the work

in Step (ii).

514 

4- —•  — — — ...———.- -• - - —.—•—— • — — • , • - - -— - - 
~~~~~~~~~~~~~~~~~~~~


t ~~~~ ‘— .,.— —--—-— •-——— —~ -~~~~—~- —~ —

r - - ~~~~~~~~~~~~~~~~~
•__ _ _ _ -- - -- -- -

-

~~~~~~~~~~

So let us now take a closer look at hashed maps. Given a set S

we will associate with it a “composite hash function” h consisting

of d functions h ),h
(2), . . ., h~~ hashing into 7,’~= [0,M)

An element x hashes into a subset of ~~~, the “hash set” of x

h(x) = [h~~~(x) 1 1< i <d ) (14.2.13)

and the hashed map of S is

h(s) = U h(x) . ( 1 4. 2 . 1 1 4)

XE S

(Notice that for an element to belong in S , its hash set must be

included in h(s)

Yy€U : h(y) ~~h(S) y~~S .)

We estimate the probability ~ of falsely accepting an element x -

Let ~ be the probability of an element of ~ not to belong in h(s)

then

~~ (1 - d/M)~ e~~~~
M 

. (4 .2 .1 5~

The probability of a given element x being accepted is the probability

that all of h~’~(x) belong in h(s )  , thus

- L~L / Lul . ( 1 4. 2 . 16 )

Now, the probability of x belonging to S , ~~ / ~ , may be assumed

for all practical purposes to be I~L / L u l  << ‘ so

~ (l_ e
_
~~

/M
)
d 

= (l_e ~~~)
d 

(14.2.17)

where a = n/M is the load factor of the hash map.

For a given load factor a
0 , 

there is a value of d
0 

that minimizes

y to an optimum 
~~

55

•. ~~~~~~~~~~~~~~~~~~~~~ 

‘ -
~~~~~

:-
~~~~

L. - _~~~~~ _ _ _ _ ~~~~~~~ • • ~~~~~~ _ _ _  _ _ _  - _ _ _ _ _



a0 d0 = 1n2
• (14.2.18) -

= (1 - e_in 2 0  
= 

-d
0 

= (0.6l9)~~~° 

- 

-

For instance, with three hash functions, d0 = 3 , and using about 14.3

bits per element of 5 , a
0 = 0.23 , we get y

~ = 1/8 . If , on the other

hand, only one hash evaluation is used, the probability increases to

about 0.21 (still using the same load factor, a = 0.23 ) .

In order to estimate the time I
7
(~,q) needed to intersect m sets

of sizes P = <
~1’~ 2’”’~m~ 

, we may use exactly the same analysis that

yielded I(~,q) in the first part of this section, obtaining

i~(~,q) < C~ (p) p1 ~~~

—

~~

—- + C ( p) ~1 y
r-- + C(p) mq

* * 1
(Ch(p) + y c (p) ) p1 i— + C(p)mq .

wh~ r c~ C(p) and c*(~ ) are maximum average number of retrieval

tries as in ( 14.2. 11)

ar~ C~ (p) is the average time required to check whether h(x)

belongs in a hashed map.

(The term C (p) p1 y/(1-p) is a bound on the time needed to reject the

elements falsely accepted by the hashed maps.)

Two important characteristics of the us~ of hashed maps ma,- be

singled out :

First, by checking the hashed maps first, it is possible to obtain

a good estimate of the size of the intersection (the estimate will have
rn-i .

an error of at most p1 
- y ) . This could be an important advantage

56

- - - -*--- - - - -
~~~~

_
~~

•
~~~~~~~~~~~~~~~~~~~~~ * 

-

_  ~~~--- - - ---~~~~~~~~ - - -
~~~~~

- --- -~~~~~~~

in interactive query systems (to produce answers like: “Your request

covers at most 38 papers. Do you want them listed?”).

Second, the riashed maps are small compared with the full set

(1/a bits versus rou~h1y s bits per set element), so if the r ight

kind of hash function is chosen for the hashed maps, a sensible reduction

in the number of transfers from secondary storage may be obtained. (One

possib i lity: a uni que global hash function for all the hashed maps, as

discussed in the previous subsection.)

The Worst Case, Revisited.

We have already discussed the worst case of retrieval time for

individual sets. Now it is time to look at the worst case when computing

the intersection of our beloved m sets
~~~~~~~~~~~ (as usual, sizes

are = 
~~l’~ 2’ ”’~ m

> ).

Having a bound on the worst case for retrieval yields a worst case

for the intersection

W (~) = p. • in 
~k < p1(m-1) in p~ (14.2.20)

l<K-’zm

that is still rather terrible.

One solution consists in ordering the traversal through the different

sets by adopting a global hash function, and storing the collision lists in

order. Assume now we want to intersect P
1 and P

2 
. The algorithm

proceeds as usual except that a “last visited element” pointer is kept

up-to-date. Whenever a new element of P
1 

has to be searched for, the

last visited element is checked : if it belongs in the same collision list

as the element being searched for, the search starts with the “next-to-last

57

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

L — - -. -

— -
--

~

--- -

~

---— ---

~~~~~

-

visited element”. This scheme (extended to simultaneous intersections

of m sets) guarantees that

• w(~) < (14.2.21)

since no element in the sets will ever be visited twice.

And (14.2.21) is not such a bad worst case (similar to the worst case

for sorted sequential representation), so we close this chapter happily.

58

- - - - —. - - - - ~~~~



5. Conclusions.

About what has been presented.

Thi s work presented two different methods to store and operate on

sets, one based on tries and the other on hashing techniques.

In both trie and hashing based representations, the storage requirements

were very good: less than wh at would be needed by sequentially allocating

the same set and very close to the theoretically minimum requirements.

Sets were considered static and a certain amount of preprocessing

time was assumed to be available. Trie building reduced mainly to a

sorting process. In the case of hashed representation, s~mie kind of sorting

was used but, also, preprocessing time could be used choosing a convenient

hash function from a pre-existing family.

In general the representations here presented have a very good

average retrieval time (logarithmic for the t”ie structures and constant

for the hashed representations). The worst case is the logarithm of the

size of the universe for the trie structures, and. by means of preprocessing,

may be reduced to logarithmic in the hashed case.

Very few of the representations allowed for easy update procedures.

On the assumption of Fets being static, updates were supposed to be

processed as a rccreation of the whole set.

And f~.iially intersection. Trie intersection turned out to have good

average running times when the sizes of the sets to be intersected axe

different. On the other hand, the algorithm behaves like the usual

ordered list intersection for sets of similar size. The algorithm proceeds

by an orderly traversal through the data structure, and. this fact minimizes

the overall working set (provided the tries have also been stored in an

orderly fashion).

59 

— -- — -- -  -- ---- -- -- - - ~~~~~~ - ““



Hashed intersection proved to be the fastest gun in the West: its

wasted effort is t ruly minimal (bounded by a constant times the size of

the smallest set to be intersected, and independent of the number of sets

being intersected). But some problems had to be faced: a random access

pattern to the data structure that could pessiinize the working set, and

the possibility of a horrendous worst case. Techniques were presented

to get around these latter problems, though it is not clear how much the

solution to the problems could affect the excellent run time.

About what has not been presented.

Perhaps the greatest absentee in this work has been the discussion

of set union algorithms, and we will briefly cover them here.

Both representations permit the implementation of efficient union

algorithms. It must be remarked that by union we mean “destructive”

union, where one of the sets is replaced by the union of itself and other

sets. (If the result is going to be generated anew, then there is not

much to be gained over the ordered list union.)

In the case of trie representation, assume we wish to compute the

union of two set s P1 and P2 , and store the result in P1 . The

algorithm proceeds by traversing the nodes common to both tries. When

reaching a subtrie in P
2 

that is empty in P
1 

, the algorithm simply

appends it to P1 and proceeds. This procedure has exactly the same

complexity as the intersection (since only common nodes are visited).

So on the average the time needed to compute the union of two sets of

sizes p1 and p
2 

will be given by

6o

~~ -: ~~~~~~~~ ‘ - ~~~~~~~~~~ - - -



~ — —. . -

~ ~~~~~~~~~~~~~~~~~~~~~~~

( P1
’-~

~ion(p1,p2) = 
~~1 

1~~(1 
+ + 

~2 
lg~~l + (5.1)

Notice that the union modifies the data structure, so none of the

preordered representations could be used. (The reader is referred

to [Brown and Tarj an 77] for a more complete discussion of the union

operation and another implementation of it.)

In the case of hashed representations, a union algorithm is also

possible provided some sort of overflow handling representation is

adopted. In this case the average time required is simply

Union(p1,p2) = c . min(p1,p2) (5.2’)

but it is not clear whether the above statement is fair sinc’2 ~~~ outcome

of the union is a “deteriorated” set (with a larger load factor and,

perhaps, a worse worst-case retrieval time). In any case, some way of

revamping such sets may be needed for multiple set intersection.

And now ... for something completely different: practical considerations.

This work presented a set of techniques and discussed them, but

before using them in the real world many choices have to be made. Let

us assume for a while that we wish to implement a data base by means of

inverted files.

Choosing a representation and tuning it to the computer system

characteristics is the first task. Important factors for this decision

aro the machine addressing and bit handling facilities (do I pack nodes

or do I respect byte boundaries?’) and the memory hierarchy (tow big a

bucket? What about the expected working set Size?”

61 

-
~~~~~~~~~ ~~~~~ 

— -- —
~~~~~~~~

— — -



- -~~~~-- - - - -~~~~~~~--  - ---------- --- - -

A second major set of decisions is performance related. Space-time

trade-offs (what load factor in a hash representation?). Or what price

for updating? (batch the updat ~s or leave some slack in the dat a

structures and reorganize the data base every so often?) Or decide

about extras (like hashed maps). Or real-time requirements (use some

kind of persistent or recursive hashing in order to improve the worst-

case retrieval?)

A final choice consists in the collection of statistical data to

verify and improve the assumption made: How big are real-life intersections

compared to the sets they come from? What does a query look like?

Enough. Let us go back to Academia.

?urther Research.

Some of the problems here presented deserve further analysis.

• Characterize randomizing families of hash functions and further

investigate persistent hashing.

• Investigate recursive hashing. What space-time trade-off s are

worthwhile? How can the worst case be improved (assuming preprocessing)?

• Given a data base organized by means of inverted files, what is the

best way to process general queries (including intersections and.

unions)? ‘p-that kind of “planning aids ” (like hashed maps) should

..e stored in the data base to help decide how to ~xocess a given

H 62

- - 

,

~~~~ ~~~~~ ~; 

- --- ~~~~~~~~~--—~~~ --
~~~~~~~~~~~~~.- -- - - -—— ~~~~~~~~- - -‘ -~~~~~~~



— ---
~~an~~’--- -—- 

~~~~~ 
— -----‘-‘

~~~~~~~~~~~~~~ - - - -

Appendix A.

This appendix investigates the as~,mptotic average behavior of

binary tries.

Section A.l discusses the number of nodes A2(s,n) of a trie

representing a random set of n elements from a universe [0,2~) -

Section A.2 discusses A2
(s,n) further, in particular the fact that

A
2(
s+l,n) > A~(s,n)

and its limiting case when s grows indefinitely.

The rest of the appendix uses the universe U = [0,1) ,

and the average set within it. Section A.3 presents the basic counting

e-~uation. Section A .14 counts nodes with two nontenuinal siblings (two-

way branching). Section A.5 computes a bound for the space needed to

store pointers (P
5(s

,n)) in representation 5 (of Chapter 2). And

finally, Section A.6 discusses the growth of A2(s,n) 
for increasing

values of s

A.l Counting Nodes: ~~(s,n) -

Section 2.1 defines the quantity A
2(s,n) a

s the average number of

nodes of a trie representing a random set 5 defined by

= n , S c U [0 , 2
S

)
(A.l.l)

and Prob[S = [a1,a2
, . . .,a~~] = 1 / ( 2~ )
for any [a1,a2, .. .,a~ ) C U

The equation that defines A
2
(s,n) is

63

- - -  ~~------

- -
“ - ~~~~

.
-
-

-- ‘ -



-~ —~~~ - — — -
~~~~ 

~~ - -~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~ Ni_ ~ -

--

—
-— - - -—— ---

~~(s,n) = (1_
~~nO

_ E
~nl

)(l_E
~sO
)

~~~~~~~~~~~~~~

+ ~ ‘4. ~ )“ ~ ‘~~~~ ~
I 

[A2(s_1,p )+A2(s-l,n-p)] 
(A.l.2)

p (2

(since (2
s1)(2

S
l)/ (

2S) is the probability of a partition (p,n-p) ).

Defining

B(s,n) = (~~~ )
~~ (s,n) , (A.l .3 )

and given the s~~~etry of (A.1.2),

B(s,n) = ~~~~~~~~~~~~~~~~~~~~~~~~ 
+ 2 ~~~(~~~~~)B(s-1,~~) . (A.l.14)

The generating function

B5(z) 
a B

5 
= ~~~ B(s,n)z

ri

— 
- = 

n�2~~~~~~ 

2

B0(z) 
a B0 

= 0 
(A.1.5)

can be expressed in terms of

G5(z) 
a G

5 
= ~~~ (2:)z

n 
= (l+z) 2 - l -2 5z

n >2
(A. 1.6)

F5(Z) 
a F

5 
= E (2: )n = (l+z)

2

and iterated

614 

— —. — — -

.~~~ 
-

- —----—-- —-- ---—-- - ——  —- ~~. —- —~~~~~~--—- - --—‘
~~~~~. —- --- —-- — 

-
‘•

— -
-;L.i_ - -

— - - - -~~~~~~~ —-- - - ------ —— —— — .——~~~~--- -—-—-- — _______

-‘-,-‘ - - - - - — — -~ -‘ ;---~~
_

~ -
-
-_~~

_

B = G + 2F Bs 5 s—i s—i

= G5
+ 2 F

~~i
G51

+ 2
2
F51 F62 B52

= ~~ 2~~~F F . . . F . G
O< j<s s—i s—2 s—~ s—J

- 5
~~~~~~~

= ~ 2~ (l+z)~ [(l+z)2 -l- 253 z]
O< j< .

yielding

A
2
(s,n) = -l - 

O<j<s 
[0i(2

s~2s~ i ) + 25(2~~
2 )]. (A.1.7)

f A.2. Bounds and Asymptotic Estimates for A
2(s,n)

Equation (A.l.7) is of no help in estimating the number of nodes.

So, first we will bound A2(s,n)

Lemma A.2.l. A
2
(s+1,n) > A~(s,n)

s+1
Proof. Given a set F in U~~1 [0,2 ) , ~~ n , define its

prefix as the set in U
5 = f0,2~ )

• pref(P) = [Lx/2J I xcP )  . ( A.2 . l )

1:0w, the set P can be uniquely generated from pref(P) by

(i) appending both a “0” and a “1” to the (
~~I - ~pref (Pfl) elements

of pref(P) such that

x1€ pref(P) and 2x1,2X1+ l E P  (A .2 .2 )

(ii) appending either a “0” or a “1 ” to the rest of the elements of

pref(P) , according to the corresponding element in P .

65

- - --~‘•.•- ~~~~~~~~~~~ •~~~~~~~~~~ -- -- -“—- -- - -4*_r~~~ — ~~~~~~~~~~~~~~~~ •.4
‘ - ,,:~ ~~~~~ -

‘ 
~~~~~~ . ,~~ -•‘- -


--- -- -
- -— -- - -

~
--- ---- - --- —- -------.- - --

~~~~~~

If we now look at the trie for P , Figure A.2.l, we can see that it

has the same node structure as pref(P) with the addition (for each of

the elements defined in (A.2.2) above) of a branch that goes

all the way down to the bottom level. Element s like x2 , the rest of

pref(P) , do not add any new nodes.

So if we partition U
5~1 

into classes according to the size of the

prefixes, with

p(s+l,n,k)  = probability of (
~~l - ~pref(P)~ k) (A.2.3)

we can express

A2(s
+l,n) = L p(s+l,n,k)[A2(s,n-k) 

+ k Jump(s,n-k)] (A.2.l
~)

k

where Jump(s,n-k) = average distance between a terminal node

and the bottom level s for a trie of (n-k) elements

in U5 = [O,2~) (depicted as branch “ J” in Figure A.2.l).

In order to use Equation (A.2.14) we need the following:

Claim A.2.2. A
2(s,n-l) 

÷ Jump (s,n-l) > A~(s,n)

Proof. We can generate (n-i) copies of each set P , (P c U5 , = n)

by taking each one of the elements x in P and adding it to the

complementary set P - [x)

Thus

A2(s,n) = A
2(s,n-1) 

+ a(s,n-1) (A.2.5)

where a(s,n-l) is the average increment when adding

a new element

and certainly

-- 
_



r 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

pref(P) P

I J f.. This branch has to be added

2x1 2x
1
+l

(1) x1 becomes [2x1, 
2x
1+l)

(ii) x2 
becomes x~ = 2x~ +a (a = 0 or 1)

Figure A.2.l. Generation of the set P in U5÷1

67

- •  - S - -  - - -~~~~~~~ -

~~~~~~ ~- : ~~
-
~

-
~~~~~~~~~~~~~



-- -— - - - - -- --

a(s ,n-1) < Jump(s,n-l) , (A.2.6)

since at most (n-i) of the (2
5
-n-f-l) elements that may be added will

force the addition of a full branch to the bottom level. (See Figure A.2.2.)

Equations (A.2.5) and (A.2.6) yield the claim. ~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Cas e L~ /2J = LX/2J

level s
x

Figure A.2.2. Adding an element to a set of size (n-i)

I

A new element like a does not increase the node count at all.

A new element like ~ will produce a branch all the way to the bottom

(extrem e right) only if L~ /2J = LX/2J .

68

- -~~~~ ~~~~
_ - _ ;

‘
~~~~ ~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~ 

-

-

_ _ _ _ _ _ _  -- -- ---- ---- -- - —--- - ---- -~~- --- -- --— -~~--—-



- 
-

Going back to our lemma, it is easy to see that

A2(s,
n-k) + k Jump (s,n-k) > A~(s,n) (A.2.7)

given the Claim and the fact that

Jump (s,p) > Jump(s,p÷l) s

Equation (A.2.14) becomes

A2 (s+ l,n) > ~~~ p(s+l,n,k)~~ (s,n) = ~~(s,n) , (A.2.8)
k

since ~ p(s-4-1,n,k) = 1 . 0

k

Once we know that the average number of nodes grows with the size of

the universe, we need to know what happens in the limit, when the universe

size goes to infinity.

The probability, part(n,p,s) , of a set P , I~ 5 I = n , having

exactly p elements less than 25 1  
may be expressed as

part(n,p,s) = 
(
2:i
X~~~~~) 

= _ _ _

2
s1

- 
(n \ ~s

2
-n)~ (2

5_1
)~ (2

5_1
)1 (A 2 9)— 

~~ ~ I (2~~ (2
s_l

~~)~ (2~~~-n+p)~

which has the limiting distribution

1~~ part(n,p,s) = (fl ) 
~~~ 

- (2 5 l) P (2
s_l

) n_P
= . (A.2.lo)

And that happens to be the same probability distribution of the infinite

universe U = [0,1) presented in the Introduction and extensively covered

in [Knuth 73, Sections 5.2.2 and 6.3).

- I

-i- - ~~~~~~~~~~~~~~~~~~~~~~~~
_
~*‘~1&_ __ — -,

--

~

- - -

~

-- - -~~~~~~—— -~~~~~~~~~~-~ ~~~ ~~
--

~~~~~~~~~
—

- 
~~~~

-—

~~~

— —

~~~~~~~~~~
~ -

r -, - - - ~~~~~~~~~

Hence

Lemma A.2.3. lini A
2
(s,n) = A (n) , where A(n) is the average number of

nodes of a trie representing a random set of n real numbers in U = [0,1) .

We move on to study A(n) and related topics.

A.3 The Universe of Real Numbers.

This section simply recapitulates some useful results presented in

[Knuth 73, Section 5 . 2 . 2] .

The family of equations

x = an
+ 2

k>2 2
fl

x
k (n > 2)

—

(A.3.1)

L x~ = x1 = 0

has solutions

=

k > 2 (~~
)(l)

k :I~
= a~ +

k>2 (~~
)(l)

k

2
k-l

1
(A.3.2)

where = L (n) (1)k
denotes the binomial transform of the sequence (ak) . Some of the most

popular ones are

=
~
‘n0 a

1
(l-a)’~

~
~~nl

(n)a
n

= (f l) (_ a) m (1_a) 1 l m (A .3 .3)

(n ’~ = (1)
n~~nm

70

~~~~~~~~ 1~-~~
-
~ ;

_ 
‘ 

~~~~~~~~~~~~~~~~~~~~~ -~


The equations above define many properties of tries representing sets

in Ti = [0,1) . In particular the number of nodes

A(n) = ‘5 n0~~~nl~~
2 E (

~~
)
.2

_n
.A(k) (A.3.14)

k>2

has

an =
~nO~~~~~~

and thus

(~~
-l +k)

A(n) = l_
~~nO

_
~~nl

+ E (n)(1)
k

2k-l 1

k
- (n ‘~ (-1)

+ (
n ~ (-1)

k> 2 ’4 ~~2 -1 k>2 ’ / 2 -l

= 1 - U~ + V - (A.3.5)

The functions U~ and Vn presented above have the refreshing

property of possessing asy~iptotic expansions:

Un = n l g n + n (~~~
4_

~~~+ f _i(n))+O (l)

(A .3 .6)

Vn = n l gn + n (1~
_
~~

_
~~~

_ f
o(n_l)) + 0(1)

The functions f 1(n) and f0(n) (
defined in the answer to Exercise 5.2.2-146

[Knuth 73]) are periodic functions of lg n , and are extremely small:

f
1(n) < 2x10

7

6

(A.3.7)
and f0(n) < 2xlO -

71

-
- o~~~ -~~~~ur — .- .~~~~~~~~

._ . _ 1 _ ~~.~
_.~- i—

~~~~~~~~~~ ‘(~~‘~ ‘
- 

- - ‘~~~4- -  ,~~~‘
— - - -

—

~

-—- -~~~~~~~  ~~~~~~~~~~ -~~~~~~~-~~~~~-~~~ - - - - - - --



Furthermore both functions have “average value” zero in the following

sense: let f be either f
1 

or f0 , then it turns out that

f(n) = f(lg n mod 1) and for random n , lg n mod 1 is uniformly

distributed (see [Knuth 69; Section 14.2.14]).

Since almost all the quantities that we will be dealing with have

asymptotic terms of the form n.f(n) , it is very difficult to give

theoretically valid asymptotic estimates, though for all practical

purposes the n.f(n) terms are negligible.

In any case, and for precision’s sake, the concerned reader should

regard many of the expressions below (and. their counterparts in Chapter 2)

simply as good estimates of the leading term of the corresponding asymptotic

expansions.

Throughout the rest of the appendix we shall use the catchall term

O(sm all) to denote terms of the form 0(n.f(n)) -

So Equation (A .3 .5) become s

A(n) = 
~~~~~~~~ 

O(small) + 0(1) . (A.3.8)

Given the discussion above we shall assume

A(n) = ~jf~-~ . (A.3.9)

A. 14 Counting Nodes with Two Nonterminal Siblings.

This quantity, y
~ ,

is used to bound P14(s,n’- in Chapter 2

(Equation 2.1.13)).

A node with n descendants has two nonterminal subtries whenever

none of it s subtries has size either 0 or 1

So the quantity an in Equation (A.3.1) becomes

72

-
- ‘ ~~~~ - -

- - — —— - —~~~- —— ~~ - -—- —
~~

--—— -— -~~‘--— ~~~— -— —p -
~~

— --- ---
~~~

-- - ——
~~~~~~~~~

—-‘—.~~
--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



1~~

an = 1 - 2(Prob[subtrje of size 0] + Prob[s~~trje of size 1])

+ [corrections for n = 0,1,2]

(1 n \  1
(A.14.l)

that transforms into

a = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= 
~n0 

- 2
i~n(2

fl~l l)( 1) + . ( A . 1 4 . 2 )  -

So the solution is

= a - ~ (n ~(1)
k 2

l_k
(2
k_l

l)(k l)
fl n 

k>2 t~ k /  2k-1 1

+ 
~~ (n\1 (k\J~l)

k

k > 2  ~ k / 2 2 ) 2k-1 1

= a + + ( A . 1 4 . 3 )

where

= - ~ (n)~~1~
k 
2
1
~~ (k-l)

k > 2

= E 

(
~~)k(~~~~

)k-1 + 2 E (n)(
1~)k

k>2 k> 2~~~~ 
2,

=

= n 2l-n 
+ 2m n  

- 2 (A. 14.14 )

73

- - ~~~~~~~~~~~~~~~~~~~~~ - - ‘ ________—- .--~~~~~~~~- - - - —

_ _ _ _ _ _ _ _  _ _  -~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 



The second sum is studied in [ Knuth 73, Exercise 6.3-19].

22 = ~~ K(n,2,2) = ~ ~~~~~~~~~~~ ÷ O(small) + 0(1) . ( A . 1 4 . 5 )

Finally

= - al-n - n 2
l-n 

+ 
~~ ~n2 

+ 
~n1 + 

~nO + n 21-n + 21-n - 2

-‘ 

- 

+ ~~ + O(small) ÷ 0(1)

= .—a.-- + O(small) ÷ 0(1) (A.14.6)

and we shall adopt

y = ~ j~~
-

~~ 
O.36n . ( A . 1 4 .7 )

A.5 Space Requirements for Pointers.

Equation (2.1.19) defines the space xn 
needed for pointers under

representation 5. But the value of an (1- - 

~ni~ 
(2÷5) lg n does

not allow for an easy solution. So we will take an easy way out:

approximate an 
as

an = nO nl~~2~~~[~~~~~ 
- (A.5.l)

so that

= (2+ s) ( X n
_ Z

n ) (A.5.2)

where is trivia.l].y

z = ~~~~~~~~~~ A(n) = 2 
(A.5.3)

-
~~ (].n 2)

and

714

—~~~ - ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -
~

--

~

-- - ---‘,- -

~

-

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ -


_ _ _ _ _ _

H (n ~~
Xn = (l

~~~flQ~~~nl
) ~~~~~~~~ 2 

k > 2  fl
Xk - (A . 5 . 14)

Given that

k > l  (
n 

)( i) k Hk = -

we obtain

= ~~~~~ [(~~~~~~l H1+ = ~~~~~~~ -k). (A.5. 5 )

JbIJ thus

(in 2)x = ( l-~~00 -~~01)H~ + 

k > 2  
~ 

)( l ) k 

2
k l

k

l

= ( l_
~~no

_
~~n1)H n + V0 - E0 

(A.5. 6 )

where
1

k > 2  
( n ) ( l) k 

2k-1 1

- ~ (n- i\1 (1)
k 

+ 
1 ~~~~ (n \ 

( 1) k
- 

k>2 ~ 
k )k 2

k-l 1 n k>2 ~ k ) 2k-1 1

U
= En 1  

+ ( A .5 . 7 )

So 

= 

U~ 
= ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= lg(n: ) + ~~ - + O(small) + 0(1) - (A . 5 . 8)

4 

75

- . 
- -~ :4-~~K~~~..W~-’ - - - -~~~~~~~~~~~~~~~~~~~~~~~~~~ -‘-“-~

.. 
- 

- --a .-.- - . ~~~~~~~~~~~~~~~~~~~~~~~~

_______________________________ -- - ~~~~~~~~~~~~~~~~~~~~~ - --~~~.— ——--— - -~~~~~~-.



,.
~ 

- 
- 

~~~~

-

~~~~~~~ 

~~~~~~~~~~~~~~~~~~~ - -,---—-— ~—-—. -.-~ -~~- _
~~~~~~ - ---..~~~-,—.---- —-—

Replacing into (A.5.6),

(~~~~~ 
2)x = (l_

~~nO
_
~~nl

)H
fl
+ fl ig n+n (~~~~ 

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= (l-F ~ 0-~~~1)H+
2

~~~

-

~~

-

~~~~~

+ O(small) + 0(1) . (A.5.9)

Yielding

x =
2

2 n + 0(ln n + small) - (A.5.1O)
(ln 2)

And finally we will adopt

F = (2+ 5)r 2

2 ~ - 2 = (2+~) - 2.96n . (A.5 .1l)

L (1n 2) (1n 2) J

The above result is interesting: if pointers are stored as offsets,

and encoded according to representation 5, only a constant amount of

— space (per element in the set) is needed.

A.6 More About the Relation Between the Finite ari d Infinite Universe.

We would like now to answer the question: how fast does A
2(s

,n)

approach A(n) ?

Although at first glance, Equations (A.l.7) and (A.3.5) do not appear

to be similar, we can demonstrate that they actually have the same

asymptotic behavior for most practical values of n

76

-

- ‘ :~: -i
~~~~~~~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~ - ----— - - - - - - - —~~~~~~~ - - -~~~ -~~~ -- ~~~~~~~~~~~~~~~~~~ 
- .- _



r~~~~ 

- -

Let us first obtain a lower bound for A2
(s ,n) , transforming

Equation (A.3.5)

~~(s,n) = 2~ -1 - [
~

( 2~ ~2~~~~) + 25(2 -2~~~ )]
( 2

s 
- 2s-j

= Z 2~ +l~ ~~~ ~~i ’4 .  
n

O<j<s O<j<s (2~

(2
s 

- 2s-j ~

- 
~~~ 2~ 

~. n-i I (A.6.l)
O<j<s (2)

We can bound the second sum since

(a-)~~
=

o<~~~n~i (1~~~~~~~
< (i~~~~~)~

(A.6.2)

and thus
(2~~-2~~~ ~

L 2’~
“ n I

< ~~ 2~~(l- 2~~~~)~~ . (A . 6 .3)

0<j<s (2S)
O<j<s

n

For the third sum in (A.6.1) notice that

= a-n+1 0<~~~n~l
(

- < a-n+l -
~

)

n~l (A .6. 14)

- _ - . - . -

77

- - _ _ _ _ _ __ _

!~~~~~~~~~~T

-

-
~~~ 

— - - -

~~~

(2~ -2~~’~\

~ 2~
‘4 n-l I

< 2~~
“ ~ (12

_
.J)
n_l

(2 ‘
~ 2 -n-I-i O<j<s

n(l +
n-l) ~ (l_2 _ 3

)~~
1

~ 2 -fl+i O<j<s

~ (l~2~3)
n
~
1

+ • - (A.6.5)
O<j<s 2-n

Finally therefore

A2(s,n) > L [2J 23(12 -J)
fl

(12~J)
n~l) - ~~~~~~ ÷ 1 - (A.6.6)

2-n

Now we will transform A(n) as given by Equation (A.3.5)

A(n) = ~ +

k>2
(n)(l)

k

2 - 1

1+ ~
(
n)(l)

k
(k l) E (i

~~~ i

k>2 O<j~~~2 /

= 1+ L 
~- [ ( n= 1)( l) k~l - (n~~(l)k](2-~)

k-l

O<j

= 1 - E [n 
~ 
(
n;l 
)(2~~)

k 
+ ~~

O<j k>i k>2

= 1 - ~~ [n[(l~2 3)
0
~~~~l) +

O<j

1 + ~ [2~
~ 2J (1~2 3)

fl~~0(1~2 J)
f h

] • (A. 6 . 7)

O<j

78

—-i_
~~~

--- - ----—- r — - ~~~~
- - -

~~~~- i’—’- ~~~4 ~ ~~ 4 -~ ~~ - - - 

-

Comparing Equations (A.6.6) and (A.6.7), and recalling that

A(n) > ~~~(s,n) , it is easy to see that

A(n) > ~~(s,n) > A(n) - ~~ [23 23(l2~3)
n

n(1 2~3)
n
~
l
I - -

s <j 2-n

(A .6 .8)

And we can bound the sum since

~ [2~ ~~~~~~~~~~~~~~~~~~~~~~~
s<j

= ~ (n)(l)
k
(kl)

~k>2 s< j \2 I

~~~~ 

(
~~)k 2.(2

_ (5+1)
)
k_]

~
k >2

= 2n E 

(
n_l)[2_ (s+l)]

k

k> 1

< 2n Z~ 

(n_l)k 
[2-(s+1)]

k

k> l

= 2n. [exp
(

~~
r_1
j )  -‘1 = o(~~) 

. (A . .9)

Thus

A(n) > A2(s,n) > A(n) - o(4~
_ ) - (A.6.lo)

And since A(n) 
~~~~~~ 

we may conclude that

A2(s,
n) = A(n) (l - o(_~_)) . (A.6.u)

79

-- -
~~~~~~~~~~~

c._
~~ ,* -

_ _   -- --~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - --- --



F -
~~ 

- -- 
~~~~

- -

~~~~~

-—— - - -  —

References

[Bloom 70] Burton H. Bloom, “space/time trade-offs in hash coding with

allowable errors , ” Communications ACM 13, 7 (July 1970), 22-1426.

[Bobrow 75] Daniel G. Bobrow, “ A note on hash linking, ” Communications ACM

18, 7 (July 1975), 1413-1415.

[Brown and Tarjan 771 M. R. Brown and R. E. Tarjan , “A representation for

linear lists with movable fingers,” Proc. Tenth Annual ACM Symp. on

Theory of Computing, to appear.

[Carter and Wegman 771 J. Lawrence Carter and Mark N. Wegman, “Universal

classes of hash functions,” IBM Research Report RC 6687, August 1977,
l3 pp.

[Coffhian and Eve 70] E. G. Coffhian Jr., and J. Eve, “File structures

using hashing functions,” Communications ACM 13, 7 ( July 1970),

1427-1432, 1436.
[Diaconis and Freeman 78] Persi Diaconis and David Freedman, “The

distribution of the mode of an empirical histogram,” Technical Report

No. 105, January 1978, Department of Statistics, Stanford Univers ity.

[Even and Rodeh 78] S. Even and M. Rodeh, “Economical encoding of commas

between strings,” Communications ACM 21, 14 (April 1978), 315-317.
[Floyd 77] Robert W. Floyd, personal communication.

[Greniewski and Turski 63] M. Greniewski and W. Turski , “The external

language }~ IPA for the URAL-2 digital computer,” Communications ACM
6, 6 (June 1963), 322-3214.

[ Knuth 681 Donald E. Knuth, The Art of Computer Progranming, vol. 1,
Fundamental Algorithms (Addison-Wesley, 1968).

[Knuth 69] Donald E. Knuth, The Art of Computer Programming, vol. 2,

Seminumerical Algorithms (Addison-wesley, 1969).

[Knuth 73] Donald E. Knuth, The Art of Computer Programming, vol. 3,
Sorting and Searching (Addison-Wesley, 1973).

[Maly 76] Kurt Maly, “Compressed tries,” Communications ACM 19, 7
(July 1976), 1409-1415.

[Morr ison 68] Donald R. Morrison, “PATRICIA - Practical Algor ithm To
Retrieve Information Coded In Alphanumeric,” Journal ACM 15 (1968),

5114-5314.

80



[Nicklas and Schlageter 77] B. M. Nicklas and G. Schi ageter, “Index

structuring in inverted data bases by tries,” The Computer Journal

20, 14 (November 1977), 321-3214.
[ sprugnoli 77]. • ~enzo~Sp~~gno]4, .‘~~erfect. hashing functions: a single

probe retrieving method for static sets,” Communications ACM 20, U

(November 1977), 8141-850.

81

~~~-: ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
-

- -—- ——- - - -~~~~~ ——-— — -- - —- —--~~ - -— ~~~~~~~~~~~~~~~~~~~

