
AD—A065 270 BELL HELICOPTER TEXTRON FORT WORTH TEX US 1/2
OPERATIONAL LOADS SURVEY — DATA MANAGEMENT SYSTEM. VOLUI~ II. S—— ETC (U)
JAN 79 R B PHILflICK. A L EUBANKS DAAJ02 77 C—0053

I UNCLASSIF IED BHT—299—099—8 71—VOL—Z USARTL —TR—7*—52B NI.

I
,

IC Ci iOU
D~ Ei K! 0 DC
t .1~1.Ii

lIIH~2

I ~ OIO~0
a IIllI~1(111’ .25 IiliI~ Inn~

MICROCOPY RESOLUTION TEST CI-I*T
NATIONAL BUREAU OF STAt4DARO S-I9 63-j ~

1 T ” ~~~~~ r~~n -~r

~ LEVEL~Aoe~ s A

OPERATIONAL LOADS SURVEY - DATA MANAGEMENT SYSTEM: Volume II - Systems Manual

Richard B. Philbr,ck
Alfred L. Eubanks
Bell Helicopter Textron

4~
, P.O. Box 482

Fort Wort h, Texas 76101

D D CJanuary 1979
~~~~~~~~

I~~~~MAR 6~~~
79

~~ Final Report [I
ç~~~L5U U1~

Approved for public release7~distribution unlimited. I

• 
~~ 

Prepared for

APPLIED TECH NOLOGY LABO RAT ORY
U. S. ARMY RESEARCH AND TECHNOLOGY LABORATORIES (AVRADCOM)

~~ Fort Eust is, Va. 23604

ç~5 .
79 0 3 0

A - — 
_____

I



- -‘

~~

‘

~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--

~~~~~

I

APPLIED TECHNOLOGY LM3ORATORY POSITION STATEMENT

This report has been reviewed by the Applied Technology Laboratory, US
Army Research and Technology Laboratories (AVRADCOM) , and is considered
to be technically sound.

This program was initiated to design and implement a computer software
system for data management of the Operational Loads Survey test data
base, allowing the user to select the data to be retrieved, to specify
certain processes by which the data may be reduced and/or analyzed , and
to choose the mode by which the data will be presented. User options
include interactive or batch processing with output options of printing
and graphic displays using Tektronix and Calcomp devices. 

•

This program was conducted under the technical management of D. .3.
Merkley of the Aeronautical Technology Division.

- DISCLAIMERS

The findings in this report crc not to be construed as an official Department of the Army position unless so
designated by other authorized documents.

When Government drawings , spec ifications , or othe r data are used for any purpose otts.r than In connection
with a definitel y related Government procurement operation, the United States Government thereby incurs no
ras pons ibi l ity nor any ob li gat ion whs tsoe ver; and the fact that the Government may have formulated, furnieh.d.
or in any way supplied the Said drawings , specif ications , or o ther data is not to be regarded by implication or
oth~rwisp as in any manner licensing the holder or any other person or corporation, or conveying any rigfns or
permission , to manufacture , use , or tell any p~tentnd ‘nvention that may in any way be related thereto.

Tr3d— names cited in t h is report dn not constitute an nfficial endorsement or approval of the use of suds
commercial hardware or sof’ware

01 -POSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.



r - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Unclassified ‘

SECURITY Cl. ASSIFICATION OF THIS PAGE (Wk . b~~. &.s .,.~ ..- --
~~~~

— -- - -
~ ~~~~~~~ 

.-
~~~ 

- - • - - -

f ‘
~~~ wsr~’r 

READ R4STRUCT1ONS

Q 

~ rups , UV’...UJR~~I~ I ~~I isJrI r U~~ BEFORE COMPLETU4G FC.RM
12 GOVT ACCESSION NO 3. RECIPiENT ’S CATALOG NuMeER

I ~ USARTL TR-78-~ ,~~~
~~‘ f~ .IL~Lt ~~ ‘~~~ it ‘

~~~ 
TYPE OF REPORT & PERIOD COVERED

~~?ERATIONAL LOADS SURVEY - DATA MANAGEMEW I
~ YSTEM .

‘ - —
~~~~~~~ Technical Report

~T 1 
~~~~~~~~~~~~~~~~~~ 

Systems Manual , ~~~~~~
_ _ _ _ _ _ _ _

Richard BiPhilbric~~~ (‘/ .~ f DAAJp’2_77_C_~~~~(‘~.4
Alfred L~~Euba~~~J~~

_ _ _ _ _ _ _ _ _ _ _ _ _

9. PERFORMING ORGANIZAT ION NAME AND ADDRESS 10. PRO ELEMENT. PROJECT . TASK
AR A A,e K UNIT NUMBERSBell Helicopter Textron /

Post Office Box 482 622 lL2622~ 9AH76
Fort Worth, Texas 76101 ,,.~~~~

00 I]. ER
II. CONTROL LING OFFICE NAM E AND ADDRESS I Ii
Applied Technology Laboratory ~~~~~~~~~ fJant .~~ 1J79 ! -

US Army Research and Technology Laboratori. ~~ NuI~BER OF PAGES

Fort Eustis, Virginia 23604 126 /‘7 ct~.~Z14. MONITORING AGENCY NAME C ADDRESS (U &u.~~.i ~~~ j ~—’— ’”-- ‘!~~~-~
_ IS. SECURITY CLASS. (

Unclassified
IS.. DECLASSIFICATIONTDOCNGRADING

SCHEDULE

IS. OISTRICUTION STATEMENT (of ml. R.p.rt)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of IA. ab.f roct .nI.r.d In Block 20, ft dltf.,wl froo. R.po,t) (j~ fj D flfl—fl~f
U MAR 6 LOT9

IS. SUPPLEMENTARY NOTES

~~16U U~1Volume II of a two-volume report. B

IS. KEY WOROS (Canlino. en ,.,~~.. old. if n.c....1y ..d Id .n i if y by block rn~ ibst)

Helicopters, Data Bases , Data Reduction, Data Management ,
Computer Graphics, Interactive Graphics, Signal Processing ,
Mathematical Analysis.

20. ASSTRACT (Conilflu. ~ . r c ~~ o .tBo it n.cet.a? 1d ldsnll~ ’ C, block m b.’)
- The Operational Loads Survey/Data Management System (OLS/DMS)

was designed and programmed as a computer software tool for
data management and processing of the Operational Loads Survey
(OLS) test data base. With limited modification , the OLS/DMS
will accommodate other large, time based, test data bases.
The system transfers selected test data to a large, direct
access disc file and maintains the data on a semi—permanent ~~~~~~~~~~~~~~

F ORM
,

e
~~~~~DO i j *M~~~~ ~473 ED,TION OF ? NOVSSISOUSOLE?E i 

~~~~~~~~~~ 
Unclassified

SECURITY CLASSIFICA T ION OF fl4IS CASE (esMil Dab Ios. ’.~~

C~~~ f Z
79 U$ 01 O5~

--

.4

-. t _ - • _ - - ::~~:~~- .~~
-
~~~~ ~~~~ ‘~~

- 
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ —~~~~~~~~~~~~~~~~~~~~~~~

- •, Unclassified
SECURITY CI.AUIPICATIOIS OF THIS PAGI(RM Dab. ~~i..wa

\ 20. Abstract (Continued)
basis. Data are retrieved from this file, processed , and
displayed interactively or in batch. Plot output is generated
on a Tektronix 4014 or an incremental plotter (e.g., Calcontp).

A small sample of available processing options includes ampli-
tude spectrum, harmonic analysis, digital filtering, blade
static pressure coefficient, and blade normal force coeffi-
cient. This program will accommodate data from multiple sen- *sors simultaneously for processing of functions with two geo-
metric independent variables (e.g., chord and radius).j Output
options include printout, single or multiple curve X~~ plots,contour plots, and pictorial representation of~~.~~ 1ñensional
surfaces. User input is free field with a~roi’~ diagnosedwhere possible. Prompting for av&1I~ble command input isoptiona1~

C This report..4s in two volumes. Volume I is a user ’s manual
and Volume I~°”is a systems manual for assistance in program
maintenance, modification , and/or installation.

~~~ -i~~~~ vDCt~ 
StCtiOfl 0

0
j u~• - • •

-

BY --‘- -——-—-— “

~ST BlJi~~IMMU~Ij1T ~OES
Dial. L 3fld/O S!~~~

p4~
Unclassified

SECURITY CLAS SIFICATION OF THIS PAGEIIRI.,, DMa Int., .~ 

—- -,ii—,~~~..~~~, —--.
——— 5’

5 - - -

~

-

~

, — -

~

_ ____



• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- --- - - - —5•~ —--.- — .- - ~~~~~~~~~ - _______ - - -

PREFACE

The AH-1G Helicopter Aerodynamir and Structural Loads Survey
conducted under Contract DAAJO2-73-C-0l05 was awarded in June
1974 by the Applied Technology Laboratory , U.S. Army Research
and Technology Laboratories (AVR.ADCOM) to produce a comprehen-
sive base of helicopter test data. In particular, measure-
ments were taken of parameters such as airfoil surface pres-
sure , leading-edge stagnation point, local flow magnitude and
direction, blade accelerations , bending moments , and the
attendant responses in the control system and airframe. The
output of 367 transducers was recorded continuously and simul-
taneously . Over 72,000 separate functions of time were digit-
ized, recorded on digital tapes , and delivered to the Applied
Technology Laboratory . The results of the above-mentioned
contracted effort are documented in Report USAAIIRDL-TR-76-39’.

The Operational Load Survey Data Management System was deve1-~oped under Contract DAAJO2-77-C-0053 awarded in September 1977
by the Applied Tech 1gy iTaboraf~i~~~(ATL) .  The software
developed under this contract is primarily designed to process
data taken during the AH-1G Helicopter Aerodynamics and Struc-
tural Loads Survey and other similar test programs. Documen-
tation prepared under this contract consists of two volumes.

F Volume I provides user instructions and information on the
analytical methods used in the software . Volume II , Systems
Manual , details the various programming considerations.

Technical program direction was provided by Mr. D. Merkley of
ATL. Principal Bell Helicopter Textron personnel associated
with the current contract were Messrs. R. B. Philbrick, A. L.
Eubanks , and W. R. Dodds.

1Gerald A. Shockey, Joe W. Williamson, and Charles R. Cox,
AH-1G HELICOPTER AERODYNAMIC AND STRUCTURAL LOADS SURVEY ,
Bell Helicopter Co., USAANRDL Technical Report 76-39, Eustis
Directorate, U.S. Army Air Mobility Research and Development
Laboratory, Fort Eustis , Va. , February 1977, AD A0369l0.

3

- -



TABLE OF CONTENTS

Page

P REFACE 3

LIST OF ILLUSTRATIONS 7

LIST OF TABLES 9

1. INTRODUCTION 10

2. FILE CREATION PROGRAM 12

2.1 MASTER FILE STRUCTURE 12
2.2 FILE CREATION PROGRAM FLOW 21
2 .3  NON-BHT DATA FORMATS 28

3. PROCESSING PROGRAM 33

3.1 STRUCTURE AND FLOW 33
3.2 PROGRAM INITIALIZATION 33
3.3 USER INTERFACE 35

3.3.1 User Interface Routines 36
3 .3 .2  User Input Encoding 39

3.4 PROCESSING 60

3.4.1 Processing Flow 60
3.4.2 Scratch Files 64
3.4.3 Info File Retrieval 66
3.4.4 Replacement/Addition of Analysis

or Derivation Routines 69

3.5 COMMAND SEQUENCING 70

3.5.1 Command Sequencing File 70
3.5.2 Command Sequencing Routines 70

3.6 MENUS. . . . . . . . . .  72

3 . 7 GRAPHICS . . . 73

3.7.1 Tektronix/Calcomp Plotting
Interface 7 3

3 . 7 .2  X—Y Plots 74
3 . 7 . 3  Contour Plots 75
3 . 7 . 4  Surface Plots 75

5

ii
_ _ _ _ _ _ _ _ _ _ _ _ _ _  

/ :  j



- - --

TABLE OF CONTENTS (Concluded)

Page

3.8 DATA RETRIEVAL 76

4. UTILITY ROUTINES 77

4.1 DIRECT ACCESS 77
4.2 STRING HANDLING 78
4.3 SORTING 80

5. TRANSPORTABILITY CONSIDERATIONS 

5.1 DIRECT ACCESS 81
5.2 CODING VARIATIONS 81
5.3 COMPUTER WORD SIZE PROBLEMS 82
5.4 SPECIAL ROUTINES 82
5.5 GRAPHICS 84

6. REFERENCES 86

APPENDIX A - FILE CREATION PROGRAM COMMON 87

APPENDIX B - PROCESSING PROGRAM COMMON VARIABLES . .  95

APPENDIX C - JOB CONTROL LANGUAGE (JCL) 124

6

, ~~~~~~~~~~~~~~ - 

- - - - ,-.- -- ~~~~~~~ - - 5•— -- — - .~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~--  — 5. - , ~~~~~~~~~ 5-- - - 5 - - . 5 ~~~~~~~~~~~~~ - •,- -



-- ~~~~~~~~~~~ .~~~~~~~~~~~ ‘ - .  ~~-._•--.—-——~ ~~~~~~~~~~~~ 
.- --.5 — - - - - -

LIST OF ILLUSTRATION S

Figure Page

1 Absolute record #1, master directory record . . 13

2 Relative record *1, (partition offset + 1),
partition initial record 13

3 Relative record #2, (partition offset + 2),
partition access record 14

4 Directory relative record #1 (partition
offse t  + directory offset  + 1) ,  counter

• directory initial record (more than 127 F
counters assumed) 14

5 Directory relative record #L (partition F
offset + directory offset + L), counter
directory continuation record with
termination 15

6 Directory relative record #1 (partition
offse t  + directory offse t  + I) , item code
directory for counter 1c 1 (counter entry
#2 , Figure 4) 17

7 Partition relative record #K (partition
offset  + K ) ,  information record for item
‘P’, counter ‘C’ 18

8 Master File structure 20

9 File Creation Program flow diagram (first
part) 22

10 File Creation Program flow diagram (second
part) 23

11 File Creation Program flow diagram (third
• part) 24

12 General flow of processing program 34

13 User interface flow diagram (first part). . . . 37

14 User interface flow diagram (second part) • . . 38

15 Example of part of the command entry tree
structure 40

7

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I
-- -~~~-——- ---- --— - •- - - -

— ~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~

LIST OF ILLUSTRATIONS (Concluded)

Figure Page

16 Structure of typical ‘HELP ’ message 41

17 Typical IENTOP instruction option sequence   5].

18 Processing flow diagram (first part) 61

19 Processing flow diagram (second part) 62

20 Scratch fi le record assignments 65

21 First scratch file record 67

22 Structure of a data directory block 68

23 Structure of command sequence file 71

8

~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LIST OF TAB LES

TABLE PAGE

1 PROTOTYPE EXAMPLE FOR SUBROUTINE STRNGF . • . . 29

2 USER INTERFACE TRE E STURCTURE FOR ENTRY
SPECIFICATION 43

3 USER INTERFACE INSTRUCTION MATRIX 52

I

I

9

-.
5, 

• ‘ .:. ~ .. ~~~~~~~ ~~~~~~~~~~~~~~~~~ • -

-5 -- — .. . ~~~~~—



—-5 ~~~~-5- - -w-~ 
-.-- -

~~~ - - -- ~~~--_ ~~~~~~~~~~ —

1. INTRODUCTION

This volume documents the source code for the Operational
Loads Survey - Data Management System (OLS/DMS) and should
assist the programmer/ai~.tlyst in modification, maintenance,
and installation of the system. However, the reader must be
familiar with Volume I of this report before reading Volume
II , since many structural features, concepts , and terms for
the system are introduced and defined in Volume I. Volume I
describes the purpose, capabilities and analytical techniques
of the system, and provides instructions for system commands .

The CLS/DMS source code is organized , written, and commented
so as to minimize the difficulties of software maintenance and
modification. This document was written both to further
clari fy the flow and structure of the system and to provide
specific assistance for certain kinds of system modifications .
Section 2 of this volume documents the File Creation Program
and also explains the detailed structure of the Master File.
Section 3 describes the Processing Program, including inter-
pretation of command steps, processing, and graphics. Various
utility routir.cs that are used throughout the programs are
described in Section 4. Appendixes A and B list the meanings

-
• for each of the common variables in the File Creation Program

and the Processing Program . This information is essential to
understand and maintain the code. Appendix C gives the Job
Control Language and/or Time-Sharing Option commands to com-
pile, edit, and execute the code .

Two specific kinds of system modifications are documented with
particular detail . Modification of the File Creation Program
to accept tape formats other than the BHT Ground Data Center
(GDC) standard tape format is discussed in Section 2.3.
Interface requirements for replacement of a processing module
are discussed in Paragraph 3.4.4. When a new processing
module is to be interfaced or when a replacement module
requires new user instruction specifications, a modification
of the user interface tree structure is required. This
structure is discussed in detail in Paragraph 3.3.2.

Transportation of a large software system from the computer
system it was designed for (in this case an IBM 370/168 or an
IBM 360/65) to a different computer system can be a difficult
and time-consuming process. In coding the OLS/DMS, a careful
attempt has been made to minimize these difficulties and
assure the transportability of the software. The code is
written entirely in FORTRAN and use of IBM extensions to
American National Standard (ANS) FORTRAN have been limited.

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r ~~~~~~~~~~~~~~ • - - —~~~~~~~~———~
—--—. 

~~~~~~~~~~~~~~~~~~~~~~~ 
-- ——- --~ -~~~~ -- - ~~~~~~~~~ • -~ - -~ - - -~~- - - ~~~~~ - - ... _ -

However , requirements for various system c..apabilities have
made necessary the use of certain system, hardware , and
installation .iependent code. All such code is identified
and explained in Section 5. In addition , system, hardware ,
and installation dependent code is identified in the program
source statements with rows of stars, ,* ‘ , above and below the
nonstandard code .

11

-
~~~~~ ~~~~~~~~~~~ 

-~-—• •~~~~~~~~~~~ - __ -5__ _ _~~ _p5 __~~~~~~~ -.5-rn- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--5- 

~ - -- -~~~~~~-—--



- . .

2. FILE CREAT ION PROGRAM

2.1 MASTER FILE STRUCTURE

The Master File is a large direct access file containing re-
cords that are individually addressable by number and are 1024
bytes long. A numerically contiguous sequence of these re-
cords forms a partition and is referenced by an offset speci-
fied in the master file direct~~y, which is always absoluterecord 1 (Figure 1).

The first four bytes of this directory are four characters,
which when set to ‘$$$$‘ indicate that the entire file is
initialized so that any record may be referenced directly.
The next entry is an integer giving the total available size
of the Master File in records. The third entry is eight bytes
long and is a string called the superword, which is the key
for the Master File Utility Program to list or delete parti-
tions without individual passwords or to restore the whole
Master File from tape . Following the superword in the direc-
tory record is a sequence of 63 possible 16-byte partition
specifications . The first eight bytes of a partition specifi-
cation form a string containing the partition name. The next
four bytes form an integer giving the offset for the parti-
tion. The final four bytes give the length of the partition
in records .

The initial record for a partition is specified by adding one
to the partition offset (Figure 2). This record contains in-
formation about the partition as a whole. The user’s name is
contained as a string in bytes 1-16. In bytes 17-32 is the
password which the user must have to modify or replace the
partition. The third entry is the directory offset, which
when added to the partition offset gives new offset for rela-
tive addressing of the partition directory. Entries four and
five specify the partition directory size and partition data
area size respectively in records.

The next sequential record contains the date and time , in
string form as indicated by Figure 3, that the partition was
last accessed.

The first directory record comes after the data records in the
partition and always contains the initial record of the coun-
ter directory (frequently the only record in the counter
directory). Figure 4 illustrates what this directory might
contain if there were more than 127 counters in the partition .
Each counter entry includes a counter followed by relative

12

-

~ 

5- 5 - -- - - - - 5~~~~~~~~ 5~~~~~~~~• 
~~~~ - - - - •  - 5 - --


F~~~~~
T _iL-~ - - -_,__ ~~~ -5_ _____ 75 _ 5 - -

-5.5-—
-~-5 5_~n~ 5 . _ —

ENTRY BYTES CONTENT S PARTITION ENTRY

1. 4 —4H$$~~ IF INITIALIZED
2 4 T~ TAL RECORDS
3 8 SUPERWORD
4 8 PARTITION NAME
5 4 P?IRT~~~ ON OFFSET
6 4 PARTITION LENGTH

1.90 8 PARTITION NAME
191 4 PARTITION OFFSET 63
192 4 PARTITION LENGTH

Figure 1. Absolute record #1
master directory record.

ENTRY BYTES CONTENTS

1 16 USER NAME
2 16 PASSWORD
3 4 DIRECTORY OFFSET —
4 4 DIRECTORY SIZE
5 4 DATA AREA SIZE
6 8 DATE CREATED

e.g. 12/15/77
7 8 DATE CHANGED

e.g. 12/19/77

Figure 2. Relative record #1 (partition offset +1)
partition initial record.

H 13


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —.. - - - -

CONT ENTS
ENTRY BYTES _____________________

I DATE LAST ACCESSED I

1 8 I e.g. 12/20/77 __—
~I TIME LAST ACCESSED

2 8 e.g. 10.32.30

Fiaure 3. Relative record #2 (partition offset+2)
partition access record.

ENTRY BYTES CONTENTS COUNTER ENTRY

1 4 COUNTER
2 4 ITEM CODE DIRECTORY 1

RELATIVE LOCATION
3 4 COUNTER (— C)
4 4 ITEM CODE DIRE~TORY 2

RELATIVE LOCATION (=1)

253 4 COUNTER
254 4 ITEM CODE DIRECTORY 127

RELATIVE LOCATION
255 4 0 => CONTINUATION
256 4 COUNTER DIRECTORY CONTINUE -

— 
RELATIVE LOCATION L

Figure 4 . Directory relative record #1 (partition offset +
directory offset +1) , counter directory initial
record (more than 127 counters assumed) .

14

-

~ 

—---~~~~~~~-~~~~~~~~ --5 -5 -,- ,—--~~~~~~~~~ --5--rn~~_ _ _



ENTRY BYTES CONTENTS COUNTER ENTRY

1 4 COUNTER
2 4 ITEM CODE DIRECTORY 128

RELATIVE LOCATION I
3 4 COUNTER
4 4 ITEM CODE DIRECTORY 129

RELATIVE LOCATION
5 4 -1 > END OF COUNTERS -

255 4 -1 ~ > ENDED
256 4 0

Figure 5. Directory relative record #L (partition offset +
directory offset +L) , counter directory continuation
record with termination.

15

-
. -

~~~
- .

~~~~~~~ 

‘~~~~~
-
~~~~ : 

~~~~~~~~~~~~

-— ~~~~~~ - - 5 - -- - - ~~~~~— - -~~~~- -~~~ -- -~~~~~~~~~~~-~~~~~~~ --
- - -

~~~~~~- ~~~~~
-. - .

~~~~~
- --~~~--- -- -



- 
- 

:~~~.
- -~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~ 

location for the first (possibly only) record of the item code
directory for that counter. A negative counter signals the
end of the counter directory as shown in Figure 5.

The structure of each item code directory is identical to the
counter directory as shown in Figure 6. In the example , the
directory contains only three item codes ( and thus uses only
one record), but an item code directory could contain multiple
records and hundreds of item codes as shown for the counter
directory . Each item code entry includes a relative location ,
which points to an information record in the partition data
area. Thus , only the partition offset is added to this
pointer to obtain the information record location .

The information record for an item code/counter data stream
contains information about that data stream and marks the be-
ginning of data . The f irst  data record follows the informa-
tion record sequentially and all data records for that item
code/ counter pair follow sequentially and contiguously.
Figure 7 lists the contents of the information record . Some
of the values in this record are necessary for processing the
data stream and others are only present for information pur-
poses .

The first four information record entries are available for
future use if a program is written to condense partitions
which contain unused areas where time histories have been de-
leted. These entries refer back to the corresponding item
code directory record and position within the record. Entry
five , the data stream length, must be divided by the number of
points in a record (adding one for a non-zero remainder ) to
arrive at the number of records in the data stream .

The number of data values in a record is obtained from the
number of bytes in a record, currently 1024 , and the data word
length, which depends on whether the data are calibrated or
uncalibrated as stored (entry 6). A calibrated value is
stored as a four-byte floating number, while an uncalibrated
value is stored as a two-byte integer, giving 512 uncalibrated
data values per record or 256 calibrated data values per
record . Uncalibrated data can be calibrated using entries 27
and 28.

The sample rate (data points/second) of the data stored is ob-
tained by dividing entry 23, the initial sample rate on digi-
tal tape , by entry 24 , the sample rate reduction factor. The
data type, entry 25, indicates whether the data are time
history or mm /max data. 

- 5- -5 -.-. - - - ---5-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



p.— 
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

—---5 —5 5—- -~~~ -~ -~~~~~~~~~~

r - - ~~~~~~~ --
~~~~~~~~

- .—-

ENTRY BYTES CONTENTS ITEM CODE ENTRY

1 4 ITEM CODE
2 4 DATA INFO RECORD 1

RELATIVE LOCATION )
3 4 ITEM CODE
4 4 DATA INFO RECORD 2

RELATIVE LOCATION
5 4 ITEM CODE (F )
6 4 DATA INFO RECORD 3

RELATIVE LOCATION (-K).
7 4 -1 —> END OF ITEM CODES -

255 4 -1 => ENDED
256 4 0

Figure 6. Directory relative record #1 (partition o f f se t  +

directory offset + I), item code directory for
counter ‘C’ (counter entry #2, Figure 4).

17

b 

~~~~~~~~~~ ~T
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

— - . ‘— ‘~~~~~v - - - - - - V — 5=.~~~~~~~~~~~~
-,
~ ..___-- 5— vt~~_~_

ENT RY BYTES CONTENTS

1 4 ITEM CODE
2 4 COUNTER
3 4 DIRECTORY RECORD LOCATION
4 4 SEQUENCE POSITION IN RECORD
5 4 DATA STREAM LENGTH (DATA POINTS)
6 4 1=CALIBRATED , O~ UNCALIBRATED
7 4 START TIM E
8 4 STOP TIME
9 4 ALIGNMENT OFFSET (SEC)

10 4 ADDITIONAL OFFSET (SEC)
11 2 TRACK-BAND WORD
12 2 ANALOG FILTER RAT E CODE
13 30 ITEM CODE DISCRIPTION
14 6 ITEM CODE UNITS
15 4 REFERENCE VALUE (REF)
16 4 DELTA CAL VALUE (~~CAL)
17 4 CAL COMMAND (VCC)
18 4 CAL SHIFT VALUE (VCS)
19 4 REFERENCE VOLTAGE (VREF)
20 4 INTERCEPT VALUE (B)
21 4 DIGITAL FILTER CUTOFF (Hz)
22 4 DATA RATE REDUCTION (SKIP) FACTOI
23 4 INITIAL DATA RATE
24 48 ASSIGNMENT RECORD

FIELDS 6 THRU 13
25 4 DATA TYPE : 1=MIN/MAX , 2=MISTORY
26 4 ANALOG PLAYBACK SPEEDUP FACTOR
27 4 CAL SLOPE (1ø~)28 4 CAL INTERCEPT (1w)

Figure 7. Partition relative record *K (partition offset +K)
information record for item ‘P’ , counter ‘C’.

18

_ _ _ _ _

- :ii’~T~1 ~~
i

-, - - — - - . ~~~~~~~~~ •_ ~~~~ -5~~~~~~~ -~~~~~-- -- a- - ~~--~~~ - 5 _ -5’~~~~~~ -5 -5~~~5-5-5~~ . - - - -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~

Entries 9 and 10 indicate the time offsets in seconds applied
to the data stream in transfer from digital tape to the Master
File. Entry 9 is for information purposes and indicates the
amount of data discarded in an effort to line up the starting
data point in time with all other starting data points from
the same counter. Entry 10 shows the amount of additional
data discarded before a subsequent data point was saved on
disc. A negative value for entry 10 indicates no time align-
ment was done even though data from other item codes for the
same counter may be aligned . The additional offset is then
the absolute value of entry 10.

The other entries are present largely for information and
display purposes and are all explained in Re ference 2 , except
for the digital filter cutoff , entry 21. This entry gives the
cutoff of the low-pass digital convolution filter (in Hz)
applied to the data during transfer from tape to disc. A
value less than or equal to zero indicates no filter was
applied .

Now that the Master File and partition record structure have
been examined in detail , the overall structure of the Master
File can be considered by looking at Figure 8. The first
record of the Master File is the Master File directory record
which , for an existing partition, supplies an offset pointing
to the initial record of that partition . This initial record
contains a second offset pointing to the partition directory.
The partition directory first record is the initial record of
the counter directory which , for a given counter , points to
the initial item code directory record for that counter . The
item code directory points , for a given item code , to the
information record in the data area for that item code ! coun-
ter pair. The data stream follows the information record
contiguously.

Some advantages of the Master File structure are now evident .
First , a partition as a whole is easily portable since every
record in the partition is located with relative addressing .
Second , a partition directory is easily portable separate from
the partition since records within the directory are located
using a second order of relative addressing. Third , there is
no theoretical limit to the number of item codes or counters

2 L. J. Tieman , ‘GROUND DATA CENTER STANDARD DIGITAL TAPE FOR-
MAT , ’ Bell Helicopter Textron Report 699-099-020 , Fort Worth ,
Texas , 21 April 1976.

19

‘
~ ‘r — ,~ .--. . ~~~

-- — -5 --— -—— -----—- — - -- ----

- MASTER FILE DIRECTORY

PART-
1 -.. ITION

OFFSET

r - PARTITION INITIAL RECORD
PARTITION ACCESS RECORD

r DATA STREAM INFORMATION RECORD
ITEM-

DATA STREAM COUNTER
DATA RECORDS DATA DATA

DIRECTORY ENTRY AREA
~ OFFSET

PART-
ITION

r - COUNTER DIRECTORY RECORD

L ~ ITEM CODE DI RECTORY RECORD PARTITION
DIRECTORY

MORE PARTITIONS

Figure 8. Master File structure.

20

5- ‘1

- - - - - ------
_~~~~~~~~~

--=- - ——--——‘- - - -: ~~~
-
~

— .n~ rr ~~~~~n- -

~

_.IIIIu

1

stored or to the amount of data from an item code/counter data
stream which can be saved . Practically, physical disc space
limitations will limit these quantities.

2.2 FILE CREATION PROGRAN FLOW

The flow sequence of the File Creation Program is described
here with close reference to the flowchart on Figures 9 , 10
and 11 using the numeric label just outside each block.

Block 1 MAIN calls INLIST to read input commands according to
the free field format described in Volume I . READF is used to
interpret numeric input and group strings. MATCHR is called
to recognize keywords . PACK is used to transfer four charac-
ters to one four-byte word .
Block 2 MAIN lists the number of errors detected by INLIST
and then calls LISTCM to sort and list the data requests . Any
duplicate item codes or counters are noted and the duplicates
rejected .
Block 3 MAIN checks the number of errors detected by INLI ST
and goes to an error termination point if one or more occurred
or if no input was requested; otherwise, the program goes to
Block 5.
Block 4 is an error termination in MAIN. •The Master File has
not been disturbed at this point .
Block 5 If there are no input errors , MAIN calls SETUP1 to
read the first record of the Master File and check that the
Master File is initialized. If the Master File is not initia-
lized properly (‘ $ $ $ $ ‘) , then the routine returns an error and
MAIN goes to Block 4. With proper initialization, SETUP1
double checks the initialization by attempting to read the
numerically highest record in the file. Failure on this read
attempt abnormally terminates the job .
Block 6 Assuming that the previously mentioned read attempt
succeeds , SETUP1 initializes the direct access scratch disc
file using the sequential alias for that file .
Block 7 SETUP1 also provides WMS , RMS and FMS (routines which
do intermediate checking and apply the relative offsets
before performing direct access WRITE , READ and FIND calls
respectively) with preliminary offset and check values for the
Master File and the scratch random access file . Control is
then returned to MAIN.
Block 8 - MAIN then calls MAKRUM which sorts the partition
names by ascending location in the file and attempts to match
the name of the specified ADD/NEW/REPLACE partition.
Block 9 - (Still in MAKRUM) If a match for the requested
partition name is found , the program goes to block 10; if not ,
the program goes to block 13.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~
- - - 

5- - -  
- - ~~—- 

---,- -—-5--.----
~~~~~~~~~.—’5 -5- -. - -

READ AND CUALIFY INPUT REQUESTS

LIST SORTED INPUT REQUESTS
SP ECIFY 2.NY ERRORS DETECTED

3 4
FATAL ERRO RS ? OU T 1

NO

,

IS MASTER FILE INITIALIZED? -

YES

6
INITIAL IZE DISC SCRATCH AREA

GET INITIAL RELATIVE OFFSETS

B SORT PARTITIONS BY LOCATION
FIND MATCH FOR SPECIFIED PARTITION

YES YES

10
9 IS I ‘ ADD ’

NEW ’ MODE? YES P&RTITXON NO OR ‘ REPLACE ’

NO NO

11
‘ REP LACE’ NO

MODE?

YES

12 14 MP,~~ ROOM FOR ADDITIONS OR
D~~ZTE PARTETIOM. NEW PARTITION BY MOVING

SWITCH TO NEW MODE OTHER PARTITIONS UP OR DOWN

15 16

IS REQUESTED TRUNCATE SPACE
SPACE PRESENT? REQUEST

YES

17

Figure 9. File Creation Program flow diagram (f irs t part) .

22

5~~

-5 — — -5
~~~~~ — —  — — 

1

i

~~~~~~

p

~~~~~~~ ~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _
— ~__~

‘ “5- ”5- 5-’5- ’5 ’ 5 -5 -

- -

‘(ES

19
OPO~NSFER I’ARTITOON o:?EcOOR? 00SCRATCH AREA OR FOR • NEW ’ MOOE

:NI’O:ALI ZE A DIREC TORY IN ~C?J~TCN

:STA IN :-.~o STORE AL ,  IS TINE SKIN
ALIG::MENT OFFSETS ~ES ALIG0*~ENT DESIRE D ?

AVAILR3 L.E FOR ITEN/
O~NTER PAIRS RE QUESTE D

NO

22 
- 

ALTERNATE
NON BNT ‘IES INPU T

‘rAP E FORMAT ? ROUTINE

NO

24 —
READ AN ASSIGNMENT RECORD .AP E

OUT

2$
DESIRED

NO ITE.MS PRESENT?

YES

26 —S.F.’ANSI . READ A COUNTER RECO RD
RECORD READ

25 27
FIND ORI. RElOAD ~~ OUNTER

ADJUST ALS WANTED?

YES

- 
TPANSI’ Z? TO ~C~-

1_..._J

Figure 10. File Creation Program flow diagram
(second part) .

23

- I’.;- 
~~~~~~~~~~~~~ ~~~~

- -5 --~~~-—-- - ‘ - — - 5 - —- ----~~~~~ 5-- --- - -- - -—-- -- --5--~~~~-~~~~~~~ - -- --~~~~~~~~~~ ~~~~~~~~

- -~~~~•- 5— ---~~~~ - J . T ~~~~ ~~ - - - -

30

~~~~~

3~ I—
b_I -400:F Y DIRECTORY TO SNOW

L LOCATION ;F ITEN/ CD~.’NT ER PAlS

32 I -“ SANSrER :TEM -:ODE :~-.:; To
~~~~~~~~ T~~~ ER. AL :ok TE ~ND ~R:0 ,~4 F2 KATE ~1 DESIRE D .

-~R I T E :A : — : ; . ?E~ DRD T~~R DATA STREAM

6

(ES

~(AS ~.LI. DESIRED
ATA BE EN FOUND ?

YES

35

RESTORE PARTITION DIREC TORY
FROM SCRATCH

LOST 200NTES-LTLN ?Al?.S 36
WITH SOME INFORM A TION IS A LI sTING
AS000 THE OATS. PRESEN T , YES OF THE PARTITION

DESIRED?

“

r

3AV~~~2AR T~~~~ON

—

Figure 11. File Creation Program flow diagram
(third part) .

24

-~~~~~~~~~~~ - —- ‘ - ~~~~~~~~~~~
-- - - - —~~~~~~, -- -- -~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _ _

~ ‘
~~~~~~~~~~~~  

-

Block 10 - (MAKRUM ) A check is made on whether the requested
partition name was supposed to be ‘NEW ’ . If so , an error has
occurred since a partition by that name already exists and the
program goes to block 4. If not , the program goes to block
11.
Block 11 - ( MAKRUM ) A check is made on whether the requested
partition name was supposed to be replaced . If so , the
program goes to block 12; if not , it goes to block 14.
Block 12 - ( MAKRUM ) The partition matched is removed from the
Master File directory and then the mode is changed from ‘RE -
PLACE ’ to ‘NEW’ . Thus , the partition name will be retained
but different data will be added to the partition. Then the
program goes to block 14.
Block 13 - ( MAKRUM ) No match for the requested data set name
has been found so the program checks whether an ‘ADD ’ or ‘RE-
PLACE’ has been specified . If so, an error has occurred so
the program goes to block 4 . If not , the program goes to
block 14.
Block 14 - All gaps between the last record of a partition and
the first record of the next sequential partition are elimi-
nated. Any gap between the first sequential partii:ion and the
Master File directory record is eliminated. The record space
following the partition to be modified is maximized. This
process of moving partitions up and down in the Master File
uses a scratch disc fi le so that a number of records are read
from the Master File to scratch and then from scratch to a new
location in the Master File . When this process is complete,
the total number of Master File records available for the
partition to be modi fied is computed. Then , the program goes
to block 15 . As mentioned in Volume I , Section 3.2.1, the
entire Master File could be destroyed if too short a time
limit were specified for a run of the File Creation Program .
In particular, destruction of the Master File would occur if
block 14 of the File Creation Program were executing when the
tirne limit was encountered.
Block 15 - ( MAKRUM ) A comparison is made of the number of
Master File records available and the total number of records
requested for the partition. If fewer Master File records are

F available than requested , the program goes to block 16; other-
wise , the program goes to block 17.
Block 16 - ( MARRUM ) The space request is truncated to the
amount of space available in the Master File . Then , the pro-
gram goes to block 17.
Block 17 - ( MAKRUM ) The space request (original or truncated )
is checked to assure that it provides a basic amount of space
for a partition or a partition increment . If the space is in-
adequate , the program goes to block 18; otherwise, the program
goes to block 19.

25

— —- -- — _ — -5 -~~~ -~~~~~~~~ --- -~~~~~~~~~~~--- ’ —  - -5 - -



- --F’ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ ‘~~~~‘~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Block 18 - Is an error return from MAKRUN to MAIN and a termi-
nation message indicating the problem is generated . At this
point , the directory has been reset excluding the partition of
interest.
Block 19 - MAKRUM returns to MAIN , which calls SETUP2 to pre-
pare for the partition creation/addition process. If in ‘ADD’
mode , the existing directory is transferred to the scratch
random access fi le where it will be added to and modi fied in
the data addition process. If in ‘NEW ’ mode , the directory is
initialized in the scratch random access file . Control re-
turns to MAIN and the program goes to block 20.
Block 20 - MAIN checks whether ALIGN has been specified and if
so , the program goes to block 21; otherwise, the program goes
to block 27.
Block 21 - MAIN calls a routine to provide alignment correc-
tion offsets for each item code desired for all counters .
These offsets will correct for time skew misalignment in the
data . The routine takes the lists of item-codes and counters
and provides a number of data points to be discarded (at the
original data rate) at the beginning of each item code/counter
pair data stream . An invalid offset is indicated with a -1.
Offsets are stored on disc by routine EXCORE . From here the
program proceeds to block 22.
Block 22 - MAIN checks to see if a tape format other than the
standard B}IT format has been specified. If so , control is
transferred to block 23. If not, control is transferred to
block 24.
Block 23 - MAIN calls STRNGF to input data in a format other
than the BHT standard tape format. See Section 2.4 for more
information on the required format for STRNGF . When STRNGF
returns , control is transferred to block 35.
Block 24 - MAIN calls READD to read an assignment record from
the tape. READD will continue reading blocks until an assign-
ment record is found or all tapes have been read . If no
assignment record is located, control is transferred to block
35. Otherwise, an assignment record is returned to MAIN and
control is transferred to block 25.
Block 25 - MAIN calls FITEM to scan the assignment record to
deterniiñe whether any requested item codes are present. If
not , control is transferred to MAIN with zero items found
(NMATCH=0) and control is transferred to block 24. If some
desired items have been found (NNATCH>0), selected assignment
record information is saved for each item and control is re-
turned to MAIN and then to block 26.
Block 26 - MAIN calls READD to input the first block of data
for a counter. Three possibilities exist on return from
READD . If READD has indeed found an initial data block for a
counter , the program goes to block 27. If READD ran out of
tapes , the program goes to block 35. If a new assignment
block has been read , the program goes back to block 25.

• 26

- -- ,-‘--.—_-5• — -5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ —-5 - ~~ ~~~
_— —

Block 27 - MAIN calls FCNTR to check whether this counter was
requested . If not , the program returns to MAIN (MCNTR=-l) and
then to block 28. If the counter is wanted , the program saves
some information particular to this counter , returns to MAIN ,
and goes on to block 29.
Block 28 - This counter is not wanted so MAIN calls READD to
page forward to the CAL record and calls CALUPD to update the
calibration values. Then the program returns to block 26. An

— outside possibility exists , if there is an error on the tape ,
that READD could return with an assignment record or an out of
tape indication . In these cases , the program would go to
blocks 25 or 35 , respectively. These lines were left off the
flowchart for simplification.
Block 29 - MAIN calls TRANSC to transfer data for the counter
from tape to scratch disc. TRANSC attempts to transfer only
the data blocks required for storage . Other blocks are left
off (any offset for the counter as a whole is adjusted).
TRANSC pages forward to the CAL record and then returns to
MAIN and the program goes on to block 30.
Block 30 - MAIN calls CALUPD to update the calibration factors
based on the CAL record present in scratch common . Then the
program goes on to block 31.
Block 31 - MAIN enters a DO loop (through block 33) to trans-
fer the data from scratch to the partition. MAIN calls LOCFIX
to modi fy the directory to reflect the counter/item code data
stream location for the next item code data stream to be
transferred. LOCFIX returns to MAIN and the program goes on
to block 32.
Block 32 - This is a large block covering a great deal of de-
tailed processing and two options. If no digital filtering is
desired , MAIN will call SAVD to strip the data for the item
code of interest out of the scratch file and write these data

F to the Master File. Data can be calibrated if this mode is
selected and the data rate can be reduced by using only every
n’th data point as specified by the sample rate reduction
factor . If more data is requested than available , then the
data request is truncated to the amount available.

If digital filtering is desired , MAIN will call SAVF instead
of SAVD. SAVF will perform the same functions as SAVD except
that the data are digitally filtered and calibration must be
performed.

Either routine returns to MAIN which then calls INIDAT to
write the information record on the Master File at the begin-
ning of the data stream. INIDAT returns to MAIN and the
program goes on to block 33.

27

— - --

~

-_ --- ‘ -5 ---~~~~~
- - _-- - --- - - - 5

~~~~ 



-- ::- ~~~~~~~ ~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~ ‘~~~~~ “ ‘ 
~~~~~~~~~~~~ ‘~~~

--- ‘ —
~~~ . —. —o-~’- - ~~~ : - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Block 33 - This block represents the test at the end of the
MAIN ‘DO’ loop, which checks to see ii all the items requested
and present on scratch have been found. If the ‘DO’ is com-
plete, the program goes on to block 34.
Block 34 - MAIN compares the number of item code/counter pairs
found so far with the number requested. If the number of
pairs found so far is complete , the program stops searching
tape and goes on to block 35. If all requested data have not
been found, the program returns to block 26.
Block 35 - MAIN calls RESTRD to copy the partition directory
from the scratch random access file to the top of the parti-
tion. RESTRD returns to MAIN which then annotates the Master
File directory record to reflect the size and location of the
partition. Then, the program goes on to block 36.
Block 36 - MAIN checks to see whether a listing of the modi-
fied partition was requested. If so , the program goes to
block 37; if not, the program goes on to block 38.
Block 37 - MAIN calls MAP to list the item code/counter pair
data streams present in the partition along with some informa-
tion on each data stream. Then control returns to MAIN and
the program goes on to block 38.
Block 38 - MAIN checks whether a digital tape save of the re-
vised Master File is wanted. If not, the program goes on to a
normal exit at block 40. If so, the program goes to block 39.
Block 39 - MAIN calls SAVALL to save the partition on digital
tape . SAVALL then returns to MAIN and the program goes to
block 40.
Block 40 - Done.

2.3  NON-BHT DATA FORMATS

The File Creation Program can be modified to accommodate data
tape formats other than the standard BHT-GDC format through
generation of an appropriate replacement for the program stub ,
STRNGF . The rest of the File Creation Program will continue
to provide the following functions, read user instructions,
manage Master File Space, manage partition directory, write
data to Master File. The subroutine STRNGF must handle all
the details of reading the data from digital tape, consult
with the common block /LIST/ containing the user instructions
(see Appendix A), provide appropriate information for each
item code/counter pair, and provide the data for transfer to
the Master File in record size blocks.

Table 1 lists a prototype version of STRNGF showing the Se-
quence which must be followed to store data . The routine
ADDAT is appended to actually write data to the Master File.
However , code must be provided to satisfy the required func-
tion of STRNGF as listed in the program comments . Data must

28



- 

- 
‘~~~~~ ‘ —- --5- - - - 

~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TABLE 1. P ROTOTYPE EXAMPLE FOR SUBROUTINE STRNGF

SUBROUTINE STRNGF
C
C PROTOTYPE ‘Sl’RN(,F’ ROUT INE FUR READING DATA FROM
C NON—BHT—GD C STANDARD TAPE FORMATS FOR THE OLS/OMS
C F I L E CREATIO N PROGRAM.
C

DIMENSION LNKEC(.2~~bI
CQMMON/LO CUM/A TEMN.ICNT RN.IOROFF.

$
LOGICAL LCAL
COMMON/INFO/IRSIZ .MLOC ,LOCO. LPCLES.HIGH.LCAL ,IRAT .

$ ISKIP.NPS.NPP ,NOFF
$ I R DA T S . L RS AV S . IC NT R . X A L IG I i

COMMON/KAR D/ ITEM ’T P L 2 b) . IT EMW (2 6) . CA L S H (2 6) ,
$ CAL .CM(26).CXM(26) .CXB (26) .NMATCH.DCAL (261

LOGICAL L A L I N . M A P L T ,S AV L T .S T R A N G
CUNMUN/L IsT~~NCT R(400 I
I I I E M (4 0 0) . F L L T (4 0 0)
$
$ NAME L2) .NPWD (4) .NUSER(4)

COMMON/F ILES/N RPS.NRSC.NSSC.NITT.NDIR.NREA.NiRI.
$

C
C

lEND = 0
L W = IRSIZ I’2

C
C SET OP INPUT FROM NON—STANDARD TAPE.
C INSERT CODE AS APPR OPRIATE.
C
C LOOP OVER SUbSETS OF THE DATA ON TAPE .

00 500 I = 1.10000
C
C DETEC T THE PRESENCE OF A SUBSE T OF THE REQUt.ST ED
C DATA CORRESPONDING TO ONE COUNTER AND ONE OR MORE
C ITEM CODES. ASSIGN A NUMBER B ETW EEN ONE AND THE
C DIMENSION OF THE ARRAY ‘ IT EMW ’ TO EACH ITEM CODE
C IN THE SUBSET (ADJUST THE DIMENSIONS OF THE ARRAYS
C IN THE COMMON BLOCK /KA RD/ AS NECESSARYI. SET
C SET I T E M W (N) FOR EACH ITEM CODE NUMBER. N’ . TO
C THE CORRtSPONDING ARRAY POSiT iON OF THE ITEM CODE
C IN TNt ARRAY ‘ IT EM . IF DATA IS TO BE STORED IN
C INTEGER FORM. SET THE CORRESPCNU ING ‘CXM AND CXb
C ARRAY VAL UES FOR CAL IBRAT iON ON RETRIEVAL FROM THE
C MASTER F ILE . SET •NMATC. H’ TO THE NUMBtR OF ITEM
C CODES IN THE SUBSET. INSERT CODE AS NECESSARY TO
C PERFORM THESE F~~NCTL ONS
C
C LO OP OVER ITEMS IN THE SUBSET

00 400 J = I . N MATCH
C
C SET THE VARIABL ES • ICNTRN’ AND ‘ L T EMRC’ TO THE
C COUNTER AND ITEM CODE RESPECTIVELY. SET T IlE
C ARRAY ‘LNREC ’ W I T H SOME OF THE NEQUIRED VALU ES
C FOR THE CORRESPONDING INFORMATION RECORD.
C INRt:(A1) = iT E M CO DE = I T ~~M R C
C INREC(ø) = 1 IF CALIBRATED DATA IS TO BE STORED.
C C IF INTEGER DATA
C 1NREC(12—201 ITEM LODE OISCRIPT ION/UNITS WITH
C UN ITS IN LAST SIX BYT ES

29

_ _ _ _ _ _

-~~~~~~ _~~~~ ~~-—~~~~~~~ - - _ -~~~~~~~~~~ --~~~~~- - _ - _
~~~~~~~~--



-~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— - ~ 

-5’— - - -

TABLE 1. PROTOTYPE EXAMPLE FOR SUB RO UTINE STPNGF (Continued)

C INREC(27) = DIGITAL FILTER CUTOFF. — 1 . 0  IF NO
c F I Ll ER  APPLIED
C INREC (28) = SAMPLE RATE REDUCTION FACTOR .
C =
C INREC (29) = SAMPLE RATE OF DATA ON TAPE BEFORE
C SA MPLE RATE RED UC T I ON FACTOR IS
C A P P L I E D
C INREC (42) = 2 (TIME HISTORY DATA . NOT MIN/MAX )
C

CALL WMS (2 , INREC .LW ,J .IERR )
TO 580

C
C SET MCN TR TO THE ARRAY POSITION IN NCTR’ ARRAY
C FOR THE CURRENT COUNTER . I.E.
C SET I C N T R N =
C I N SER T CODE A S NECESSA R Y
C

CALL LOCFIX (NERR .INFO ,IERR )
TO 550

C
C LOOP OVER RECORDS OF OUTPUT FOR ITEM CODE

00 300 K = 1.10000
C
C READ T I-It DATA FOR THE NEXT RECORD. IF OUT OF
C DATA . BRANCH 10 350. GEl DATA (256 CAL I BRATED
C Ok 512 INTEGER VALUES ) INTO THE AR RAY ‘INNEC .
C SET NUM TO NUMBER OF POINTS IN THE RECORD.

CALL ADCA I’ (INREC ,NUM ,ICHK)
TO

lEND = 1
GO TO 350

300 CONTINUE
C
C ADD THE IN FORMAT IO N RECORD FOR THE TIME HISTORY
C JUST TRANSFERRED TO THE PARTITION.
350 CALL INIDAT( J.MCN TR .NERR ,INFU .IERR )

TO 560
0~~GG TO 570

400 CONTINUE
500 CONTINUE

GO TO 1000
C
C DIRECT ACCESS WRITE ERROR STORING INF ONATION FILE
C ON SCRATCH DiRECT ACCESS DiSC.
550

GO TO 1000
C
C ERROR ADD ING INFORMATION RECORD TO THE PARTITON.
560

GO TO 1000
C
C OUT OF SPACE UN THE PART iTION
570

GO TO 1000
C
C ERROR ANNO TATING DIRECTOR Y FOR START OF DATA STREAM
580

C
C

30

_ _ _  

_ 
- -~~~ ~~~‘:I.1i



~ 
_ _ _ _ _ _  

-
~~

TABLE 1. PROTOTYPE EXAMPLE FOR SUBROUTINE STRNGF (Concluded)

1000 RETURN
C
C
9000 FORMAT(JX.JVH***ERROR STORiNG iNFO R~.CQHD ON 5U~ATCH. i10// 1
9001 FORMA T (3X ,42H***ERROR STORING INF O RECORD ON PARTITION

$ 3110/I )
9002 FORMAT (-3X.36H***RAN OUT OF SPACE ON THE PARTITION /1)
9003 FORMAT(3X .26H***ERROR SETTING DIRECTORY /11

END

SUBROUTINE ADUAT ( IDAT.NUM.ICHK)
C
C RO UTINE FOR USE BY ROUTINE ‘STRNGF ’ TO W R i TE DATA
C TO THE MASTER FILE.
C 10*1 = DATA ARRAY
C NU N NUMBER OF VALUE S iN DATA ARRAY
C ( SHOUL D EQUAL LIM’ UNLESS LAST RECORD)
C ICHK = PROBLEM RETURN
C 0 — NO PROBLEM
C 1 — DIRECT ACCESS W RITE ERROR
C 2 — OUT CF SPACE FOR MURC WR ITES.
C.

DIMENSI ON IOAT( 1)
LOGICAL LCAL
LOG ICAL LCAL
CUMMU NIINFO/IRSIZ,MLOC ,LQCO , IPCLES ,HLGI4.LCAL.IRAT .
$ ISKIP .NPS.NPP ,NOFf,ISEQ ,L5TkT .IADU,iN5jZ ,4NSjZ~).$ IRO A TS.IRSAVS.IC N TR .XA LIcN

C
C

ZCHK = 0
IF (NUM •LE. 0160 TO 1000

C
C

LW = IRSIZ/2
LIM = IRSLZ
IF (LCALJL IM -= LIM/ 2
CALL WM S (1,IDAT ,LW.I4LOC ,IERR)
IF (IERR •GT . 0)60 TO 500
NPS = (MLOC—IDA SIZ—1)*LIM *ISKIP + NUM *ISKIP
MLOC = MLOC + 1
IF (MLOC •GT. MLEN(1)+41G0 TO 510
GO TO 1000

C
C DIRECT ACCESS WR iT E ERR OR
500 ICHK = 1

GO JO 1000
C
C OUT OF DATA SPACE IN PARTITION

510 ICHK = 2
C
C

1000 RETURN
END

31

I
¶ - - -  - ‘

L . -~~~~~ ‘- - — - —— --~~~~-~~~~~~~~~~~~~ —~~ -5- - - - - - - 
~~~~~

‘
~~~~--‘-5--- - - -

~~
-

~~~~~~~~~
- --

-5- — - - — -v’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ -5 ——-— -5-5~__~--5___ •~-5 -5’~~
”

~-5 _‘--~~~~~ - -- •~~ -5~~
•
~~

-5-
~~ — ___ -~~~~~~

be selected from digital tape using the user instructions in
/LIST/ . Appropriate data must be extracted from the tape or
provided in some other manner for the information record for
each item code/counter pair. In some instances , STRNGF may
need to translate the identifiers on the input digital tape to
four-character item codes and integer counters with values
between 1 and 32767.

STRNGF will most likely provide calibrated, REAL data for
transfer to the Master File. However, the option is available
when the program is executed on a system with INTEGER*2 capa-
bility to store the data in integer format. In this case,
STRNGF must call ADDAT with twice as many records containing
INTEGER*2 values as would be provided if the values were REAL .
In addition, the appropriate calibration factors must be pro-
vided , and the information record value INREC (6) must be set
to zero to indicate that integer values are present.

When the sample rate is to be reduced , STRNGF must perform
this function before supplying the data to ADDAT . The sample
rate reduction factor must be inserted in the array location
INRE C (2 8) . Notice that the array location INREC(29) must
contain the original sample rate on tape before the sample
rate reduction factor is applied.

The subroutines LOCFIX, ADDAT and INIDAT are called by STRNGF .
The routines will appropriately manage storage of the data on
the Master File and annotation of the directory . The routines
also monitor error conditions so that the error returns must
be appropriately handled by STRNGF as shown in the prototype.

32

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3. PROCESSING PROGRAM

3.1 STRUCTURE AND FLOW

The OLS/DM S Processing Program was designed to be broken into
overlays corresponding to various functions of the program .
Figure 12 shows a diagram of program flow from block to block
with the main block excluded . The Main program is not shown
in this figure and serves only to transfer control from block
to block and store certain utility routines used by more than
one block.

The Startup or Program Initialization block extracts setting
commands from the user which should be valid throughout the
program run , and initializes and/or validates certain files
including the Master File . The User Command Interface reads
and checks the user commands and produces an instruction ma-

— trix (common block /DIRECT/ ) which can be interpreted by the
other overlay blocks . The Processing block performs all the
data retrieval , data processing , and data display functions of
the program according to the instruction matrix . The Command
Sequence block initializes all command sequencing functions
and performs the actual editing of command sequence blocks .
The Menu block generates non-data displays to assist the user
in generating processing commands . The Terminate function is
accomplished in program MAIN.

3.2 PROCRAN INITIAL IZATION

Subroutine STRTUP is the control routine for this block. The
required and optional user inputs for this phase are described
in Section 5.6 of Volume I . The entries are read and inter-
preted using the READF and MATCHR utilities, as well as the
READ1 and READOP routines and code within STRTUP .

In addition to extracting user control options for the program
run , the Program Initialization block performs several other
setup functions . The first function performed in STRTUP is to
call the CPU timer initialization routine , SETIME . SETIME is
installation dependent and may be replaced by another routine
or entry name which starts the CPU timer (see Section 5 .4 ) .

After the user options have been specified , STRTUP calls
ALLSCR to initialize each of the direct access disc scratch
areas , including SCF1, SCF2 , and the temporary scratch area .
There are two possible configurations for these scratch areas .
For the first possible configuration, each scratch area is
associated with a di fferent I/O file number and each I/O file

33



— - - -

PROCESSING BLOCK

I • DATA RETRIEVAL
I USER -

START UP ~~~~~ S DATA PROCESSING
COMMAND

S PLOT/PRINT!
INTER FAC E SCRATC H STORAG E

SEQUENCE DISPLAY 
~~~~~~~~~~~~~~~~~ATE

Figure 12. General flow of processing program .

34

-
- -

~~~~~~L-.’ ~~~~~~~~~~~

- —~~~ ~~~~~~~~~ - ~~~~~~~~ —-— — - - — — —~~~~ - -~~~---—~~~~~~ -~~~~~~~~~~~~~~ -5—~~—--5- -- ~~~~
-—-



r - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i~~ -
~~~ ~ -

number is presumably associated with a different area on the
disc. When this configuration is used , the optimum results
are obtained when each I/O file corresponds to a different
physical disc drive so that head movement is minimized during
transfer of data between files .

The second possible configuration for the scratch files places
all these files on one contiguous area of disc addressed by
one I/O file number. The different scratch files are ad-
dressed as different pseudo-devices using the RMS, WMS and FMS
calls. The pseudo-device numbers are listed in Section 4.1.
For either configuration, the files are initialized by writ-
ing dummy records on every record position of the sequential
alias(es) for the direct access f i l e (s) .

After ALLSCR returns , STRTUP calls INFOST . This routine reads
the initial group of the Info file and stores the keywords ,
item codes , and associated numeric values in common block
/SING IF/ . Then STRTUP calls EDINIT to read the initial record
of the direct access Command Sequence (Edit) file , to check
the size of the file , and to set certain variables based on
this size.

Following the EDINIT call , STRTUP extracts the name of the
Master File partition which is to be accessed during the pro-
gram run. Then DASTRT is called to find the partition and to
set up the retrieval routines to address the partition data .
If the partition name is successfully found and the Master
File is properly initialized, STRTUP transfers the current
date into the system output label , DEFCOM (in common block
/DEFLT/), and exits . If the partition name is not found , the
user is requested to enter a corrected partition name .

3.3 USER INTERFACE

The User Interface generates an instruction matrix for each
command step . This matrix is generated by extracting from the
user a sequence of entries which specify option selections for
the matrix values . Relatively few of the instruction matrix
values are specified for each command step , since a small sub-
set of the total number of command specifications is required
for execution of each different command . For example , a MENU
command will not require specification of the static pressure
or outside air temperature instructions.

A pseudo tree structure directs the program in specifying a
sequence which includes all entries required for execution of
the command step that is being generated. Each element of a
sequence depends upon the options selected for the previous

35

-- -
- ~~~~~~~~ ~~

— - - — - - —
~
-—-- - — - -— —~~-=‘-— . - - - - - - —

elements of the same sequence. For convenience in specifying
defaults , generating HELP messages, and explaining the entry
sequences, each sequence is broken into one or more substeps
as explained in Volume I . This tree structure, together with
allowed options and HELP message strings , is stored as data in
common blocks . The user interface code interprets the stored
tree structure and maintains the syntax for user input . Thus,
a change in user commands which does not conflict with the
current command syntax should require only a change in the
block data statements and array sizes and no change in the
executable user interface code . Paragraph 3.3.1 discusses
this code , while Paragraph 3 .3 .2 covers the requirements for
the block data tree structure.

3.3.1 User Interface Routines

USER is the main routine for the user interface block. Fig-
ures 13 and 14 depict the flow for subroutine USER , which
encompasses most of the general logic for the user interface
block. The other routines for this block are briefly de-
scribed below.

INI STP is the first routine called by USER to set the default
values for the step , to initialize certain pointers , to calcu-
late the CPU time for the previous step execution , and to
print the ‘NEW STEP ’ message that prompts the user for the
next command step.

LIN INP is used to obtain a scanned , valid line of user input.
LININP will obtain the line from system input or the command
sequence file (using EDINP) according to the edit mode indica-
ted by the variable LED (in the common block /LEDIT/). The
line is scanned by READF to check for line errors , to evaluate
numeric entrys , and to delimit string entries.

MATCHR is used to match individual strings of characters with
an array of four-character keywords stored in common block/
WLI ST/ .

INTERP is called to interpret each individual user entry. The
various categories of entries are numbers , nulls (defaul t s) ,
keyword strings , non-keyword strings (e .g . , an item code),
specified defaults (i . e . , defaults specified by a slash which
terminates a substep), and comment entries. INTERP assures
that the entry conforms to the allowed values for the current
tree position and codes the entry in the instruction matrix.

36

,—

~

~~~~ -~-- - -



— -~~ - ----- --5-5— 

~ -
~~

—-5——.--—-—--.
~~~~~

-
~~~~~~

-

I~ ITIAI.IZE DEFAULTS AND STEP ~~~~~~~~~~~~ 
~~~~~

LOOP OVER SUIST!PS

Yu
I!~~~~~~~;i

LOOP OVER USER ENTRIES READ

YES

ENTRIES ?

YES ENTRY

E1~ ~
-
~~7J~~ ~

OR

SE? DEFAU LT
f(.

L.<CEECX ~~ftRT

~> ~~~~~~~~ US?

l~~k1U.L ~ZLP

_ It _

‘P_ _

UPDATE TREE ‘ HELP -

STRUCTURE AND 5~~OZ
POINTERS 150

3!? ‘SCAN ’ ~~ DE
SCAN STEP

~O HELP ’ U~ D!
YES

L~J
YEA

COI~~LET2? SLASH?

r 1
Y—_s 350

EXIT YES - RE ENTRI NO
‘ HELP ’ ONLINE?

250

Figure 13. User interface flow diagram (fi r s t part) .

37

- .-

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

_ _  —-~~~~~~~~
-- - -—- --- _ _



—-5—.- — 
- 

-- — -

270

RU 

~ 
C~~~~~~~~~~~ ET~~~4 

RU

SET TIMER L ~h.
FOR STEP I’~I I RUT! SUBS?!?

M COMPLETE . REQUEST
SLASH TO END STEP

~~~~~~~~~~~~~~~~~~~~

COPY CO3 IA$D _______________ ___________________

I

IRS~~~~~~ ION

] I LlS?

<

>CANC1~~~~~

YES NILP~~~~~~~~~~~~

SLAIN
- I SAVE YES EDIT/NEW

STEP M ODE?

NO

I SI? PD!
PRUCE SSING? YES ¶ ~~~~~~~~ ____________

NO

MENU? _______________ SET FOR H~ R3 ___________

11C 4 I -

NO

Dl? I SET PD! ~~ !?
INITEALTEATION?

~~~ 

INXTXALI ZA?IOII __________

NO

TEPI4INATE YES J SI? FOR ]
OR !O? INPUT ? 

(Ic.!)

RUIDIT
____________________ EDIT/NEW

0! RUILD

9~~~ SW ’ ED IT RUDE? RE?!? EDIT

—~~~~ i NO?E !! ~~~~~~~~~]

Figure 14. User interface flow diagram
(second part) .

38

-
~~~~~~~~~~~~~

: ‘

~

-- - -

~

- - --5 ~~~~~~~~~~~ -- -- , -~~~~~~~~~~ --- ‘- - - - - - - -5- -

— —u_I————,

The HELP mode prompting message generation routine , HELPR , is
called by LININP wht~n the HELP indicator , IHELP , is set to
one . HELPR prints a prompting message for the current entry
and looks ahead in the tree structure to print prompting
messages for subsequent entries .

TREEUP updates the tree structure position and the substep
number , ISBSTP , as necessary .

EDSAVE (see Paragraph 3.5.1) is used to save a command step on
the command sequencing file.

LI STAD maintains the listing of the current command step in-
cluding default entries . NTOSTR (see Section 4.2) is used to
convert numeric values to string form.

3 .3 .2 User Input Encoding

The basic tree structure for the user interface is contained
in the two-dimensional array NPOINT . The second array index
for NPOINT corresponds to the tree position index. Thus,
each tree position is mapped to a unique , positive integer
(e.g., 6), which specifies three words in NPOINT (e.g., NPOINT
(1,6), NPOINT (2,6), NPOINT (3,6)). The first index is dimen-
sioned to three and these three allowed values correspond to
three kinds of information stored in the array. Table 2 lists
the present tree structure as defined by NPOINT. Figure 15
shows a general example of part of the NPOINT structure.

NPOINT (l ,N) gives the index location in LWORDS (in common
block /HLPWDS/) for the appropriate HELP message for the entry
options corresponding to the tree location N. The actual
index location given will be for the LWORDS value specifying
the number of characters in the HELP message. The actual
message is contained in the subsequent LWORDS words in A4
format. Figure 16 shows the structure of a typical HELP
message in LWORDS .

NPOINT (2 , N) specifies the subsequent tree position for the
entry sequence in one of three ways . If the value is zero ,
the entry sequence (command) is complete . If the value is
positive, the three lowest order decimal digits point to the
tree location for the next entry . For example , NPOINT (2,N) =
3009 , specifies that NPOINT(l , 9) , NPOINT(2 ,9) and NPOINT (3 , 9)
provide pointers for the next entry. The thousands digit
gives the substep number for the next entry. A negative
NPOINT(2 ,N) value implies a branch in the tree structure at

- , 39

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

F -
~~

‘—
~~

--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - 
- - -

~ ~~

- — —--

~~~~~~~ 

-

~

-.

~~~~~

-- -~ ‘! ~~~~~~ 
-5

~~~~~

- -

~~~~~~~

-.--—

NP01i 1,N N POINT (2 ,N) 
______________

U HELP TSUBSEQUENT ENTRY
I MESSAGE TREE POSITION OPTION LIST

LW ORD S(A) 4....... 1 POINT E R POINTER POINT E R
A

N PO INT (3

______________ 
[

~~~~~~~ N
N

T~~ STJ..+ (U)

LIST? C Pl~1)
LISTP (P+2)
LISTP (P+3)~~3OOO+ Q . . S
LISTP (P+4)

NPOIN1’(l,Q) NPOINT (2 ,Q) NPOINT (3 ,Q)

LWO RDS (C) POINTER
~~TREE POSIflON

‘

_

~~~~~~ 
IENTOP(V)

1 :  :
Figure 15. Example of part of the command entry tree structure.

40

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _

.

~~~~~~~~~~ ~
j - 5

~~-~~~
-- - - -
~~~ -~~~~~~~~~~~~ ---~~~~ =~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

NP OINT (1.M)
POIN TER=N

I _ _ _ _ _

NUMBER OF 1 FIRST FOUR 1 CHARACTERS I CHARACTERS CHARACTERS CHARACTERS
CHARACTERS CHARACTERS 5 THRU 8 9 THRU 12 13 THRU 16 17 AND 18

ZN THE IN HELP IN HELP I IN ‘HELP IN HELP IN ‘HELP
MESSAGE MESSAGE MESSAGE I MESSAGE MESSAGE MESSAGE
E.G. 18 E.G. ‘SCFl’ E.G. ‘,SCF’ E.G. ‘2 OR~ E.G . GRO E.G.

LWORDS(N) LWORDS (N+1) LWORDS(N+2) LWO RDS(N+3) LWORDS (N+4) LWORDS(N+18+3/4)

Figure 16. Structure of typical “HELP” message.

41

- - ~ .• -~~~ .., ,.N :~ i . --~‘?‘ P~ R’~U.~~~

- — -~~~~~~ - - - -~~~~~~~~~~~~~ - -~~~~~ - - -—~~~~~~~~~~~ - —~~~~— - - - -- - ---5 - ’ -~~ -~~~~~~~~~~-- - -‘~~~~ - -~~~~~~~~~~ --
~~~~~ 

-
~~~~—— -

~~~~~~~~~~~
-
~~~~~~- -


the current position and points to a sequence of pointer en-
trys in the array LISTP (in common block /ENTOPT/) . The se-
quence of values contained in LISTP in turn point to possible
next tree positions in a manner identical to that described
for positive or zero values of NPOINT(2,N) . The manner of
choosing the appropriate value from LISTP is described in the
next paragraph.

NPOINT (3,N) is an integer value which points to the first
position of a sequence in the array IENTOP (in common block
/ENTOPT/). Each sequence in the IENTOP array corresponds to
one value for the second subscript of the instruction matrix,
IDIRCT. The first word in an IENTOP sequence gives the second
subscript value for the corresponding pair of entries in the
instruction matrix. Table 2 lists the meaning of the instruc-
tion matrix positions . Following the second word in the
IENTOP sequence, are one or more numeric values which specify
allowed options for the entry. The second word is an integer
which specifies the number of option specifications . The
option specifications in IENTOP are integers which can have
three interpretations . A positive value less than 1000 speci-
fies an allowed keyword entry for the option from the keyword
list IAA (in common block /WLIST/). A value of 1000 specifies
that a non-keyword , four-character , string entry (e .g . , an
item code) is an allowed option. A negative integer specifies
that a numeric entry is allowed. The absolute value of a
negative integer points to the first of two floating entries
in the RANCOP array (in common block /ENTOPT/) which give the
lower and upper bounds for the numeric entry. Numeric or
string specifiers must always be the last entry in an IENTOP
sequence. Figure 17 shows the structure of a typical IENTOP
sequence. If the current NPOINT(2,M) value is negative so as
to point to the first element of a sequence in LISTP, each
element of this sequence corresponds by sequence position to
one of the options from IENTOP. For example, if the LI STP
sequence contained the values 3021, 3045 , 3064 , 3082, the
option sequence in IENTOP is 48, 24 , 39 , 40 and the keyword
number 24 is selected, then the next tree position would be
45.

The instruction matrix, IDIR CT , is a two-dimensional array
with the first subscript dimensioned to two. The second sub-
script corresponds to the instruction matrix number as listed
in Table 3. IDIRCT(l ,N) indicates the selected option for the
instruction and IDIRCT(2,N) contains the number or non-keyword
string if such an option was selected. An IDIRCT(1,N) value
which is positive and less than 1000 indicates the position in
the IENTOP option sequence for the option selected. For

42

‘ f l ’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ -—--- -,

‘C)

cv.,
-
~~~ U) ,-I ‘~~‘ s-I (‘4 N 0’ 0 ~E-I Z p.., (fl U’) ~Y) I C’) I vj~ 0 s-I ‘-I (fl

Z Z 0 s-4 (‘4 C’) s-I ~~4 s-I s-I ~-I s-I s-I s-Io s—i —
~ O E-i

C.)
‘—I — — 5.0 ,—I N 0
~x_l C) 0-’-. ‘.0 ~~ C-.~cv~ cv~‘-4 0 — cv’) s—I (‘4 — .

o Z’-~ 14’) r-I - -5.0 s-I~~~ 0’s
N .- U’) r4 (‘~ (F) (F) (4)
t~’i (‘IN ~~‘o  ,—I ——- (‘4 .. ... —
U) — N — — —~~~ — O G ’s Lt) 0’S

E~~~ r N  ~~~~~~~~ o~~ c~r• >‘ Z El — — s-I — (‘I — — —
~~ s--I ( ‘40  ~~ C’s s-I C’s (F) s-I
Es 0 E-I — •. ~ ‘I ‘~ ‘ • LA i—I C’s
Z P4~~< 0” 0 —  L A .  0”’~~ ~ ‘ I I (‘1 ~~ r—4
N ZN  ~~~~~~- s-IN O CY) r1 ~~‘ ,-I 0 0 0 0

Z I N  l i—I I C’sI(’4C’) C’4 I~~’ (4) 0 0 (‘4 CV) (4) 0

0
Lzi .

z
N -o
~~ r IO

N C’s CV) LA ‘.0 ~ ‘ s-I ‘.0
C) Z~~i s-I C’s s-I I I 0 ~ ‘ ‘,O U) a’s

s-.~ s-I C’) ~~ -.I s-I s-I (“I rI s-I r-I s—I
P~ 0
El
U) Z

Z U)z ~ o
0 Z -Os -~~~s--I i’-* 0 (‘4 C’I El

El ‘ El i—s ~L~~-’ 00 El 0 Z -~N ~ N 0 U)— . ~ ‘~~o C) t~ i-~ -~~i F~ z ~ s
4 Z Es lxi ,.

~~ 
r-

~~Q _ ., .

lxi i--I Z U) lxi lz,’ O N N N
lxi U) 00  0 C) ‘-4 s-I ~~lxi Z U) Z Z (‘I lxi C)

El N Z 0 Z “ E  lxi N .-. 
~~~ z

Z E 0 i-4 0 (‘4 U) ~~ ‘-4
— ‘-I El ‘-I Isl E-s 01 I Oh ~ El

~ Es 0 El 0 ’-’ rxi — lxi Z Es
< ‘4 C.) U) U) 14 U) U)

lxi Es C) ~~ 4 lx4 C)
U) Z s-s lii 00 ~ ~~ lxi ‘-I

~ 14 lAs N l’l U) Z Z El 0 Z

• ‘14 4’ . ~~~~~~~ E-I O E D E Z El ~~c-I Pi Z c’4 N C”) s~~~~ 0~~’4 0 1~l 0 ‘-‘ .ç 0
~ ~~C)

C)..... 0 E ~ El z 0

~~~~~~~

- -

~~~~~~~

- - ~~~

I

—. —U

SC ’)
Z ‘~~~ U) s-I C’) 0’ ~~ U) C’) N 0’
‘-4 EIZ C’s (‘4 s-I 0 LI) ~~ s-I rI (‘4 (‘4 ~ 0 N II) ~~
El Z O LI) ‘.0 N ~~ I s-I ~~ s-I s-I rI s-I ~~ (‘4 rI s-I ~~Z s-s i-s0 O E-I
o Pi P-i
.— Zo

0 N
— ~~0 N
El Zi-i —

- C’s 0
C) (‘4 1z1 (F) s-I
5—5 —~lxl — —lxi EsC~ 0’ s-I
‘-4 Z E l (F) II)
C) i—I
lxi O E-4 c’~ in N ~~‘ N C”) ~~ 0) 0 ~~ 0 0
Pi P~~~ s-I ~~ ~~‘ 0 s-4 ” ~~‘ N (‘I N ~~ U) N ~~ LI) C’)
U) ZN 0 0 0 0 cON 0 0 0 0 0 0 0 0 C’s 0

Z N N (‘I C’) I I N (‘4 CV) C’) C’) ~~ ‘
(‘-4 C’) C’) I (‘.1

I-s
~~ Z
lxi -0

rIO
~~ — s_i
0 1-4 N ‘ N 0 ‘.0 1’ C’s C’) 0 N C’s 0’ 0
lxi Z cLi C’s LI) 0 ‘-4 s-I ‘.0 U) ‘.0 N N ‘.0 C’s U) N ‘.0i-s s-i N cO s-I s-I I N C’) s-I s-I s-I s-I C”) N N N C’)

s.!iZ ..(~4 r I e 4 C n: C’s

-‘ ~~~
t :~

Ls
~~~~~~~~~~



-- —
~~~~~~~~

-5--—-.-
~~~~

------- - v- , ....- ~~~~~~~~~~~ -

—0
A Z S
5 C’)
Z ‘ U) C’) N C’s N C’) C’s N s-I
‘-‘ E-I Z C’) U) C’) U) CV) U) 0 U) 0 U) N rI rI N C’) U) U)
1-I ZO C’s U) 0” 0) C’s s-I N U) s-I s-I s-I rI s-I rI s-I ‘.0 ‘.0
Z s-i —
o 01-5
o P.s Pi
— ZO

O 1-)
— —0
El Zs - i  0’
4: - 0
C.) (‘Ilxi s-I
I-s ‘—‘lxi -
lx., Es Iki 0
5.-s ZE’ N
C.) —
14 01-I N (‘4 C’) ~~ ~~

i s-I C’s s--I 5.0 N N C’) C’s ‘.0
P-i~~ 

U) C’ U) C’) in ‘.0 ‘.0 N m U) C’s ~~‘ ~~‘ 0
Cl) Z N  0 0 0 0 0 0 0 0 0 0’ 0 0 0 0 0 0

Z (N (‘I (‘4 N (“4 CV) C’) C’) C’) I C’) C’) CV) ~~
4 0 N C’)

Cxl -0
r IO

~~O E-l C’s 0 C’s 0 a’s rI N 0 ‘.0 C’s C’s C’s ~~i U) C’)
lxi Z1Is ‘.0 ‘.0 ‘.0 ‘.0 ‘.0 U) C’s ‘.0 ‘~

)5 (‘I U’) U) ‘.0 ‘.0 0) rI N
— s-i C’) C’) C’) C’) C’) s-I (‘4 C’) s-I (‘I N s-I s-I s-I rI 0’ 0’S
0

~~~~~~~

U) 0 U) 0 U) Cl) 0 ~ 4: 0 0 El ~ o s - i

‘-~Z 0” s-I CV) U) -C’s rI (‘4 U) U)

~~N N C’) C’) C’) C’) C’) CV) C’) C’) ‘~J ’ r-4 ~~‘ ~~ ~~ ~~‘ U) s-I ~~ ‘

(‘1 00

~~lxl
4: ~~El N N (‘4 (‘4 (‘4 N C’) N N C’) (F) (F) C’) C’) C’) N N
Ii U)U)

N
IxIC)
~~O 0 s-I N C’) ~~ 4 LI) ‘.0 N U) C’s 0 s-I N C’) ~~ 4 U) ‘.0
El i-i C’) C’) C’) C’) (4) (F) C’) C’) C’) (F) ~~~ ‘1’ ‘~~‘ ~~‘ ~~‘ ~~ ‘

45

t

,.F
~~

-5 .4


~~~
‘ - ‘ vrr — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-— — C.)
~ Zo
lxi - s-i
~~ C’)
Z ‘-“U) C’S U) ‘~~‘ N 0) 0 0 II) If) s-I s-I
— E-I Z ~~ CV) 0) C’) ‘.0 0 0 ~~

i U) rI rI U) U) U) U)
F-I Z 0 N 0’ s-I C’s rI s-I rI C”) C’s (N (N C’) C’) C”) s-I
z i-i —0 01-i
o P-s

(F) (N I U) C ’) C”) N cv’) C’) (‘4 ‘~j ’ 0 ‘~‘ ~J’ I N

Cx
I-s —

lxi —C )
r-I O

Cx ‘--‘ s-i
0 Es ‘.0 C’s U) C’s 1’ U) ‘.0 N 1 N (N N N (N N
lxi Z P.s 0 ‘.0 N ‘.0 5~J4 C’) ~~1 C’) N 0 0  ~ 4 

~~‘ ~~‘ s-I
i-I s-i s-I C’) (N C”) (N s-I rI ~~ 5 s-I C”) C ”) ~~ 4 

~~~ (N
0

(‘4 (‘-4 ~~I (N C’) N N N N ~~ ‘ ‘~~‘ ~~ ‘ ~~ ‘ ~~~
Cr,

El CflU)

lxi

r0 N U) 0) 0 rI (N (F) ~~ i U) ‘.0 N U) 0’s 0 s-I
s-i ~~

I ‘~Jl ~~‘ U) U) U’) U) U) LI) U’) U) U) U) ‘.0 ‘.0

46

L~~~~~~~~~~~~~~~~~~~~~~~ . . ~~~ ~~~~~~
- -

~~ -

F
- - - — —

-- “
-

~
-~~~ ~~~

— ~~~0

~~ C’)
Z U) C’) N 0 s-I N ‘.0 5.0 C’s U) N C’) C’s N N (N N
— 1-I Z N 0 ‘.0 0 N ‘.0 ‘.0 it) ‘.0 N rI LI) N ‘.0 C’) C’)
Es Z 0 s-I s-I C’) s-I N (‘7 C’) rI s-I rI s-I s-I s-I (N (N N
Z s--I~~~
O 01-s
O PiP -s
— Zo
Z —.
0 0 1’ - 1’
— 0 N 0 s-I CO
El Z s.i - rI s-I -
4: - CV) U)
0 (“l Ixi N - U)
i-s -‘lzl - 0) N -lx,. E-s Cx C’) N U)
— Z E l N ‘— U)
0 s-i
lxi O E l C’s s-I s-I U) 5.0 N rI C’s U) ~~

I C’s ‘.0 N
P-i~~~ ~~1 (N LI) N N N N 0 N U) s-I 0 C’s N 0) 0)

U) ZN 0 0 N 0 0 0 0 s-I 0 0 0 s-I 0 U) 0 0
. . Z ~~ CV) I C’) ~~‘ 1~ I C’) CV) C’) I C’) I ~~i .x~I

F-s
14 —0

‘-40
Cx ‘—s -i
0 1-s
lx., Z P i s-I ‘.0 U’) 0 U) (‘4 (N C’s ~~4 C’s ‘.0 C’s C’s C’s s--I rI

s--i s-i U) ~~5 LA C’) N ‘.0 ‘.0 (N ~~i LI) U) N U) N C”) C’)

~~~~~~~
4: s-i 0 4: s-i s_i 4: s-I 4: s-i i-i s-i

I~i~~I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Z N  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
s--i El 1-s U) Cx Es F-I s-i i-i 0 ~~ s-i O s -

Cx s-i 0 <Cx 4: ~~ U) U) s-i s-i Cx O s _ i  Cx I
lxi < Cx I~~0 F-i 0 s--I rI < 4 : 00 <  C) >4 N (N
U)

I Z  s-I (N ~J4 it) ‘.0 U) d’s ‘.0 C’s s-I rI ~~i ~~l ‘.0 N U)
CxlxI it) U) U) LI) U) LA U) C’) C’) ‘.0 ‘.0 ‘.0 ‘.0 ‘.0 ‘.0 ‘.0

(N 00

‘ p.s
(~I ~~ N
4: ~~El C’) (N (F) (N ~~ ‘~~‘ Cr, C’ cv’i CV) C’) C’i ~~ ~~‘ ~~‘

El U) U)

N
C xO  N C”) ~~l LI) ‘.0 N U) C’s 0 s-I (‘4 C’) 1’ LI) ‘.0 N
El i-i ‘.0 ‘.0 ‘.0 ‘.0 ‘.0 ‘.0 ‘.0 ‘.0 N N N N N N N N

• 47

‘S 

-~~~~~—— ~~~~~~~~- - - -~~~~- - -‘-— ~~-~~~~~~~~~~~~ --



~~~— T ~~~~~~~~~ 
—--

~~ — ~,, - .~
— — —.---

~
--- — ---

~~~~—- —.- — _____________________________________________

— — C )
A Z ~~
~~~~~ CV)
Z Cl) U) CV) rI CO U) C”) ~~ i C’s 0 C’s rI LI) (F) s-I 0
— lIZ ‘.0 N U) (N ‘.0 N N C’) 1’ ‘~ ‘ U) N N CO U)
1-s Z 0 s-I s-I C”) s-I s-I s-I (“4 C’) (N (N C’) I rI s-I CV) N
Z i~- 4 —
0 O E l
C) PiP -i
— Z O

-
— -0 s-I
El Zi-) 0
4: - s-f
o (‘414 —

— ‘-‘14 0
lxs E-s Cx 0
5-i ZEl
0 s--s
lxi O F-s C’) N N 0 s-I C’s C’) C’) ~~ U) N C’s 0) U)

U) 0 C’s C’s C’s C’s C’s C’s C’s C’s ~~‘ O s-S O
U) ZN 0 rI 0 0 0 0 0 0 0 0 0 0 0 s-I 050

Z C’) (F) (F) C’) C’) ~~ 5 ~Ji ~31 11 ~ 1 (F) I ~~‘ ~~‘ C’) I s-I

E l — .

lxi -C)
‘-4 0

Cx
0 1-i ~ s-I N C’s ~~ s-I N CV) C’s N Cr, s-I N ‘.0
lx., ZP i (N U) U) N ‘~~‘ LI) C’s ‘4 CO U) N U’) U) C’s

i-i N (‘4 ~~1 s-I (N (N U) ~~1 C’) C’) 1’ I s-I N ~~1 C’)
N ON C’)
Cx —

Z C’) C”) C’)
C’) ‘ - C’) ‘ C’)

O — LI) ‘ - — U) LI)
(N 5.0 (N lxi — ‘.0 ‘.0

Cx c”) F-i — — t’) El U) s-i ‘~~~~ — El ‘-

F-i
~~~ Z - Z “~J’ 4: (N 

~~~ Z
U) N Z N N — C)

~~‘ — Z lxi Z
F-i E 0 — F-I E Cl) 0 E Q

lxi C) ~~ Z N lxi ~~ — lx1
lxi Z lxi s-i El U) lxi i-i ~ C) s-i El s-i El
C x ’ - . E I x i O IZ I E N s-i 0 4: Z 0 1 4 0 -.
El Z lx] N s-i lxi < s - i > s-i lxi N a ’ s

4: s-i Z s-i O s - i Z ~~ ‘ Cx s-i Z i-i ‘~~‘
1 4 1 4 N E 1 4 > 4 1 4 E >4 1 4 0 1 4 E N —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~

lxi >4 0 0 ~ lxi 0 0 4 :— ‘-4 0 ~ 4:
Cx Cx Cx 0 0 0 Cx 0 0 Cx 0 0 0 >
N El Cx U) U) Cx 14 Cx Cx Cx

— Cl] < - - 1-I lxi Cl] E ~ Z
s-i s-i ~~ E s - i s-i Z 05.0 Z U) ~ — s-i ~~ —

Cx s-i s-i 0 ~~ s-i i-i s—i 1 4Lt) 0 ~ 0 N i-i 0 I
lxi < 4: ~ Z < 4 : E ~~~~~~- 0 0 ~ 4 : 4 :
U)

s-s~~ C’s 0 N (N F) U) LI) U) ‘.0 N rI rI N 0 ‘s~i L I)
CxI4 ‘.0 N (‘4 N N N N N N N N I 0) U) ~~l U)U)

(N 00

C’) C”) C’) CV) C’) (F) ~~ l ~~ 4 ~~ i ~~ i C’) I C’) CV) C’) 1’
F-I

lxi
NO
CxO CO 0’ 0 rI N (4) ~~ It) ‘.0 N CO 0) 0 rI N C’)
El’-] N N CO 0) U) U) U) U) U) U) CO U) C’s ~ ‘s 0) 0’

48

V -
:~~~ ‘

-
- - - - —

~~~~~
= —

~
----

~
- -

~~ -~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

-. ~~ 0

~~~~~~~~~~~~~~~El Zs-]
o (N Ix]— —lxi El
— Z E-I
0 —
lxi 0 El N C’) N (N ‘.0 s-I C’s s-I 0
P-s P.i~~’4 0 0 0 N N 0 ~~ ~~i U) N
U) ZI’] s-I s-I s-I 0 0 s-I 0 0 0 0

Z 0 ~~ 0 C’) I C’) 0 0 0 m c~ CV) C’) II C’) C’)

Cx

lxi — 0
r I O

Cx ‘-‘s-i0 F-s (N N CV) LI) U) ‘.0 N N (N C’4 U) (N N N N
lx., Z P i LI) s-I s-I ‘.0 ‘.0 0 (N (N N N ‘.0 N U) C’s C’s

s--i s-i C’) U) ‘cl’ (N I (‘4 ~~ ~~‘ U) (N N (N N ~~l ~~ i ~~ 5

lxi 01$
N

LI) U’) U)
F-s CV) — (4) —.

0 — — — —
__ U)

N ‘ ‘.0 ‘.0 ‘.0 ‘.0Cx U) F-i Es U’) s-i ‘.0 C’) C’) El C”) —
El ~~‘ U’) Z Z o~ < 1 ’ — — Z —
U) — LA lxi lxi 0 lx] Z— — Z E U) E F-s Q
N C) CV) >4 lx] N I x] N lx] ~ —
lxi Z ~~‘

lx] s-i s-i ~~ C) lxl lx] s-i 14 1-4 s-I s-ICx — — Z ~ lxi lxi s-i 0 Z E E N E C) U’) U)
El~~~
lxi lxi 0 ~~ < O l x l lxi E N IZI N lxi
0 Z s-i 0 ~ lxi 0 U) s-i s-i

< s -i lxi i-i s-i s-I Z ..i ~~ ~ s-i ~ < <lxi >4 s-i 0 0 < s - i 0 0 0 0 ~ 0 0
Cx Cx Cx < 0 0 0 Cx Cx Cx O C x 0 (f l U)
N F-s Cx lxi C) U) U) lx] Cx
El U Cx Cx lx] ~> Cx Cx Cx Cx N U) U)
Z lxi O C x 0 0 ~~ Cx 0 0 0 0 s-i — —
—

~~~~~~~~~~~~~~~~~~~~~ s-i Z U U ) s - s - i s-i s-i~~~~~~~~~~~~~~Cx 0 U) U) s-i s-i I--i lxi U) s-i s-i s-i s-i 0 I I
N 0 0  ~ 4: I 4: ~ 0 <  < < < ~U)

I U’)
s--I Z ‘.0 N CO 0 (N C’) CV) U’) N C’s N 0 0’s U) C’s
C x l x l  U) U) U) U) I d’s C’s C’s d’s C’s C’s C’s s-I N (N C’)

N 01)

lxi
s-i Ipi
U)
4: ~~ El ~~4 ~ 4 C’) I C’) ~~l ~~4 ~~i C’) C’) C’) Ci C’) C’) C’)
El U)U)

NO 0 rI (N C’) ~~‘ U) ‘.0 N 0) C’s
Cx0 ~~

I U) 5.0 N U) C’s 0 0 0 0 0 0 0 0 0 0
F-i s-i C’s C’s C’s 0) C’s C’s rI s-I s-I rI

49

.

~~~ ~~~~~~~ ~~~~~~~~


- -
- 5,— -~~-~‘ •~~~-~

_,~5• _ - _ ,
~-•.~t*~~

__.-——-—- ~~ ‘~‘ - ~~~~~~~ ~~~~~ ~~~~~~~~~ —~~-—~

—
c~ zo
N -s-i
C~I C’)
~ —‘U) C’) C’) s—I
s-i liZ C’s C’s U)
0 ZO (‘4 (N C’)z ——0 01-4
O PiPi
— Z o

— —‘0
Zs-i

— — Cxl
lx., E-I Cx
— Z E l
0~~~~~lxi OEl C’) (N N
P-i P.i :~ U) CO C’s
U) ZN 0 0 0

Z C’) C’) C’)

El —

~ z
N -0

s - I Q
Cx ‘—‘s-i
0 1-5 N N N
lxi Z P-s C’s 0’ U)

s--i s-i ~ ~ s ~~i

0

~~~~~I PiU) cON
4: ~~ El C”) CV) C’)
(-i U)U)

lxi
N O  0 s-I (N
C x O  s-I s-I rI
F- is-i s-I s-I rI

50

._ *~~~~ •
~.
‘
~;•~.

- - -- ~~~~~~

—- - —~~ -- -- - — ~~
- - 5,~~~~~~~~~ -- - - _ _



~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~ - - - -~~~~ -~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

s- .z~~ ~~~~~~~ I —
~~~~~ 1 4 s - z Z  ~ ,
0~~~0 X Z ,~~~~~a~~ ~~~~~~~~ e
E 1 4  Z ~. - Z14 14

_ _ _ _ _  
a)
C)

— a)
z
0 1 4  Q ~ +
1 4 L )  ~~Z Z

w
O~~~0 >.5- C~ 0Qz i.~~ .
~~14 1 40  14
5 - 1 4  14

- 0
‘s—I
4.)
P.’

014 Q P. + 0
I-I ’.) ~~Z ‘C Z
5- . Z 0  0 0  —

~~~~~ ~~~ ‘-~ • a.
0~~~~ 0 ~‘ 5 - ID 0 0az ~~a. •
0 1 4 1 40 14 Z -s-f
14 11) 14 .1~)m -I

s-I
z —~~~~~~ 4-’
014 0 ~ + U)
MI.) 1 4Z ‘C Z
s - E Q 0 0 —
a . 1 4 1 4 ~~~~~ • a. .s-
o g ~~ ~~~ ~ g
Q~~ 1 4o 14 z P-iZU) 14
1’.’

F-’
________ z

N
Z — SN I—I
014 0 ~C +
— U 14Z ‘0 Z
s-.Z0 00 s—I
a . 1 4~~ !x s-I • a.
0~~~0 ~~l.’ ID 0

0~~ ~~a. • 5-’ 0
5 - 1 4 1 40 14 Z
1411) 14
-‘ I-’ P.,

>4
F-’

z I—r~~0 I ..-4
0 5-5 14 ~~~ I+

1—. Z ‘1h Z
1 4 U0 5’.-.
1401-’ ‘ I a .
~~% 5 - ‘ . i O s-I
~~ 5- 1). • I ~~
~~~~ O a)

I-’ 5-5 5,-I

I E ~~~0 ’-’ I U ) Z (4
I Z  -‘ —

Za. L!~L

51

L - ~~~~~~~~~~~~~~~ ~~~~~~~~~~ 

-‘

S - —~~ - ~ -- - ---  
- -~~~~~~~~~~~~~~ - -- -~~~~~~~~~~~~ -— --~~ -. - - -•~~~~~~~~~~~ •~~~~~~~~~ - - - ~~ • -- - -~~~~~~~~~~~



5—--—— 

~~~TL~~~~~~~~- -- -I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-IC

1-4 ,-i

~~~~~~~~ rI s-I s-I

Z s-s lx.’ I I
o Z N
— —~~iEl
0

El
U)
Z

>4 
Es~~~~ ~ ~

~~~ ~~~~~~~~~~~~~~~~~~~~ 
~ E I ~~~~~I 0

Z Os-I N 0s-I (’4C’) ’~14Cx — s-I (N C F) ’~3’ U) ’. 0 N U) C’ ss-I s-I s-l r’I C’4 C”)~~~~U) 5 . 0 s - I (N C V)~~~~Lfl 5 . 0N U) C ’ ss-I s--I s-I s-I s-4
lxi
U)

______ -
,~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

‘ :~~~~~~~~ -~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - -

‘IC
—
C~ F-i s--i
lxi s-iO

Z < E l
— lx Z (F) s-I C’) C”) (F) (‘4 s-I I ~~ U)
[-I N O

O Es
— U) lx]

s-i E l — Z C x
~~ < s -_i ~~ Of — l x i C) C)
5-5 s-l~~~~ 0 Of~~ U)~)-’ s-i s-i 0
Cx 1-4< (‘4 . >4~~ Q~~ 4: 4:
F-i ‘-s Ix., s-I I 0 ‘~i~ Z Ix’s 0 1-i I I 0 0 s-I
4: ZN
E ~—i~~~

Z U) I!) U) U’) 0
0 + + + + 0
— lxi lxi N lxi ‘.0 0) 0
El Z • . . . + s-~ -

0 0 ~~4 s--I s-I s-I Cx s-I N lxi (‘4
5-4 (0) (‘4 N N

C) ~~ E-i~~~ E-i~~~
El 00 El ~ Cx Cx ~ Cx ~~ Z Cx s-_i
U) ~~~~~-i (f iN s .-] Cx ~ Cx Z E-4 ’--4 Z D E l ~Z C x E l O s--i P . s < N I ~ F-s 1-s ~ El Z N 1-s C) C)
— 14 P-i s-_i~~~0 Z< I 1-5 E-I U)Z Z s-_ i0 s-_ iO

U)0 lx, s-i s - _ i l x l C x I s-I ‘ 04:0 4 :1,0 4:. U)
lxi Z Q0] C0)~~I E I s-I • 0 (‘4 0 O~~~Z 0 I 0 5 Os- I
0 —
4: LI) 5 .O NU) C ’sO
lx4 s-I s--I s-I s-I s-I (N s-I s--I s-I s-I s-I s-I (‘4 C’) s-I I i-I C’.) s--I (N

— —
Cx > 4 > 4
14 0 C) 1-4
U) U) Z Z 4:

lxi Cx Ixi C.)
Z — >4 >4 lxi s-i
0 Z Of Of 0 0 P.s 14<
s--i C) 0 1 4 1 4 U) Z Z Z lxi PiC)

C’) E l Z E Cx Cx lxi lxi 0 N lxi Cx 0
CJ ,-i Cx lxi lx., s—i ~~ — El ~~lxi ~~ Z 4: 0 0 1 El Of C’) U)N

s-_i C x 4 : P-s N 0 lxi Cx U) 14
U) Es Ixi 4 : 4 : Cx Z Cx 5-’ 14 Z P s
4: U) E lx., N I x] lxi lxi ~~ lxi 4: Cx 0(0
El Z O C x Cx 0 lx.’ P.s s--i Cx

— U) CO E C) lxi U)’-’
Cx Cx Z ~ 0 Cx<
lx] Cx Cx lxi E 0 — — — lxi
U) lxi lxi U) — ~~ P.s U) El ~)N

Z ~ s-i Z E ~~ 0 U) 0El

‘-‘ lxi
C x U) O s - I (N C”) ~~
El ‘~~‘ 11) 5.0 N U) C’s s--I s-I s-I s-I rI

53

— -

,

- - 5 - ~~~5 — . - .~~ ,,
~~~~~ ~• -

-1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~
----~~~-- -~~~~~~



—--‘-5 - - SS555~S5-~ ____ ~~~~ 5,~~~~~~~S - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~~~~~~

IC
— ‘IC
Q F-I s-i
N s-iO

Z < E l
— lxi Z U’) ‘.0 ‘0 C’) ‘.0 s-I ‘.0 ‘.0 C”) Ci s-5 s-I I s--I
El N O
Z Q C)
0
0
—

s-i l-s 14
~~ <s -i -I U)— —~~~ 0 0 4:
Cx El< • • C)
El — la-i 0 I I s-I I I I I I s-I I I I
< Z N s-i
E s-—i~~~ 4:

U) 0 —
Z + 0 0 0 0
O 0 lxi N 0 0 0 0 lxi
— ~~‘ • 0 5.0 Cx 0 0 ‘.0 s-I Cx
1-i Z + s-I 0 N lxi s-I s-I Ci lxi U)
0 0 U) ‘~1~ (N 1-I ~D 1-s

N ~~ ~~f ~~f 1-i
U) ElN Z3i U)Es s-i Z N ix] lxi C)
4: U) E 0(0 U) O ~~ la-I — 4: lxi U) E U) lxi
El Z ‘-‘Cx O Cx < C) ~ H Z 0 4: s-_i

— U)’-’ C x C x Cx — Cx 0 0 Z lxi
Cx< ON Z N O

54

-

- - -
,~~~ - - I

~~~ ~~~~~ - - 
S-i

- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~



________ _________________ ~~~~ 5,~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

IC
— IC
Q E s s - _ i

~~~~~~ b ::
~~~~~

C”) ~~‘ U) s-I (‘4 Ci 1’ s-I (N I s-I (‘4 s-I (N s-I s-I (N s-I (‘4 s-I (N Ci
Cx
N

E l E l

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L i1!~~

55 

~~~~~~~:-
- ‘ - - -

-5- 5— -~~~~

IC
— IC

~~ F - I s -i

-

.

:

‘

~~~~~~~~~~~~

- 

~0 ~~

h -  - 

~~ N + +; p I ~~~~~~~~~~~~~

la-s 14 U’) 5.0 N U) I s-I (‘4 Ci 14 5!) ‘.0 N 0) C’s s-I (N s--I C’-.) Ci 14 U) ‘.0 i-I (N s-I (N

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

~~~~~~~~~~~ 8 ~~
0 ‘Cx ’-4 Cx s-’i s-_i

- s—i C) O C x  Cx O C x  4:
Ci H Z  Cx-i < 0 txs <

- 

~~~

s--s Ix]
U) C’s 0 s-I (N C”)
Ci C’) 14 14 14 14

• 56

- -
_ ;—

~
-

~~~~~~~~~~~~~ 
“ 

~~~

- I

- 5S~5,SSS~•~5~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - — - -
~~~~~

-IC
— IC

~~ F - I s -i
lxi s -_ i O

s--s lxi Z Ci Ci Ci (N (N (N
El N O

0

~~ -K IC IC 0 0 0
‘-4 —~~~~ 0 0 0
C x E s < ’ •
1-’ s—s lx.s 0 0 0 4: - <
~~ Z N

N N
5-5 + +El Z ~ lxi Cx 

- lxi
0 0  Cx Cx Cx
D s- IU )  s-I - El u-I

Cx HZ F-s E-~ F-I
Es 00 , N N
U) ~~~s-’ 00 00 00 Cx + +
Z CxE l  00 00  00 0 ~ O lxi lzI 0
— EsPi 0 0  0 0  0 0  E-s C ) Es  F-s -‘ E-4 C) El

(0)0 i-I s- I  s-I s-I s--I s-I ~~0 ~~~s--I s -4  ~~014 Z 1 +  1 +  1 +  4:s -_ i0 4 : 1+  4:s- i0
0 —
4:
li-i s--I Z s-I s-I s-I (‘.4 Ci s-I (N s-I (‘4 Ci
Cx 0
lxi N _  s-_i
I-’ s-i C x E l  Cx 4: — - lii
Z 0 0-’- 140 0 ~ U) Z —
— ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~ 0~~4 

~Cx — E s C x E - s s-~ E ~~ E-i < F-i c~ — E-i~~ N — < C)~~ lxl~ < N s-’s l z l E l O
lxi El < I4 : C ) C x  El s--i4:lxlZ El 4: U)>c ON ~ C 4 )’~ s-i ON
CO s--l Z~~) ’E  0 - i Z C x~~~lzl s-l — Z  4 : <Cx l s~_i E l  s-i Z 4 : 4 : U)s - iP-s

C O O  Cx lxl lx.s U )O4:CxCx,-i COON s-_i s-i- 0 <4: s-i 4 : P i U )
Z 0 ElO Ix] 0 ~> O C)>4 0 s-i ‘-U )  lxi > - —
O P - s E lZ l x i C x s - i  P iEs lx-, lxl O - 2 - S E l U )  Z>-’ 4: .s- i Cx Z>C~C x > 4 N

• — 0 O N  0< O F-I ~ 0< N- El14 ~~0 N - 4 :I C O
Ci E s Z  lz] s-i~~~EllxiO N ,-IZE l  Cx lzl s-i 5-i lxi Cx0U ) N Ix.’ 14

o—  >4 P-,ZC)~~~— > 4 P i N O > 40  >4 P-s Cx ~~ N4:s- i  s-_i >4
lxi D Z  lxi Ex] N Cx N ~~NEslz. ’ lxi 4: F-4 Z~ ’PilxI 14(0 F-s
s-i C x <  lxi P - s C x 0~~~ N Z C x N ’-’ 1x1 > lxI’ E-I CO U) ’- ’  lxi
U) E l l x l  C O O N  C x Z  C O O N  Z (00 CO E l > 4  <>< U) N
4: U ) Z  - <~~5 C x N s--s - < P i f Z ’ - iZ - < F - i  Z~~~~I>4 - s - i < Z~~~Cxlx1
El Z Cx lx.s ZON s-i Cx l x - sN O Z O  Cx lx-s Z s - O N > 4 < s - i O Z O s— i

— lxl Cx~—i lx.i >4 NCx~~~lx.’ ‘-‘- ‘-- lxl Cxlxi 4: ~ E Z -  4: N l x, <)
~~ — N O  ~~~D Z — N E l E l  ~~~~~~ ~>U ) Z Z  ~~>4 ) U ) P . . s  C)C x U ) E l  ~ C x U ) s - - l  l~~C)< CxU )-Z C x N N < lxl E- Cx lzlN’-- -U)N U ) U ) E s C x  lx] U) E-I Cxl~~ N lxi N~~~ P.I s-i — Es N~~~~~~U)

U ) C x C x ’ - ’  0 U ) C x 1 5 5 - i. Cx~~ U) Cx P., E-4 s-i l x iC x<  Z N O  EI u - iZ ’ -~ C)
U)0’-I )4Z lx-’ C O O Z > C~Z5-40 C O O N  Z< C 100  s-s~~~s-i Z< ’-’’4O
O l x-s lx-s < ’--’ --- O l x . ’N < s- - i~~~ C*., Ol x i~~ s--i~~’—C x.i U) Z E l Ps  ‘- < s -i

> sCx
s--s lxl -
CxCO 14 U) ‘.0 N U) C’s
El 14 14 14 14 14

57

- - ~~~~~~~~~~~ - - - 
~ ~~~~ ‘~~~~l - . 

~~ ~~~~~~~~~~~ 

5- --~~~~~~~~~~ - - ~~~~~~~~~~ — - 5, - —- -5,~~~~~~~~~~~~- - ” ”



~~~~~~ 
~5_~ —- — —---~~——--------~-----. - ——- - -—-~ ---- ~~~ -

IC
•— ‘K
~~ E l s -i

(‘4 I I I ; Ci Ci

El s-s lx., 4: i-s I I I Z Ci 14 I 14

z —~~~

Z
0 0
‘-I ~) C’s
H Z Cx Cx +
0 0
~~ ‘- ~ U) Es F-I ‘.0 ‘.0
Cx ElZ
El 00 N b N N ~~U) ~~~‘-‘ + + + +
Z CxEl OlxI N s-~l N Z lai N
— ElPi E l - - P i< U) P . s ~~~~~~~ ‘ - 0

C O O ~D s-I s-I E I Z < C x Os-I s-I C’
N Z < 1 + ‘ - s E E s E I I I Z I + s-I s-I I I
C) —

lxi s-I (‘4 s-I C’.) C”) 14 I I I s-I N s-I s-I I s-I
Cx
N
El N
Z Z s-_ i ~~— 0>4 < N Cx U) U)

I 0 i-s 0 — — 0 U)
Cx lxl >~ U)~~-l lxi lxi ~ z
lx] Z s—’ 04: U) 04: U) Z lx-i O
CO s-i Z - N C) lxi El U) ’-s El CO ’-s i-s O

Z ~~~~ P-s 0 U) >.s~~~~~ U))4~~~~~ NCx
0 Cx P.INU)Ci 4: N - C) N - C)

• ‘-‘C) C)0 Z P.I ~-Z ~ ZEs ~ ZEl El E l —
Ci H Z lz] lx-i ‘ - i N N Z 0 4 : N ’— s 4: 4 : N s -~4:Os- i s-_i Q~~~ O ~~~ 5-4 O~~~ ,-i~~~ O~~~ s-i~~ Z N
Is_i D Z N U) (N Z s - i s-” N El N E - I 4 : E s N E l 4 :E s N E l
s-_ i Cx4: 10 5-I lx., i - i< E l ‘-s i-i j

~~ 0 ~~ C) N N 4 : O
U) Ellxl 4:~~ 0 ~~ 0 s - U) Z U) C x Z C O C x
4: U)~~ s -_ i4 : U) E l ~ P-s O lx.i 0 0 lx.s O 0 F-i 0
Es

!h
~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~

58

— 5- - -- --- 
--- 5 5 --S -~~~~~~~~~ -—-- - 

-

_ _ _ _ _



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -= — -~~~ ~
—

IC
IC

~~ Els-i
N s -_ i O

<El
— ‘ s-i lx-s Z s-I (N I I 5 (N 55)

0 1 4 0
4~)

O

s-i E l
~< <s-_i Es— —~~~ 0 E-s (6
Cx 1-1 < o
1-4 s--’i lx.’ I I I I U) 0 1 0

~~ —~~~
~~-rI

Z O (6 ’~0
— 55) 55)
H Z
0 0- ‘5) Os
~~ I- U)
Cx EsZ s-I

~~Z Cx E-4 s-I C’.) ‘-‘El ~ F-I
— E s P i  lx.s lxi s- iC) EsPiEsCOO 00 > 4 1 4  000
lxi Z U) U)  O C x  I I I C O E s C O  ~~~U ) E lO — 0 4-) s-i
4: s - 4 0 1x.,lxi s-I (N s-I (‘4 I I I s-I (N C’) 4-~ s-I lx]
Cx
N In
H 0 5 5 )
Z
— 4-) C)

Z a) 0
Cx 0 Cx > 4 5 5js-4
N 0

0 lxi
Z N C) El 55) 55) 00 s--i 4: Z• s--s C) 14 lxi 1$

Ci H Z  U) a)a ’soO11 lx-] (fl U
~~ U) ~~~

U) El la] ‘—‘ El Cxs - i  -s-I s-i
~~E lxi~~ ~~~Pi

— Cx Cx i--’ 5-s ~

Cx ~~ o s -_ i  r-I ’rI ( 6
0 0  0 0  014CO IL, lzi O I I I ( 5 U )

0 ( 6

Cx~~ 0 s-I N Ci 14 U’) ~~~ U) C O
El~~ ‘-0 ‘.0 ‘.0 ‘.0 ‘.0 5.0 ‘K

I C ’ K

59

~1

L.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----- - -- - - -- - -  - —-.- --- -- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~ -


—
.~=IW’~” ~~~~~~~~~~~~~~ -,~r - - a- - ~~ —

example , if the corresponding IENTOP sequence held five al-
lowed options and the third option position was selected, then
IDIR CT(l ,N) would equal the integer three. An IDIRCT (l,N)
value of 1000 indicates that the entry is a non-keyword string
held in IDIRCT(2,N) . An IDIR CT(l ,N) value of -l indicates
that the instruction is a floating number which is held in
IDIR CT(2,N). This floating number must be accessed with an
eguivalenced array which is normally DIRECD.

Default values are coded in the arrays IDVAL and PVAL (in
common block /DEFLT/). IDVAL must be dimensioned the same as
IDIRCT and the second subscript corresponds to the option number
for the options listed in Table 3. IDVAL(l ,N) indicates a
default control number , and IDVAL(2 ,N) indicates a default
value as described in Appendix B.

3,4 PROCESSING

3.4,1 Processing Flow

The control routine for the processing block is PROCES and the
flow for this routine is shown in Figures 18 and 19. PROCES
first calls the three routines, PROSET, INPSET and OUTSET,
which interrogate the instruction matrix and, as necessary,
set up input functions and set control values. The routines
also check for errors in the instruction matrix. For example,
a reference to a nonexistent Info file group will be detected
in routine COMPGP which is called by INPSET.

PROCES then enters a DO loop which covers the column positions
(radial stations), Inside this loop, PROCES calls ATTGET to
retrieve and/or calculate the attached parameters for the ap-
propriate counter and time span, ATTGET is called once for
each column position since the counter could change with
column number if the input is from a scratch file. ATTGET
will not recalculate or retrieve the attached parameters if
the currently stored attached parameter data are appropriate.
In addition , ATTGET will not calculate the attached parameters
if these parameters are not required for processing or display
in the current step and the output is not to a scratch file.

Following the ATTGET call , PROCES enters a second , nested DO
loop which covers the row positions (chord positions). The
flow inside this loop is quite straightforward . GETDAT re-
trieves the appropriate data stream(s) for a row/column inter-
section , PRO1 calls the appropriate routine to process the da-
ta, and TSAV1 stores the data either on the temporary scratch
file or on SCF1 or SCF2. GETDAT may retrieve the data stream
from the Master File according to the user item code or Info

60

—5

- - - — 5-5------—~~~~--—--- ~~~~~~~~~ --—- -~~~~~~—- - - --
~~~~ 

5---- - - -



PRESE’?

pxocass

LNPUT

ou-rpu-r

‘I.
LO OP OVEA COL UNS P05 ITI ONI

I
cl-S AI .CNSO

LOOP OVIR R~~( POSITIONS

RZTR’?EV!

DATA

I
P~cciSS

DATA

0USPVE DATA
(T~~~ OJAAY
OR FINAL)

NO

Figure 18. Processing flow diagram (first part).

61 

,t
~*_

— 

--  -- 
~~~

--
~~~~

---5- - -,- -

~~~~~~~~~~~~ 

-

~~

--

~~~~~~~~

--5 - 

~~~~

- - - —- 5 -- ~~~- - - ‘-- - —5 ~~~~~~~~~ -- ~~~~~~~~~ -- - - - J


~~~~~~~~~ ~~~~~~~ 
‘ -~~ - -----—--- -5- -——--- —--- --—---------—-~~ ~~5-~~~~~~~~~ -- - ---- --~~ -~ -

LOO P ovxs TINE SECTIONS

RETRI EVE

DATA

ISITTGPATE

OUTPUT DATA
(‘?D~~OSA1T
0* FINAL )

NO
SLOP !?

Ff5

CALCUt,AT!

SLAP! SLOP!

OUTPUT DATA
(TV OSAEV
OR FINAL)

FINAL
DZSPOSZTION

or DATA

Figure 19. Processing flow diagram (second part) .

62

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

5-— 
_ _ _ _-- ---- -- --- “5 - - 

- 5 - -- --- -



- 
-- --— —- 

- - - — — - - - ---- - - - - -
~~~~=- --~~~~-~~~~---—- -- ——--—

file specification, or GETDAT may call RTRVSC to retrieve the
data from SCF1 or SCF2.

PRO 1 addresses most of the available processing routines.
PRO1 does not address processes which must treat data from
more than one row/column position simultaneously (e.g, C~
integration) . For such processes , PRO1 passes the input data
straight through to output , treating the data in the same way
that data is handled for a DI SPLAY command . When the output
of a process is to be stored on SCF1 or SCF2 and the proces-
sing has been completed by PRO1, TSAV1 calls SCADD to save the
data for the current row and column. Otherwise, TSAV1 saves
the data in one of three ways . Data streams which contain a
single data point are saved in a portion of the array XBUFF .
Multiple point data streams are written to the temporary
scratch file. However , if a single row position is being
processed in the command step, the output data is not written
to the temporary scratch file . If the data is to be printed ,
one of the printout routines (XYPRNT or XYPRN2) is called to
print the data stream immediately).

When the row position DO loop completes, PROCES checks whether
the specified process is an integration over multiple chord
positions (i.e., Cni Cc~

C~ integrations). If not, PROCES

jumps ahead to a call to TSAV2. If so , PROCES enters a DO
loop which covers data stream sections. Possibly every data
point for every row (chord) position will not fit into the
program scratch storage array . Thus, each data stream is
broken into 128 point (one-half of a scratch file record)
sections and all the data for each section is processed simul-
taneously. GETEMP retrieves the data stream sections from the
temporary scratch file and PRO2 selects the appropriate inte-
gration. When the loop has covered all the data stream sec-
tions , PROCES calls INTEMP to supply the appropriate labels
for the process output .

After the call to INTEMP , PROCES calls TSAV2 to store the re-
suits of the integration. If the output is to be stored on
SCF1 or SCF2, TSAV2 calls SCADD to save the data for the cur-
rent column. In addition, attached parameter data are stored
using more calls to SCADD if those data have not already been
stored for the current counter. If the output is printout,
TSAV2 calls XYPRNT or XYPRN2 to print the output data stream
immediately . When neither of the above output methods is Se-
lected and a single-column position is to be processed in the
command step, the processed data are left in the scratch
storage array, XBUFF . Otherwise, the data are saved by one of
two methods. If the output is a single data point for the
column , (i.e., one azimuth position) , this point is stored in

~ -~ - .
~ -~ _ ,z_-— -—--—-— -

~~~~~~~~~~~~~~~~~~~ 
____

the XBUFF array . If the output is multiple data points for
the column , the data are written to the temporary scratch
file.

The same call to TSAV2 may be executed after a jump around the
DO loop which performs the integrations . In this case , re-
quired storage or printout of the data may have already been
performed by TSAV1. If the output is to SCF1 or SCF2 and the
column position represents a new counter, TSAV2 calls SCADD to
save the attached parameters . If the output is printout, this
printout has already been performed in TSAV1. For graphic
output , the output data are stored in XBUFF or on temporary
scratch unless only one column is to be processed in the
command step .

After the loop over the column positions is complete, PROCES
checks whether the specified -process is a differentiation over
the column positions (radial stations). If not, PROCES jumps
ahead to call DI SPOS . If so , PROCES calls SLOPST to retrieve
the appropriate data from the temporary scratch file and to
execute SLOPE to calculate the blade slope for each radial
position. Then TSAV3 is called to store the output from
SLOPST.

The final routine called by PROCES is DISPOS. DISPOS selects
the proper routine to perform the output.. If the output is to
SCF1 or SCF2 or to printout, then the output process has been
completed in TSAV1, TSAV2 or TSAV3 and DISPOS simply returns.
Otherwise, DISPOS calls the appropriate routine for the
graphic output selected: MULTPL for multiple curve X-Y plots ,
SINGPL for single curve X-Y plots or to add a curve to an X-Y
plot, CONSET for a contour plot, and SURSET for a surface
plot.

When DISPOS returns, PROCES sets the subroutine argument , IC ,
to one and returns . MAIN transfers program control back to
USER . -

3.4.2 Scratch Files

Scratch files SCF1 and SCF2 are written by subroutine SCADD
and data are retrieved from these files by subroutine RTRVSC .
Subroutine INFSCR is used to obtain information about the
contents of a scratch file. The scratch files are direct
access and Figure 20 shows the assigned purpose for the
scratch file records . The first scratch file record contains
labels , information on the data stored , row positions , and
column positions. Along with each column position stored,
there is a directory for the associated attached parameter

64



- - - - --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ‘

+

8~~~8 ~ U)
~~~~~~~ 0 _I_)

~ I)

_ _ _ _ a)
_ _ _ ~0

- --I
+ •‘-~5-. 0 -~ In

~~s- SI 0 0 + (6
c.. c, .~~SI 0 —U

S~ Z
_ _ _ _ 5-I

_ _ _ _ _ _ _

I

0
0

~ S
0 D~

_ _ _ _ _
a)

a-’
00 --IN la-s

SI.~~Z 0 —

0 II
r.. o
ZU
5-q

J~I ~~~~
LY]

~

65

~~~~:~~~
-

-
- ~~~~~ - -

_ _ _ _  —~~~~~.— - -—~~~-- ---- - -



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘ --~~~~~~~~~~~~ 

-“~~~~~ 5- - ~~~
—5- - ‘———.5-

data and other information including the counter for the col-
umn. The column position and attached parameter directions
may continue into the second record of the scratch file. Fig-
ure 21 shows the contents of the first record of the scratch
file.

Data directory records begin at record three of the scratch
fi le.  Each data directory record contains several data
directory blocks and each block contains the record locations
for the data corresponding to the top and bottom double-row
elements for one row/column pair . Along with the data loca-
tion pointers, some information regarding each data stream is
included. Space is provided for one data directory block for
each matrix intersection for the allowed number of rows and
columns . Figure 22 shows a data directory record . Data
directory blocks require 16 words (64 bytes) and scratch file
records contain 256 words (1024 bytes) so that 16 blocks are
written to each record. The block address for a given row/
column intersection is determined by varying the row position
first and then the column position.

Data records begin after the last reserved data directory
record. Data streams are written to the lowest available data
records in the order received by SCADD.

The temporary scratch file has a different format from SCF1 or
SCF2 . This file will not hold data streams corresponding to
every row and column intersection simultaneously. The direc-
tory for this file is contained in the common block /GENSCR/
(see Appendix B). The flow of PROCES is such that this file
should be required to hold no more than one data stream for
one row element of each column position and one data stream
for each row element of one column position . Data streams
corresponding to column positions are entered first followed
by data streams corresponding to row positions . When an
integration is performed , the row position data streams are
condensed to one data stream which is written as a column
position data stream on the scratch file. The row position
data streams for the next column position must then be written
to a higher location on the scratch file to avoid overwriting
the new column position data stream.

3.4.3 Info File Retrieval

The information stored on the Info file is retrieved and pro-
vided to the Processing Block by several d’~fferent routines.
INFOST is called in the Program Initialization Block to read
and transfer the information from the initial group into the

5 
66 

~~ -~~~~~--~~~~~~~~--~~~~~~ -- - -  - - - -—~~~~~—-~~~~~ --- - -~~~~ -— - - -- - - - -



~~~~~-~~~ -~.- -~~~ - —--- ‘5-— — - -
~--r~ “ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— - -- —5

START LENGTH
WORD (WO RDS) ENTRY CONTENTS

1 1 Independent Variable O~ No Data , l=Time , 2=Freq , 3=Harm
2 2 Overall Units (2A4)
4 4 Row Position Scale Variable (4A4)
8 2 Row Position Scale Variable (Shortened) (2A4)

10 4 Row Position Topographic Feature (4A4)
14 4 Column Position Scale Variable (4A4)
19 2 Column Position Scale Variable (Shortened) (2A4)
20 4 Column Position Topographic Featur e (4A4)
24 1 First Dimension Sempling Interval
25 1 First Data Record
26 1 Attached Para m eters : 0—Universal , 1—By Column
27 1 LTYPE (from /PRCOM/)
28 1 LXAX (from /PRCOM/)
29 2 Ship Model (A4 ,A2)
31 2 Ship Number (A4 ,A2)
33 2 Ship Gr nss Weig ht (A4 ,A2)
35 2 Ship Long itudinal CG (A4 ,A2)
37 1 Number of Column s Present
38 1 Number of Rows Present
39 1 Top Doublerow Element Keyword
40 1 Bottom Doublerow Element Keyword
41 8 General Label For Data (7A4,A2)

IRPOFF+l 1 Row Position Number 1 Unoccupied —l.E+35

Last Available Row Position Unoccupied=—l.E+35
ICPOFF+1 1 Column ?osition Number 1

- +2 1 First Dimension Value For First Data Point
+3 1 Data Stream Number of Entries
+4 1 Record For Azimuth Data

• +5 1 Number of Points of Azimuth Data
- +6 1 Record For Airspeed- Data

+7 1 Number of Points of Airspeed Data
-‘ +8 1. Record For RPM Data
“ +9 1 Number of P~jnts of RPM Data
‘ +10 1 Record For Static Pressure Data

+11 1 Number of Points of Static Pressure Data
‘ +12 1 Record For Outside Air Temperature Data
-, +13 1 Number of Points of Outside Air Temperature Data-, +14 2 Counter Label (A4 ,Al)

+16 2 Flight Date (2A4)
• +18 2 Flight Time (2A4)
- +20 1 Column Position Number 2

Column Position Number 3

Figure 21. First scratch file record.

67

- ~~~-
V ~~~~~

,
-

_________ ______

-

~~
- — -

~~~~~~~~~~~~~~ _.._ ___  — ~~~~~~~~~~~~~~ ~

‘ II

START LENGTH
WO RD (WORDS) ENTRY CONTENTS

L+l i Top Doublerow Element Start Location in File 
-

1 Top Dou~1erow Element Minor Geometric Position -
Li-3 3 Short Data Stream Label (3A4)
L+6 1 Top Doublerow Element Item Code (A4 ) -L+7 1 Top Doublerow Element Number of Points
L+8 1 Not Used
L+9 1 Bottom Doublerow Element Start Location in File
L+lO 1 Bottom Doub lerow Element Minor Geometric Po sitmon - .1
L+ll 3 Short Data Stream Labe l (3M )
L+l4 1 Bottom Doub lerow Element Item Code (A4 )
L+l5 Bottom Doublerow Element Number of Points
L+l6 1 Not Used -

L ( M O D ( ( ( C o lumn Elemen t — l) *l8  + (Row E lement )) , l6) — 1)* 16

Figure 22. Structure Qf a data directory block.

68 
-

- 

~~
-
~~~

-:
‘

~

--

~~
- - - •

~~~

- -
‘
~~~~

- -

— ~~~ --~~ —~ —~~~~~~~~~ -5- --~~~~~~~~~~~ —- -- --~~~~~~~~ - -- ----‘ -~~~~~~~~~—-~~~~~~~~~ -~~~~~~~~ -

- a9,~i — 5--- ——- — ~~~~_ . - --.~ -~.~~~~~ -- -—
- - -

common block /SINGIF/ (see Appendix B). This common block is
interrogated by SINGGP to extract the appropriate item code
for a particular keyword.

For other Info file groups , COMPGP is called to read and
transfer the group information into the common block /INFGRP/ .
Then (NFO2 is called to provide the proper item code(s) for a
specified row/column intersection.

3.4.4 Replacement/Addition of Analysis or Derivation Routines

Most routines which execute specific analyses or derivations
on input data are accessed by PRO1 through an interface
routine . For example , to calculate blade displacement , PRO1
calls the interface routine DSPSET and DSPSET calls BLDISP to
perform the actual calculations . The interface must take the
input data as stored in the program and provide these data to
the processing subroutine in the required format. The main
stream of input data is contained in the array XBUFF . Data
for the top double-row element always begin at array element
one and data for the bottom double row element begin in the
second quarter of XBUFF at location IBFSIZ/4 + 1 where IBFSIZ
(in common block /SIZES/) is the array size of XBUFF.

The presence of top and/or bottom double-row elements is
indicated by the value M 12INP (in common block /CNTLIP/) where
the allowed values are :

0 = both double-row elements present
1 = top double-row element present only
2 = bottom double-row element present only

The number of data points in the data stream(s) is given by
the two-element array IDATPR (in common block /CNTLIP/) where
IDATPR(1) is the number of data points for the top double-row
element and IDATPR(2) is the number for the bottom double-row
element . Attached parameter data are contained in the common
block /ATTPAR/ as explained in Appendix B. Array XSPARE (in
common block /BSPARE/) is available for intermediate storage
of data.

After the process is completed , the interface routine must
assure that the output data streams are stored in XBUFF with
the top double-row element data stream starting at XBUFF(1)
and the bottom double-row element data stream, if present ,
starting at XBUFF (IBFSIZ/4 = 1). M12OUT should be set to
indicate the presence of the top and/or bottom double-row
elements using the same allowed values as M12INP . IDATPR
should be set to give the amount of data for each double-row

69

- -
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
_

element . The output keywords , KEYWD1 and KEYWD2 , should be
set to indicate the type of data present . If a double-row
element is not present , the corresponding keywords should be
set to zero. If the double-row element is present, there are
three cases . The keywords for output from analysis should be
identical to the corresponding input keyword , KEYQ1 or KEYQ2 .
The keyword for a derivation output, which could in turn
become the input to a second derivation , should be set by
reference to the KWDAT array in subroutine PROSET . The key-
word for other derivation output could be set to any non-zero
value .

Then the labels and label pointers should be set. When the
process is a derivation, the dependent variable description ,
ITEMDS (in common block /LABELS/) should be changed as neces-
sary along with the dependent variable units , IUNITS. LTYPE
(in common block /PRCOM/) should be set to eight . When the
process is an analysis , ITEMD S should not be changed but LTYPE
should be set to indicate the type of analysis as listed by
HLABLS (in common block /PLABLS/). In either case, LXAX ( in
common block /PRCOM/) should be set to indicate the independ-
ent variable as listed by XLABLS (in common block /PLABLS).

3.5 COMMAND SEQUENC ING

3.5.1 Command Sequencing File

The Command Sequence File is a direct access file with a
structure as shown in Figure 23. Each record contains 16
command lines with 64 characters (16, 4-byte words) per line .
Each block requires 7 records for 112 available lines.

The first word of the directory record is an integer which
specifies the total number of records in the file. Following
the first word is a sequence of two-word entries, correspond-
ing to the command sequence blocks, which gives the four-
character block name in the first word and the record location
in the second. An empty block is indicated by a blank block
name.

3.5.2 Command Sequencing Routines

Access to the Command Sequence file is initialized by the
routine EDINIT in the Program Initialization block. EDINIT
first reads the directory record for the file and sets certain
control values based on the size of the file. Then EDINIT
checks the location pointers in the directory record for
reasonableness. Finally, EDINIT reads the last file record to
check that the command sequence file is properly initialized. 

-— 

70

__ 5- _

~~~

_

~

_ ____ ___
--‘

~~~~~~~~~~~



________ -~~~~ - __
~~~~~~~~~~~~~~~~

- ‘~~ : - 9 r~ - - - - - - — , ~._
- -

——-— - —-- - .
~~~~~~~~~ - ~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

BLOC K 1 BLOCK 1 [ BLOCK 2
FILE I

DIRECTORY FIRST • . • LAST FIRST
RECORD RECORD RECORD RECORD

RECORD 1 RECORD 2 RECORD 8 RECORD 9

Figure 23. Structure of command sequence file.

71

I - 
- -

~~ 

- - -

~ 
~~~ - 

- -- - -~~~~ -5-~~~~----- - -~~~~~~~~~

F — _ 5 - _~~~~~~~~~~ ~~~~~

The main routine for the Command Sequencing block, EDCNTL , is
called to perform any of the functions: EDIT/NEW, EDIT/CHANGE ,
EDIT/DELETE, BUILD or EXECUTE. EDCNTL first searches the Com-
mand Sequence directory record for the block name entered . If
the name is found and the function is EDIT/NEW or BUILD, an
error message is generated . An error message is also gener-
ated when the name is not found and the function is EDIT/
CHANGE, ED IT/DELETE or EXECUTE .

For the EDIT/NEW or BUILD function, EDCNTL sets the variable
LED (in common block /LEDIT/) to the appropriate value (EDIT/
NEW = 1, BUILD = 2) and searches for an unused command se-
quence block. If a blank block name is found, the name is set
to the specified name and the command line storage area is
preset with dollar signs for every line. Upon return from
EDCNTL , the User Interface block causes the individual command
steps to be saved using the EDSAVE routine.

For the EXECUTE function , EDCNTL sets the variable LED to
three and sets appropriate pointers for retrieval of the named
block . Upon return from EDCNTL, the User Interface block
causes individual command steps to be retrieved using the
EDINP routine .

For the ED IT/DELETE function, EDCNTL modifies the correspond-
ing file directory entry to show a blank name.

For the EDIT/CHANGE function , EDCNTL reads the indicated com-
mand sequence block into the array LINE (in common block
/CNGBLK/). Then EDITCH is called to allow the user to modify
the sequence . Upon return from EDITCH , the argument ISAVE can
have a value of one to indicate the modified sequence should
replace the original sequence or zero to indicate that the
origin~il sequence should be left unchanged on the commandsequence file.

3.6 MENU S

Menu displays are controlled by the routine MENU . This
routine simply calls the appropriate routine to create the
specified menu display. MCOUNT is called to list the counters
present on the Master File partition currently accessed by the
program. MITEMS lists the item codes present in the partition
for a given counter. INFRED lists the groups present on the
Info file. LSCRAT lists the contents of the scratch files .
Finally, EDITLS lists the Command Sequence blocks present on
the Command Sequence file.

72

- -

- - - -
~

—
~ -—5-- - - - - 5 --—-- -~

-
~ -5-—- -- --—- ~~~—— - ---

3.7 GRAPHICS

3.7.1 Tektronix/Calcomp Plotting Interface

Plots generated on the Tektronix 4014 screen are nearly
identical to corresponding plots generated on a Calcomp or
Houston Instruments DP-l. In addition, differences in the
source code required for the Batch mode load module and the
Interactive Graphics load module are held to a minimum. These
features of the software have been implemented through the
generation of a group of plotting interface routines and
through the use of a modi fied version of the Calcomp Preview
routines. Calcomp Preview is a set of routines provided by
Tektronix in the PLOT-b software. The PLOTS routine supplied
by Tektronix has been replaced by a BHT modi fied version for
this specific application.

The plotting interface routines replace the functions of the
LINE and AXIS routines . In addition , the plotting interface
routines perform five functions required by the Processing
Program . First , certain residual differences between calls to
the Calcomp routines and calls to the Tektronix and Calcomp
Preview routines are handled by this interface. For example,
the interface routine STPLT handles the difference between
clearing the screen on the Tektronix and moving the plot
origin to start a new frame on the Calcomp . Second, the
interface routines generate the Tektronix screen format for
plotting and also handle positioning of the cursor on the
left-hand side of the screen for printed user input and
computer messages. Third, data plot curves which exceed the
allowed plotting area are clipped by these routines. Fourth,
the facility to generate dashed curves is provided by these
routines. Finally, access to the graphic cursor and evalua-
tion of cursor-specified locations in user coordinates is
provided by the plotting interface .

The plotting interface calls only four Calcomp routines: PLOT ,
PLOTS, NUMBER and SYMBOL. LINE and AXIS are not used. In
addition , three Tektronix PLOT-b routines are accessed by the
plotting interface and three additional PLOT-b routines are
called by the modi fied PLOTS routine. The modified PLOTS
calls the routines INITT , VW INDO and SWINDO . The plotting
interface calls the routines MOVABS, ANMODE and VCURSR . Dummy
versions of these last three routines are provided for the
Batch mode load module.

To begin each plot frame , either STALL or STPLT must be
called . STALL should be called for the first plot frame to be

73

--5---

J~~~~ _~
~~~~~~~~~~~~~~~~~~ 

-- •--—--—-—, F—- - - 5 5
~~~

—--5— -~~~~~~~~~~~~-s-~- ~~~~~~~~~~~~~~~~~~~~~

generated by the current program run. STPLT is called other-
wise. Following the call to STALL or STPLT , AXES or AREA must
be called to define the allowed plotting area. AXES will
generate a box around the area , annotate X and Y AXES and ,
depending on the IGRID and NOT ICS settings (in common block
/DRW/) , draw tic marks inside the box and/or a grid inside the
box. AREA will simply define the allowed plotting area with-
out generating any axes.

LYNX is called to draw data curves. LYNX will generate con-
tinuous curves or dashed curves and/or curves with characters
centered on every N ’th point . LYNX cannot draw lines outside
the allowed plotting area. DRAWN is called to draw a line
outside the allowed plotting area according to the dash code
used by the last call to LYNX (see Appendix B).

INSET relocates the cursor on the left-hand side of the
screen for printed input or output . The cursor is located on
the number of raster points down from the top specified by
LNCNT .

PLOC activates the graphic cursor and evaluates the user
specified location in units of the current plot frame . The
resultant values and the user typed character are returned to
the calling routine for processing or output. One position is
evaluated for each call to PLOC.

ENPLT ends all plotting by the Processing Program .

3.7.2 X-Y Plots

Both simple and multiple curve X-Y plots are generated through
the routine XYPLOT . XYPLOT calls STPLT or STALL as necessary
to initialize the plot frame . These routines are not cabled
if a curve is being added to an existing plot frame . X and Y
scaling values are determined using SCALEV and the axes are
drawn using AXES. This portion of the code is also skipped if
a curve is being added to an existing plot frame.

LYNX is then called to draw the curve on the plot. Following
the call to LYNX , labels are drawn for the plot if the curve
is the first for the current frame. For a multiple curve
plot , a sample of the type of dashed line used by LYNX is
drawn using the routine DRAWN . This line is then annotated
appropriately.

PLOC is then called if graphics cursor activation was speci-
fied by the user. INSET is called and the returned arguments
from PLOC are printed. If the returned character from PLOC is

74

F - - — - 5-5-5- 5- _~~
_
~ - -

-55-~~~~~~•—. - -5FF5-~~ •~~~~~~~~~ 5-- -

a ‘C’ , then the program loops back to call PLOC again. Other-
wise the program proceeds to call INSET and return.

3 .7 .3 Contour Plots

For contour plot generation, subroutine DISPOS calls subrou-
tine CONSET. Based on the two independent variables for the
output function, CONSET calls NOFRST or YSFRST. NOFRST is
selected when the first or time-related dimension is not one
of the two independent variables. YSFRST is called when the
first dimension is one of the two independent variables . Both
of these routines retrieve the output data and interpolate the
data matrix to obtain a data matrix with the prescribed number
of rows and columns for the plot format selected .

CONSET then calls either CONCYL or CONREC for a cylindrical or
rectangular format, respectively. These two routines follow
the same general flow . After STPLT or STALL , and AREA are
called , a box or circle is drawn around the allowed plotting
area. Then the interval between contour levels is set using
SCALEV and/or user supplied values.

When the vertical of Z scale is set , CONTUR is called to draw
the contour plot. CONTUR finds the sequences of X-Y positions
which form the individual contours. However, CONNEC is called
by CONTUR to actually draw the contours using LYNX. In addi-
tion , CONNEC uses DRAWN to draw line samples with level anno-
tation in the label area.

Upon return from CONTOUR, additional labels are drawn under
the plot and then INSET is called to reposition the cursor for
printed I/O for the next command step.

3.7.4 Surface Plots

Surface plot generation follows the same general flow as con-
tour plot generation. Subroutine DISPOS calls subroutine SUR-
SET. Based on the same criterion used by CONSET, SURSET calls
NOFRST or YSFRST. Upon return from the selected routine, SUR-
SET calls SURCYL or SURREC to draw a surface plot using re-
spectively a cylindrical or rectangular format.

As with CONCYL and CONREC , SURCYL and SURREC follow the same
general flow pattern. Either STPLT or STALL and then AREA are
called and a box is drawn around the allowed plotting area.
PLSURD is then called to draw the surface . GTFORN is used by
PLSURD to generate the perspective transformation from three-
dimensional point locations to point locations on a viewing
plane.

75

Upon return from PLSURD , SRRCRF is called to draw annotation
around the allowed plotting area.

Upon return from SRRCRF , labels are drawn below the plotting
area , INSET is called , and control is transferred from SURCYL
or SURRE C to SURSET . Next , control is returned to DISPOS .

3.8 DATA RETRIEVAL

Measured data are retrieved from the Master File with the rou-
tines DATAIN and FINDIT. FINDIT locates the appropriate data
in the Master File. Two separate FINDIT calls are required to
locate an item code/counter pair. The first call locates the
specified counter in the counter directory and transfers part
or all of the corresponding item code directory into the ITEMD
array (in common block /DATSET/). The second call locates the
specified item code in the item code directory and transfers
the information record for the data stream into the ITMINF ar-
ray (in common block /DATSET/). Both of these calls to FINDIT
are performed by DATAIN so that a single call to DATAIN is re-
quired to input data for a specified item code/counter pair.
Based on the requested time offset and the time history length
specified, DATAIN calculates the appropriate first record and
reads the requested data . Calibration is performed if the
data are stored on the Master F’ile in integer format.

Part or all of the counter directory and the most recently
used item code directory are kept in the arrays ICTRO and
ITEMD so as to minimize reads of directory records. Thus, if
there are fewer than 128 counters, the counter directory need
not be read more than once. Similarly, the item code direc-
tory need not be read more than once if that directory has
fewer than 128 entries and if the counter does not change. In
addition, the information record need not be re-read until a
different counter/ item code pair is required.

FINDIT checks the required data against the data present to
prevent unnecessary reads of directory records and information
records.

76

- -

— — ---

r

4. UTILITY ROUTINES

Certain subroutines are used in both the File Creation Program
and the Processing Program . These routines have been written
to be general in nature.

4.1 DIRECT ACCESS

All direct access READ , WR ITE and FIND operations are pro-
cessed by the routines RNS, WMS and FMS S respectively. For
example, instead of a direct access read statement using the
IBM format,

READ(NRI ’IXXX)IARBAY

the File Creation Program and Processing Program make the
call,

CALL RMS (l , IARRAY ,I SIZE ,IXXX ,1ERR)

Of course, the normal IBM format, or some equivalent format
for a different computer system , is used in the RNS, WMS and
FMS routines.

The routines use the common block /MASS/ to retain device num-
bers , offsets and sizes. Calls to RNS, WMS and FMS specify a
pseudo-device number which is an index for the arrays in
/MASS/. In the example, the integer ‘1’ is the pseudo-device
number. The array MDEV contains the actual I/O file numbers
(data set reference numbers) for the direct access files . The
array MOFF contains offsets to be used in addressing records
in the direct access file. Thus, an MOFF value provides
relative addressing to a group of contiguous records which
form a subset of all the records present in the direct access
file. These subsets are called pseudo-devices . Thus, if

MDEV (2)=8
MOFF (2) = 5248

then pseudo-device ‘2’ is direct access file number eight and
the first record of pseudo-device two is actually record 5249
on direct access file number eight .

The array MLEN gives the number of records assigned to each
pseudo-device . The array MTOT gives the total number of re-
cords and MSIZ gives the record size in four-byte words for
the direct access file which contains the corresponding pseu-
do-device .

77

-
—. —— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -

~~~ r~ ’~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The routines RMS, WMS and FMS check that the requested rela-
tive record number is within the assigned pseudo-device area
and that the resultant absolute record number does not exceed
the boundaries of the corresponding direct access file. These
routines also check that the requested record size is less
than or equal to the record size for the direct access file.

Initialization of the direct access files and setup of the
/MASS/ common block are performed in routines other than RMS ,
WMS and FMS. The programs and routines which perform initial-
ization on the direct access files are listed in Section 5.1.
Setup of the /MASS/ common block is performed for the File
Creation Program in routines SETUP1 and SETUP2. For the
Processing Program, /MASS/ is set up in the routines INITSC ,
DASTRT and EDINIT .

IBM OS and Mvs system direct access files can be initialized
in one of two ways: a write can be specified as the first
file operation of the program run or every available record in
the file can be written on using a sequential alias for the
direct access file number. The former method is not used
because the File Creation Program and Processing Program
DEFINE FILE statements specify more records for a direct
access file than would ever likely be physically provided for
the file. Thus , the normal system initialization of the file
would always result in an error.

The pseudo-device numbers in the File Creation Program are

1 = Initially is all of Master File and then during the
data transfer is the partition of the Master File.

2 = Scratch file temporarily containing the partition
directory.

The pseudo-device numbers in the Processing Program are

1 = Initially is set to read all of the Master File and
after the Startup Block is executed , is set to access
the specified partition of the Master File

2 = Directory for accessed partition
3=SCF].
4=SCF2
5 = Temporary Scratch
6 = Command Sequence File

4.2 STRING HANDLING

Several routines are used by the system to process strings.
Subroutine PACK transfers the leftmost character (highest

78

5- - -  -~~~~~~~~~~ -— —-



- — 
- 

5-~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --.-~---~~~-~~~~~- - -  ~~_ , .  _ __ _ _  - ——————-—-——,.--

order byte) from each of four sequential words to the leftmost
four bytes of a single word . The sequence of the characters
is maintained . Thus the sequence of string words ‘AWWW ’ ,
‘ BXXX ’ , ‘CYYY’, ‘DZZZ ’ becomes ‘ ABCD ’ .

Subro-utine SHFSTR transfers a contiguous sub-string from a
string containing four characters per four-byte word to a set
of contiguous character locations in a second string contain-
ing four characters per four-byte word . Both SHFSTR and PACK
use ‘LOGICAL*l’ variables , which is IBM-dependent code (see
Section 5.2 ) .

NTOSTR is a routine which converts floating numeric values to
strings. PACK is used to create four-character words. NTOSTR
is used by INTERP to convert numeric command entries to string
form for storage of command lines.

READF performs scanning and some interpretation of free-field
user input lines. The calling routine must read the command
line into the array I CHAR (in common block /KARD/ ) storing one
character per four byte word . READF evaluates numeric entries
as floating numbers , calculates the starting character posi-
tion and number of characters for string entries , and notes
the position in the entry sequence of null entries. This
information is returned in the common block /KARD/.

Subroutine MATCHR is frequently called following a call to
READF to find a match between a character string and one ele-
ment of an array of four-character strings. The first charac-
ter of the test string is compared with each of the first
characters from the keywords stored in the array IAA (in
common block /WLIST/). Subsequently, the following character
from the test string is compared with the corresponding char-
acters for all the keywords which matched for the previous
character. If, after every character of the input string has
been processed, there is more than one keyword which compares
character for character, the entry is considered ambiguous and
the return argument lOUT is given the value zero.

If no keywords match the test string, then lOUT is set to
minus one. When a single keyword matches the test string, the
corresponding index for the keyword is returned.

A maximum of four characters from the test string are examined
by MATCHR. Additional characters are ignored. Fewer than
four characters may be provided and then only the characters
supplied are processed. If an unambiguous match is found for
the test string before all the test characters have been pro-
cessed, the remainder of the test characters are still corn-
pared and a mismatch will result in a return with IOUT -1.

79 



-
- 

- - - -

4. 3 SORT ING

Several routines are used by the File Creation Program and the
Processing Program to sort arrays in ascending order of float-
ing or integer value. These routines are SORTM , SORT1, SORT2,
SORT3 , and SORTMF. These routines all use the binary sort al-
gorithm and retain the same flow pattern. The routines differ
in the number of associated arrays carried along with the
array to be sorted and whether the array to be sorted contains
floating or integer values .

SORTMF sorts an index array corresponding to the array to be
sorted. Then the routine SORTID, which calls SORTNF , carries
through the sort using the location pointers in the index ar-
ray. The sort is carried through on a matrix of array values
with the column elements corresponding to the index pointers.

80

-

~

---- ---



~~~~~~~~~~~~~~~~~~~ 
-- -— - 5 _ _ .

~~~ 

5. TRANSPORTABILITY CONSIDERATIONS

The OLS/DMS has been written so as to make conversion of the
software to another computer system as simple as possible .
However, certain installation and system dependent code has
been required in the programs to achieve the requirements
for the system . Such code is always flagged in the source
listings and a corresponding process which is valid for the
local installation can be inserted in the place of the
invalid code . The various types of nontransportable codes
will be discussed here .

5.1 DIRECT ACCESS

The OLS/DMS uses the IBM direct access capability exten-
sively . All of the READ , WRITE and FIND calls are restricted
to the routines RMS , WMS and FMS . Thus , conversion of the
actual reads and writes for direct access files should be
reasonably simple if there is a corresponding process at the
new installation. In addition, the file definition state-
ments (DEFINE FILE) are always grouped near the beginning of
the main routine for each program. The files are always set
up with 256 four-byte words per record, the records being
unformatted .

The initialization code for direct access files is distri-
buted to four different routines. The Master File itself is
initialized in the Master File Initialization Program . The
direct access scratch file for the File Creation Program is
initialized in the routine SETUP1. The Command Sequence
file is initialized by the Command Sequence File Initializa-
tion Program . The Processing Program scratch files are
initialized by the routine INITSC.

5. 2 CODING VARIAT IONS

The OLS/DMS uses certain nonstandard IBM FORTRAN features .
LOGICAL *1 variables are used in the routines SHFSTR and
PACK to address individual bytes of four-byte words for
character manipulation .

INTEGER *2 variables are used extensively in the data handling
portions of the File Creation Program to process the standard
BHT-Ground Data Center (GDC) tape format. The routines
which use INTEGER *2 variables are READD , FITEM , FCNTR ,
TRANSC , CALUPD, SAVD and SAVF. All of these routines would
probably need to be replaced in the STRNGF routine to handle
non-BHT-GDC tapes.

81

_ _ _ _ _ _ _ _ _ _  - - - -5  _ _ _ _  _ _



-- — — 

~~~~~~~~~ - _i~-.- - ~~~~~~~~~~~~~~ — -5-— - - 

INTEGER *2 variables are also used in the Processing Program
in the data retrieval routine DATAIN.

The following form of input statement is used in the OLS/DMS
to detect end files or errors on input.

READ(NREA, 9000 ,ERR=500,END~500)list

This form is used in the File Creation Program in the subrou-
tine INLIST, in the Processing Program in the subroutines
CMPGRP, INFOST, LININTP and READ1, in the Master File Initiali-
zation Program, in the Command Sequence File Initialization
Program, in the Question and Answer Program, and in the Master
File Utility Program.

5.3 COMPUTER WORD SIZE PROBLEMS

Strings are stored either with one left justified character
per word or with four left justified characters per word.
Strings are read or printed in Al or A4 format. Thus, conver-
sion for string processing should not create much of a problem
when at least four characters can be stored per word (instal-
lation on mini-computers with 16-bit (2-byte) integers would
present significant problems). However, for systems where
more than four characters are stored in a word, the calls to
the Calcomp SYMBOL routine present a problem since SYMBOL
expects a continuous sequence of characters. SYMBOL is called
by routines XYPLOT, CONREC, CONCYL, SURREC, SURCYL, ANNOT, and
MCHAR.

The READF routine has two integer values set in a data state-
ment, IBITS and NBYT. IBITS must be set to the number of bits
in a character byte and NBYT must be set to the number of cha-
racter bytes which can be stored in a word.

5.4 SPECIAL ROUTINES

Certain installation provided routines are used in the OLS/
DMS. Most installations have corresponding routines or,
alternatively, the routine functions are not critical to
program operation. The function of each of these routines is
described here.

Subroutine FASTIO is used to avoid FORTRAN conversion routines
for input and output using fixed length records. A second
reason for using FASTIO is to read blocks which have no byte
count appended. The first argument for FASTIO is one of the
character strings ‘READ ’ or ‘WRITE’ to indicate a sequential
input or output operation, respectively. The s~cond argument

82

~~~~~ -~~~~~~~~~~~ _ --,-- -- - - 5~~~~~—---~~ -—- - - -



-
~~~ ~~~~~~~~~~~ 

- -— -r ‘- . - .-—------~--- ..~—-.- _.~~~, -- - - -

is the I/O file number (data set reference number) for the op-
eration. The third argument is the array which contains the
data for output or which will receive the data for input. The
fourth argument is the number of bytes to be transferred. The
fifth and sixth arguments use the IBM system dependent coding
technique. The arguments are FORTRAN statement labels for a
jump on return from the subroutine . The character ‘& ‘ is
appended to the front of the label in the subroutine argument.
The fifth and sixth arguments give the return locations for an
end-of-file condition or an error condition, respectively.

Subroutine FASTIO could be replaced, if necessary, by ‘A’ for-
mat READ and WRITE statements (i.e., (3(255A8),45A8) for GDC
tapes) or an appropriate system routine (e.g., BUFFER IN for
Control Data machines). The detection of end file and error
conditions provided by FASTIO is critical only in subroutine
READD of the File Creation Program. Subroutine READD is used
only for standard BHT-GDC tape input.

Subroutine FASTIO is used in the Processing Program only in
subroutine INITSC. In the File Creation Program , FASTIO is
used in the following routines: MAKRUM, READD, SAVALL, SAVD,
SAVF, SETUP1, and TRANSC. However, the functions of READD ,
SAVD, SAVF and TRANSC would have to be replaced for non-BHT-
GDC data tape formats. FASTIO is also used in the Master File
Initialization Program, the Command Sequence File Initializa-
tion Program and in the Master File Utility Program .

Subroutine DATE returns the current Gregorian date into eight
sequential character locations of the argument array. The
format for the returned date is a character string ‘mm/dd/yy ’ .
DATE is used in the Processing Program in subroutines DASTRT
and LISTER. In the File Creation Program, DATE is used in
subroutine RESTRD .

Subroutine TIMOD returns the current time of day into twelve
sequential character locations of the argument array. The
format for the returned time is a character string ‘hh.mm.ss.
fr’ . The right-most character is set to a blank. TIMOD is
called in the Processing Program from subroutine LISTER.

TIMEX and SETIME are entries to DATE which must be used in
concert to monitor CPU execution time for the calling program.
SETIME is called to initialize the CPU timing process. The
argument to SETIME is a REAL value specifying a time limit in
minutes. This number must be greater than zero and less than
1440 . This argument is not critical to the OLS/DMS applica-
tion , except that a reasonably large number is defined . TIMEX
is called to obtain the CPU time consumed. All arguments are

83

_ _ ~5~~~~~~~~5

-5- - ~~~~~~- -

- -~~~~~~ - - -~~~~~ - --5---- - —-5 - -

returned as REAL values. The first argument is the CPU time
used since the last call to SETIME. The second argument is
the CPU time used since the last call to TIMEX. The third
argument is not used by OLS/DMS. This argument gives the time
not yet consumed from the interval specified in the call to
SETIME . SETIME is called in the Processing Program in subrou-
tine STRTUP . TIMEX is called in the Processing Program in
subroutines USER and INISTP.

Subroutine PLTIME is a special routine which estimates the re-
quired plotting time for a Calcomp plot and outputs this time
to the computer operator. Subroutine PLTIME is called in sub-
routine ENPLT for Calcomp plots only. For Tektronix plots,
the PLOTS subroutine has a dummy entry for PLTIME.

5.5 GRAPHICS

The graphic software was discussed extensively in Section 3.7.
However, the graphics features related specifically to trans-
portability of the code are discussed here. For incremental
pen output, the software assumes that the Calcomp routines
PLOTS, PLOT, SYMBOL, and NUMBER are provided by some system
library. These routines must be either the actual Calcomp
routines or simulations of these routines for plotting on an-
other device. The plotting interface assumes a plotting area
for a plot frame of 8.5 inches horizontal and 11 inches verti-
cal. Approximately 9.7 inches vertical and 7.7 inches hori-
zontal are actually used for a frame. The plotting interface
moves to a new plot frame position by incrementing the basic
pen origin horizontally to the right at least 8.5 inches. A
larger increment may be specified by changing the default
value for the variable PLTWID (in common block /MDEP/) or by
the user specifying a larger value for PLTWID in the Ini-
tialization Phase of a Processing Program run.

Plotting on a graphics terminal assumes that a Tektronix 4014,
the PLOT-b software, and, specifically, the Calcomp Preview
package are available. SYMBOL and NUMBER from a Calcomp pack-
age are also required if not present in the Calcomp Preview
software .

The plotting interface should generate plots without modifica-
tion on a Tektronix 4010 (the reduction in screen size may
make the plots harder to read). However, the different hard-
ware character size could cause printed computer messages and
user command input lines to overlap the plotting area. In
addition, when the APLOT plotting option is used, INSET will
not relocate the cursor to the correct vertical position on
the left-hand side of the screen so that printed input and

84

-
- _ ~~~— -——-~~‘---- -5— - - - - - --5-- -—

~
-‘—

~~~
--—

~~
-----:

~
——- -‘-— - - -- - -~

-,,
~
-.—--.------- - -~~=— 

-
~~~~~

--—--- _
~~~

,- -
~~ 

- --5-- —---5- — _ —---~,-

output lines could overlap each other. This problem can be
eliminated by resetting the value of the integer INCTEK (in
common block /SIZES/) from -13 to -22. Some of the problems
of printed messages overlapping the plot area can be elimina-
ted by resetting the allowed number of characters in an input
line to 30. (See common block SIZES in Appendix B.)

Conversion of the program to run on some other graphics termi-
nal would depend on the presence of several software items.
A Calcomp emulation package would be required which provided
the routines PLOT, PLOTS, NUMBER and SYMBOL. The PLOTS rou-
tine, called once for each plot frame for the interactive gra-
phics mode , must set up a simulated plot area of at least 9.51
vertical inches and 7.51 horizontal inches. The origin must
be set initially at the lower left-hand corner.

The Tektronix PLOT-b routine ANMODE is always called when the
program changes from drawing plot lines to reading or writing
characters. Some corresponding function may be required for
other plot devices.

The Tektronix PLOT-b routine MOVABS is used to reposition the
cursor for character input or output after graphics lines and/
or characters have been drawn. After a fresh frame has been
created , the cursor is moved to the upper left-hand corner of
the screen. When a curve is added to an existing frame, the
cursor is moved to a raster position at the left-hand side of
the screen which corresponds to the next line of character
printout after the last line printed or entered. The program
keeps track of this position with the variable LNCNT (in com-
mon block /STATUS/). When the screen is cleared for a new
plot, LNCNT is set to a raster number corresponding to the top
line on the screen for alphanumeric I/O. For every alphanu-
meric line which is read or written, LNCNT is modi fied by ad-
ding INCTEK (in common block / SIZES/ ) .  Both the ANNODE and
MOVABS calls occur in the subroutine INSET. For application
to a different graphics terminal, the ANNODE and MOVABS calls
could be replaced and the LNCNT information might or might not
be useful.

Subroutine PLOC accesses the virtual cursor using subroutine
VCURSR. VCURSR returns the cross-hair location in terms of
the simulated 9.51 inches high by 7.51 inches wide plotting
area established in PLOTS with a call to VWINDO. For a dif-
ferent graphics device, the graphics cursor function might be
eliminated or some substitute for the cursor position evalua-
tion might be found.

85 

- -5



r —
~
------ - — - -- - — — —~~~ -: - 5~~~~~~~~~

6. REFERENCES

1. Shockey, Gerald A., Williamson , Joe W., and Cox, Charles
R., AH-1G HELl COPTER AERODYNANI C AND STRUCTURAL LOADS
SURVEY , Bell Helicopter Co. , USAAI4RDL Technical Report
76-39, Eustis Directorate, U.S. Army Air Mobility Re-
search and Development Laboratory, Fort Eustis, Va.,
February 1977, AD A0369l0.

2. Tieman, L. J. , ‘GROUND DATA CENTER STANDARD DIGITAL TAPE
FORMAT ,’ Bell Helicopter Textron Report 699-099-020 , Fort
Worth, Texas, 21 April 1976.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
_ _ _ _



rp
II,I

~

___ 

~ 

- - ~~~~ ——,5---- -

APPENDIX A - FILE CREAT ION PROGRAM COMMON

/CALASC/ Stored initial calibration factors for the item
codes present in an assignment record as supplied by
that assignment record.

CM - Array which holds the slope values for calibra-
tion. CM(N) corresponds to the N’th requested
item code present in the current assignment
record .

CB - Array which holds the intercept values for
calibration.

/DATAPE/ Information on the data tape being read.

IRCNTR - Current record number on the data tape being
read .

NTPERR - Number of tape errors encountered so far in
reading the data tapes .

/EXCORB/ Common block used by routines EXSET and EXCORE for
extended core simulation . These routines set up a
two-dimensional matrix of simulated memory while
actually storing and retrieving the values from a
direct access disc file.

NROWSX - Number of rows (most rapidly varying index) in
the simultated array.

NCOLSX - Number of columns (less rapidly varying index)
in the simulated array.

NRECOF - Offset to the first storage record available to
EXSET/EXCORE in the direct access file ad-
dressed by these routines .

NRECPR - Direct access record number currently held in
the array EXTREC. If NRECPR = -1, no record is
present.

NPRMOD - Indicator of whether the record currently
stored in the array EXTREC has been changed
without storing the changed version on the
disc. 

87

- 

- - - -_- - - -

~~~~

- - - - - - - - - _ - ----5--- -——-5-5-—

~~

-- - - _ —

~~

-

~~~~~~



- — -- - - -—--—------
~~

_—--------—---------- —
~~

--
~
- 

~~~~~~~~~~~~~~~~

NEXDEV - RMS, WNS, FMS pseudo-device number for direct
access storage .

NRS I ZE - Size of a direct access record in four-byte
words.

EXTREC - Storage array for records from direct access
disc.

/FILC/ Convolution filter multipliers .

Fl - Central value for the convolution function.

FILTM - Array holding values for the convolution func-
tion .

NFILT - Number of convolution function values held in
FILTM.

/FILES/ I/O file reference numbers.

NRPS - Master File (1)

NRSC - Direct access scratch file (=12)

NSSC - Sequential scratch file (=13)

NITT - Data Tape (=21 for first tape)

NDIR - Time skew alignment tape (=20)

NREA - System input (5)

NWRI - System output (=6)

NSAV - Digital tape for copy of a partition (= 15)

IALI - Sequential alias for the direct access scratch
f ile (=14)

/INFO/ This block contains a set of control and information
values for processing and transferring the data.

IRSIZ - Number of two-byte words in a Master File re-
cord (=512)

~~rIIII_.

88

‘
~~

‘
:~

- ___
~ — --5--—--—— -_ -5- _~~~ __- 5 — --—- —5----5_—_—_--_ --—5-_-——_— ~~~~~~~ -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

MLOC - Next available partition record number in the
data storage area.

IPOLES - Set to zero if no filtering is required for at
least one of the requested items present on the
current assignment record.

HIGH - Initially set to the lowest digital filtering
breakpoint requested for any of the item codes
present on the current assignment record. For
transfer to the Master File, HIGH is set to the
requested digital filter breakpoint for the
item to be transferred.

LCAL - Set FALSE if item code data about to be trans-
ferred to the Master File is not to be calibra-
ted , set TRUE otherwise.

IRAT - Sample rate for the data on digital tape corre-
sponding to the current assignment record.

ISKIP - Sample rate reduction factor to be applied in
transferring data for the currently specified
item code to the Master File.

NPS - Initially, the number of points of data wanted
for a particular counter given the sample rate
of the data on tape. NPS must be divided by
ISKIP to calculate the proper number of points
to transfer to the Master File. After transfer
of a data stream , NPS is the number of data
values transferred multiplied by ISKIP.

NPP - This value indicates the number of values for
each item code present on the scratch disc file
before transfer to the Master File.

NOFF - This value indicates the total number of data
samples which should be skipped before data
from a particular item code is transferred to
the Master File . NOFF should reflect both the
alignment and absolute offsets.

ISEQ - This value gives the word position for the
first data value on a data record which corres-
ponds to the item code to be transferred to the
Master File.

LSTRT - Equivalent to ISEQ .

89 

5-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



IADD - Increment which must be applied to a location
on an input data record to reach the next data

— value for the same item code. Equivalent to
the number of item codes present in the assign-
ment record .

INSIZ - Number of two-byte integer words in a data re-
cord on tape (3240).

INSIZD - Number of two-byte integer word in a data re-
cord stored on the scratch file after the in-
formation bytes have been stripped from the
front (=3200).

ICNTR - Current counter for the data transferred from
tape.

XALIGN - Time skew alignment offset in seconds to be ap-
plied to the current item code/counter .

/KARD/ Common block to keep track of data from the current
assignment record .

ITEMTP - ITEMTP(N) gives the position in the sequence of
item codes present on the current assignment
record of the N’th requested item of the items
on the assignment record .

ITENW - ITEMW(N) points to the word in the ITEM array
which contains the item code which corresponds
to the N’th requested item of the items on the
assignment record.

CALSH - The CALSH array gives Calibration Shift values
from the assignment or calibration record which
correspond to the same item codes as the ITEMTP
and ITEMW arrays.

CALCM - The CALCM array gives Calibration Command
values from the assignment or calibration
record which correspond to the same item codes
as the ITEMTP and ITEMW arrays.

CXM - The CXM array gives calibration slope values
from the assignment or calibration record which
correspond to the same item codes as the ITEMTP
and ITEMW arrays .

90

-- -—-~~~~~~~~~~~ —~~~~~~~~~~~~ _ - - 5 __ - — — - - ---- - - — - — - 5 - - - - - -



-5 

-~~~~~~5-—-- —-—- - -

CXB - The CXB array gives calibration intercept
values from the assignment or calibration
record which correspond to the same item codes
as the ITEMTP and ITEMW arrays .

NNATCH - Number of requested item codes present on the
current assignment record .

DCAL - Delta cab values from the assignment or cali-
bration record which correspond to the same
item codes as the ITEMTP and ITEMW arrays.

/KARD1/ This common block corresponds identically to common
block /KARD/ as described in Appendix B.

/LIST/ This block contains the interpreted user instruc-
tions for transfer of data from tape to the Master
File .

NCTR - Array of requested counters.

NOFFST - Offsets to be applied to time histories from
the counters in NCTR which correspond by index.
Offsets are stored in seconds as floating num-
bers.

NPWANT - Length of time history to be transferred for
the counters in NCTR which correspond by index.
Times are stored in seconds as floating num-
bers.

ITEM - Array of requested item codes.

FILT - Break frequencies for low pass digital filters
to be applied to the time history from the item
codes in ITEM which correspond by index. Break
frequencies are stored in Hz. Negative or zero
values indicate no filtering should be applied.

ICAL - Indications of whether to store time histories
in calibrated or integer format. The indica-
tions correspond by index to the item codes in
ITEM. ICAL(N) = 0 means no calibration and
ICAL(N) = 1 means calibration.

91

L _ _ _  

A



— 5-~~~~~~~ -_ ~~~~~~~ — — — — —~~~—~rr~~VV .5aw.  
~~~~~~~

.-_ ______ --_- --_--

ISKP - Sample rate reduction factors for the time his-
tories from the item codes in ITEM which corre-
spond by index. Values are stored as integers
(e.g., a value of four means every fourth
sample will be transferred to the Master File).

NITEMS - Numb c

~r of item codes stored in the ITEM array.

NCNTRS - Number of counters stored in the NCTR array.

ISPAC - Requested number of direct access records for
the Master File partition to be created, re-
placed, or modified.

ITAPES - Number of input data tapes to be read.

IADNU - Mode with regard to Master File partition.
IADN1J= 1, Add to existing partition
IADNU= 0, New partition
IADNU=-l , Replace partition

LALIN - Logical variable
LALIN = TRUE., Use time skew alignment
LALIN = FALSE. , Do not use time skew alignment

NAME - Array containing partition name.

NPWD - Array containing partition password .

NUSER - Array containing user name.

MAPIT - Logical variable
MAPIT= .TRUE., Generate partition listing after

completion of all data transfers.
MAPIT .FALSE., Do not generate a partition

listing.

SAVIT - Logical variable
SAVIT .TRUE . , Save partition on digital tape

after completion of all data trans-
fers.

SAVIT= .FALSE., Do not save partition on digi-
tal tape .

STRANG - Logical variable.
STRANG= .TRUE . , Input data are not in standard

BHT-GDC format.

92

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - 5 -



- -- r5- r~~~r -x----w- - ‘ a- - -~~~~~~~~~~ -- - -----— - ---- -

STRANG= .FALSE., Input data tapes are in stand-
ard BHT-GDC format.

/LOCOM/ Information for data transfer process.

ITEMN - Current item code to be transferred .

ICNTRN - Current counter to be transferred .

IDROFF - Offset for the partition directory in records.

IDASIZ - Number of records in the partition data area.

IDRSIZ - Number of records in the directory .

ITEMRC - Record number for portion of item code direc-
tory which contains current item code.

ITEMSQ - Sequence position in directory record for cur-
rent item code .

/MASS/ Identical to /MASS/ common block in Appendix B ex-
cept that arrays are dimensioned to five instead of
ten.

/SCRAT/ This common block specifies a general scratch area.
Variable arrays are different in name and size for
each routine .

/SIZES/ Single word common block.

MAXCI - Maximum number of counters or item codes which
may be specified for any one run of the File
Creation Program. Corresponds to the array
size for the arrays in the /LIST/ common block.

/WLIST/ List of keywords to decode user input instructions.

N - Number of keywords present in the IAA array .

IAA - Two-dimensional array of keywords . Second
array index corresponds to the keyword number.
The four-character keywords are stored with one
left justified character per four-byte word. 

-~~~~~~ —-~~



~~~~~~=~~~~ - •~~~~-~~~~~~~-. _ _ _ _  

/WLIST1/ Coded start and stop times for current counter and
item code .

ISTART - Coded start time as described in the BHT-GDC
Standard Digital Tape Format.

ISTOP - Currently set to zero.

94

- .~~~
-

- -5--- — — - -5 -5-—--

v ~~~ - -

APPENDIX B

PROCESSING PROGRAM COMMON VARIABLES

/ATTPAR/ Area for storage of processed attached parameter
information. The ~.ime base for the data stored is
normally the sequenc -’ of zero degrees azimuth in-
stants . When appropriate azimuth data are not
available, this time base is synthesized with an
interval between instants of two-tenths of a second.

NVAL - Total number of time instants represented in
the time base, TMAZMO . These instants may be
either synthesized or real azimuth equal zero
degrees time instants as explained above .

NCNTR - Counter which corresponds to the current data
stored in ATTPAR .

Tb - First time instant in time base.

T2 - Last time instant in time base.

LTMAZM - Total number of time instants in the time base
TMAZMO , which are real azimuth values. The
real azimuth values must form a contiguous se-
quence beginning with TMAZMO(l).

LTASVA - Total number of true airspeed values present
in the TASVAL array. If LTASVA is greater than
zero , the first TASVAL value must correspond to
the first TMAZMO time.

LRPMVA - Total number of rotor speed values present in
the RPMVAL array. If LRPMVA is greater than
zero , the first RPMVAL value must correspond to
the first TNAZMO time .

LOATVA - Total number of outside air temperature values
present in the OATVAL array . If LOATVA is
greater than zero, the first OATVAL value must
correspond to the first TMAZMO time.

LSTATV - Total number of static pressure values present
in the STATVL array. If LSTATV is greater than
zero , the first STATVL value must correspond to
the first TMA ZMO time.

95

I AO—A065 270 DELI. HELICOPTER TEXTRON FORT WORTH TEX FS~$ 1/2
1 OPERATIONAL LOADS SURVEY — DATA MANAGEMENT SYSTEM. VOLUME II. S—— ETC (U)

JAN 79 R B PHILBRICK, A I. EUBANKS DAAJO2—77—C—0053
UNCLASS IFIED DIIT—299 099—871 VOL—2 USART L—TR—70—529 NI.

2~~ 2

I U

END
DA T E

4 --79-
DAT

-

i.o ~~~~~~ ~~~

~ ~~~ IIIII~~~

I I I ~~I _______________

I
~~~~~~~~ Illhl~. wn~

MICROCOPY RESOLUTION TEST CI-tA$T
NAT( O~ AL BUREAU OE STANDARDS-1963-i



___  - I

XSTRSC - Time corresponding to the first data value on
the scratch file (SCF1 or SCF2) used for input.

XINTSC - Time interval between data values on the scratch
file (SCF1 or SCF2) used for input.

NNAXSC - Number of data values present for the first
time history on the scratch file (SCF1 or
SCF2) used for input.

TMAZMO - Array of time instants forming a time base for
the values in the arrays TASVAL, RPMVAL , OATVAL
and STATVL. These time instants may or may not
correspond to instant of zero degrees azimuth
as explained in the heading for common block
/ATTPAR/.

TASVAL - Array of true airspeed values in knots.

RPMVAL - Array of rotor speed values in RPM.

OATVAL - Array of outside air temperature values in
degrees centigrade.

STATVL - Array of static pressure values in psia.

/BSPARE/ Area for data storage in processing.

XSPARE - Array for storage of data or scales during
processing. This array must always be at
least one-half the size of XBUFF.

/BUFFER/ Area for data storage in processing.

XBUFF - Array for storage of data or scales during
processing. The number of words in this array
must correspond to IBFSIZ in the block SIZES.

/CNGBLK/ Communication and work area for command sequence
editing function.

NLINES - Number of lines in the command sequence block
to be edited.

NANSEQ - Name of the command sequence block to be
edited. Held in ‘A4 ’ format .

96

-4
_____ S. 555- -~ - S ~~~~~~~



r

LOCAT, IDEL1, IDEL2 - Work arrays corresponding to line
numbers for command sequence editing.

IWORK - Work array used for display of user input line
error diagnostics.

LINE - Array corresponding to command sequence block
before, after, and during editing. The second
index corresponds to line number. Each line
is stored in 16A4 format.

LINECH - Array to hold line changes during editing prior
S 

to a renumbering operation ($N).

MERGEL - Array to hold renumbered command sequence block
during the renumber operation ($N).

/CNTLIP/ Directive and information values for data input and
processing

IPRCOD - Processing code assigned in an ANALYZE, DERIVE
or DISPLAY command step. Set in PROSET and
interpreted in PRO]. or PRO2.

IPRTYP - Certain types of processes are grouped together
for the process flow. IPRTYP = 4 indicates a
process using data from multiple row positions
for each column position (e.g., a C~ integra-
tion) which would be accomplished in PRO2.
IPRTYP = 5 indicates a process using data from
multiple column positions simultaneously (i.e.,
blade slope) which is accomplished in SLOPST.
Any other value for IPRTYP indicates a process
accomplished in PRO1.

NFREE - Source of input data. Allowed values:

1 SCF1
2 = SCF2
3 = Info file group specifies item code(s)
4 = User specified item code
5 = Info file specifies item code required

for derivation by keyword
6 = Attached parameter data is sufficient

for derivation

NCOLSI - Number of columns (3rd dimension) to be input
for processing.

97

S I  
S 

~5~~5~ - •~ ~~~~~~~~~~~~~~~~~~

L __ .
~~~~~~~~~~~~~~~~


r ~~~~~~ —-
~~~ ‘ r . ’.v~

r 
— :~:VS:tV~k~M . —  - .~!. t *s .. .-.

NROWSI - Number of rows (2nd dimension) to be input for
processing.

TIME1 - Time specified by user as either the beginning
of the input time history to be used or a time
ins tant inc luded in the rotor cycle just befor e
the beginning of data which will occur at azi-
muth equals zero degrees.

DURATN - Length of the input time history in seconds
when ICYCLS is less than zero.

ICYCLS - Length of the input time history is rotor
S 

cycles. ICYCLS = 0 specifies that a single
instant corresponding to a user specified azi-
muth value will be input. ICYCLS less than
zero specifies that the length of the time his-
tory is given by DURATN .

AZIM - Specifies a single rotor azimuth position for
input when ICYCLS = 0 .

MISINP - Specified which double-row elements are present
input. The values:

0 = Both double-row elements
1 = Top double-row element only
2 = Bottom double-row element only

NCOLI - When NCOLS I 1, this variable specifies which
column element is input.

NROWI - When NROWSI 1, this variab le speci fies which
row element is input.

IDATPR - A two-element array which specifies how many
data points are presen t in the curren t input
data record. IDATPR(1) corresponds to the top
double-row element and IDATPR(2) corresponds

S 
to the bottom double-row element.

/CNTLOP/ Directive and information values for data
processing and output.

MODOUT - Output mode. Allowed values are:

1 - Plot single curve
2 - Plot multiple curves

98



- - -

3 - Add a curve to an existing plot frame
4 - Print data
5 - Contour plot
6 - Surface plot
7 - Keep results on a scratch file while

destroying any data already present on
the file

8 - Add results to a scratch file along with
• any data already present on the file.

ISFOUT - Scratch file to be used for output when
MODOUT = 7 or MODOUT = 8. Allowed values are:

1 = SCF1
2 = SCF2

M12OUT - Specifies which double-row elements are present
on output. The values are:

0 = Both double-row elements
1 = Top double-row element only
2 = Bottom double-row element only

OUTMAX - Maximum output value from any output time
history created during the current command
step.

OUTMIN - Minimum output value from any output time
history created during the current command
step .

LSCALE - Specifies parameter for first independent
variable for plot output. Allowed values are:

1 = Time, Frequency or Harmonic Number
2 Azimuth
3 True airspeed
4 = Rotor speed

LSCALY - Specifies parameter for second independent
variable for plot output. Important only for
3-dimensional plot representations (i.e.,
SURFACE or CONTOUR). Allowed values are:

1=Row or column
2 = Azimuth
3 = True airspeed
4 = Rotor speed

99



/CURRNT/ Block to contain information on status of user
interface overlay process.

ISBSTP - Current substep being processed.

IENTRY - Current entry in substep being processed.
• Set to -l when substep complete, -2 when

command step complete.

ITREE - Current tree position in command input process.

LINHLD - Line held in ICHAR is first line of a new
command step when LXNHLD = 1. This variable
is relevant only when MODSCN = 1 (input
scanning only).

IEOF - Normally set to zero. Set to one if end of
file condition was found on last system input.

IUENT - Sequence number of entry to be processed on
current line of user input.

NIJENTS - Number of entries available on current line
of user input.

IDEFLT - When set to one, default values are specified
for the remainder of the current substep and
slash terminating the substep is present. When
set to zero, the above conditions do not per-
tain.

IOPT - Entry option selected for a particular tree
position.

NEXT - Number of next substep to be entered.

/DATSET/ Control values and buffer arrays for retrieval of
data from the Master File.

ICTRDN - Sequential record number for the portion of
the counter directory currently present in
ICTRD. If ICTRDN = 0, then no portion of the
counter directory is present in ICTRD . The
sequential record number need not correspond
to the relative record number in the directory.

100 



F~!•’~~~~S_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 ~_S_•~_S• S•SS _ S -

ITMDN - Sequential record number for the portion of
the item code directory currently present in
ITEMD. The sequential record number need not
correspon d to the relative record number in the
directory.

ITMDN1 - Relative record number for the portion of the
item code directory currently present in
ITEMD.

INFOLC - Relative record number for the information
record for the current item code and counter.

ICTRD - Array containing all or a portion of the
counter directory.

ITEMD - Array containing all or a portion of the item
code directory.

ITMINF - Array containing the information record for
the current item code/counter pair.

IT~~AT - Array containing a data record .for the current
item code/counter pair. The particular data
record is indicated by ITMDA.

ICTRC - Current counter corresponding to the item code
directory present in ITE!’D.

ITEMC - Current item code corresponding to the infor-
mation record in ITMINF and the information
record location given by INFOLC.

ITMDA - Record number for the data record contained in
ITMDAT as offset from INFOLC. This ITMDA+
INFOLC gives the relative record number for
the record in ITMDAT.

ITMPNT - Sequential data point in the current data
stream which corresponds to the appropriate
next data point if DATAIN is called with the
continuation mode (FSEC’ less than zero).

CB,CM - Calibration factors for integer to floating
point conversion during retrieval.

IRAT - Calculated sample rate for the current item
code/counter pair data stream..

101

_ _ _ _ _ _ _ _ _ _

is

S . - - -~~

LAST - Total number of samples in the current item
code/counter pair data stream,

— ICAL - Equals one if the current item code/counter
pair data stream is stored as calibrated data
and zero if the data stream is stored as
uncalibrated integers.

/DEFLT/ Default user input matrix and general system label.

DEFCOM - General system label. The current date is
added to this label in STRTUP. The label is
stored 13A4 with additional space available.

IDVAL - Two-dimensional array showing the appropriate
defaults for user entries. IDVAL(l ,N) controls
the nature of the default. L = IDVAL(2,N)
gives the actual default value. The possible
values for IDVAL(l,N) are:

1 = no default allowed
2 = standard keyword default, L
3 = standard numeric default, IPVAL(L)
4 = keyword default unless there is a

previously entered value which then
becomes the default

5 = numeric default unless there is a
previously entered value which then
becomes the default

6 = no standard default but previous
entry, if any, becomes the default

IPVAL - Array containing numeric default entries
pointed to by IDVAL.

/DIRECD/ Provides user command directives and comment.

IDIRCD - Two-dimensional instruction matrix of user
interface entries which is provisional until
the command step is complete. When the step
is complete, this array is copied to IDIRCT.
IDIRCD is commonly equivalanced to DIRCD.

KMMNTD - Provisional comment which is copied to KOMMNT
when the step is complete.

102

_ _ _ _ _ _ _ _ _ _ _ _ _ _

js

~SSSS S_fl_=_ 5~~~~~~~~~~5-_s - S - •_ • — -—

NKMMCH - Number of characters in the provisional
comment , KMMNTD .

/DIRECT/ User interface communication block

IDIRCT - Two-dimensional instruction matrix containing
user interface control values. Each instruc-
tion, as indicated in Table 3, will have one or
more options and may include a communicated
string or numeric value . For instruction N ,

S IDIRCT(l ,N) contains the option selection coded
as an integer value (which may be negative),
and IDIRCT(2 ,N) contains any string or numeric
value communicated . Numeric values communi-
cated in IDIRCT(2 ,N) are always in floating
format and are accessed using an equivalent
REAL array which is usually called DIRECD.

/DRW/ Block of plotting information

XMIN - Minimum allowed X value on plot in user coor-
dinates.

DX - Increment in user coordinates of X axis corres-
ponding to one annotated interval on an X-Y
plot. On a three-dimensional plot (SURFACE or
CONTOUR), DX corresponds to 1 inch in the hori-
zontal direction.

XH - Maximum absolute horizontal position in paper
or screen coordinates. Currently set to 7.5

XL - Minimum absolute horizontal position in paper
or screen coordinates. Currently set to 0.0

YMIN - Minimum allowed Y value on plot in user
coordinates.

S DY - Increment in user coordinates of Y axis corres-
ponding to one annotated interval on an X-Y
plot. On a three-dimensional plot (SURFACE or
CONTOUR), DY corresponds to 1. inch in the ver-
tical direction. -

-

YN - Maximum absolute vertical position in paper or
screen coordinates. Currently set to 10.0

103

_ _ _ _ _ _
_ _ _ _ _ _ _ _

—‘ S ~~
555

~~~
C55flfl&s---5-S-——- - -—

YL - Minimum absolute vertical position in paper or
screen coordinates. Currently set to 0.0

JUNQ - Array which specifies a schedule for generation
of dashed lines. Allowed values for JUNQ are
0 thru 9. When a dashed line is generated, a
sequence of dashes having a length of one tenth
inch times each integer in sequence is gener-
ated. A gap of one-tenth of an inch is in-
serted between each dash. 

S

INSL - A logical variable. True if point last plotted
was inside allowed plotting area; false other-

S wi se.

XOFF - Cumulative X offsets from device origin which
have been applied in a frame .

YOFF - Cumulative Y offsets from device origin which
have been applied in a frame.

NX - Number of DX intervals in the allowed plotting
area.

NY - Number of DY intervals in the allowed plotting
area.

IGRID - If IGRtD = 1, a grid will be drawn for X-Y
plots. If IGRID = 0, the grid will not be
drawn.

LOGX - If LOGX = 0, the X scale is linear. If LOGX
is greater than zero, the X scale is logarith-
mic with LOGX cycles.

LOGY - If LOGY = 0, the Y scale is linear. If LOGY
is greater than zero, the Y scale is logarith-
mic with LOGY cycles.

ZSCALE - Scaling factor applied to the plot. DX/ZSCALE
corresponds in user coordinates to one inch
in the X direction, DY/ZSCALE to one inch in
the Y direction. For X-Y plots, ZSCALE = .7.
For 3-D plots, ZSCALE = 1.0

NOTICS - If NOTICS = 1, no tic marks will be drawn for
the X and Y scales. If NOTICS = 0, tic marks
will be drawn.

104



/ENTOPT/ Entry options and tree structure for user command
steps

IENTOP - Array containing sequences of entry options
coded by keyword number. If a sequence begins
at location ‘I’ then:

IENTOP(I) = Entry number according to allowed
entry list.

IENTOP(I+1) = K = Number of entry options.
IENTOP(I-F2) thru IENTOP(I+l+K) = Entry options

coded by keyword. If IENTOP(I+l+K)
= 1000, the option is a four char-
acter string. If IENTOP(I+1+K) =
-L is less than zero then the op-
tion is a number with allowed range
between RANGOP ( L )  and RANGOP(L+1).

NPOINT - Array containing the tree structure for user
input entries. Significance of values is:

NPOINT(1,N) = position in LWORDS giving HELP
string for this entry.

NPOINT(2,N) = IENTOP position giving allowed
option for this entry.

NPOINT(3,N) = L, points to subsequent entry
positions. If L greater than zero,
L gives next N subsequent entry. If
L = 0, command is complete. If L
less than zero, -L points to sequence
in LISTP with each LISTP value cor-
responding to an IENTOP option and
giving a new NPOINT position for the
subsequent entry.

LISTP - Array of pointers as explained under NPOINT.

R~ANGOP - Ranges for numerical entries as explained under
IENTOP

/FILES/ Input and output file numbers.

NRPS - Master file, file number is normally set to
one .

NREA - System input file, file number is normally
five .

105



— — — 5 • S_5 5 ~•~ _ S_ •SS~S -~_~ 

NWR I - System output file, file number is normally
six.

NSC1 - Direct access file corresponding to SCFI when
the scratch files are not concentrated on one
file. File number is normally seven.

NSC2 - Direct access file corresponding to SCF2 when
the scratch files are not concentrated on
one file. File number is normally eight.

-: NAL1 - Sequential alias for NSC1. File number is
normally nine.

S 
- NAL2 - Sequential alias for NSC2. File number is

S normally ten .

NCSG - Direct access file corresponding to tempcrary
scratch file. Alternatively, SCF1, SCF2 and
the temporary scratch could be concentrated
on this file. File number is normally eleven.

NALG - Sequential alias for NSCG. File number is
• norma lly twelve.

NEDI - Direct access file for storage of command
• sequence blocks . File number is norma lly

thirteen.

NINF - Info file. File number is normally fourteen.

NPRI - File reserved for printout. Currently an
alias for NWRI.

/FILLRC/ Contains the parameters which describe the digital
filter transfer function in Z-transform space. In
particular , the transfer function H(Z) is given by

N M
AIDfr + All1, Z

‘~ — +  ‘~

K=l 1 + Z Bik K=l 1 + BIlkZ + BI2kA

106

•-~~ :. ‘

55--- .



• 555 - 5-5 55 5 SS5-fl~=~~~
__ 

S S

where the common block variables A0, Bi, AlO , All ,
• BIl , and B12 are given by the equation. The vari-

able NRE is related to the number of real poles and
is given by N in the equation. Similarly, NCPLX is
related to half the nuiv~er of complex poles and isgiven by M in the equation. NENDPT is used for
double filtering operations and gives the number of
values that may be discarded at the end of the time
interval.

/GENSCR/ Information and pointers for temporary scratch file.

• - 
- NEXCLG - Next available record number for storage of

data identified by column where a single row is• present.

• NEXRWG - Next available record number for storage of
data identi fied by row number where multiple
rows are present .

IGRWLC - Two-dimensional array giving the starting re-
cord number in the temporary scratch file for
data from a row element corresponding to the
second subscript value. The first subscript
corresponds to the top and bottom double-row
elements for subscript values of one and two,
respectively.

IGRWLN - Two-dimensional array giving the length in data
samples for the stored time history from a row
element corresponding to the second subscript.
The first subscript corresponds to the top and
bottom double-row elements for subscript values

• of one and two respectively.

IGCLLC - Two-dimensional array giving the starting re-
cord number for data from a column element cor-
responding to the second subscript. The first
subscript corresponds to the top and bottom
double-row elements for subscript values of one

S and two, respectively.

IGCLLN - Two-dimensional array giving the length in data
samples for the stored time history from a col—
umn element corresponding to the second sub-
script. The first subscript corresponds to the
top and bottom double-row elements for sub-
script values of one and two, respectively.

107



55 S S

LNLBTP - Three-dimensional array giving labels for anno-
tation of lines on multiple line plots. The
first subscript is dimensioned to three and
corresponds to three words on twelve allowed
characters for the label (3A4). The second
subscript corresponds to the top and bottom
double-row element for values of one and two,
resoectively. The third subscript corresponds
to row or column position. If multiple columns
are present, this subscript corresponds to
column position. Otherwise, the subscript
corresponds to row position.

/HLPWDS/ Strings and control value for generation of HELP
prompting for the user.

LWORDS - Array of strings used in generation of HELP
messages. There is one string for each avail-
able entry option. The word immediately
preceding each string is an integer giving the
length of the string in characters. The
strings are stored in nA4 format.

IHELP - If IHELP 1, then HELP is active. If IHELP =
0, then HELP is not active.

/INFGRP/ Block for storage of information provided by an
Info file group.

MXGLGP - Number of column elements for the group.

MXRWGP - Number of row elements for the group .

KEYWDT - Four-character keyword corresponding to the
top double-row element for the group.

KEYWDB - Four-character keyword corresponding to the
bottom double-row element for the group.

NKEYS - Set to one if top double-row element present,
set to two if both double-row elements present.

NKPOUT - NKPOUT = 0 if both double-row elements wanted. 
S 

•

NKPOUT = 1 if top double-row element wanted or
NKPOUT = 2 if bottom double-row element wanted.

ROWPGP - Array of geometric row positions.

5 
108



COLPGP - Array of geometric column positions.

MXITBM - Three-dimensional array giving four-character
item codes for row, column, double-row element
intersections. The first index gives the
double-row element where top and bottom corres-
pond to index values of one and two respec-
tively. The second index gives the column
element number and the third index gives the
row element number.

POSMX - Three-dimensional array giving a third geomet-
ric position parameter (e.g., vertical chord
position) for the physical location of sensors
corresponding to each item code. The first
index gives the double-row element, the second
index gives the column element, and the third
index gives the row element.

/KAP.D/ Block for communicating user input lines for scan and
return of information about the lines.

ILOC - An array corresponding to the user entries in
the line ICHAR . ILOC(I) corresponds to the
I’th entry. If ILOC(I) is positive, then the
I’th entry is a string beginning at character
position ILOC(I). If ILOC(I) is zero, then the
I’ th entry is a null. If ILOC(I) is negative,
then the I’th entry is numeric and -ILOC(I) is
the index in the XNUM array for the numeric
value.

INU1~1 - An array corresponding to the user entries in
the line ICHAR . INLJN (I) corresponds to the
I’th entry. If the I’th entry is a string,
then INUM (I) gives the number of characters
in the entry.

XNUM - An array giving numeric values extracted from
ICHAR as explained under ILOC .

ICHAR - An array of characters forming one line of
user input. The characters are stored in the

• format 72A1.

/KWCNTL/ Gives prescribed keywords to check that data on
scratch file to be used on input are appropriate
for certain derivations.

109

• S 5~~~~~~5-S .~~~~~~~~~~ 5 - 5 s _~~~~~~~~~~~~~~~~~~~~~~ S ~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~55 .5 S 5 S ~~~~~~~~~~~~~S 5S .S.S5 . S~~ .S S- 5S. .~~~ • S .~~~~~~~~~ S. • ; ~~~~~~~~~~ sSS-. ••~~~S ..• S -



K~~Il - Prescribed keyword for the top double-row ele-
ment input for a process.

KWMI2 - Prescribed keyword for the bottom double-row
element input for a process.

NKWM - Number of prescribed double-row elements re-
quired for process.

S /LABELS/ Plot labels. Most of these labels are extracted
from the information record preceding each data
stream in the Master File.

IDATE - Date the data stream was recorded. The format
is 2A4.

ITIME - Time of day the data stream was recorded. The
format is 2A4.

ICLABL - Current counter in string format A4,A2.

ITEML - Item code in format A4.

IMODEL - Ship model in format A4,A2 .

ISHIPN - Ship number in format A4,A2.

S ISHPGW - Ship gross weight in format A4,A2.

IMODLC - Ship model code in format 2A4.

ICGLNG - Ship longitudinal CG in format A4,A2 .

ICGCOD - Ship CG code in format A2.

IFLTNM - Flight number in format A4,A2.

IUNITS - Dependent variable units in format 2A4.

ITENDS - Discription of dependent variable in format
,A2.

LINLAB - Dependent variable label for multiple line
plots.

110

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


S _
•

S S S S S
SS

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S.— • 

•
~ . S

/LEDIT/ Control and information values for command sequence
storage on retrieval.

LED - Current command sequence (EDIT) mode.

0 = normal mode
1 = EDIT/NEW mode
2 = BUILD mode
3 = EXECUTE mode

NANFIL - Four-character name of the current command
sequence block being edited, built, or exe-
cuted.

NIJMFIL - Pointer to the current block in the command
sequence file being generated or read.

LOCFIL - Pointer to the current line in the command
sequence file being generated or read.

S LEDLIM - Total number of command lines available on
the command sequence file. If LEDLIN = -1
the EDIT capability is not available.

LEDLRC - Number of direct access records in a command
sequence block.

LNPREC - Number of command lines which can be stored
in a command sequence block.

LWDPLN - Number of words allotted to each command line
where four characters are stored in each word.

/MASS/ Offsets , pointers and check values for the direct
access routines RNS, WMS, FMS.

NDEVS - Dimension for the arrays in this block.

?DEV - Array giving direct access I/O file numbers.
MDEV(I) is the I/O file number for pseudo-
device I.

MOFF - Array giving offsets to arrive at correct
direct access record numbers. For pseudo-

S device I, MOFF(I) should be added to the re-
quested record number to arrive at the proper
record number for direct access device MDEV(I).

111

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

S - S -~~~~~~~~-s~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~ S S . S

5~~~

MLEN - Array giving lengths of the pseudo-devices.
MLEN(I) is the number of direct access records
available to pseudo-device I.

) MTOT - Array giving total length of direct access
devices. MT0T(I) is the total number of direct
access records available on direct access file

) M D E V (I) .

MSIZ - Array giving record size in four-byte words
for each pseudo-device. MSIZ(I) is the record

S size for pseudo-device I.

/MDEP/ Computer, installation, or hardware dependent values

IBAUD - Data communication rate in characters per
second between the Tektronix graphics terminal
and the computer.

IPLDEV - Plotting device

1 = Calcomp or incremental plotter
S calcomp emulation (e.g., DP-l)

2 = Other device
3 = Tektronix

PENBGX - Deviation in X of the initial positioning of
the incremental plotter pen from the standard
starting position which is 1/2-inch to the
right of the perforations for DP-l paper.

PENBOY - Deviation in Y of the initial positioning of
the incremental plotter pen from the standard
starting position which is the 1/2-inch above
the perforations at the bottom of the page.

PLTWID - Total width in inches of a page of plot for
determining spacing of frames. This value
does not affect the size of the plot frames
as drawn.

NPBLKS - Number of blocks allowed in a page of printout
where each block contains five data lines and
one blank line.

TWARN - Number of CPU seconds which will be consumed
before the computer begins to issue time
warnings to the user.

112

_ _ _ _
.-S- A

~5 5S S S . S S S S S S
SS

5 5 5 SS . -S 555555 55 5 S S~~S S ~S S - - S S .~~~~~~

ITSTEP - Control value for printout of command step exe-
cution times. If ITSTEP = 1, the times will be
printed. If ITSTEP = 2 , the times will not be
printed .

IDONE - Array indicating whether the various scratch
fi les are already initialized. If IDONE(I) =
1, then file I is initialized before the pro-
gram run began. Otherwise, the file must be
initialized at the start of the run. Following
are the files corresponding to the index values.

l=SCF 1
2 = S C F 2
3 = Temporary scratch.

S /MENBUF/ Buffer block for menu generation

IX - Array for generation of menu’s

/MLABLS/ Block for output labels.

S RDLBL - Row axis label of up to 16 characters stored
4A4 .

RULBL - Abbreviated row axis label of up to eight
characters stored 2A4 .

RTLBL - Label for a geographic feature near the lowest
valued row position. The label may contain up
to 16 characters stored 4A4.

CDLBL - Column axis label of up to 16 characters
stored 4A4.

CULBL - Abbreviated column axis label of up to eight
characters stored 2A4.

CTLBL - Label for a geographic feature near the lowest
valued column position. The label may contain
up to 16 characters stored 4A4.

LABGEN - General label for independent variable(s).
This label is entered when a derivation is
performed or multiple items are used from an
Info file. Stored as 7A4,A2 format.

113

- •. • •.~~~~*s • - 5 ~S

55 __

S
~~~~~~~~~~~~~ S S S S S S~~ S S S S S S S S S S S S . _ -

IPCTL - Control for counter label ICLABL.

1 = Single counter in output
2 = Multiple counters in outpu t

IPCLBL - Counter label. Contains counter in string form
for single counter output or the string ‘MULTI-
PLE’ for multiple counter output.

S LBCEX1 - Control for row, column , or time label. The
allowed values are:

1 = Column position label in Info file
supplied coordinates

2 = Column position label as provided
by the user

3 = Row position label in Info file
supplied coordinates

4 = Time associated label
5 = No label

S 

LABEX1 - Label as controlled by LBCEX1. LABEX1 (l) con-
tains the numeric value while LABEX1(2) and
LABEX1(3) contain a string label. XLBCEX is
normally eguivalenced to LABEX1.

/MODES/ Operating modes for the program.

MODES - Batch/interactive mode selection.

1 = Batch
2 = Interactive
3 = Interactive graphics

MODSCN - Scan mode for user input.

o Normal
1 = Scan for line errors only
2 = Same as ‘] . ‘ but next input line

is already presen t in ICHAR

MODINP - Command input source.

0 = System input
1 = Edit file

MODSCR - Scratch file mode. If MODSCR = 1, all, scratch
files are concentrated on the device with the

114

- •~
• • 5 ’~.~L



r 

S ~~S 55 ~~ SS.S5555 _ 

~~~~~~~~~~~~~~~~~~~

number given by NSCG. If MODSCR = 0, each S
scratch file is located with a different file
number given by NSC1, NSC2 and NSCG.

MODROT - Rotor selection mode. If MODROT = 1, the main
S

rotor is selected. If MODROT = 2, the tail
rotor is selected.

/PLABLS/ Stored labels and information for output.

HLABLS - An array containing eight labels to be added
to the beginning of the dependent variable
description. Each label has the format 5A4.

XLABLS - An array containing seven possible X-axis S
labels. Each label is stored in the format
6A4 .

LINSKP - Array of integers which provide the schedules
for dashed lines which are later stored in
JUNQ(/DRW/). From a LINSKP entry, each decimal
digit is transferred to one JUNQ value. Al-
lowed values for each LINSKP entry are 0 thru S
9999.

ULABLS - First independent variable unit labels.

/PRCOM/ Common for process communication. ~S

KOUNTR - Current counter stored as an integer

KITEM - Current item code stored in A4 format.

NPTS - Number of points in output record .

XSTRTV - Starting independent variable value .

XINTVL - Independent variable sampling interval.

NNAXVL - Number of samples in processin g record .

INDEPN - First independent variable indicator

l = t i m e
2 = frequency
3 = harmonic number

115

L~~~~~~~~~~~~~~~~. S-S ~~~~ 5 ~~~~~~~~~~~~~~ S~~~~~ 15 - S~~~~ S55 S.

--S—-S 5

~~~~~~~~~~~~~~~~~~~~

.-



5 5 5 - -  ~~~~5-S 
~~~ S . 5 5~~~ 55S55~~~~~S.S 

~~~~~~~~~~~~~~~~ -

LTYPE - Pointer to proper HLABLS label

LXAX - Pointer to proper XLABLS label

KEYWD1 - Top double-row element keyword for output data
stream.

S KEYWD2 - Bottom double-row element keyword for output
data stream.

KEYQ1 - Top double-row element keyword for input data
stream .

KEYQ2 - Bottom double-row element keyword for input
data stream.

POSZ - Two word array giving the third or minor posi-
S tion value for the curren t item code (s) in

process. The first array value corresponds to
the top double-row element and the second array
value corresponds to the bottom double-row
element.

/SCRTCH/

IOFFXB - Offset in words to the beginning of scratch
file output information stored in XBUFF
( /BUFFER/ )

IRPOFF - Offset in words from XBUFF( 1) to the beginning
of row posi tion storage for output to a scratch
file.

ICPOFF - Offset in words from XBUFF(1) to the beginning
of column posi tion storage for output to a S
scratch file.

KDROFF - Offset in words from XBUFF(l) to the beginning
of the data directo ry buffer to scra tch file
ouput .

NPREC - Number of data direc tory blocks in a scra tch
file record.

ICOLM - Array givin g the curren t column number being
wor ked on for each scra tch fi le.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S~~~~~ S 55~~~~~~~55S.55 S 5 S 5 - S .


5 5
5 5555~~S

~~~~~~~~~~~~~~~ ~~~~~~~~ S S SS.~S~~~ ~~~~~~~~~~~~~~~~~~~~~~~ S 5 5 5

INILOC - First available data record for either scratch
file.

MXRWSC - Maximum number of row positions allowed for a
scratch file.

MXCLSC - Maximum number of column positions allowed for
a scratch file.

MSCLOC - Array giving the next available data storage
record for each scratch file.

IPANAV - Array which gives the multiple storage condi- 
S

tion for each scratch fil e where index = 1 is
SCF1 and index = 2 is SCF2. If IPANAV(I) = 0
then all the data stored on the scratch file
was written in one KEEP command step . If
IPANAV (I) = 1 then the data stor ed on the
scratch file was written with one KEEP and one
or more ADD command steps.

ICURR - Data directory record currently in XBUFF for
the scratch file currently being written on.

IXBINP - Offse t in words to the beginnin g of scratc h
file input inform ation stored in XBUFF(/BUFFER/)

ICURIP - Data directory record currently in XBUFF for
the scratch file currently being read from.

IXDX RI - XBUFF offset to directory record buffer area
for scratch file input .

IXDAT1 - XBUFF offset to data record buffer area for
scratch input.

IRPOFX - XBUFF offset to row position storage for
scratch file input.

ICPOFX - XBUFF offset to column position storage for
scratch file input.

MODE12 - Indicator for one or both double-row elements.
MODE12 = 1 implies one double-row element while
MODE12 = 2 implies both double-row elements.

ROWPOS - Array which contains physical row element
positions.

117

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _



-- 
. 

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
5 5

I.-

COLPOS - Array which contains physical column element
positions.

MAXCOL - Number of column positions present.

MAXROW - Number of row positions present.

ZMAX - Maximum data value present in a row/column
pair time history. S

ZMIN - Minimum data value present in a row/column
pair time history.

• LABCNT - Label control value for generation of LINLAB
S (in /LABELS/) when input is from a scratch

file or multiple items are specified by an

5
Info file group. Allowed values are:

1 = Column position label
2 = Column label using user-supplied

coordinates
3 = Row position label
4 = Time related label
5 = Originally saved label

POSUP - Array of minor positions (e.g., vertical posi-
tion on chord section) corres ponding by index
to the row elements, and also to the top
double-row element.

POSDN - Array of minor positions (e.g., vertical posi-
tion on chord section) corresponding by index
to the row elements , and also to the bottom
double-row element.

/SINGIF/ Informa tion extracted from the ini tial group of the
Info file.

KEYWRD - Array of four-character keywords which give
the meaning for the corresponding item codes.

ITEMK - Two-dimensional array of item codes which
correspond by the first index of the array
to the KEYWRD with the same index .

VALUES - Two-dimensional array of numeric values which
correspond by both indices to the item codes
in ITEMK .

118

_ _
is

[5

5 5
. ~~ ‘~~~~ - iS-

~
V5- r ,z~~~~ .~~~n.. Ir_’ .—.s. — 5—5——— - -—— - - — - - -

/SIZES/ Various fixed numeric values for the program.
S IBFSIZ - Size in words of the XBUFF scratch data area S

IMRSIZ - Size in words of a Master File record.
5

ISCSIZ - Size of the scratch files in records.

ISRSIZ - Size in words of a scratch file record.

‘ ISPSIZ - Size of the scratch files in records when all
scratch file pseudo-devices are assigned to

S
• the same I/O file number.

ICOLMS - Number of characters allowed in a user input
S line .

INCTEK - Vertical raster spaces required for each
character line printed on the Tektronix.

ICOMSZ - Number of characters allowed in the user
comment line .

NDIRCS - Number of user entry options in the user inter-
face output matrix, IDIRCT.

S IBIG - A large integer for use as a dummy limit for
DO loops . S

MENBSZ - Size in words of the IX scratch area for the
menu generation routines.

IDB1S7 - Size of the initial part of the scratch file
directory.

ICLDSZ - Size in words of a scratch file column
directory block.

IDBLKZ - Size in words of a data directory block.

NKV - Number of words of keyword information held S

by the routine PROSET for each process option.

NKEYSD - Maximum number of keywords allowed for the S

initial group of the info file.

NITMSD - Maximum number of item codes which may be
S associated with each keyword in the initial S

group of the Info file.

119

S - S
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~S 5 5 S S S ~~~~~~~~~~~~~ S.—,

ICOLIF - Maximum number of character positions available
for one line of the Info file.

MAXATT - Maximum number of values for each of the
attached parameters .

INCLMS - Maximum number of character positions for a
line in the Info file.

S NCONRW - Specified number of rows for final output
matrix for generation of a contour plot when

S the independent variables are the third and
second dimensions.

5 

NCONCL - Specified number of columns for final output
matrix for generation of a contour plot when
the independent variables are the third and
second dimensions .

NCNRW1 - Array giving the specified number of rows for
final output matrix for generation of a contour
plot when the independent variables include

S the first dimension . When the plot format is
cylindrical , the first array value is used .
When the plot format is rectangular, the
second array value is used.

NCNCL1 - Array similar to NCNRWI giving the specified
number of column s for the final output matrix
for generation of a contour plo t.

NSURRW - Specified number of rows for final output
maxtrix for generation of a surface plot when
the independent variables are the third and
second dimensions.

NSURCL - Specified number of columns for final outpu t
matrix for gener ation of a surf ace plo t when
the independent variables are the third and
second dimensions.

NSRRW1 - Array giving the specified number of rows for
the final output matrix for generation of a
surface plot when the independent variables
inc lude the fir st dimension . When the plo t
format is cylindrical , the firs t array value
is used. When the plot format is rectangular, S

the second array value is used. 
S

120

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -5-



- _s 5 s ~~ s~~~~~~~~~~~~~~~~ S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ S S S. S S

NSRCIJ1 - Array similar to NSRRW1 giving the specified
number of columns for the final output matrix
for generation of a surface plot.

MXEDLN - Maximum number of command lines which can be
S 

stored in a command sequence block.

NEDSIZ - Number of computer words in a command sequence
file (Edit fi le) direct access record.

NEDCHR - Number of characters which are stored for a
command line of the command sequence file
( Edit f i le) .

5 NPCYAV - Specified number of data values which are
generated to represent one rotor cycle in the
cycle averaging (AVERAGE) process.

S /SLIST/ Block to contain listing of the developing command
step or , if no entries have been made for the
current step, contain a lis ting of the previ ous
command step .

NCPOS - Character position on the ISLIST line currently
being generated.

NCROW - ISLIST line currently being generated corres-
ponding to the second index of ISLJIST.

ISLIST - Array which contains listing of the developing
command step. The lines are stored in 18A4
format with the second index referencin g the
lines .

ISLNOW - Indicates whether ISLIST contains the currently
developing step or the previously completed

S step listing. Allowed values:

0 = listing of currently developing step
1 = listing of previous step

/STATUS/ Various information on the status of the program.

LNCNT - Vertical raster position on the Tektronix
screen for return of the cursor after a plot
is generated.

F’ 121

‘ S  

.

~~



S 

______
5~~55 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - S

KOMMNT - Array containing the current user •:ominent for
output. Comment is stored in 18A4 format .

NKOMCH - Number of the last non-blank character cur- S

rently in KOMMNT .

IFRSTP - Indicator for the current plot frame. Allowed
values are:

0 = No plots have been generated in
this run.

—l = Single curve plot frame was just
generated.

I = (positive) Multiple curve plot frame
is curren tly on screen or paper
containing I curves.

/SURPLT/ Control and label values for surface on contour
plot generation.

ROW1 - Numerica lly lowes t row position for the final
output matrix used for surface or contour
plot generation.

ROW2 - Numerically highest row position for the final
output matrix used for surface on contour plot
generation.

COL1 - Numericall y lowes t column positi on for the final
output matrix used for surface or contour
plot generation.

COL2 - Numerically highest column position for the
fina l output matrix used for sur face or contour
plot generation.

NCR - Number of rows for the final output matrix
used for surface or contour plo t generation .

NCC - Number of column s for the final output matrix
used for surface or contour plo t generation .

NTYPEF - Format for contour or surface plot .

1 = Cylindrical format
2 = Rectangular format

S S55~~~~555555SSSS 5 S~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S S S 5~~~~S5S Si



p~~r 
- 

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
S

SS

S_ S S S — 55555 •~~___V S_S~ ~~~ S 55S. 5~~~_~~_

p
V

ITRNPS - Indicates whether rows and columns should be
transposed in generation of the final output
matrix.

0 No transposition
1 = Transposition

DELZ - Dependent variable increment between contour
levels for a contour plot .

LABVRT - Label for the vertical axis of a rectangular
format contour plot.

S

LABTOP - Geographic feature label to be placed at the
top of a rectangular format contour plot.

LABHOR - Label for the horizontal axis of a rectangular
format contour plot.

SETLEV - Contour height indicator for CONNEC routine.
For each plot, this value is initially set to

-l x l0~~ as an indicator that no contourshave been drawn yet.

S /WLIST/ Keyword block.

NWDS - Number of keywords stored in IAA .

IAA - Two-dimensional array containing keywords
to be matched with user command entries.
Keywords are four characters long stored
one character per word in 4Al format . The
second array index corresponds to the key-
word number.

123

.~~~~~~~~~~~~~ ‘ t.

5555 ~~~~ 555 ~~~~~~ 55 5 S . S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S S 5 ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ J

- ~~~
--

APPENDIX C

JOB CONTROL LANGUAGE (JcL)

TO EXECUTE THE FILE CREA T1~~N PR0G~ AM.

//ESARI J08 tFEAR0100 ,G~38.670612,QP38.TS),’DjCK ’,II NSGLEVEL I ,MSGCLASS=A .CLASS=T ,IiCTIFy= ~ 5Ak/*SETUP 0$N t NGR .NEWOLS
/*SETUP DSN~~~ N GR .F2 I I042~3/*SETUP uSN ENGR.F21~~04~ .3
/*SETUP l)SN~~~NG~ .F2I30 42 3
/*SETUP OSN=ENGR .F201041b
/*SETUP iISN ENG~~.F2150423/*SI~TUP 0SN~~ NGR.F18J04I4/*SETLJP DSN=CNG~~.F19004L5u = ~~N I ~.F19L04& b
/*SETUP 0SN=~ r,Gg .FIc.404I5
/*S~ TUP USN~~~NG14.F195O4Ib/*SETUP uSN=Er~~~ .F 1St~ 04 A S
/*SETUP DSN ENGR .F204041 7
/*SETUP u$N=EP4GR.F~~O$O4l9/*S~ TUP uSN N~ R .F23~ 041~4/*SETUP 0SN=~ NGR.F240O42~/*S~ TUP 0SN=~ NGR.F2~~0O423/*SETUP USN~~~NGE~.F20JO4&7
~/STEP 1 EXEC PG$ FEAROI. TLML IQ
//ST~ PLI8 DO 0SN NGF..PR00L,OISP~~S~ffi
//FTOIFOO I 00 O~ N ESAI~.OLSMA$.O1SP DLO
/IFTOSFOOI DO DSN=E~ AR .LS*i~.8ATCHIN.OATA.OATA .0!SP=SHR
//FI06F001 00 SYSOUT=A
//FT*4F001 00 UN! T SYSOA .OSN~ ENGR.UJsI TI4,OL5P=NEw ,// SPACE= (CYL .b).OC8=(R FM~F .8I.KSIZI~= 1Q~ 4,D5O1~G=oA)//FTI2FOO 1 Du DSN=ENGR .UN ITI4.UNIT=AFF=FTI4FOOI.VOL=REF= * .FTI4FOOI.
// UISP- OLD,UCB= (KECfM=F .8LK~ 1Z~~~1 024 ,0S0~ G=D A)//FT1JF 001 DD UNLT=SYSDA .OLSP NEi.5PACE~~(CvL,2j ,II uC8 (RECFN ~ F .bLKS1ZE=6400)//SYSUUUMP 00 SYSOUT A
//FT2OFOOI UI) UNIT TP5 ,U5P4=Lp4~ R .p4E~ QLS.D1$p=0LD//FT2IFCOI DO UNI T AFF FT2OFOOJ ,
II OSN EN~ R .F2I10423 .D1SP~ uLO
/i’FT22FOO1 00 UNI T AFF FT2OF00I.
// 0SN~ ENGR.F2l2042J ,DISP 0L0
//FT23FOOL DI) UNLT A FF 1’120f001.
d/ OSN=ENGR.F2130423.CISP=OLD
//FT24F001 DO UNIT AFF=FT2QFOOI,
1/ OSN ENGR.F2010415.DISP OLD
//FT2SFOOL DO UN IT AFF FT2OFQOI.S
1/ D5N ENGR .F~~15042J,DISP=GL1)//FTZ6FOOI 01) UNL T AFF FT2OFQOI.
II DSN EN~ R.F 1830414.DISP=OL.D//FT27FOOI 00 U~ 1T AFF~~~T20F001.1/ OSN ENGR .F1~I00415.OISP 0LD
//ET28F001 DO LN IT AFF FT2OFOOI.
II OSN=EP4~ R .F1910415.D1SP OLO
/ /FT29FOOI DI) UNLT=AF I FT2OFOOL.
// DSN=ENGR .F 1940415,DISP=OLD
//FT3OFOO1 01) UN IT AFF=FT2OFOOI.
// OSN ENGR .F 1950415 .DISP=OLD
//FTJIF 001 00 UN IT AFF FT2OFOOI5 .
1/ DSN ENGR .F19b0415 .DISP=GLD
//FTJ2FOO1 DO UNIT=AFF FT2 OFOOL,
II DSN ENGR .F2040417.DISP I3LD
//FT33FOOI 00 UNIT=AFF=FT2OFOOI.
/1 DSN=ENGR.F2080419.OISP=QLD
//FT34F001 DO UN IT AFF FT2OFOOI.
II DSN=ENGR.F2.350424.OLSP OLD
i/FTJ5FOOI 00 UNIT~~AFF FT20F Q01.
/1 DSN ENGR.F2400423.DISP=OLO
//FT36FOOI DO UNLT AFF FT2OFQOI .
I, OSN=ENGR.F2100423.DISP=OLD
//FT37FOOI DO UN1T~ *FF=FT 20FOOl.II OSNZENGR.F20304*7.OISP=OLD
I,

124

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - ~~~~~~~~~~~~~ 5 
~~~~~~~~~~~~ S 

-

F

TO EXECUTES THE PROCESSING PROGRAM IN BATCH.

//ESARb JOB (DLSDMso0.G~ e.67oo12OO.DP3d.T.o2l. ’OLC~ 2841’.
Ii MSG EWEL=I .NQTIFY~~ESAR .MSGCi.ASS*A.TIMEz(2.GO) .CLASS*G
// EXEC PGM=ATARO2

S //STEPLIb 00
//FTO5FOOI 00 DONAMk~~IN
//FTO6FGOI Oi) SYSOUT~~A//FTOLFOO1 DO DSN ESAR .OLSMAS .DLSP SHR
//FTA2FOOI 1)0 UNIT SYS0A.O5N=ENGR.UNLTI2,O1SP~ NE~~,II SPACE=(CYL .2).0C8 (RECF M=F ,BLKSIZEZIO2A .DSOMGaOA)
//FTIIFOOI 00 O~NE GR .LN !I12 ,~~NL T=AFF ~FTI 2FOOI,VOL~ REFa*.fT12FOOI.// D1SP=OLD .0C&~(RECF M~ F .dLKSIZE ~~IO24,DSOtIG~OAI//FTI4FOOI DO OSN ESAR .IP4FWtIT. FORT.OISP SHR
//FTI.3F001 DO DSN= SAR.C U.OISP=SHR
//PLOTTAPE 00 UNI T (TPS..DEFER) ,VOLUMEsPRIVA TE,

S II LABEL=EXPOT 9dOO5
//IN DC *
1
GRID
STEP
YES
J IM
~.XEC/AAAA/TERM/
‘4

TS0 ‘CLIST’ TO EXECUTE THE £NTE RA CT IVt MODE OF THE
PROCESSING PRUGNAM.

PROC 2 EDIT INFO
CONTROL NOMSG
FREE UAL ’ESAR.CLIST’)
FREE F(FTOIFOOI FTQ5FQOI FTO6FOOI FT22FOOI)
FREE F(FTIA FOO I FTI2FOOI FTI~~~0CL FTI4FOO! ,)
FREE AT TR (SCRATXè
CONTROL MSG
ATTR SCRATX RECFN (F) DSORG (DA) LRECL(1O~ 4I ~LKSIZEU024JALLOC UA(VTEM P) USING($CRATX) NE. SPI2) CYL.
*LLCC F(F TL2FOO I) DA (VTEMP) bHR
ALLUC F~ FTlIF0 0t) OA (WTEM P) SH.~ALLOC F(FTIJFOO II UA (’~~EOIT .’) SHRALLOC F(FT Q IFOOII QA(OLSMAS) SHR
ALLOC F (FTI4FOOI) OA(’&LNFO. ’I SHR
ALLOC F (FTOSFOOI) DA(*)
ALLOC F(FTO6FOOI) UA (*)
ALLOC F (FT22FOOI) DUMMY
CALL • ENGTEST (ATARGO)’
FREE F (FTOIFOO1 FT22P001)
FREE F(FTIIFOOI FTI2FOOI FTI3F001 FT LAFO Q I)
DELETE VTENP
FREE ATTR(SCRATX)

125

k~J. ‘~

_ _ _ _ _ _ _ _ _ _
- S

SSS ~~~~~~~~~~~~

_________________ ________ _______
S ~5_~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

S 55S5 ~~_~~ SS55 S S._ S •~5SSS55 5 5 5 5 5 5 5 5 SSS S SSS SS S5 S S.S5_S S S •

TO COMPILE THE PROCESSING PROGRAM OR THE FILE CREATION
PROGRAM ~P1EN THE SGL~RCE IS ON DATA SET ~~~~ORK ’. iNPUT
FOR F ILE CREATION PROGRAM COMPILATiON MUST INCLUDE ALL
FILE CREATION PROGRAM SOuRCE. INPUT FOR COMPILATION
OF THE BATCH NODE OF THE PROCESSING PROGRAM MUST INCLUDE
ALL PROCESSING PROGRAM SOURCE AND DUMMIE S FOR THE
TEKTRONIX P101—10 ROUTINES ANM QOE’. ‘MOVABS’ . AND
‘VCUR SR ’. INPUT FCR COMPILATION OF THE INTERACTIVE MODE
OF THE PROCESSING PROGRAM MUST INCLUDE ALL PROCESSING
PRO~ RAM SOURCE ANLJ THE SUBROUTINE ‘PLOTS’ W$L C~1 IS A
REPLACEMENT FOR THE TEKTRONIX ‘CALCOMP PREVIE S’ VERSION
uP ‘PLOTS’. THE OBJECT DECK IS LEF T ON THE DATA SET
•ESAR.TEMPO8JC.OBJ’.

//ESAM4 JOB LCOMPILOO.G38,67061200.OP30,T,02),’OLCK 2841’.
II M SGLEVEL~~1,NUT jFYzESAR.MSGCLASS A ,TLME= (5 ,G0J,CLASS D
//FORTX EXEC PGM zIFEAA8.REG1ON ~~256K

5 //SYSPRINT 3D SYSOUT $
//SYSTERM DO S~~SOUT $

S //SYSUTI 00 UN IT=V IO,SPA CE= 4TRK,100)
//SYSUT2 DO uNIT~~V IO.SPACE (CYL..3)

S //SYSLIN 00 UNiT YSUA.DISP (NEW .CATLG).OCB 8LK51ZE 3120.
S // SPACE LCYL . 1O) .DSN LSAR.TEMPOBJC.OBJ

//SYSIN DO 0SN~~~lURK.OISP= (OLu .QELETE)I,

TO LINK THE FILE CREATION PROGRAM UN TSO. THE iNPUT IS
THE UA TA SET ESAR.TEMPG~~JC.Ob.a A~ CREATED ABOVE. THE
LOAD MODULE IS LEFT ON THE PAR TITION FEAWOZ’ 0* THE
LIBRARY •ENGR.PRODI’.

LINK (TEMPO8JC.013 J 4) LCaAD (‘ENGR.PRODL (FEARO2) .1 MAP FORTLAB L16 (’ENGR .FO
RTLIB’)
ENTRY M A I N

TO LINK THE BATCH VERSION OF THE PROCESSING PROGRAM UN
TSO. THE INPUT IS ‘ESA H .TEMPOL3JC.OBJ’ FROM TIlE COMP-IL—S
AT IGN JCL . THE LOAD MODULE IS LEFT UN THE PARTIT loll
‘ATARO2 ’ OF THE LIBRA RY •ENGR .P~iCDI ’.

LINKITEM POBJC .OBJ 4) LOAO (’ENGR.PRCOI (ATARO2)’) MAP SIZE (~~9O00O.9OOOO) F
ORTLIB LIB(’ENGR .FORTLIB’)

S ENTR Y MAIN

TO LINK THE INTERACT IV c VERSION OF THE PROCESSING PROGRAM
ON TSO. T IlE INPUT IS THE uATA SET ‘ESAR .IcMPUBJC.OO-J ’

5 FROM THE COMP ILATION JCL. THE LCAD MODULE IS THE PARTITION
‘ATAROO’ ON THE LIBRARY ENGTEST’.

S ALLOC F (TEKLIBI DAC ‘ENGR.TCSLOADI’)
LINK LTEMPOBJC.OBJ 4) LOAO(’ENGTEST(ATAROO) ’) MAP SIZE(290000,90000) FOR
TLIB LIB (’ENGR .TCSLOAOl’ ‘ENGR .FORTLIB’)
INCLUDE TEKLIB (CALCOMP)
ENT RY MAIN

S c

:~ 126

SI I
S SSS S 55 55 S~~~~ S S SS

