
PARSING FLOWCIARTS AND SERIES-PARALLEL. GRAPHS

by

Ja:oho Valdes

DD

STAN-CS-78-682
DECEMBER 1978

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

_-__ STANFORD UNIVERSITY

~w~j~eJhas

~~ JUNIawl

jAIL



SParsing Flowcharts an[ d Series-Pare.lel Graphs

Jacobo Valdes

Ccsputer Science Department
Stanford University 17

Stanford, California 94305

•- "--. Abetrat.

_- • The main results presented in this work are an algorithm for the

recognition of General Series Parallel (GSP) digraphs and an approach

.to the structural analysis of the control flow graphs of programs.

The GSP recognition algorithm determines in O(n+m) steps whether

an acyclic digraph with n vertices and m edges is GSP, and if it is,

describes its structure in terms of two simple operations on digraphs.

The algorithm is based on the relationship between GSP digraphs and the

Smore standard class of TTSP multidigraphs.

Our approach to the analysis of flow graphs uses the triconnected

components algorithm to find single-entry, single-exit regions. Under

certain conditions -- that we identify -- this method will produce structural

in.formation suitable for the global flow analysis of control flow graphs in
4'

time proportional to the number of vertices and edges of the graph being

analyzed.

Thi& research was supported in part by National Science Foundation grant
MCS75-22870 A02 and by Office of Naval Research contract N00014-76-C-O688.
Reproduction in whole or in part is permitted for any purpose of the
United States government.

M-

c-I 1 %lf " : * -• " I i • 1 , . . . - . . . . .. . . . . . ..



"uNCLASIFIED

SR D F ir SECURITY CLASSIFICATION OF THIS PAGE (•W Al V ate Eterod) ,, .R. " ... ... . ...ORM

REPORT I PERIOD COVERED

ASNG ICHART8 AN IES-PAIRALLEL ý V Technical, November 1978

IS. PERFORMING ORO. REPORT NUMBER

STAN-CS-78-682
7. AUTHORf's) 0. CONTRACT OR GRANT N.UMRER(,.)

JcoboN 476-c4688

9. PERFORMING ORGANIZATION NAME ANU. ADDRESS ARK a O 'I ,U.UERS
copu e Sci nc AREA G WORK UNIT N MIR

•=. -•- St, nor'd University%

stanford, Callfornl_
I%- CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research Nov W
Department of the Navy

C Arlington, Va. 2221( 233
14. MONITORING AGENCY NAME 6 AOOD ESS(#I dif.frent from Cer,.oftinj Office) IS. SECURITY CLASS. (of thli report)

ONR Representative: Philip Surra Unclassified
Durrand Aeromautics Bldg., Rm. 165 nlasfe
Stanford University 1s,. OECLAS$IFICATION/ DOWNGRADING

Stanford, Ca. 94305 SCNEDULE

16 DISTRIBUTION STATEMENT (of this Report)

Releasable without limitations on dissemination.

17. DISTRIBJ0'd1O STATEMENT (of the abstract entered in Block 20. It dillferent from Report)

1 SUPPLEMEN•TARY NOTES

19. KEY WORDS (Coti.t'nse on reverse fldr It nece-sawy and Identify by block number)

Z0. ABSTRACT (Confhlyo on rvev•is&f sdo If necesalr) and fdengify by block number)

(see reverse side)

DD I 1473 OITiON O I NOV 65 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAOE Yhon a Entered)



SFCURITY CL.ASSIVICATION OF THIS PAOS(We Date Data rre4Q t L

The main results presented in this work are an algorithm for the -

recognition of General Series Parallel (GSP) digraphs and an approach

to the structural analysis of the control flow graphs of programs.

The GBP recognition algorithm determines in O(n+m) steps whether

an acyclic digraph with n vertices and m edges is GSP, and if it is,

describes its structure in terms of two simple operations on digraphs.

The algorithm is based on the relationship between GSP digraphs and the

more standard class of TTSP multidigraphs.

Our approach to the analysis of flow graphs uses the triconnected

components algorithm to find single-entry, single-exit regions. Under

certain conditions -- that we identify -- this method will produce structural

information suitable for the global flow analysis of control flow graphs in I

time proportional to the number of vertices and edges of the graph being

analyzed.

I

UNCLASSIFIED
SECURITY CLASSIFICATiON Of THIS PAW!($•T4 Date fElaad)

*I



j Acknowledgments

I seriously doubt that I would have finished Z Ph.D. had it not

been for Bob TarJan who delivered me from the "n-th year blabs" by

suggesting the topic of this thesis and supporting and encouraging me

through its genesis. For this and for being generous with his time

when I needed it I am deeply indebted to him.
IThe help of Gene Lawler and Andy Yao, vho consented to read this

work, is also acknowledged.

A few other people contributed to this effort in ways that are just

as important but very much harder to describe. Phyllis Winkler, who was

a wonderful mixture of friend, super secretary, and hatchet woman, and

without whose help this work would have been still in progress.

Luis Trabb Pardo (hermano.) who listened patiently to many hours of

half-baked ideas -- without retaliating -- and remained a friend after

"I stole from him the surmer of 1978. And Barbara Villalonga who was --

and is -- generous beyond reason.

r Finally there is the proverbial "cast of thousands" who helped

make my long stay at Stanford a very special period of my life. Among

them: Rogelio, Anne, Jaime, Marga, Rob, Miris, "Sweet" Sue Graham, the

"cocoteros", and the Bachacs. To all of them and to the many iunamed

ones as well a very sincere thank you.

U'

I'.

1I "



Table of Contents

Chapter 1. Introduction ...................... 1

Chapter 2. Replacement Systems 13.1

Chapter 3. Two Terminal Networks ................. 20

3.1 Introduction ..... ..... .................. ... 20

3.2 Decomposition of Two Terminal Networks .... ...... 21

3.3 The Triconnected Coponents Algorithm ......... ... 29

3.4 Parsing Two Terminal Networks .... .......... 35
3.5 Two Terminal Series Parallel Networks .... ....... 48

Chapter 4. Two Terminal Series Parallel Multidigraphs ..... ...... 61

14.1 Introduction ..... ... ................... ... 61
14.2 Definition and Decomposition Trees ... ....... ... 62

14.3 Recognition of Two Terminal Series

Parallel Multidigraphs ..... ....... ........... 74

4.4 Obtaining the Decamposition Tree of a

TTSP Multidigraph ......... ................. 78

4.5 Exhibiting the Forbidden Subgraph ........... ... 83

4.6 Isomorphism of Two Terminal Series

Parallel Multidigraphs ..... ... .............. 89

Chapter 5. General Series Parallel Digraphs ....... .......... 94

5.1 Introduction ..... ... ................... ... 94

5.2 Definition and Relationship to TTSP

Multidigraphs ........... ................... 95

5.3 Recognition and Parsing of MSP Digraphe ......... 106

5.4 Recognition of GSP Digraphs .... ............ .. 116

5.4.1 The Transitive Reduction of GSP Digraphs . . 118

5.4.2 The Two Dimensionality of GSP Digraphs . . . 121

5.5 Forbidden Subgraph Characterization of GSP

Digraphs ..... ..... ..................... ..131

5.6 Consequences of the GSP Recopi+ion Algorithm . . . 141

iii.



chapter 6. Flowcharts . .. .. .. .. .. .. .. .. .. . .. 147

6.1 Introduction . . . . . . . . . . . . . . . . . .17

6.2 Parsing General Hammocks . . . . . . . . . . . . 154

6.3 Parsing Proper Programs ............. 171

6.4 Parsing Structured Programs ...... ... . 184

Chapter 7. Simnary of Results and Open Problems . . . . . . . . . 188

References ....... . .. . .. 190

Appendix A. Graph Theoretical Definitions ....... ... . 193

Appendix B. The Efficiency of Algorithms ...... . . . . . . .199

Appendix C. Proofs of Lemmas and Theorems . . . ............. 2W.O

iv



f Chapter 1. Introduction.

parse (pars) v. parsed, parsing. To describe the form,
function and syntactical relationship of each part of

Ia sentence [(L "pars", part).

Ever since its discovery, the theory of graphs has been a striking

Sexamle of abstract mathematics originating from seemingly simple problems

of the real world. Most of the classical problems in the field are such

that they " ... can be explained in five minutes by any mathematician to

the so-called man on the street. At the end of the explanation, both

will understand the problem, but neither will be able to solve." This

description may not be quite fair to the mathematician (in fact Harary

applied it to the four color problem that the mathematician has learned

how to solve since the sentence was written) but is basically accurate.

The close relationship between these problems and everyday situations

contrasts very sharply with the nature of the results provided by the

classical theory of graphs. A good example of this contrast is Kuratowskii's

characterization of planar graphs. ftratowskii found a very simple condition

(and one that can be described to a layman in simple terms) that a graph

satisfies if and only if it can be drawn on the plane so that no two of

its edges cross. This beautiful theorem helps very little however when

trying to decide whether a particular graph can be drawn on the plane

without crossings: Miratowskii's proof gives no clues as to how to test

a graph to decide whether it satisfies the condition.

The theory of graphs found applications in just about every branch

of the sciences. The ubiquity of binary relations combined with the fact

that binary relations are naturally represented as graphs and the intuitive



appeal of the diagrammatie representation of graphs helped to widen the

field of applications of graph theory.

Many of the fields in which the theory of graphs found applications

were eminently practical and found little use for non-constructive theorems.

To a specialist in operations research a theorem that stated that there

exists an optimal solution for any instance of a class of transportation

problems only begged the question of how this solution could be computed.

Thus with the applications came a shift in emphasis: it became important

to know how to obtain solutions to certain problems.

This emphasis was accentuated with the widespread use of the digital

computer and at the same time what was needed became more precise:

a description of how to solve a problem had to be an algorithm suitable

to be implemented in a digital computer.

It is in this context that this thesis should be considered. We are

interested in designing efficient algorithms to solve graph theoretical

problems arising from practical problems.

The qualification "efficient" is central to our concerns due to the

intended practical applications of the algorithms we design. Most of the

problems that we will consider can be solved by algorithms that are very

simple both to describe and to implement. Unfortunately these simple

algorithms use enormous amounts of computing resources (time and memory)

and are therefore not very practical. Our task will be to decrease these

requirements of computing resources usually at the expense of the

simplicity of our algorithms.

2



The most obvious way of reducing the coputing resources required by

an algorithm is to implement it carefully. Sometimes the uce of complex

data structures and the careful design of its flow of control can result

in considerable gains in the performance of an algorithm. In most cases,

though, these gains are negligible -- a constant factor in most cases --

c!compared with what can be done by a mathematical analysis of the task that

our algorithm has to perform. By discovering relations between the input

and the desired output that are not immediately apparent, or by showing

one task to be equivalent to another for which an efficient algorithm is

known, one very often can realize enormous improvements which are well

beyond what careful coding can achieve. For this reason, even though we

are ultimately concerned with designing algorithms, we will spend almost

all of our energies in the mathematical analysis of the problems to be

solved.

In our discussion so far we have skipped over the crucial question

of how the efficiency of an algorithm is to be measured. For this purpose

we need (i) an abstract model of the machine in which our algorithms will

be implemented, (ii) a resource whose utilization we want to minimize,

and (iii) a consistent method of measuring the use of this resource by

the abstract machine when running different algorithms that perform the

same task. Our choices are the standard ones (see Appendix B and Chapter 1

of [AHO 76]): as an abstract machine we use a Random Access Machine (RAM),

the resource we will measure is the number of steps that the RAM needs to

solve a problem (which can be directly translated to the amount of

processing time for a real machine), and we will measure it by associating

3



a size with the input and considering the number of steps taken by the

machine as a function of the size of the input (see Appendix B). The

RAM is chosen because it provides a realistic model of most present day

digital computers. The processing time is selected as the resource to be

minimized because until very recently was the most expensive resource;

even though this is not the case today in some applications (due to the

microprocessor)p it still is the limiting resource in most cases

and the amount of time used provides a botund on the utilization of many

other resources -- like memory.

It is worth noting that even though it might appear that the tremendous

increase in the speed of digital computers would decrease the importance

of efficient algorithms, the opposite is true. The discussion given in

Chapter 1 of [AHO 761 is very- illuminating in this respect.

In the paragraphs that follow we give a general description of the

problems considered in this thesis. In this description we use for the

first time some technical terms, most of them standard graph theoretical

terminology. The reader not familiar with the terms used can find their

definition in Appendix A.

The algorithms that we will present in the rest of this work fall

into two basic classes: recognition algorithms and parsing algorithms.

We say that Algorithm A recognizes a class of graphs C , if A answers

"yes" when given as input a member of C , and answers "no" when given a

graph that is not a member of C

4

"-I

I



The verb "to parse" is commonly used in the Ceputer Sciences

literature in a way that stretches somewhat its standard meaning. By

parsing a graph we mean its analysis in terms of the iiterrqlationships

"between same of its subgraphs and our parsing algorithms will perform

this analysis.

The distinction between these two classes of algorithms is not quite

as clear as the previous two paragraphs may lead one to believe. Some of

the algorithms that we wili present recognize classes of graphs by attempting

to parse their inputs, knowing that they will succeed if and only if the

input belongs to the class to be recognized.

The original contributions of our work are two: an algorithm to

recognize and parse a class of directed graphs called General Series

Parallel, and the use of the decomposition of a multigraph into triconnected

components to analyze the flow of control of programs. In the following

paragraphs we will describe in some more detail these problems and their

applications.

General Series Parallel are directed acyclic graphs whose transitive

closures form a class with a simple recursive definition. Their applications

are related to problems of scheduling under constraints. In this application

of directed graphs, vertices represent tasks to be executed by a processor

(or processors) and edges represent constraints on horw these tasks may be

executed, so that if there is an edge going from vertex x to vertex y ,

task x has to be completed before task y is started. The problem in

general is to find an order of execution of the tasks that satisfies the

constraints and that minimizes some function of the tasks (like the total

elapsed time needed to complete all the jobs). There are endless variations

of this basic schema according to what function is to be minimized, the

|5



number, type and arranMaent of the processors, etc. Many )f these problems

arise in practice, and a good number of them are NP-complete (see [AHO 76)

for a definition of NP-ccupleteness) when we want an optimal solution for

arbitrary precedence constraints, which basically means that no efficient

algorithm is likely to exist to solve these problems.

This situation makes partial solutions for these problems more interesting.

One can relax the optimality condition and simply ask for a solution that

is guaranteed to be close to the optimalp or one can restrict the types

of constraints that are acceptable and try to find efficient algorithms

to solve these simpler problems.

General Series Parallel digraphs turn out to be useful for the second

approach described: there exists a whole class of NP-complete scheduling

problems for arbitrary constraints that can be solved by efficient algorithms

when the coitraints form a General Series Parallel digraph. (See

[LAW 78], [MC4 771, (LAW 771, [SID 76].) It is therefore interesting to

decide in an efficient way whether a given set of constraints forms a

General Series Parallel digraph so the efficient algorithm can be applied

to the corresponding scheduling problem. In Chapter 5 we will present an

algorithm that performs this recognition task in a number of steps

proportional to the number of vertices and edges of the directed graph to

be tested.

Aside from the main application just described, our recognition

algorithm has a few other interesting properties. The algorithm exhibits

an uses the relationship between General Series Parallel digraphs and the

more standard class of Two Terminal Series Parallel multigraphs which has

been extensively applied to model electrical circuits. (See (DUF 651,

6



I(LAW 60], (RIO 72], [W31 71., NEI 75].) Furthermore, Vhenever the inpit

of our algorithm is a General Series Parallel digraph, we will obtain

t - not only a "yes" answer as output, but also a parse of the graph. This

parse permits the solution of several problems for General Series Parallel

graphs by algorithms that are more efficient than the best known

algorithms to solve the same problems for arbitrary directed graphs. These

problems include ttansitive closure, transitive reduction and a restricted

version of ;raph isomorphismn.

Our second contribution is related to the application of directed

graphs to model the flow of control of programs. In this standard technique,

the vertices of a directed graph represent a sequence of program cperations

that are always executed serially and the edges represent transfers of

control between such sequences.

The flow of control of most programs can be accurately described in

this form so graph theoretical results can be applied to the problem of

analyzing the flow of control of programs. In most cases, the information

that one wishes to obtain is the following:

(i) given a point in the program, find what has happened before control

reache. that point,

(ii) given a point in the program, find what can happen after control

leaves that point.

Being able to answer questions of this type is a big step towards a

solution of many problems that arise in the design of compilers. It is

particularly useful during the code generation or code optimization phases

to solve problems like register e.location, cxmon subexpression elimination,

code motion, etc.

7 ....



The "classical" gproach to this problem ([ALL 70], [COC 70], (GRA 76],

[HEC 72], [HEC 7T1], HEC 771, [KE 71]) restricts the type of digraphs to

be studied to flowgraphs: directed graphs with one starting vertex

(corresponding to the first executable statement of a program) from which

all of the other vertices can be reached. The analysis of these graphs is

then carried out in terms of intervals: subgraphs that have basically a

flowgraph structure in that they have a single entry vertex. The most

efficient way known of performing this analysis ((TAR 714) is loosely

based on the systematic simplification of the flowgraph to be studied

using standard subgraph replacement rules.

Our approach will be slightly different. We will restrict ourselves

to a type of directed graphs called hammocks: directed graphs with two

distinguished vertices, one of them being an entry vertex and the other an

exit vertex, such that every vertex can be reached from the entry and

the exit can be reached from any vertex. Our analysis of such graphs will

be performed in terms of subhammocks: subgraphs that have a hammock

structure in having two distinguished boundary vertices, one of them an

entry into the subgraph and the other one an exit. We will show how

this analysis can be carried out in an efficient way using an algorithn

due to Hopcroft and Tarjan ([HOP 73)) that breaks up a graph into triconnected

pieces. We w.ilU discuss the problems involved in applying this technique to

general hammocks and describe how the problems diminish or disappear when

we restrict ourselves to special classes of hammocks like proper programs

([GAN 771) or structured programs ([DAH 72]).

Although the domain of application of the two algorithms that we will

present are very different, the way in which they help solve the problems

8



11

to which they are ayglied is just an instance of the common technique of

"divide and conquer". By providing a description of the structure

(a parse) of a graph, our algorithms allow to solve the scheduling

or flow questions in a large graph G by solving similar problems in

! trivial subgraphs of G , and then "pasting" these solutions together

to form the solution on G

The way in which we will decompose a graph in the "divide" part of I
the "divide and conquer" strategy will be by finding separation pairs.

In the general cases we will use Hopcroft and Tarjan's algorithm to break

a graph into triconnected pieces, and in some particular cases we will

use simpler methods based on replacement systems. In either case our

algorithms will break up a graph into pieces that have relatively simple

structures and that fit together in a natural way to form the original

graph. The simple structure of the pieces will make the solution of the

problems mentioned above on them an efficient process, and the natural

of the total solution from the solutions for the pieces.

The results just described and some others of lesser importance are

distributed over the next five chapters. In an effort to give the reader

a better idea of the overall organization of this work before plunging into

the details, we end this introduction by giving a chapter by chapter

outline of the rest of this thesis.

In Chapter 2 we describe and study a tool commonly used to parse

graphs: Replacement Systems. We review some known results on the subject

and define same particular systems that we will use in later chapters.

9



Chapter 3 is a presentation of a collection of facts related to a

class of graphs called Two Terminal networks. We review a theory of

Two Terminal network decomposition, describe the triconnected components

algorithm, show that the theory of breaking a graph into triconnected

pieces is & constructive version of the theory of network decomposition,

and introduce a subset of Two Terminal networks which has been extensively

used to model electrical circuits called Two Terminal Series Parallel

networks.

Chapter 4 is devoted to the study of Two Terminal Series Parallel

multidigraphs which (as we may expect) are closely related to the Two

T•-*inal Series Parallel networks introduced previously. The emphasis

throughout this chapter is on the properties of these multidigraphs that

will be used in the recognition of General Series Parallel digraphs.

Chapters 5 and 6 contain the main contributions of this work.

Chapter 5 is a detailed description of the recognition procedure for

General Series Parallel digraphs and its consequences, while Chapter 6

includes the application of the triconnected components algorithm to the

aralysis of the flow of control of programs.

Most of the material contained in this work can be grasped at an

intuitive level, so an effort has been made to keep the presentation as

clear and uncluttered as possible. As part of this effort, most of the

proofs have been removed from the text and included as an appendix. We

hope that in doing that we have made our main results more accessible to
the casual reader.

10



I Chapter 2. Replacement Systems.

In this section we will study Replacement Systems as tools to parse

graphs. We will start our discussion by describing these systems and our

intended application in an informal way, and then provide a more formal

description which includes the proof of an important property of the

particular replacement systems that we will use in later chapters.

Replacement Systems will be used as a convenient way of systematically

simplifying a graph. Basically, our replacement systems consist of a

collection of reduction rules which specify that certain subgraphs can be

replaced by smaller graphs during the simplification process.

The systems that we will use are based on the following rules:

Series Reduction: replace two edges (u,v) , (v,w) in series (that

is, such that v has degree two) by an edge (u,w) .

Parallel Reduction: replace two edges (u,v) , (u,v) in parallel

by a single edge with the same endpoints.

Triconnected Reduction: let G. = (Vs, E>) be the subgraph induced

by V5 . If G has exactly two boundary vertices, x, y

contains at least four vertices and G' = (Vs, uE I (x,y)])>

is triconnected, then replace Gs by an edge (x,y)

All three of the rules specify subgraphs having exactly two boundary

vertices to be replaced by a single edge joining the two boundary vertices.

These three rules are illustrated in Figure 2.1. Replacement systems based

on these three rules are common in the computer science and graph theory

literature (see [WAL 781], [DUF 65), [HAR 72], [PRA 781 or [LIU 77)).

11



U V W U V

Series reduction

Parallel reduction

I#

Triconnected reduction

ii~I

• • -

Figure 2.1.

12



I

Consider the following process of simplification of a graph, G0 ,

using a set of reduction rules like the ones just described. First we

identify the subgraphs of o to which reductions can be applied, then

we apply these reductions, one at a time, thus transforming Go into G.

We repeat the process on G1 to obtain a new graph G2 , repeat the

process on G2  once again to obtain 5 etc., until we obtain an

irreducible graph Gk , that is, a graph that cannot be simplified with

our reduction rules. Consider two consecutive elements, Gi and Gi+l

of the sequence of graphs GOGl,...,Gk , jvt described. We can look at

G i+ as a simplified version of Gi , with the set of reductions, R , used

to transform Gi into Gi+I being a description of the details that have

been suppressed. Thus Gi can be represented by Gi+l and R

Using this method one can describe a graph, G , by exhibiting the

irreducible graph obtained from G by application of the reduction

rules, and the sequence of reductions used to obtain it. In many situations

this approach gives a useful and concise representation of the structure

of a graph, and it is in this way that Replacement Systems will be used to

parse graphs in the following chapters.

The simplification process presented above was described in a way that

glossed over an important problem: the reductions applicable to a given

graph may be mutually exclusive. As an example consider the graph of

Figure 2.2 and assume that we are trying to simplify it using series

reductions. Two series reductions can be applied to that graph: one

involves edges 4 and 5 , the other involves edges 5 and 6 . These

reductions are mutually exclusive in that once one of them is applied,

one of the edges involved in the other is eliminated so the second cannot

be applied any longer.

13



I2

[14

I I.

I I

I

i

Fiue22

!4



V Although it is clear that this matter is not very important in our

example (by sym•etry, if for no other reason), in a general case, selection

of one or another of two mutually exclusive reductions may give rise to

radically different descriptions of the graph. This possible multiplicity

is undesirable in most practical applications, a fact that makes parti%:ularly

useful reduction rules for which one can guarantee the following: given a

graph G , the irreducible graph Gk obtained from G by repeated

application of the reduction rules is unique and does not depend on the

choices among mutually exclusive reductions. Replacement Systems for

which this guarantee can be given are said to possess the Church- Rosser

property, or to be Church-Rosser. All the Replacement Systems that we

will use possess this property.

The remainder of this chapter contains a more precise description of

some of the concepts already discussed. We provide formal definitions of

replacement systems and the Church- Rosser property, define the replacement

systems that we will use in later chapters and briefly review the literature

relevant to proving the Church -Rosser property for these systems.

A binary relation, - , on a set S , is a subset of S xS . We will

write a - b to indicate that the pair (a,b) belongs to the set - .

We will say that " b can be obtained from a " or that " a reduces to b "

if a - b , and call the operation of replacing a by b a "reduction".

The transitive reflexive closure, -* , of a binary relation, -,

defined on a set S , is the binary relation given by a -* b if and only

if a = b or there exists a sequence of elements of S, aa 2 ... k

such that a = a, ak =b and ai - ai+1  for I < i < k.

15

h!I



II

§ 1

An element, a , of a set S is irreducible under a binary relationj -p

defined on S if there is no element, b , of S such that a -b . The

couDletion of a binary relation, ., defined on a set S , is the binary

relation defined by a - b if and only if a -* b and b is irreducible

under -.

A structure consisting of a set S and a binary relation, -. , on S

is called a replacement system: (6, -,)

A replacement system (S, -) is finite if for each element, a , of S

there is a bound on the length of the longest sequence al, a2 ,...,ak such

that a, = a and ai - ai+1 for 1 < i < k . A replacement system (S,-)

is finite Church-Rosser (FCR) if it is finite and -- defines a function

on S , that is, if a -. b and a : c implies b = c.

Corresponding to the reduction rules defined earlier we can define

three replacement systems on the set of all multigraphs:

Series Replacement System: x - y if the multigraph y can be

obtained from the multigraph x by v. single series reduction.

Parallel Replacement System: x - y if the multigraph y can be

obtained from the multigraph x by a single parallel reduction.

Triconnected Replacement System: x .t y if the multigraph y can be

obtained from the multigraph x by a single triconnected reduction.

Theorem 2.1. The Series Replacement System, the Parallel Replacement

System, and the Triconnected Replacement System are FCR.

Proof. See [WAL 78]. LO

16



Ii

Tvo replacement systme that we will use in the following chapters

are defined on the set of all multigraphs and their binary relations

are beat described as the union of scme of the binary relations just

defined:

Series Parallel Replacement System (SPRS): p= Ls p

Lkiversal Replacement System (URS): -. u U .p Uu p

We will use still one more replacement system defined on the set of

all multidigraphs, but otherwise identical to the SPRS. The definitions of

Series Reduction and Parallel Reduction given at the beginning of the

chapter can be interpreted as operations on multidgraphs due to the two

possible interpretations of the terms "in series" and "in parallel" (see

Appendix A). We can thus imagine the binary relations - , - p , and -sp

as defined on the set of all multidigraphs and consider the Directed Series

Parallel Replacement System (DSPRS) as defined by the set of all multidigraphs

and the binary relation -. .sp
The last three replacement systems defined have in common with many

other useful replacement systems the property of being most naturally

defined as the union of several simpler systems. The work of Rosen (ROS 75]

and Sethi [SET 741 simplifies considerably the task of proving that a system

of this type is FCR. We will review here two of their results that are

useful in proving that the SPRS, the UPS, and the DSPRS are FCR.

Let "l and -2 be two binary relations on a set S . We say that2F

commutes with -. if a b and a * c implies that for some

element deS , b-• d and c i d.
12 1

17

-dI



Theorem 2.2 [ROS 73). Let (S, -) be a replacement system In which

.4 e U and let (Sp be FCRRfor ic Cij2,...,n]
1<i<n

* , If -., commutes with "• for J,ke (l,2,...,n) , then (S,-) is ECR. .

T"his theorem establishes the importance of the concept of commuting to

prove the Church- Rosser property of composite replacement systems and the

following lemma eases the taak of proving that two binary relations on a

set commute.

Lemma 2.1 [ROS 73], [SET 74]. Let -i and -2 be two binary relations

defined on a set S . If a -1 b and a C2 c implies that there exists

an element deS such that b *d and c i d then -i commutes

with 2

These results can be used to prove that the replacement systems that

interest us are FCR as follows:

Lemma 2.2.

(a) -s commutes with (for directed or undirected multigraphs).

(b) commutes with

(c) -p commutes with -t

Proof. See discussion in [(dAL 78]. 0

The proof given by Walsh [WAL 78) of part (a) of Lemma 2.2 is for

undirected multigraphs exclusively. His arguments can nevertheless be

trivially modified to prove the proposition for directed multigraphs.

18



I~ I

SfWe can now state the following:

Theorem 2.3. The Series Parallel Replacement System (SPRS), Unlversal

Replacement System (URS), and Directed Series Parallel Replacement

System (DSPRS) are finite Church-Rosser.

Proof. Follows immediately from Theorems 2.1 and 2.2 and Lemma 2.2. Q

19



Chapter Y. Two Terminal Networks.

3.1 Introduction.

f 2In this chapter we study a class of undirected multipraphs called
Stwo terminal (T)networks. These mlirpehave awide vreyof

aplcatios and a subset of the& called two terminal series parallel

(TTSP) networks have been extensively studied because of their applications

to the design and eaualysis of electric circuits.

The goal of this chapter is to show the basic equivalence between

the theory of TT network decomposition, the decomposition of a biconnected

multigraph into triconnected components and the parsing of a graph using

the tUxiversal Replacement System. We will attempt to unify our discussion

around the theory of triconnected decomposition because of its basic

algorithmic flavor.

l We will start the chapter by providing the basic definitions and

reviewing a theory of TT network decomposition following the presentation
of Walsh [WAL 78]. Walsh's main goal is to count certain classes of

networks. As a result the theory that he presents is non-constructive

and not well siuited to the design of efficient algorithms to obtain the

decompositions it postulates. In his work, Walsh appears to be merely

reviewing a well established theory due to various Russian authors.

unfortunately most of the references that he provides have not been

translated so it has not been possible to ascertain whether some algorithmic

theory is developed in any of them, elthough it aoes not seem likely given

their theoretical slant.

The theory of TT network decomposition is almost equivalent to the

theory of breaking a multigraph into triconnected components developed by

20



Whitney [WHI 32] and Tutte [TUT 66]. These theories are again non-algorthm.ic,

but more recently Hoperoft and TarJan HOP 731] have given an efficient

algorithm to perform the decomposition of a biconnected multigraph into

triconnected pieces. We will review the basic aspects of this algorithm

and show how it can be used to compute the decomposition described by the

main theorem of the theory of TT network decomposition.

We will then describe the connections between the decomposition given

by the triconnected components algorithm and the parsing of a TT network

using the Universal Replacement System described in the previous chapter.

Although reduction systems are not particu..arly useful to parse TT networks,

some of the features that make this parsing method useful in other cases

are more natually introduced in the context of this chapter.

Finally we will turn our attention to the class of Two Terminal Series

Parallel networks. We will show how the basic theory can be extended in

several important aspects and explain how the Series Parallel reduction

system can be efficiently used to parse these networks. TTSP networks

have been extensively studied, mostly as models for circuits. (see

[DUF 651, [LAW 601, (RIO 42], [SCO 65], [WEI 71], [WEI 75].) Our presentation

will try to unify several pr .es of these networks and show how they

can be derived from the general theory of TT network decomposition and the

triconnected components algorithm.

~ 13.2 Decomposition of Two Terminal Networks.

A two terminal (TT) network is an undirected multigraph in which

exactly two vertices are distinguished. The distinguished vertices are

called the terminals of the network, and all other vertices are said to be

internal. We will assume that the terminals are joined by a distinguished

edge that we will call the return edge.

21



A TT network with at least three edges -- including the return edge --

is nontrivial (opposite: trivial). A simple path X s* y in a TT

network is a terminal path if x and y are the terminals. A TT network

is firmly connected if for every internal vertex, v , there is a terminal

path that includes v . Figure 3.1 shows several examples of TT networks;

examples (a) and (b) are not firmly connected while (c) and (d) are.

There is a direct relationship between the concepts of firm connectivity

and biconnectivity, given by the following lemma: i
Lemma ý.1.

(a) A firmly connected TT network is biconnected.

(b) A biconnected multigraph with any two adjacent edges as terminals is

a firmly connected TT network.

Proof. See [wA[ 783] 0

Most TT networks that arise in practice are firmly connected. For this

reason we will assune that all the multigraphs mentioned in this chapter I

are biconnected unless we explicitly state the opposite. The proof of

Lemna 3.1 depends on the adjacency of the terminalz of any TT network.

This is the precise reason why the return edge was introduced, and even

though al.. the results presented in this chapter can be reformulated

without assuming its existence, our assumption simplifies same of the I

arguments considerably.

A subgraph of a TT network with exactly two boundary vertices that does

not contain the return edge is a subnetwork. The two boundary vertices are

the terminals of the subnetwork.

22



(a)

(b)

I
I,

?Figre 3.-1. Distinguished edges of the TT networks
are marked by a do'ible bar.

i i

2 23

AIL

* ....- (..



SLama 3.2. Every subnetwork of a firmly connected TT network is firmly

connected.

Proof. (See Appendix C.) C)

Let N1 and N2 be TT networks and let e - (ujv) be an edge of N2

distinct from its return edge. Consider the following operation (see

Figure 3.2):

(i) Delete the return edge of N1

(ii) Replace (u,v) by the multigraph resulting from (i) by identifying

one of the terminals of N with u , and the other terminal

with v

We call this operation the replacement of e = (u,v) by NI .

Let N,N 0,NI ... Nk be TT networks such that N can be obtained by

replacing some edges of NO by the networks NI,N 2 ... Nk . If all the

TT networks No, NI... Nk are non trivial and k > 1 we say that they

form a dScmosition of N with core No and components NI,..,,Nk

The condition that all the networks be non trivial is designed to exclude

pseudo-decompositions in which either the core or some component is

identical to the network being decomposed (see Figure 3.3). Note that

because of the way replacement has been defined, the return edge of the

core of a decomposition is the return edge of the TT network decomposed.

A TT network is indecomposible if it has no decomposition. Indecomposible

TT networks are of one of three types:

Lemma 3.3. A nontrivial indecomposible TT network is either a triangle,

a triple bond, or a triconnectec graph with at least four vertices.

24



a a

u b

N 1 25



1~1

b

az2 c

N I

b

bb

A decomposition of N

b

/b

a;:
a 4 z1c

A pseudo-decomposition of N

Figure 3.3.

26

--.t.. . " ,-



Proof (see Appedix C.) C

A decomposition whose core is a polygon (bond) is called a series

decomposition (parallel decoMposition). A decumposition whose core is

a triconnected graph with at least four vertices is a t-decmoposition.

A TT network that has a series decomposition is an s-network, if it has

a parallel deccmposition it is a p-network, and if it has a t -decomposition

it is a t-network.

A series decomposition is canonical if none of its components is an

s-network, and a parallel decompositlon is canonical if none of its

components is a p -network.

Using these definitions we can state the basic theorem of the theory

of TT network decomposition:

Theorem 3.1 (Trahktenbrot's theorem].

(a) A TT network is either indecomposible or is of exactly one of the

-.ypes s , p , or t

(b) An s -netowrk that is not a polygon has a unique canonical series

decomposition.

(c) A p-network that is not a bond has a unique canonical parallel

decomposition.

(d) A t -network has a unique t -decomposition. C

This formulation of Trahktenbrot's theorem is almost identical to the

one given by Walsh ([WAL 78]) which also provides a proof for it.

The most important consequence of Trahktenbrot's theorem from our

point of view is that it defines a unique way of breaking up a TT network

into smaller networks that we will call Trahktenbrot's repeated

decomposition:

. ~27



Let N be a TT network. If N is a polygon, a bond or a tricoruected

graph with four or more vertices, N is not decomposed.

SOtherwise N will be of exactly one of the types a, p , or t

according to Theorem 3.1(a). In oach case the theorem gives us a

I description of a unique way of decomposing N - NO,N1,....,Nk such

that the core, No , is either a polygon, a bond or a triconnected

graph with at least four vertices, and if N0 is a polygon (bond)

no component has a decomposition whose core is a polygon (bond).

We carry out this process repeatedly, breaking up the components

N1 ... Nk ) then the components thus obtained and so on until no

more networks can be decomposed.

In this manner we obtain from N a set of TT networks that satisfy:

(i) They are all polygons, bonds, or triconnected graphs with at

least four vertices.

(ii) N can be constructed by appropriate replacement operations
L~

between the members of the set without ever replacing an

I edge of a polygon (bond) with a network of type s (p)

(iii) The set of TT networks is uniquely determined by N

Trahktenbrot's theorem guarantees the existence of the set of TT

networks just described, but does not provide information that leads

directly to an efficient algorithm to compute it. We will now review the

triconnected components algorithm of Hopcroft and Tarjan and show that

when given a firmly connected TT network as input, it computes the set of

TT networks described above.

28

i 28

I aI

• r " , ,i



3.3 The Triconneated Components Alsoz'itlim.

The algorithm that we will describe takes as input a biconnected

multigraph G , and produces as output a set of polygons, bonds, and

triconnected graphs that is jnique. We will describe the functional

relationship between the input and output of this algorithm without

explaining the way the algorithm really works. (For details see (HOP 73].)

Consider the following operation on a biconnected multigraph G = (V, E.

(i) Find a separation pair a, b giving classes EI,E 2 , ... ,Ek , then

merge these classes into two disjoint sets E' and E" each

containing at least two edges (see Appendix A) with E = E' U E"

(ii) Consider the multigraphs G' = (V(E) , E' U [(ab)]) and

G" - (V(E") , ElU (ab)]) where V(E') stands for the vertices

of G incident to edges in El and V(E") for the vertices

of G incident to E edges in E".

This process is called splitting G , and G' and G" are called

the split graphs of G • The new edges -- (a,b) -- added to each of the

split graphs are called virtual edges and they are assumed to be labelled

so that they are identified with the split operation that creates them.

Suppose that a biconnected multigraph G is split, its split graphs

are again split and so on until no more splits are possible. The gralphs

obtained in this way are called the split components of G . The split

components of a biconnected multigraph are of one of three types:

triangles, triple bonds, or triconnected graphs with four or more vertices.

The set of split components of a biconnected multigraph is not unique as

Figure 3.4 shows.

29

L OI... ' I I • "I I I I I ' I I •= •



7

2 2 5 5 &+

3 7

S41 6 ,
S......4 I• VV e . .. . "

3 *

3 3 3

- . ..

{2 2 2 2 5,

I I, - S

Figure 3.4. Two sets of split components of a biconnected multigraph.

30



Let G'- (V',E') and 0" - (V",R") be two split graphs of a

biconnected multigraph sharing a virtual edge (a,b) . That is, each

graph contains an edge (ab) and both edges were introduced by the same

split operation. The operation of merging G' and 0" produces

G - (V1UV2 , El-[(ab)lUE2-[(ab)]) . (This operation is identical

to the replacement operation defined for TT networks except for the

asy=metry introduced by our requirement that in a replacement one of the

edges eliminated be the return edge of one of the two TT networks

involved.)

Let us now consider the following process on a biconnected multi-

graph G

(i) Split G repeatedly to obtain a set of triple bonds 5 t

a set of triangles 7 , and a set of triconnected graphs with

four or more vertices .

(ii) Merge the elements of 4 as much as possible to obtain a set

a of bonds.

(iii) Merge the elements of T as much as possible to obtain a set of

polygons p .

The set SUpUj is the set of triconnected components of G

Figure 3.5 shows the triconnected components obtained by merging the split

components of Figure 3.4; note that each edge of the original graph belongs

to exactly one triconnected component and each virtual edge to exactly two

components.

Theorem 3.2 (Hoperoft and Tarjan (HOP 7311. The set of triconnected

components of a biconnected multigraph is unique and can be computed in

0(n+m) steps for a multigraph with n vertices and m edges.

31



• ~2

t1

2 2* A
A: B: a6

K 6

S3 3 b

b
3

Figure 3.5.

32



In the next section we will discuss at length the relationship between

the triconnected components algorithm and the Trahktenbrot repeated

decomposition described in the previous section. The equivalence of

these two theories can be grasped at an intuitive level by looking at

the relationship between two pairs of operations: merging and replacement

(Which are basically identical) and splitting a biconnected graph and

decomposing a TT network. The relationship between these last two

operations can be made clear by the following lemma:

Lem 34 Let N be a firmly connected TT network and M 1 a non trivial

proper subnetwork of N with boundary vertices x and y

(a) x, y is a separation pair of N

(b) There is at least one decomposition of N in which N1 is a

component.

Proof. [See Appendix C.] /

The output of the triccnected components algorithm will be useful

to us in a form called the Triconnected Components Graph (TCG) that is

constructed as follows:

(i) The TCG has a vertex for each triconnected component.

(ii) For each pair of virtual edges created by the same split operation,

there is an edge joining the vertices of the TCG corresponding to

the triconnected components that contain the virtual edge.

The TCG contains in a concise form all the information needed to

reconstruct a biconnected graph from its triconnected components. Figure 3.6

shows a biconnected multigraph, its triconnected components, and the TOG

derived from them.

I33



(D 4ý-

I
II

hh

k •

i

104 -3

0I'. ,® ' . ,'.• ,, I . '.

- H

f *F

Figure 3.6.

3I•



(a) The TCG of a bWoonnected multigraph Is,& tree.

(b) No vertex of a TCG corresponding to a bond (polygon) can be adjacent

to another vertex representing a band (polson).

Proof. [See Appendix C. 1

3.4 Parsing Two Termina.. Networks.

In this section, we explore two applications of the triconnected

components algorithm. We will show how the Triconnected Components G raph

of a Two Terminal network defines its Trahktenbrot repeated decm'osition

and also how the same Triconnected Components Graph can be viewed as

determining all possible parses of the network using the Universal

Replacement System defined in Chapter 2.

We have chosen to present this material in a semi-formal manner because

we think that this approach results in a more readable explanation of the

principles involved.

In order to understand how the TCG of a TT network describes its

Trahktenbrot repeated decomposition, consider the examle of Figures 3.7

and 3.8. Figure 3.7 shows a TT network N , its triconnected ccmponents

and the TCG derived from them, T . Let us consider T as a rooted tree,

with the root being A -- the vertex corresponding to the triconsected

component of N that includes the return edge.

Consider now the decomposition of N shown in Figure 3.8. The core

of the decomposition, NO , is the root of T , and the com€onente

0

4 35



1 C4

01

141

N - ,..-----o 3.-

36 ~



Ts
I I!

Tli I

It

13 14

2 B

N, 4 T,

N2

N2. ~ T2:

12

Figure 3.8.

37- .-



I

N 1 , N2 , N3 , are the graphs obtained by merging the triconnected

coonents of N that fall in the some subtree of the root: T2  •

In this way we have found a parallel decomposition of N , therefore

N i a p -network. Furthermore, N1 , N2 , and N3 cannot be p -networks

or we would have two adjacent bonds in the TCG of N which is not possible

according to Lama 3.5. Thus we conclude that the decomposition of N

shown in Figure 3.8 is the unique canonical parallel decomposition of N

postulated by Trahktenbrot's theorem.

This argument given for a particular TT network can be generalized

in an obvious way to show that the decomposition of an TT network obtained

as described above from its TCG is the unique canonical decomposition of

the TT network that Trahktenbrot's theorem mentions.

Returning to our example, all one has to do to complete the

Trahktenbrot repeated dercomposition of N is to apply, in a recursive

fashion, the process Just described to N1 , N2 , and N3  by using the

trees Tl , T2 , and T as TCG's. The result of this process on N1T2 3

is shown in Figure 3.9.

By now it should be obvious that given a TT network N and its TCG,

T , (.) it is trivia. to obtain the Trahktenbrot repeated decomposition

of N from T and (ii) that the set of TT networks resulting from the

Trahktenbi'ot decomposition of N is identical to the set of triconnected

comporents of N

We turn now to the relationship between the TCG of a TT network and

the process of r ducing the network to a double boni using the Untiversal

Replacement System defined earlier. Figure 3.10 shows an example of such

a reduction process. We will only consider reduction sequences (or parses)

3$



2

N1: 2. a'.:

C KI

2 i

Figure 3.9. The unique canonical series decomposition

of N1  obtained from T1

39



1 13

i13

11

113

Figure 3.10. Reduction of a TT network to a double bond

by series, parallel, and triconnected reductions.

140



that do not delete the return edge of the TT network. Thus the double

bond obtained as an end product consists of the return edge of the original

network plus another edge that arises from the reduction.

Any firmly connected 72 network can be reduced to a double bond by

series, parallel, and triconnected reductions. To prove this, note that

each type of triconnected component can be so reduced using only one type

of reduction: bonds by parallel reductions, pol3ygons by series reductions,

and triconnected graphs with at least four vertices by triconnected

reductio's. One can therefore perform the process shown in Figure 3.11

in any TT network. This process consists of reducing the TT network by

a series of steps, each step replacing the triconnected components of the

network that correspond to leaves of its TCG by a single edge. (The TCG

is once again considered as a rooted tree.) On each of these steps only

one type of reduction is involved.

It is in this way that the TCG of a TT network can be viewed as

describing how to parse the network using the Universal Replacement System.

There are nevertheless many ways of parsing a TT network and the TCG

only describes a few of them, as Figure 3.12 shows. In many applications

it is important to have a concise way of representing all the possible

parses of a TT network. This goal can be achieved by transforming the

TCG into a more detailed structure that we will call a decomposition tree

of the TT network. An example of a decomposition tree is shown in

Figure 3.13. To construct this tree, each vertex of the TCG has been

replaced by a "fan-like" graph as described by Figure 3.14'. These graphs

have a central vertex labelled " S ", "P or "T" depending on the type of

component, a vertex for each actual eee in the component, and a "twig"

.- fl. ..- ~----* . -1

aLi



I A1

Fiur - -.

II42



-- 10

131

t1 114 131
IsI

' 0!
• 4-1

II
121

13 1

15 ,1

Figure .12. A parse of the TT network of Figure 3. that
is not described by its TCG.

, 143tI



-- ---. T-W7- TI- .1,

2 
4

O3

4

ID

L0

t 1 1 ' 1 ""1 - 0 A:•• P " • ' - " " i ' - " " -A|

E 10

c d

Figure 3.13. A TT network, its tricannected componentap

its TCG anid its decomposition tree.

414



e I
C:

Z K.

I a

111b

0: b*0

ib

AJ

S/Figure 3.14. The fan-like graphs used to transform the TCG

into the decomposition tree in Figure 3,13.

B4

IL.



for each virtual edge. The decouposition tree is Coastracted by

"gluing" twiegs with the sme label.

Using the deqdmposition tree of a TT network we can describe all

possible ways of parsing it by interpreting the reduction rules of the

URS as operations on the decomposition tree in the following way:

-- A parallel reduction consists of replacing two leaves that are

children of a "P" node by a single leaf. If this operation results

in the " P" node having just one child, the "P" node is replaced

by its child.

-- A series reduction consists of replacing two leaves that are children

of an " S" node and that represent edges of the TT network that have

a common endpoint by a single leaf. If this operation results in the

"S" node having a single child, the " S" node is replaced by its Ii
child.

-- A triconnected reduction consists of replacing a "T " node whose

children are all leaves, together with all its children by a single

vertex.

As an example, Figure 3.15 shows the parse of Figure 3.12 represented

as operations on the decomposition tree of the TT network being parsed.

Every parse can be interpreted in this fashion, and therefore the i

decomposition tree is, as we claimed, a concise representation of all
I;

possible parses of a TT network using the URS.

The decomposition tree of a TT network as a rooted unordered tree

is unique because it is obtained in an unambiguous way from the set of

its triconnected components which is unique. It is important to realize

146

ii



.1 P

IP

12 1,

\13~

Figure 3.15. The parse of Figure 3.12 represented by operations

kP

S~on the decomposition tree.

1Ii7



however, that, in general, a decomosition tree does not uniquely

determine a TT network. In particular, a lot of information is lost

in nodes of the tree that re~resent triconnected graphs with more than

three vertices ("T T" nodes). The condition underlined in the description

of series reduction given earlier (about adjacency of edges) is another

exa:Wle of lost information as one goes from a TT network to its decomposition

tree. In the next section we will see that this adjacency Information can

be translated into a total order of the children of " S" nodes, and as a

result, how we can represent in a unique way those graphs whose

triconnected component set contains only polygons and bonds using

decomposition trees. Among other benefits, this property allows the

construction of the decomposition tree of such a TT network from any

parse of the network using the SPRS.

3.5 Two Terminal Series Parallel Networks.

We end -- is chapter on TT networks by studying briefly the class

of Two Terminal Series Parallel (TTSP) networks.

We are interested in this class of TT networks for two reasons.

The main reason Is that a class of directed multigraphs that is very

closely related to the class of TTSP networks plays an important role

in the algorithm to recognize General Series Parallel digraphs that we

will present in Chapter 5. In addition, TTSP networks are the most

commonl~y used and better studied class of 1T networks. By unifying some

of their most important properties around the concept of triconnected

decomposition, we not only provide a theory that is oriented towards the

design of efficient algorithms, but also show how most of the classical

•! • •1 f• I I I I I " I I I I II I IIT I -- 4 -



results about TTSP networks are related to the general theory of TT

network decomposition.

We start this section by defining the class of TTSP networks in

an unorthodox manmer. We then justify our choice of definition by,,

deriving from it the characterizations used by most authors to define

the same class. We end our discussion by exploring the possibility of

transforming TTSP networks into multidigraphs (by assigning directions

to their edges) in an unambiguous manner, and the most important

consequence of this possibility: the one-to-one correspondence between

TTSP networks and a modified version of the decomposition trees introduced

earlier.

We define TTSP networks in the following way:

Definition 3.1. A firmly connected TT network is Series Parallel if and

only if the set of its triconnected components contains only polygons

and bonds. M

In a discussion contained in the previous section we showed how any

TT network could be reduced to a double bond by series, parallel, and

triconnected reductions. In that discussion, each type of reduction

was used to transform each of the types of triconnected components (bonds,

polygons, and triconnected graphs with at least four vertices) into a single

edge. Because of our definition of TTSP networks, it should be intuitively

clear that no triconnected reduction needs to be used in the reduction of

a TTSP network. The following lemma is thus a direct consequence of

Definition 3.1 and the discussion on The reduction of TT networks given

in the previous section.

49 J



Lam .6. A TT network Is Series Parallel if and only if it m-an be

j reduced to a double bond by an appropriate sequence of series and

parallel reductions,

Proof. [See Apper-.,ý. '- C

Definition 3.1 Uuiately suggests a procedure to recognize TM"SP

networks by inspection of their triconnected components as follows:

Algorithm 3.1 [Recognition of TTSP networks].I
Input: A firmly connected TT network: N

output: "Yes" if N is TTSP, "No" otherwise.

Step 1: CocUmte the set, S , of triconnected componentc of N

Step 2: If S contains only polygons and/or bonds, answer "Yes",

otherwise answer "No". C3

This algorithm can be implemented (using Hopcroft and Tarjan's

algorithm to implement Step 1) to provide an answer in O(n+m) steps

for a TT network with n vertices and m edges.

it turns out that the charecterization given by l-emna 3.6 is suitable

to be used in an efficient recognition algorithm as follows:

Algorithm 3,2 [Recognition of TTSP networks].

Input: A firly connected TT network N

Output: "Yes" if N is TTSP, "No" otherwise.

Step 1: Repeatedly apply series and parallel reductions to N that

do not delete its return edge.

Step 2: If the multigraph resulting from Step 1 is a double bond,

answer "Yes". Otherwise answer "No". -

50



The correctness of this algorithm follows imediately from emma 3.6

and the Church - Rosser property of the Series Parallel Replacement Systemk,

but its efficiency depends heavily on how Step 1 is implemented. The

problem of implementing Step 1 to run in 0(n+m) steps for a multigraph

with n vertices and m edges is suggested as an exercise by Aho,

Hopecroft, and L1llman in [AMO 72], but unfortunately they do not provide a

solution. In the next chapter we will discuss at length the same problem

for directed multigraphs. The solution that we will then present can

be trivially modified to work on undirected multigramphs, therefore we

abandon the problem for the moment.

Our definition of the class of TTSP networks is different from the

one used by most authors. The more standard definition, and the one that

Immediately suggests the applications of TTSP networks, is based on the

following characterization:

Lemma 3.7. A firmly connected TT network is Series Parallel if and

only if:

(i) it is a double bond, a triple bond, or a triangle,

or (ii) it has a deccoposition whose core is a triple bond or a

triangle and in which all the components (there are at most

two) are TTSP networks.

Proof. [See Appendix C.]

The only way in which the definition given by this characterization

differs from the standard definition used by most authors is in the

presence of the return edge. We introduced the return edge because it

:5



made the concepts of firm conuoctivity and biconnectivity equivalent

thus simplifying the t.osk of relating the theory of TT network decomposition

to the decomposition of a biconnected multigraph into triconnected

components.

Figure 3.16 shows in a graphic way the relationship between

decompositions whose cores are triangles or triple bonds and the familiar

operations of coniecting two electrical networks in series or in parallel

(for more details, see the discussion that follows Definition 4.1 in the

next chapter). Lenna 3.7 can thus be interpreted as defining TTSP

networks to be the diagrams of all the electrical networks that can be

constructed by series and parallel connection of suitable elements like

resistors or transistors.

Another common characterization of TTSP networks due to Duffin

[DUF 65] that can be easily derived from our definition is the following:

Lemma 3,8. A firnmly connected TT network is Series Parallel if and

only if it does not contain K4 (the complete graph on 7our vertices)

as an embedded subgraph.

Proof. (See Appendix C.] 0

This characterization is an example of a commonly used method of

describing a class of graphs by identifying a subgraph that the members

of the class do not contain but every other graph in a wider universe

contains. Characterizations of this type are normally called forbidden

subgraph characterizations and perhaps the most famous of them is

M~ratowskii's characterization of planar graphs (see [HAR 71)). We will

provide forbidden subgraph characterizations for some of the classes of

52



N2

.12

Decomposition with a triple bond as core as parallel connection.

NJ N
t2

Decomposition with a triangle as core as series connection.

Figure 3.16

S5 53



digraphs that we will study,. and -- whenever possible -- m modify

the recognition algorithms for these classes so that when they give

* a "No" answer they exhibit the forbidden subgraph of their input.

We turn now to two problems that are interrelated: assigning

directions to the edges of a TTSP network and devising a unique wvy

of representing any TTSP network by a decomposition tree.

Our procedure to assign directions to the edges of a TTSP network

is based on the method of Figure 3.17 to assign directions to the edges

of a polygon or bond. That figure shows a polygon and a bond in which

exactly one edge has been assigned a direction. We will assign to the

remaining edges the directions shown in Figure 3.18: for a bond the

directions are such that all edges go in the same directionp and for a

polygon they are such that tho resulting digraph has a single source

and a single sink corresponding to the eadpoints of the edge that had

a direction originally. Clearly this method can be used to assign

directions to the edges of any bond or polygon given a direction for

one of their edges.

We now use this method recursively to assign directions to all

the edges of a TTSP network using its Triconnected Component Graph as

shown in Figure 3.19. We proceed by assigning arbitrarily a direction

to the return edge of the TTSP network, then using the method of Figures

3.17 and 3.18 to assign directions to all the edges of the triconnected

component that contains the return edge (which is the root of the TCG

of the network). In this way we assign directions to the virtual edges

that this component shares with several others, and we can use these

directions to continue the process going from the root of the TCG towards

54



Figure 5.17. A polygon and a bond each havinga directed edge.

4 4

II

61

Figu~re 3.18. Directions implied on the remainin~g edges of the

polygon and bond of Figure 3.17 by their directed

edges,

55

-I



S I ... C'...•.T

7 .................................... I .... .°..... I..

At

A

B:

C.3

Figure 3.19. Process of assigning directions to the edges of a TTSp

network using the TCG and the schema of Figures 3.17
and 3 . 18.

56



the leaves. Because the TCG is a tree, this process is bigiaous and

the only arbitrary decision that we have made is the direction chosen

for the return edge. Since only two directions can be chosen for that

edg.e, and choosing oe over the other only reverses all the directions

asaigned, we have found s quasi-unique way of assigning directions to

the edges of a TTSP network. Note that this method relies heavily on

the absence of triconnected graphs with more than three vertices from

the triconnected component set of the TT network, and is only applicable

to TTSP networks. We should also mention that our choice of the return

edge to start the process is arbitrary, and any other edge could have

been chosen; we chose the return edge to make the discussion similar

to the reduction process explained earlier.

Let us n"'w explain how these directions allow the unique representation

of a TTSP ne'..work by a modified decomposition tree. The key is in the

process of translatirg the triconnected components into "fan-like" graphs I
as was described in Figure 3.14. For a general TT network these

"fan-like" graphs couldn't represent either triconnectod graphs with more

than three vertices or polygons uniquely. For TTSP networks we only have

to worry about polygons, and in this case the problem was that adJaceacy

information was not captured in the fan-like graph as shown in Figure 3.20.

The directions of the edges that we described earlier solve this problem

by defining a natural total order for all but one of the edges of any

polygon, as shown in Figure 3.21. With this totui order, a polygon can

be uniquely described by an ordered "fan-like" graph as shown also in

Figure 3,21. Thus, by considering the children of "SI" nodes as an

ordered set, we can construct a decomposition tree for any TTSP network

that uniquely represents it.

57



-. .. " -7 - .-. . ..---- - -.-- - - - - --- -- °•... .• ' • -. •- • •_:• , -

A.0

I Ia

Figure 3.20. Two polygons that are different and can be represented

by the same fan-like graph.

Total order induced by directions: 1, b, c

Not ordered: a

order

b
I

~~(root)

Figure 3.21. Total order induced by directions on the edges and how

to translate it into a unique fan-like graph to

represent the polygon.

58



Figure 3.22 shOWS this unique deoalosition tree for the TTSP

network with directed edges of Figure 3.19. It is imortant to remembr

that these deccoposition trees represent a unique TTSP network only if

we consider the children of " S" nodes as an ordered set, and that due

to the initial arbitrariness in the process of assigning directions to

the edges of a TTSP network, two such trees are possible (one being

obtained frcm the other by reversing the orders of all the set of children

of S nodes).

59

II

I,__

m il



d A

Io

B: ... . \. 0

Figure 3.22. Unique decomposition tree obtained from the TCG of

a TTSP network end a set of directions assigned to
its edges by the process described in Figure 3.19.

I

S 4 S

.,1



Chapter L. Two Teminal Series Parallel Multidigraphs.

J4.1 Tntroduction.

This chapter con be considered as a natural continuation of the last

section of the previous chapter. In effect, the TTSP multidigraphs that

occupy us here are nothing more than TTSP networks whose edges have been

assigned directions in a specific manner (described earlier) and whose

return edges have been removed.

The reason why the material on TTSP networks has not been included

in the present chapter is one of emphasis. In the last chapter we were

concerned with the relation between the theories of TT network decomposition

and triconnected decomposition, and. in the last section of that chapter

we wanted to show how the basic properties of TTSP networks could be derived

from the general theory. In this chapter we study TTSP multidigraphs

because we will use them in the recognition algorithm for the class of

General Series Parallel digraphs that we will present in the next chapter.

Due to this application, the emphasis throughout tnis chapter will be on

the probler of recognizing the class of TTSP multidigraphs and some

related problems such as computing the decomposition tree of a TTSP

multidigraph or exhibiting the forbidden subgraph of a multidigraph that

is not TTSP.

Of the results presented in the last section of the previous chapter

only two will be used here. One is the characterization of TTSP netowrks

as being reducible by series and parallel reductions. The other is the

existence of a decomposition tree that uniquely represents a TTSP network

when directions are assigned to its edges in the manner described earlier.

r61



This last fact will be by far the more important, and we wil use it

indirectly not only in this chapter but in the rest of this work.

* The chapter is organized into five sections (not including the

introduction). 'Ahe first is dedicated to a precise definition of the
class of TTSP multidigraphs and its relationship to the class of TTSP

networks. The next three sectionb discuss in detail an efficient algorithm

for the recognition of TTSP multidi~raphs and explain how to modify it

so that it (i) returns the deconposition tree of its input whenever it

gives a "Yes" answer and it (ii) exhibits a forbidden subgraph on its

input whenever it gives a "No" answer. Finally we end the cLapter with

a section that discusses the use of the unique deccpositicn trees of

TTSP multidigraphs to resolve isumorphisn questions.

4.2 Definition and Decomposition Trees. I
The class of TTSP multidigraphs (named in this way because all its .4

meubers have a single source and a single sink) is defined as follows: I
D-'finition 4.1. [Two Terminal Series Parallel multidigraphs].

(r) A digraph consisting of two vertices joined by a single edge is TTSP.

(I If GI and G2 are TTSP multidigraphs so is the multidigraph

obtained by either of the following operations:

Two Terminal Parallel composition: identify the source of G1

with the source of G2 and the sink of GI with the sink

of G2

Two Terminal Series composition: identify the source of G2

with the sink of GI •

62



Figure 4.1 I.llustrates the operatioas of Two Terminal Parallel and

Two Terinal Series ow~osition and Figure 4.2 shavs the construction of

a TTSP multidigrah using these operations. The aingle source and single

sink of a TTSP multidigra;h are called itp terminals.

One brief look at Figures 3.16 and 4.1 should convince the reader

that the classes of TTSP networks and TTSP multidigraphs are as closely

related as their names seem to indicave. The precise relationship is

given by the following lemna.

Lemma 4.i.

(a) Let G be a TTSP muitidigraph. The TT network obtained by adding

a return edge (joining the terminals of G ) to the undirected

version of G is a TTSP network.

(b) Let N be a TTSP network. The multidigraph obtained by assigning

directions to the edges of N as described earlier and deleting

the return edge is a TTSP multidigraph.

Proof. (See Appendix C.] 0

Givern this relationship it is clear that we could have chosen any of

the characterizations of TTSP networks given in the previous chapters and

use the corresponding version as our definition of TTSP multidigraphs.

We chose the recursive definition given because of the resulting ease

in proving properties of these multidigraphs using induction. An example

of such a property that we will use often (implicitly most of the time)

is the following:

63



source sink source sink

Ii

I

source sink

Ii

Two Terminal Parallel ccmrposition

source 010 sink

Two Terminal Series composition

Figure 4.1. The operations used in Defintion 4.1.

64



I* I

N-LLY

, X/2

Figure 4.2. Construction of a TTBP multidigraph by Two Terminal
Series and Two Terminal Parallel compositions.

65



m !.2. TTSP multidigephs are &cyclic.

Proof. (See A.ppendix C. ) 1 3

Let us now consider the problem of representing any TTSP multidigraph

by a decomposition tree in a unique way.

The method that we will describe is based on the discussion given in

the last section of the previous chapter and is illustrated in Figure 4.3.

We start by constructing a TTSP network from the TTSP multidigraphs by

ignoring the directions of the edges and adding a return edge Joining the

terminals. Then we obtain the triconnected components and the TCG of

this TTSP network. We then assign directions to all the edges of tbe

triconnected components by asmuning that the return edge goes from source

to sink of the TTSP multidigraph and using the method described in the
previous section. Finally we transform the TCG into a decomposition tree

using these directions also by the method described earlier except that

no leaf is added for the return edge since it was artificially added to

the original TTSP multidigraph.

We will provide no formal proof of the fact that the tree obtained

by this process uniquely represents the initial TTSP multidigraph, but

it follows from the uniqueness of the triconnected components and the

unique way of assigning directions to the edges of these components that

we have employed. The only additional fact that one needs to worry about

is to show that the directions assigned to the actual edges of the

triconnected components coincide with the directions that these edges

had in the original TTSP multidigraph. The proof of this fact is implicit

in the proof of Lemma 4.1

I

66

_____ _ __ -- A



A: b Cr-./

A~~ ___

2 3

ii

F _.

-i

Figure 4.3. How to obtain the unique decomposition tree that

represents a TTSP multidigraph.

67



In the process just described, a certain uuout of ocaQplcation wms

added by the addition and posterior deletion of the return edge and one

may wonder whether this ccuplication was necessary. The return edge plays

a very convenient role in the theory of TT network decomposition by making

the concepts of firm connectivity and biconnectivity equivalent. On the

other hand, when dealing with TTSP multidigraphs the exigence of having

an edge joining the terminals is not very reasonable. It is for this

reason that we consider the complications that the brief appearance of

the return edge an this chapter causes a lesser evil. In any case, the

return edge is not used in the next two chapters so we can safely forget

about it for the moment.

The construction of a TTSP multidigraphs by Two Terminal Series and

Two Terminal Parallel compositions can be very naturally represented by

a binary tree as shown in Figure 4.4. In these binary decomposition

tree as we shall call them, the leaves represent edges of the TTSP

multidigraph and the internal vertices are labelled " S" or " P f to

indicate the Two Terminal Series or Two Terminal Parallel composition

of the graphs represented by the subtrees of the node. The order of the

children of a node labelled " P " is irrelevant because of the symetry

of the Two Terminal Parallel composition, but the children of "S " nodes

* are considered ordered with the left subtree representing the multidigraph

I-K that corresponds to G1 in Definition 4.1.

Two non-isomorphic binary decomposition trees may represent the same

TTSP multidigraph as Figure 4.5 shows. This multiplicity is due to the

associativity of consecutive Two Terminal Series and Two Terminal Parallel

compositions. In spite of this nrltiplicity there is a very sixlel way of

68

• +,++m+--,,, ... .... ••-.



N3 
_-ap

- - 1p•p ____ !• ____ .mA~~

2 VMS go$

Ii
.I2

7i

I. I

3 4

o2

69

pA



I

r

2 34

s ~1 2 * 6

4,

IiI

3 P

it p

Figure 4.5. A TfSP and several binary decomposition trees
that describe its construction.

-17

• 70



obtaining the unique de~caposition tree of a TTOP multidigraph from ny

binary decomposition tree. = one has to do is "shrink" the edges of

j the binary decomposition tree that join internal nodes that have the

same label thus identifying their endpoints. This process is illustrated I
in Figu~re 14.6.

No formal proof of this relationship is needed if one interprets the

unitque decomposition trees in much the same way as binary decomposition

trees were interpreted: internal "S" ("P ") nodes indicate the Two

Terminal Series (Paraflel) composition of the TTSP multidigraphs represented

by the subtrees of the nodes. The only difference is that now a single

composition operates on more than a multidigraph (see Figure 4.7). Then

it is easy to see how the binary decomposition trees can be obtained from

the unique decomposition tree by "associating" the composition operations

so each one takes only two arguments.

The above discussion has shown the basic equivalence between binary

decomposition trees and the unique decamposition trees (obtained from the

triconnected components) for TTSP multidigraphs. For this reason we will

use both interchangeably in the rest of this chapter and the following one.

Binary decomposition trees are a little more intuitive and easier to

manipulate in algorithms# while the uniqueness of the other type of treer

will make them very useful to solve isomorphism problems. The reader should

keep in mind therefore that when given a decomposition tree of one type

with n nodes one can transform it into a decomposition tree of the other

type in O(n) steps by a trivial process.

71

' i ' l • H HII Hi •'m n rmu • p m • m l i Hi I i P•I ii



2 2P

Figure 4.6. The unique decomposition tree obtained from my of

the binary trees of Figure 4.5 by "shrinking" the

edges that Join internal nodes with the same label.

72



•:-•:'-T M-T .... 9-5 -'M .. .-- I,.- -T-

3

i,} s

I I

Figu~re 41.7. The unique decomposition tree of a TTSP multidigraph
interpreted as describing the construction of the

multidigraph using Two Terminal Serier, and Two Terminal

Parallel cupositions that take more than two arguments.

73

k - .. .



,.3 Reognoition of Two Trminal Series Parallel M.ltidigph,.

:We cous:der now the :roble z of reco:zin the class of TT8P

multidigraphs, that is, given a multidigraph, G, deciding in an

efficient manner whether G is TTSP or not.

In the previous chapter we considered briefly the problem of

recognizing the class of TTSP networks and outlined two methods to solve

the problem. One method was based on the triconnected components algorithm

and the other on the Series Parallel Replacement System, and either one

can be adapted to work for TTSP multidigraphs. Nevertheless we will only

consider in detail the method based on the replacement system because it

results in a simpler algorithm. j
The characterization of TTSP multidigraphs that we will use

corresponds to the characterization of TTSP networks given by TLMMA 3,8i

Leama 4.3. A multidigraph is TTSP if and only if it can be reduced to

a single edge by an appropriate sequence of Series and Parallel reductions.

Proof. [See Appendix C.) C

Using this characterization we can test whether a multidigraph is

TTSP by the following method:

Algorithm 4.1 (Recognition of Two Terminal Series Parallel multidigraphs]:

Input: Any multidigraph G

Output: "Yes" if G is TTSP, "No" otherwise.

Step 1: Reduce G by series and parallel reductions until

obtaining an irreducible multidigraph Gk

Step 2: If Gk consists of just two vertices joined by an

edge answer "Yes", otherwise answer "No". C

74



The correctness of this method follows i±mediately frcm the

Church- Rosser property of the Directed Series Parallel Replacement

System (Theorem 2.3) that guarantees that Gk is unique, and from

Lemma 4.3 that guarantees that will consist of a single edge if

and only if G is TTSP.

We can also place a bound on the nunber of reductions that we will

have to perform: because each reduction decreases by one the number of

edges of the multigraph, no more than m reductions can be applied to

a multidigraph with m edges. Unfortuantely this is not enough to

provide a good bound on the running time of Algorithm 4.1 because it

depends heavily on how we search for the applicable reductions. The

rest of this section is dedicated to the description of a method of

implementing Step 1 to run in O(n+m) steps on a multidieraph with

m edges and n vertices.

We represent the input multidigraph by records of two types: each

record of one type represents one of the vertices and each record of the

second type represents an edge of the multidigraph. The record that

represents an edge (uv) contains pointers to the records that

represent u and v and a flag that tells whether the edge is still

part of the multidigraph or has been deleted by a reduction. Associated

with the rec6rd that represents a vertex, v , are two lists of pointers

to edges that are incident to v . One of these "incidence lists",

called the in-list contains initially pointers to all the edges that

enter v , while the other, called the out-list contains pointers to

all the edges that leave v . In addition the record contains a flag

that tells whether the vertex has been removed from the multidigraph by

a series reduction or is still part of it.

75



ijnuatiafoH..l st T....al."thls lst ccmitins allmle veriies eiceI

The basic data structure is a list of vertices that we call the

imeatisfied-list. Iftitially this list cantains all the vertices except

the source and the sink; in general, a vertex will be on this list only

if we have to do some work on it.

We proceed by removing any vertex, u , from the unsatisfied list,

"cleaning up" its In-list and out-list (a process described below) and

then attempting to remove u from the multidigraph by a series
reduoti=.

This process is repeated until the unsatistie list becomes empty,,

at which point we can provide an answer by testing whether all the vertices

except the so.urce and the sink have been deleted from the multidigraph and

whether all tie edges remaining go from source to sink.

The '.;leaning up" of an incidence list involves the repeated application

of the following rules to the first two elements of the list.

(i) if either element points to an edge that has been removed, delete

the element;

(ii) otherwise if both print to edges that have the samne endpoints we

carry out, a parallel reduction involving these edges.

When these rules can no longer be applied, the first two elements

of the list point to two edges that have different endpoints and that both

_x+er or bo~h leave the vertex being processed, and we end the process.

A parallel reduction deletes the two edges involved from the

multidigraph and adds a ziew edge to it with the same endpoints and

* directions as the deleted edges. A series reduction of edges

* (u•,V) (vW) deletes both edges and adds an eelge (u,w) to the

76



- --------------

multidigraph. In additioi each endpoint of the new edge -- u and w --

is placed on the unsatisfied list unless it is the source or the sink or

it is already on the list.

The correctness of this impiementation can be proved by the following

argument.

If the algorithm gives a "Yes" answer it is because we have managed

to transform the input multidigraph into a set of parallel edges joining

the source and the sink; this multidigraph can trivially be reduced to a

single edge and our answer is correct.

If the algorithm gives a "No" answer we know that (independent of

any parallel reductions we may execute) every vertex different from the

,. source and the sink that has not been eliminated cannot be removed unless

we first remove some v"r -ertex. Clearly this implies that no additional

K vertex can be eliminated and our answer is once again correct.

Let us now examine the number of steps that Algorithm 4.1 implemented

in the way we just described will take when given a multidigrapb witl; m

edges and n vertices as input.

Initially we will have 2m pointers to edges because a pointer to

any edge (u,v) will appear in the out-list of u and the in-list of v

Series and Parallel reductions add new edge3 but each decreases the total

number of edges of the multidigraph by one because they delete two edges

and add one. Thus, no more than m-l new edges will be added since no

more than m-1 reductions can be carried out before we run out of edges.

Therefore we will deal with at most 2m+ 2(m-l) pointers to edges

thrcughout the running of our algorithm.

77



The unsatisfied list contains initially n-2 elements and vertices are

added to the list only when a series reduction is performed. Because

series reductions eliminate a vertex, no more than n-2 of them could

be performed and thus no more than 2(n-2) additions will be performed

to the unsatisfied list. Therefore, since every time we process a vertex

we delete it from the unsatisfied list, we will process at most 3(n-2)

vertices before the unsatisfied list becomes empty.

The processing of a vertex takes a constant amount of time plus the

effort needed to "clean up" its adjacency lists. The "cleaning up" takes

a constant number of steps for each pointer deleted plus a constant

n•.nber of steps to decide that the "clean up" has ended. Since we have

O(m) total pointers to edges in all lists, and we only process O(n)

vertices we will spead at most O(n) + O(m) steps in the "clean up" part

cf the algorithm.

We therefore conclude that the algorithm will provide an answer in

0(n+m) steps.

4.4 Obtaining the Decomposition Tree of a TTSP MWltidigraph.

The recognition algorithm that we have just presented is unsatisfactory

in an important aspect. In many cases it is not only important to decide

whether a multidigraph G is TTSP or not, but also to compute the

decomposition tree of G in the case in which it is TTSP. In this

section we will describe a simple modification of the recognition

algorithm described in the previous section to output a binary decomposition

tree of its input whenever it gives a "Yes" answer.

78



The method that we will describe could be used to produce either the

unique decomposition tree or a binary deccmposition tree of any TTSP

multidigraph. We have chosen to present how to obtain a binary

deccopohition tree because It is much simpler to describe, and -- as we

saw in the second section of this chapter -- it is a trivial operation to

obtain the unique decomposition tree from any binary decomposition tree.

The method works by associating a binary decomposition tree with each

of the edges of the multidigraph that is being reduced. Initially every

edge is associated with a trivial binary decomposition tree consisting

of a single vertex. As new edges are introduced by series or parallel

reductions, the binary decomposition trees that we associate with them

are computed from the binary decomposition trees associated with the

edges being deleted using the rules shown in Figure 4.8. We claim that

if a multigraph G is reduced to a single edge, e , the binary decomposition A

tree associated with e -- if computed according to these rules -- is a

binary decomposition tree of the TTSP multidigraph G

An example of this process is shown in Figure 4.9.

We will not provide a formal proof of the correctness of the procedure

just described. Instead we will describe in an informal way the reasons

why this method produces the results claimed.
Notice that every edge, el , introduced during the process of

reducing a multidigraph G by series and parallel reductions, replaces

a certain subgraph G' of G . Because we have managed to transform

G' into a single edge e' by series and parallel reductions, G' has

to be a TTSP multidigraph. Our method works by associating with each new

edge a binary decomposition tree of the subgraph of the input that was

79



IT

I'

Taa

Fi18we 4.8. Ccauuting the binary tree associated with a
new edge frcm the binary trees associated
with the edges it re;4aces.

so



teI- -41

* I

*3 j

1 2

: I

Figure 4.9. Computing the decomposition

tree from the reduction process.

811



replaced by that edge. Following this argument one step further, the

binary decomposition tree associated with the only edge remaining after

the complete reduction of a TTSP multidigra;h 0 , has to be a binary.

decomposition tree for G . This argument can be converted into an

inductive proof without major difficulties, but in doing so we feel that

the simple principle on which the method is based gets lost in the details

of the proof.

Let us end this section by discussing the effect that the additional

computation needed to implement this method has on the efficiency of the

recognition procedure for the class of TTSP multidigraphs described in

the previous section.

Clearly the initial association of trivial binary decomposition trees

with each edge can be performed in a constant number of steps for each

edge. Furthermore any reasonable implementation of the rules of Figure 4.8

would not compute the binary decomposition trees associated with new edges

from scratch so to speak, but would rather combine the binary decomposition

trees associated with the edges being deleted. In this manner each new

binary decomposition tree can be computed in a constant number of steps.

Because we compute a new binary decomposition tree for each series or

parallel reduction executed, and at most m-i such reductions are

performed when we reduce a multidigraph with m edges, no more than

0(m) steps are involved in the computation of the binary decomposition

tree and the recognition algorithm will give an answer in O(n+m) steps

for a multidigraph with n vertices and m edges.

82



4.5 Exhibtng the Forbidden SubjErph.

The class of TTSP multidigraphs has a simple forbidden subgraph

characterization. This characterization is very similar to Duffin's

characterization of TTSP networks (Tena 3.10) and could be derived

from it -- although we will not do so.

Le .4. .An acyclic multidigraph with a single source and a single

sink is TTSP if and only if it does not contain the "Wheatstone bridge"

(see Figure 4.10) as an embedded subgraph. 0

That TTSP multidigraphs do not contain the Wheatstone bridge as an

embedded subgraph can be proved easily by inductioni, showing that the

operations of Two Terminal Series and Two Terminal Parallel composition

(used to define the class of TTSP multidigraphs) cannot create an embedded

I Wheatstone bridge by connecting two multidigraphs that do not contain an

embedded Wheatstone bridge. In the remainder of this section we will

provide an indirect proof of the other half of the above lenma by showing
I how one can exhibit the forbidden subgraph every time that the reco~gnition

procedure- gives a "No" answer when given a multidigraph that is acyclic

and has a eingle source and a single sink.

Before proceeding with the proof, let us comment on the requirements

of Lemma 4.14: the multidigraph mist be acyclic and it must have a single

source and & single sink. Figure 4.12 shows why these conditions are not

superfluous by displaying two graphs -- each violating one of the

conditions -- that are irreducible by series and parallel reductions,

do not contain an embedded Wheatstone bridge and are obviously not TTSP.

83 I



I RO

(b)

b

<>

Figure 4.10. (a) The Wheatstone bridge.

(b) A multidigraph contains the Wheatstone bridge

as an embedded subgrah if and only if it

contains this pattern, where a, b, c, d,

and e are disjoint paths.

84

j 8U



(b)
by seie an paale reutos are

I.(b) 
.- *

iI

byt Tsere and doa~le neductain, anembde

Whetstnebridge.

i L- 285
S-- • -1r.



Let 0 be a. mialtidigraph that is not TT8P, mand let GE be the

mu~ltidigra~ph Into which G is transformed by series and parallel

reductions by our recognition procedure before it decides that no more I
vertices of GE can be deleted and gives a "No" answer. The miltidigraph

has three important properties: (I) it is an embedded subgrqih

of G , (ii) it is acyollo if and only if G is acyclic, and

(iii) it has the same number of sources and sinks as G . These

properties follow directly from the fact that GE was obtained from

G by series and parallel reductions.

Therefore, by counting sources and sinks of GE and determining

whether it contains any cycles we can -- by Lemma 4.4 -- decide whether

GE contains an embedded Wheatstone bridge or not. Because the embedded

subgraph is a transitive feature, (that is if G2  is an embedded subgraph

of G, and G, is an embedded subgraph of G0 , G2 is an embedded

subgraph of GO ) if GE contains an embedded Wheatstone bridge, so

does G . Furthermore, since GE was obtained from G by series and

parallel reductions, the four vertices of an embedded Wheatstone bridge

of GE will be the four vertices of another embedded Wheatstone bridge

of G . Therefore the problem of exhibiting an embedded Wheatstone bridge

of G can be reduced to the same problem on GE .

Because GE was obtained as an endproduct of Algorithm 4.1 running

on input G we know that no vertex of G can be deleted by a series
GE

reduction until some other vertex is deleted first. In other words, each

vertex of GE except its source and its sink has (i) either two distinct

successors or (ii) two distinct predecessors or (iii) both. Let us

86
I



call a vertex with two distinct predecessors a bran•ch-in vertex and a

vertex with two distinct successors a bronh-out vertex. The following

leua is the basis of the procedure that we will describe.

( Lanma 4.5. There is a branch-in vertsx of G. that is a successor of

a branch-out vertex.

Proof. [See Appendix C.] .

0"ir procedure can be described as follows:

We start by finding the pattern of Figure 1.12 -- which must be

present according to Lemma 4.5 -- by examining each vertex of G.I Once this pattern has been found we use four depth first traversals to

find the paths labelled a , b , c , and d in Figure 4.13. These

paths have been drawn as if they were disjoint, but in general we
I

wouldn't be so lucky and the paths would have common vertices. We

then find vertices u and v such that u is the last vertex of

L path a which is also on b , and v is the first vertex of c which

I is also on d.

The new situation is depicted in Figure 4.14 where we know that:

(i) a' and b' are disjoint because of our choice of u

(ii) c' and d' are disjoint because of our choice of v .

(iii) a' and c, b' and c' , ard b' and d are pairwise

disjoint or otherwise GE would contain a cycle.

There are only two cases to consider: that a' and d' are also

disjoint or that a' and d' have at least a common vertex. In the

first case we have found an embedded Wheatstone bridge and we are done.

87



Figure 4.12. A branch-in vertex (3) that is a successor of

a branch-out vertex (2).

4

source sink

I

Figure 4.13 i
I

1*

b" 4

Figure 4.14

88



In the second case we find a vertex w such that it is the first vertex on a'

S, that is also on d' . If we call a" the section of path a' between u

and w , a"' the rest of path a' , and d" the section of path d'

between vertex 4 and vertex w we have the situation depicted in

Figure 4.15 in which all the paths are pairwise disjoint and we have

once again identified the embedded Wheatstone bridge.

Let us say a few 'lords about the efficiency of the method Just

described. We can decide whither GE contains an embedded Wheatstone

bridge by counting sources and sinks and by a depth first search to

determine whether it contains any cycle ([TAR 721). In the rest of

the process we need only to find paths between two given vertices, and to

find the first (last) vertex of a path that does not (does) belong to another.

2?! ~Clearly each of these operations can be performed in 0(nE~E

nE+ Yi• steps (where nE is the number of vertices and mE the number of edges

of GE ) by depth-first traversal. Since we need to perform only a

constant number of these operations, we csn exhibit the embedded Wheatstone

bridge without worsening the asymptotic behaviour of the recognition

procedure for the class of TTSP multidigraphs presented earlier.
I

4.6 Isomorphism of Two Terminal Series Parallel Hultidigraphs.

No algorithm is known to resolve the question of whether two graphs

with n vertices are isomorphic in a number of steps that grows as a

polynomial of n . Nevertheless, efficient algorithms are known for

several special cases. Particulary interesting to us is an algorithm

that determines whether two rooted trees with n vertices are isomorphic

89



.-- 1

2"

I9
Figure 4~.15

90



in O(n) steps (see Sxwuple 3.2 in [AHO 76]), because It can be used

to decide the isomorphism of TT•P multildigraphs.

We know that a TTSP multidigraph can be represented by a unique

decomposition tree and that we can obtain this tree in O(n+m) steps for

a multidigraph with n vertices and m edges. We also know that the

decomposition trees are somewhat special in that the children of " S"

nodes are an ordered set while the children of "P " nodes are not ordered.

The tree isomorphism algorithm given by Aho, Hopcroft., and 1fliman

works for unordered rooted trees so it cannot be used immediately to

resolve the isomorphism of decomposition trees. This algorithm works by

4 10processing the vertices of the trees being tested in levels -- each level

contains all the vertices of a tree that are at a fixed distance from

the root. The level that contains the vertices farthest from the root is

-p processed first, and then the algorithm works its way towards the root

level by level. At each level the algorithm checks that the subtree

rooted at each vertex of that level on one of the trees is isomorphic to

some subtree rooted at a vertex at the same level on the other tree. The

algorithm checks this by assigning a label to each vertex that is

cinmputed from the labels of its children and implicitly imposing an order

on this set of children by sorting their labels before computing the

label of their parent.

The algorithm can be modified so that the label of a vertex whose

children are ordered is computed using this order instead of sorting the

children by their labels. In this way the algorithm can be used to solve

the isomorphism of rooted ordered trees or of trees with mixed nodes like

our decomposition trees.

91



- - *-. - - ~- - .-.- ,-~

$ _ _ _ __ _

We can therefore determine whether two T'TSP multidigraehs with n

vertices and m edges are isomorphic in O(n+m) steps using the method

Just outlined.

A problem much harder than isamorphism is the subgraph isamorphism

problem, which consists in determining whether a graph G1 is isomorphic

to some subgraph of another graph G • Clearly, solving this problem

implies having solved the isomorphism problem, but having a polynomial

algorithm to solve the isomorphism problem does not help much in designing

a polynomial algorithm for the subgraph isomorphism problem. The subgraph

isomorphism problem is known to be NP-complete (see Exercise 10.9 of

(AHO 76]).

Once again an efficient algorithm is known to solve the problem for

trees (see [MAT 78] and [DRY 77]), so the question arises of whether we

can use this algorithm to determine whether a TTSP multidigraph is

isomorphic to a subgraph of another by using their unique decomposition

trees.

Unfortunately the matter is not as simple as for the isomorphism

problem. Figure 4.16 illustrates the problem. The graph G1 depicted

there is isomorphic to a subgraph of G , but the decomposition tree of

G is not isomorphic to any subtree of the decomposition tree of G

Even worse, the decomposition tree of G0 is rot an embedded subtree of

the decomposition tree of G . Whether the decomposition trees can be

used to design an efficient algorithm for the subgraph isomorphis problem

for TTSP multidigraphs remains thus an open question.

92
! - *.!*~* -- -



I T,

3I: T2-

I P

Figure 4.16. Two TTS±P multidigraphs and their decomposition

trees. G1 is isomorphic to a vubgraph of G2

but T1 is not isomorphic to any subgraph of T2

93



Chapter 5 General Series Parallel. Digraphsa.

S~ 5.1 Introduction.

This section is devoted to the study of the class of General Series

Parall1el (GSP) digraphs.

This class of digraphs was introduced by Lawler to represent sets

of constraints between tasks in scheduling problems. For a number

of problems of this kind -- acme of which are known to be liP-complete

for arbitrary constraints -- one can design algorithms that find an

optimal schedule for n tasks in O(n log n) steps when the constraints

among the tasks form a GSP digraph by taking advantage of the relatively

simple recursive structure of these digraphs. (See (LAW 78], (MCM 77],

[SID 76].) All these efficient algorithms use the structure of the

constraints to find the solution of a large problem by solving several

trivial problems of the same type and then combining the solutions to the

trivial problems into a solution for the large problem.

Because many of these optimal scheduling problems have practical

applications and because the constraints represented by GSP digraphs

arise naturally, it is important to be able to determine efficiently

whether a given digraph is GSP, and if it is, to be able to describe its

structure in a manner that can be used in the "divide wad conquer" strategy

used by the efficient algorithms describrd above. Consequently, the main

goal of this chapter is to present an algorithm to perform this recognition

task in O(n+m) steps for a digraph with n vertices and m edges.

The remainder of this cba-n+tc is organized into five sections. In

the first of them (Section 5.2) we provide a formal definition of the class

94



-.-- --- ' • •-. •- • - - ., • •- -j

of GSP digraphs and explore its relationship with the class of TTSP

multidigrphe studied in the previous chapter. (This relationship is

the basis of another application of GSP digraphs: to the design of

hardware specification languages [SMI 781.) The next two sections contain

the detailed description of the GSP recognition procedure: in Section 5.3

we describe how to recognize the subset of GSP digraphs that contain no

redundant edges, and in Section 5.3 we explain how recognizing this set

of minimal digraphs helps us to recognize the class of GSP digraphs.

Section 5.5 introduces a forbidden subgraph characterization for the

class of GSP digraphs. The proof of the characterization that we provide

consists of a description of how the recognition procedure presented in

the previous two sections can be modified so it exhibits the forbidden

subgraph whenever it gives a "No" answer.

Finally we end the chapter with a section that considers how the

description of the structure of a GSP digraph that our recognition

procedure produces when it gives a "Yes" answer, can be used to resolve

several questions about GSP digraphs in an efficient manner.

5.2 Definition and Relationship to TTSP Multidigraphs.

We define the class of General Series Parallel (GSP) digraphs in

relation to the set of its members that do not contain redundant edges.

The members of this set of minimal digraphs are calle' Minimal Series

Parallel (MBP) digraphs and they are defined recursively as follows:

95



Definition 5.1 [Minimal Series Parallel digraphs),

_ •(i) A digraph consisting of a single vertex and no edges is MBP.

(ii) If G. (V1,E l > and " (V2, E are two MW digraphs

0so i their parallel composition: "- (V1 UV2 , ElU

(iii) If G1 . (Vl,)> and .2 - (V2,E 2 > are two MSP digraphs

so is their minimal series composition:

GssW (VlUV2plUE2U (NIXR2)> where N1 is the set of

sinks of G1 and R2  is the set of sources of

The class of GSP digraphs is defined now using the operation of

transitive reduction (see Appendix A).

Definition 5.2 [General Series Parallel digraphs). A digraph is GSP

if and only if its transitive reduction is an MSP digraph. C)

If we replace the operation of minimal series composition in

Definition 5.1 by the operation of series composition, defined by

Gs :: (VI U V2 , E1 U E2U (V x V2 )) , the resulting class of digraphs

contains precisely all the GSP digraphs that are transitive. For this

reason the members of this class will be called Transitive Series Parallel

(TSP) digraphs.

Figure 5.1 shows the construction of an MSP digraph, GM , by minimal

series and parallel compositions. This process can be repeated with the

minimal series compositions replaced by series compositions as shown in

Figure 5.2 to obtain a TSP digraph, QT , which is the transitive closure

of GM . The following lemma gives some basic properties of the classes

of digraphs just defined and shows that they are related as we claimed:

96

'• " r l • 1 ... I1 " i -- I 1 • ' ' ' " ; ' " ' ' ' -



2

IOI
O44

2 4

1 *1

7 a a

S 8 9

Figure 5.1. Construction of an MSP digraph by minimal series

and parallel cc positions.

97



r •4- 
*I 

o.Ab4• 
W4@Ir3

*• 4

3 0

2 

"

.

-
-

T2

4

Figure 5.2. Construction of a TSP digraph (the transitive
closure of the MSp digraph of Figure 5 °1) by
series and parallel ccapositions.

98

11



( *d3PM, OSP, and TSP digraphs are acyclic and contain no multiple

(ii) HS? digraphs are minimal.,

(iii) TSP digraphs are transitive.

(iv) The transitive closure of any NSP digraph (and therefore of any

GSP digraph as vell) is a TSP digraph.

(v) The transitive reduction of any TSP digraph is an MSP digraph.

Proof. [See Appendix C.] ]

Note that because of the relationships exhibited by this leuma, the

class of TSP digraphs and the operation of transitive closure could have

been used to define the class of GSP digraphs instead of the class of MSP

digraphs and the transitive reduction operation used in Definition 5.2.

The construction processes of Figures 5.1 and 5.2 can be naturally

represented by a binary tree as shown in Figure 5.3. Such a binary tree

has a leaf for each of the vertices of the digraph constructed and an

internal node for each composition operation used in the construction.

The internal nodes are labelled "S" or "P " to indi.cate respectively the

minimal series (series) and parallel composition of the MSP (TSP) digraphs

represented by the subtrees rooted at the children of the node. It is

important to note that the order of the children of a "F" node is

irrelevant (parallel composition is symmetrical) but that the order of

the children of "S" nodes is important. We have chosen to represent the

digraph that corresponds to GI in Definition 5.1 as the left subtree of

any " S " node.

99



I.o

Figure 5.3. A binary tree that represents either one of
the construction processes shown in Figures

1105. an *.2.

I* "pIII I I 7r' I8



The binary trees Just described are formally identical to the biary

decomposition trees of TTSP multidigraphs introduced in the previous

chapter. For this reason they %ill be called binary decomposition trees

as well.

This formal identity of the binary decomposition trees of TTSP

multidigraphs and MSP (or TSP) ,iigraphui is the result of the correspondence

between the operations of two terminal series and two terminal parallel

composition of multidigraphs on the one hand, and minimal series and

parallel composition of digraphs on the other. This correspondence is

the following:

Lemma 5.2. Let G1 and G2 be two multidigraphs having a single source

and a single sink. Let GTTS and GTTP stand respectively for the Two

Terminal Series and Two Terminal Parallel compositions of G, and G2 ,

and let L(G) indicate the line digraph of digraph G (see Appendix A

for definition).

(i) L(GTTs) is the minimal series composition of L(G 1 ) and L(G 2)

(ii) L(GTTP) is the parallel composition of L(G1 ) and L(G2 )

Proof. [ See Appendix C.) C)

Because of Vhiz correspondence between the operations used to define

Sthe classes of TTSP multidigraphs and MSP digraphs and the identical

structure of Definitions 4.1 and 5.1, a one-to-one correspondence can be

established between the members of the two classes:

Ij 101



LeUMa 5.3. Let G be a multidigraph with one sou7rne and one sink.

G is TTSP if and only if L(G) is an MSP digraph.

Pro•_ See Appendix C. 0

Figure 5.4 shows a TTSP multidigraph and its MSP line digraph as an

example of this correspondence.

The correspondence of operatious given by Lemma 5.2 implies in a

rather direct manner that a binary decomposition tree T can be viewed

as representing a TTSP multidigraph or its MSP line digraph. As a result

all the properties of the decomposition trees of TTSP multidigraphs proved

in the previous chapter can be assmred to be true of binary decomposition

trees of MSP (or TSP) digraphs as well. In particular, two non-isomorphic

binary decomposition trees can represent the same MSP (or TSP) digraph

and we can eliminate this multiplicity by "shrinking" the edges of any

binary decomposition tree that join nodes with the same label (see

Figure 5.5). In this way, from any binary decomposition tree of an MSP

(or TSP) digraph G , one obtains a rooted tree that represents G

uniquely. Following the nomenclature of the previous chapter, we will

call this unique rooted tree the decomposition tree of G

We have described how a decomposition tree, T , depending on howI!

it is interpreted, can uniquely represent

(i) a TTSP multidigraph G ; or

(ii) an MSP digraph that is the line digraph of G , L(G) ; or

(iii) the TSP digraph obtained by computing the transitive closure

of L(G)

102



,4

3:

Figure 5.4. A TTSP multidigraph, G ,and its NP line

digraphs.

103



fi

1ni2 3 4 1

that represent the same MSP digraph G ,and the unique

decomposition tree T obtained from either T 1 or T2 by
"shrinking" edges that join nodes with the same label.

lo4

I 1 I p

II



it is ivioztant to realize that we cannot represent a 08P digraph

by a decomposition tree because there is no natur•el wa to include

in the decomposition tree the description of which redundant edges are

present and which are absent in the GSP digraph. MSP and TOP digraphs

can be represented by decumposition trees because we know that in one

case no redundant edge is present and in the other that all the possible

redundant edges are present.

The possibility of interpreting a binary decomposition tree iln

different ways plays a central role in the algorithm to recolpize the

class of GSP digraphs that we will describe in the next two sections.

This recognition procedure will work as a three step process:

On input G , the first step will compute a minimal subgraph GM

of G such that if G was GSP, Gm is its transitive reduction

(and therefore MBP).

The second step determines whether GM is an MSP digraph. If it

is, the algorithm will compute a decomposition tree, T , of GM

and if GM ii not NSP the algorithm will answer "No".

The last step considers T as an implicit representation of the

transtive closure, GT , of % and tests whether G is a subgrapb

of it. If G is a subgraph of GT the algorithm gives a "Yes"

answer, otherwise it gives a "No" answer.

This algoritL= will be described in the next two sections in enough

detail to prove that it can be implemented to produce an answer in O(n+m)

steps for a digraph with n vertices and m edges. Our description will

not follow th,! flow of control of the algorithm as described above. We

105

S .. . . . . :-• -• •.• ,• -.- .. . . =...



L

Will start by presenting a reooition procedure for the claes of Hop

digraphs -- tho second step of the algoritbm -- and then show how to

perform the first and third steps, which are more related to what the

above description might lead one to believe.

5.3 Recognition and Parsing of MSP Digraphs.

In this section we present an algorithm to solve the following
recognition task: given a digraphj, 0 , determine whether G is an MPE

digrapb, and if it is, obtain a decomposition tree T of G . The
algorithm that we present will perform this task in O(n+m) steps for

SanW digraph with n vertices and m edges.

a The med hd that we will use is based on the one-to-onc correspondence

between TTSP multidigraphs and MSP digraphs given by L 5.3. and

Algorithm 4.1 which solved exactly the sane task for TTSP nzultidigraphs.

This method can be described as a two step process: :

(i) Given G , compute its inverse line digraph L'I (G)

"(ii) Use Algorithm 4.i to determine if LI(G) is TTSP, and if it is,

to obtain a decomposition tree T of L' (G) . If L I(G) is

TTSP we answer "Yes" and output T , otherwise we answer "No".

L In principle, Lemma 5.3 would seem to be enough to guarantee the
t correctness of this process, but there is a problem with the assumwption -.

made in the first step -- of the existence of an inverse line digraph

function. The problem has two aspects: there are digraphs that do not

arise as line digraphs, and others that arise as the line digraph of

several non-isomorphic digraphs, as shown in Figure 5.6.

106

II



... . .i ..I I .

-: • 
.... . .... . ;ZI.._

.2.

(a) A digraph that does not arise as a line-digraph.

d 3

2 - - 4 b2

(b) Two non-isomorphic digraphs having the same line digraph.

Figure 5.6

107

.~~I s --• n 
- . .. . . • . .



The problem of cha~racterizing the digraphs that have line digra_*

inverses has been extensively studied from a non-algorittaic point of view

([HnA 60], [CH 72], [KLE 75]) and the problem of computing the line graph

of an arbitrary graph has been solved by Lehot [LEH 74]. The approach

used by Lehot on undirected graohs is interestingi given a graph a,

Lehot computes another graph %R such that if G is the line graph of

any graph, it is the line graph of GR He then proceeds to comute the

line graph of GR and test whether it is identical to G . Ufortunately

this direct approach works because the inverse line graph -- if it exists --

is unique except in some trivial cases, and does not seem to be useful for

our problem where this condition does not hold. Instead we will use a

criterion of Harexry [HAR 60] to determine whether the input digraph has

a line digraph inverse before attempting to compute it.

In the next few paragraphs we will describe Harary's characterization

and then describe how we use it to implement the recognition procedure

described at the beginning of this section.

Definition 5.5 [Complete Bipartite Composite digraphs]. An acyclic digraph

G is Complete Bipartite Composite (CBC) if there exists a set of complete

bipartite subgraphs of G : Bl, B2 ,...,Ek , that we call the bipartite

components of G , such that:

(i) each edge of G belongs to exactly one subgraph;

(ii) every vertex v of G , except the sinks, belongs to the head of

exactly one subgrs.aph that we will denote by h(v) ;

(iii) every vertex v of G , except the sources, belongs to the tail

of exactly one subgraph that we denote t(v) . C3

108



S-i i ... . . . . . . . . . . . . . . . . .- 4.-.-. . . . .

The first part of Huaary' a characterization is the following:

Lenma 5.4 (HAR 60]. A digraph has an inverse line digraph if and only

if it is CBC. C

This lemma solves the problem of the existence of the inverse line

digraph) but says nothing about the multiplicity of inverses. The following

lemma, due also to Harazy, solves this problem:

Lemm [HAR 60]. Let G1 and • be two digraphs such that

L(GI) - L(G 2 ) . The digraphs obtained from G1 an G2 by deleting all

the sources and sinks are isomorphic. 0

Figure 5.7(a) shows what happens after removing all sources and sinks

from the two digraphs shown in Figure 5.6(b). Figure 5.7(b) shows the

approach that we will use: instead of deleting the sources and sinks

we have merged all the sources into a single source and all the sinks

into a single sink. The proof of the fact that this operation makes the

inverse line digraph unique is a trivial modification of Harary's proof

of Lemma 5.5.

We have thus established that any CEC digraph has a unique inverse

line digraph having a single source and a single sink. Before we describe

how this unique inverse can be computed, we prove some properties of CBC

4 digraphs that we will use later:

fLemma .6.

(i) CBC digraphs are minimal.

(ii) The bipartite components of a CBC digraph are unique,

(iii) Any M• P digraph is CBc.

109

.... •.......... "'....-r ' -



(a) The unique digraph obtained from the digraphs G_ and G2

of Figure 5.6(b) by removing al& their sources and sinks.

22

i

S.10

(b) Toe nigure dirp otie fr: the digraphs G1 and G2

Figure 5.7

1~1o



Proof. [See Appendix C.] I
The converse of part (iii) of the above lema is not true:

Figure 5.8 shows a CBC digraph that is not MBP.

We now use the results of Lemmas 5.4 and 5.5 to define the inverse

line digraph function:

Definition 2.4 [The inverse line digraph function]. Let G be a CBC

pdigrah with bipartite coaponentE BI, B2 , . .. ,Bk The vertex set of

L (G) -- the inverse line digraph of G -- is (BeBI,...,B k1%)
i L-I

For each vertex v of G , L (G) contains an edge computed as follows:

(i) if v is a source of G , the edge is (B~,h(v)) ;

(ii) if v is a sink of G , the edge is (t(v),B) ;

(iii) if v is a source and a sink, the edge is (BaiBw) ;

* (iv) otherwise the edge is (t(v),h(v)) .L

The uniqueness of the bipartite components of a CBC digraph (Leama 5.6)

implies that the transformation Just defined is a function. The way in

which this transformation is an inverse line digraph is given by the

following limma:

Lemma 5.7. L(L' (G)) G for any CBC digraph.

Proof. (See Appendix C.] C3

Figure 5.9 shows a CBC digraph and its inverse line digraph computed

by Definition 5.4.

The refined version of the recognition procedure outlined at the

beginning of the section can be described as follows:

111



K . . . . . . . .. . ... P. .. .. . . . . . . .. . . . k • = c •

-I 
I-

f

Sf

~ T

Figure 5.8. A digraph that is CBC arid is not MSP.



Vertex Read Ta8l I
1a Burc a

2 b a
3 b-a

4 b

6 Sink c

7 

d 

a

8 
e 

d

9 Sink e

i

2 2 

Sink

7 a

d 
I

I

Figure 5.9. A CBC digraph G and its line digraph inverse.

The bipartite components of G are identified

by letters. L" (G) is constructed by using the

table as an adjacency list, according to

Definiticn 5.4.

U3

- .

___ j



&Iorithm 2.1 [RecopitSion of Minizaal Series Parallel digraPhs).

Input: An oyo•llc diipaph 0.

Output: If G is MSP we answer "Yes" and output a binary

decamposition tree) T , of 0 . Otherwise we answer "No".

Step 1: If G is not CBCj answer "No". Otherwise compute L 1I(G)

Step 2: If L- 1 (G) is a TTSP mltidipaph, answer "Yes" and output

a binary decomposition tree for it. Otherwise answer "No". C

The correctness of this procedure can be derived from Lemmas 5.3, 5.6j,

and 5.7 as follows:

-- If G is NP it will also be CBC according to Lem 5.6 and L71(G)

will be a TTSP multidigraph according to Lemmas 5.3 and 5.7.

Because L(L 1'(G)) - G , a binary decomposition tree of L I(G) as a

TTSP multidigraph will be a binary decomposition tree ot G as an

MSP digraph according to the discussion given in the previous section.

Let us now consider the problem of implementing Algorithm 5.1 to run

in O(n+m) steps for a digraph with n vertices and m edges.

Step 2 can be obviously implemented -- using Algorithm 4.1 -- tc. run

in time proportional to the number of vertices plus the number of edges of

L (G) . Because L (G) has an edge for each vertex of G , and at most

one vertex for each of the edges of G , Step 2 will run in O(n+m) steps

if implemented by Algorithm 4.1.

Let us then consider how to implement Step 1. We proceed as follows:

we select an edge (u,v) of G that has not yet been assigned to a

bipartite component and mark it as belonging to a new bipartite component Bi .

nl4

S +-i I = •'12 I i I i i i - • • •"• .. .



We now mark all the predecessors of v as belonging to the head of

and all the successors of u as belonging to the tail of Bi and then

check that there is a comlete bipartite subgraph of G with the head

and tail just identified. It such a subgrayb exists, we mark all its

edges as belonging to Bl ; if no such subgraph is found we answer "No"

and stop. We then proceed to select a new unmarked edge and repeat the

process until all edges have been marked or a "No" answer is generated.

While performing this process we answer "No" and stop if we ever attempt

to maArk an edge as belonging to more than one bipartite component or to

mark a vertex as belonging to more than one head or tail.

Because the bipartite components of a CBC digraph are unique, the

process just described will identify a new component each time a new edge

is selected and processed as explained above. Therefore if this procedure

ends without generating a "No" answer, it proves that its input is CBC by

identifying the complete bipartite subgraphs that satisfy the conditions

of Definition 5.3 and is thus correct.

Once we have decided that G is CBC and identified its bipartite

components, the computation of L- (G) is a trivial application of the

rules given by Definition 5.4 so Step 1 can obviously be implemented to

run in O(n+m) steps by the above procedure.

This completes our description of the linear time recognition algorithm

for the class of MSP digraphs. In the next section we describe how this

procedure can be used as part of a linear time recognition algorithm for

the class of GSP digraphs.

115



5.4+ R0.ooWUM. of GSP DigWaho-

We turn now to the central problu" of this chapter: given an &cyclie

digraph G , we want to determine whether G is GSP in a number of steps

proportional to the number of vertices plus the number of edges of G I
SAn approach to this problem is suggested imediately by the relationship

between GSP and MSP digraphs (see Definitions 5.1 and 5.2) and the

recognition procedure for MSP digraphs just _resenred. This method can

be described as a two step process:

(i) On input G , compute its transitive reduction GR

(ii) Use Algorithm 5.1 to determine whether % is an MSP digraph. If

is MSP answer "Yes" and output a binary decomposition tree of

it. Otherwise answer "No".

This process will not only perform the task we want, but wherever it

gives a "Yes" answer it will output a binary decomposition tree that

represents either the transitive reduction or the transitive closure of

its input.

The problem with the process as described resides in the first step:

the best known method of computing the transtive reduction of an arbitrary
1092 7

digraph ([AHO 72]) takes O(n ) steps on a digraph with n vertices.

Even worse, the problem is equivalent to computing the transitive closure

of an acyclic digraph, so the hope of ever discovering a linear time

algorithm for this task is very close to zero.

Fortunately a relatively simple modification of the procedure outlined

above can be implemented so it achieves the time bound desired, The

modified procedure can be described as follows:

116



Algorithm 5.2 [Recognition of General Series Par.llel dIrp s], -

Input: An acyclic digraph 0 wVuE)

Output: If G is GSP, we answer "Yes" and output a binary

decomposition tree of the transitive reduction (or

transitive closure) of G . Otherwise we answer "No".

step 1: (Pseudo-transitive reduction.) Partition B into E

and such that if G , h(VEM)

is its transitive reduction. (If G is not USP, %, May

still be IMP since it will not be in general the transitive

reduction of G .)

Step 2: If GM is not MSP, answer "No". Otherwise compute a

binary decomposition tree, T ) of GM as an MP digraph.

Step 3: Use T ax the representation of the transitive closure of

GM and test that all the edges of ET belong to it. If

they do, answer "Yes" and output T , otherwise answer

"No". 0 -)

The modification intrvuuced in our original description consists of

replacing the slow and precise operation of computing the true transitive

reduction of the input by two separatte processes. We first perform a

"quick and dirty" pseudo transitive reduction and then a check of the

validity of this pseudo reduction.

We will devote the rest of this chapter to showing hav to implement

this algorithm to run in O(n+m) steps when its input has n vertices

and m edges, but before giving the details we give a proof of the

correctness of the algorithm to be implemented.

117



If G i- GBPj G w be its true transitive rebctin and "

therefore MSP. In this case, the algorithm gives the correct answer

since it will give a "Yes" answer and oulpit a binary deeIgostion

tree of I'm

If the algorithm answers "No" in Step 2, GM is not MSP, and by the

condition attached to Step 1j, G cannot be GSP. If the algorit•m

answers "No" in Step 3y it means that GM is not the true transitive

reduction of G which once again implies that G is not GSP.

* .

We therefore conclude that the algorithm is correct.

!4

5.4.1 The Transitive Reduction of GSP Digraphs.

In this section we will describe how to implement Step 1 of Algorithm 5.2

to run in a number of steps that grows linearly with the size of the input

digraph.

Remember that what is needed is a procedure that computes the transitive

reduction of GSP digraphs and may do anything on a digraph that is not GSP.

£ In particular we do not care if it transforms a digraph that is not GSP into

E an MSP digraph.

Consider the following functions defined on any &cyclic digraph

G - (VE) with n vertices and m edges.

The 18eer function: L•: V -. ... ,n)

LG(v) . 0 if v is a source, otherwise the length of the longest

path from a source of G to v

118



JG( (WY)V) %0(V)-()

The .function- MG: V -[ "23 .A)

MG(v) 0 if v is asink of G otherwise the minimum value

of J, over all edges that leave G •

The values of these functions for a sample digraph are shoa in

Figure 5.10. Our interest In these functions is due to the following

two facts:

Lema 5.8. Let G be an acyclic digraph and (uv) a redundant edge

of G

MG(u) < JG((uv))

Proof. [see Appendix C.] 0

Lama 9. Let 0 be an MSP digraph. For any edge (u,v) of G,

"?0G(u) - ,G((uv))•

Proof. (See Appendix C.) ]

The Jump and Minimum Jump functions were defined in terms of the Layer

function which in turn was defined by the length of a longest path. Because

J a path of this type cannot contain redundant edges and the numerical values

of LG , T0 , and MG are defined by these paths, the three functions are

insensitive to the addition or removal of redundant edges. In other words,

if u and e are a vertex and an edge of G , and GI is a digraph

119

I W. ••.-,• •et= o•=""•"' ' • •" '- • " • - -...



(a) Values of L .

Si ~(b) Val~ee of J. cold, hted from the values of L. above.
~ 6

- of

II

I (c) Values of M.~ coeputed from the values of jGabove.

Ftgure 5.10

120Io



obtained from G by addition (or removal) of redundant edges

LGCu) - LG, (u) " a(e). JG' (e) , and MG(u) - MG, (u)

(Xie can put together the results of Lenas 5.8 and 5.9 with this

property of the functions we have been using to prove the following:

Corollary 5.l. Let G be a GSP digraph and (uv) one of its edges.

The edge (u~v) is redundant in G if and only if M(4(u) < Jo((U6v)) •

This corollary tells us that computing the Jump and Minimum JWW

functions is enough to perforL the transitive reduction of a GSP digraph.

Because these two functions can be trivially computed from the values of

the Layer function, and these values can be computed by a trivial

modification of the topological sort algorithm given by I0uth ([MNU 69]),

we can implement Step 1 of Algorithm 5.2 in O(n+m) steps for an acyclic

digraph with n vertices and m edges.

Before we go on to describe the implementation of Step 3 of

Algorithm 5.2 it is important to realize that the process just described

does not compute the transitive reduction of an arbitrary acyclic digraph.

An example of how this method fails on a non-GSP digraph is shown in

Fig.±re 5.-11.

5.4.2 The Two Dimensionality of GSP Digraphe.

In this section we complete our description of the implementation of

Algorithm 5.2 by showing how its last step can be performed in an amount

of time pioportional to the nimber of vertices and edges of the input.

The task that we want to perform is the following: we are given a

binary decomposition tree T of an MSP digraph GM , and a set of edges

121



I.
I.l

i h:

I g• -

Figure 5.11. If one applies the criterion of Corollary 5.1 to
G (which is not FSP) one obtains the digraph G'

which is not the transitive reduction of G since

edge (c,g) was not redundant.

122



• + -I0 -. --'"-"- " -. . . . . ." " "".. . . .-- --. % -F-- "' - L • • . .. .. .

r joining vertices of GM and we are asked to determine whether the

edges of 9T belong to the transitive closure of in a number of " .

steps proportional to the size of GM plus the numnber of edges of ET

The method that we will emloy in based on some of the properties

of the partial order that the edges of a GSP digraph induce on the set

of its vertices. We therefore start by studying these properties.

An acyclic dAgraph can be viewed as defing a partial order on the

set of its vertices as follows: for any two vertices u, v we say that

u < v if and only if there is a path u* v in the digraph. Because

this partial order is defined in terms of paths and addition or removal

of redundant edges does not create or destroy any paths, the partial

order defined by a digraph is the same as the one defined by its

transitive closure or its transitive reduction.

Let us regard a total order t on a set S as a one-to-one mapping

t: s- (l,2,...,IISIl) and let t "t2 ,...,tk be total orders on S

We say that a partial order, < , on S is represented by the intersection

of tlt2,..tk if for any two elements x, y of S, x < y if and

only if ti(x) < ti(y) for all 1 < i < k . The minim= number of total

orders needed to represent a partial order in this manner is called the

dimension of the partial order.

We will implement Step 3 of Algorithm 5.2 by computing, for any MSP

digraph GM , two total orders whose intersection represents the partial

order induced by Gm . Oice these orders are computed, to determine

whether an edge (u,v) belongs to the transitive closure of GM we

only have to test whether u is ordered with v in both total orders.

To make the process of computing these partial orders easier to understand

we will use the following geometric interpretation.

A23



Let 0 * (V, E> be a digaph that induces a two dimensional partial

order on V , and let t, and t2 be two total orders whose intersection

represents the partial order induced by G . Each vertex v eV can be

assigned coordinates tl(v) and t 2 (v) resulting in an embedding of G

in a (~v~( by JIlVI square of the cartesion plane. This embedding is sich
that for any two vertices uw of V , there is &path u o w in 0

if and only if the two coordinates of u are pairwise smaller than those

of w . Clearly such an embedding can be found for a digraph if and

only if the partial order it induces is at most two dimensional, so we

have found an intuitive geometric interpretation of the two dimensionality

of a digraph.

The method that we will use to embed an MSP digraph on the plane

is shown in Figure 5.12. If the vertices of the digraphs G1 and G2

involved in a Minimal Series or Paral,1.l computation are placed in the

relative positions shown, the coordinates of any two vertices upi v not

belonging to the same digraph will satisfy xu < xv and y < Yv if

and only if there is a path u v in the digraph resulting from the

composition.

It is not hard to see how this approach can be used recursively to

reduce the problem of embedding an MSP digraph with n vertices to n

trivial problems involving the embedding of an MSP digraph with a single

vertex and no edgeo at a given point in the plane. The following

paragraphs describe how a binary decomposition tree of the MSP digraph

to be embedded can be used to perform this task in a straightforward

manner.

124



RI Y1

y

I I

I I G
II
i a

* II
* eS I

-4 Y

-, Y, ±2. 2

or raralel comusition

Y

* ! .

I I :

I *

' I
o* I

I I

X I

Figure 5.12. How to embed the components of a Minima~l Series }

or Parallel cunposition. I

i



We already know that an n by n square of the plane is enough

to eabed an HSP digraph with n vertices so all the coordinates of

the vertices are integers, Let us now define the position of an MSP

digraph on the plane by the coordinates of the lower left corner of the

square that contains the vertices of the diigraph. Using this convention,

we can compute the positions (x1., y) of G, and (x2,y 2 ) of in

Figure 5.12 if we know (i) the nmiber of vertices n, of G1  and

n2 of G2 , (1i) the position (x,y) of the digraph resulting from

the ccmposition of G1  and G2 , and (iii) the type of coosition.

These coordinates are related by the following formulae:

Series Composition:

X, X~m Y 1 =Y

X2 mx+nl ; y2 uy+n2

Parallel Composition:

X2=x+Z n Y2=y "

Using these formulae and a binary decomposition tree of the MSP

digraph to be embedded on the plane we can compute the coordinates of

the vertices by the process shown in Figures 5.13 and 5.14.

Figure 5.13 shows an MSP digraph GO , and a binary decomposition T

of Go . Associated with each node of T we have an integer that tells

the size (number of vertices) of the MSP digraph represented by the subtree

of T rooted at that node. Note that this value is one for any leaf

and the sum of the values of its two children for any internal node;

therefore these values can be computed by a single postorder traversal

of T

126



4 I

4 -

r 31

Figure 5.13. An MSP digraph. a binary decoposition tree for it
and the sizes of each of the subtrees of the binary'

composition tree.

127
'~' ~' "



6 6 1
72 2

1P

2 2 2 63
4 4i 7

55 5 2

f3

6 6 3
4 7 714

!I

o 3 4 5 S 7X

Figure 5.14. Coordinates associated to all vertices of T and

resulting embedding of Go in the cartesian plane.

128



In Figure 5.14 wa have associated a pair of oooz•lrAtes with each

node of T . The coordinates of any node of T inditate the position

of the lower left corner of the square of the cartesian plane that

contains the MSP digraph represented by the subtree of T rooted

at that node. These pairs of integers have been computed by arbitrarily

assigning the pair (1,1) to the root of T , and then traversing T

once, from root to leaves, using the formulae given earlier to compute the

coordinates of the children of each node visited. Figure 5.14 also

shows the embedding of G. on the plane that results from this process

if one takes the coordinates assigned to each leaf of T as the plane

coordinates of the corresponding vertex of Go.

The processes described in Figures 5.13 and 5.14 can be performed by

a single traversal of T each, and will therefore terminate in a nmber

of steps proportional to the number of nodes of T which is in turn

proportional to the number of vertices of Go

Regardless of the number of steps taken, the fact that any NSP digraph

can be embedded in the plane in such a way that for any two of its

vertices u, v there is a path u s v if and only if the coordinates

of u are paeirwise smaller than those of v constitutes a proof of

the follcwing lemma:

Lemma 5.10. At most two total orders are needed to represent the partial

order induced by a GSP digraph on the set of its vertices. Q

The converse of this lemna is not trues the digraph of Figure 5.15

induces a two-dimensional order and is not GSP.

1.29

L 2.



I

7 I.I

Figure 5.15. The forbidden subgraph for the class of

GSF digraphs.

130



Returning now to Step3 of AZgorithm 5.2j, we have described a way

to assign coordinates to the vertices of G so that determ'ni

whether an edge of ET belongs to the transitive closure of GM is

reduced to comparing the coordinates of its endpoints. Since these

coordinates can be computed in a number of steps proportional to the

number of vertices of GM , the discussion of this subsection completes

our long proof of the following theorem:

Theorem 5.1. Algorithm 5.2 can be implemented to run in O(n+m) steps

on a digraph with n vertices and m edges. M

5.5 Forbidden Subgraph Characterization of GSP Digraphs.

In this section we provide a forbidden subgraph characterization of

GSP digraphs based on the digraph of Figure 5.15, which -- for obvious

reasons -- will be called N . We will prove the following:

Theorem 5.2. An acyclic digraph G is GSP if and only if it does not

contain N as an implicit subgraph, that is, if and only if the transitive

closure of G does .iot contain N aE an induced subgraph. Q

Of the double implication in the above characterization one of the

directions can be proved by a straightforward induction on the number of

vertices of the digraphs

Lemma 5.1. Let G be a GSP digraph. G does not contain N as an

implicit subgraph.

Proof. (See Appendix C.] 0

131



We will prove the implication in the other direction by describing

how to modify Algorithm 5.2 to exhibit the forbidden subgrayh whenever

it gives a "No" answer. This description wvll be detailed enough to

constitute an algorithm to exhibit the forbidden subgraph in a number

of steps proportional to the nunber of vertices and edges of the input

of Algorithm 5.2.

rigure 5.16 shows a flowchart of the OSP recognition algorithm that

gives names to the products of its intermediate steps and states where

and why the algorithm generates answers. In our discussion throughout

the rest of this section we will refer to this figure.

The following lemma plays a central role in our proof,

Lerma5 .12. Let (u,v) e ET . Either (uv) is redundant in G or

there are edges (u,x) and (y,v) in G such that JG((Yv)) - 1

and MG(u) w JG((nx)) and x, y, u , and v are the four vertices

of an implicit N subgraph of G

Proof. (See Appendix C.) 0)

This leman implies dire:ctly that if Algorithm 5.2 answers "No" in

Step 3, G contains N as an implicit subgraph because a "No" answer

at that point means that some edge of E is not redundant in G
T

Additionally, it is trivial in this case to exhibit the forbidden subgraph:

if (uv) is the non-redundant edge of ET , any successor, x , of u

and any predecessor, y , of v that satisfy the conditions of the above

lemma will form with u and v an implicit N subgraph of G

132



Sto 1°

"-E No: GM is ntCBCSETp 2
No: L'(G) in not C SP

of 1

2 ' ,4

iLi

Stp o: Sonie edge of ETdoes not belcng to the
TSP digraph represented by T .

Yes: G is GSP, T' is the deocmcosition %tee
of the transitive closure of G .

Figure 5.16. Schema of Algorithm 5.2.

A

a•I



. ... . - -.... .. ,

.Another important consequence of LAinn 5.12 is that If *0  contains

N as an implicit subgraph, 0 will also contain N as an implicit

* ' aubg.ph. We prove this fact by the following argmnent: if same

non-redundant edge of G is deleted to obtain GM , 0 contains an

iumplcit N subgraph eaready; otherwise if all the edges removed from

G are redundant there is apath w- z -.n G if and only if there is

a path w = z in GM and thus amy four vertices that form an implicit

N subgraph of GM will form an implicit N subgraph of G as well.

We will now use thia property to complete our argument by proving

that if Algorithm 5.2 gives a "No" answer in Step 2 -- either because GM

is not CBC or because L'i (G) is not a TTSP multidigraph -- GM contains

N as an implicit subgraph.

We start by proving that if GM is not CBC it contains an implicit

N subgraph. To prove this fact we examine the procedure (described in

Section 5.3) to test whether a digraph is CBC. This procedure was the

followinwg: ,

(a) Select an unmarked edge (u,v) of GM a (x

(b) Identify two sets H a [x I (xp v) eGM) and T.• (u~x) eGM]•

(c) Test whether there is a complete bipartite subGaph ofM
(c) ipatit aubrap ofGM

with head H and tail T ; if such a subgraph exists, mark

all its edges, otherwise answer "No".

(d) Repeat (a), (b), and (c) until either all edges are marked or

unti. a "No" answer is generated.

Step (c) can be performed as follows (taking advantage of the knowledge

that GM is minimal and contains no multiple edges):

S134



(i) test that every edge that leaves a vertex in H enters a

vertex of T

(ii) test that every edge that enters a vertex in T leaves a

vertex of H;

(iii) test that there are exactly jI11 x 1ITh1 edges (xy) such

that xei , and yeT•

Suppose that (1) is not the case and there is an edge (x,y) such

that xeH and yjT . Then the vertices u, v, x, and y form an

induced N subgraph of GM since (uv) , (x,y) , and (x,v) are edges

of GM and (u,y) is not (or y would belon- to T ). We can argue

in the same manner to show that if (ii) is not the case we can exhibit

an induced N subgraph of GM.

Let us now consider the situation when (iii) is not the case. Let

k be the number of edges counted in (iii). Because 0 is a digraph,
GM

k < IIHII x IITII and since (iii) is not the case it must be that

k < IIHII x IT1 . There must therefore exist a pair of vertices x e H

and yeT such that (xy) ýGM . Once again x, y, u and v will

form an induced N subgraph of GM because edges (uv) , (x,v) ,

and (uy) are all in GM while (x,y) is not.

This argwment proves that if GM is not CBC it contains an induced

N subgraph. To prove that the fotu. vertices of this induced subgraph

- are the vertices of an implicit N subgraph of GM we argue as follows.

*I Let the vertices x, y, u and v form an induced N subgraph of GM

as shown in Figure 5.17(a). If there is a path x * y in GM , the

edge (u,v) would be redundant implying that some redundant edge of G

135



I.~

v P x
I (b ) "-

U a

Figure 5.17

136



was not removed in Step 1 of Algorithm 5.2 which contradicts Le 5.8.
*!

If there is a path y x as shown in Figure 5.17(b), we have:

-- LG(w) < L,(x) because the values of LG increase along any path

of GM

-- LG(v) - L (w) or one of (ysv) , (yw) would have been deleted

in Step 1.

SLG(v) . LG(x) or oue of (u,x) ,(uv) would have been deleted

in Step 1.

7rflese three facts are clearly contradictory so we conclude that there

is no path y * x.

We therefore conclude that if GM is not C0C it contains N as an

implicit subgraph.

Let us consider the case when the algorithm answers "No" because

L1 (GM) is not a TTSP multidigraph although GM is CBC.

Because L'I(GM) is computed by Definition 5.4j, it will be acyclic

and have a single source and a single sink. Thus, according to Lemma 4.4,

L'1 (GM) Contains the Wheatstone bridge as an embedded subgraph since it

is not TTSP.

The gist of the remaining argument is contained in Figures 5.18 and

5.19. In Figure 5.18 we show the results of computing the line digraph

of a Wheatstone bridge and of a general path. Figure 5.19 puts these

two facts together to show the result of computing the line digraph of

a generalized Wheatstone bridge: a generalized N digraph.

Let L1:(GM) contain an embedded Wheatstone bridge -- the pattern

of Figure 5.19(a) -- and be acyclic. Its line digraph, GM p will

contain an implicit N subgraph, be'cause it will contain the pattern

137



t. . -..- . - - . -, - -- - .- - -- -- - - ---- •.- •',••- -•I'

-II

L- (W)

1381

£!

jL(w) : ;

1 • 1 n- 1 :1

L(I: ,L , In-.1 9,

Figure 5.18. The~ line digrapha of twvo par•icular digr-aphs.

ii



I- ' " ..

II

(.) A

(b) L (1

3, 4

Figure 5.19. The line digraph of a generalized Wheatstone bridge.

(The path labelled A' in L(GI) arises as the line

digraph of the path labelled A in G

i1

139
L



of Fiure•5.l(b) end existence of paths 1 4,* or 4 1.* in I

would izqxl the existence of a cycle in L,'1(GM) • Furthermore by

finding the edges labelled 1 , 2 , 5 , and 4 of the embedded Wheatstone

bridge of L' (G) one knows the four vertices of the implicit N

subgraph of GM . Thus the procedure to exhibit the Wheatstone bridge

described in Section 4.5 can be used directly to exhibit the implicit

N subgraph of GM in this case.

We therefore conclude that if Algorithm 5.2 answers "No" in Step 2,

GM contains N as an implicit subgraph. Because we proved that if a

"No" answer was produced in Step 3, G contained an implicit N subgraph
ri and also that if GM contains an implicity N subgraph so does G

this completes the proof of Theorem 5.2. However, we stated that our
proof would constitute an algorithm to exhibit the forbidden subgraph of Gd,

and we have not yet fulfilled this promise. We have shown how (i) to

exhibit the forbidden subgraph of G when the answer "No" is produced in

[ Step 3 and (ii) how to exhibit an implicit N subgraph of GM when

the "No" answer is generated in Step 2. In bath cases the procedures

described woUd work in a number of steps proportional to the number of

vertices and edges of G . We will end this section by describing how

to exhibit an implicit N subgraph of G when given an implicit N

ssubgraph of GM in a number of steps proportional to the size of G

Let us assume that G has n vertices and m edges and that the

implicit N subgraph of G is the digraph of Figure 5.20. First weM

test whether the paths x, = x4 or x are present in G ,

a task that can be performed in at most O(m) steps. Clearly both paths

140



I A

-X2

X3 x4

Figure 5.20. "Le induced Nsubgraph of GM.

.141.



cannot be present or G would contain a cycle and If neither is present

x, . x2 , x , and x1 are the vertices of an implicit N subgraph

x44• of G , therefore we have only one more case to consider. Let one of

the two paths., p , exist in G ; because neither path exists in GM

at least one non-redundant edge of p belongs to ET . We cuxplete our

description by showing how one sumh edge can be identified in at most

O(n+m) steps.

Let v 1V 2 ,-...,vk be the vertices on p . The values of the layer

function increase along any path in G therefore LG(Vi) < LG(Vi+l)

for any two consecutive vertices of p Let now (vvjj+l) be an edge

of p that belongs to E. We can determine whether this edge is

redundant in G by a limited depth-first search that starts at vj

and visits only vertices w for which LG(w) < L(v). By limiting

L the search in this way we can test whether each of the edges of p that 1

are in ET are redundant without visiting any vertex more than twice.

We can therefore find a non-redundant edge of p that belongs to E
T

in at mo'~t O(n+m) steps. Once this edge e has been found, we can

exhibit an implicit N subgraph of G by inspecting the vertices adjacent

to the endpoints of e looking for two that satisfy the conditions

stated in Lemma 5.12.

5.6 Consequences of the GSP Recognition Algorithm.

We end this section by considering brietl.y a number of problems witb

a common characteristic: the results pre',rtett in this chapter give new

insights on how to solve them on GSP digraylis, resulting in some cases in

1

- 1



algorithms that are more effilcient than the best algorithms known to

solve the problem on an arbitrary digraph.

Transitive R-eduction.

Computing the transitive reduction of an acyclic digraph is

equivalent to computing its transitive closure. The best known algorithm

to perform this task on an arbitrary digraph with n vertices takes

O(n ) steps ([AHO 72]).

In Section 5.4.1 we showed however how the transitive reduction of

a GSP digraph can be computed in a number of steps proportional to the

number of its vertices and edges.

Transitive Closure.

When we give a GSP digraph as input to Algorithm 5,2 we get not only

a "Yes" output but a binarj decomposition tree that represents its

transitive closure. In Section 5.4.2 we showed how we can use this

decomposition tree to compute an implicit description of the transitive

closure of the graph so questions like "does edge e belong to the

transitive closure?" could be answered in a constant number of steps.

Using this approach one can produce the transitive closure of a GSP

digraph G in 0(m*) steps, where m is the number of edges in the

transitive closure of G

Isomorphism.

In Section 5.2 we described how an MSP or TSP digraph can be

represented uniquely by a decomposition tree. Because of the formal

identity of the decomposition trees for TTSP multidigraphs and MSP or

TSP digraphs, all we said about deciding isomorphism of TTSP multidigraphs

143



using their decovposition trees in Section 4.6 applies directly to MSP

and TSP digraphs as well. In particular we can decide whether two MSP

or TSP digraphs are isomorphic in O(n+m) steps: we rneed O(n+m)

steps to compute their decomposition trees using Algorithm 5.2 and

Iand O(n) steps to decide whether the trees are isomorphic.

It is important to realize however that the isomorphism problem

for GSP digraphs is equivalent to the problem of isomorphism for arbitrary

graphs. This can be proved easily by the construction of Figure 5.21

* :, due to Tawler and Tarjan. In that figure we show a GSP digraph computed

from an arbitrary graph G = (VE) as follows:

(i) The vertex set of the GSP digraph is [1]UVUE

(ii) There is an edge (v,$) for each veV

(iii) There is an. edge (4,e) for each e e E

(iv) For each e = (u,v) belonging to E , there are edges

(u,e) and (v,e)

This digraph is clearly GSP, and one can prove easily that two graphs

are isomorphic if and only if the GSP digraphs computed from them in this

way are isomorphic. Therefore if we could solve the isomorphism question

for GSP digraphs in polynomial time we would be able to solve the

isomorphism of arbitrary graphs in polynomial time as well.

Subgraph Isomorphism.

The subgraph isomorphism problem for MSP or TSP digraphs remains an

open question in the same way that the problem remains open for TTSP

digraphs: there is some hope of finding an effic'.ent algorithm to solve

the problem based on Matula's algorithm for subtree isomorphism but we

144



S................ •,• ..... •, •I , .._....

Figure 5.21

.14



don't know how to do it. Yor GBP digraphu, the construction ened

earlier can be used directly to prove that the problem is equivalent to

the subgreph iasnorphi ,- problem for arbitrary graphs and Is therefore

NP-cocplete.

1I

I

I

1I4



a ~Chapter 6. Flov'l.axts. -

6.1 Introduction.

This chapter discusses how to analyze the flow of control of a program A

using some of the techniques introduced in earlier chapters.

For the purpose of analyzing its flow of control, a program P is

customarily represented by a digraph -- called its control flow gr•aph --

computed as follows:

-- for each group of statements of P that are always executed sequentially,

there is a vertex in the control flow graph of P ; and

-- for each possible transfer or control between two such grotus in P
Sthere is an edge that joins the corresponding vertices of the control

@. I

flow graph of P.

The problem that we consider can now be described in the words of

Kennedy [ION 711: " ... we would like to know which definitions can affect

computations at a given point in the control flow graph and which uses can

be affected by computations at a given point. (nce we have this information,

we can do things like common subexpression elimination, code motion,

c'nstant propagation and register allocation."

Because of its obvious application to the design of compilers, the

problem of flow analysis has been extensively studied in recent years

((ALL 70], [COc 70], (GRA 76), [CHC 72], [H.C 741,, [.C 77], (KAS 751,
[KEN 711, [ROS 771, (TAR 741+).

A method suggested by Rosen ([ROS 77)) to solve some of the data flow

problems Just mentioned uses information generated during the syntax

analysis phase of the compilation of the program to be analyzed. This

147



• • .- -=. . ... . . . . . . . .. . . . .. . .i i ' _ : . Z-. . - --- -' -: ' • -- . - - . . .. . . . .

approach is particularly well suited to the analysis of goto-loss propen

written in languages that have a well structured set of control statements,

but it is not the technique most commonly used. Normal•y the problem is

tackled by representing sone intermediate form of the program being

compiled by its control flow graph, analyzing this digraph, and then using

the information obtained to generate ýode for the target machne.

The techniques that we discuss in the remainder of this chapter are

based on this last approach and all of them work in two clearly distinguishable

stages:

-- first structural information about the control flow graph is obtained

by regarding it as an abstract digraph, and then

-- this structural information is combined with information about the.1J
computation associated with the vertices of the digraph to solve the

data flow questions identified above.

We will concern ourselves exclusively with the first of these two

stages: the extraction of structural information from a control flow

graph.

The "classical" approach to the structural analysis of control flow

graphs is the interval analysis technique introduced by Cocke and Allen

([CCC 70), [ALL 70]). This technique can be described as follows.

A flowgraph G - (VE) is a directed graph with a distinguished

vertex v (called the start vertex) such that for every vertex u e V

there is apath v wh* u in G . An ntrvl an be defined asama~xim~al

subgraph having a single entry, that is, every vertex of the interval has

all its predecescors in the interval or it is the entry vertex. The

interval analysis of a flowgraph is performed by identifying its intervals,

1

i::u u I I I ' l' I I'l•l '" =i" • '•'• t •,' '" ' ' 1 +i

I I I l II ..



replacing each of them by a single vertex and repeating the process on

the flowgraph obtained, until no more replacements can be carried out.

An example of this process is shown in Figure 6.1.

Several efficient algorithms are known to perform the interval

analysis of a flowgraph (CHOP 72), (TAR 74)) and to use the information

obtained to solve data flow problems ([Q 71), [MRA 76], [TAR 751).

The fastest analysis algoritbm (!TAR 74]) runs in O(m a(nm)) steps

on a flowgraph with n vertices and m edges.

Interval analysis is a very powerful and general method of parsing

programs, but as a result of these characteristics, both the generation

of the parse of a flowgraph and the extraction of data flow information

from this parse are rather canplex processes. The basic aim of the parsing

method described in the next few paragraphs -- called prime subhammock

parsing -- is to simplify these processes at the expense of same power

and generality.

A hamnock is a strongly connected digraph with two distinguished

vertices a and w and a distinguished edge (wa) . The vertices a

and w are called respecti' ely the start and finish of the hammock, and

the edge (w•a) is called the return edge. A subhazmock is a subgraph S

of a hwz•ock H that does not include the return edge of H , that has

exactly two boundary vertices x , y , one being an entry and the other

an exit=/ and such that

V- The a function is an inverse of Ackerzann's function that grows
extremely slowly and can be considered less than four for all practical
purposes.

L-/We will discuss the definitions of entry and exit later since the theory
that we will present depends somewhat on how these definitions are chosen.
For the moment let us say that we will try to approximate the following
intuitive idea: an entry (exit) of a subgranh S is a boundary vertex
v of S such that every path a•* x (x - w) in which x c S includes
the vertex v

149



2 3

3

4 -

6, 7

/ -

i.7

Figure 6.1. Interval analysis of a flowgraph

(start vertex indicated by an edge "frm nowhere")

150



(i) either S-(x,y) includes at least one vertex and is connected;

or

(ii) S is the maximal subgraph of H with x and y as boundaries

not including the return edge.

A subhammock is non-trivial if it includes at least two edges, and it

is prime if it is non-trivial and does not proyerly contain any non-trivial

subhammock.

The prime subhammock parse of a hammock H is performed by identifying

a prime subhanmock of H , replacing it by a single edge going from its

entry to its exit, and repeating the process on the resulting digraph until

no more replacements can be carried out. An example of this process is

shoua in Figure 6.2. Clearly, this process would not make a lot of sense

unless the digraph obtained from a hammock by the replacement operation

just described is a hennock as well. It is therefore necessary that the
definitions of entry and exit used be such that this condition can be

guaranteed.

Let H be a hammock and let N(H) denote its undirected version.

The following fact is the basis of our algorithm to comets prime

subhammock parses :

Lemma 6.1. Let H be a hammock such that N(H) is biconnected and let

S be a non-trivial subhanmock of H . Either S includes every edge of

H except the return edge or the entry and exit vertices of S are a

separation pair of N(H)

Proof. (See Appendix C.) L

151



• . . . . .~~~~~~.. . ." . . ._ .. . . . . . . . .. .. . . .. . .... . ..

t 5;

* I
cx ~a

%I

I III I

14

2 5 * I *

5, iI I

w w w
, ' / /

SFigure 6.2. Analysis of a Hammock by prime subhazmocks,
S(The return edge has been marked by a double

cross,.)

- 152

S lI i • , * I N ., i I,



• This relationship between entry - exit pairs of a hanmmock H and the

separation pairs of N(H) can be used to compute prime subhammock parses

as follows:

-- Given a hammock H , compute N(H) I
-- Use the triconnected components algorithm to find the separation pairs

of N(H).

-- Examine these separation pairs to determine the entry -exit pairs of H

in the next section we will describe in detail an efficient algorithm

to perform the prime subhammock parse of a general hammock based on the

outline given above. As we shall see, in the most general case this

algorithm becomes quite complicated. This complexity however can be

* greatly reduced when the hammocks being parsed satisfy certain conditions.

For this reason, following the section describing the general case, we

have included two others discussing two classes of hammocks that can be

parsed by simplified versions of the general algorithm: proper programs

and structured programs.

Our discussion concerning proper programs includes a justification

of our claim about the convenience of the structural information produced

by our parsing algorithm. Proper programs were introduced by Linger

and Mills in connection with a method of solving data flow problems on

r ~them; we will sh,.w that the prime subhammock parse of a proper program

generates exactly the structural information needed to perform the

data flow analysis suggested by these authors.

153



6.2 Arsaing General Hamnocks.

In this section we describe an aWorithm to perform the prime

subhamnock parse of a general hamuock H in a number of steps prqjorttonalm

to the number of vertices and edges of H

Our algorithm will accept as input a general hanmock H with n

vertices and m edges and output a tree structure I that represents

all possible prime subhamock parses of H . The structure T will be

computed as follows:

-- We use the triconnected components algorithm to obtain the TCG T of

N(H) , and then

i I -- use T to examine the separation pairs of N(H) and determine which

ones are entry- exit pairs of H . This information is then

incorporated into T to produce the desired structure T

If we assume that N(H) is a biconnected multigraph, it is clear

that the first step of the above process can be performed in O(n+m)

steps, so let us consider the second step.

We will perform the examination of the separation pairs of N(H)

as follows. We consider T as a rooted tree, its root being the vertex

associated to the triconnected component of N(H) that includes the

return edge. For each vertex v of T we will consider one separation

pair of N(H) corresponding to the endpoints of the virtual edge that

the triconnected component associated with v shares with the triconnected

component associated with the parent of v in T . This separation pair

will be examined to see whether it is an entry- exit pair of the subgraph

of H that includes all the edges of H belonging to triconnected components

154hI



of N(H) associated to vertices of the subtree of T rooted at v

The tree T is computed as follows. For eawh separation pair of N(H)

examined that is not an entry- exit pair of H , we carry out a merge

operation among comonents of N(H) that eliminates the virtual edge

joining the separation pair. Resulting frcn this procest wll be a

set of biconnected multigraphs containing all the edges of N(H) (each

edge in one graph) and virtual edges (each shared by two graphs) such

that:

(i) N(H) can be obtained from this set by merging operations that

eliminate all the virtual edges.

(iU) The endpoints of each virtual edge of this set of graphs are

an entry -exit pair of H.

This set can be represented as a tree, in the same way that the

tricormected component set was represented by the TCG. This tree T
P

is the structure that we will use to represent all possible prime subhammock

parses of H.

Two very basic points should be noted about the process just described:

(i) for each separation pair considered we do not examine all

possible partitions of the edge set of N(H) determined by

that pair (for instance, a bond with k edges would determine

0 (2k) such partitions),
' Ii

(ii) we did not examine explicitly every separation pair of N(H)

(for instance, a polygon with k vertices has O(k2 )

separation pairs).

155



-At t

11We will consider the reasons for these decisions in a moment. B~efore

doing so however, let us examine a more basic question that we have to

resolve if we are to keep any hope of performing the simplified process

described above in O(n+m) steps.

The problem is that, oven though we do not consider all possible

separation pairs of N(H) , we may still be examinin 0(n) separation

pairs in the process described; therefore if we want to stay within

0(n+m) steps we cannot examine each pair for very long. A sufficient

condition to guarantee that all pairs that our simplified process

considers can be examined in 0(n+m) steps is the following: we require

our definitions of entry and exit to be such that oae can determine

whether a vertex v is an entry (exit) of a subgraph S by examining

only the edges incident to v asking about them only whether they belong

to S or not.

Later in this section we will provide definitions of entry and exit

that satisfy these conditions and we will consider their relationship with

the intuitive ideas of entry and exit discussed in the previous section.

Let us now return to the problems presented by the multiplicity of

edge partitions defined by bonds and the multiplicity of separation pairs

defined by a polygon.

The key to our solution of the first problem is our definition of

subhammocks. Figure 6.3 shows a hasmock H , N(H), and the triconnected

components of N(H) . According to the procedure Just described we will

test the separation pair u, v -- at different points -- as to whether

it is:

156



¶4

UU

4 D

A I L C

I <1

*

, 110 I
I V

V V V

Figure 6.3. A hammock H ,its undirected version N(Hi)

and the triconnected pieces of N(H{)

157

"""--'"-- i- -I



(i) an entry -exit pair of the subgraph of H ccataining the

edges of C ; or

(ii) an entry- exit pair of the subgraph of H containing the

edges of D ; or

(iii) an entry- exit pal,* of the subgraph of H containing the

edges of the subgraph of H including the edges of B , C ,

and D

These tests correspond exactly to the non-trivial connected subgrayhs

when u and v are removed (cases (i) and (ii)) and to the maximal

subgraph of H with Just u and v as boundary vertices (case (iii)).

It is not hard to see how this argument can be generalized to show that

we are considering all possible partitions that may result in subhammocks.

(For instance we do not consider u, v as a possible entry -exit pair of

the subgraph of H including the edges of C and D , since that graph

is not connected when u and v are removed.)

"It must be apparent that our definition of subhammock was somewhat

"ad hoc", however we must say in our defense that it is not much more so

%an the definitions used by other authors. As an example Kas'janov

((KAS 75]) defines subhaimnocks as including their entry vertex but not

including their exit, therefore eliminating the problem being considered

here. Additionally we feel that a measure of reasonableness is given by

the fact that in some restricted cases (proper programs) our parsing

method coincides with those defined by other authors that look at the

problem from a very different perspective. Because there is not much

that one can prove in general about the relative merits of definitions of

this type we will not attempt to defend our choice any further.

158

I=



The problem presented by the multiple separation pairs determined by

a polygon is similar to the problem we encountered parsing TT networks:

2
there are O(k ) ways of reftcing a polygon with k vertices to a

double bond, but all of them can be represented concitiely by giving the

sequence of vertices that one encounters when circling the polygon in

either direction. In our present context we resolve the problem in a

±similar1 way as foLlows.

* We will assune that the definitionr -f entries and exits are such

that if a vertex vi (as depicted in Figure 6.4) is an entry (exit) of

the subgraph Gi , it would automatically be an exit (entry) of the

subgra;h Gi+l With this assumption, all possible entry -exit pairs

determined by a polygon like the one of Figure 6.4., can be described

by giving the sequence of vertices that are entries -exits of the

subgraphs Go0G,0 ... , Gk in the order in which they are encountered

as one goes from vo to vk (or from vk to v 0 ).

The problem of explicitly exhibiting all the entry exit pairs of

a hammock has been studied by Kas'Janov ([KAS 75]) who gives an algorithm

based on depth-first search that runs in 0(nm) steps for a hammock with

n vertices and m edges. This bound is improved in our case by not

producing the entry- exit pairs explicitly; because there are hammocks

with n vertices and O(n) edges that have 0(n-) subhamnocks we

cannot possibly expect to exhibit all possible entry- exit pairs within

a linear number of steps.

So far in our discussion we have made a number of assumzptions about

entries and exits. Let us discuss the definitions that we propose to

satisfy these conditions and remain close to the intuitive idea of entries

159

.,ii: i il' l l ' 1 1I l " " 1 " I1



011Vo ", 

• _

,l ,

*e e

"vi +1 ---

0' .... i+

* -- , G-k

Figure 6.4i. Entries and exits in a polygon.

16o



' _1

-A

and exits given in the previqou sectiqu, before we present a co=plete

example of our parsing algorithm.

Let G be a dgraph S be a subgraph of G and v a boundary

vertex of S . We say that v is an ! (exi__t) of 8 if:

(i) every edge incident to v and to a vertex of (-S enters

(leaves) v ; or if

(ii) every edge incident to v and to another vertex of G leaves

(enters) v

Figure 6.5 illustrates these definitions.

Ideally, one would like to use definitions of the following type:

"a boundary vertex v of subgraph S is an entry (exit) if every path

a;* x (x w) in which xES includes v ." The problem with a

Sdefinition of this kind is that in order to determine whether a vertex

is an entry or an exit, one needs global information about the flow in

the hammock -- precisely the information that our analysis is trying to

uncover. We chose our definitions because they satisfy the following

conditions:

(Cl) A vertex that is an entry (exit) according to our definition

will be an entry (exit) in the global sense given above as

well. (The converse Js not true, for instance, vertex 5 in

the hammock of Figure 6.6.)

(C2) Replacement of a subhammock S of a hammock H by a single edge

frm the entry of S to its exit, transforms H into a harmock

with the same start and finish vertex as H

161



/a,

1n 6

i!

10

Figure 6.5. Vertices 4 and 5 are entries of G

SVertices 10 and 31 are exits of

Vertex 7 is a boundary vertex of G, that is not

an entry or an exit.

162



(C~) One cam detenaine whether a boundary vertex v of a subgroh 8

is an entry or an exit by examiniaq only edges incident to v

Inowing only about each edge whether it belongs to 8 or not.

(C4) If s8 and S2 are subgraphs such that Sln S 2 (v) and

every edge incident to v belongs to S1 or S. and if v

is an exit (entry) of 81 then it must be an entry (exit)

of 02

0(5) If one reverses the directions of all the edges of a hammock

its entries become exits and its exits entries.

In addit.oan they include the definitions used by other authors as

special cases. The conditions (Cl), (C2), and (C3) are the assumptions

made during the preceding discussion and are therefore "necessary" in

r some sense; the other conditions are merely nice features and the

i validity of our theory does not depend on them.

j iA complete example of our parsing algorithm can now be presented.

Figure 6.6 shows a hammock H , N(H) , and the triconnected components

of N(H) . Figure 6.7 shows the TCG T of N(H) , and two other tree

structures derived from T , TI and Tp . The tree T, has been

computed by adding to the label of each vertex of T a sequence of

vertices as follows:

-- the sequence of a vertex of T, associated to a bond or triconnected

graph contains the vertices of the separation pair of N(H) that

will be examined when we visit that vertex (in any order),

-- the sequence of a vertex of TI associated with a polygon contains

the vertices of the polygon in the order in which we encounter them

163



)77w w
ax aII

S S

,0 0. 9° ý 4

S2 2

F 
i,

w w

A -

Figure 6.6. A hammock H ,N(H) ,and the triconnected ]i

components of N(H)""

2 --

•: 164 a

, * ,



-
!

F C D

E B

G: 2. 2 1,,1

HF: 1,2

(F)) , Lu B: a~, 4,(C), (D), 6, 7,

Figure 6.7. Structures used to obtain parses of hamocks,

165



¶ •&as we go from one of the vertices of the separation pair corresponding

to that polygon, to the other.

The tree Tp is compited from T1 by I

-- eliminating the separation pairs of N(H) that are not entry- exit

pairs of H. (For examyle, pairs 4p,5 and 5p6

-- eliminating the corresponding vertices from the sequerices associated

to polygons. (For example vertex 5 in the sequence of node B

of T1 ); and

-- ordering the sequences associated with the nodes so that for any

entry - exit pair the entry appears before the exit.

Finally, Figure 6.8 shows how a parse oC H can be read from T. in

a rather direct manner. The process traverses T from leaves to root .
p

"ridding" one or more replacements of prime subhawmocks by single edges

at each of the nodes it visits. These reductions are computed as follows

(see figure for details):

-- if the node corresponds to a polygon

-- eliminate the prime subhm•ocks lying between any two vertices

of the sequence,

-- eliminate the vertices of the polygon by what amounts to series

reductions in H

-- if the node corresponds to a bond or a triconnected graph, replace

the prime subhamnock determined by the two vertex sequence of the

node by a single edge.

Given the property of Lemma 6.1, it is easy to see that the traversal

from leaves to root guarantees that the hammocks being replaced in this

166



Processing of vertex G of T : - elimination of vertex • of H.

a

4

I

Lo I

2 7

Il
I!

Processing of vertex B of T - elimination of subhamock

CUD between 4 and 6;

elimination of vertex 4 of H;
elimination of vertex 6 of H;

- elimination of vertex 7 of H.

(Y a

2 2 27 1

UW W W U)

Figure 6.8. Example of the parse of a hammock.

167



Proesin o vrtx.F of - livnination of subbhmook between 1. and2

) .

Processing of vertex E of - elimination of vertex 1 of H ;

- elimination of vertex 2 of H °

~(A)
I

II

Processing of vertex A of T - elimination of subhanuock between a and w

LLL
Figure 6.8 (continued). Example of the parse of a ham~ock.

i.68



process are indeed prime. Thus, our discussion can be considered an

informal proof of the following fact.

Theorem 6.1. The process just described can be implemented to-roduce a

prime subhammock parse of a hammock H with n vertices and m edges

in 0(n+m) steps provided that:

(i) N(H) is biconnected; and

(ii) the definitions of entry and exit used satisfy (C2), (C3),

and (C4). C3

The only assumption that has not been discussed so far is the

t biconectivity of N(H) . We will end this section by describing how

the algorithm just described can be used in hammocks that do not satisfyr

this condition to provide similar structural information.

Figure 6.9 shows a hammock for which the assumption is not true. In

such cases we proceed as follows:

SWe break N(H) into biconnected pieces (see [AHO 76] for the

description of an algorithm to perform this task in a number of

steps proportional to the size of N(H) ). Because I and w

are adjacent in N(H) , there will be a piece H containing both.
0

SThe biconnected piece H0 is then analyzed using the method

described.

SWe remove H0 from N(H) , obtaining in this way a set of connected

multigraphs GIG 2 ,...,Gk , each sharing an articulation point with

H0 . Each of these multigraphs Gi is converted into a hammock

Hi by "splitting" the articulation point, xi , that it shares

with H0 into two vertices ai w Wi so that:

169

i | ": '_ _ __-_ _ _ _-_



ii-li

3 ; .

4

Figure 6.9. A hammock H for which N(Y) would not be

biconnected: x., x2 , and xi vl~d be

articulation points of N(H)

1

S~170
-4

.. •.•,.• , •. • .••.•-1 ••'•' • •-.

L'



I (i) every edge (yxl) of a becomes an edge (y,•w) of HK ;
and

(ii) every edge (x1 ,z) of becomes an edge (d1 ,z) of H.

7he -%wole process is then applied recursively to the harmmocks Just

computed. Figure 6.10 shows how this process would work on the hammock

of Figure 6.9

Having accounted for this aassmption, we have completed the description

of our parsing algorithm for general hammocks. In the two sections that

complete this chapter we will apply this algorithm to two subclasses of

hammocks introduced by different authors to represent the flow of control

of "reasonable" programs. We will discover that most of the problems that

made our algorithm complicated in the general case disappear when one

restricts in a natural way the set of hamnocks that the algorithm is

expected to haedle.

6.3 Parsing Proper Programs.

A proper program is a hazmock H in which every vertex v is of

one of three types:

(i) a function node: in-degree(v) o out-degree(v) 1 1 ; or

(ii) a predicate node: in.degree(v) 1 1 and out-degree(v) 2 ; or

(iii) a collect node: in-degree(v) u 2 and out-degree(v) . 1

An example of a proper program is shown in Figure 6,11. Note that

if H is a haxmiock and every vertex of N(H) has degree three or less,

H must be a proper program.

171



I

XI

1 1

C'2

X3

'U2

Figure 6.1o. TLie hezinock otf Figu~re -:£9 is ears&yzed by analyzing

H 0  using the algorithmn described, then applying

the prouess rec)1sively to H1  an H2

172



- - ~ ~ - • - . - . .- _

A •~o611 r~r•o•aI

I...'UU



According to Geannon and Hecht ([GAN 77] ), this class of hammocks

was introduced by Linger and Mills in conjunction with a method to analyze

their flow of control that differs from all other standard approaches to

the problem. In their paper, Gannon wid Hecht present an algorithm that I
extracta -- in 0(n3) steps for a proper program with n vertices --

the structural information needed to perform the flow analysis proposed

by Linger and Mills. Fredrickson later refined the method of Gannon and

Hecht into an algorithm that performs this task in O(m 0(nm)) steps

for a proper program with n vertices and m edges.

The purpose of this section is twofold. We want to show that many

of the complications involved in the prime subhammock parse of general

hammocks disappear when dealing with proper programs, and also exhibit

the basic equivalence of our parsing method and that of Gannon and Hecht.

A property that makes proper programs particularly well suited to

prime subLammock parsing is the following

Lema 6.2. Let H be a proper program. N(H) is biconnected.

Proof. (See Appendix C.] ,

This lemma guarantees that when parsing proper programs we vwill not

need to perform the repeated decomposition of the input into biconnected

pieces described at the end of the previous section.

Steill greater simplifications can be achieved using the following

facts:

17



÷4

¢-C

Le~mm 6.3. Let H be a proper program with start vertex 0_ and finish

vertex w, and let S be a subhammock of H . The digraph H' obtained

by replacing S by a single edge from its entry to its -exit is a proper

program with start vertex cc and finish vertex w

Proof. {See Appendix C.] 0

LL

Lemma 6.4. Let H be a proper program and let S be a subgraph of N(H)

that does not include the return edge. The subgraph S can be reduced to

a single edge by one series, plarallel, or triconnected reduction (as

defined in Chapter 3) if and only if the subgraph S' of H containing

all the vertices and edges of S is a prime subhammock.

Proof. [See Appendix C.] ]
t

These two lemmas imply that for every parse of N(H) as a TT network

(with return edge (,cw) ) using the Universal Replacement System, there

is a prime subhammock parse of H . As a consequence, the prime subhanmock

parses of H can be read from the decomposition tree of N(H) as

described in Section 3.4, and we can avoid the process of testing the

separation pairs of N(H) as to whether they are entry- exit pairs

of H

An example of the simplified version of the parsing algorithm is

shown in Figures 6.12 and 6.13. Figure 6.12 shows the process of obtaining

a decomposition tree of N(H) for a proper program H , and Figure 6.13

illustrates the process of reading a prime subhammock Varse of H from

the decomposition tree of N(H)

175



190_

H:U

Is4 ,4

U U 1 "U • O/

II

N: ?
w

-1"
3I

* 6 A p p I u /i Hu

an a r u o i6 * a 'a' .' , _* ,
a I' a , a * Ii 1

•a!"a| l , , a ,, ,' , ,
a , , ° ,,

,/ , a a I ,/ ,,

"5i' , 7 10 i/ i

S I I * g

• iuNe 6.12. A proper program H , its undirected mutipra~h Hu

Sand a deco~osition tree of Huobtained fr~m its

triconnected components.

176



77-

ct

I

16 I

77

S 3 0 117

"I • I

-aii !77~

Fiue613. Prigaprop•er program.



IlkI

*t

* S

w

0I

261

! I
I

I'~ *, Z

I ,I

S/

Figure 6.13 (continued). Parsing a proper program.
178

•1 IIII~ ~ iiii~il 'iiiill



-L :.- .. ,--.-: .-:--- -

The relationship expressed by LeImma 6.14 can be combined with a

result of Even and Tarjan ([EVE 76]) to show that our parsing approach

is optimal in some sense. We will prove that any algorithm that performs

the prime subhammock parse of proper programs can be used to compute the

triconnected components of biconnected multigraphs in which the degree

of each vertex is at most three. Our argument is the following.

Let G be a biconneoted multigraph with n vertices and m edges,

and let each vertex of G have at most degree three. Suppose that we can

assign directions to the edges of G so it becomes a strongly connected

digraph H . Because of the degree restriction on G , every vertex of

H will be a function, predicate, or collect vertex, and H can be

considered a propLr program with any two adjacent vertices as start and

finish. In addition N(H) - G by construction, therefore -- according

to Lemma 6.4 -- any prime subhammock parse of H gives us directly a

parse of G using the Universal Replacement System from which one can

trivially compute the decomposition tree of G . Let us then complete

our arCzuent by showing how the transformation of G into H can be

achieved using the algorithm of Even and Tarjan in O(n+m) steps.

Given a biconnected multigraph G with n vertices and m edges,

and one of its edges (uv) , Even and Tarjan show how to number the

vertices of G from 1 to n in O(n+m) steps so that:

(a) v is assigned number one;

(b) u is assigned number n ; and

(c) any vertex (except u and v ) is adjanent both to a higher-

numbered and to a lower-numbered vertex.

179

I I I• I • • - '



Let us now assign directions to the edges Of G so they go froM

lower-nmabered to higher-nuxbered vertices with the exception of (uwv)

which goes from u to v . For any vertex x of the digraph H thus

coputed there must be a path x &* u in H because otherwise there

would be a highest-nimbered vertex z reachable from x end z would 4

not satisfy condition (c). A similar argiment shows that there must be

a path v 20 x as well and these two facts are enough to prove that HI

must be strongly connected since for any two of its vertices x, y , there

will be paths x u and v y in H and thus (with the edge (uv))

there will be a path x * y .

We can therefore conclude the following:

Theorem 6.2. The task of ccmputing a prime subhannock parse of a proper

program is equivalent to canputing the triconnected components of a

biccnnected multigraph whose vertices have at most degree three. 0

Let us conclude this section by considering the relationship between

the parses of proper programs produced by our method and those produced

by the algorithm of Gannon and Hecht.

Cannon and Hecht analyze proper programs in terms of prime subprograms,

which are defined as non-trivial subhammocks that are either (i) maximal

sequences of function nodes or (ii) do not properly contain any non-trivial

subhwmiock. The prime subproram prsin of a proper program is accomplished

by identifying its prime subprograms, replacing each of them by a single

function node, and repeating the process on the resulting proper program.

Figure 6.14 shows the prime subprogram parsing of the proper program of

Figure 6.12.

180

*l r i •



I --

S-!

II
- II

' aI|

kd

Figure 6.14i. Parse of the proper program of Figure 6.12 by
prime subprograms. At each stage the prime

subprograms are identified by dotted boxes.

181



Let us consider prime subhammock parses of proper programs in

vhich:

(i) following every replacement of a prime subhamock whose

corresponding component of N(H) is a bond or a triconnected

-Ts*h-we immediately e~imlz Ate either its entry or its exit

by a series reduction, as shown in Figure 6.15; and in vhich

(ii) we postpone the elimination of any vertex of a polygon (except

those eliminated in (i)) until every pair of consecutive

vertices on the polygon are Joined by a single edge, at which

point we eliminate them all "at once" (so to speak) by series

reductions.

From a prime subhammock parse that satisfies these restrictions, one

can trivially obtain a proper program parse by grouping the prime

Ssubhammock reductions. Conversely by interpreting each prime subprogram

reduction as several prime subha-mock reductions, one can obtain a prime

subhammock parse from any prime subprogram parse.

We can use this basic equivalence of the two parsing methods and the

fact that a proper program with n vertices can have at most O(n) edges

(due to the degree reduction of its vertices) and conclude this section by

stating the following theorem.

Theorem 6.3. The triconnected components algorithm can be used to obtain

a prime subhammock parse (or a prime subprogram parse) of a proper program

having n vertices in at most O(n) steps.

182

I



-- ----- ...

!x x (O Y)1
iY

Figure 6.15. Interpretaticn of the replacement of a prime

subprogram S that is either a bond or a

triconnected graph by a single function -ode

as a two step process of prime subhanock

replacement.

185



6.4 Parsing Structured PRorMs.

Structured progreming is the name given by Dijkstra ([DAH 723) to

a progr iing methodology he proposed aimed at establishing a close

relationship between the tasks of writing a program and proving its

correctness. Dijkstra's apyroach to this problem was to restrict the

programmer to the use of a sm=ll set of simple constructs mhen writing

a program.

Although the name "structured programming" has become fashionable

and has been used to define many different programming techniques, we will

employ it in its original sense. We will say that a hmmocik is a structured

program if it can be generated from the pseudo-hammock of Figure 6.16(a)

by repeated "expansion" of any vertex v such that

in-degree(v) a out-degree(v) - 1 into one of the hamocks of Figure 6.16(b).

(We have refrained from calling the graph of Figure 6 .16(a) a hammock

because it does not have distinct start sand end vertices.) An example

of the generation of a structured program is shown in Figure 6.17.

All the hammocks shown in Figure 6.16(b) with the exception of the

one labelled case-of are proper programs, therefore all structured programs

built with -hese constructs will be proper programs as well. it is therefore

not too surprising that -- even if one uses the case-of construct --

structured programs share with proper programs the properties that allowed

us to parse them using a simpler version of the general prime subhammock

parsing algorithm. In particular:

Lemma 6.5. Let H be a structured program. N(H) is biconnected.

Proof. (See Appendix C.] CD

184



- IF

I (Ia)

(b)....

if - then if - then - else repat - wtle - do case - of

Figure 6.16. Definition of structured programs.

The huamnocks of part (b) are nased by the

progrwm constructs fro wihch they originate.

185



* I--

t)5

I :

1 4,

Figure 6.17. Construction of a structured program. At each step

S1i86
&.



K

However, structured programs allow us to simplify the prime subhunmock

parsing algorithm even further than proper programs did, mainly as a

consequence of the following.

Lemma 6.6. Let H be a structured program. N(H) can be reduced to a

double bond by a sequence of series and parallel reductions that do not

involve the return edge.

Proof. (See Appendix C.-] ]

Basically this lemma tells us that N(H) is a TTSP network with the

edge (a,w) being its return edge. (Note however that this does not

mean that H is a TTSP multidigraph!) The moot important consequence
I

of this fact for our purposes is that we do not need to use the triconnected

components algorithm to obtain the decomposition tree of N(H) if H is

r- structured program. Instead, Algorithm 4.2 (modified to work on

iundirected graphs) may be used. This replacement does not improve the

ar,1ptotic bound on the number of steps needed to parse a h mmock, but

alloJ.. che use of a much simpler program.

It should be noticed that programs whose control flow graph is a

structured program are likely to be very well suited to Rosen's approach

of obtaining structural information during their syntax analysis.

Therefore, even though the prime subhasmock parses of structured programs

are very simple to obtain, as we have seen, there may well be better ways

of analyzing their flow of control.

187



Chapter 7. Summary of Results and Open Problems.

In our opinion these are the main results contained in this thesis

"ranked (loosely) in order of iportance:

1 -- An algorithm to recognize the class of GSP digraph in a linear

number of steps (Chapter 5).

2 -- An approach to the structural analysis of flow graphs suitable to

be implemented to run in a linear number of steps using the triconnected

components algorithm (Chapter 6).

3 -- A unified view of the theory of TT networks and the classical results

about TTSP networks from an algorithmic point of view by relating

them to the theory of triconnected decomposition of biconnected

graphs (Chapters 3 and 4).

During our presentation of these results, a number of problems were

discussed briefly only from the point of view of our immediate goals.

Several of these problems are interesting on their own and probably

merit further study. The list that follows contains our suggestions

for further work derived from our results:

I -- The use of the unique decomposition trees of MSP, TSP, and TTSP

digrajhs to solve the subgraph isomorphism problem for these classes

of digraphs. This problem seems to lead directly into several

:2 interesting generalizations of the subtree isomorphism problem that

are -- as far as we know -- unsolved.

2 -- The generalization of the method employed to perform the transitive

reduction of GSP digraphs to produce the transitive reduction of

"k-dimensional orders.

188

I'



-. The design of an efficient algorithm that uses the structural

information produced by the prime sUbhammock parse of a hammock

to perform the global flow analysis on it.

S- - The design of an algorithm that parses proper programs in linear

time without using the general triconnected cumponents algorithm.
(In other words., find a simplified triconnected components algorithm
that works for biconnected multigraphs whose vertices have degree

at most three.)

t

'189-A' j



References

[AHO 72) A. V. Aho, M. R. (arey, and J. D. tllman, "The transitive

reduction of a directed graph," SIAM J. Comput. 1, 2 (June 1972),

131-,37.

[AJ{O 761 A. V. Aho, J. E. Hopcroft, and J. D. LIman, The Design and

Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1976.

[ALL 70] F. E. Allen, "Control flow analysis," ACM SIGPLAN Notices

(Newsletter) 5, 7 (July 1970), 1-19.

(COC 70] J. Cocke, "Global comon subexpression eliminatioti, " ACM SIGPLAN
Notices (Newsletter) 5, 7 (Jkly 1970), 20-2 4 .

[DAH 72] 0. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured
Programming, Academic Press, London, 1972.

[DUF 65] R. J. Duffin, "Topology of Series-Parallel networks," Journal of

Math. Analysis and Applications 10, (1965), 303-318.
[EVE 76] S. Even and R. E. Tarjan, "Computing an at -numbering," Theoretical

Computer Science 2, (1976), 334-344.

[FRE 78] G. N. Fredrickson, personal communication.

[GAN 77] J. D. Gannon and M. S. Hecht, "An O(n3 ) algorithm for parsing

a proper program into its prime subprograms." (Manuscript.)

[GRA 76] S. L. Graham and M. Wegman, "A fast and usually linear algorithm

for global flow analysis," Journal ACM 23, 1 (January 1976), 171-202.

[HAR 60] F. Harary and R. Norman, "Some properties of line digraphs,"

Rendiconti del Circolo Matematico Palermo 9, (1960), 149-163.

[HAR 71] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1971.

[HAR 72] F. Harary, J. Krsrup, and A. Schwenk, "Graphs suppresible to an

edge," Canadian Math. Bull. 15, 2 (1972), 201-204.

[HARR 65] M. A. Harrison, Introduction to Switching and Automata Theory

McGraw-Hill, New York, 1965.

[HEC 72] M. S. Hecht and J. D. Ullman, "Flow graph reducibility," SIAM J.

Comput. 1, 2 (June 1972), 188-202.

[HEC 74] M. S. Hecht and J. D. Ullman, "Characterizations of reducible flow

graphs," Journal ACM 21, 3 (July 1974), 367-375.

[HEC 77] M. S. Hecht, Flow Analysis of Computer Programs Elsevier

North-Holland, 1977.

[HEM 72] R. Hemninger, "Line digraphs," in Graph Theory and Applicati.onz,

Y. Alavi, D. R. Lick, and A. T. White (eds.), Springer-Verlag,

Berlin, 1972, 149-163.

190



[HOP 72] J. R. Hopcroft and J. D. Ufli3nA, "An nt log n algorithm for

detecting reducible graphs," in Proc. Sixth Annual Princeton

Conf. on Inf. Sciences and Systems) Princeton. N.J., 1972, 119-122.

(HOP 73] J. E. Hoperoft and R. E. Tarjan, "Dividing a graph into

triconnected components," SIAM J. Comut. 2, 3 (September 1973),

135-158.

[KAS 75) V. N. Kas'Janov, "DLstinguishing hammocks in a directed graph,"

Soviet Yath. Doki. 16, 2 (1975), 448-450.

[KE 71] K. Kennedy, "A global flow analysis algorithm," Initern. Journal of

Computer Math., Section A, 3 (1971), 5-15.

(KLE 75] J. B. Klerlein, "Characterizing line dipseudographs," Proceedings

of the Sixth Conference on Combinatorics, Graph Theory, and

C•nputing, 429-442.

[Kmu 69] D. E. •Nuth, The Art of Computer Programming, vol. 1, Fundamental

Algorithms, Addison-Wesley, Reading, Mass., 1969.

(LAW 60] E. L. Lawler and G. A. Salton, "The use of parenthesis-free

notation for the automatic design of switching circuits," IRE

Transactions on Electronic Computers, EC-9 (September 1960), 342-352.

(LAW 771 E. L. Lawler and B. D. Swazlian, "Minimization of time varying

costs in single machine scheduling." (Manuscript.) A

(LAW 78] E. L. Lawler, "Sequencing jobs to minimize total weighted completion

time subject to precedence constraints," Annals of Discrete Math.,

(to appear).

[LAW 79) E. L. Lawler, R. E. Tarjan, and J. Valdes, "The analysis and

isomorphism of General Series Parallel digraphs," (in preparation).

[LIU 77) P. C. Liu and R. C. Geldmacher, "A 0(n) graph reducibility

algorithn using depth-first search." (Manuscript.)
(MAT 78] D. W. Matula, "Subtree isomorphism O(n 5 /2) Annals of Discrete

Math. (to appear).

[MGM 77] C. L. Momma and J. B. Sidney, "A general algorithm for optimal job

sequencing with Series-Parallel constraints," Tech. Report No. 347,

School of Operations Research and Industrial Engineering,

Cornell University, Ithaca, N.Y., July 1977.

[PRA 78) B. Prabhala and R. Sethi, "Efficient implementation of expressions

with common subexpressions," presented at the POPL Conference,

January 1978.

191

,,t, • • •=



S[RIO 42] J. Riordan and C. E. Shannon, "The number of tvo terminal Series

8 .Parallel networks," Journal of Math. Physics 21 (August 1942)p

[ROS 73] B. K. Rosen, "Tree manipulating systems and Church- Rosser
theorems," Journal ACM 20, 1 (January 1973), 160-187.

(ROs 77] B. K. Rosen, "High level data flow analysis," Ccmuniationas ACM 20,

10 (October 1977), 712-724.

[Sco 65] R. E. Scott, Element.. of Linear Circuits, Addison-Wesley,

Reading, Mass., 1965.

-SBV 7 4] R. Sethi, "Testing for the Church- Rosser property," Journal ACM 21,
"41 (October 1974), 671-679.

[SID 761 J. B. Sidney, "The two machine flow line problem with Series -

Parallel precedence relations," Working paper 76-19, Faculty of

Management Sciences, University of Ottawa, November 1976.

.[SMi ~3j B. J. Smith and H. F. Jordan, "Implications of Series - Parallel

,equencing rules," C•mputing 19, 3 (1978), 189-201.

.SZY T7] T. G. Szymanski and J. D. Ullman, "Evaluating relational expressions

with dense and sparse arguments," SIAM J. Camput. 6, 1 (March 1977),

109-122.

[TAR 7:1 R.- E. Tarjan, "Depth-first search and linear graph algorithms,"

S:IM J. Cm put. 1, 2 (June 1972), 146-160.

iTjAR 73] R. E. Tarjan, "Testing flow reducibility," Journal of Camp. and

_S'stems Sciences 9, 3 (December 1974), 52-55.

[TAP 75] R. B. Tarjan, "Solving path problems on directed graphs,"

Technical Report STAN-CS-75-528, Computer Science Department,

Sti-aford University (1975).

[TAP 77- R. E. Tarjan, "Complexity of combinatorial algorithms," SIAM

Reniew 20, 3 (July 1978), 457-491.

[TUT 66,] W. T. Tutte, Connectivity in Graphs, University of Toronto Press,

-' 19-66.

[WAL 181 T. R. S. Walsh, "Counting labelled three-connected and homeomorphically

irreducible two-connected graphs." (Manuscript.)

(WEI ?t. t. Weinberg, "Linear graphs: theorems, algorithms, and applications,"

in Aspects of Network and System Theory, R. E. Kalman and

N. DeClaris (eds.), Holt, Rinehart, and W..nston, New York, 1971.

[WZ: 75' L. Weinberg and P. Slepian, "Series-Parallel networks,"

TRE Transactions on Circuits CT-4, ýSeptember 1975), 290.

192



Appendix A. Graph Theoretical Definitions.

A graph G - (VE> consists of a finite set of vertices V , and a finite

set of edges E . Edges are pairs of distinct vertices; if the edges of a

graph are unordered pairs the graph is undirected and if they are ordered

the graph is directed. We will abbreviate directed graph as digraph. An

edge -- directed or undirected -- will be denoted (uv) . Note that edges

of the form (upu) have been explicitly forbidden; these edges are normally

called loops.

If the set of edges of a graph may be a multiset, that is, if we allow

one edge to appear several times, the graph will be called a multigraph.

We will, abbreviate directed multigraph as multidigraph.

If e = (uv) is an edge, u and v are the endpoints of e , vertices

u and v are adjacent, edge e is incident to u and v , and vertices

u and v are incident to e . If e is a directed edge, e leaves u

and enters v , u is a predecessor of v said v is a successor of u .

In an undirected multigraph the degree of vertex u is the number of

edges incident to u . Two edges having the same endpoints are called

parallel, and two edges sharing exactly one endpoint are consecutive. Two

consecutive edges whose common vertex has degree two are said to be in series.

In a multidigraph, the out degree of a vertex u is the nunber of

edges that leave u , and the in degree of u is the number of edges that

enter u . A source is a vertex whose in degree is zero, and a sink is

a vertex whose out degree is zero. Two edges that leave the same vertex

and enter the same vertex are called parallel. Two edges of the form

(u,v) , (vw) are consecutive. Two consecutive edges incident to vertex

v are in series if the in degree and out degree of v are both one.

193

6LH



We have used the some names for different concepts defined in directed
i• and undirected graphs. No confuasion should result from this fact because

it will be clear from the context which of the concept• is being used.

A path u, U in a multigraph (directed or undirected) is a

sequence of vertices ul,u2 ,...,un such that for any 1 < i _< n ,

(Uiil,u,) is an edge of the multigraph. The path includes the edges

(ui_l,u,) for 1 < i -< n The vertices u, and un are the endpoints

of the path. If uI w un the path is called a cycle. A path in which

all vertices are distinct is called a simple path, a cycle in which all

vertices are distinct -- except the endpoints -- !s a simple cycle.

A multigraph (directed or undirected) that contains no cycles is

called acyclic.

The lengh x path UlU 2 )....,uk is k-i . The distance between

two vertices u, v is the length of the shortest path u • v; the

distance is undefined if no such path exists.

An undirected multigraph is connected if for any two distinct vertices

u, v there is a path u = v in the multigraph. An edge e of a connected

multigraph is a bridge if there exists a pair of vertices u, v such that
! *

every path u = v includes e . A vertex x of a connected multigraph is

an articulation point if there exists a pair of vertices u, v such that

u , v and x are distinct and every path u = v includes x

A connected multigraph is biconnected if it has no articulation points,

or equivalently, if for any three distinct vertices x, u, v there is a

path u • v in the multigraph that does not include x

Two vertices x, y of a biconnected multigraph G ( (V,E) are a

separation pair if there is a partition of E into classes E1 E2' .o.,Fj

with k > 2 such that:

194

kLI



(a) two edges in the same clue belong to at least one path that does

not include x or y except possibly as endpoints;

(b) any path containing edges in two distinct clesses includes x or y

(C) ED, E,...,Ek can be merged into two disjoint sets E' and E" each

one containing at least two edges.

A biconnected multigraph is triconnected if it has no separation pairs.

The undirected version of a directed multigraph is the undirected

nmultigraph obtained by changing every ordered pair (uv) in the directed

edge multiset into an unordered pair (u,v) . A directed multigraph is

connected if its undirected version is connected, and it is strongly

connected if for any two of its vertices u, v , there are paths u = v

and v u.

A directed acyclic graph is transitive if there is an edge (u,v) in

the digraph between any two vertices joined by a path u V v . The

transitive closure of an acyclic digraph G = (V,E) is the digraph

GT = (V,ET) where ET is the minimal subset of Vx V that includes

E and makes GT transitive.

An edge (u,v) of an acyclic digraph is redundant if there is a path

u v not including the edge. This concept is not well defined for

multidigraphs or digraphs with cycles, but in acyclic digraphs redundant

edges can be identified unambiguously ([AHO 72]). A directed acyclic graph

with no redundant edges is minimal. The transitive reduction of an acyclic

digraph is the digraph obtained by removing all the redundant edges.

Two graphs G' = (V',E') and G" = (V",E") are isomorphic if there

is a one-to-one correspondence between their vertex sets that preserves

adjacency. That is, f: V' - V" and f V" - V' are both functions and

195



(u,v) sEV if and only if (f(u),f(v)) eE" • This concept can be extended

naturally to multigrayhs by requiring that if there are k edges (ulv)

in G' , there must be exactly k edges (f(u),f(v)) in G" i
Amultigraph (directed or undirected) G' a (V', E> is a subgEah

of another multigraph G a (VE> if V1 cV and E' c E . The vertices

of G' adjacent to vertices that are not in G1 are called boundary

• - of the subgrapb.

multigraph (directed or undirected) G' = (V',EIY is an embedded

subgraoh of another multigraph G = (VE) if we can obtain G' from G

by a sequence of the following opeA •tions:

(a) removal of an edge;

(b) replacement of two edges in series (u,v) , (v,w) by a single

edge (u,v)

For any subset S of the vertex set of a multigraph G , the induced

subgraph of S is the maximal subgraph of G with vertex set S . The

implicit subgraph of S is the induced subgraph of S in GT , the

transitive closure of G

A tree is an undirected graph that is connected and acyclic. Vertices

of a tree are also called nodes.

A rooted tree is a tree with a distinguished vertex called the root.

In a rooted tree the vertices of degree one other than the root are called

leaves and all other vertices internal nodes. In a rooted tree there is a

unique simple path from the root to any other vertex v ; the vertices of

this path are the ancestors of v , and the ancestor of v adjacent to v

is its parent. If u is an ancestor of v , v is a descendant of u

if v is the parent of u, u is a child of v.

196

i i i i i • i i ! ! II i iHongI



A subtree is a connected subgraph of a tree. In a rooted tree, the

subtree rooted at v is the minimal subtree that contains v and -11 its

descendants. A rooted tree is ordered if there is a total order in the

set of children of any node.

A binary tree is a rooted ordered tree in which every internal node

has exactly two children called the left and riLgh children. The left (right)

subtree of an internal node v of a binary tree T is the subtree of T

rooted at the left (right) child of v

A subgraph G, of a multigraph G is a spanning tree of G , if G1

is a tree and includes every vertex of G •

A graph G = (V,E) Is complete if E = VxV . The complete graph I
on n vertices is unique and. it is normally denoted K.

A digraph G = (V,E) is complete bipartite if we can partition V I
r I

into two subsets, H and T, such that (a) HrT , (b' HUjT =V,

and (c) E = H x T . The set H is called the head and T the tail

of G.

The line digraph ([HAR 60], [HEM 73), [KLE 75)) of a muvltidigraph

G = (V,E) is the digraph L(G) = KVL, EL) constructed ar follows:

- for each edge eEE there is a vertex I(e) eVL ;

-,for each tair of consecutive edges el, e 2  in G there is an

edge (i(elI,1(e,)) in L(G)

A multiple bond, or simply a bond, is a multigraph consisting of two

vertices joined by one ir more edges. A bona with two edges will be called

a double bond, - bond with three edges a triple bond.

197



A ,*g Ais a connected gron with A vertices and k. edges, the

edgee forming a sizVle cycle including all the vertices. Polygons are

named in the usual manner: triangle, quadrangle) pentagon, etc., according

to the number of edges they contain.

198 '1

* I

i ~198,,



Appendix B. The Efficiency of Algorithms.

We will study the efficiency of our algorithms by studying the ]
number of steps that an abstract machine needs to execute them. This

number of steps will be ccosidered a function of some size measure of

the input of the algorithm.

As an abstract mriel of the actual machines on which the algorithms

will run we have chosen the RPand Access Machine (RAM) (a detailed

odescripti of this machine am be found in Chapter 1 of [AHO 76]). We choose

the RAM because it is a better model of most present day computers than

eosrt of the other abstract machines used in computation theor76. In a

RAM nW logical, arithmetical or control operation takes one step but

the numbers it manipulates are restricted in absolute value to same

constant times the size of the input of the algorithm. This restriction

on the size of the numbers manipulated corresponds to the fixed word size

of most digital computers.

The inputs to all our algorithms are graphs or multigraphs. The

size of a graph or multigraph will be normally measured by the number

of elements in its vertex and edge set.

To simplify the derivation of the number of steps taken by a RAM

running. an algorithm we will discard constant factors by using the standard

"big 0" notat.ion. We say that a function f(x) is O(g (x)) if for same

"constants k. and k2  If(x)I < kljg(x) I+k 2  for all values of x

Aa an example of the use of this notation, if S is the size of the

inpuit of an algorithm, the absolute value of the numbers that the RAM

may manipulate in a single step when running the algorithm can be expressed

as O(s).

199



oApendix C. Prooft of Liwas and Theoreb.

proof, n. Evidence having a shade

more of plausibility than of

unlikelihood. The testimony of

two credible witnesses as opposed

to that of only one.

- A. Bierce (The Devil's Dictionary)

This appendix provides the proofs of most of the results of the main

body of the thesis. In order to avoid repetition we have proved first a

few lemmas that are then referenced in later proofs.

Lemma C.l. A triconnected graph G with at least four vertices contains

K-4 as an embedded subgraph.

Proof. We start by proving that there is a simple cycle of G that

* contains four or more vertices.

Select two adjacent vertices u, v of G . There has to be a path

u v v in G that does not contain (uv) or that edge would be a bridge.

If this path contains three or more edges we have found the desired cycle.

Otherwise we have found a triangle x, u, v in G . In this case we

proceed by selecting another vertex y of G : there must exist two

paths a: y u u not including x or v and b: y. v not including

x or v in G since it is a triconnected graph. Let w be the last

vertex in a that is also in b (y is a oandidate): there are disjoint

paths w m u and w a v so we can repeat the argwment given for y

for vertex w and we conclude that G has a simple cycle with four

vertices.

200



El iii-i
STherefore let C be a simple cycle of G that contains four or

more vertices. We find two pairs of vertices x1 , x2 an" 'y

that split C into four pleoes Ci C2 ,C 3 and C4 as shown in

Figure C.l(a). Because 0 is triconnected, there must exist a path I

k: x, X2 in G that does not include yl or Y2 , Let xi be

the last-vortex in kt that lies on CIor C4 and xithe first

vertex on k that lies in C. or C . Clearly the section of k
2 3

between xj and xý does not contain any vertex of C except xj
or x2 . Similarly, there are vertices yi and yý lying in C and

a path y * . that does not include any vertex of C except A

and and such that yi is in C, or C2  and * is in C. or Ch.

We therefore have the situation of Figure C.l(b) in which C, C, C; ,

and C4 form the cycle C and the paths C and C9 do not contain

S ny ver'tices of C (except obviously x t 0 yi Y, and Yý )

If the paths Ci and C' are disjoint, then we have clearly found

an embedded K4 in G . Otherwise let z be the vertex of % closest

to yi that belongs also to C, ; we have the situation of Figure C.l(c)

in which Ci is the section of Cý between xi and z and C6 is

the union of C' and C' and once again we have found an embedded
2 3 K

in G.

201



Y,--- - -

--- - - -- I-

rA

:1 1%

<C4>

Y2I

Il C'
Ic

(b) 'I1I.o

2C',

C2 l

Figure C. 1

202



Lem C.2. Let G be a bicmmected multigaph and S a triconnected

component of G *S is an embedded subgraph of G

Proof. Merge the triconnected components of G as much as possible

without merging S with any other component. The result is a set of

multigraphs {l, 0G2,G3,...,GkS) where each of the multigreahs G,

contains only one virtual edge (xi,yi) that it shares with S .A

the multigraphs Gi are biconnected since they are obtained by merging

some triconnected components of G (which are biconnected) and merging

obviously preserves biconnectivity. Therefore there is a path x * Y

in Gi that does not include the virtual edge (xi,yi) (otherwise

(xi,Yi) would be a bridge in Gi ) and this path contains no virtual

edges. Thus for any virtual edge (a,b) of S there is a path a ,* b

in G and all such paths are disjoint since each is contained in a

different Gi and every actual edge of G appears in just one triconnected

component. We therefore conclude that S can be obtained from G by

removal of all the edges not on such paths followed by contraction of

each of these paths to a single edge by series reductions.

Lemma C.3. A biconnected multigraph having a triconnected component that

is not a bond or a polygon contains K4 as an embedded subgraph.

Proof. Let G be the biconnected multigraph and G' one of its

triconnect, i components that is a triconnect'ed graph with at least four

vertices. According to Lemma C.2, G' can be obtained from G by

removal of edges and series reductions, and according to Lemma C.1,

Scan be cbtained from G' by a sequence of the same operations

so we conclude that K4 is an embedded subgraph of G .

203

*. . . . . . , , , |I-

I I I l i | ' ' . . . . .



I I
(Note: The transitivity of the embedded aubgreoh relatlo implied

by the proof above is also used in a few other places without being

formally proved.

Lemma 3.2. Every subnetwork of a firmly connected TT network is firmly

connected.

Proof. Let NI be a subnetwork of a firmly connected TT network N

Sand let t1 and t2 be the terminals of R•

If N1 does not contain any internal vertex, the proposition is

trivially true. Otherwise let v be an internal vertex of N1 . Because

v will also be an internal vertex of N , there is a terminal path p in

¶ N that includes v . Since p includes at least one internal vertex of

NI and is a simple path it must include the only two boundary vertices

tI and t2 of NI: one being the first vertex of N1  in the path and

the other being the last. The section of p between tI and t 2  is a

terminal path of N, that includes v

Therefore for every internal vertex of N, there is a terminal path

in N1 that includes v and N1 is firmly connected. C

Lemma 3.3. A nontrivial indecomposible TT network is either a triangle,

a triple bond, or a triconnected graph with at least four vertices.

Proof. Let N = (V, E) be a non-trivial, firmly connected, undecomposible

TT network. Assume that N has a separation pair x, y , that is, we can

find two subgraphs of N , N6 - (Vo0 Eo) and N- - (VI,EI) such that

VuVo - V , VnV) . (x,y) , E0 U . E , Eo0 n E , EJJj1 > I

and IIELel > 1 . et N' contain the return edge of N . The TT networks

20,



No (V& E U {(x, y)] vith the return edge of Nf as its return Odge.,

and N, . (V1 , p EU f(x,Y)y) with (x,y) as its return edge, form a

decomposition of N . This contradicts our assumption that N is

"undecamposible so we have to conclude that N is tricoanected. Because

N is also non-trivialp it must contain at least three edges. The only

multigraphs that satisfy these conditions are triple bonds, triangles)

and triconnected graphs with at least four vertices.

Lemma 3.4. Let N be a firmly connected TT network and N1 a non-trivial

proper subnetwork of N with boundary vertices x and y

(a) x, y is a separation pair of N

(b) There is at least one decomposition of N in which N1 is a

component.

Proof.

(a) The vertices x, y are a separation pair of N because we can split

its edge set into the edges that belong to N and those which do

not. Each of these sets will contain at least two edges since N1

is non trivial and is a proper subnetwork of N and any path

including edges in both sets must contain x or y since they

are the only boundary vertices of N,

(b) The proof of Lemma 3.3 given earlier proves this as well.

Lema 3.5.

(a) The TCG of a biconnected multigraph is a tree.

(b) No vertex of a TCG corresponding to a bond (polygon) can be adjacent

to another vertex representing a bond (polygon).

2

gi 205



Ca) Let G be the biconnected multigarh. I
For any set of split components GIG2,...VGk or G j, we define I

tbe Split Component Graph (SCG) associated with the set as having:

(i) a vertex for each split component,

(ii) an edge joining two vertices if and only if the split components

corresýpon.ing to the vertices share a pair of edges generated in

the same split operation.

Clearly the TCG of any biconnected multigraph G can be obtained

from ay SCG of G by "shrinking" all the edges of the SCG that join

vertices associated with two triangles or two triple bonds. Because

shrinking edges does not create or eliminate cycles or isolated

vertices, and the TCG is unique, the TCG of G will be a tree if

,�I*a:y SCG of G is a tree. 2

We will now prove that any SCG of a biconnected multigraph G

is a tree by induction on the number of edges of G

If G has only three edges it cannot be split, so its SCG is a

trivial tree consisting of a single vertex and no edges. Assume that

the proposition is now true for any biconnected multigraph with fewer

than m edges, and let G have m edges. For any SCG, S , of G

consider the first split operation performed to generate it; this

operation produced two split graphs of G , G1 and G2 , each one

with fewer than m edges. Clearly S can be constructed from some

SCGs, S1 of G1  and S2  of Q , by joining them by a single edge.

The graphs S1  and S2  are trees by induction hypothesis, so S will

also be a tree since it will be connected and any simple cycle of G

has to be a cycle of either S1 or S2

206



(b) If two such adjacent polygons or bonds can be found, an additional

merge operation would produce a new set of triconnected components

contradicting Theorem 3.2. C

Lama 1.6. A TT network is Series Parallel if and only if it can be

reduced to a double bond by an appropriate sequence of series and

parallel reductions.

Proof. We prove first that if a TT network N is Series Parallel, it

is reducible to a double bond by induction on the number of triconnected

comvponents of N

If N has a single triconnected ccmponent, N is either a polygon

or a bond and the proposition is trivially true. Let us assume that the

proposition is true for any TT network with fewer than k triconnected

components and let N have exactly k components. Let us consider the I
TCG of N as a rooted tree with the root being the vertex that corresponds

to the triconnected component of N that includes the return edge, and

select any leaf of this tree. The triconnected component of N associated

with that vertex is a polygon or a bond (since N is ITSP) and contains

exactly one virtual edge (since it is a leaf of the TCG of N ). We can

thus reduce this component to a double bond consisting of its virtual

edge plus another edge arising from the reduction of all the other edges.

The reductions identified in this manner, if applied to N , result in a

T• network N' that can be obtained by merging all the triconnected

icomponents of N except the one associated with I . Thus N' has k-i
components and is TTSP (since all its triconnected components are also

triconnected components of ) and thus can be reduced to a double bond.

j 207



Since N' was obtained from N by series and parallel reductione, we

conclude that N can be reduced as well.

We now prove that if N is not a TTSP network, it cannot be reduced

to a double bond by series and parallel reductions.

If N is not TTSP, at least one of its triconnected comeponents is a

triconnected graph with four or more vertices. Thus, according to Lemma C-3,

N contains as an embedded subgraph. This means that there ar four

vertices of' , such that antwo of them are

connected by apath XC X Xi (l < i< j 4) mnd all sixsuch paths

are disjoint. Because three of the paths are incident to each vertex,

and the paths are disjoint, none of these vertices can be immediately

deleted by a series or parallel reduction. Furthermore, series and

parallel reductions do not destroy paths between vertices that are not

S' removed. This implies that any multigraph obtained from N by series

or parallel reductions will contain K4 as an embedded subgraph and

therefore that N cannot be reduced to a double bond. C3

Lem37. A firmly connected TT network is Series Parallel if and

only if:

(i) it is a double bond, a triple bond, or a triangle,

or (ii) it has a decomposition whose core is a triple bond or a

triangle and in which all the components (there are at most

two) are TTSP networks.

Proof. We show first that if a TT network N satisfies (i) or (ii),

it is a ?TISP network.

If N satisfies (i) it is obviously TTSP since the set of its

triconnected components contains only N itself. Otherwise let NO ,

208



N, N2  be the deoafPosition of N postulated by (ii) (there may be

only one cacpnent but that fact is irrelevant for our argument).

Because of the relationship between the operations of decomposing a

TT network and splitting a biconnected multigraph given by Lemma 3.4:

a set of split components of N can be obtained by the union of any

three sets of split components of N0 , N1 I and N2 p respectively.

Any set of split components of N1 or N2 contains only triangles

and triple bonds since both networks are TTSP, and the set of split

camponents of N. contains only No itself (a triangle or a triple

bond). Consequently we have found a set of split components of N

which contains only triangles and triple bonds. This implies that the

triconnected components of N are only polygons and bonds and thus that

N is TTSP.

We prove now the implication in the other direction: if a TT network

N is TTSP then it satisfies (i) or (ii).

If N has fewer than four edges and is TTSP it must satisfy (i).

If N has more than three edges, consider any set of split components

of N : because N is TTSP, all the members of the set are triangles or

triple bonds.

Consider now the decomposition of N whose core is the split component

that includes the return edge and whose components are the TT networks

obtained by merging all the other split components among themselves as

much as possible and selecting as return edge the virtual edge that the

multigtaphs thus ootained share with the core. (Cnce again this decomposition

may have a single component but the argument does not depend on this fact.)

209

11Ki i r



This decomposition of N has a core that is a triangle or a triple bond

and components that are TTSP networks since they have a split component

set with only triangles and triple bonds, and therefc-'e N satisfies

(ii). C

Lama 3.8. A firmly connected TT network is Series Parallel if and .-

only if it does not contain K4  (the complete graph on four vertices) J

as an embedded subgraph.

Proof. We prove first that if N is a TTSP network it does not contain

% as an embedded subgraph. We do this by showing that the triconnected
I

components of N do not contain as an embedded subgraph and that

the operation of merging biconnected multigraphs preserves this property.

If N is TTSP, all its components are polygons or bonds, therefore

no component of N contains as an embedded subgraph.

Assume now that G = (V,E) is the result of merging the biconnected

multigraphs G1 = (V1, El> and G2 - (V2 ,E 2 ) that share the virtual edge

(xy) , and that neither GI nor G. contains K4 as an embedded subgraph.

By definition of merging: V = VIUV2 , (x,y= VI nV 2 , and

E (EI- (x,y)]) U (E 2 -[(x,y))) • Thus there is a path u =* v in G

that does not include x or y only if both u and v belong to GI

or both belong to G We prove that no embedded K4 exists in G by

* showing that there is no way to distribute four vertices x3, x 2 I x3

and x4 between 0I and G2 so that there are six pairwise disjoint

paths X 1 ** xj , <  i < j < 4 , in G.

Clearly not all four vertices can be in either GI (or G2 ) or by

the definition of merging G1 (or G2 ) would contain K4 as an embedded

210

_I_



3ubgraph. Let xl ,and jc2  3ý and X4 he i G,;then all

threep aths ,cndX 2 , xW& x3 , xad contain x or y or

both so they cannot be pairwise disjoint. Similarly if two vertices

belong to • and two do not, there would be four of the paths that

include x or y or both so once again they could not be disjoint.

Because of the symmetry between G and G2 this covers all possible

ways of distributing the four vertices between the two graphs and we

conclude that G does not contain Y4 as an embedded subgraph.

We now prove that if N is not TTSP) then it contains K4 as an

embedded subgraph.

If 1 is not TTSP, at least one of its triconnected components is

a triconnected graph with four or more vertices. Thus according to

Lemma C.1 that component contains K4 as an embedded subgraph and according

to Lemma C.3 so will N.

Lemma 4.1.

(a) Let G be a TTSP multidigraph. The TT network obtained by adding

a return edge (joining the terminals of G ) to the undirected

version of 0 is a TTSP network.

(b) Let N be a TTSP network. The multidigraph obtained by assigning

directions to the edges of N as described earlier end deleting

the return edge is a TTSP multidigraph.

Proof.

(a) We use induction on the nunber of edges of G

If G has one edge the rroposition is obviously true since

N(G) -- the TT network obtained from G by the ol on described

in the lemma -- is a double bond.

211



Afeffe now that the propouition is true for all TPSP mltidgra~

with fever than k edges and that G has k edges. The TTSP

multidigraph G Is formed by the two terminal series or two terminal

parallel composition of two TTSP multidigraphs G1 and G2 , each

having at most k-i edges so that N(G1 ) and N(G2 ) are TTSP

networks by induction hypothesis. But clearly N(G) has a decomposition
whose comiponents are N(G1 ) and N(G2 ) and whose core is either a

triangle or a triple bond (depending on the operation used to construct

G frm 01 and G) therefore by Ta 3.7 N(G) is a TTSP

network.

(b) We use once again induction on the number of edges of N and the

close relationship between two terminal series (parallel) compositions

and decompositions whose cores are triangles (triple bonds). I
If N has fewer than four edges it is either a double bond,

a triple bond, or a triangle, and the proposition is clearly true

since M(N) -- the multidigraph produced by the process described

in the lenmma -- consists, respectively, of a single edge, two edges

in parallel, or two edges Ln series.

If N has more than four edges, according to Lemma 3.7, it has

a decomposition whose core NO is a triangle or a triple bond and

whose conponents are TTSP networks 11 and N2 . Each of the

components has fewer edges than N so by induction hypothesis

M(NI) and M(N2 ) are TTSP multidigraphs. But M(N) can clearly

be constructed by the two terminal series or two ternmLnal parallel

composition (depending on whither No is a triangle or a triple bond) 4

of M(NI) and M(N2 ) , therefore we conclude that M(N) is a TTSP

multidigraph. .7

212

Li. • 1 F I | n u I l I i i I nm mi n i q | i i m • •



SLezma 4.2. TW'm multidigraphs are acyclic.

Proof. We prove the proposition by inductionj showing that the two

terminal series or two terminal parallel composition of two acyclic

multidigraphs is an acyclio multidigraph.

If G is the two terminal series coosition of and G ,there

is no path u *v in G such that ueG2  and v ui; since the only

'cmmn erexto01 an G is a souce of G2 'and asink of G 1.
If a cycle exists in G that is not contained entirely in or G2

such a path would also existj.so every cycle of G has to be cotained

entirely in G.' or G2 and therefore G has no cycles.

The same argument can be repeated when G is the two terminal parallel

composition of G1 and G, to complete the prcof. :

Lemma 4.3. A multidigraph is ¶ITSP if and only -If it can be reduced to

a single edge by an appropriate sequence of Series and Parallel reductions.

Proof. WRe prove that if G is a T.SP multidigraph it can be reduced

to a single edge by induction on the number of edges of G

If G -has one edge the is obviously true; otheh-ise let G

have k edges, By definition G can be constructed by the two terminal

series or two terminal parallel composition of two TTSP digraphs G1  and

G , each one having at most k-i edges. By induction hypothesis, there

are appropriate sequenceE of serias and parallel reductions that transform

and G2 independently into a single edge. Because a reduction that

creates an edge (u,v) does not depend on what is outside (u,v) but

only on what was between the two vertices, the two sequences of reductions

that transform 1 and G2  into single edges can be applied to G to

213

I
-+ . ' : "•4¢ .11' " J. . .



transform it into two edges iu, series' or two edges tn paallel (Aqsadn

on what operation constructs G out of 01 and G2 2 In eith.ca ose

one more reduction transforms G into a single edge.

"We now prove the implication in the other direction using the same

method.

If G has a single edge it obviously has to be a -TTSP multidigraph.

Otherwise let G have k edges and be reducible to a single edge.

Consider the last step in the reduction of G : that will be a reduction

of two edges el and e2 , either in parallel or in series, to a single

edge. Each of these two edges has clearly arisen by the reduction of two

subgraphs of G , G1 and G2 , to a single edge. Each of the subgraphs

can have at most k-i edges, so by induction hypothesis both are TTSP

multidigraphs. Because series and parallel reductions do not create or

destroy sources or sinks, the source and sink of G1 are the endpoints

of e1  and the source and sink of G2  are the endpoints of e2 . Thus

G can be constructed by two terminal series (if e1  and e2 are in

series) or two terminal parallel (if e1  and a2  are parallel) composition

of G1 and G2  and is a TTSP multidigraph. 0

Lems . There is a branch-in vertex of GE that is a successor of

a branclh-out vertex.

Proof. We start our proof by showing that GE contains one branch-out

vertex. (Pemember that GE is acyclic, has a single source and sink, and

each of its vertices is a branch-in, a branch-out, or both.)

If the source of GE has two distinct successors, we have found our

branch-out vertex. Otherwise the source has a unique successor v , This

214!



-ve rVOtx cannot be a bratch-in or 0E would Cotain a cycle so it must be

a branch-out.,H

We now cauplete our argument by showing how fram any non-empty set. S

of branch-out vertices of GE either (i) one of the mmbers of the set

has a branch-in successor or (ii) we can find a larger set S' of

* branch-out ver'tioes of GE

The set S is defined using S by: S'- fxj3.y~yeS and (y,x)GE .

If no element of S' is a branch-in vertex, ','S' > 2,'S since each

element of S has at least two successors.

Because the number of branch-out vertices of GE is bound by the

total number of vertices, the process of finding ever larger sets of these

vertices cannot be repeated indefinitely in a finite graph end our

;orposition must be true.

Lemma 5.1.

(W) MSP, GSP, and TSF digraphs are acyclic and contf.in ric multiple

edges.

(ii) MSP digraphs are minimal.

(iii) TSP digrarhs are transitive.

(iv) The transitive closure of any MSP digraph (and therefore of any

GSP digraph as well) is a TSP digraph.

(v) The transitive reduction of any TSP digraph is an MSP digraph.

Proof. All the propositions of the lema can be stated as properties of

the edges of the digra;hs and then proved by induction showing that the

operations that introduce new edges preserve the ;roperty. As an example

we prove rroiosition (ii) by showing that no edge of an MSP digraph is

redundant by induction on the number of vertices of the digraph.

215



r

If the MWP digraph contains a single vertex, the proposition is

trivially true; otherwise let the proposition be true of all MSP digraphs

with fewer than k vertices and let 0 - (V, E) be an 1BP digraph with

exactly k vertices constructed by minimal series or parallel composition

of two MSP digraphs G1 - (V,,E1 ) and (V2,E each one having at

most k-i vertices.

If G is the parallel composition of G1 and G2 the proposition is

true because no edge of G1 or G. is redundant by induction hypothesis

and every edge of G is an edge of G, or an edge of G2 since no new

edges are introduced in a parallel composition.

If G is the minimal series composition of G and G2 , we can argue

in the same manner for any edge of G that belongs to G, or to G

therefore we only have to show that the edges of E-(EIUE2) are not

redundant. Let e a (x,y) be one such edge. By definition, x is a sink

of G and y is a source of G2 . Assume that e is redundant, that

is, there is a path p: x • y in G that does not includ4 e . Let

(xu) and (v,y) be the first and last edges on p ; because x was

a sink of 1 u must belong to G2 ,and because y was a source

of G2 , v must belong to G1 . We have therefore found a path u . v

in G in which ucG, and v601 ; but this is absurd since no edge

of G that leaves a vertex of G2  enters a vertex of G1 , therefore

we must conclude that p does not exist and that e is not redundant.

Lem_ a 5.2. Let G1 and G2 be two multidigraphs having a single source

and a single sink. Let GTTS and GTTP stand respectively for the Two

Terminal Series and Two Terminal Parallel compositions of G1 and 02 P

and let L(G) indicate the line digraph of digraph G (see Appendix A

for definition).

216



(i) L(Q 8S) i a theluinlmil series composition of. L(03) -and L(%)

(ii) L(G•e) is the pe.lle. OMpo0ition of L(01 ). -and :L(V)

Proof. We prove proposition (i) by showing that for aw two edges

elcG1 and e2 G2 ; there is an edge (f(el),i(e2 )) in L(GTTs)

if and only if 1(el) was a sink of L(G1) and I(e2) a source of

1 1 2.L((3)•

The vertex i(el) of L(GI) is a sink if and only if e1  enters

the only sink of G1 , because if el = (xy) and y is not a sink,

there must be another edge e . (y,z) consecutive with e, in G1

and there would be an edge (I(el),1 (e2 )) in L(GI) . By a similar

argument we can prove that I(e 2 ) will be a source of L(G2) if and

only if e2  leaves the only source of G2 .

By definition there will be an edge (i(e 1 ),I(e2 )) in L(GTTS)

'4if aid only if the edges e1  and e2  are consecutive in GTTS .

Because e1 eG and e2 6 G2  the only case in which they would be

consecutive is when e1  enters the sink of G and leaves the

source of G. , and in that case I(e1 ) is a sink of L(GI) and t(e 2 )

a source of L(G 2 ) and proposition (i) is proved.

Proposition (ii) can be proved by a similar but simpler argument

that we omit. :1

Lemna 5.3. Let G be a multidigraph with one source and one sink.

G is TTSP if and only if L(G) is an MSP digraph.

Proof. Conside: the following one-to-one relationship between the members

of the two classes of digraphs:

217



Sthe TT.... .tidigraph em-i.ting of a single edg e o•responds to

the MSP digraph with a single vertex; and

-- the TTSP multidigraph resulting from the two terminal series (two

terminal parallel) composition of the TTSP multidigraphs G1

and G , corresponds to the MSP digraph constructed by minimal

series (parallel) composition of the NB? digraphs that correspond

to G, andG2

The relationship of Lemna 5.2 can be used to prove by a straight-

forward inductive argument that for any TTSP multidiraph G , its

corresponding MSP digraph G' is such that L(G) G' G Thus G will

be TTSP if and only if L(Q) is MSP. C]

Lemma 5.6.

(i) CBC digraphs are minimal.

(ii) The bipartite coniponents of a CBC digraph are unique.

(iii) Any MSP digraph is CBC.

Proof. (1) Let G be a C3C digraph. Assume that edge (uv) is

redundant, that is, there is a path p: u =* v in G that does not

include (u,v) , and let Bi be the bipartite component of G that

includes (u,v) . Let (ux) and (y,v) be the first and last edges

of p respectively (p has to contain at least two edges since G is

a digraph). Because h(y) a t(x) - Bi ) there must be an edge (y,x)

in G . Now, if x .y that edge would be a loop and G would not be

a digraph, and if x $ y , G would contain a cycle (formed by the

"section of p between x and y and the edge (y,x) ) and it wouldn't

be CBC either according to our definition. We therefore must conclude

that G does not contain redundant edges.

218



(ii) Let G be a CBC digraph having two distinct sets of bipartite

components:. S.a [B,,B 2 ...,Bk and St . (Bj..%p...,IB; We will show

that the two sets are really identical by proving that for any comonent

B of S , there is a component B' of S' such that Bi n B.

Let (uv) be an edge of Bi The head of Bi contains exactly -

all the predecessors of v and its tail contains exactly all the .... .....

successors of u . Now let B' be the component of S' including (u~v)

Clearly the head and tail of B3 must be identical to those of Bi and

since both Bi and B are complete bipartite digraphs, Bi . B.

(iii) Let G be an MSP digra•ph. Each edge of G was introduced by

a minimal series composition during the construction of G using the

rules of Definition 5.1 and the minimal series composition of GI and G2

SI introduces a set of edges that form a complete bipartite digraph whose

head is the set of sinks of G, and whose tall is the set of sources

of G2 . Let these complete bipartite digraphs BIB 2 ,...,Bk , be the

components of G . Clearly each edge of G belongs to exactly one

component. Furthermore, each vertex u of G, that is not a sink,

belongs to the head of at least one subgraph Bi , and it could not

belong to the head of more than one since after the composition that

creates Bi , u would not be a source anymore so no new edges leaving

it could be introduced ever after. The same reasoning proves that each

vertex of G that is not a source belongs to the tail of exactly one

of the components. This is enough to guarantee that G satisfies

Definition 5.3 and is therefore CBC. -

219



- L(L'(G)). L for any 0D0 digraph.

Proof. By definition, for every vertex x of G that is not a source

or a sink, there is an edge e. a (t(x),h(x)) in L 1I(G) j and for each

edge ex of L- (G) there will be a vertex I(ex) in L(L' (G)) . We

prove that G and L(L 1(G)) are isomorphic by proving that there is an

edge (uv) of G if and oWly if there is &n edge (1(eu)•(ev)) in

L(L1 (o))

Let (u,v) be an elge of G and let Bi be the bipartite

comrponent oft G that includes (u,) .Clearly, h(u) = t(v) B B

and therefore the edges eu . (t(u),h(u)) and ev - (t(v),h(v)) are

consecutive in L '(G) . As a consequence of these edges being

consecutive, there will be an edge (1(eu),I(e )) in L(L-1 (G))

and e. will not be consecutive in L'(G,) and there will be no edge

(f(eu), i(ev) in ,.L (G)).

L4mma 5.8. Let G be an acyclic digraph and (uv) a redundant edge

of G.

MG(u) < JG((u,v))

Proof. If (u,v) is redundant in G , there must be a path p: u a v

* in G that does not include (u~v) Because G is a digraph, the path
has to include at least two edges, so let (ux) be the first edge of

that path. Because the values of LG must increase along any path in G,

* and there is a path x a v , LG(X) < LG(.v) . Therefore by definition I
JG((u,x)) < JG((UV)) and the proposition must be true since

GM (u) _ JG((u,x)) . C

220



SLet 0 be an bSP digraph~. Por any edge (u.,V) Of 0

-,(u 3C((U,v))

Proof. We prove the proposition by induction on the nfber of vertices

of G

If G has one vertex, the proposition is trivially true; otherwise

let the proposition hold for any MP digraph with fewer than k vertices,

and let G have exactly k vertices and be the minimal series or parallel

composition of G, and G2 , both of which are MSP digraphs with at

most k-i vertices.

Let G be the parallel composition of G and G2 . Any vertex or

edge of G belongs to either G1 or G2 so let (uv) e1 . By

induction hypothesis J l((UV))= MGI(u) and because no edges are }

introduced in the composition LG(x) - LG (x) for any vertex x G G

Because the values of J and MG are defined in terms of the values

of L and these values are identical to those of LG on the vertices

of G , we conclude that JG((u,v)) . M0 (u) when (u.v)c G .

The same argument can be used if (uv) eG2 , so if G is the parallel

composition of G1 and G2 the proposition is true.

Let G be the minimal series composition of G' and G2 . We

consider three cases: (i) (u,v) cGI , (ii) (uv) cG2 , and

(iii) (ujv) eG-(GIUG 2 )

SFor any vertex y E G, Lo(Y) oL (y) so in case (i) the argument

S~employed when G wans the parallel composition of G, and G. can be

repeated to prove the proposition.

221

- -i - .



Let now (upv) e2 and let q be the length of the largest path

of G1 . This path has to end in a sink of G1 and therefore, by

definition of minimal series composition, for any vertex z e "2 P

%(z) - L• (z)+q+l Because J is defined by the difference of two

values of LG , for any edge (ab) eG2 , JG((a,'o)) - J G2((a,b))

Furthermorep since M i is defined in terms of JG p for any vertex

zeG2 , Mr'(2) - M,(z) . since we kniow that J0G ((u~v)) M G2(u
2 0

by inductio, hypothesis, we conclude that when (uv) e2 G2

JG((u.v)) - MG(u) and the proposition is true.

Finally, let (u,v) cG-(G UG2 ) . In this case vertex u is a sink

of ,1 so every edge leaving u enters a source of G2 . But we know

that for any source w of G, LG(w) a q+l so for any edge e

leaving u , JG(e) . q+l- LG(u) and therefore for all of them

0,.(u) a JG(e) . Thus the proposition is true in case (iii) as well and

we conclude that it holds for all MSP digraphs. 01 K
Lemma 5.11. Let G be a GSP digraph. G does not contain N as an

implicit si.bgraph.

Proof. Let GT be the transitive closure of G . Clearly GT will be

a TSP digraph and if G contains an implicit N subgraph, GT would

contain an induced N subgraph. We will prove that no TSP digraph

contains an induced N subgraph -- which clearly implies that the lemna

is true -- by induction on the number of vertices of the TSP digraph GT

If GT has fewer than four vertices, the lemma is obviously true;

otherwise let the lemma hold for all TSP digraphs having fewer than k

vertices, and let GT have exactly k vertices. The digraph GT has

222



to be the aeries or parafel opoaition of two TSP digra s 1 and

each having at aost k-i vertices. By induction hypothesis neither 0G

nor G2 contains an induced N subgraph.

If Qt is the paralle ocomposition of G, and G2 , the proposit.ion

is tzue because no edge joins a vertex of G1 to a vertex of 02 and

thus every connected subgraph of G has to be a subgraph of G or a

mibgraepof G2

St be the series co position of G. a G By defitition,

there will be an edge joining each vertex of G1 to each vertex of G.

Therefore every induced subgraph S of GT will contain as a subgraph

a complete bipartite digraph with head S lG and tail S fG 2 . It is

* trivial to test that the vertices of the N digraph cannot be split in

such a way between G, and G2 , and the-efore we must conclude that GT

does not contain an induced N subgraph. C3

Lemma 5.12. Let (u,v)e ET . Either (u,v) is redundant in G or

there are edges (u,x) and (yv) in G such that JG((Y,V)) = I

and MG(u) ' JG((ux)) and therefore x, y, u , and v are the four

vertices of an implicit N subgraph of G

Proof. The vertex x must exist because of the way in which the edges

of ET were determined. To show that vertex y must exist) let p be

the longest path of G that starts at a source and ends at v ; clearly

(uv) canot be on that path or it would not have been deleted, so let

y be the last vertex on p before v . By definition LG(v) = LG(y)+l

Because (u,v) was in ET , LG(V) > LG (x) and therefore LG(y) > LG(x)

The values of LG must increase along any path of G , therefore there

223



cannot be awylath yM x in 0, and if there is a path x* y the

edge (wv) vm1ud be redundant since (uX) and (yv) are edges

of G•

Therefore either (i•v) is redundant or the vertices x, yu and v

form an imlicit N subgraph of G r o

:1 L~ema 6.1. Let H be a haniook such that N(H) is biconnected and .1

let S be a non-trivial subhomock of H . Either S includes every

edge of H except the return edge or the entry and exit vertices of S ,

are a separation pair of N(H)

Proof. The edges of N(H) can be partitiw'ed into two sets, one including

those edges that correspond to edges of S and the other including the

rest. If S does not include ri-l edges of H except its return edge,

there must be at least two edges in each set since S is non-trivial.

Because S has just two boundary vertices, they will be the only vertices

incident to edges of both sets and must therefore be a separation pair

of N(H) C)

Lemma 6.2. Let H be a proper program. N(H) is biconnected.

Proof. Let v be an articulation point of N(H) and let H1 and H2

r be the subgraphs of N(H) separated by v . By definition of proper

proram, the vertex v can have at most degree three, so there must be

one of the subgraphsy, say H2 , that includes en one edge erincadenp

to v thClearly, e is a bridte of N(H) separating the subgeaphs He

and Hý - H2-[v) . Because a and w are adjaccent in N(H) they must

belong to the same subgraph, H1  or H In either case, no matter

224



what direction e has in H, there could not be paths a. x and

x a w in H for a vertex that belongs to the subgraph that does not

inolude a and w . Since we assumed that H was a proper program and

therefore a hammock, v cannot be an articulation point of N(H) and

the leana must therefore be true. D

Lemma 6.5. Let H be a proper program with start vertex a and finish

vertex w j and let S be a subhammock of H . The digraph H' obtained

by replacing S by a single edge from its entry to its exit is a proper

program with start vertex a and finish vertex w

Proof. There are two facts to be proved; that H' is a hammock, and

that all its vertices are function, predicate, or collect nodes. The

first fact follows immediately from property (C2) (given in Section 6.2)

of the deftnitions of entry and exit that we are employing. The second

fact can be proved as follows: the entry and exit of S must each have

at least one edge of S incident to them, so the replacement does not

increase the total number of edges incident to either. Now, if at most

three edges are incident to a vertex v of a hammock, it must be a

function, predicate, or collect node, or otherwise there would be no way

of reaching v or to exit v . Therefore H' is a proper program. C)

Laemma 6.4. Let H be a proper program and let S be a subgraph of

N(H) that does not include the return edge. The subgraph S can be

reduced to a single edge by one series, parallel, or triconxected

reduction (as defined in Chapter 3) if and only if the subgraph S'

of H containing all the vertices and edges of S is a prime subhammock.

225

ki/



Proof, This lauma is true only for proper programs Vtoius' it aos , -oly

be proved using the fact that the .verices of proer -pwoep Wave total

degree two. oz-three.

We start by proving that any boundary vertex v. of a aubgraph S-

of a ptoper program H1  is either an entry:.or an-exit, of

Because at most these edges of H1 are incident to v , either.

or H.-S must contain exactly one of these. edges. -In either case

according to our definitiqas v is either an entry or an exit. •

We prove the lemma now by proving first that if S-can be eliminated

by a single reduction in N(H) , S' is. a prime ieubprogrum of H and

then that if S' is a prime subprogram of H , S can be eliminated by

a single reduction in N(H)

A subgraph of N(H) that can be eliminated by a single reduction has

to have exactly two boundary vertices and be a double bound, a triconnected

graph with at least four vertices or consist of two edges in series. The

two boundary vertices of S will be entries or exits of S' by the

argument given earlier. Furthermore, they must be an entry- exit pair

or otherwise for some vertex x e S' there would be no path a x x

or no path x ui in H and H would not be a hammock. Thus S'

must be a non-trivial subhamnock of H . But S does not include any

separation pairs other than its boundary vertices, so according to

Lemma 6.1, no proper subgraph of S' is a subhanmock and S' must be a

primc subhamock of H •

The implication in the other direction can be proved by a very similar

argument. If S' is a prime subhammock of H , it must have exactly two

boundary vertices, and therefore so will S . Because every boundary

226

I | | | u I •'



• - !:- - i .. .. " . .. . -4"4
"4.. ! .... * • ..q- - • -' - . - - -

vertex of a subgfAh of H would be Am entry or an -,.tt of the subgraph,

azd S' doe's not pz'p,,.•y vantain any subbammock, no proper subgraph

"of S' can have exactly two boundary vertices and contain at least two

-- edges. Thus S will not contain a separation pair and therefore has to

be either a double boi~d, a triconnected graph, or consist of two edges

"- in series and ia all *"ea it can be eliminated by a single reduction. "

" Lena 6.5. Let H be a structured program. N(H) is biconnected.

Proof., We prove the proposition by Induction on the number of "expansion"

operations needed to construct H from the pseudo-h-mmock of F:.gure 6.16(a).

The proposition is obviously true if H is one oft the h=mzocks of

Figure 6.16(b) which are the only structured ;programs that can be obtained

by a single expansion operation. If H is not one of these hammocks,

let the propostion be true for all structured programs constructed by

fewer than k expansions and let H be constructed by exactly k such

operations. In this case there must be a structured program H' from

which H can be generated by one expansion operation, and by induction

hypothesis N(H') must be biconnected. The vertices of H introduced

on the last expansion cannot be articulation points of N(H) because

they are not articulation points of the subgraph introductJ in th3 operation

and thir; subgraph has two boundary vertices. Arky other vertex of H

cannot be an articulation point of N(H) either because any such vertex

would also be an articulation point of N(H') and we Imow that N(H')

is biconnected. We therefore conclude that no verteN of N(H) is an

articulation point and that N(H) is a biconnected subgraph. C•

227



1 . Leaua 6.6. Let H be a structured program. N(H) can be reduce,. to
S~a double bond by a sequence of series and parrllel reductions that do

not involve the return edge.

Proof'. We use once again induction of' the mumber of operations needed

tQ costruct H from the pseudo-hamock of Figure,6.16(a).

The proposition is obviously true of the structured programs of

Figure 6.16(b) which are the only ones that can be generated by one

-.eznansion operation. Let the proposition be true now for all structurad
-t programs generated by fewer than k expansions and let H be constructed

by exactly k such operations. In that case there must be & structured

program W from which H can be generated by a single expansion, and

by £nducliion hypothesis N(H') can be reduced to a double bond as described

in the lemia. Now the subgraph of N(H) introduced by the last expansion

operation can be reduced to a single edge by series and parallel reductions,

(since that subgraph must be one of the structured programs of Figure 6.16(b)),

and then either its entry or exit can be eliminated by series reduction.

In this manner N(H) has been converted into N(H') by series and parallel

reductions and since N(H') can bc. converted into a double bond by a

sequence of these reductions, the same is true of N(H) and the proposition

is proved. 0

228

. . . . . ' I' , , ' '2'8


