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The main results presented in this work are an algorithm for the
recognition of General Series Parallel (GSP) digraphs and an approach
to the structural analysis of the control flow graphs of programs.

The GSP recognition aLgoritm determines in O(n+m) steps whether
an acyclic digraph with n vertices and m edges is GSP, and if it is,
describes its structure in terms of two simple operations on digraphs.

The algorithm is based on the relationship between GSP digraphs and the
more steandard class of TTSP multidigraphs.

Our approach to the analysis of flow graphs uses the triconnected
components algorithm to find single-entry, single-exit regions., Under
certain conditions -- that we identify -- this method will produce structural
information suitable for the global flow analysis of control flow graphs in
{ime proportional to the number of vertices and edges of the graph being

analyzed.
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The main results presented in this work are an algorithm for the
recognition of General Series Parallel (GSP) digraphs and an approach
to the structural analysis of the control flow graphs of programs.

The GSP recognition algorithm determines in O(n+tm) steps whether
an acyclic digraph with n vertices and m edges is GSP, and if it is,
describes its structure in terms of two simple operations on digraphs.

The algorithm is based on the relationship between GSP digraphs and the

more standard class of TTSP multidigraphs.
Our approach to the analysis of flow graphs uses the triconnected
components algorithm to find single-entry, single-exit regions. Under

certain conditions -- that we identify -- this method will produce structurel

information suitable for the global flow analysis of control flow graphs in 1

time proportional to the number of vertices and edges of the graph being

analyzed.
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Chapter 1. Introduction.

parse (phrs) v. parsed, parsing. To describe the form,
functiorn and syntactical relaticnship of each part of
a sentence [(I "pars", part].

Ever since its discovery, the theory of graphs has been a striking
example of abstract mathematics originating fram seemingly simple problems
of the real world. Most of the classical problems in the field are such
that they " ... can be explained in five winutes by any mathemstician to
the so-called man on the street. At the end of the explanation, both
will understand the problem, but neither will be able to solve." This
description muay not be quite fair to the mathematician (in fact Harary
applied it to the four color problem that the methematician has learned
how to solve since the sentence was written) but is basically accurate.

The close relationship between these problems and everyday situations
contrasts very sharply with the nature of the results provided by the
classical theory of graphs. A good example of this contrast is Kuratowskii's
characterization of planar graphs. Kuratowskii found a very simple condition
(and one that can be described to a layman in simple terms) that a graph
satisfies if and only if it can be drawn on the plane so thai no two of
its edges cross. This beautiful theorem helps very little however when
trying to decide whether a particular graph can be drawn on the plane
without crossings: Kuratowskii's proof gives no clues as to how to test
a graph to decide whether it satisfies the condition.

The theory of graphs found arplications in just about every branch
of the sciences. The ubiquity of binary relations combined with the fact

that binary relations are naturally represented as graphs and the intuitive
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appeal of the disgrammatie representation of graphs helped to widen the
field of applications of graph theory.

Many of the fields in which the theory of graphs found applications
were eminently practical and found little use for nan-constructive theorems,
To a specialist in gperations research a theorem that stated that there
exists an optimal sclution for any instance of a class of transportation
problems only begged the question of how this solution could be computed.
Thus with the applications came a shift in emphasis: it became important
to know how to obtain solutions to certain problems.

This emphasis was accentuated with the widespread use of the digitel
computer end at the same time what was needed became more precise:

a description of how to solve a problem had to be an algorithm suitable
to be implemented in a digital camputer.

It is in this context that this thesis should be considered. We are
interested in designing efficient algorithms to solve graph theoretical
problems arising from practical problems.

The qualification "efficient" is central to our concerns due to the
intended practicel applications of the algorithms we design. Most of the
problems that we will consider can be solved by algoritims that are very
simple both to describe gnd to implement. Unfortunately these simple
algorithms use enormous amounts of computing resources (time and memory)
and are therefore not ver, practical, OQur task will be to decrease these
requirements of computing resources usually at the expense of the

simplicity of our algorithms.

n
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The most obvicus way of reducing the computing resources required by
an algorithm is to implement it carefully. Sometimes the uce of complex
date structures and the careful design of its flow of control can result
in considerable gains in the performance of an algorithm. In most cases,
though, these gains are negligible -- a constant factor in most cases --
canpared with what can be done by a mathematical analysis of the task that
our algorithm has to perform. By discovering relations between the input
and the desired output that are not immediately apparent, or by showing
one task to be equivalent to another for which an efficient algorithm is
known, one very often can realize encormous improvements which are well
beyond what careful coding can achieve. For this reason, even though we
are ultimastely concerned with designing algorithms, we will spend almost
all of our energies in the mathematical analysis of the problems to be
solved.

In our discussion so far we have skipped over the crucial question
of how the efficiency of an elgorithm is to be measured. For this purpose

we need (i) an abstract model of the machine in which our algorithms will

be implemented, (ii) & resource whose utilization we want to minimize,
and (iii) a consistent method of measuring the use of this resource by
the abstract machine when running different algorithms that perform the
same tesk. Our choices are the standard ones (see Appendix B and Chapter 1

of [AHO 76]): es an abstract machine we use a Random Access Machine (RAM),

the resocurce we will measure is the number of steps that the RAM needs to
solve a problem (which can be directly translated to the amount of

processing time for a real machine), and we will measure it by associating
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a size with the input and considering the number of steps taken by the
machine as a function of the size of the input (see Appendix B). The
RAM 1is chosen because it provides a realistic model of most present day
digital camputers. The processing time is selected as the resource to be
ninimized because until very recently was the most expensive resource;
even though this is not the case today in some applications (due to the
microprocessor), it still is the limiting resource in most cases

and the amount of time used provides a bound on the utilization of many
other resources -- like memory.

It is worth noting that even though it might appear that the tremendous
increase in the speed of digital computers would decrease the importance
of efficient algorithms, the opposite is true. The discussion given in
Chapter 1 of [AHO 76] is very illuminating in this respect.

In the paragraphs that follow we give a general description of the
problems considered in this thesis. 1In this description we use for the
first time some technical terms, most of them standard graph theoretical
terminology. The reader not familiar with the terms used can find their
definition in Appendix A.

The algorithms that we will present in the rest of this work fall
into two basic classes: recognition algorithms and rarsing algorithms.

We say that Algorithm A recognizes a class of graphs C , if A answers
"yes" when given as input a member of C , and answers "no" when given a

graph that is not a member of C .
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The verb "to parse" is commonly used in the Camputer Sclences
literature in a way that stretches sumewhat its standard meaning. By
parsing & graph we mean its analysis in terms of the interralationships

between some of its subgraphs and our parsing algorithms will perform
this analysis.

The distinction between these two classes of algorithms is not quite
as clear as the previous two parasgraphs may lead one to believe. Some of
the algorithms that we will present recognize classes of graphs by attempting
to parse their inputs, knowing that they will succeed if and only if the
input belongs to the class to be recognized.

The original contributions of our work are two: an algorithm to
recognize and parse a class of directed graphs called General Series
Parallel, and the use of the decomposition of a multigraph into triconnected
camponents to analyze the flow of control of programs. In the following
raragraphs we will describe in some more detail these problems and their
erplications.

General Series Parallel are directed acyclic graphs whose transitive
closures form a class with a simple recursive definition. Their applications
are related to problems of scheduling under constreints. In this application
of directed graphs, vertices represent tasks to be executed by a processor
(or processors) and edges represent constrainﬁs on how these tasks may be
executed, so that if there is an edge going from vertex x to vertex y ,
task x has to be completed before task y 1is started. The problem in
general is to find an order of execution of the tasks that satisfies the
constraints and that minimizes some function of the tasks (like the total
elapsed time needed to complete all the jobs). There are endless variations

of this basic schema according to what function is to be minimized, the
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number, type and arrangement of the processors, etc. Many of these problems
arise in practice, and a good number of them are NP-complete (see [AHO 76]
for a definition of NP-completeness) when we want an optimal solution for
arbitrary precedence constraints, which basically means that no efficient
algorithm is likely to exist to solve these problems.

This situation makes partial solutions for these problems more interesting.
One can relax the optimality condition and simply ask for a solution that
is guaranteed to be close to the optimal, or one can restrict the types
of constralints that are acceptable and try to find efficient algorithms
t0 solve these simpler problems.

General Series Parallel digraphs turn out to be useful for the second
approach described: there exists a whole class of NP-complete scheduling
problems for arbitrary constraints that can be solved by efficient algorithms
when the contraints form a General Series Parallel digraph. (See
[LAW 78], [MOM 77), (LAW 77]), [SID 76).) It is therefore interesting to
decide in an efficient way whether a given set of constraints forms a
General Series Parallel digraph so the efficient algorithm can be applied
to the corresponding scheduling problem. In Chapter 5 we will present an
algorithm that performs this recognition task in a number of steps
proportional to the number of vertices and edges of the directed greph to
be tested.

Aside from the main application Just described, our recognition
algorithm has a few other interesting properties. The algorithm exhibits
an uses the relationship between General Series Parallel digraphs and the
more standard class of Two Terminal Series Parallel multigraphs vhich has

been extensively applied to model electrical circuits. (See [DUF 65],
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[LAW 60), [RIO 72), [WBI 71], {WEI 75].) Purthermore, vhenever the input

(-8 (LANSMMRE

of our algorithm is a General Seriesr Parallel digraph, we will obtain

P

not only a "yes" answer as output, but also & parse of the graph. This
parse permits the solution of several problems for General Series Parallel f

graphs by algorithms that are more efficient than the best known

algorithms to solve the same problems for arbitrary directed graphs. These

| problems include transitive closure, transitive reduction and a restricted

version of zraph isomorphiam.

our seconéd contribution is related to the application of directed

JURETPT SV P TV ION

graphs to model the flow of control of programs. In this standard technique,

i the vertices of a directed graph represent a sequence of program cperations

ML -

i +hat are always executed serially and the edges represent transfers of E
control between such sequences.
: ; The flow of control of most progrems can be accurately described in

this form so graph theoretical results can be applied to the problem of

anelyzing the flow of control of programs. In most cases, the information

i that one wishes to obtain is the following: :

(1) given a point in the program, find what hes happened before control
reache., that point,

(11) given a point in the program, find what can happen after control b

leaves that pcint.

t Being able to answer questions of this type is a big step towards a
; golution of many problems that arise in the design of compilers. It is
particularly useful during the code generation or code optimization phases

to solve problems like register erllocation, common subexpression elimination, E

code motion, ete,
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The "classical" approach to this problem ([ALL 70], [COC 70], [GRA 76],
[HEC 72), [HEC 7h4), [HEC 77), [KEN 71]) restricts the type of digraphs to
be studled to flggg;azh + directed graphs with one starting vertex
(corresponding to the first executable statement of a program) from which
all of the other vertices can be reached. The analysis of these graphs is
then carried out in terms of intervals: subgraphs that have basically a
flowgraph structure in that they have a single entry vertex. The most
efficient way known of performing this analysis ([TAR 74]) is loosely
based on the systematic simplification of the flowgraph to be studied
using standard subgraph replacement rules.

Our approach will be slightly different. We will restrict ourselves

to a type of directed graphs celled hammocks: directed graphs with two
distinguished vertices, one of them being an entry vertex and the other an '
exit vertex, such that every vertex can be reached from the entry and

the exit can be reached from any vertex, OQur analysis of such graphs will

a
T Ty we
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be performed in terms ot subhammocks: subgraphs that have a hammock

structure in having two distinguished boundary vertices, one of them an

entry into the subgraph and the other one an exit. We will show how

this analysis can be carried out in an efficlent way using an algoritim

due to Hopcroft and Tarjan ([HOP 73)) that breaks up a graph into triconnected

pieces. We will discuss the problems involved in applying this technique to

general hammocks and describe how the problems diminish or disappear vhen
we restrict ourselves to special classes of hammocks like proper programs

([GAN 77]) or structured programs ([DAH 72]).

PR RET T

Although the domain of application of the two algorithms that we will

present are very different, the way in which they help solve the problems
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to which they are applied is Just an instance of the camon technique of

"divide and conquer". By providing a description of the structure

(a parse) of a graph, our algorithms allow to solve the scheduling
or flow questions in a large graph G by solving similar problems in
trivial subgraphs of G , and then "pasting" these solutions together
to form the solution on G .

The wey in which we will decompose a graph in the "divide" part of
the "divide and congquer" strategy will be by finding separetion pairs.
In the general ceses we will use Hopcroft and Tarjan's algorithm to break
a graph into triconnected pieces, and in some particular cases we will
use simpler methods based on replacement systems. In either case our
algoritims will break up & graph into pieces that have relatively simple
structures and that fit together in a natural way to form the original
graph, The simple structure of the pleces will make the solution of the
problems mentioned above on them an efficient process, and the natural
vay in which the pieces fit together will facilitate the construction
of the total solution from the solutions for the pieces.

The results just described and some others of lesser importance are

distributed over the next five chapters. In an effort to give the reader

a better idea of the overall organization of this work before plunging into

the detalls, we end this introduction by giving & chapter by chapter
outline of the rest of this thesis.

In Chapter 2 we describe and study a tool commonly used to parse
graphs: Replacement Systems. We review some known results on the subject

and define some particular systems that we will use in later chapters.

o
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Chapter 3 is a presentation of a collection of facts related to a
class of graphs called Two Terminal networks. We review a theory of
Two Terminal network decompcsition, describe the triconnected components 3
algorithm, show that the theory of breaking & graph into triconnected E
pieces is & constructive version of the theory of network decamposition,
and introduce a subset of Two Terminal networks which has been extensively

used to model electrical circuits called Two Terminal Series Parallel

networks.

Chapter L is devoted to the study of Two Terminal Series Parallel

multidigraphs which (as we may expect) are closely related to the Two
Terwinal Series Parallel networks introduced previously. The emphasis
throughout this chapter is on the properties of these multidigraphs that %
will be used in the recognition of General Series Parallel digraphs. 15

Chapters 5 and 6 contain the main contributions of this work.

Chapter 5 is a detailed description of the recognition procedure for 25
General Series Parallel digraphs and its consequences, while Chapter 6 B
includes the application of the triconnected components algorithm to the -

aralysis of the flow of control of programs.

- Most of the material contained in this work can be grasped at an ‘5
intuitive level, so an effort has been made to keep the presentation as '
clear and wicluttered as possible, As part of this effort, most of the i!
i proofs have been removed from the text and included as an appendix. We
1 hope that in doing that we have made ocur main results more accessible to EL;
§ é the casual reader. L
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5 . Chapter 2. Replacement Systems. .

- l - In this section we will study Replacement Systems as tools to parse i
| E graphs. We will start our discussion by describing these systems and our §?

3 intended application in an informal way, and then provide a more formal 3}
. description which inciudes the proof of an important property of the '%i

particular replacement systems that we will use in later chapters.

Replacement Systems will be used as a convenient way of systematically
simplifying a graph. Basically, our replacement systems consist of a
collection of reduction rules which specify that certain subgraphs can be
replaced by smaller graphs during the simplification process.

The systems that we will use are based on the following rules:

Series Reduction: replace two edges (u,v) , (v,w) in series (that -

is, such that v has degree two) by an edge (u,w) .

: Parallel Reduction: replace two edges (u,v) , (u,v) in parallel

by & single edge with the same endpoints.

Triconnected Reduction: let Gs = <Vs’Es> be the subgraph induced

by Vs . If Gs has exactly two boundary vertices, x,y,

contains at least four vertices and G, = (Vs, EqLJt(x,y)})

is triconnected, then replace Gg by an edge (x,y) .

All three of the rules specify subgraphs having exactly two boundary
vertices to be replaced by & single edge joining the two boundary vertices.
These three rules are illustrated in Figure 2.1. Replacement systems based

on these three rules are comron in the computer science and graph theory

literature (see [WAL 78], [DUF 65), [HAR 72], [(FRA 78] or [LIV 77)).




BT it e T e

~——o— = ~———o

Series reduction

> e e

Parallel reduction

k
P '
: v
#
E‘:
K
£
g , Triconnected reduction
£ 3
ro 4
£ -3
i i
: |
L !
kb |
. 1
- !
Figure 2.1. .
] :
{ |
'! i .
i .
i 12

it Pl e N S EIR T B kb T e




- g

Consider the follo#ing process of simplification of a graph, Gb )
using a set of reduction rules like the cnes Just described. First we
identify the subgraphs of GO to which reductions can be applied, then

we apply these reductions, one at a time, thus transforming G0 into G -
We repeat the process on Gl to obtain a new graph Gé » repeat the
process on Gé once again to obtain G3 etc., until we obtain an
irreducible graph Gk , that is, a graph that cannot be simplified with

our reduction rules. Consider two consecutive elements, G, and G

i i+l ’

of the sequence of graphs GO’GI"“’Gk ; Just described. We can look at
Gi+1 as a simplified version cf Gi , with the set of reductions, R , used
to transform Gy into Gy,  being a description of the details that have
been suppressed. Thus Gi can be represented by Gy43 and R.

Using this method one can describe a graph, G , by exhibiting the
irreducivle graph obtained from G by application of the reduction
rules, and the sequence of reductions used to obtain it. In many situations
this approach gives a useful and concise representation of the structure
of a graph, and it is in this way that Replacement Systems will be used to
parse graphs in the following chapters.

The gimplification process presented sbove was described in a way that
glossed over an important problem: the reductions applicable to a given
graph may be mutually exclusive. As an example consider the graph of
Figure 2.2 and assume that we are trying to simplify it using series
reductions. Two serles reductions can be applied to that graph: one
involves edges 4 and 5 , the other involves edges 5 and 6 . These
reductions are mutually exclueive in that once one of them is applied,
one of the edges involved in the other is eliminated so the second cannot

be applied any longer.
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Although it is clear that this matter is not very important in our
example (by symmetry, if for no other reascn), in & general case, selection
of one or another of two mutually exclusive reductions may give rise to
radically different descriptions of the graph. This possible mulitiplicity
is undesirable in most practical applications, a fact that makes particularly
useful reduction rules for which ane can guarantee the following: given a
graph G , the irreducible graph Gk obtained from G by repeated
application of the reduction rules is unique and does not depend on the
choices among mutually exclusive reductions. Replacement Systems for
which this guarantee cen be given are said to possess the Church - Rosser
property, or to be Church - Rosser., All the Replacement Systems that we
will use possess this property.

The remainder of this chapter contains a more precise description of
scme of the concepts already discussed. We provide formal definitions of
replacement systems and the Church - Rosser property, define the replacement
systems that we will use in later chapters and briefly review the literature
relevant to proving the Church - Rosser property for these systems.

A binary relation, -, ona set S, is a subset of SxS . We will

write a - b to indicate that the pair (a,b) belongs to the set - .
We will say that " b can be cbtained from a " or that " a reduces to b "
if a - b, and call the operation of replacing a by b a '"reduction”.

The transitive reflexive closure, ¥ , of a binary relation, =,

defined on a set S, is the binary relation given by a -* b 1if and only

if a =b or there exists a sequence of elements of §, 8,85 ... 8y
1+1 for 1 <1i<k.

such that a.1=a., a.k=b and a, =&

i
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An eleoment, a , of & set S is irreducible under a binary relation, -,
defined on & 4if there is no element, b, of S such that a =b . The
completion of a tinary relation, =, defined on a set § , is the binary
relation defined by a < b if and only if & =" b and b is irreducible
under - .

A structure consisting of @ set S and & binary relation, -, on 8

is called a replacement system: (89, =) .

A replacement system (S, =) 1is finite if for each element, & , of S
there is a bound on the length of the longest sequence 85 a.2, .. .,ak such
thet a =a and & =~a,,, for 1<i<k. A replacement system (S, =)

is finite Church - Rosser (FCR) if it is finite and < defines & function

on S, that is, if a -~ b and a < c implies b=c .
Corresponding to the reduction rules defined earlier we can define

three replacement systems on the set of all multigraphs:

Series Replacement System: x =g ¥ if the multigraph y can be

ottained from the multigraph x by & single series reduction.

Parallel Replacement System: x o y 1if the multigraph y can be

obtained from the multigraph x by a single parallel reduction.

Triconnected Replacement System: X< ¥ if the miltigraph y can be

obtained from the muiltigreph x by & single triconnected reduction.

Theorem 2.1. The Series Replacement System, the Parallel Replacement

System, and the Triconnected Replacement System are FCR.

Proof. See [WAL 78]. O
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Two replacement systems that we will use in the following chapters
are defined on the set of all multigraphs and their binary relations
are best descrived as the union of some of the binary relations Just

defined:

Series Parallel Replacement System (SPRS): “sp = U 3

Universal Replacement System (URS): w® U “ Uy -

wWe will use still one more replacement system defined on the set of
all multidigraphs, but otherwise identical to the SPRS. The definitions of
Serles Reduction and Parallel Reduction given et the beginning of the
chapter can be interpreted as operations on miltidgraphs due to the two
possible interpretations of the terms "in series" and "in parallel" (see
Appendix A). We can thus imsgine the binary relations s Tp? and “sp
as defined on the set of a1l multidigraphs and consider the Directed Series

Parallel Replacement System (DSPRS) as defined by the set of all multidigraphs

and the binary relation “ép

The last three replacement systems defined have in common with many
other useful replacement systems the property of being most naturally
defined as the union of several simpler systems. The work of Rosen [ROS 73]
and Sethi [SET 74] simplifies considerably the task of proving that a system
of this type 1s FCR. We will review here two of their results that are
useful in proving that the SFRS, the URS, and the DSPRS are FCR.

Let - and -, be two binary relations on a set S . We say that

2

- commuites with “ if =a "{ b and a ﬁ; ¢ 1implies that for some

element deS§S, b..;d end c-'{d.
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Theorem 2.2 [RCS 73). IlLet (S, =) Ye a replacement system in which

- = (9] ("’1) and let (S, -01) be FCR for 1ie {l,?,...,n} .
1<i<n

If o commutes with “« for J,ke {1,2,...,0}, then (S5, =) is FCR, 0

This theorem establishes the importance of the concept of commuting to
prove the Church - Rosser property of composite replacement systems and the
following lemma eases the task of proving that two binary relations on a

set commute.

Lemma 2.1 [ROS 73], [SET 74]. Let -~ and =, be two binary relations

defined on a set 8. If a = b end & - ¢ implies that there exists
an element deS such that b -; @ and c¢ -{ 4 then - commutes

with -, . O

These results can be used to prove that the replacement systems that

interest us are FCR as follows:

ilemms 2.2.

(a) ~g Commutes with D (for directed or undirected multigraphs).

(v) -~ commutes with - .

(e) 5 commutes with -y -
Proof. See discussion in [WAL 78). O

The proof given by Walsh [WAL 78] of part (a) of Lemma 2.2 is for
undirected multigraphs exclusively. His arguments can nevertheless be

trivially modified to prove the proposition for directed multigraphs.
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| We can nowv state the following:

Theorem 2.3. The Series Parallel Replacement System (SPRS), Universal

Replacement System (URS), and Directed Series Parallel Replacement

S

System (DSPRS) are finite Church - Rosser.

Proof. Follows immediately from Theorems 2.1 and 2.2 and Lemma 2.2. O
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Chepter 3. Two Terminal Networks.

3.1 Introduction.

In this chapter we study a class of undirected multigraphs called
two terminal (TT) networks. These multigraphs have a wide variety of
arplications and a subset of then called two terminal series parallel
(TTSP) networks have been extensively studied because of their applications
to the design and enalysis of electric circuits.

The goal of this chapter is to show the basic equivalence between
the theory of IT network decamposition, the decomposition of e biconnected
multigraph into tricomnected components and the parsing of a graph using
the Universal Replacement System. We will attempt to unify our discussion
around the theory of triconnected decomposition because of its basic
algorithmic flavor.

We will start the chapter by providing the basic definitions and
reviewing a theory of TT network decomposition following the presentation
of Walsh [WAL 78]). Walsh's main goal is to count certain classes of
networks. As a result the theory that he presents is non-constructive
and not well suited to the design of efficient algorithms to obtain the
decompositions it postﬁlates. In his work, Walsh appears to be merely
reviewing a well established theory due to various Russian authors.
Unfortunately most of the references that he provides have not been
translated so it has not been possible to ascertain whether some algorithmic
theory is developed in any of them, elthough it does not seem likely given
thelr theoreticel slant.

The theory of TT network decomposition is almost equivalent to the

theory of breaking a multigraph into triconnected components developed by
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Whitney [WHI 32) and Tutte [TUT 66). These theories are again non-algorithmic,
but more recently Hopcroft and Tarjan [HOP 73] have given an efficient
algorithm to perform the decamposition of a biconnected multigraph into
triconnected pieces. We will review the basic aspects of this algorithm

and show how it can be used to compute the decomposition described by the

main theorem of the theory of TT network decomposition.

We will then describe the connections between the decomposition given
by the triconnected components algorithm and the parsing of a TT network
using the Universal Replacement System described in the previous chapter.
Although reduction systems are not particularly useful to parse TT networks,
some of the features that make this parsing method useful in other casesg
are more natually introduced in the context of this chapter,.

Finally we will turn our attention to the class of Two Terminsel Series
Parallel networks. We will show how the basic theory can be extended in
several important aspects and explain how the Series Parallel reduction
system can be efficiently used to parse these networks. TTSP networks
have been extensively studied, mostly as models for circuits. (See
(DUF 65], [LAW 60}, [RIO 42), (sC0 65], [WEI 71], [WEI 75].) Our presentation
will try to unify several pr .es of these networks and show how they
can be derived from the general theory of TT network decomposition and the

triconnected components algorithm.

3.2 Decomposition of Two Terminal Networks.

A two terminal (TT) network is an undirected multigraph in which

exuctly two vertices are distinguished. The distinguished vertices are
called the terminals of the network, and all other vertices are said tn be
internsl. We will assume that the terminals are Joined by a distinguished

edge that we will call the return edge,

21
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A TT network with at least three edges -- including the return edge --
is nontrivial (opposite: trivial). A simple path x - Yy in a TT

network is a terminal path if x and y are the terminals. A TT network

is fimmly connected if for every internal vertex, v , there is a terminal

path that includes v . Figure 3.1 shows several examples of TT networks;
examples (a) and (b) are not firmly connected while (c) and (d) are.
There is a ddrect relationship between the concepts of firm connectivity

and biconnectivity, given by the following lemma:

Lenma 3.1.
(a) A firmly connected TT network is biconnected.

(b) A biconnected multigraph with any two adjacent edges as terminals is
a firmly connected TT network.

Proof. 8ee [WAL 78]. O

Most TT networks that arise in practice are firmly connected. For this
reason we will assume that all the multigraphs mentioned in this chapter
are biconnected unless we explicitly state the opposite. The proof of
Lemma 3.1 depends on the adjacency of the terminals »f any TT network.
This is the precise reason why the return edge was introduced, and even
though all). the results presented in this chapter can be reformulated
without assuming its existence, our assumption simplifies same of the
arguments considerably.

A subgraph of a TT network with exactly two boundary vertices that does

not contain the return edge is a subnetwork. The two boundary vertices are

the terminals of the subnetwork.
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Lemma 3.2. Every subnetwork of a firmly connected TT network is firmly

connected,

Proof. (See Appendix C.) O

Let Ny and N, be TT networks and let e = (W,v) be an edge of N,
distinct from its return edge. Consider the following operation (see

Figure 3.2):

(1) Delete the return edge of N, .

(11) Replace (u,v) by the multigraph resulting from (i) by identifying
one of the terminals of Nl with u , and the other terminal
with v .

We call this operation the replacement of e = (u,v) by N, -
Let N’NO’Nl”‘ Nk be TT networks such that N can be obtained by
replacing some edges of No by the networks N ,N? ...Nk . If all the

TT networks NO’Nl"‘ Nk are non trivial end k >1 we say that they

form a decarposition of N with core Nb and components Nl,...,Nk .
The condition that all the networks be non trivial is designed to exclude
pseudo-decompositions in which either the core or some component is
identical to the network being decomposed (see Figure 3.3). WNote that
because of the way replacement has been defined, the return edge of the
core of a decomposition is the return edge of the TT network decomposed.

A TT network is indecomposible if it has no decomposition. Indecomposible

TT networks are of one of three types:

Lemma 3.3. A nontriviel indecumposible TT network is either a triangle,

a triple bond, or a triconnectec graph with at least four vertices.
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Proof. (See Appendix C.) O

A decomposition whose core is a polygon (bond) is called & series

decamposition (parallel decomposition). A decamposition whose core is

a triconnected graph with at least four vertices is a t -decomposition.

A TT network that has a series decamposition is an s -network, if it has
a parallel decamposition it is a p-network, and if it has a t -decamposition
it is a t -network.

A series decamposition is canonical if none of its camponents is an

8 -network, and a parallel decomposition 1s canonical if none of its

camponents is a p-network.

Using these definitions we can state the basic theorem of the theory

of TT network decomposition:

Theorem 3.1 ([Trahktenbrot's theorem].

(2) A TT network is either indecomposible or is of exactly one of the
ypes s, p, or t .

(b) An s-netowrk that is not a polygon has & unique canonical series
decomposition.

(e) A p-network that is not a bond has a unique canonical parallel
decomposition.

(&) A t-network has a unique t -decomposition. O

This formulation of Trahktenbrot's theorem is almost identical to the

one given by Walsh ([WAL 78]) which also provides a proof for it.

The most important consequence of Trahktenbrot's theorem from our

point of view is that it defines a unique way of breaking up a TT network

into smaller networks that we will call Trahktenbrot's repeated

decanposition:
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~= Let N be a TT network, If N is a polygon, & bond or a triconnected
graph with four or more vertices, N 1is not decomposed.

-~ Otherwise N will be of exactly one of the types s, p, or %
according to Theorem 3.1l(a). In cach case the theorem gives us a
description of a unique way of decomposing N = NO’NJ.’ ""Nk such
that the core, No s 1s either a polygon, a bond or a triconnected
graph with at least four vertices, and if N, is a polygon (vond)
no camponent has a decomposition whose core is a polygon (bond).

-- We carry out this process repeatedly, breaking up the components
Nl ves Nk , then the camponents thus obtained and so on until no
more networks can be decomposed.

-- In this manner we obtain from N a set of TT networks that satisfy:
(1) They are all polygons, bonds, or triconnected graphs with at

least four vertices.
(11) N can be constructed by appropriate replacement operations
between the members of the set without ever replacing an

edge of a polygon (bond) with a network of type s (p) .

(111) The set of TT networks is uniquely determined by N .

Trahktenbrot's theorem guarantees the existence of the set of TT
networks just described, but does not provide information that leads
directly to an efficient algorithm to compute it. We will now review the

triconnected components ulgorithm of Hoperoft and Tarjan and show that

when given a firmly connected TT network as input, it computes the set of

TT networks described gbove.
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5.3 The Triconnected Components Algorithm.

The algorithm that we will describe takes as input a biconnected
multigraph G , and produces as output a set of polygons, bonds, and
triconnected graphs that is unique. We will describe the functional
relationship between the lnput and ocutput of this algorithm without
explaining the way the algoritim reelly works. (For details see [HOP 73].)

Consider the following operation on a biconnected multigraph G = (V,E)

(1) Find a separation pair a, D giving classes E\sEps o0 esEy 5 then
merge these classes into two disjoint sets E' and E" each
containing at least two edges (see Appendix A) with E = E' YE" .

(11) Consider the multigraphs G' = (V(E'), E'y {(a)b)}) and
G" = (V(E"), E"U {(ayb)}) where V(E') stands for the vertices
of G incident to edges in E' and V(E") for the vertices

of G 1incident to E edges in E" .

This process is called splitting G, and G' and G" are called
the gplit graphs of G . The new edges -- (a,b) -~ added to each of the
split graphs are called virtual edges and they are assumed to be labelled
50 that they are identified with the split operation that creates them.

Suppose that a biconnected multigraph G is split, its split graphs
are again split and so on until no more splits are possible. The grarths

obtained in this way are called the gplit components of G . The split

components of a biconnected multigraph are of one of three types:
triangles, triple bonds, or triconnected graphs with four or more vertices.

The set of split components of a biconnected multigraph is not unique as

Figure 3.4 shows.
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Two sets of split components of a biconnected multigraph.
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let G' = (V',E') and G" = (V',E") be two split graphs of a
biconnected multigraph sharing a virtual edge {a,b) . That is, each
graph contains an edge (a,b) and both edges were introduced by the same
split operation. The operation of merging G' and G" preduces
GCw= (Vluva, El-{(a,b)}uEz-{(a,b)}) . (This operation is identical
to the replacement operation defined for TIT networks except for the
asymmetyy introduced by our requirement that in a replacement one of the
edges eliminated be the return edge of one of the two TT networks
involved., )

Let us now consider the following process on a biconnected multi-

graph G :

(1) Split G repeatedly to obtain a set of triple bonds 65 ’
a set of triangles T , and a set of triconnected graphs with
four or more vertices g .

(i1) Merge the elements of 53 as much as possible to obtain a set
£ of bonds.

(1ii) Merge the elements of T as much as possible to obtain a set of

polygons p .

The set RBUPUHS 1s the set of triconnected components of G .

Figure 3,5 shows the triconnected components obtained by merging the split
components of Figure 3.4; note that each edge of the original graph belongs
to exactly one triconnected component and each virtual edge to exactly two

components.

Theorem 3.2 [Hopecroft and Tarjan [HOP 73])). The set of triconnected
components of & biconnected multigraph is unique and can be camputed in

O(n+m) steps for a multigraph with n vertices and m edges. (J
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In the rext section we will discuss at length the relationship between
the triconnected components algorithm and the Trahktenbrot repeated
decomposition described in the previous section. The equivalence of
these two theories can be grasped at an intuitive level by looking at
the relationshlp between two pairs of operatiocns: merging and replacement
(which are basically identical) and splitting a biconnected graph and
decomposing a TT network., The relationship between these last two

operations can be made clear by the following lemma:

lemma 3.4, Let N be a firmly connected TT network and N, & non trivial

proper subnetwork of N with boundary vertices x and y .
(a) x,y is a separation palr of N .
(b) There is at least one decomposition of N in which N, isa

camponent.
Proof. (See Appendix C.]) 0

The output of the tricannected components algorithm will be useful

to us in a form called the Triconnected Camponents Graph (TCG) that is

constructed as follows:

(1) The TCG has a vertex for each triconnected ccmponent.
(ii) For each pair of virtual edges created by the same split operation,
there is an edge joining the vertices of the TCG corresponding to

the triconnected camponents that contain the virtual edge.

The TCG contains in a concise form all the information needed to
reconstruct a biconnected graph fram its triconnected camponents. Figure 3.6

shows a biconnected multigraph, its triconnected components, end the 1CG

derived fram them.
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(a) The TCG of a biconnected multigraph is & tree.
(b) No vertex of a TCG ccrresponding to a bond (polygon) can be adjacent

to another vertex representing a bond (palygon).

Proof, [See Appendix C.] 0O

3.4 Parsing Two Terminal Networks,

In this section, we explore two applicetions of the tricomnected
camponents algoritim. We will show how the Triconnected Components Graph
of a Two Terminal network defines its Trahktenbrot repeated decamposition
and also how the same Triconnecied Camponents Graph can be viewed as
determining all possible parses of the network using the Universal
Replacement System defined in Chapter 2.

We have chosen to present this material in a semi-formal manner because
we think that this epproach results in a more readable explanaticn of the
principles involved.

In order to understand how the TCG of a TT network describes its
Trahktenbrot repeated decomposition, consider the example of Figures 3.7
and 3.8. Figure 3.7 shows a TT network N , its triconnected components
and the TCG derived from them, T . Let us consider T as a rooted tree,
with the root being A -~ the vertex corresponding to the tricommected
componeént of N that includes the return edge.

Consider now the decomposition of N shown in Figure 3.8. The core

of the decamposition, No » 1s the root of T , and the congponente
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Nl ) N2 » N3 » are the graphs obtained by merging the triconnected

camponents of N that fall in the same subtree of the root: Tl ’ '.l‘2 ’ 15 .

In this way we have found a parallel decomposition of N , therefore

N 1is & p-network. Furthermore, Nl ’ N2 , and N3

or we would have two adjacent bonds in the TCG of N which is not possible

cannot be p -networks

according to Lemma 3.5. Thus we conclude that the decanmposition of N
shown in Figure 3.8 is the unique canonical parallel decomposition of N
postuleted by Trahktenbrot's theorem.

This argument given for & particular TT network can be generalized
in an obvious way to show that the decomposition cf any TT network obtained
as described above from its TCG is the unique canonical decomposition of
the TT network that Trahktenbrot's theorem mentions.

Returning to our example, all one has to do to camplete the
Trahktenbrot repeated decamposition of N is to apply, in a recursive
fashion, the process Just described to Nl ’ N,d » and N3 by using the
trees T]. ’ T2 » and T5 as TCG's. The result of this process on Nl
is shown ia Figure 3.9.

By now it should be obvious that given a TT network N and its TCG,
T, (4) it is trivial to obtain the Trahktenbrot repeated decomposition
of N from T and (41) that the set of TT networks resulting fram the
Trahktenbrot decomposition of N 18 identical to the set of triconnected
comporents of N .,

We turn now to the relationship between the TCG of a TT network and
the process of r ducing the network to a double bond using the Universal
Replacement System defined earlier. Figure 3.10 shows an example of such

a reduction process. We will only consider reduction sequences (or parses)
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Figure 3.9, The unique canonical series decomposition

of Nl obtained from Tl . ]
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Reduction of a TT network to a double bond
by series, parallel, and triconnected reductions.
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that do not delete the retwrn edge of the TT network. Thus the dﬁuble
bond obtained as an end product consists of the return edge of the original
network plus another edge that arises from the reduction.

Any firmly connected TI network can be reduced to a double bond by
series, parallel, and triconnected reductions. To prove this, note that
each type of triconnected component can be so reduced using only one type
of reduction: bonds by parallel reductions, polygens by series reductions,
and triconnected graphs with at least four vertices by triconnected
reductiow:. (ne can therefore perform the process shown in Figure 3.11
in any TT network. This process consists of reducing the TT network by
a series of steps, each step replacing the triconnected camponents of the
network that correspond to leaves of its TCG by a single edge. (The TCG
is once again considered as a rooted tree.) On each of these steps only
one type of reduction is involved.

It is in this way that the 1TCG of a TT network can be viewed as
describing how to parse the network using the Universal Replacement System.
There are nevertheless many ways of parsing a TT network and the TCG
only describes a few of them, as Figure 3.12 shows. In many applications
it is important to have a concise way of representing all the possible
parses of a TT network, This goal can be achieved by transforming the

TCG into a more detailed structure that we will call a decungosition tree

of the TT network. An example of a decomposition tree is shown in

Figure 3.13. To construct this tree, each vertex of the TCG has been
replaeced by a "fan-like" graph as described by Figure 3.1%, These graphs
have & central vertex labelled "S", "P", or "T" depending on the type of

component, a vertex for each actual edge in the camponent, and a "twig"
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Figure 3,12, A parse of the TT network of Figure 3.1l that
18 not described by its TCG.
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for each virtual sdge. The decomposition tree is constructed by
"gluing" twigs with the same label,

Using the decuamposition tree of a TT netwark we can describe all
possible ways of parsing it by interpreting the reduction rules of the

URS as operations on the decomposition tree in the following way:

-= A parallel reduction consists of replacing two leaves that are
children of a "P" node by a single leaf. If this operation results
in the " P" node having just cne child, the "P" node is replaced
by its child.

-~ A series reduction consists of replacing two leaves that are _child.ren

of an " S" node and that represent edges of the TT network that have

a common endpoint by a single leaf, If this operation results in the

" S" node having & single child, the " S" node is replaced by its
child.

-- A triconnected reduction consists of replacing a " T" node whose
children are all leaves, together with all its children by a single

vertex,

As an example, Figure 3,15 shows the parse of Figure 3.12 represented
as operations on the decamposition tree of the TT network being parsed.
Every parse can be interpreted in this fashion, and therefore the
decomposition tree is, as we claimed, & concise representation of il
possible parses of a TT network using the URS.

The decomposition tree of a TT network ac & rooted gnordered tree
is unique because it is obtained in an unambiguous way from the set of

its triconnected camponents which is unique. It is important to realize
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however, that, in general, a decomposition tree does not uniquely
determine & TT network. In particular, a lot of information is lost

in nodes of the tree that rerresent triconnected graphs with more than

three vertices (" T" nodes). The condition underlined in the description

of series reduction given earlier (about adjacency of edges)r is another
example of lost information as one goes from a TT network to its decomposition
tree., In the next section we will see that this adjacency informetion can |
be translated into a total order of the children of " S" nodes, and as &
result, how we can represent in a unique way those graphs whose

triconnected camponent set contains only poiygons and bonds using
decamposition trees. Anong other benefits, this property allows the
construction of the decomposition tree of such a TT network from any

parse of the network using the SPRS.

3.5 Two Terminal Series Parallel Networks.

We end ~..is chapter on TT networks by studying briefly the class

of Two Terminal Series Parailel {TTSP) networks.

We are interested in this class of TT networks for two reasons.
The main reason 1s that a cla.ssr of directed multigraphs that is very
closely related to the class of TTSP networks plays an important role
in the algorithm to recognize General Series Parallel digraphs that we
will present in Chapter 5. 1In addition, TTSP networks are the most
commonly used and better studied class of 1T networks. By unifying some
of their most important properties around the concept of triconnected
decomposition, we not only provide a theory that is oriented towards the

design of efficient algoritums, but also show how most of the classical
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results about TTSP networks are related to the general theory of TT
network decomposition.

We start this section by defining the class of TTSP networks in
an unorthodox mamner. We then Jjustify our choice of definition by
deriving from it the characterizations used by most authors to define
the same class. We end our discussion by exploring the possibility of
transforming TTSP networks into multidigraphs (by assigning directions
to their edges) in an unambiguous manner, and the most important
consequence of this possibility: the one-to-one correspondence between
TTSP networks and a modified version of the decomposition trees introduced
earlier.

We define TTSP networks in the following way:

Definition 3.1. A firmly connected TT network is Series Parallel if and

only if the set of its triconnected components contains only polygons

and bonds. a

In s discussion contained in the previous section we showed how any
TT network could be reduced to a double bond by series, perallel, and
triconnected reductions. In that discussion, each type of reduction
was used to transform each of the types of triconnected camponents (bonds,
polygons, and triconnected graphs with at least four vertices) into a single
edge. Because of ocur definition of TTSP networks, it should be intuitively
clear that no triconnected reduction needs to be used in the reduction of
a TTSP network. The following lemma is thus a direct conseguence of
Definition 3.1 and the discussion on the reduction of TT networks given

in the previous section.
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Lemma 3.6. A TT network is Series Parallel if and only if it can be
reduced to a double bond by a.n appropriate sequence of series and

parallel reductions,
Proof. [See Apperc .-\ (O

Tefinition 3.1 iuucdiately suggests a procedure to recognize TTSP

L R o L

networks by inspection of their triconnected components as follows:

Algorithm 3.1 [Recognition of TTSP networks].
Input: A firmly connected TT network: N .

Output: "Yes" if N d4s TTSP, "No" otherwise.

Step 1: Compute the set, S, of triconnected componentc of N .,
Step 2: If S contalns only polygons and/or bonds, answer "Yes",

otherwise answer "No". (O

This algorithm can be implemented (using Hopcroft and Tarjan's
algorithm to implement Step 1) to provide an answer in O(n+m) steps
for & TIT network with n vertices and m edges.

1t turns out that the charucterization given by lemma 3.6 is suitable

t0 be used in an efficient recognition algorithm as follows:

Algorithm 3,2 [Recognition of TTSP networks], f
Input: A firly connected TT network N . ‘
Output: "Yes" if N is TTSP, "No" otherwise.

Step 1: Repeatedly apply series ard parwllel reductions to N that
do not cdelete its return edge.
Step 2: If the multigraph resulting from Step 1 is a double bond,

answer "Yes'". Otherwise answer "No". 0

i
50 i




The correctness of this algorithm fallows immediately from Lemma 3.6

and the Church - Rosser property of the Series Parallel Replacement System,
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but its efficiency depends heavily on how Step 1 is implemented. The

problem of implementing Step 1 to run in O(n+m) steps for a multigraph

St o

with n vertices and m edges is suggested as aa exercise by Aho,

Py Py v

Hoperoft, and Uldlman in [AHO 72], but unfortunately they do not provide a
solution. 1In the next chapter we will discuss at length the same problem
for directed multigraphs. The solution thet we will then present can
be trivially modified to work on undirected multigraphs, therefore we

abandon the problem for the moment.

Our definition of the class of TTSP networks is different froa the { ,
one used by most authors. The more standard definition, and the one that

immediately suggests the applications of TTSP networks, is based on the

following characterization:

Lemna 3.7. A firmly connected TT network is Series Parallel if and
only if:
(1) 1t is a double bond, a triple bond, or a triangle,

or (41) it has a decamposition whose core is a triple bond or a
triangle and in which all the components (there are atf most

two) are TTSP networks.

proof. [See Appendix C.)

The only way in which the definition given by this characterization
differs from the standard definition used by most authors is in the

presence of the return edge. We introduced the return edge because it
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made the concepts of firm connsctivity and biconnectivity equivalent

thus simplifying the task of relating the theory of TT network decamposition

to the decomposition of a biconnected multigraph into triconnected
componer.ts.

Figure 3.16 shows in a graphic way the relationship between
decompositions whose cores are triangles or triple bonds and the familiar
operations of comiecting two electrical networks in series or in parallel
(for more details, see the discussion that follows Definition L.l in the
next chapter). lemma 3.7 can thus be interpreted as defining TTSP
networks to be the diagrams of all the electrical networks that can be
constructed by series and parallel connection of suitable elements like
resistors or transistors.

Another common characterization of TTSP networks due to Duffin

[DUF 65] that can be easily derived from our definition is the following:

Lemma 3,8. A firmly connected TT network is Series Parallel if and
only if it does not contaln K, (the complete graph on four vertices)

as an embedded subgraph.
Proof. [See Appendix C.] QO

This characterization is an example of a cammonly used method of
describing a class of graphs by identifying a subgraph that the members
of the class do not contain but every other graph in a wider universe
contains. Characterizations of this type are honna.].‘ly called forbidden

subgraph characterizations and perhaps the most famous of them is

Kuretowskii's characterization of planar graphs (see [HAR 71]). We will

provide forbidder suhgraph characterizations for some of the classes of

52




| @ | i
—pf—e )
i :*
; ;

!
{4 i
!
;
1
i Decomposition with a triple bond as core as parallel connection.
E
b
i
P X
i
I
/

ek .

Lty
t:7**”

5
; Decomposition with a triangle as core as series connection,
i
|
: Figuce 3.16
§

53

P




digraphs that we will st\ﬁy, and -~ whénmr possible «- will modify
the recognition algoritims for these classes 80 that when they give
. a "No" answer they exhibit the forbidden subgraph of their input.
We turn now to two problems that are interrelated: assigning

directions to the edges of a TTSP network and devising a unique way

Baalaho e uhiiiod

of representing any TTSP network by a decompositicn tree.
Qur procedure to assign directions to the edges of a TTSP network

is based on the method of Figure 3.17 to assign directions to the edges

of a polygon or bond. That figure shows a polygon and & bond in which

exactly one edge has been assigned a direction. We wlll assign to the

remaining edges the directions shown in Figure 3.18: for a bond the

directions are such that all edges go in the same direction, and for a

.

polygon they are such that the resulting digraph has & single source

"o e g -

and a single sink corresponding to the endpoints of the edge that had
a direction originally. Clearly this method can be used to assign
directions to the edges of any bond or polygon given a direction for
one of their edges.

We now use this method recursively to assign directions to all

Ly v— e o PR BT o Py

the edges of a TTSP network using its Triconnected Component Graph as

shown in Figure 3,19. We proceed by assigning arbitrarily a direction
to the return edge of the TTSP network, then using the method of Figures

! ; 3.17 and %.18 to assign directions to all the edges of the triconnected

. e s e e

component that contains the return edge (which is the root of the TCG
of the network). 1In this way we assign directions to the virtual edges
that this component shares with several others, and we can use these

directions to continue the process going from the root of the TCG towards

5k
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A polygon and a bond each having & directed edge.

=

Directions implied on the remaining edges of the
polygon end bond of Pigure 3.17 by thelr directed
edges,
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Figure 3.19. Process of assigning directions to the edges of a TTSP
network using the TCG and the schema of Figures 3.17
and 3,18.
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the leaves. Because the TCG is a tree, this process is unambiguous and
the only arbitrary decision that we have made is the direction chosen
for the return edge. 8Since only two directions can be chosen for that
edge, and choosing cue over the other only reverses all the directions
ascigned, we have found a quasi-unique way of assigning directioms to
the edges of a TTSP network. Note that this method relies heavily on
the ebsence of triconnected graphs with more than three vertices from
the triconnected component set of the TT network, and is only applicable
to TTSY networks. We should alsc mention that our choice of the return
edge to start the process is arbitrary, and any other edge could have
been chosen; we chose the return edge to make the discussion similar

to the reduction process explained earlier.

Let us now explain how these directions allow the unique representation
of a TTSP ne“work by a modified decomposition tree, The key is in the
process of translatirg the triconnected camponents into "fan-like" graphs
as was described in Figure 3.1k. For a general TT network these
"fan-like" graphs couldn't represent either triconnectod graphs with more
than three vertices or polygcns uniquely. For TTSP networks we only have
to worry about polygons, and in this case the problem was that adjacency
information was not captured in the fan-like graph as shown in Figure 3.20.
The directions of the edges that we described earlier solve this problem
by defining a natural total order for all but one of the edges of any
polygon, as shown in Figure 3.21. With this totui order, a polygon can
be uniquely described by an ordered "fan-like" graph as shown also in
Figure 3.21. Thus, by considering the children of " S" nodes as an
ordered set, we can construct a decomposition tree for any TTSP network

thet uniquely represents it.
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Figure 3.20. Two polygons that are different and can be represented
by the same fan-like graph.

Total order induced by directions: 1,b,c
Not ordered: a

* (root)

Flgure 3.21. Total order induced by directions on the edgee and how
to translate it into a unique fan-like graph to
represent the polygon.
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Flgure 3.22 shows this unique decarnposition tree for the TTSP
network with directed edges of Figure 3.19. It is important to remember
that these decomposition trees represent e unique TTSP network only if

we cansider the children of " S$" nodes as an ordered set, and that due

to the initial arbitrariness in the process of assigning directions to
the edges of a TTSP network, two such trees are possible (one being

2 obtalned fxam the other by reversing the orders of all the set of children
} of S8 nodes).
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Figure 3,22,
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Unique decomposition tree obtained fram the TCG of
a TTSP network end a set of directions assigned to
its edges by the process described in Figure 3.19.
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Chapter L. Two Terminal Series Parallel Multidigraphs.

4.1 Introduction.

This chayter can be considered as a natural continuation of the last
section of the previous chapter. In effect, the TTSP multidigraphs that
occupy us here are nothing more than TTSP networks whose edges have been
assigned directions in a specific manner (described earlier) and whose
return edges have been removed,

The reason why the material on TTSP networks has not been included
in the present chapter is one of emphasis. In the last chapter we were
concérned with the relation between the theories of TT network decomposition
and triconnected decomposition, and in the last section of that chapter
we wanted to show how the basic properties of TTSP networks could be derived
from the general theory. In this chapter we study TTSP multidigraphs
because we wilil use them in the recognition algorithm for the class of
General Series Parallel digraphs that we will present in the next chapter.
Due to this application, the emphasis throughout this chapter will be on
the problem of recognizing the class of TTSP multidigraphs and some
related problems such as computing the decomposition tree of a TTSP
multidigraph or exhibiting the forbidden subgraph of a multidigraph that
is not TTSP.

Of the results presented in the last section of the previous chapter
only two will be used here. One is the characterization of TTSP netowrks
as belng reducible by series and parallel reductions. The other is the
existence of a decomposition tree that uniquely represents a TISP network

when directions are assigned to its edges in the manner described earlier.
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This last fact will be by far the more important, and we will use it
indirectly not only in this chapter but in the rest of this work.

The chapter is organized into five sections (not including the
introduction). ‘4he first is dedicated to a precise definition of the
class of TTSP multidigraphs and its relationship to the clase of TTSP
networks. The next three sectioﬁb discuss in detail an efficient algoritim
for the recognition of TTSP multidigraphs and explain how to modify it
so that it (1) returns the decomposition tree of its input whenever it
gives a "Yes" answer and it (1i) exhibits a forbidden subgraph on its
input whenever it gives a "No" answer. Finelly we end the chapter with
a section that discusses the use of the unique decompositicn trees of

TTSP multidigraphs to resolve isamorphism questions.

4.2 Definition and Decomposition Trees.

The class of TTSP multidigraphs (named in this way because all its

members have a single source and a single sink) is defined as follows:

Definition 4.1, [Two Terminal Series Parallel multidigraphs].

(¢ A digraph consisting of two vertices joined by a single edge is TTSP.
(t 1f G ana G, are TTSP multidigraphs £o is the multidigraph
obtained by either of the following operations:

Two Terminal Parallel composition: identify the source of Gl

with the source of GE and the sink of Gl with the sink
of G2 .

Two Terminal Series composition: 1dentify the scurce of 62

with the sink of Gy - o
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Figure L.l illustrates the operations of Two Terminal Parellel and
Two Terminal Series composition and Figure 4.2 shows the construction of
a TTSP multidigraph using these operations. The single source and single
sink of a TTSP multidigragh are called its terminals.

One brief look at Figures 3.16 and L.l showld convince the reader
that the classes of TTSP networks and TTSP multldigraphs are as closely
related as their names seem to indicave., The precise relatianship is

glven by the following lemma,

Lemma b.1.

() Let G be a TTSP multidigraph. Tne TT network obtained by adding
a return edge (Joining the terminals of G ) to the undirected
version of G 1is a TTSP network.

(v) Let N %bYe a TTSP network. The multidigraph obtained by assigning
directions to the edges of N as described earlier and deleting

the return edge is a TTSP multidigraph.
Proof. [See Appendix C.) O

Given. this relationship it is clear that we could have chosen any of
the characterizations of TTSP networks given in the previous chapters and
use the corresponding version as our definition of TTSP multidigraphs.

We chose the recursive definition given because of the resulting ease
in proving properties of these multidigraphs using induction. An exsmple
of such a property that we will use often (implicitly most of the time)

is the following:
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source sink source

source sink

Two Terminal Parallel composition

source sink

Two Terminal Series camposition

Figure 4.1. The operations used in Defintion k.1,
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Figure 4.2. Construction of a TTSP multidigraph by Two Terminal
Series and Two Terminal Parallel compositions.
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Lemma 4.2. TTSP multidigrarhs are acyclic.

Proof. [See Appendix C.] O

Jet us now consider the problem of representing any TTSP multidigraph
by a decamposition tree in a unique way.

The method that we will describe 1s based on the discussion given in
the last section of the previous chapter and is illustrated in Figure L.3,
We start by constructing & TTSP network from the TTSP multidigraphs by
ignoring the directions of the edges and adding a return edge joining the
terminals, Then we obtain the triconnected camponents and the TCG of i

this TTSP network. We then assign directions to all the edges of the

triconnected components by assmwming that the return edge goes from source '
to sink of the TTSP multidigraph and using the method described in the
previous section. Finally we transform the TCG into a deccmposition tree -
using these directions also by the method described earlier except that
no leaf is added for the return edge since it was artificially added to
the original PTSP multidigraph.

We will provide no formal proof of the fact that the tree obtained
by this process uniquely represeats the initial TTSP multidigraph, but
it follows from the uniqueness of the triconnected components and the
unique way of assigning directione to the edges of these components that
we have employed. The only additional fact that one needs to worry about
is to show that the directions assigned to the actual edges of the

triconmnected components coincide with the directions that these edges

. ah M 8 e et S

had in the original TTSP multidigraph. The proof of this fact is implicit
in the proof of lemma }.1
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In the process Just described, a certain smount of camplication was

added by the addition and posterior deletion of the retwrn edge and one
may wonder whether this complication was necessary. The return edge plays
a very convenient role in the theory of TT network decamposition by making
the concepts of firm connectivity and biconnectivity equivalent. On the
other hand, vhen dealing with TTSP multidigraphs the exigence of having
an edge joining the terminels is not very reasonable. It 1s for this
reason that we consider the complications that the brief appearance of
the return edge on this chepter causes a lesser evil. In any case, the
retwrn edge is not used In the next two chapters so we can safely forget
gbout 1t for the moment.

The construction of & TTSP multidigraphs by Two Terminal Series and
Two Terminsl Parallel campositions can be very naturally represented by

a binary tree as shown in Figure L.L. 1In these binary decomposition

trees, as we shall call them, the leaves represent edges of the TTSP
multidigraph and the internal vertices are labelled "S" or "P" to
indicate the Two Terminal Series or Two Terminal Parallel coauposition
of the graphs represented by thLe subtrees of the node. The order of the
children of a node labelled "P" is irrelevant because of the symmetry
of the Two Terminal Parallel composition, but the children of " §" nodes
are considered ordered with the left subtree representing the multidigraph
that corresponds to G, in Definition 4.1.

Two non-iscmorphic binary decomposition trees may represent the same
TTSP multidigraph as Figure 4.5 shows. This multiplicity is due to the
associativity of consecutive Two Terminal Series and Two Terminal Parallel

compositions. 1In spite of this multiplicity there is a very simple way of
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of Figure 4.2,

Binary decomposition tree for the TTSP multidigraph

Figure 4.1,
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Figure 4.5,
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A TTSP and several binary decomposition trees
that describe its construction.
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obtaining the unique deccamposition tree of a TTSP multidigraph from any
binaxy decomposition tree. All one has to do is "shrink" the edges of
the binary decomposition tree that join internal nodes that have the

same label thus ldentifying their endpoints. This process is illustrated
in Figure L.6.

No formal proof of this relationship is needed if ane interprets the
unique decomposition trees in much the same way as binary decomposition
trees were interpreted: internal "s§" ("P") nodes indicate the Two
Terminal Series (Parallel) composition of the TTSP multidigraphs represented
by the subtrees of the nodes. The only difference is that now a single
composition operates on more than a miltidigraph (see Figure L.7). Then
it is easy to see how the Sina.ry decamposition trees can be cbtained from
the unique decomposition tree by "associating" the camposition operations
s0 each one takes only two arguments.

The above discussion has shown the basic equivalence between binary
decamposition trees and the unique decampeosition trees (obtained fram the
triconnected compouents) for TTSP multidigraphs. For this reason we will
use both interchangeably in the rest of this chapter and the following ome.
Binary decomposition trees are a little more intultive and easier to
manipulate in algorithms, while the uniqueness of the other type of treec
will meke them very useful to solve isomorphism problems. The reader should
keep in mind therefore that when given a decamposition tree of one type
with n nodes one can transform it into a decamposition tree of the other

type in 0O(n) steps by a trivial process.
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Figure 4,6, The unique decomposition tree obtained from any of
the binary trees of Figure 4.5 by "shrinking" the
edges that join internal nodes with the same label.




Figure 4.7,
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The unique decomposition tree of a TTSP multidigraph
interpreted as describing the construction of the
multidigraph using Two Terminal Serie:; and Two Terminal
Parallel compositions that take more than two arguments,

iF

- il




— o T e~ il S e A SRR

4.3 Recognition of Two Terminal Series Parallel Multidigraphs.

We consider now the problem of recognizing the class of TTSP
mtidigraphs, that is, given a multidigraph, G , deciding in an
efficient mammer whether G is TTSP or not.

In the previous chapter we considered briefly the problem of
recognizing the class of TTSP networks and outlined two methods to solve
the problem. One method was based on the triconnected components algorithm
and the other on the Series Parallel Replacement System, and either one
can be adapted to work for TTSP multidigraphs. Nevertheless we will cnly
consider in detail the method based on the replacement system because it
results in e simpler algorithm.

The characterization of TTSP multidigraphs that we will use

correasponds to the characterization of TTSP networks given by lLemma 3.8;

lemma 4.3. A multidigraph is TTSF if and only if it can be reduced to

& single edge by an appropriute sequence of Series and Parallel reductions.

Proof. [See Appendix C.] 0O

Using this characterization we can test whether a multidigraph is
TTSP by the following method:

Algorithm 4.1 [Recognition of Two Terminal Series Parallel multidigraphs]:
Input: Any multidigraph G .
Qutput: "Yes" if G 4is TTSP, "No" otherwise.
Step 1: Reduce G by series and parallel reductions until

obtaining an irreducible multidigraph G, .

k
Step 2: ir Gk consists of just two vertices joined by an
edge answer "Yes", ctherwise answer "No", [
Th
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The correctness of this method follows immediately fram the ?ﬁ~
Church - Rosser property of the Directed Series Parallel Replacement
System (Theorem 2.3) that guarantees that Gy is unique, and fram ;
Lemma 4.3 that guarantees that G, Wwill consist of a single edge if
and only if G 1s TTSP.

We can also place & bound on the number of reductions that we will
have to perform: because each reduction decreases by cone the number of
edges of the multigraph, no more than m reductions can be applied to
a multidigraph with m edges. Unfortuantely this is not enough to
provide a good bound on the running time of Algorithm L.l because it
depends heavily on how we search for the applicable reductions. The
rest of this section is dedicated to the description of a method of
implementing Step 1 to run in O(n+m) steps on a multidigraph with
m edges and n vertices.

We represent the input miltidigraph by records of two types: each
record of one type represents one of the vertices and each record of the
second type represents an edge of the multidigraph. The record that ‘.
represents an edge (u,v) contains pointers to the records that
represent u and v and a flag that tells whether the edge is still
part of the multidigraph or has been deleted by a reduction. Associated
with the recérd that represents a vertex, v , are two lists of pointers
to edges that are incident to v . One of these "incidence lists",
called the in-list, contains initially pointers to all the edges thst
enter v , wille the other, called the out-list, contains pointers to
all the edges that leave v ., In addition the record containg a flag
that tells whether the vertex has been removed from the multidigraph by

a series reduction or is still part of it.

75




The basic data structure is a list of vertices that we call the

unsatisfied-list. Initially this list contains all the vertices except
the source and the sink; in general, a vertex will be on this list only
if we have to do some work on it.

We proceed by removing any vertex, u , from the unsatisfied list,
"cleaning up" its in-list and out-list (a process described below) and
then attempting to remove u from the multidigraph by a seriles

reduction.

This process is repeated until the unsatisticu list becomes empty,

at which point we can provide an answer by testing whether all the vertices

except the scurce and the sink have been deleted trom the multidigraph and
whether all tie edges remaining go fram source to sink.
The ' cleaning Jup" of an incidence list involves the repeated application

of the following rules to the first two elements of the list.

(1) 1if either element points to an edge that has been removed, delete
the element;
(1i) otherwise if both print to edges that have the same endpoints we

carry out a parallel redustion involving these edges.

When these rules can no longer be applied, the first two elements
of the list point to two edges that have different endpoints and that both

.ates or bo:h leave the vertex being processed, and we end the process.

i
;_:
%
‘s
%
¢

A parallel reduction deletes the two edges involved froam the

multidigrapt and adds a new edge to it with the same endpoints and

s e sy AT |

directions as the deleted edges. A series reduction of edges

RITTS

(uyv), (vyw) deletes both edges and adds an edge (u,w) to the
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multidigraph. In addition each endpoint of the new edge -- u and w --
is pla.éed on the unsatisfied list unless it is the source or the sink or
it is already on the list.

The correctness of this impiementation can be proved by the following
argument. 7

If the algorithm gives a "Yes" answer it is because we have managed
to transform the input multidigraph into a set of parallel edges joining
the source and the sink; this multidigraph can trivially te reduced to a
single edge &and our answer is correct.

If the algorithm gives a "No" answer we know that (independent of
any parallel reductions we may execute) every vertex different from the
source and the sink that has not been eliminated cannot be removed unless
we first remove some o ihrr vertex. Clearly this implies thet no additional
vertex can be eliminated and our answer is once again correct.

Let us now examine the number of steps that Algorithm L.l implemented
in the way we just described will take when given a multidigraph wit*.- m
edges and n vertices as input.

Initially we will have 2m pointers to edges because a pointer to
any edge (u,v) will appear in the out-list of u and the in-list of v .
Series and Parallel reductions add new edges but each decreases the total
number of edges of the multidigraph by one because they delete two edges
and add one. Thus, no more than m-l new edges will be added since no
more than mel reductions can be carried out before we run out of edges.

Therefnre we will deal with at most 2m+ 2(m-1) pointers to edges

thrcughout the running of our algorithm.
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The unsatisfied list contains initially n-2 elements and vertices are

added to the list only when a series reduction ls perfcrmed. Bacause

e et

series reductions eliminate a vertex, noc more than n-2 of them could
be performed and thus no more than 2(n-2) additions will be performed
to the unsatisfied 1ist. Therefore, since every time we process 2 vertex
we delete it from the unsatisfied list, we will process at most 3(n-2)
vertices before the unsatisfied list becomes empty.

The processing of a vertex takes a constant amount of time plus the

effort needed to "clean up" its adjacency lists. The "cleaning up" takes

a constant number of steps for each pointer deleted plus a constant

number of steps to decide that the "clean up" has ended. Since we have iﬁ

o(m) total pointers to edges in all lists, and we only process O(n)

vertices we will spend at most O(n)+ O(m) steps in the "clean up" part

¢f the algorithm. - -
We therefore conclude that the algorithm will provide an answer in

O(n+m) steps.

L.,4 Obtaining the Decomposition Tree of a TTSP Multidigraph.

The recognition algorithm that we have just presented is unsatisfactory
in an important aspect. In many cases it is not only important to decide
vhether a multidigraph G 1s TTSP or not, but also to campute the
decomposition tree of G in the case in which it is TTS8P. 1In this
section we will describe a simple modification of the recognition

algorithm described in the previous section to output a binary decomposition

tree of its input whenever it gives a "Yes" answer.
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The method that we will describe could be used to produce either the
unique decomposition tree or a binary decamposition tree of any TTSBP "
multidigraph. We have chosen to present how to obtain a binary

decomposition tree because it is much simpler to describe, and -- as we

e

saw in the second section of this chapter -- it is a trivial operation to _
obtain the unique decomposition tree from any binary decamposition tree.

The method works by associating a binary decamposition tree with each

< o O SN AT Y-SRI N PN et |
. . \

of the edges of the multidigraph that is being reduced. Initially every
edge is associated with a trivial binary decomposition tree consisting
of a single vertex, As new edges are introduced by series or parallel "«_'

, { reductions, the binary decomposition trees that we associate with them

are computed from the binary decomposition trees associated with the

L.
.

edges being deleted using the rules shown in Figure 4.8. We claim that

oy

if a multigraph G 1is reduced to a single edge, e , the binary decaomposition ;;-'
tree associated with e -- if computed according to these rules -- is a
binary decamposition tree of the TTSP multidigraph G .

An example of this process is shown in Figure 4.9.

. AR ATt 1 A QAT N
3

We will not provide & formal proof of the correctness of the procedure

o wyme ceveiaz

Just deseribed. Instead we will describe in an informal way the reasons

why this method produces the results claimed.

[

Notice that every edge, e' , introduced during the process of
: reducing a multidigraph G by series and parallel reductions, replaces
. a certain subgraph G' of G . Because we have managed to transform
G' 4into a single edge e' by series and parallel reductions, G’ has

to be a TTSP multidigraph. Our method works by associating with each new

edge a binary decomposition tree of the subgraph of the input that was
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Figure 4.8, Computing the binary tree associated with g

nevw edge from the binary trees associated
with the edges 1t regplaces.
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Figure 4.9. Computing the decomposition
tree from the reduction process,
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replaced by that edge. Following this argument one step further, the
binary decamposition tree associated with the only edge remaining after
the complete reduction of a TTSP multidigraph G , has to be a binary.
decamposition tree for G . This argument can be converted into an
inductive proof without major difficulties, but in doing so we feel that
the simple principle on which the method is based gets lost in the details
of the proof.

Let us end this section by discussing the effect that the additional
camputation needed to implement this method has on the efficiency of the
recognition procedure for the class of TTSP multidigraphs described in
the previous section.

Clearly the initial association of trivial binary decomposition trees
with each edge can be performed in a constant mumber of steps for each |
edge. Furthermore any reasonable implementation of the rules or Figure 4.8
would not compute the binary decomposition trees associated with new edges
from scratch so to speak, but would rather combine the binary decomposition
trees associated with the edges being deleted. 1In this manner each new
binary decomposition tree can be computed in a constant number of steps.
Because we compute a new binary decomposition tree for each series or
parallel reduction executed, and at most m-1L such reductions are
perfcrmed when we reduce a multidigraph with m edges, no more than
0(m) steps are involved in the computation of the binary decomposition
tree and the recognition algorithm will give an answer in O(n+m) steps

for a multidigraph with n vertices and m edges.
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4.5 Exhibiting the Forbidden Subgraph.

The class of TTSP multidigraphs has a simple fordbidden subgraph
characterization. This characterization is very similar to Duffin‘'s
characterization of TTSP networks (lLemma 3.10) and could be derived
from it -- although we will not do so.

Lemma 4.4, An acyclic multidigraph with a single source and a single
aink is TTSP if and only if it does not contain the "Wheatstone bridge"

(see Figure L.10) as an embedded subgraph. O

That TTSP multidigraphs do not contain the Wheatstone bridge as an
embedded subgraph can be proved easily by induction, showing that the
operations of Two Terminal Serlies and Two Terminal Parallel composition
(used to define the class of TTSP multidigraphs) cannct create an embedded
Wheatstcne bridge by connecting two multidigraphs that do not contain an
embedded Wheatstone bridge. In the remainder of this section we will
provide an indirect proof of the other half of the ebove lemma by showing
how one can exhibit the forbidden subgraph every time that the recognition
procedur¢ gives a '"No" answer when given a multidigraph that is acyclic
and has a gingle source and a single sink.

Before proceeding with the proof, let us comment on the requirements
of Lemma 4.L4: the multidigraph mist be acyclic and it must have a single
source and & single sink. Figure L..1 shows why these conditions are not
superfluous by displaying two graphs -~ each violating one of the
conditions -- that are irreducible by series and parallel reductions,

do not contain an embedded Wheatstone bridge and are obviously not TTSP.
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(a)

(v)

Figure 4.10.

(a) The Wheatstone bridge.

(b) A mutidigraph contains the Wheatstone bridge
as an embedded subgruph if and orly if it
contains this pattem, where a,b,c,d,
and e are disjoint paths.
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Figure 4.11.
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Two multidigraphs that are irreducible
by series and parallel reductions, are
not TTSP and do not contain an embedded
Wheatstone bridge.
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Let G be a multidigraph that is not TTSP, and lst GE be the
mltidigraph iato which G 1s transformed Ly series and parallel
reductions by our recognition procedure before it decides that no more
vertices of GE can be deleted and gives a "No" answer. The multidigraph
Gy has three important properties: (1) it is an embedded subgraph
of G, (11) it is acyelie if and only if G is acyclic, and
{111) it has the same number of sources and sinks as G . These
properties follow directly from the fact that GE was obtained from
G by series and parallel reductions.

Therefore, by counting sources and sinks of GE and determining
vwhether it contains any cycles we can -- by Lemma 4.4 -- decide whether
GE contains an embedded Wheatstone bridge or not. Because the embedded

subgraph is a transitive feature, (that is if Ga is an embedded subgraph

of Gy and Gy is an embedded subgraph of G0 s G2 is ean embedded
subgraph of G, ) if Gp contains an embedded Wheatstone bridge, so
does G . Furthermore, since GE was obtained from G by series and
rarallel reductions, the four vertices of an embedded Wheatstone bridge
of GE will be the four vertices of another embedded Wheatstone bridge
of G . Therefore the problem of exhibiting an embedded Wheatstone bridge
of G can be reduced to the same problem on GE .

Because Gp was obtained as an endproduct of Algorithm 4.1 running
on input G we know that no vertex of G

E
reduction until some other vertex is deleted first. In other words, each

can be deleted by a series

vertex of Gp except its source and its sink has (i) either two distinct

successors or (11) two distinct predecessors or (iii) both. Let us
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call a vertex with two distinct predecessors & branch-in vertex and a *
vertex with two distinct successors a branch-out vertex, The following

lemms is the basis of the procedure that we will describe.

Lemma h.§. There is a branch-in vertax of GE that is a successor of

a branch-out vertex.
Proof. [See Appendix C.] Q)

OQur procedure can be described as follows:

We start by finding the pattern of Figure 4.12 -- which must be

!' present according to Lemma 4.5 -- by examining each vertex of GE .

(nce this pattern has been found we use four depth first traversals to

£ind the paths labelled & , b, ¢, and d in Figure 4,13, These
paths have been drawn as if they were disjoint, but in general we

. wouldn't be so lucky and the paths would have cammon vertices. We

VIS v SO {1
3

then find vertices u and v such that u is the last vertex of

path a which is also on b, and v is the first vertex of ¢ which
is alsoon 4 .

TV TERKEEER? DR I 0T CTNE TN B A,

The new situation is depicted in Figure L.ll4 where we know that:

(1) a' and b' are disjoint because of our choice of u .

@ €y T ST 1 Y (M R A o) e

- ; (11) e¢' and d' are disjoint because of our choice of v . ;-

é i (111) a' and ¢', b' and c', and b' and 4d' are pairwise
i

1
i
|
!

disjoint or otherwise GE would contain a cycle.

There are only two cases to consider: that a' and 4' are also
- disjoint or that a' and d4' have at least a cammon vertex. In the

first case we have found an embedded Wheatstone bridge and we are done,
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Figure §.12. A branch-in vertex (3) that is a successor of
a branch-out vertex (2).-

source sink

Figure L.13

H Figure 4.14
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In the second case we find a vertex w such that it is the first vertex on a'
that is also on d'. If we call a" the section of path a' between u
and w, a"' the rest of path &' , and 4" the section of path 4’
between vertex 4 and vertex w we have the situation depicted in
Figure 4.15 in vhich all the paths are pairwise disjoint and we have
once again identified the ewmbedded Wheatstone bridge.
Let us say a few words about the efficiency of the method just
described. We can decide wh2ther GE contains an embedded Wheatstone
bridge by counting sources and sinks and by a depth first search to
determine whether it contains any cycle ([TAR 72)). In the rest of
the process we need only to find paths between two given vertices, and to
find the first (last) vertex of a path that does not (does) belong to another,
Clearly each of these operations can be performed in O(nEi-mE)
steps (where nE is the number of vertices and B, the mumber of edges
of Gp ) by depth-first traversal. Since we need tc perform only a
constant number of these operations, we can exhibit the embedded Whzatstone
bridge without worsening the asymptotic behaviour of the recognition

procedure for the class of TTSP multidigraphs presented earlier,

4.6 Iscmorphism of Two Terminal Series Parallel Multidigraphs.

No algorithm is known to resolve the question of whether two graphs
with n vertices are isomorphic in a number of steps that grows as a
polynomial of n . Nevertheless, efficient glgorithms are known for
several special cases. Particulary interecsting to us is an algorithm

that determines whether two rooted trees witnh n vertices are isomorphic

eptrvuduraram:
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in O(n) steps (see Example 3.2 in [AHO 76]), because it can be used
to decide the iscmorphism of TTSP multidigraphs.

We know that a TTSP multidigraph can be represented by & unique
decomposition tree and that we can obtain this tree in O(n+m) steps for
a multidigraph with n vertices and m edges. We also kuow that the
decomposition trees are somewhat specisl in that the children of "s"
nodes are an ordered sét while the children of "P" nodes are not ordered.

The tree isamorphism slgorithm given by Aho, Hopcroft, and Ullman
works for unordered rooted trees so it cannot be used immediately to
resolve the isomorphism of decomposition trees. This algorithm works by
processing the vertices of the trees being tested in levels -- each level
contains all the vertices of a tree that are at a fixed distance fram
the root. The level that contains the vertices farthest from the root is
processed first, and then the algorithm works its way towards the root
level by level. At each level the algorithm checks that the subtree
rooted at each vertex of that level on one of the trees is isamorphic to
some subtree rooted at a vertex at the same level on the other tree. The
glgorithm checks this by assigning a label to each vertex that is
computed from the labels of its children and implicitly imposing an order
on this set of childrer by sorting their labels before computing the
label of theilr parent.

The algorithm can be modified so that the label of a vertex whose
children are ordered is computed using this order instead of sorting the
children by their labels. In this way the algorithm can be used to solve
the isomorphism of rooted ordered trees or of trees with mixed nodes like

our decomposition trees.
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We can therefore determine whether two TTSP multidigraphs with n
vertices and m edges are isombtphic in O(n*m) steps using the method
Just outlined.

A problem much harder than isamorphism is the subgreph iscmorphism
problem, which consists in determining whether a graph G

1
to some subgraph of another graph G . Clearly, solving this problem

is isomorphic

implies having solved the isomorphism Vproblem, but having a polynaomial
algorithm to solve the isamorphism problem does not help much in designing
a polynomial algorithm for the subgraph isomorphism problem. The subgraph
isomorphism problem is known to be NP-complete (see Exercise 10.9 of

(AHO 76]).

Once again an efficient algorithm is lmown to solve the problem for
trees (see [MAT 78] and [DRY 77)), so the question arises of whether we
can use this algorithm to determine whether a TTSP multidigraph is
isomorphic to a subgraph of another by using their unique decomposition
trees,

Unfortunately the matter is not as simple as for the isomorphism
problem, Figure 4.16 illustrates the problem. The graph G, depicted
there iz isomorphic to a subgraph of G, but the decomposition tree of
Gl is not isomorphic to any subtree of the decomposition tree of G .
Even worse, the decomposition tree of Gl is not an embedded subtree of
the decomposition tree of G . Whether the decomposition trees can be
used to design an efficient elgorithm for the subgraph iscmorphis problem

for TTSP multidigraphs remains thus an open question.
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i Figure 4.16. Two TTSy multidigraphs and their decomposition

trees. Gl is isomorphic tc a subgraph of G2

but Tl is not isomorphic to any subgraph of T2 .
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Chapter 5. General Series Parallel Digraphs.

5.1 Introduction.

This section is devoted to the study of the class of General Series
Parallel (GSP) digraphs.

This class of digraphs was introduced by lawler to represent sets
of constraints between tasks in scheduling problems. For a number
of problems of this kind -- some of which are known to be NP-complete
for arbitrary constraints -- one can design algorithms that find an
optimal schedule for n tasks in O(n log n) steps when the constraints
among the tasks form a GSP digraph by taking advantage of the relatively
simple recursive structure of these digraphs. (See [LAW 78], [MM 771,
(SID 76].) All these efficient algorithms use the structure of the
constraints to find the soclution of a large problem by solving several
trivial problems of the same type and then combining the solutions to the
trivial problems into a solution for the large problem.

Because many of these optimal scheduling problems have practical
applications and because the constraints represented by GSP digraphs
arise naturally, it is important to be able to determine efficiently
whether a given digraph is GSP, and if it ig, to be able to describe its
structure in a manner that can be used in the "divide and conguer" strategy
used by the efficient algorithms described above. Consequently, the main
goal of this chapter is to present an algorithm to perform this recognition
task in O(n+m) steps for a digraph with n vertices and m edges.

The remainder of this chartz: 18 organized into five sections., In

the first of them (Section 5.2) we provide a formal definition of the class
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of GSP digraphs and explore its relationship with the class of TTSP -

multidigraphs studied in the previous chapter. (This relationship is

the basis of another application of GSP digraphs: to the design of

hardware specification languages {SMI 78].) The next two sections contain

the detailed description of the GSP recognition procedure:

redundant edges, and in Section 5.3 we explain how recognizing this set

of minimal digraphs helps us to recognize the class of GSP digraphs.

Section 5.5 introduces a forbidden subgraph characterization for the

class of GSP digraphs.

consists of a description of how the recognition procedure presented in

the previous two sections can be modified so it exhibits the forbidden
subgraph whenever it gives a "No" answer.

Finally we end the charter with a section that considers how the
description of the structure of a GSP digraph that our recognition
procedure produces when it gives a "Yes" answer, can be used to resolve

several questions about GSP digraphs in an efficient manner.

5.2 Definition and Relationship to TTSP Multidigraphs.

We define the class of General Series Parallel (GSP) digraphs in
relation to the set of its members that do not contain redundant edges.
The members of this set of minimal digraphs are called Minimal Series

Parallel (MSP) digraphs and they are defined recursively as follows:

95

in Section 5.3
we describe how to recognize the subset of GSP digraphs that contain no

The proof of the characterization that we provide
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Definition 5.1 [Minimal Series Parallel digraphs],
(1) A digraph consisting of a single vertex and no edges is MSP,

(11) 1f G, = (V»E)) and G, = (V,)E,) are two MSP digraphs

80 is their parallel composition: GP - (vluva ’ EIUE'e) .
(ii1) If G, = (vl’E:L) and G, = (va’Ee) are two MSP digraphs

80 is their minimal series composition:

Gps = (vluvz, ElUEEU(leRe)) where N, is the set of
sinks of Gl and R2 is the set ol sources of G2 . O

The class of GSP digraphs is defined now using the operation of

transitive reduction (see Appendix A).

Definition 5.2 [General Series Parallel digraphs]. A digraph is GSP

if and only if its transitive reduction is an MSP digraph. QO

If we replace the operation of minimal series composition in

Definition 5.1 by the operation of series composition, defined by

Gy = (V1UV2 s Elu E2U (Vl xvg)) , the resulting class of digraphs
contains precisely all the GSP digraphs that are transitive, For this

reason the members of this class will be called Transitive Series Parallel

(TSP) digraphs.

Figure 5.1 shows the construction of an MSP digraph, GM » by minimal
series and parallel compositions. This procsss can be repeated with the
minimal series compositions replaced by series compositions as shown in
Figure 5.2 to obtain a TSP digrarh, GT » vhich is the transitive closure

of C‘M . The following lemma gives same basic properties of the classes

of digraphs just defined and shows that they are related as we claimed:
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Lemua 5.1.

(1) MSP, GSP, and TSP digraphs are acyclic and contain no multiple
edges.

{(14) NSP digraphs are minimal.

(iii) TSP digraphs are transitive.

(iv) The transitive closure of any MSP digraph (and therefore of any
GSP digraph as well) is a TSP digraph.

(v) The transitive reduction of any TSP digraph is an MSP digraph.
Proof. [See Appendix C.] O

Note that because of the relationships exhibited by this lemma, the
class of TSP digraphs and the operation of transitive closure could have
been used to define the class of GSP digraphs instead of the class of MSP
digraphs and the transitive reduction operation used in Definition 5.2.

The construction processes of Figures 5.1 and 5.2 can be neturally
represented by & binary tree as shown in Figure 5.3. Such a binary tree
has & leaf for each of the vertices of the digrarh constructed and an
internal node for each composition operation used in the construction.
The internal nodes are labelled "S" or "P" to indjcate respectively the
minimal series (series) and parellel composition of the MSP (TSP) digraphs
represented by the subtrees rooted at the children of the node. It is
important to note that the order of the children of a "F" node is
irrelevant (parallel composition is symmetrical) but that the order of
the children of " S" nodes is important. We have chosen to represent the
digraph that corresponds to Gl in Definition 5.1 as the left subtree of

any " S" node.

n o b g s i e
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Figure 5.3. A binary tree that represents either one of
the construction processes shown in Figures
4 5.1 and 5.2.




The binary trees Just described are formally identical to the binary b

| decamposition trees of TTSP multidigraphs introduced in the previous - ¥
chapter. For this reason they will be called binary decomposition trees 3
as well, .

E: This formal identity of the tinary decomposition trees of TISP | §

! mltidigraphs and MSP (or TSP) digraphs ls the result of the correspondence
between the operations of two terminal seriecs and two terminal parallel

composition of multidigraphs on the one hand, and minimal series and

parallel composition of digraphs on the other. This correspondence is

the following:
Lemms 5.2. Let G, end G, be two multidigraphs having a single source
and a single sink. Let Gppg &nd Gpnp, Stand respectively for the Two ‘ :

Terminal Series and Two Terminal Parellel compositions of Gl and 62 N

and let L(G) indicate the line digraph of digraph G (see Appendix A

for definition).
(1) L(GTTS) is the minimal series composition of L(Gl) and L(Ge) .

(i1) L(GTTP) is the parallel composition of L(G,) and L(Ge) .

Proof. [See Appendix C.] (O

Because of iuis correspondence between the operations used to define
the classes of TTSP multidigraphs and MSP digraphs and the identical
{ structure of Definitions L.l and 5.1, a one-to-one correspondence can be

established between the members of the two classes:

Tewagn g oo -,
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Lemma 5.5, Let G he a multidigraph with ocne sourne and one sink.

G is TTSP if and only if L(G) is an MSP digraph.
Proof. [See Appendix C.] (O

Figure 5.4 shows & TTSP multidigraph and its MSP line digraph as an
example of this correspondence,

The correspondence of operations given by Lemma 5.2 implies in a
rather direct manner that a binary decamposition tree T can be viewed
as representing a TTSP multidigraph or its MSP line digraph. As a result
all the properties of the decomposition trees of TTSP multidigraphs proved
in the previous chapter can be assumed to be true of binary decomposition
trees of MSP (or TSP) digraphs as well. 1In particular, two non-iscmorphic
binary decomposition trees can represent the seme MSP (or TSP) digraph
and we can eliminate this multiplicity by "shrinking" the edges of any
binary decomposition tree that join nodes with the same label (see
Figure 5.5). 1In this way, from any binary decomposition tree of an MSP
(or TSP) digraph G, one obtains a rooted tree that represents G
uniquely. Following the nomenclature of the previous chapter, we will

call this unique rooted tree the decomposition tree of ¢ .

We have described how & decomposition tree, T, depending on Low

it is interpreted, can uniquely represent
(1) a TTSP multidigraph G ; or
(11) an MSP digraph that is the line digraph of G, L(G) ; or

(1i1) the TSP digraph obtained by camputing the transitive clecsure
of L(G) .
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Figure 5.4, A TTSP multidigraph, G , and its MSP line
digraphs.
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Figure 5,5, Two non-isomorphic binary decomposition trees, Tl and T2 ’
that represent the same MSP digraph G , and the unique
decomposition tree T obtained from either Tl or T2 by
"shrinking" edges that join nodes with the same label.
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It ie important to realire that we cannot represent a GSP digraph
by a decomposition tree because there 1s no natural way fo include
in the decomposition tree the description of which redundant edges are
present and which are absent in the GSP digraph. MSP and TSP digraphs
can be represented by decomposition trees because we know that in one
case no _redund.e.nt edge 1s present and in the other that all .the_ yossible
redundant edges are present.

The possibility of interpreting a binary decani:osition tree in

different ways plays & central role in the algorithm to recognize the
class of GSP digraphs that we will describe in the next two sections,

This recognition procedure will work as a three step process:

-- On input G, the first step will campute & minimal subgraph GM
of G such that if G was GST, GM is its transitive reduction

(and therefore MSP).

-~ The second step d=termines whether GM is an MBP digraph. If it
is, the algoritim will compute a decomposition trece, T, of GM ’

and if GM is a0t MSP the algorithm will answer "No".

-~ The last step considers T as an implicit representation of the

transtive closure, GT s of GM end tests whether G 4is a subgraph

of 1t. If G 4is a subgraph of G'I'

answer, otnerwise it gives a "No" answer.

the algorithm gives a "Yes"

This algoritium will be described in the next two sections in enough
detail to prove that it can be implemented to produce an answer ia O(n+m)
steps for a digraph with n vertices and m edges. Our description will

not follow th: flow of control of the algorithm as described above. We
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will start by presenting a recognition procedure for the class of MSP
digraphs -- the second step of the algorithm -- and then show how to
perform the first and third steps, which are more related to what the

above description might lead one to believe.

5.3 Recognition and Parsing of MSP Digraphs.

In this section we present an algorithm to solve the following
recognition task: given a digraph, G , determine whether G is an MSP
digraph, and if it is, obtain & decomposition tree T of G . The
algorithm that we present will perform this task in O(n+m) steps for
any digraph with n vertices and m edges.

The method that we will use is based on the one-to-onc correspondence
between TTSP multidigraphs and MSP digraphs given by leuma 5.3, and
Algorithm L.1 which solved exactly the same task for TTSP multidigraphs.

This method can be described as a two step process:

(1) Given G, compute its inverse line digraph L'l(G) .
(14) Use Algorithm L.1 to determine if L-l(G) is TTSP, and if it 1is,
to obtain a decomposition tree T of L'l(G) . If L-l(G) is

TTSP we answer "Yes" and output T , otherwise we answer "No".

In principle, Lemma 5.3 would seem to be enough to guarantee the
correctness of this process, but there is a problem with the assumption -~
made in the first step -- of the existence of an inverse line digraph
function. The problem has two aspects: there are digraphs that do not
arise as line digraphs, and others that arise as the line digraph of

several non-isamorphic digraphs, as shown in Figure 5.6,
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(a) A digraph that does not arise as & line-digraph.
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(b) Two non-iscmorphic digraphs having the sesme line digraph.

Figure 5.6
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The problem of characteriring the digrephs that have line digro:ph
inverses has been extensively studied from & non-algoritimic point of view
([HAR 60], [HEM 72], [KLE 75]) and the problem of camputing the line graph
of an arbitrary graph has been solved by Lehot [LEH 74). The approach |
used by Lehot on undirected graphs is interesting: given a graph G .
Lehot camputes another graph GR such that if G 41is the line graph qf
any graph, it is the line greph of GR . He then proceeds to compute the
line graph of G

R
this direct approach works because the inverse line graph -- if it exists --

and test whether it is identical to G . Unfortunately

is unique except in some trivial cases, and does not seem to be useful for
our problem where this condition does not hold. Instead we will use a
eriterion of Harery [HAR 60] to determine whether the input digraph has
a line digraph inverse before attempting to campute it.

In the next few paragraphs we will describe Harary's characterization
and then describe how we use it to implement the recognition procedure

described at the beginning of this section.

Definition 5.3 [Complete Bipartite Composite digraphs].  an acyclic digraph

G 1is Complete Bipartite Composite (CBC) if there exists a set of complete

bipartite subgraphs of G : Bl’ BQ, ’Bk » that we call the bipartite

components of G , such that:

(1) each edge of G belongs to exactly one subgraph;

(11) every vertex v of G, except the sinks, belongs to the head of
exactly one subgraph that we will denote by h(v) ;

(111) every vertex v of G, except the sources, belongs to the tail

of exactly one subgraph that we denote t(v) . 0O
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‘The first part of Harary's characterization is the following:

Lemma 5.4 [HAR 60). A digraph has an inverse line digraph if and only
if it is CBC. (O

This lemma solves the problem of the existence of the inverse line
digraph, but says nothing about the multiplicity of inverses. The following

lemma, due also to Harary, solves thls problem:

leuma 5.5 [HAR 60]. Let G, and G, be two digraphs such that
L(Gy) = L(Gy) - The digraphs obtained from G, anu G, by deleting all

the sources and sinks are isomorphic. (J

Figure 5.7(a) shows what happens after removing all sources and sinks
from the two digraphs shown in Figure 5.6(b). Figure 5.7(b) shows the
approach that we will use: instead of deleting the sources and sinks
we have merged all the sources into & single source and all the sinks
into a single sink. The proof of the fact that this op2ration makes the
inverse line digraph unique is a trivial modification of Harary's proof
of Lemma 5.5.

We have thus established that any CBC digraph has a unique inverse
line digraph having a single source and a single sink. Before we describe
how this unique inverse can be computed, we prove same properties of CBC

digraphs that we will use later:

Lemma 5.6.
(1) CBC digraphs are minimel.

(41) The bipartite components of a CBC digraph are unique.
(111) Any MSP digraph 1s CBC.
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(a) The unique digraph obtained from the digraphs G, and G

: 2

| of Figure 5f6(b) by removing all their sources and sinks,
‘f
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(b) The unique digraph obtained from the digraphs Gl and 02

of Figure 5.6(b) by merging the sources and sinks.

Figure 5.7
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Proof. ({See Appendix C.] O

The converse of part (iii) of the above lemma is not true:
Figure 5.8 shows a CBC digraph that is not MSP.
We now use the results of Lemmas 5.1 and 5.5 to define the inverse

line digraph function:

Definition 5.4 [The inverse line digraph function]. 1Iet G be a CBC

digraph with bipartite componente B ,132,... ,Bk . The vertex set of
L'l(G) -- the inverse line digraph of G -- 18 (B,B),...,B,B ] .

For each vertex v of G, L'l(G) contains an edge computed as follows:
(1) if v 1is a source of G , the edge is (Bu,h(v)) 5

(i11) 4if v is a sink of G, the edge is (t(v),Bw) H

(111) 4if v 1is a source and a sink, the edge is (Ba’Bw) 3

(1v) otherwise the edge is (t(v),h(v)) . O

The uniqueness of the bipartite components of a CBC digraph (Lemma 5.6)
implies that the transformation just defined is a function. The way in
vhich this transformation is an inverse line digraph is given by the

following lemma:
Lemma 5.7. L(L'l(G)) = G for any CBC digraph.
Proof. (See Appendix C.] 0O

Figure 5.9 shows a CBC digraph and its inverse line digrarh computed
by Definition 5.4,
The refined version of the recognition procedure outlined at the

Veginning of the section can be described as follows:
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A digraph that is CBC and is not MSP.
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Figure 5.9.
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A CBC digraph G and its line digraph inverse.
The bipartite components of G are identified
by letters. L-l(G) is constructed by using the
table as an adjacency l1list, according to
Definition 5.k.
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Algorithm 5.1 [Recognition of Minimal Series Parallel digraphs].

AR kg

Input: An acyclic digraph G .

Qutput: If G 1is MSP we answer "Yes'" and output a binary
decanposition tres, T, of G . Otherwise we answer "No".
Step 1: If G 1is not CBC, answer "No'". Otherwise compute L'l(c) .

o AT ST P PO

Step 2: If L'l(G) is a TTSP multidigraph, answer "Yes" and output

& binary decomposition tree for it. Otherwise snswer "No". O

DA ST

The correctness of this procedure can be derived from Lemmas 5.3, 5.6,

and 5.7 as follows:

= If G is MSP it will also be CBC according to Iemma 5.6 and L‘l(G)

T o A o e

will be a TTSP multidigraph according to Lemmas 5.3 and 5.7.
-- Because L(L-l(G)) = G, a binary decamposition tree of L'l(G) as a
. TTSP multidigraph will be @ binary decomposition tree of G as an

MSP digraph according to the discussion given in the previous section.

Let us now consider the problem of implementing Algorithm 5.1 to run

B R i L LT B R

in O(n+m) steps for a digraph with n vertices and m edges.
Step 2 can be obviously implemented -- using Algorithm 4.1 -- t¢ run

in time proportional to the number of vertices plus the number of edges of

Ly iy 13

G) . Because L'l(G) has an edge for each vertex of G, and at most

‘ one vertex for each of the edges of G, Step 2 will run in O(n+tm) steps

if implemented by Algorithm L.l.

Let us then consider how to implement Step 1. We proceed as follows:
we select an edge (u,v) of G that has not yet been assigned to a

blpartite component and mark it as belonging to a new bipartite component Bi .

1k




We now mark all the predecesscrs of v as belonging to the head of Bi
and all the successars of u as belonging to the tall of By and then
check that there is a complete bipartite subgraph of G with the head
and tail just identified. If such & subgraph exists, we mark all its

edges as belonging to B1 3 1f no such subgreph is found we answer "No"

and stop. We then proceed to select a new unmarked edge and repeat the

TR BT 2T R TR

process until all edges have been marked or a "No" answer is generated.

TR TERE

While performing this process we answer "No" and stop if we ever attempt

to mark an edge as belonging to more than one bipartite camponent or to

Bre-ea b aar R

mark a vertex as belonging to more than one head or tail.
Because the bipartite components of a CBC digraph are unique, the

process just described will identify a new camponent each time a new edge

is selected and processed as explained ebove. Therefore if this procedure

ends without generating a "No" answer, it proves that its input is CBC by

1o ety cme s o

. ol . Lo bzl :.'; n
LR AMEA e e KA P e ML e B e W TR S« . s e Ltk 2 At b DT £ e RO PRI SIS SR TR R ) 1A

identifying the complete bipartite subgraphs that satisfy the conditions
of Definition 5.3 and is thus correct.
Once we have decided that G i1s CBC and identified its bipartite

components, the camputation of L'l(G) is & trivial application of the

rules given by Definition 5.L so Step 1 can obviously be implemented to

run in O(n+m) steps by the above procedure.

This completes our description of the linear time recognition algorithm
for the class of MSP digraphs. In the next section we describe how this
procedure can be used as part of a linear time recognition slgorithm for

the class of GSP digraphs.
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5.4 Recognition of GSP Digrephs. o
We twrn now to the central problem of this chapter: given an acyeclice

digraph G , we want to determine whether G is GSP in a number of steps
proportional to the number of vertices plus the number of edges of G .

An approsch to this problem is suggested immediately by the relationship
between GSP and MSP digraphs (see Definitions 5.1 and 5.2) and the
recognition procedure for MSP digraphs just presented. This method can

be described as a two step process:

(1) On input G, campute its transitive reduction Gp »
(i1) Use Algorithm 5.1 to determine whether Gy is ean MSP digreph. If
C'R is MSP answer "Yes" and output a binary decomposition tree of

it, Otherwise answer '"No".

This process will not only perform the task we want, but wherever it
gives a "Yes" answer it will output a binary decomposition tree that
represents either the transitive reduction or the transitive closure of
its input,

The problem with the process as described resides in the first step:
the best known method of computing the transtive reduction of an arbitrary
digraph ([AHO 72]) takes O(nlogz 7) steps on a digraph with n vertices.
Even worse, the problem is equivalent to computing the transitive closure
of an acyclic digreph, so the hope of ever discovering a linear time
algorithm for this task 1s very close to zero.

Fortunately & relatively simple modification of the procedure outlined
above can be implemented so it achieves the time bound desired, The

modified procedure can be described as follows:

g bl g atie
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Algorithm 5.2 [Recognition of General Series Farallel d.tgro.;ﬁo}.
Dput:  An scyclic digragh G = {(V,E) .

H Output: If G is GSP, we answer "Yes" and output a binary 5
decamposition tree of the transitive reduction (or
transitive closure) of G . Otherwise we answer "No". : - -

Step 1:  (Pseudo-transitive reduction.) Partition E dnto E,
end E, such that if G is GSP, the digraph G, = (V,E)
is its transitive reduction. (If G 418 not GSP, GM may
8till be MSP eince it will not be in general the transitive

reduction of G .)

Step 2: 1If GM is not MSP, answer "No". Otherwise compute &
binary decomposition tree, T, of G, as an MSP digraph. ;

Step 3: Use T as the representation of the transitive closure of 7
Gy &nd test that all the edges of E, belong to it. 1If -

they do, answer "Yes" and output T , otherwise answer

HNOH . D

The modification intruuuced in our original description conaists of
replacing the slow and precise operation of computing the true trancitive
reduction of the input by two separate processes., We first perform a
"quick and dirty" pseudc transitive reduction and then a check of the
validity of this pseudo reduction.

We will devote the rest of this chapter to showing hoi- to implement

this algorithm to run in O(mtm) steps when its input has n vertices
and m edges, but before giving the details we give a proof of the

correctness of the algoritim to be implemented.
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-=- I G 1s GSP, GM will be its true transitive reduction and
therefore MSP. In this case, the algoritim gives the correct mmr.
since it will give a "Yes" answer and ocutput & binary decomposition
tree of GM .

== If the algorithm answers "No" in Step 2, Gy is not MSP, and by the
condition attached to Step 1, | G cannot be GSP. If the algorithm
answers "No" in Step 3, it means that GM is not the true transitive
reduction of G which once agsin implies that G 1s not GSP.

We therefore conclude that the algorithm is correct.

5.4.1 The Transitive Reduction of GSP Digraphs.

In this section we will describe how to implement Step 1 of Algorithm 5.2
to run in a number of steps that grows linearly with the size of the input
digraph.

Remember that what is needed is a procedure that computes the transitive
reduction of G8P digraphs and may do anything on a digraph that is not GSP.

In particular we do not care if it transforms « digraph that is not GSP into
an MSP digraph,

Consider the following functions defined on any acyclic digraph

G= (VE) withk n vertices and m edges.

The layer function: LG: V = {1,2y...5n} .
LG(V) = 0 if v 18 a source, otherwise the length of the longest

path from a source of G to v .
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The Jump function: 'JG: E - {2 ...on}

Il V) = Tylv) - Ig(o)

s The Minimum jump function: MG: V - {1,25...4n}
MG(v) s« 0 i¢ v 1is g sink of G, otherwise the minimum value
' of Jg over all edges that leave G .
% The values of these functions for a sample digraph are shown in
Figure 5.10. Our interest in these functions is due to the following
two facts:
lema 5.8. Iet G be an acyclic digraph and (w,v) a redundant edge
of G.
Mg(w) < Ie((wv)) :
Proof. [8ee Appendix C.] O '
lemma 5.9. let G be an MSP digraph. For any edge (w,v) of G,
MG(u) - JG((u,v)) .
Proof. [BSee Appendix C.] @
The Jump and Minimm jump functions were defined in terms of the layer
, function which in turn was defined by the length of a longest path, Because
i a path of this type cannot contain redundant edges and the numerical values
| of LG 3 TG , and MG are defined by these paths, the thres functions are
insensitive to the addition or removal of redundant edges. In other words,
if u and e are a vertex and an edge of G, and G' 1is a digraph
119
E Bl e ST P T el AT T P s A s BT e st ol i s ke o e 2o merme R T T - - - .
W ——

AL AL A Al .'ak"?;m
t
!
i
i
{
!
]
]
{
i
!
l
]

[ETIPIYN U TR b b bt s i P Sy

RPN SN

NSt

PSS E B P RVRS)

st Ve Lede v

P I



1

L e ek W AR AL 44

\ e o e e —— %

2

(t) values of JG computed from the values of I"G above,

-

(e) Values of M, computed from the values of J, @above.

Pigure 5.10
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obtained from G by addition (or removal) of redundant edges
LG(u) = LG' (u) ? JG(Q) = JG' (e) ) and MG(“) - MG' (u) .
One can put together the results of lLemmas 5.8 and 5.9 with this

property of the functions we have been using to prove the following:

Corollary 5.1. Let G be a GSP digraph and (u,v) one of its edges. _
The edge (w,v) 1is redundant in G if and only if Mu(u) < JG((v,v)) . 0

This corollary tells us that computing the Jump and Minimum Jump
functions is enough to perforu the transitive reduction of a GSP digraph.
Because these two functions can be trivially computed from the values of
the Layer function, and these values can be camputed by a trivial
modification of the topological sort algorithm given by Knuth ([KNU 691),
we can implement Step 1 of Algorithm 5.2 in O(n+m) steps for an acyclic

digrerh with n vertices and m edges.

Ly N & ..“
£~ 3 gEloaliiod vs ek 2
. H

Before we go on to describe the implementation of Step 3 of
Algorithm 5.2 it is important to realize that the process just described
does not campute the transitive reduction of an arbitrary acyclic digraph.
An example of how this method fails on & non-GSP digraph is shown in

Figure 5.11.

5.4.2 The Two Dimensionality of GSP Digraphe. 2

In this section we complete our description of the implementation of
Algorithm 5.2 by showing how its last step can be performed in an apount
of time proportional to the mmber of vertices and edges of the input,

The task that we want to perform is the following: we are given a

{ binary decamposition tree T of an MSP digraph GM , and a set of edges
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Figure 5.11., If one applies the criterion of Corollary 5.1 to
0 G (which is not GSP) one obtains the digraph &'
which is not the transitive reduction of G since
edge (c,g) was not redundant,
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E’l‘ Jjoining ve_rtices of GM and we are ssked to determine whether the 5
' edges of E, belong to the transitive closure of Gy » in & number of o
steps proportional to the size of GM Plus the number of edges of ET . .

The method that we will employ is based on same of the properties
of the partial order that the edges of a GSP digraph induce on the set
of its vertices. We therefore start by studying these properties.

An acyclic digraph can be viewed as defining a pa.rtial'order on the
set of its vertices as follows: for any two vertices u,v we say that
w < Vv if and only if there is a path u=' v in the digraph. Because
this partial order is defined in terms of paths and addition or removal

of redundant edges does not create or destroy any paths, the partial

order defined by a digraph is the same as the one defined by its
transitive closure or its transitive reduction.
let us regard a total order t on a set S as a one-to-one mgpring

t: S o {1;2, ..-,"SH} and let tl’t2"'

We say that a partial order, <, on S is represented by the intersection

”tk be total orders on § .

of tl’te"“’tk if for any two elements x,y of S, x <y if and
only 1if ti(x) < ti(y) for all 1< 1<k . The minimm mmber of total
orders needed to represent a partial order in this manner is called the
dimension of the partial order.

We will implement Step 3 of Algorithm 5.2 by camputing, for any MSP
digraph GM » two total orders whose intersection represents the partial
order induced by GM . Once these orders are computed, to determine
whether an edge (u,v) belongs to the transitive closure of GM we
only have to test whether u 1is ordered with v 1in both total orders.

To make the process of camputing these partial orders easier to understand

we will use the following geometric interpretation.
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let G= (V,E) be a digraph that induces a two dimensional partial

order an V , and let tl and ta

represents the partial order induced by G .

be two totel orders whose interssction
Each vertex veV can be
assigned coordinates tl(v) and ta(v) resulting in an embedding of G
in a |vii vy |[V]| square of the cartesian plane. This embedding is such
that for any two vertices u,w of V , there ig a path u-* v in @
if and only if the two coordinstes of u are pairwise smaller than those
of w . Clearly such an embedding can be found for a digraph if and

only if the partial order it induces is at most two dimensional, so we
have found an intuitive geametric interpretation of the two dimensionality
of a digraph.

The method that we will use to embed an MSP digraph on the plane
is shown in Figure 5.12, If the vertices of the digraphs Gl and (}2
involved in a Minimal Series or Parall~l computation are placed in the
relative positions shown, the coordinates of any two vertices u, v not
belonging to the same digraph will satisfy X, < X, and Yy < Y, if
and only if there is a path u =" v in the @igraph resulting from the
camposition.

It is not hard to see how this approach can be used recursively to
reduce the problem of embedding an MSP digraph with n vertices to n
trivial problems involving the embedding of an MSP digraph with a single
vertex and no edges at o given point in the plane, The following
paragraphs describe how & binary decomposition tree of the MSP digraph
to be embedded can be used to perform this task in a straightforward

manner,
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We already know that an n by n square of the plane is enough
to embed an MSP digraph with n vertices so all the coordinates of
the vertices are integers. lat us now define the position of an MSP
digraph on the plane by the coordinates of the lower left comer of the
square that contains the vertices of the digraph. Using this convention,
we can coampute the positions ,(&.L’yl) of G and (xa,ya') of G, in
Flgure 5.12 if we know (i) the number of vertices n of G, and
n, of G, (i1) the position (x,y) of the digraph resulting from
the composition of Gy and Gy » and (1ii) the type of composition.
These coordinates are related by the following formulase:

Series Composition:
¥=X 3 Y=Y
x2=x+n1 H y2-y+n2
Parsllel Composition:

Qx5 meviy
SRR LA

Using these formulae and a binary decomposition tree of the MSP
digraph to be embedded on the plane we can campute the coordinates of
the vertices by the process shown in Figures 5.13 and 5.1k,

Pigure 5.13 shows an MSP digraph GO » and a binary decomposition T
of Gy - Assoslated with each node of T we have an integer that tells
the size (mumber of vertices) of the MSP digraph represented by the subtree
of T rooted at that node. Note that this value is one for any leaf
and the sum of the values of its two children for any internal node;
therefore these values can be computed by a single postorder traversal

of T.
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Figure 5.13. An MSP digraph, a binary decomposition tree for it

and the sizes of each of the subtrees of the binary
composition tree.
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Coordinates associated to all vertices of T and

resulting embedding of Gb in the cartesian plane.
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In Figure 5.1% ws have associated a pair of coordinates with each
node of T . The coordinates of any node of T indicate the position
of the lower left corner of the square of the cartesian plane that
contains the MSP digraph represented by the subtree of T rooted
at that node. These pairs of integers have been computed by arbitrarily
assigning the pair (1,1) to the roct of T, and then traversing T
once, fram root to leaves, using the formulae given earlier to compute the
coordinates of the children of each node visited, Figure 5.14 also
shows the embedding of Go on the plane that results from this process
if one takes the coordinates assigned to each leaf of T as the plane
coordinates of the corresponding vertex of GO )
The processes described in Figures 5.13 and 5.1L can be performed by
a single traversal of T each, and will therefore terminate in a number
of steps proporticnal to the number of nodes of T which is in turn
proportional to the mumber of vertices of GO .
Regardless of the number of steps taken, the fact that any MSP digraph
can be embedded in the plane in such a way that for any two of its
vertices u,v there is a path u= v 1if and only if the coordinates
of u are peirwise smaller than those of v constitutes a proof of

the follewing lemma:

Lemma 5.10. At most two total orders are needed to represent the partial

order induced by a GSP digraph on the set of its vertices. [

The converse of this lemma is not true; the digraph of Figure 5.15

induces a two-dimencional order and is not GSP.
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Figure 5.15. The forbidden subgraph for the class of
GSP digraphs.
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' reduced to camparing the coordinates of its endpoints. Since these

Returning now to Step 3 of Algorithm 5.2, we have described a way - K
to assign coordinates to the vertices of G, o that determining ' '
whether an edge of E’I‘ belongs to the transitive closure of GM is

coordinates can be computed in s number of steps proportional to the
number of vertices of Gy » the discussion of this subsectior completes

our long proof of the following theorem:

Theorem 5.1, Algorithm 5.2 can be implemented to run in O(n+m) steps

on a digraph with n vertices and m edges. 0O

5.5 Forbidden Subgraph Characterization of GSP Digraphs. . -
In this section we provide a forbidden subgrarh characterization of |
GSP digraphs based on the digraph of Figure 5.15, which -- for obvious

reasons -- will be called N . We will prove the following:

Theorem 5.2. An acyclic digreph G 1is GSP if and only if it does not
contain N as an implicit subgraph, that is, 4if and only if the transitive

closure of G does .10t contain N as an induced subgraph. O

Of the double implication in the above characterization one of the

directions can be proved by a straightforward induction on the number of

vertices of the digraph:

Lemma 5.11. let G be a GSP digrarh. G does not contain N as an

implicit subgraph.

Proof. (See Appendix C.] O
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We will prove the implication in the other direction by deseribing

how to modify Algorithm 5.2 to exhibit the forbidden subgraph whenever
, it gives a "No" answer. This description will be detailed encugh to
! constitute an algorithm to exhibdit the forbidden aubgré.ph in a;.'mmber

of steps proportional to the number of vertices and edges of the input

of Algoritim 5.2. : o ~
Figure 5.16 shows & flowchart of the GSP recognition algorithm that

gives names to the products of its intermediate steps and states where

and vhy the algorithm generates answers. In our discussion throughout
the rest of this section we will refer to this figure.

The following lemma plays a central role in our proof;

Leama 5.12. Let (u,v) ¢Ep . Either (w,v) is redundant in G or
there are zdges (u,x) and (y,v) in G such that JG( (y,v)) = 1
: and MG(u) - JG( (Wyx)) and x,y,u, and v are the four vertices

i of an implicit N subgraph of §.

; Proof. (See Appendix C.] (O

This lemma implies dircctly that if Algoritim 5.2 answers "No" in

Step 3, G contains N as an implicit subgraph because a "No" answer

at that point means that some edge of E. is not redundant in G . 4

T
Additimeally, it is trivial in this case to exhibit the forbidden subgraph:

if (u,v) 4s the non-redundant edge of ET s any successor, x , of u
and any predecessor, Yy , of v +that satisfy the conditions of the a»ove

lemma will form with uw and v an implicit N subgraph of G .

LRI ot 1t baici o auming
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Step 1

No: Gy 1s not CBC
ET 8tep 2
: -1
} No: L (GM) is not TTSP
T
st : '
ep 3 No: Bome edge of Ep does not beleng to the

T8P digraph represented by T.

Yes: G 18 GSP, T is the decomposition tree
of the transitive closure of ¢ .,

Figure 5.16. Schema of Algorithm 5,2,
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Another important consequence of Lemma 5.12 is that 1f GM centains
N as an implicit subgraph, G will also contain N as an implicit
subgraph. We prove this fact by the following argument: 1f some
non~-redundant edge of G 1s deleted to cbtain GM ;, G contains an
imulicit N subgraph already; otherwise if all the edges removed from
G are redundant there is a path ww" z in G if and only if there is
apath w=" 2z in Gy eud thus any four vertices that form an implicit
N subgraph of GM will form an implicit N subgraph of G as well.

We will now use this property to complete our argument by proving
that if Algorithm 5.2 gives a "No" answer in Step 2 -~ either because GM
18 not CBC or becsuse L'Y(G) s not s TTSP miltidigraph -- G, contains
N as an implicit subgraph. '

We start by proving that if GM is not CBC it contains an implicit
N subgraph. To prove this fact we examine the procedure (described in
Section 5.3) to test whether a digraph is CBC. This procedure was the
following:

(a) Select en unmarked edge (uw,v) of Gy -

(b) Identify two sets H = {x| (x,v) €G] and T = {x | (wx) eGM} .

(¢) Test whether there is a complete bipartite subgraph of Gy

with head H and tail T ; if such a subgraph exists, merk
all its edges, otherwise answer "No".

(4) Repeat (2), (b), and (c) until either all edges are marked or

untl. a "No" answer is generated,

Step (c) can be performed as follows (taking advantage of the knowledge

that GM 1s minimal and contains no multiple edges):
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(1)

(11)

(141)

teat that every edge that leaves a vertex in H enterz a
vertex of T ;

test that every edge that enters a vertex in T leaves a
vertex of H ;

test that there are exactly |H| x||T|| edges (x,y) such
that xeH, and yeT. )

Suppose that (1) is not the case and there is an edge (x,y) such

that xe¢H and y¢T . Then the vertices u,v,x, and y form an

induced N subgraph of GM since (w,v) , (x,y) , and (x,v) are edges

of Gy and (u,y) is not (or y would belor~ to T ). We can argue

in the same manner to show that if (ii) is not the case we can exhibit

an induced N subgraph of G, .

M

Let us now consider the situation when (iii) is not the case. Let

k be the number of edges counted in (iii), Because G, 1is a digraph,

M

k < |H||x||T]] and since (iii) is not the case it must be that

k < [ x |IT]

. There must therefore exist a pair of vertices xeH

and yeT such that (x,y)¢GM. Once again x,y,u and v will

form an induced N subgraph of Gy because edges (u,v) , (x,v),

and (w,y) are all in Gy vwhile (%,y) 1s not.

N subgraph.
are the vertices of an implicit N subgraph of GM we argue as follows.
let the vertices x,y,u and v form an induced N subgraph of G

as shown in Figure 5.17(a). If there is a path x =y in ¢

edge

This argument proves that if GM is not CBC 1t contains an induced

(u,v)

To prove that the fouwr vertices of this induced subgraph

M

M’ the

would be redundant implying that some redundant edge of G
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was not removed in Step 1 of Algorithm 5.2 which contradicts Lemms 5.8.

If there is a path ¥y » X as shown in Figure 5.17(b), we have:

] .- LG(w) < LG(x) because the values of L, increase along any path
% : of G, . B

r -- LG(V) = LG(w) or one of (y,v) , (y,w) would have been deleted
in Step 1.

- LG(v) - LG(x) or one of (w,x) , (w,v) would have been deleted
in Step 1.

Trese three facts are clearly contradictory so we conclude that there

is no path y =% x .

We therefore conclude that if GM 1s not CBC it contains N as an

| implicit subgraph.

let us consider the case when the algorithm answers "No" because

L’l(cM) is not a TTSP sultidigraph although G, 1s CKC.

Because L'l(GM) is computed by Definition 5.4, it will be acyclic
and have a single source and a single sink. Thus, according to Lemma 4.k,
L'l(GM) contains the Wheatstone bridge as an embedded subgraph since it
is not TTSP.

The gist of the remaining argument is contained in Figures 5.18 and

5.19. In Figure 5.18 we show the results of computing the line digraph

ot e+ A ATE b A o AT SECHIMEE N WIS KT X BTN L R

of a Wheatstone bridge and of a general path. Figure 5.19 puts thesge
two fucts together to show the result of computing the line digraph of

; & generalized Wheatstone bridge: a generalized N digraph.

Let L'l(GM) contain an embedded Wheatstone bridge -- the pattern

of Figure 5.19(a) -- and be acyclic. Tts line digraph, Gy » will

T —,—. L,

contain an implicit N subgraph, because it will contain the pattern
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L(w) :

1
i
i
1
{
3
;

L(p) : ‘t 4: ’.3... .. n-1 n

Figure 5.18. 'The line digraphs of two particular digraphs.
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Figure 5.19.

The line digraph of a generalized Wheatstone bridge.
(The path labelled A' in L(Gl) arises as the line

digraph of the path labelled A in G1 )
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of Figure 5.13(b) and existence of paths 1= 4 or Lao* 1l in Gy
would imply the existence of a cycle in L'l(GM) . PFurthemmore by
finding the edges labelled 1, 2, 3, and L of the embedded Wheatstone
bridge of L‘l(GM) one knows the four vertices of the implicit N
subgraph of GM . Thus the procedure to exhibit the Wheatstone bridge
described in Section 4.5 can be used directly to exhibit the implicit
N subgraph of Gy in this case.

We therefore conclude that if Algorithm 5.2 answers "No" in Step 2,
GM coptains N as an implicit subgraph. Because we proved that if a
"No" answer was produced in Step 3, G contalned an implicit N subgraph
and also that if GM containg an implicity N subgraph so does G,
this campletes the proof of Theorem 5.2. However, we stated that our
proof would constitute an algorithm to exhibit the forbidden subgraph of G,
and we have not yet fulfilled this pramise. We have shown how (i) to
exhibit the forbidden subgraph of G when the answer "No" is produced in
Step 3 and (ii) how to exhibit an implicit N subgraph of Gy when
the "No" answer is generated in Step 2. In both cases the procedures
described woulld work in a number of steps proportional to the number of
vertices and edges of G . We will end this section by describing how
to exhibit an implieit N subgraph of G when given an implicit N
subgraph of GM in e number of steps proportional to the size of G .

Let us assume that G has n vertices and m edges and that the
implicit N subgraph of G

M
test whether the paths Xy . X, or xh = xl are present in G,

is the digraph of Figure 5.20. First we

a task that can be performed in at most O(m) steps. Clearly both paths

Lo
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cennot be present or G would contain a cycle and if neither is present
X 0 X5 s x5 » and X, are the vertices of an implicit N subgraph
of G, therefore we have only one more case to consider. Let one of
the two paths, p , exist in G ; because neither path exists in GM
at leust one non-redundant edge of p belongs to ET . We complete our
description by showing how one suth edge can be identified in at most
o(n+m) steps. | |

let VysVpsee eV be the vertices on p . The values of the layer
function increase along any path in G , therefore LG(vi) < LG(Vi +1)
for any two consecutive vertices of p . Let now (VJ’VJ+1) be an edge

of p that belongs to E We can determine whether this edge is

T "
redundant in G by a limited depth-first search that starts at Vj

and visits only vertices w for which LG(W) < LG(VJ+1) . By limiting
the search in this way we can test whether each of the edges of p that
are in ET are redundant without visiting any vertex more than twice.

We can therefore find a non-redundant edge of p that belongs to E ™

in at most O(n+m) steps. Once thic edge e has been found, we can
exhibit an implicit N subgraph of G by inspecting the vertices adjacent
to the endpoints of e 1looking for two that satisfy the conditions

stated in lemma 5.12.

5.6 Consequences of the GSP Recognition Algorithm.

We end this section by considering brietly a number of problems with
a common characterlstic: the results preceitet in this chapter give new

insights on how to solve them on GSP digraphs, resuiting in some cases in
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algorithms that are more efficient than the best algorithms known to

solve the problem on an arbitrary digraph.

Transitive Reduction.

Camputing the transitive reduction of an acyclic digraph is
equivalent to computing its transitive closure. The best known algorithm
to perform this task on an arbitrary digraph with n vertices takes

1 7
o(n %2 )} steps ([A&HO 72]).
In Section 5.4%.1 we showed however how the transitive reduction of

a GSP digraph can be computed in a number of steps proportional to the

number of its vertices and edges.

Transitive Closure.

When we give a GSP digraph as inrut to Algorithm 5.2 we get not only
a "Yes" output but a binary decomposition tree that represents its
transitive closure. In Section 5.4.2 we showed how we can use this
decomposition tree to compute an implicit description of the transitive
closure of the graph so questions like "does edge e belong to the
transitive closure?" could be answered in a constant number of steps.
Using this approach one can produce the transitive closure of a GSP
digraph G in O(m*) steps, where m* is the number of edges in the

transitive closure of G .

Isomorphism.
In Section 5.2 we described how an MSF or TSP digraph can be

represented uniquely by a decomposition tree. Because of the formal
identity of the decomposition trees for TTSF multidigraphs and MSP or

TSP digraphs, all we said about deciding isomorrhism of TTSP multidigraphs
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using their decomposition trees in Section 4.6 applies directly to MSP
and TSP digraphs es well, In particular we can decide whether two MSP
or TSP digraphs are isomorphic in O(n+m) steps: we need O(n+m)
steps to compute their decomposition trees using Algorithm 5.2 and
and 0(n) steps to decide whether the trees are isamorphic.
It is important to realize however that the isomorphism problem
for GSP digraphs is equivalent to the problem of iscmorphism for arbitrary
graphs. This can be proved easily by the construction of Figure 5.21
due to lawler and Tarjan. In that figure we show a GSP digraph computed

from an arbitrary graph G = (V,E) as follows:

(1) The vertex set of the GSP digraph is {$}UVUE .

(11) There is an edge (v,$) for each veV.

(1i1) There is an edge (&,e) for each e¢E .

(iv) For each e = (u,v) belonging to E , there are edges

(u,e) and (v,e) .

This digraph is clearly GSP, and one can prove easily that two graphs
are isomorphic if and only if the GSP digraphs computed fram them in this
way are isomorphic. Therefore if we could solve the isomorphism question
for GSP digraphs in polynomial time we would be able to solve the

isomorphism of arbitrary graphs in polynomial time as well.

Subgraph Isomorphism.

The subgraph isomorphism problem for MSP or TSP digraphs remains en
open question in the same way that the problem remains open for TISP
digraphs: there is some hope of finding an efficient algorithm to solve

the problem based on Matula's algorithm for subtree isomorphism but we




(1)

Figure 5.21
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don't ¥mow how to do it. For GSP digraphs, the construction explained

earlier can be used directly to prove that the problem is equivalent to

the subgraph iscmorphi-# problem for arbitrary graphs and is therefore
NP-complete,
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Chapter 6. Flowcharts.

6.1 Introduction.

This chapter discusses how to analyze the flow of control of s program
using some of the techniques introduced in earlier chapters.

For the purpose of analyzing its flow of control, a program P 4s

customarily represented by a digraph -- called its control ﬂm --

computed as follows:

-- for each group of statements of P that are always executed sequentially,

there is a vertex in the control flow graph of P ; and
-~ for each possible transfer of control between two such groups in P
there is an edge that joins the corresponding vertices of the control

flow graph of P .

The problem that we consider can now be described in the words of
Kennedy [KEN 71]: " ... we would like tu know which definitions can affect
computations at a given point in the control flow graph and which uses can
be affected by computations at a given point. Once we have this information,
we can do things like common subexpressicn elimination, code motion,
cnstant propagation and register allocation.”

Because of its obvious application to the design of compilers, the
problem of flow analysis has been extensively studied in recent years
(faLL 70}, [coc 70], [GRA 76], (HEC 72], [HEC 74], [HEC 77], [(KAS 75],

[keN 71], [ROS 77], [TAR 74]).

A method suggested by Rosen ({ROS 77]) to solve scme of the data flow

problems just mentioned uses information generated during the syntax

analysis phase of the compilation »f the program to be analyzed. This
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aypproach is puticulu:w well mitod to the analysis of 5oto-lns programs
vrittea in la.nguuges that have a well structu.red set of control statements,
but it is not the technique most commonly used. Normally the problem 1s
tackled by representing some intermediate form of the program being
compiled by its control flow grarh, analyzing this digraph, and then usirg
the information obtained to generate code for the target machine.

The techniques that we discuss in the remainder c;f this éhipter are
based on this last approach and all of them work in two clearly distinguishable
gstages:

-= first structural information about the control flow graph is obtained
by regarding it as an abstract digraph, and then

-- this structural information is combined with information about the
computation associated with the vertices of the digraph to solve the

data flow questions identified above.

We will concern ourselves exclusively with the first of these two
stages: the extraction of structural information from a control flow
graph.

The "classical" approach to the structural analysis of contrcl flow

graphs is the intervel analysis technique introduced by Cocke and Allen

({coc 70), [ALL 70]). This technigque can be described as follows.

A flowgraph G = (V,E) 1is a directed graph with a distinguished
vertex v (called the start vertex) such that for every vertex ueV
there is a path v e u in G . An interval can be defined as a maximal
subgraph having a single entry, that is, every vertex of the interval has
all its predecescors in the interval or it is the entry vertex. The

interval analysis of e flowgraph is performed by identifying its intervals,
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replacing each of them by a single vertex and repeating the process on
the flowgraph obtained, until no more replacements can be carried out.
An example of this process is shown in Figure 6.1.

Several efficient algorithms are known to perform the interval
analysis of a flowgrapn ([HOP 72], [TAR 7i]) and to use the information
obtained to solve data flow problems ([KEN 71), [GRA 76), [TAR 751).

The fastest analysis algorithm ({TAR 74)) runs in O(m a(n,m)) i steps
on a flowgraph with n vertices and m edges.

Interval analysis is a very powerful and general method of parsing
programs, but as a result of these characteristics, both the generation
of the parse of a flowgraph and the extraction of data flow information
fran this parse are rather complex processes. The basic aim of the parsing

method described in the next few paragraphs ~- called prime subhsmmock

parsing -- is to simplify these processes at the expense of same power
and generality.

A hammock 18 e strongly connected digraph with two distinguished
vertices a and  and a distinguished edge (w,&) . The vertices «a

and @ are called respecti+ely the start and finish of the hammock, and

the edge (w,@) 4s called the return edge. A subhammock is a subgraph S
of a haimock H that does not include the return edge of H , that has
exactly two boundary vertices x , y , one being an entry and the other

an exit:-t/ and such that

7 The o function is an inverse of Ackermann's function that grows
extremely slowly and can be considered less than four for all practical
purposes.

ff/ We will discuss the definitions of entry and exit later since the theory
that we will present depends somewhat on how these definitions are chosen.
For the moment let us say that we will try to approximate the following
intuitive idea: an entry (exit) of a subgraph S 18 a boundary vertex
v of 8 such that every path =" x (x =” w) in which x¢ 8 4includes
the vertex v .,
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} Figure 6.1. Interval analysis of a flowgraph
; (start vertex indicated by an edge "from rnowhere')
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(1) either S-{x,y] includes at least one vertex and is comnected;
or

(11) s 1is the meximal subgraph of H with x and y as boundaries
not including the return edge. ; | |

A subhammock is non-trivial if it includes at least two edges, and it
is prime if it is non-trivial and does not properly contain any non-trivial
subhammock.

The prime subhammock parse of a hammock H is performed by identifying
a prime subhammock of H , replacing it by a single edge going from its
entry to its exit, and repeating the process on the resulting digraph until
no more replacements can be carried ocut. An example of this process is
shown in Figure 6.2. C(Clearly, this process would not make a lot of sense
wnless the digraph obtained from a hammock by the replacement operation
Just described 1s a hammock as well. It is therefore necessary that the
definitions of entry and exit used be such that this condition can be
guaranteed,

let H be a hammock and let N(H) denote its undirected versiom.

The following fact is the basis of our algorithm to compute prime
subhammock parses:

lemma 6.1. Iet H be a hammock such that N(H) is biconnected and let
8 be a non-trivial subhammock of H . Either § includes every edge of
H except the return edge or the entry and exit vertices of £ are a

separation pair of N(H) .

Proof. [See Appendix C.] O
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. This relationship between entry - exit pairs -of a hammock H and the

Lt

papy

separation pairs of N(H) can be used to compute prime subhammock parses
L, ' as follows: - ' i 2
-~ Given & hammock H , campute N(H) .

-- Use the triconnected components algorithm to find the separation pairs
‘ of N(H) .

; -~ Examine these separation pairs to determine the entry -exit pairs of H .

3 ' In the next section we will describe in detail an efficient algorithm

to perform the prime subhammock parse of & general hammock based on the

outline given sbove. As we shall see, in the most general case this

PIEEY W
Y9

algorithm becomes quite complica.ted. This complexity however can be

greatly reduced when the hammocks being parsed satisfy certain conditions.

ey

For this reason, following the section describing the general case, we '

[

have included two others discussing two classes of hammocks that can be
parsed by simplified versions of the general algorithm: proper programs
and structured programs.

Our discussion concerning proper progrems includes a justification

S e s wa gl 4 SR s

of our claim about the convenience of the structural information produced

by owr parsing algorithm. FProper programs were introduced by Linger

1§ T[T TR QS T VR N A T T 8 AT
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and Mills in connection with a method of solving data flow problems on
them; we will sh'w that the prime subhammock parse of a proper program |

generates exactly the structural information needed to perform the

——
ORI y  NLRL

data flow anelysis suggested by these authors.
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6.2 Parsing General Hnmocks.

In this section we describe an a)gorithm to perform the prime !
subhammock parse of a general hammock H 1in a number of steps p;q_port;oz_x_gl _ T

to the number of vertices and edges of H .

h
4
i
i
4
K]
e
E
&
il
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Our algorithm will accept as input a general hamrock H with n

vertices and m 'edgea and output a tree structure Tp that represents

all possible prime subhammock parses of H . The structure 'J?p will be

computed as follows:

~= We ugse the triconnected coamponents algorithm to obtain the ICG T of
N(H) , and then

, -~ use T to examine the separation pairs of N(H) and determine which

ones are entry - exit pairs of H . This information is then

incorporated intoc T to produce the desired structure Tp .

If we assume that N(H) 1s a biconnected multigraph, it is clear
that the first step of the above process can be performed in O(n+m)

steps, 8o let us consider the second step.

A CIRETDS S VDY Y (ARS8 WL

10N

We will perform the examination of the separation pairs of N(H)

as follows. We consider T as a rocted tree, its root being the vertex

BT

associated to the triconnected camponent of N(H) that includes the

L

return edge. For each vertex v of T we will consider one separation
pair of N(H) corresponding to the endpoints of the virtual edge that
the triconnected component associated with v shares with the triconnected

component associated with the parent of v in T , This separatia pair

4 A L T AT R,

will be examined to see whether it is an entry - exit pair of the subgraph

of H that includes all the edges of H belonging to triconnected components




of N{(H) associated to vertices of the subtree of T rooted at v .
The tree Tp is camputed as follows. For each separation pair of N(H)
examined that is not an entry - exit pair of H , we carry out a merge
operation among components of N(H) that eliminates the virtual edge
Joining the separation pair. Resulting fram this procese will be a

set of biconnected multigraphs containing all the edges of N(H) (each

edge in one graph) and virtual edges (each shared by two graphs) such

that: ]
(1) N(H) can be cbtained from this set by merging operations that f~
eliminate all the virtual edges. 3

(11) The endpoints of each virtual edge of this set of graphs are

an entry -exit pair of H .

This set can be represented as a tree, in the same way that the
triconnected component set was represented by the TCG. This tree T

P
is the structure that we will use to represent all possible prime subhammock

parses of H .

Two very basic points should be noted about the process Just described:

(1) for each separation pair considered we do not examine all

possible partitions of the edge set of N(H) determined by
that pair (for instance, a bond with k edges would cdetermine -*
O(ek) guch partitions), a
(11) we did not examine explicitly every separation pair of N(H) i
(for instance, a polygon with k vertices has O(kg)

separation pairs).
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We will consider the reasons for these decisions in a moment. DBefore

doing so however, let us examine a more basic question that we have to

L IR

resolve 1f we are to keep any hope of performing the simplified process
described above in O(n+m) steps.
_ _ The problem is that, oven though we do not consider all possible
o separation pairs of N(H) , we may still be examining 0(n) ‘se\pe.z;ation
pairs in the process described; therefore if we went to stay within
G(n+m) steps we cannot examine each pair for very long. A sufficient
condition to guarantee that all pairs that our simplified process
considers can be examined in O(n+m) steps is the following: we require
our definitions of entry and exit to be such that one can determine
whether a vertex v 1is an entry (exit) of a subgraph S by examining
only the edges incident to v asking about them only whether they belong
to S8 or not.

later in this section we will provide definitions of entry and exit
that satisfy these conditims and we will coneider their relationship with
the Intuitive ideas of entry and exit discussed in the previous section.

Let us now return to the problems presented by the multiplicity of
edge partitions defined by bonds and the multiplicity of separation pairs
defined by a polygon.

The key to our solution of the first problem is our definition of
subhammocks. Figure 6.3 shows a hammock H , N(H), and the triconnected
camponents of N(H) . According to the procedure just described we will

test the separation pair u, v -- at different points -- as to whether

Iaauhiat o SRS

it is:
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Figure 6.3. A hammock H , its undirected version N(H) ,
and the triconnected pieces of N(H) .
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1) an entry - exit pair of the subgraph of H containing the
edges of C ; or

iy

(11) an entry-exit pair of the subgraph of H containing the

edges of D ; or

(111) an entry - exit pair, of the subgraph of H containing the

p
< ¥
.3

edges of the subgrarh of H including the edges of B, C,
and D .

These tests correspond exactly to the non-trivial connected subgraphs
vhen u and v are removed (cases (1) and (ii)) and to the maximal
subgraph of H with just u and v as boundary vertices (case (iii)).

‘ It is not hard to see how this argument can be generalized to show that

we are considering all possible partitions that may result in subhammocks. ';_
(For instance we do not consider u,v as a possible entry -exit pair of g'g
the subgraph of H including the edges of C and D, since that graph )
is not connected when u and v are removed.)

It must be apparent that our definiticn of subhammock was somewhat
"ad hoc”, however we must say in our defense that it is not much more so
“an the definitions used by other authors. As an example Kas'janov
([KAS 75]) defines subhammocks as including their entry vertex but not
including their exit, therefore eliminating the problem being considered 3
here. Additionally we feel that a measure of reascnableness is given by
the fact that in some restricted cases (rroper programs) our parsing

method coincides with those defined by other authors that look at the

problem from a very different perspective. Because there is not much
1 that one can prove in general about the relative merits of definitions of

this type we will not attempt to defend our choice any further, ’ !

w.
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The problem presented by the multiple separation pairs determrined by

a polygon is similar to the problem we eacountered parsing TT networks:
there are o(ka) ways of reducing a polygon with k vertices to a
double bond, but all of them can be represented concisely by giving the
sequence of vertices that cne encounters when circling the polygon in
either direction. In our present context we resolve the problem in a
similar way as follows.

We will assume that the definitionr -f entries and exits are such
that if e vertex v, (as depicted in Figure 6.4) is an entry (exit) of
the subgraph G, , it would autaraticelly be an exit (entry) of the
subgrarph Gi+l . With this assumption, all possible entry -exit pairs
determined by a polygen like the one of Figure 6.4, can ve described
by glving the sequence of vertices that are entries - exits of the
subgraphs GO’ Gl’ ' ..,Gk in the order in which they are encountered

0 k
The problem of explicitly exhibiting all the entry exit pairs of

as one goes from v, to v, (or fram Ve to vy ).

a hammock has been studied by Kes'janov ({KAS 75]) who gives an algorithm
based on depth-first search that runs in O(nm) steps for a hammock with
n vertices and m edges. This bound is improved in our case by not
producing the entry - exit pairs explicitly; because there are hammocks
with n vertices and O(n) edges that have O(ng) subhammocks we
cannot possibly expect to exhibit all possible entry - exit pairs within
& linear number of steps.

8o far in our discussion we have made & number of assumptions about

entries and exits. Let us discuss the definitions that we propose to

satisfy these conditions and remein close to the intulitive 1dea of entries
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Figure 6.1,
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and exits given in the previous soc,tiqz.:f before we present a complete
example of our parsing algorithm.

Let G be a digraph, Sﬁeasubgra.phof G and v a boundary : X
vertex of S . We say that v is an entry (exdt) of 8 if:

ab

(1) every edge incident to v and to a vertex of G-S enters

{leaves) v ; or if

IEVICE Y N AL PO

(11) every edge incident to v and to-a.nother vertex of G leaves
(enters) v . ;
Figure 6.5 illustrates these definitions. :
Ideally, one would like to use definitions of the following type:
"a boundary vertex v of subgraph S is an entry (exit) if every path
a=*x (x=w 1in which xeS includes v ." The problem with a 7
definition of this kind is that .in order to determine whether a vertex ’
is an antry or an exit, one needs global information about the flow in
the hammock -~ precisely the information that our analysis 1is trying to

uncover. We chose owr definitions because they satisfy the following

conditions:

(c1) A vertex that is an entry (exit) according to our definition
will be an entry {exit) in the global sense given above as
well. (The converse js not true, for instence, vertex 5 in
the hammock of Figure 6.6.)

(c2) Replacement of a subhammock S of a hammock H by & single edge
from the entry of S8 to its exit, transforms H into a hammock

with the same start and finish vertex as H .
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Figure 6.5. Vertices 4 and 5 are entries of Gy

- ———

I e W

i Vertices 10 and 11 are exits of G, .
f Vertex 7 1is a boundary vertex of Gl that is not
g : en entry or an exit.
¢
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(c3) One can determine whether a boundary vertex v of a subgraph 5
is an entry or an exit by examiniig only edges incident to v
smowing omnly sbout each edge whether it belongs to 8 or not,

(ck) If 5, and S, are subgraphs such that 8, N5, = {v]} and

every edge incident to v belongs to Sl or S, , and if v

2
is an exit (entry) of 8, then it must be an entry (exit)

‘of 3. .

2 :
' (¢5) If one reverses the directions of all the edges of a hammock .
its entries become exits and its exits entries.

4 In eddition they include the definitions used by other authors as
special cases. The conditions (Cl), (C2), and (C3) are the assumptions

. made dwring the preceding discussion and are therefore 'necessary" in

s 2l el

——

some sense; the other conditions are merely nice features and the

validity of our theory does not depend on them,

A complete example of our parsing algorithm can now be presented. g
Flgure 6.6 shows a hammock H , N(H) , and the triconnected components
of N(H) . Figure 6.7 shows the TCG T of N(H) , and two other tree
structures derived from T, T) and T, . The tree T) has been :
computed by adding to the label of each vertex of T a sequence of ;

vertices as follows:

-~ the sequence of a vertex of ‘I‘l essoclated to a bond or triconnected

greph contains the vertices of the separation pair of N(H) that

A e T GTRRETI T % 91 A § ST PN POy SO} et R W T 9

will be examined when we visit that vertex (in any order),

-- the sequence of a vertex of ’l‘l assoclated with a polygon contains

. the vertices of the polygon in the order in which we encounter them
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Cmema—

T:

.

IG! 2,3:1-'

F: 1,2 ‘C: 10,5] ID: 5,6

B | E: o, 1, (F),E,w‘ B: a,k,(C),5,(D),6,7,w
i » .
. l
] G: 2,3,1 !

¥ 1)2 ;

E: Q,1, (F),2,w B: &L, (C)y(D)y657,5w

1,

Figure 6.7. Structures used to obtain parses of hammocks.
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as we go from one of the vertices of the separation pair corresponding

to that polygon, to the other.

The tree TP is computed from Tl by

eliminating the separation pairs of N(H) that are not entry - exit
pairs of H . (For example, peirs 4,5 and 5,6 );

eliminating the corresponding vertices from the sequences assoclated
to polygons. (For example vertex 5 in the sequence of node B

of Ty }; and

ordering the sequences assoclated with the nodes so that for any

entry - exit pair the entry appears before the exit.

Finally, Figure 6.8 shows how a parse of H can be read from T_ in

P

a rather direct manner. The process traverses 'I'P from leaves to root
"ridding" one or more replacements of prime subhammocks by single edges

at each of the nodes it visits. These reductions are computed as follows

(see figure for details):

RN

if the node corresponds to a polygon
-= eliminate the prime subhammocks lying between any two vertices
of the sequence,
-- eliminate the vertices of the polygon by what amounts to series
reductions in H .
if the node corresponds to a bond or a triconnected graph, replace
the prime subhammock determined by the two vertex sequence of the

node by & single edge.

Given the property of lemma 6.1, it is easy to see that the traversal

from leaves to root guarantees that the hammocks being replaced in this
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Processing of vertex G of T

S UG S PR

: - elimination of vertex 3 of H.

°]

; )
b
3
E
E
4
¢
i
Processing of vertex B of Tp :+ =~ elimination of subhammock
y

CyD vetween L and 6;
- elimination of vertex U4 of H;
- elimination of vertex 6 of H;
- elimination of vertex 7 of H.

[ P

Figure €.8. Example of the parse of a hammock.
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Processing of vertex F aof Tp + = elimination of subhammock between 1 and 2.
a ' )
&
Processing of vertex E of Tp : = elimination of vertex 1 of H ;
- elimination of vertex 2 of H .
a a
‘F it
'I ] t
/ X ' ’
4 1}
/ ﬁ , : )
2 X ' f
; ! i
@ w '

Processing of vertex A of Tp : = elimination of subhammock between a and w.

Figure 6.5 (continued). Example of the parse of a hammock.
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process are indeed prime. Thus, our discussion can be considered an

informal proof of the following fact.

Theorem 6.1. The process just described can be implemented tg,produc’e a
prime subhammock parse of a hammock H with n vertices and/ m edges
in O(ntm) steps provided that:

(1) N(H) is biconnected; and

(i1) the definitions of antry and exit used satisfy (C2), (C3),

and (C¥). O

The only assumption that has not been discussed so far is the
biconnectivity of N(H) . We will end this section by describing how
the algorithm just described can be used in hammocks that do not satisfy
this condition to provide similar structural information.

Figure 6.9 shows a hammock for which the assumption is not true. In

such cases we proceed as follows:

-- We break N(H) into biconnected pieces (see [AHO 76) for the
description of an algorithm to perform this task in a number of
steps proportional to the size of N(H) ). Because & and w

are adjacent in N(H) , there will be a piece H, containing both.

o

-~ The biconnected piece Hy is then enalyzed using the method
described.

-~ We renove Hj, from N(H) , obtaining in this way e set of connected
multigraphs Gl’ G2, - .,Gk , each sharing an articulation point with

Hy - Each of these multigraphs Gi is converted into a hammock

. Hy by "splitting" the articulation point, X4 that it shares
! with H, into two vertices o, , w, 80 that:
¢
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Figure 6.9. A hammock H for which N(F) would not be
biconnected: X X5, and xj wonld be
articulation points of N(H) .
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(1) every edge (y’xi) of G, becomes an edge (y'"’i) of H, ;
and

(i1) every edge (xi,z) of G, becomes an edge (d.i,z) of H, .

The whole process iz then spplied recursively to the harmocks just
computed. Figure 6,10 shows how this process would work op the hammock
of Figure 6.9 e - |

Having accounted for this assumption, we have completed the description
of our parsing algorithm for general hammocks. In the two sections that
complete this chapter we will apply this algorithm to two subclasses of
hammocks introduced by different authors to represent the flow of control
of "reasonable" programs. We will discover that most of the problems that
made our elgorithm complicated in the general case disappear when one
restricts in a natursl way the set of hammocks that the algoritim is

expected to handle.

6.3 Parsing Proper Progrems.

A proper progrem is & hammock H i which every vertex v 1is of
one of three types:
(1) a function node: 4in-degree(v) = out-degree(v) = 1 ; or
(i1) e predicate node: in-degree(v) = 1 and out-degree(v) = 2 ; or

(11i) & collect node: in-degree(v) = 2 and out-degree(v) = 1 .

An example of a proper program is shown in Figure 6,11. Note that
if H 4is a hammock and every vertex of N(H) has degree three or less,

H must be a proper rTrogram.
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The hemmock of Figure 2.9 is anslyzed by analyzing

HO using the algorithm described, than applying

the process recuw. sively to Hl and HE .
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A proper program

Figure 6.11.
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According to Gannon and Hecht ([GAN 77)), this class of hammocks
was introduced by Linger and Mills in conjunction with a methed to analyze
their flow of control that differs from all other standard approaches to
the problem. In their paper, Gannon and Hecht present an algorithm that
extracts == in O(nj) steps for a proper program with n vertices --
the structural information needed to perform the flow analysis proposed
by linger and Mills. Fredrickson later refined the method of Gannon and
Hecht into an algorithm that performs this task in O(m (n,m)) steps
for a proper program with n vertices and m edges.

The purpose of this section is twofold. We want to show thet many
of the complications involved in the prime subhammock parse of general
hammocks disappear when dealing with proper programs, and also exhibit
the basic equivalence of our parsing method a.nd'that of Gannon and Hecht.

A property that makes proper programs particula.rly. well suited to

prime sublammock parsing is the following
Lemma 6.2, Let H be a proper program. N(H) 4is biconnected.
Proof. [see Appendix C.] 2

This lemme guarantees that when parsing proper programs we will not
need to perform the repeated decomposition of the input into biconnected
pleces described at the end of the previous section.

Steill greater simplifications can be achieved using the following

facts:
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Lemua 6.3. Let H be a proper program with start vertex q_and finish
vertex w , and let S be a subhaamock of H . The digraph H' obtained
by replecing S by a single sdge from its entry to its exit is a proper
program with start vertex a and finish vertex w .

Proof. - {See Appendix C.)] QO

lemma 6.4. Let H be a proper program and let S be a subgraph of N(H)
that does not include the returm edge. The subgraph S can be reduced to
a single edge by one series, parallel, or triconnected reduction (as
defined in Chapter 3) if and anly if the subgraph S' of H cantaining

all the vertices and edges of S 1is a prime subhammock.
Proof. [See Appendix C.] O

These two lemmas imply that for every parse of N(H) as a TT network
(with return edge (a,w) ) using the Universal Replacement System, there
is a prime subharmock parse of H . As a consequence, the prime svbhammock
rarses of H can be read from the decamposition tree of N(H) as
described in Section 3.4, and we can avoid the process of testing the
separation pairs of N(H) as to whether they are entry - exit pairs
of H.

An example of the simplified version of the parsing algorithm is
shown in Figures 6.12 and 6.15., Figure 6.12 shows the process of obteining
a decomposition tree of N(H) for a proper program H , and Figure 6.13
{1llustrates the process of reading & prime subhammock parse of H from

the decamposition tree of N(H) .
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The relationshiy expressed by Lemma 6.4 can be combined with a

v ™

result of Even and Tarjan ([EVE 76]) to show that our parsing approach

¥

i is optimal in some sense. We ’wil.l prove that any algorithm that performs , ' '
the prime subhammock parse of proper programs can be used to compute the 3

triconnected camponents of biconnected multigraphs in which the degree : g

of each vertex is at most three, Our argument is the following. , f

Let G be a bicomnected multigraph with n vertices and m edges, .

{ and let each vertex of G have at most degree three. Suppose that we can

I

assign directions to the edges of G 80 it becomes a strongly connected

digraph H . Because of the degree restriction on G , every vertex of

H will be a function, predicate, or collect vertex, and H can be

e g

considered a proper program with any two adjacent vertices as start and
finish. 1In sddition N(H) = G by construction, therefore -- according
to Lemma 6.4 -- any prime subhammock parse of H gives us directly a
parse of G using the Universal Replacement System from which one can

1 trivially compute the decomposition tree of G . let us tnen camplete

i owr arguuent by showing how the transformation of G into H can de

; achieved using the algorithm of Even and Tarjan in O(n+m) steps.

Given a biconnected multigraph G with n vertices and m edges,

and one of its edges (u,v) , Even and Tarjan show how to number the

vertices of G from 1 to n in O(ntm) steps so that:

(a) v 1is assigned number one;

(b) u 4is assigned number n ; and
(c) any vertex (except u and v ) is adjacent both to a higher-

nurbered and to a lower-numbered vertex.
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Let us now assign directions to the edges of G eo they go from

lower-numbered to higher-numbered vertices with the exception of (w,v)

which goes fram u to v . For any vertex x of the digraph H thus

camputed there must be a path X =" u in H because otherwise there

would be a highest-numbered vertex g reachable from x and z would
not satisfy condition (c). A similar argument shows that there mst be
a path v =" x as well and these two facts are emough to prove that H

must be strongly connected since for any two of its vertices x, y , there

will be paths X =" u and v=" y in H and thus (with the edge (u,v) )
there will be a path x =»* y .

We can therefore conclude the following:

Theorem 6.2. The task of camputing a prime subhammock parse of a proper
program is equivalent to camputing the triconnected components of a

biecmnected multigraph whose vertices have at most degree three. 0O

Let us conclude this section by considering the relationship between
the parses ol proper programs produced by our method and those produced
by the algorithm of Gannon and Hecht.

Gannon and Hecht analyze proper programs in terms of prime subprograms,

which are defined as non-trivial subhammocks that are either (i) maximal

sequences of function nodes or (ii) do not properly contain any non-triviel

subhammock. The prime subprogram parsing of a proper program is accamplished

by identifying its prime subprograms, replacing each of them by a single
function node, and repeating the process on the resulting proper program.

Figure 6.14 shows the prime subprogrem parsing of the proper program of
Figure 6.12.
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Parse of the proper program of Figure 6
subprogrars are identified by dotted boxes.

prime subprogrems.

Figure 6.1k.
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Let us consider prime subhammock parses of proper programs in

which:

(1) following every replacement of a prime subhammock whose
corresponding component of N(H) is a bond or a triconnected
gregh we immediately elimingte either its antry or its exit
by & series reduction, as shown in Figure 6.15; and in which

(11) we postpone tbe elimination of any vertex of a polygon (except
those eliminated in (1)) until every pair of consecutive
vertices on the polygon are joined by a single edge, at which
point we eliminate them all "at once" (so to speek) by series

reductions.

From & prime subhammock parse that satisfies these restrictions, one
can trivially obtain a proper program parse by grouping the prime
subhammock reductions. Conversely by interpreting each prime subprogram
reduction as several prime subhammock reductions, one can obtain a prime
subhammock parse from any prime subprogram parse.

We can use this basic equivalence of the two parsing methods and the
fact that a proper program with n vertices can have at most 0(n) edges

(due to the degree reduction of its vertices) and conclude this section by

stating the following theorem.

Theorem 6.2. The triconnected components algorithm can be used to obtain
a prime subharmock parse (or a prime subprogram parse) of e proper program

having n vertices in at most O(n) steps. O
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x (or y)

4
!

Interpretation of the replacement of a prime
subprogram § that 1s eilther a bond or a
triconnected graph by a single function - ode
as a two step process of prime subhammock
replacement.

183

RPIPFY:. < WV SNSRI )



R O

S WA 9T

e MASTERR L HNEAT

WA e .

6.4 Parsing Structured Programs.

Structured programming is the name given by Dijkstra ([DAH 72j) to
a prograrming methodology he proposed aimed at establishing a close
relationship between the tasks of writing a program and proving its
correctness. Dijkstra's approach to this problem was to restrict the
programmer to the use of & small set of simple constructs when writing
a program.

Although the name "structured programming" has become fashionable
and has been used to define many different programming techniques, we will
employ it in its original sense. We will say that a hammock 1s a structured
program if it can be generated from the pseudo-hammock of Figure 6.16(a)
by repeated "expansion" of any vertex v such that
in-degree(v) = out-degree(v) = 1 into one of the hammocks of Figure 6.16(b).
(We have refrained from calling the graph of Figure 6.16(a) a hammock
because it does not have distinct start and end vertices.) An example
of the generation of a structured program is shown in Figure 6.17.

All the hemmocks shown in Figure 6.16(b) with the exception of the
one labelled case-of are proper programs, *herefore all structured programs
built with these constructs will be proper programs as well, It is therefore
not too surprising that -- even if one uses the case-of construct --
structured programs share with proper programs the properties that allowed
us to parse them using a simpler version of the general prime subhammock

parsing algorithm. In particular:
Lemma 6.5. let H be a structured program. N(H) 1s biconnected.

Proof. [See Appendix C.] O
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if - then - else repeat - while - do case - of
until

Definition of stiuctured programs.
The hummocks of part (b) are namied by the
program constructs fram which they originate.
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Construction of a structured program. At each step
the vertex being replaced is marked by a dotted box.
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However, structured programs allow us to simplify the prime subhammock

parsing algorithm even further than proper programs d4id, mainly as a
consequence of the following.

Lemma 6.6. Let H be a structured program. N(H) can be reduced to a

double bond by & sequence of series and parillel reductions that do not

involve the return edge.

Proof. [See Appendix C.] O

Basically this lemma tells us that N(H) is a TTSP network with the
edge (@,w) being its return edge. (Note however that this does not

mean that H 1is a TTSP multidigraph!) The most important consequence

of this fact for our purposes is that we do not need to use the triconnected

components algorithm to obtain the decomposition tree of N(H) if H 1is
¢ 3tructured program, Instead, Algoritim L.2 (modified to work on
wndirected graphs) may be used. This replacement does not improve the
asymptotic bound on the mumber of steps needed to parse a hammock, but
allow. the use of a much simpler program.

It should be noticed that programs whose control flow graph is a
structured program are likely to be very well suited to Rosen's approach
of obtaining structural information during their syntax analysis.
Therefore, even though the prime subhammock parses of structured programs
are very simple to obtain, as we have seen, there may well be better ways

of analyzing their flow of control.
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Chapter 7. Summayy of Results and Open Problems.

In our opinion these are the main results contained in this thesis %
ranked (loosely) in order of importance: !

1 -- An algorithm to recognize the class of GSP digraph in a linear

number of steps (Chapter 5).

2 -- An approach to the structural analysis of flow graprhs suitable to

be implemented to run in a linear number of steps using the triconnected
components algorithm (Chapter 6).

£
e

3 -- A unified view of the theory of TT networks and the classical results

ot

about TTSP networks fram an algoritnmic point of view by relating

e e s et o

LRy 3

them to the theory of triconnected decomposition of biconnected
) graphs (Chapters 3 and L4).

oy,

» Feaet

During our presentation of these results, a number of problems were

discussed briefly only from the point of view of our immediate goals.

Foxiae . (LT ot A

Several of these problems are interesting on their own and probably

merit further study. The list that follows contains our suggestions

LR Ll 1

for further work derived from our results:

g e
A AT W 28" A4 A A A Ll e 1 T # ST S

Yo 1 ~- The use of the unique decomposition trees of MSP, TSP, and TTSP

PRI IIPTIRTY T T FT IR T e TR D e Sl 2 e Kt

digrarhs to solve the subgraph isomorphism prcblem for these classes

e et

of digraphs. This problem seems to lead directly into several

interesting generalizations of the subtree isomorrhism problem that

FOL IR AT
et eean w maaml s

are -~ a8 far as we know -- unsolved.

cpwpy rmaw
TS

The generalizaticn of the method employed to perform the transitive

reduction of GSP digraphs to produce the transitive reduction of 7

k~-dimensional orders. 1

188

L oo e e ~SB———— -




3 ~~ The design of an efficient algorithm that uses the structural
information produced by the prime subhammock parse of a hammock
to perform the global flow analysis on it, -

4 < The design of an algorithm that parses proper progreams in linear

time without using the general triconnected components algoritim.

(In other words, find a simplified triconnected components algorithm

that works for biconnected mltigraphs wboservertices have degree
at most three.)
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Appendix A. Graph Theoretical Definitions.

A graph G = (V,E) consists of a finite set of vertices V , and a firite
set of edges E . Edges are pairs of distinct vertices; if the edges of a
graph are unordered pairs the graph is undirected and if they are ordered
the graph is directed. We will abbreviate directed graph as digraph. An
edge -- directed or undirected -- will be denoted (u,v) . Note that edges
of the form (u,u) have been explicitly forbidden; these edges are normally
called loops.
If the set of edges of a graph may be a multiset, that is, if we allow
one edge to appear several times, the graph will be called a multigraph.
We will abbreviate directed multigreph as multidigraph.
If e= (wv) is an edge, u and v are the endpoints of e , vertices
u and v are adjacent, edge e is incident to u and v , and vertices
u and v are incident to e . If e 1is a directed edge, e leaver u
and enters v, u 1is a predecessor of v and v is a successor of u .
In an undirected multigraph the degree of vertex u 1is the number of
edges incident to u . Two edges having the same endpoints are called
parallel, and two edges sharing exactly one endpoint are consecutive. Two
consecutive edges whose common vertex has degree two are sald to be in series,
In a multidigraph, the out degree of a vertex u is the number of
edges that leave u , and the in degree of u is the number of edges that
enter u . A source is a vertex whose in degree is zero, and a sink is
a vertex whose out degree is zero. Two edges that leave the same vertex
and enter the same vertex are called parallel. Two edges of the form
(wyv) , (v,w) are consecutive. Two consecutive edges incident to vertex

v ure in series if the in degree and out degree of v are both one.
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We have used the same names for different concepts defined in directed

and undirected graphs. No confusion should result from this fact because

it will be clear fram the context which of the concepte is being used.

A path Y ; v in a multigraph (directed or undirected) is a
sequence of vertices LT YRR W such that for any 1 <i<n,
(ui-l’ui) iz an edge of the multigraph. The path includas the edges
(uy_yswy) for 1< 1<n. The vertices u) and u,  are the endpoints
of the path. If o= the path is called a cycle. A path in which
all vertices are distinct is called a simple path, & cycle in which all
vertices are distinct -- except the endpoints -- is a simple cycle,

A multigraph (directed or undirected) that contains no cycles is
called acyclic.

The length «: A path ul,u,a,...,uk is kel . The distance between
two vertices u, § is the length of the shortest path u ot v ; the
distance is undefined if no such path exlsts.

An undirected multigraph is connected if for any two distinct vertices
u,v there is a path u ; v in the multigraph. An edge e of a connected
multigreph is a bridge if there exists a pair of vertices u, v such that
every path u : v includes e . A vertex x of a connected multigraph is

an articulation point if there exists a pair of vertices u, v such that

u, v and x are distinct and every path u : v includes x .

A connected multigreph is biconnected if it has no articulation points,
or equivalently, if for any three distinct vertices x,u, v there is a
path u = v 1in the multigreph that does not include x .

Two vertices x, y of a biconnected multigraph G = (V,E) are a

separation pair if there isc a partition of E into classes El’Ee"“’Ek

with k >2 such that:

e i

vy g
S



O N T PSR W I TRE LU e 2 T SN

(a) two edges in the same class belang to at least one path that does

not inelude x or y except possibly as endpoints;
(b) any path containing edges in two distinct clesses includes x or y ;
(e) El'Eb"‘°’Ek can be merged into two disjoint sets E' and E" each

one containing at least two edges. 2

A biconnected multigraph is triconnected if it has no separation pairs.

The wndirected version of & directed multigraph is the undirected

multigraph obtained by changing every ordered pair (u,v) in the directed
edge multiset into an unordered pair (u,v) . A directed multigraph is
connected if its undirected version is connected, and it is stron
eonnected if for any two of its vertices u, v , there are paths u : v o
*

and v=u.

A directed acyclic graph is transitive if there is an edge (uw,v) in

*

the digraph between any two vertices Joined by a path u= v . The

transitive closure of an acyclic digraph G = (V,E) 1is the digraph

GT = (V,ET) where E_ 1is the minimal subset of VxV that lncludes

T

E and makes GT transitive.

An edge (u,v) of an acyclic digraph is redundant if there is a path :
u : v not including the edge. This concept is not well defined for 3
multidigraphs or digraphs with cycles, but in acyclic digraphs redundant
edges can be identified unambiguously ([AHO 72]). A directed acyclic graph

with no redundant edges is minimal. The transitive reduction of an acyclic

digraph is the digraph obtained by removing all the redundant edges.
Two graphs G' = (V',E') and G" = (V',E") are isomorphic if there
is a one-to-one correspondence between their vertex sets that preserves

adjacency. That is, f: V' - V" and f-l: V" - V' are both functions and
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(u,v) €eE' if and only if (f(u),f(v))eE" . This concept can be extended
naturally to muitigraphs by requiring that if there are k edges (u,v)
in G' , there must be exactly k edges (f(u),f(v)) in G" .

A multigraph (directed or undirected) G' = (V',E') is a subgraph
of another multigraph G a (V,E) if V' CV and E'C E . The vertices
of G' adjacent to vertices that are not in Gi are called boundary

':LLI&E of the subgraph.

. multigraph (directed or undirected) G' = (V',E') Jis an embedded

subgraph of another multigraph G = (V,E) if we can ottain G' from G

by a sequence or the following ope: ations:
(a) removal of an edge;
(b) replacement of two edges in series (u,v) , (v,w) by a single

edge (u,v) .

For any subset S of the vertex sel of a multigrarh G , the induced

subgraph of § is the maximal subgraph of G with vertex set S . The

implicit subgreph of S 1is the induced subgraph of S in GT s the

transitive closure of G .

A tree is an undirected grarh that is connected and acyclie. Vertices

of a tree are also called nodes.
A rooted tree 1s a tree with a distinguished vertex called the root.
In a rooted tree the vertices of degree one other than the root are called

leaves and all other vertices internal nodes. In a rooted tree there is a

unique simple path from the root to any other vertex v ; the vertices of

this path are the ancestors of v , and the ancestor of v adjacent to v
is its parent. If u is an ancestor of v, v 1is a descendant of u ;

if v is the parent ¢f u, u is a child of v .
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A subtree i3 a connected subgraph of & tree, In a rocted tree, the

subtree rooted at v 1is the minimal subtree that contains v and ~11 its

descendants, A rooted tree ls ordered if there is a total order in the

- set of children of any node.

; A binary tree is a rooted ordered tree in which every internal node

has exactly two children called the left and right childrea. The left (right)

ML i N

subtree cf an internal node v of & binary tree T 15 the subtree of T

rooted at the left (right) child of v . C

- A subgrarph Gl of a miltigraph G 1s a spanning tree of G, if Gl

is a tree and includes every vertex of G .

et

]

fhd

v
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A graph G = (V,E) Is complete if E = VxV . The complete graph

on n vertices is unique and it is normally denoted Kh .

. A digraph G = (V,E) is complete bipartite if we can partition V

into two subsets, H and T, such that (a) HAT =%, (b)) HyT =V,

R I 4 ¢ i Seren. g P B s

and {(¢) E=HxT . The set H is called the head and T the tail
of G.

The line digraph ([HAR 60], [HEM 73], [XLE 75]) of & multidigraph

G = (V,E) is the digrarh L(G) = (VL,EL) constructed as follows:

s Sl cEE L T R
. g N S —— Ty -« RO

- for each edge eeD there is a vertex f{e)ce VL 3

1 - for each tair of consecutive edges el, ee in G there is an

edge (l(el),l(ee)) in L(G) .

A multiple bond, or simply & bend, is a multigrarh consisiing of two

L T

vertices joined by one or more edges. A bond with two edges will be called

e st e s kel ot e ok ALk dniin 2k it A0 40l Al L) it et L e k) doms

a double bond, ¢ bond with three edges a trircle bond.

ekt e s ot - an
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A polygan is a connected grepa with k vertices and k adgés; the
édges forming & simple cyele including all the vertices., Polygons are
named in the usual manner: tiriangle, quadrangle, pentagon, etec., according
to the nurber of edges they contain. h ' : | |
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. _ Aprendix B, The Efficiency of Algorithms.

We will study the efficiency of our algorithms by studying the
number of steps that an abstract machine needs to execute them. This
number of steps will be considered a function of same size measure of
the input of the algorithm.

As an ebstract mrlel of the actual machines on which the algorithms
will run we have chosen the Randam Access Machine (RAM) (a detailed
description of this machine can be found in Chapter 1 of [AHO 76]). We choose
the RAM because it is a better model of most present day computers than
most of the other abstract machines used in computation theory. In a
RAM any logical, arithmetical or control operation takes one step butl:
the numbers it manipulates are restricted in absolute value to same
constant times the size of the input of the algorithm. This restriction
on the size of the numbers manipulated corresponds to the fixed word size
of most digital computers.

The inputs to all our algorithms are graphs or multigraphs. The
size of a graph or multigraph will “e nommsally measured by the number
of elements in its vertex and edge set.

To simplify the derivation of the number of steps taken by a RAM
running en algorithm we will discard constant factors by using the standard
o(g(x))

[t(x)| < ]‘1‘3("”*1% for all values of x ,

"big O" notalion. We say that a function f£(x) 1s 1f for scme
constents k) end k,,

A3 an example of the use of this notation, 12 S 18 the size of the

K input of an algorithm, the absolute valve of the numbers that the RAM

may manipulate in a single step when running the algorithm can be expressed

ac 0o(s) .
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Appendix c‘. Proofe 'orrl.mu and Theorems.

proof, n. Evidence having a shade
more of plausibility than of
unlikelihood. The testimony of
two credible witnesses as opposed
to that of only one.
- A. Bierce (The Devil's Dictionary)

Tnis appendix provides the proofs of most of the results of the main
body of the thesis. In order to avoid repetition we have proved first a

few lemmas that are then referenced in later proofs.

Lemma C.1. A triconnected graph G with at least four vertices contains

K, s an embedded subgraph.

Proof. We start by proving that there is a simple cycle of G that
contains four or more vertices.

Select two adjacent vertices u,v of G . There has to be a path
u= v in G that does not contain (u,v) or that edge would be a bridge.
If this path contains three or more edges we have found the deaired cycle.
Otherwise we have found a triangle x,u,v in G . 1In this case we
proceed by selecting another vertex y of G : there must exist two
paths a: y o u not including x or v and b: y a* v not including
x or v in G since it is a triconnected graph. Let w be the last
vertex in a that is also in b (y 48 a candidate): there are disjoint
paths w -* u and w »" v 80 we can repeat the argument given for y
for vertex w and we conclude that G has a simple cycle with four

vertices.
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Therefore let C be a simple cycle of G that céntuins four or

more vertices, We find two pairs of vertices IR and ¥y 0 ¥p
that split C into four pieces ci » 02 ’ 05 » and C, as shown in
Figure C.1(a). Because G is triconnected, there must exist a path

k: x =*'x2 in G that does not include y; or vy, - et xi be

 the last vertex in k that lies on C, or C, and x) the first

vertex on k +that lies in C2 or c3 . Clearly the gection of k

~ between xi and xé does not contain any vertex of . C except xi

or xé . Similarly, there are vertices yi anéd Yé lying in C and
a path yi =" yé . that does not include any vertex of C except yi
t (]

and ye and such that yl is in Cl or 02 and yé isin C
We therefore have the situation of Figure C.1l(b) in which ¢} » C5 Cé s
and Cﬂ form the cycle C and the paths Cé and Cé do not contain
any vertices of C (except obviously X xé ’ yi , and Ya ).

If the paths Cé and Cé are disjoint, then we have clearly found
an embedded KL in G . Otherwise let 2z be the vertex of Cé closest
to yi that belongs also to Cé ; we have the situation of Figure C.1(c)

in which C% is the section of Cé between xi and 2z and Cé is

the union of Cé and ci and once again we have found an embedded Kﬂ
in ¢. O
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Lemma C.2. let G be a biconnected multigraph and § a triconnected

component of G . S 1s sn embedded subgraph of G .

i

Proof. Merge the triconnected components of G as mnéh as possible T :
without merging S with any other ccmponent. The result is a set of
maltigraphs {GI’GQ’GB"“’Gk’S}' where each of the multigraphs Gy
contains only one virtual edge r(xi,yi) that it shares with § . Al
the multigraphs G1 are blconnected since they are obtained by merging

some triconnected components of G (which are biconnected) and merging

obviously preserves biconnectivity. Therefore there is a path xi 2% ¥y
in Gi that does not include the virtual edge (xi,yi) (otherwise
(xi,yi) would be a bridge in Gy ) and this path contains no virtusl
edges. Thus for any virtual edge (a,b) of 3 there is a path a =" b
in G and all such paths are disjoint since each is contained in a 2
different Gi and every actual edge of (G appears in just one triconnacted
component., We therefore conclude that S can be obtained from G by
removal of all the edges not on such paths followed by contraction of

each of these paths to a single edge by series reductions.

Lemma C.3. A biconnected multigrapn having a triconnected component that

is not a bond or a polygon contains K, asan embedded subgraph.

Proof. Let G Dbe tne biconnected multigraph and G' one of its ii
triconnect: 1 components that is a triconnecfea graph with at least four

vertices. According to Lemma C.2, G' can be obtainea from G by L

removal of edges and series reductions, and asccording to Lemma C.1,

Kh can be cbtained from G' Dby a sequence of the same operations

i
80 we conclude that Kh is an embedded subgraph of G . : !‘
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(Note: 7The transitivity of the embedded subgraph relation implied
by the proof above is also used in a few other places without being

formally proved. ]

Lemma 5.2. Every subnetwork of a firmly connected TT network is firmly

connécted.

Proof. Let N1 be a subnetwork of s firmly connected TT network N

and let t and ty be the terminals of N, -

Iir Nl does not contain any internal vertex, the proposition is

trivially true. Otherwise let v be an internal vertex of Nl . Because

v will also be an internal vertex of N , there is a terminal path p in
N that includes v . Since p includes at least one internal vertex of
Nl and 1s & simple path it must include the only two boundary vertices

t1 and t., of Nl: one being the first vertex of N, in the path and

2 1

the other being the last. The section of p between t, and t2 is a

1
terminal path of Ny that includes v .
Therefore for every internal vertex of Nl there is a terminal path

in N, that includes v and N, is firmly connected. (J

1l 1

Iemma 3.3. A nontrivial indecomposible TT network is either a triangle,

e triple bond, or & triconnected graprh with at least four vertices.

Proof. Let N = (V,E) be a non-trivial, firmly connected, undecomposible
TT network. Assume that N has a separation pair x, y , that is, we can
find two subgraphs of N, N(') = (Vo, Ey) and Ni = <V1’ El) such that
ViuVo=V, VNVy= (v}, E,UE =E, Eonslap, ]]El||>1,

and |E,|| >1 . Let N(') contain the return edge of N . The TT networks

2l
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Ng = (Vg0 Eou {(%,7))) with the retumn edge of N as its retwrn edge,
and N, = (Vl, Elu'{(x,y)]) with (x,y) as its return edge, form a
decomposition of N . This contradicts our assumption that N is

- undecamposible so we have to conclude that N is triconnected. Because'

N is also non-triviel, it must contain at least three edges. The only : !
multigraphs that satisfy these conditions are triple bends, triangles, . ; ’ -

F C and triconnected graphs with at least four vertices, :

i Lemma 3.4, Let N be a firmly connected TT network and N, a non-trivial

proi)er subnetwork of N with boundery vertices x and y .

(a) x,y 1is a separation pair of N .

i () There is at least one decamposition of N 4in which N,

component. i

is a

Proof.

o ikt L e T+ @ b
3

(a) The vertices x,y are a separation pair of N Dbecause we can split

its edge set into the edges that belong to N, and those which do

1 p
not. Each of these sets will contain at least two edges since Nl

is non trivial and is a proper subnetwork of N and any path

ircluding edges in both sets must contain x or y since they

o i o S, e AR K w1 o ¢ e

are the cnly boundary vertices of Nl .

{b) The proof of Lemma 3.3 given earlier proves this as well. O3

Ny

Lemma 3.5.
(a) The TCG of a biconnected multigraph is a tree.

(b) No vertex of a TCG corresponding to a bond (polygon) can be adjacent

to another vertex representing a bond (polygon).
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Let G be the biconnected multigraph.

For any set of split components G ,0-2,...,6k of G, we define
the Split Component Graph (SCG) associated with the set as having:
{1} a vertex for each split camponent,
(i1) an edge ,jéining two vertices if and only if the split components

corresronding to the vertices share a pair of edges generated in

the same split operation.

Clearly the TCG of any biconnected multigraph G can be obtained

fram asy SCG of G by "shrinking" all the edges of the SCG that join
vertices associated with two triangles or two triple bonds. Because
shrinking edges does not create or eliminate cycles or isolated
vertices, and the TCG is unique, the TCG of G will be a tree if

a1y SCG of 4 1is a tree.

We will now prove that any SCG of a biconnected muiltigraph G
is a tre2 by induction on the number of edges of G .

If G has only three edges it cannot be split, so its SCG iz a
trivial tree consisting of a single vertex and no edges. Assume that
the proposition is now true for any biconnected multigraph with fewer
than m edges, and let G have m edges. For any SCG, S, of G
consider the first split operation performed to generate it; this
operation produced two split grephs of G, Gy and G, , each one

2
with fewer than m edges. Clearly S c¢an be constructed from some

SCGs, Sl of G1 and 52 of Gg » by Joining them by a single edge.
The graphs Sl and 52 are trees by induction hypothesis, so § will
also be a tree since it will be connected and any simple cycle of G

has to be a cycle of either S1 or 82 .
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(b) If two such adjacent polygons or bonds can be found, an additional

merge operation would produce a new set of triconnected components

contradicting Theorem 3.2. QO

Lemma 3.6. A TT network is Series Parallel if and oply if it can be
reduced to a double bond by an appropriate sequence of series and

parallel reductions.

BhSacRne: can

Proof. We prove first that if a TT network N 1is Series Parallel, it

is reducible to a double bond by induction on the number of triconnected

camponents of N .

If N has a single triconnected camponent, N is either a polygon

e B AEL BT T

or a bond and the pr0position is trivially true. Let us assume that the
proposition is true for any TT network with fewer than k triconnected

components and let N have exactly k camponents. ILet us consider the

[E-RWUT-L N T

TCG of N as a rooted tree with the root being the vertex that corresponds
to the triconnected component of N that includes the return edge, and

select any leaf of this tree. The triconnected component of N associated

M B MRS L L8

with that vertex is a polygon or a bond (since N 1is 1TSP) and contains
exactly one virtual edge (since it is a leaf of the TCG of N ). We can

thus reduce this component to a double bond consisting of its virtual

ce emmiaadbeminy s

N ; edge plus another edge arising fram the reduction of ull the other edges.
The reductions identified in this manner, if applied to N , resuit in a

TT network N' that can be obtained by merging all the triconnected

.
T T S PO SOOI T T v v ST PR T e IV - TR o el i e el i

components of N except the one associated with ¢ . Thus N' has k-1

b

components and is TTSP (since all its triconnected components are also

triconnected components of ° ) and thus can be reduced tv a double bond.

ek e

[N

-
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Since N wtsrdbtained from N by series and parallel reductions, we ?
conclude that N can be reduced as well.

We now prove that if N 13 not a TTSP network, it cannot be raduced
to a double bond by series and parallel reductions.

If N 4is not TTSP, at least one of its triconnected components is & 3
triconnected graph with four or more vertices. Thus, according to lemma C.3, o
N contains Kﬂ as an embedded subgraph. This means that there are four E;
vertices of N , X s X35 X3 5 X, such thst any two of them are z
connected by a path x, =% Xy (L<1<J<4) and all six such paths 2
are disjoint., Because three of the paths are incident to each vertex,
and the paths are disjoint, none of these vertices can be immediately
deleted by a series or parallel reduction. Furthermore, series and
parallel reductions do not destroy paths between vertices that are not
removed. This implies that any multigraph obtained fram N by series
or parallel reductions will contain K as an embedded subgraph and ;f

therefore that N cannot be reduced to a double bond. (O

Lemma 3.7. A firmly connected TT network is Series Parallel if and
only if:
(1) it is a double bond, a triple bond, or a triangle,

or (ii) it has a decomposition whose core is a triple bond or a

triangle and in which all the components (there are at moet

two) are TTSP networks.

Proof. We show first that if a TT network N satlisfies (i) or (ii),
it 1s a TTSP network.
If N satisfies (1) it is obviously TTSP since the set of its

triconnected components contains only N itself. Otherwise let NO ’
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N, » N, be the dscamposition of N postulated by (i1) (there may be
only one campenent but that fact is irrelevant for our argument).
Because of the relationship between the operations of decomposing a
TT network and splitting & biconnected multigraph given by Lemma 3.k,
a set of spllit components of N can be cbtained by the wnion of any
three sets of split components of Ny » Nl , and N2 » respectively.
Any set of split camponents of Nl or N2 contains oenly triangles
and triple bonds since both networks are TTSP, and the set of split
camponents of N, contains only N, itself (a triangle or a triple
bond). Consequently we have found a set of split components of N
which contains only triangles and triple bonds. This implies that the
triconnected components of N are only polygons and bonds and thus that
N is TTSP.

We prove now the implication in the other direction: if a TT network
N is TTSP then it satisfies (1) or (ii).

If N has fewer than four edges and is TTSP it must satisfy (i).

If N has more than three edges, consider any set of split components
of N : because N 1s TTSP, all the members of the set are triangles or
triple bonds.

Consider now the decomposition of N whose core is the split camponent
that includes the return edge and whose components are the TT networks
obtained by merging all the other split components among themselves as
much as possible and selecting as return edge the virtual edge that the
multigtaphs thus ootained share with the core. ((Once again this decomposition

mey have a single component but the argument does not depend on this fact.)
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This decomposition of N has a core that is a triangle or a trirle bond
and components that are TTSP networks since they have a split camponent

set with only trisngles and triple bonds, and therefc-e N satisfles
(i1). 0O

. Lerma 3.8, A firmly connected TT network is Series Parallel if and

only if it does not contain K, {the camplete graph on four vertices)
as an embedded subgraph.

Proof. We prove first that if N 1is a TTSP network it does not contain
Kh as an embedded subgraph. We do this by showing that the triconnected
components of N do not contain K, asean embedded subgraph and that
the operation of merging biconnected multigraphs preserves this property.

If N 1is TTSP, all its components are polygons or bonds, therefore
no component of N contains K, asan embedded subgraph.

Assume now that G = (V,E) is the result of merging the biconnected

multigraphs G, = (Vl, El) and G, = (Vg, E,) that share the virtual edge

(x,y) » and that neither G, nor G, contains K, as an embedded subgraph.

By definition of merging: V = Vluv2 s [x¥) = vlnve , and
E= (El-{(x,y)}) U (EE-{(x,y)}) . Thus there is a path u=v in G
that does not include x or y only if both u and v belong to Gl
or both belong to G2 . We prove that no embedded Kh exdsts iIn G by
showing that there is no way to distribute four vertices X X5 :% s
and x), between Gl and 62 so that there are six pairwise disjoint
paths xi=.~»*"xJ y 1<i<j<h, in G.

Clearly not all four vertices can be in either Gl (or 02 ) or by

the definition of merging G, (or Gy ) would contain K, as an embedded
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subgraph. lLet xl,é(}l and x2,x3,and x, he in Gl;thenall
three paths x, =* Xy Xy =% X o and X3 w* x, contain x or y or

both s0 they cannot be palrwise disjoint. Similarly if two vertices
belong to G and two do not, there would be four of the paths that
include x or Yy or both so once again they could not be disjoint.
Because of the symmetry between Gl and Ge this covers all possible
ways of distributing the four vertices between the two graphs and we
conclude that G does not contain Kh as an embedded suﬁgraph.

We now prove that if N is not TTSP, then it contains Kh as an
embedded subgraph.

If N is not TTSP, at least one of its tricomnnected components is
a triconnected graph with four or more vertices. Thus according to

Lemma C.l that camponent contains K, as an embaided subgrarh and according

to Lemma C.3 sowill N . I

Lemma L.1.

(a) Let G be a TTSP multidigraph. The TT network obtained by adding
a return edge (Jjoining the terminals of G ) to the undirected
version of G 1is a TTSF network.

(b) let N be a TTSP network. The multidigraph obtained by assigning
directions to the edgec of N as described earlier and deleting

the return edge is e TTSP multidigragh.

Proof.
(a) We use induction on the number of edges of 35 .
If G has cne edge the proposition is obviously true since
N(G) == the TT network obtained from G by the o on descrited

in the lemms -- is a double bond.
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Assume now that the proposition is true for all TTSP multidigraphs
with fewer than k edges ind that G has k edges. The TTSP
miltidigraph G 1s faormed by the twc terminal series or two terminal
parallel camposition of two TTSP multidigraphs Gy and Gy » each
having at most k-1 edges so that N(Gl) and N(Ge) are TTSP

‘networks by induction hypothesis. But clearly N(G) has a decompoaition

whose components are N(Gl) and N(Ge) and whose core is either a

triangle or a triple bond (depending on the operation used to construct

G from Gl and .(}2 )s therefore by Lemma 3.7 N(G) is a TTSP

network.

3

(b) Wwe use once again induction on the number of edges of N and the
close relationship between two terminal series (parallel) campositions

and decompositions whose cores are triangles (triple bonds).

. & T
FRBUE-L 1T ¥ IRV

If N has fewer than four edges it 1s either a double bond,

.

a triple bond, or a triangle, and the proposition is clearly true
since M(N) -- the multidigraph produced by the process described
in the lemma -- consists, respectively, of a single edge, two edges

in parallel, or two edges in series.

If N has mora than four edges, according to Lemma 3.7, it has

a decanmposition whose core NO is a triangle or a triple bond and

B O

whose camponents are TTSP networks Nl and N2 . Each of the i

PRSP
. ) .
" Lok e it LS e, 5 e Rl ol kil

components has fewer edges than N so by induction hypothesis

M(Nl) and M(Ne) are TTSP multidigrarhs. But M(N) can clearly

be constructed by the two terminal series or two terminal parallel
camposition (depending on whather No 1s a triangle or a triple bond)

of M(N;) and M(N,) , therefors we conclude that M(N) is a TTSP
multidigraph., O

b iaman e v S o bt S
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- Lemma L.2. TTSP multidigraphs are acyclic. _ o X l
£ _Proof. We Yrove the proposition by induction, showing that the two , : 4

terminal series or two terminal parallel composition of two acyclic 3
. multidigraphs is an acyclic multidigraph. SR o -3

If G 1is the two terminal series composition of G, and G, , there ;i:
S 1s no path u="v in G such that ueG, and veG since the only | A%?5; 
S If a cycle exists in G that is not contained entirely in G, or G, ';_

such a path would also exist,}so every cycle of G has to be confained - 13

entirely in G, or G2 and therefore G has no cycles.
The same argument can be repeated when G 45 the two terminal parallel ii
l

composition of Gy and Gy tn camplete the prcof.

Lemma 4.3, A multidigraph is TTSP if and only if it can be reduced to b

a single edge by an appropriate sequence of Series and Parallel reductions.

Proof. We prove that if G 1s a TTSP multidigraph it can be reduced ; :;
to a single edge by induction on the number of edges of G . }lt
If G has one edge the is obviously true; otherwlce let G
have k edgee, By definition G <can be constructed by the two terminal
series or twz terminal parallel composition of two TTSP digrayhs Gl and
G, » each one having at most k-1 edges. By induction hypothesis, there i F
are approrriate sequences of series and parallel reductione that transform
Gl and Gy independently into a single edge. Because a reduction that
ercotes an edge  (u,v) does not derend on what is outside (u,v) but

only on what was betweer the two vertices, the two sequences of reductions o

that trensform Gl ard G2 into single edges can be applied to G to




transform it into two édgea<1n;ser1esfor two edges. in parellel (depsnding [
on whatroper&tion constructs @ out of Gy and G, ). In eifhﬂr case
one more reduction transforms G 4into a single edge. |

" We now prove the implication in the other diréétion using the same
method.

If G has & single edge it cbviously has to be a $TSPAgmlt;digrqph.
Otherwise let G have k edges and be reducible toAa sin§l§ edge. A
Consider the last step in the reduction of G : that will be a reduction
of two edges e and e either in parallel or in series, to a single
edge. Each of these two edges has clearly arisen by the reduetion of two
subgraphs of G, Gi and 62 s to a single edge. Each of the subgraphs
can have at most k-1 edges, so by induction hypothesis both are TTSP
multidigraphs. Because series and parallel reductions do not create or
destroy sources or sinks, the source and sink of G1 are the endpoints

of e, and the source and sink of GQ are the endpoints of e Thus

o
G can be constructed by two terminal series (4f e and e, are in

series) or two terminal parallel (if e and e, are parallel) composition

of Gl and G

, end is a TTSP multidigraph. O

lemma 4.5. There is a branch-in vertex of G.

5 that is a successor of

a branck-out vertex.

Proof. We start our proof by showing that GE contains one branch-out

vertex. (Remember that Gy

each of its vertices is a branch-in, a branch-out, or both.)

is acyclic, has a single source and sink, and

If the source of G, has two distinct successors, we have found our

£
branch-out vertex. Otherwlse the source has a unigque successor v ., This

21L




vertex cannot be a branch-in or GE would contain a cycle so it must be
a branch-out.
We now complete our argument by showing how from any non-empty set. S

of branch-out vertices of G, either (i) one of the members of the set

E
has a branch-in successor or (ii) we can find a larger set S' of
branch-out vertices of G -

The set S is defired using S bdby: 8' = {x|ay,yeS and (y,x) eGE} .
If no element of 8' 1is a branch-in vertex, |is'|l > 2|is!! since each
element of § has at least two successors.

Because the number of branch-out vertices of G. 1s bound by the

E
total number of vertices, the process of finding ever larger sets of these
vertices cannot be rereated indefinitely in a finite graph end our

rorrosition must be true, O

Lemma 5.1.

(1 MSF, GSP, and TSF digrarhs are acyclic and contein nc multirple
edges.

(41) MSP digrarhs are minimal,

(L11) TSP digrarhs are transitive.

(iv)  The transitive closure of any MSF digraph (and therefore of any
GSP digrarh as well) is a TSF digraph.

(v) Tne transitive reduction of any TSF digrarh is an MSP digraph.

Froof. All the rropositions of the lemma can be stated as properties of
the edges of tne digrarhs and then proved by induction showlng that the
orerations that introduce new edges preserve the property. As an examgle
we prove projosition (41) by show'ng that no edge of an MSP digraph is

redundant by induction on the nurber of vertices of the digrarh.
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If the MBP digraph conteins & single vertex, the proposition is
trivially true; otherwise let the proposition be true of all MSP digraphs
with fewer than k vertices and let G = (V,E) be an MSP digraph with
exactly k vertices constructed by minimal series or parallel camposition
of two MSP digrephs G = (Vl,El) ra.nd G, = <V2’E2) eech one having at

2
most k-l vertices.

If G 1is the parallel composition of C'l and G2 the proposition is

true because no edge of Gl or G2 is redundanst by induction hypothesis
and every edge of G is an edge of Gl or an edge of (32 since no new
edges are introduced in a parallel composition.

If G 1is the minimal series composition of Gl and (}2 y wWe can argue
in the same manner for any edge of G that belongs to Gl or to G, ,
therefore we only have to show that the edges of E-(E1UE2) are not
redundant. Let e = (X,y) be one such edge. By definition, x 1is a sink '
of Gl and y 1is a source of (;2 . Assume that e 1is redundant, that
1gs, there is a path p: x= ¥y in G that does not include e . Let
(xsu) and (v,y) Yo the first and last edges on p ; because x was
a sink of Gl » u mst belong to 62 , and because Yy was a source

of (}2 » v must belong to Gy - We have therefore found a path u - v

in G in which ue¢ GQ and ve Gl ; but this is absurd since no edge

of G that leaves a vertex of G2 enters a vertex of Gl s therefore

we mast conclude that p does not exist and that e 1s not redundent. (O

Lemma 5.2. Let G:L and (}2 be two multidigraphs having a single source
and & single sink. Let G‘I'I'S and G'I"I'P stand respectively for the Two
Terninal Series and Two Terminal Parallel compositions of G, and G, , ‘
and let L(G) indicate the line digraph of digreph G (see Appendix A

tor definition).

e e e e
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(1) VL(G'J.TS> is the minimal series composition of L(Gl) and . L(GQ) .
(14) L(G,m,) is the parallel camposition of L(G,). and :L(G,) +

Proof. We prove proposition (i) by showing that for any two edges

e €G, and e,eG,, there is an edge (l(el), ’(92)) in L(GT'I‘S)

if and only if t(el) was & sink of L(Gl) and l(ea) a source of

L(GQ) .

The vertex t(el) of L(Gl) is & sink if and only if e,

the only sink of G, » because if e = (x,y) and y 1is not e sink,

enters

there must be another edge e = (y,z) consecutive with e in Gl
and there would be an edge (z(el),z(ez)) in L(Gl) . By a similar
argument we can prove that t(ea) will be a source of L(Ga) if and
only 1f e, leaves the only source of Gy -

By definition there will be an edge (t(el), l(ea)) in L(GTTS)

if and only if the edges e and e_, are consecutive in G,

2 TTS °
Because e, € Gl and e2 € Ga the only case in which they would be

e i R o i it e AR AT s st AR

consecucive is when el enters the sink of Gl and e2 leaves the

source of G, , and in that case l(el) is a sink of L(Gl) and t(ez)

{ a source of L(Ga) and proposition (1) is proved.

Propocition (i4i) can be proved by a similar but simpler argument

AW ——— e

that we omit. O

Lemma 5.3. Let G be a multldigraph with one source and one sink.

G 1is TTSP if and only if L(G) 4is an MSP digraph.

PPORTPRTPR WORPEIN TSP UTDT - SERNTRPRURE T YW TRETT T o - WPrOw 3. W0 X+ ot T o

Proof. Conside: the following cne-to-one relationship between the members o

g i

of the two classes of digraphs: i
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-~ the TTSP multidigraph consisting of & single edge cor!fé;pond; to ‘
the MSP digraph with a single vertex; and o

7 ~- the TTSP multidigraph resulting from the two terminal series (two

terminal parallel) composition of the TTSP multidigraphs Gy -

and G,

?
series (parallel) composition of the MSP digraphs that correspond

s corresponds to the MSP digraph constructed by minimal

to Gl and GE'

The relationship of Lemma 5.2 can be used to prove by a straight-
forward inductive argument that for any TTSP multidigraph G , its
] corresponding MSP digraph G' is such that L(G) = G' . Thus ¢ will

: be TTSP if and only if L(G) 1is MSP, QO

Lemma 5.6.

1) CBC digraphs are minimal.
i (11) The bipartite components of a CBC digraph are unigue.

(111) Any MSP digreph is CBC.

Proof. (i) Let G be a C8C digraph. Assume that edge (u,v) 1is
redundant, that is, there is a path p: u =% v in G that does not
include (u,v) , and let B, be the bipartite component of G that

includes (w,v) . Let (u,x) and (y,v) be the first and last edges

e y———— T —

| ! of p respectively (p has to contain at least two edges since G is

.

a digraph)., Because h(y) = t(x) = B, » there must be an edge (y,x)

in G . Now, 1f x = y that edge would be a loop and G would not be

e e ————

a digraph, and if x ¢ y , G would contain a cycle (formed by the
L section of p between x and y and the edge (y,x) ) and it wouldn't
be CBC either according to ocur definition. We therefore must conclude

i that G does not contain redundant edges.
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(i1) let G be a CBC digraph having two distinct sets of bipartite
components; S = {Bl)Ba,...;'Bk} and ' = {Bj,Bl)...»B}} . We will show
that the two sets are really identical by proving that for any component,

B, of S, there is a component B! of S' such that B:l. = B}

J J°
let (u,v) be an edge of B1 « The head of B, contalns exactly

i

‘all the predecessors of v and its tail contains exactly all the

successors of u . Now let B.'i be the component of S' including (w,v) .
Clearly the head and tail of Bj must be ldentical to those of Bi and
since both B:I. and B& are camplete bipartite digraphs, Bi = B& .

(i11) Let G be an MSP digraph. FEach edge of G was introduced by

a minimal series composition during the construction of G using the

rules of Definition 5.1 and the minimel series composition of Gl and G2

ok ok i

‘ introduces & set of edges that form a camplete bipartite digraprh whose
head is the set of sinks of Gl and whose taill is the set of sources

of 02 . Let these complete bipartite digraphs Bl’BQ’“"B » be the

k

camponents of G . Clearly each edge of G belongs to exactly one

component. Furthermore, each vertex u of G, that is not a sink,
belongs to the head of at least one subgraph Bi » and it could not

belong to the head of more than one since after the composition that

U S

creates By, u would not be a source anymore so no new edges leaving

it could be introduced ever after, The same reasoning proves that each

N

vertex of G that is not a source belongs to the tail of exactly one
of the components. This is enough to guarantee that G satisfies

Definition 5.3 and is therefore CBC.
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Lema 5.7. L(L"3(G)) = G for sny CBC digraph.
Proof. By definiticn, for every vertex x of G that is not a scurce

or & sink, there is an edge o, = (t(x),h(x)) in L‘J'.(G) » and for eagch
edge e, of L'l(G) there will be a vertex z(ex) in L(L'l(G)) . We
prove that G and L(L’l(G)) are isoworphic by proving that there is an
edge (w,v) of G if and only if thm is anr edge (t(ou),z(ov)) in
L)) .

let (w,v) De an edge of G and let Bi
Clearly,

be the bipartite

component of G that includes (w,v) . h{u) = t(v) = B

i

= (t(v),n(v)) are

and therefore the edges = (t(u),h(u)) and e,

®u
consecutive in L.l(G) . As a consequence of these edges being

consecutive, there will be an edge (l(eu), t(ev)) in L(L'l(G)) .
in G, h(u) ¢ t(v) , the edges e,

If there is no edge (w,v)

and e Wwill not be consecutive in L’l(G) and there will be no edge

(1(ey)s2(e))) i LLHG) . O

lemme 5.8. Let G be an acyclic digraph and (u,v) a redundant edge

of G.

My@) < 3g((wv))

Proof. If (u,v) 1is redundant in G , there must be a path p: u = v

in G that does not include (u,v) . Because G is a digraph, the path
has to include at least two edges, so let (u,x) be the first edge of

must increase along any path in G,

that path. Because the values of I"G

and there is a path x a v, LG(x) < LG(v) . Therefore by definition

JG( (w,x)) < JG((u,v)) and the proposition must be true since

Mg(u) < 34((w,x)) . O
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leoma 5.9. let G be an MSP digraph. For any edge (w,v) of G,
Mgu) = J,((wv))

Froof. We prove the proposition by induction on the nimber of vertices
of G.

If G has one vertex, the proposition is trivially true; otherwise
let the proposition hold ‘for any MSP digraph with fewer than k vertices,
and let G have exactly k vertices and be the minimal series or parallel

composition of Gl and 62 » both of which are MSP digraphs with at

most k-1 vertices,

Let G be the parallel composition of Gl and 62 . Any vertex or

edge of G belongs to either G, or G, 80 let (v, v) €G, - By

induction hypothesis I ((wyv)) = Mg (u) and because no edges are
1 1

introduced in the composition LG(x) - LG (x) for any vertex xeG, .
1

1

Because the values of JG and MG are defined in terms of the values

of LG and these values are identical to those of L on the vertices

Gy

of G 5 we conclude that JG((u,v)) = MG(u) when (u,v) ¢ Gy

The same argument can be used if (u,v) € G, s 80 if G 1is the parallel

: composition of Gy and (}2 the proposition is true.

Let G be the minimal series composition of Gl and 62 . We
, and

o T RS VYT SESERTO I 1 YPTE NPV AT T IR A A PR e
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consider three cases: (i) (u,Vv) €Gy » (11) (u,v) €G,

(111) (wv) eG-(G UG,) -

For any vertex yeG, » LG(y) P LG (y) so in case (i) the argument
1

H | - - - Bkl b ¥ s
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employed when G was the parallel composition of Gl and G2 can be

repeated to prove the proposition. '
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Let now (w,v) €G, and let q be the length of the largest path

of Gl +» This path has to end in a sink of Gl and therefore, by

definition of minimal series camposition, for any vertex sze ’

Lc(z) = Ly (z)+q+tl . Becauss Jg; 18 defined by the difference of two
2
values of L, , for any edge (a,b) €G, » JG((a.,b)) - Jce((a,b}) .

Furthermore, since “G ig defined in termms of JG , for any vertex
2eGy s My(2) = MGe(z) . Since we know that J, ((u,v)) = M, (u)

% Co

by induction hypothesis, we conclude that when (w,v) €G, »

JG( (wv)) = MG(u) and the proposition is true.

Finally, let (u,v) €G'(G1UG2) . In this case vertex u is a sink
of Gy 8O every edge leaving u enters a source of G2 . But we know
that for any source w of G, , LG(w) = qtl so for any edge e
leaving u, JG(e) = q-l-l-LG(u) and therefore for all of them
:.1G(u) = JG(e) . Thus the proposition is true in case (iii) as well and

we conclude that it holds for all MSP digraphs., ([

Lemma 5.11. ILet G be a GSP digraph. G does not contain N as an

implicit subgraph.

Proof. Let G’I‘ be the transitive closure of G . Clearly GT will be
e TSP digraph and if G contains an implicit N subgraph, G, would

T
contain an induced N subgraph. We will prove that no TSP digraph

contains an induced N subgraph -- which clearly implies that the lemma

PO IR A T THIEYTY ST T

is true -- by induction on the mumber of vertices of the TSP digraph G’l‘ .

If G, has fewer than four vertices, the lemma is obviously true;

T
otherwise let the lemma hold for all TSP digraphs having fewer than k

h 2l B0]

vertices, and let G,

T have exactly k vertices. The digraph G, has

T
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to be the aeries or parallel campoaition of two TSP digraphs 01 and (32 )
each having at mogt k-1 vertices. By induwction hypothesis neither Gl
nor c;2 contains an induced N subgraph.

hey GT is the parsllel camposition of Gl and G, the propositian
is tiue because no edge joins a vertex of Gl to a vertex of (f.2 and
thus every connected subgraph of GT has to be a subgraph of Gl or a
subgreaph of Gy «

Let then GT be the series composition of Gl
there will be an edge Joining each vertex of Gl to each vertex of 02 .

- e s e

ct——

snd G, . By definition,

Therefore every induced subgrarh S of GT will contain as a subgraph

! a complete bipartite digraph with head S nGl and tail S 062 . It is

? trivial to test that the vertices of the N digraph camnot be split in
such & way between Gl and G2 » and the-efore we must conclude that GT
does not contain an induced N subgraph, O

Iemma 5.12. Let {u,v)eE Either (uw,v) is redundant in G or

T
there are edges (u,x) and (y,v) in G such that JG((y,v)) =1
and MG(u) = JG((u, x)) and therefore x,y,u, and v sare the four

vertices of an implicit N subgraph of G .

! Proof. The vertex x must exist because of the way in which the edges

of E'l‘ were determined. To show that vertex y must exist, let p be

the longest path of G that starts at a source and ends at v ; clearly

T ey e

(v, v) carnot be on that path or it would not have been deleted, so let
y be the last vertex on p before v . By definition LG(v) = LG(y)+l .
Because (u,v) was in Ep, Lg(v) > LG(x) and therefore LG(y) > Lglx) .

The values of LG must increase along any path of G , therefore there
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cannot be any path ¥y =" x in G, and if there is a path x ="y the
edge (w,v) would be redundant since (uw,x) and {y,v) are edges
of G. 7

Therefore either (w,v) is redundant or the vertices x,y,u and v

form an implicit N subgraph of G . O

Lemma 6.1. Yet H be a hammock such that N(H) is biconnected and
let S bYe a non-trivial subhemmock of H . Either S includes every
edge of H except the return edge or the entry and exit vertices of 5,

are a separation pair of N(H) .

Proof. The edges of N(H) can be partitioced into two sets, one including
those edges that correspond to edges of S and the other including the
rest. If S5 does not include ril edges of H except its return edge,
there must be at least two edges in each set since § 1is non-trivial.
Because S has just two boundary vertices, they will be the only vertices
incident to edges of both sets and must therefore be a separation pair

of N(H) . (O
Lemma 6.2. Let H be a proper program., N(H) 1is biconnected.

Proof. Llet v be an articulation point of N(H) and let Hy and K,
be the subgraphs of N(H) separated by v . By definition of proper

pro-ram, the vertex v can have at most degree three, so there must be
one of the subgraphs, say H2 5 that includes only one edge e incident
to v . Clearly, e is a bridge of N(H) separating the subgraphs Hy
and H) = HE-{V] . Because a and ¢ are adjacent in N(H) they must

belong to the same subgraph, Hl or Hé . In either case, no matter
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a what direotion e has in H, there could not he paths Q= X and

xw® @ in H for a vertex that belongs to the subgraph that does not

inelude @ and w . Since we assumed that H was a proper program and
therefore & hammock, v cannot be an articulation point of N(H) and

© the lemma must therefore be true. O

lewma 6.5. Let H be a proper program with start vertex o and finish
vertex g, and let S be a subhammock of H . The digraih H' obtained

Rr .
©
F
=
=
3
4
=
£

by replacing S by a single edge from its entry to its exit is a proper

program with start vertex <o and finish vertex w .

Proof. There are two facts to be proved; that H' is a hammock, and
that all its vertices are function, predicate, or collect nodes. The
first fact follows immediately from property (C2) {(given in Section 6.2)
of the definitions of entry and exit that we are employing. The second
fact ca.nrbe proved as follows: the entry and exit of S must each have
at least one edge of S incident to them, so the replacement does not
increase the total number of edges incident to either. Now, if at most
three edges are incident to a vertex v of & hammock, it must be &
function, predicate, or collect node, or otherwise there would be no way

of reaching v or to exit v . Therefore H' 1is a proper progrem. [J

lemma 6,4, let H be a proper program and let S be a subgraph of
N(H) that does not include the return edge. The subgraph S can be
reduced to a single edge by one series, parallel, or triconnected
reduction (as defined in Chapter 3) if and only if the subgraph S'

of H containing ell the vertices and edges of § is a prime subhammock.
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be proved uaing 'bhe fact tbat thc vu-tiou ot' proper pmmo *mn totl.l

T T

degree two. or. three, RS o T A R N
We start by proving that any bcundary vertex v of a aubgrapb Sl R
of a proper program Hl I's either an entry ’o;'Ta.ﬁ exit of S oL T '

1 T
Because at most these edges of Hl are incident to v, eitber Sl ‘

or Hlosl must contain exactly one of these edges In either ‘case f , ;A::
according to our definitiqns v. ia either an entry or an exit.

We prove the lemma now by proving first that if S. can be eliminated
by & single reduction in N(H) , :S{ 1s.a prime éﬁbproéyaﬁ of H and - :
then that if S' is a prime subprogram of .ﬁ ’ S can be elimihated»by |
a single reduction in N(H) . o

A subgraph of N(H) that can be eliminated by a single reduction has

to have exactly two boundary vertices and be a double bound, & triconnected
graph with at least four vertices or consist of two edges in series. The
two boundary vertices of S will be entries or exits of S8' by the

abiaTd sl i vmmmgm-

argunent given earlier. Furthermore, they must be an entry - exit pair

or otherwise for some vertex xe S' there would be no path « 2" x i

or no path x = w in H and H would not be a hammock. Thus §8'

must be &8 non-trivial subhammock of H . But S does not include any

separation peirs other than its boundary vertices, so ac¢cording to

Lemma 6.1, no proper subgraph of S' 4is a subhammock and S' must be a

prime subhammock of H .

The implication in the other direction can Ve proved by & very similar
argument. If §'

PP STUI VI WUR TS A PR L simimad

is a prime subhammock of H , it must have exactly two

houndary vertices, and therefore so will S . Because every boundary .
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> Tin series and.in all ceses it can be eliminated by a single reduction. O

~

vertex of a sﬁbgrtﬁh of H wonld be-an ontry or an ,tit of the subgraph,

" and 8 does not pmoperly-contain any suhhammock, no proper subgraph
of S' can have exactly two boundary vertices and contain at leaat two
Thus S will not contain & separation pair and therefore has to

be either a double bobd, a triconnected graph, or consist of two edges

. Lemms 6.5, Let H be a structured program. N(H)~ is biconnected.

~Proof. We prove the proposition by induction on the number of "expansion"

" operations needed to construct H from the pseudo-hommock of Figure 6.16(a),

The proposition 1s obviously true if H is one of the hwumocks of
Figure 6.16(b) which are the only structured .rograms that can b2 obtajred
by a single expansion operation. If H is not one of these hammocks,
let the propostion be true for all structured programs constructed by
fewer than k expansions and let H be constructed by exactly k such

operations. 1In this case there must be a structured program H' from

which H cen be generated by one expansion operation, and by induction
hypothesis N(H') must be biconnected. The vertices of H introduced

on the last expansicn cannot be articulation points of N(H) because

they are not articulation points of the subgraph introduced in the operation
and thic subgraph has two boundary vertices. Any other vertex of H

cannot be an articulation point of N(H) either because any such vertex

would also be an articulatlon point of N(H') and we inow that N(H')

is biconnected. We therefore conclude that no vertex of N(H) 4is an

articulation point and that N(H) is a biconnected subgraph, (3
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Lemma 6.6. let H be a structured program. N(H) can be reduce: to
a double bond by & sequence of series and parsrllel reductions that do

‘not involve the return edge.

Proof. We use once again induction of the number of operations needed
to construct H from the pseudo-hammock of Figuve 6.16(a).

The proposition is bbvioimly true of the structured programs of
Figure 6.15(b) which are the only ones that can be generated by one

expansion operation. Let the proposition be true now for all structured

programs generated by fewer than k expansions and let H be constructed

by exactly k such operations. 1In that case there must be & structured
program ' from which H can be generated by a single expansion, and

by induction hypothesis N(H') can be reduced to a double bond as described
in the lemma. Now the subgraph of N(H) introduced by the last expansion
operation can be reduced to a single edge by series and parallel reductions,
(since thet subgraph must te one of the structured programs of Figure 6.16(b)),
ond then either its entry or exit can be eliminated by series reduction.

In this manner N(H) has been converted into N(H') by series and parallel
reductions and since N(H') can br converted into a double bond by a

sequence of these reductions, the same is true of N(H) and the proposition

is proved. (O




