
AD—A065 196 MCDONNELL DOUGLAS ASTRONAUTICS CO HUNTINGTON BEACH CALIF FIG 9/2
METRICS OF SOFTWARE QUALITY.(U)
LIt. 78 Z .JELINSKI. P a MORANDA P49620—77—C—0099

UNCLASSIFIED MOC G75I7 AFOSR—TR—1 9—0128 ML

~° j
_ _  UP! I

SIN ii

END 
I
I

—I



_ _  

2.2
L
I_. 

~~~
140 2011 1.1 L

IIIII~.25 JflJJ~4 
~

MICROCOPY RESOLUTION TEST CR~~T
NATIONAL BUREAU OF STAN DA RDA-1963-~

~~
‘ 1



s
~c)

cL

C-)
LU

‘t Y D C
n P
U MAR 5 1919

r~TCDONNELL DOUGLAS ASTROPQAUYICS COi PAT4V

Y*ICOOPIPJEL&

• pole. OrnCt OP 9CI~~T1V1C REZW~~ (LPSC)
NOT IC& Si T~A1~SMITT AL ~~ DD~
Th1~ t.obMcaL r~~~rt ~~~ 

t~ 
-,~i rs,ts~ed a~4 i~

epprovb.! for p~b~tC r~1~~~ie 144 *1* £~Q—J.2 
~~~~~~~

DlstrlUtl.U ~s
A. 0. ~~IS~ 

Ap~~(v~.p~ ~~~r p’:~ 1~ c ~~~~~~~~~

T.ahulSml Iafor~~~iS Of?1 V ~~~t r L ~~~t~~ n ~~~~~~~~~~~



U N C L A S S I I l E t i  
______________________

SECU~~ITY C L A $ S I F I CA Y ON OF T~~IS PAGE (~~~en Data Entered ~
READ INSTRU CTIONSREPORT DOCUMENTATION PAGE E I E I ’ORE COMPLETING FORM

~~4~EPORT NUMBER 2 GOVT ACCESSIO N NO. 3. REC iP IENT’S  C A T A L OG NUMBER

AFOSRhR. 7 9 - o 12 8 4
4. T I T LE  (an d Su~ tiU.) 

— S. TYPE OF REPORT & PERIOD COVERED

Interim
—M et r i c s  of S o f t w a r e  Q u al i ty  

6. PERFORMIN G ORG. REPORT NUMB ER

7. AUT HOR(s) 8. CONTRA CT OR GRANT NUMBER(s)

Z. Jei inski and P.B. Moranda
F49620—77—C—0099 I’

9. PERFORMiNG O R G A N I Z A T I O N  NAME AND AD DRESS *0. PROGRAM ELEMENT. PROJECT . T A SK
AR EA 6 WORK UNIT NUMBERS

McDonnell Doug las Astronautics Company 61102F 2304/A25301 Bolsa Avenue .

Hunti.tgton Beach 1 Ca l iforn ia 92647 ______________________________
II . CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

A ir Force Office of Scientific Research/NM July 1978
Boil ing AFB , wAshington , DC 20332 ¶3 . NUMBER OF PAGES

________________________________________________________ 57
*4 .  MONITOR ING AGENCY NAME & ADDRESS(II dif fe ren t  from Con tro l l in ~ Of fi c e )  IS. SECURITY CLASS. (of th is  repor t)

UNCLASSIFIED
r~. DECLASSIFICATION/DOWNGRADI NG

SCH E D U L E

* 6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

*7. DISTRIBUTION STATEMENT (of the abstract ent ered in Block 20. If different from Report)

*8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side ii necessary and Identify by block number)

S o f t w a r e  m e t r i c s
Test tools

20. APSTR’ I (Continue on reverse side If necessary and Identif y by block number)

This report covers the period from 1 June 1977, to 31 May 1978, during
wh ich the first of three phases was completed. This phase concentrated Jon identifying existing strategies for testing and composi ng new ones
for use in the subsequent phases in which software metrics , related to
testing , will be developed and tested against a variety of computer programi.

I
~~~~~

~~ FOR MDv 1 JAN 73 1473 UNCLASSIFIED ~~~~
. 

/ I 



r UNCI.ASSLF1ED
SECURITY C L A S S I F I C A T I O N  OF T HIS PAGE(Wh .n Data Ent.r.d)

20. A b s t rac t  c o n t i n u e d .

The literature review was In the main disappointing . The software metrics
identified numbered over 50 and of these about 5 appear capable of
cri tical review and ultimate use. The literature on testing produced
one technique , due to W . Miller and 0. L. Spooner, which appears to
l ie along the direction of the proposed research. Other techniques
were revi ewed for content.

‘
~The aim of the research is to produce an automatic testing tool which willexhaustively test all tracks through a program, where a track is a time

integrated shadow of the execution sequence - where multipl e passes througi
a program segment are recorded as a single pass and the order of usage
of the segments is not re1evant.~~~
A framework for integrating the Miller and Spooner technique into the au-
tomatic mode has been established .

U N C L A S S I F I E D

‘

~~~~~~~~~~~~ 
~~~~~



LEV~~’
R~~~~~~ c~~75l7 

~~~~
*1 ~~~~~~ ..-.• \
,
.-

~~~‘. 
_~ i~~. _ _____ .— - ,. - -— . — ..(

~) METRICS 0F .~0FTWARE QUALIT~ / 
S

/ . / .. . ~~

. . \_._•... . 
.-
.-——— 

,

I . .~~
. . ~

. . I

F ‘ 
~~~

Mc Donnel l Douglas Astronautics Compa ny
5301 Bolsa Avenue
Huntington Beach, California 92647

tJulj 078

1 JunØ $77 - 31 MaY
Contract .F4DCCO-J7 0O

~
Dr49

~
aO

~~
h7P7.. ~ .0pq 1~

Prepared for:
Air Force Office of Scientific Research
Boil ing Air Force Base, D.C.
D.C. 20332

Attention: Lt. Col . George W. McKemie, Contract Monitor
Directorate of Mathanatical and Information Sciences

iu~ m~,
p.. ~~~~~~ o ‘ D D 

•‘ L... ::: .‘: :: U MAR 5 1979
Pl$t~IIIfl$/flaI’M ~[IT~ ?630

MAIL. 8r.~ ‘v ~2 M L)

~~~

!STBIBUTION STATEMENT A
Approved for public release

Distribution Unlimited 

o ~ ~
‘

-

L_ _ _ _ __ _ _  _  _



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  . ,~~~~~~~

1?

SII4IARY

This report covers the period from 1 June 1977, to 31 May 1978, durIng which
the fi rst of three phases were completed . This phase concentrated on iden-
tifyi ng existing strategies for testing and composing new ones for use in
the subsequent phases In which software metrics, related to testing, wi ll
be developed and tested against a variety of computer programs.

The literature review was in the main disappointi ng . The software metrics
identif led numbered over 50 and of these about 5 appear capable of critical
review and ultimate use. The literature on testing produced one technique,
due to W . Miller and D.L. Spooner, which appears to lie along the direction
of the proposed research. Other techniques were reviewed for content.

The aim of the research is to produce an automatic testing tool which will
exhaustively test all tracks through a program, where a track is a time
integrated shadow of the execution sequence - where multiple passes through
a program segment are recorded as a single pass and the order of usage

of the segments is not relevant.

A framework for integrating the Miller and Spooner technique into the

automati c mode has been established .



METRICS OF SOFTWARE QUALITY

1. OBJECTIVES AND TASK DESCRIPTIONS

1.1 Work Accomplished
The effort during the contract period consisted of four tasks:

1. Task I - Review contemporary work of researchers in software
testing field to postulate testing strategies.

2. Task II - Perform prelimi nary tests of selected programs to obtain
some data on various testing strategies.

3. Task III - Evaluate parameters influencing software quality to
suggest appropriate metrics.

4. Task IV - Document as appropriate to facilitate later extensive
experiments.

1.2 Addi tional Work

The goals of the research are to develop a prel imi nary design and partial

impl ementation of a message entry/computer/display combination for inter-
active testing and case selection so as to achieve exhaustive testing of
arbitrary (FORTRAN) programs. Studies will also he made to assess the
practicality of a fully automated version of testing.

This additional work can be subdivided Into the following major tasks:

A. Experiment with Software Quality netrics which will Include:
1. Selection of FORTRAN Programs for strategy testing of

techniques identifi ed and Investigated In Sections 2.1 and 4.2

of this report.

_ _ _ _ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



rr~
. 2. AnalysIs of the programs using appropriate techniques .

3. Composition of the extended version of the Program Testing
Translator, integrating into the pre-processor the means of
augmenting program code to provide valuations of the program
predicates , and values of the artificial program variabl es
providing the data for the search procedures.

4. Determining the level of testedness in each of the selected
programs, and developing means of automatically selecting
test cases to achieve specifi ed paths through the tested programs .

B. The development of a methodology for developi ng candidate drivers for
untested regions of a program; this consists of specifying starting
points , on the input domain, likely to cause execution sequences
producing designated predicate valuations .

C. Tailor or expand the testing programs developed and used in A and B
above. The necessity and benefi ts of expanding the procedure to
include a larger set of program predicates will be studied.

‘U,

D. Modify, install and tes t the Tool on a laboratory computer when the
scope and size of the general purpose test tool Is established .
The use of macros, augmenting an intermediate language , will be
investigated on a trial basis.

E. Tes t the Tool and the methodology using the several identifi ed con-
structs of the text (connecti on matrix, status vectors , predicate
valuations , and input and output data ) through the implementation on
a “laboratory” type of computer , such as the Nanodata QM-l .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r”~’ ~~~~ — —.---.. - .

2. J STATUS OF THE RESEARCH EFFORTS

2.1 Reviews
Two different levels of review were made1 one is a thorough and complete analytical
level , the other for content only.

2.1.1 Review of Contemporary Work
Rather extens ive and detailed examinati ons were made of the literature of the
software testing field and of software metrics in general . The followi ng
papers were reviewed indepth. 

-

1. TRW Software Reliability Study . TRW Final Report, RADC TR-76-236,

August 1976.
2. M. L. Shooman, “Structural Models for Software Reliability Predictions ”,

Proceedings of the 2nd International Conference on Software Engi neering ,

13-16 Oct 1976, San Francisco, Cal ifornia.
3. H. E. Williams , 1. A. James, A. A. Beaureguard , and P. Hilcoff.

“Software Reliability Systems: A Raytheon Project History “,

RADC-TR-77-l88, Final Technical Report, June 1977.
4. IBM Federal Systems Division , ~Stat1stica1 Prediction of Prograim~ing

Errors” RADC-TR-77-l75 Fi nal Technical Report, May 1977.
5. Doty Associates, Inc., “Software Cost Estimation: Vol . 1” , RADC-TR-77-

220, Fi nal Technical Report, June 1977.
6. J. R. Brown, H. N. Buchanan “The Quantitative Measurement of Software

Safety and Rel iabi li ty “ SDP 1776, 24 August 1973.
7. M. Shooman and A. Lae,miel “Statisti cal Theory of Computer Programs -

Information Content and Complexi ty “ Digest of Papers Fall COMPCON 77 ,
Washington D.C., 6-9 September 1977.

8. G. J. Schick and R. W. Wolverton “An Analysis of Competing Software

Reliability Models ” IEEETSE, March 1978; Vol . SE—4, No. 2, (reviewed

in this section 3.1.8).
9. G. J. t’~yers , Softwa re Reliability, WIley-Interscience , 1976.
10. A. Fi tzsininons and T. Love , “A Review and Evaluati on of Software

Science ”, ACM Computing Surveys Vol . 10, No. 1, March 1978.

/

_ __ _ _
_ 

_ _



2.1.2 Literature Reviewed for Content

1 Z. Manna. Mathematical Theory of Computation, McGraw-Hill , Inc.,
New York , 1974 .

2 1. Gilb , Software_Metrics,Winthrop Publishers , Inc., Cambridge,
Mass., 1977 .

3 A. Goel . “Bayesian Software Predictions Models ,” RADC-TR- 77--l l2 ,
March 1977 .

4 M. Shooman, “Manpower Deployment Effects on Software Error Models ,‘

in RADC-TR- 76-143 , May 1976.

5 Boeing Computer Services, “Software Data Acquisition,” RADC-TR-
77-130, April 1977.

.6 W. H. Howden, “Methodology for Generation of Program Tes t Data,”
IEEE TransComp, Vol . C—24, May 1975.

7 L. Clarke , “A System to Generate Test Data and Symbolically Execute

Programs ,” IEEETSE, SE-2 , 1976 .

8 S. Gerhart and L. Yelowitz, “Fall ibility in Applications of Modern

Progranining Techniques,” IEEETSE Vol . SE-2, No. 3, Sept. 1976.

9 R. F. Serfozo, “Compositions , Inverses, and Thinning of Random
Measures,” Syracuse University, Dept. of Ind . Eng . and Ops. Research,
December 1975.

10 L. Osterwel l, “Depth-First Search Techniques and Effici ent Methods
for Creati ng Test Paths ,” Univ. of Colorado Dept. of Camp Sci TR No. CU-CS-077-75 ,
August 1975.

‘1 W. Miller and D. Spooner, “Automatic Generation of Floati ng Point

Test Data,” IEEETSE Vol . SE-2, No. 3, Sept. 1976.

~ 

_  ~~~.



r—v “ 
- . 

~~~~~~~~~~~~ 

. .  

~

. - .  -~~

12 G.E.P. Box and K. B. Wilsor ., “Attainment of Optimum Conditions ,”
J. Royal Stat Soc., Vol . XIII , No. 1 , 1951 .

2.1.3 Review of Testing Tools and Procedures
Recent articl es of a review nature have identi fied and described a large number
of different testing tools. D. J. Reifer (Reference 1)identifl ed 70 different
types of tools and briefly discussed each type. C. V. Ramamoorthy and
S. F. Ho (Reference 2) discuss , in some detaIl , 15 different tool types.
A review of these different types here would be dupl icative . Instead a com-
posite review of the limi ted number of reports listed in above deali ng with
the testing process wil l be presented. Usually the potential deficiencies of
the processes or tools are brought out i n the descri ption , but not their
advantages.

Before the discussion of individual classes of tools is undertaken here, it is
wel l to note that the paper by Goodenough and Gerhart (Reference 3) i llum inates
many of the heretofore neglected points concerning testing.

Some of the important points they make in this respect are:
A. It is not enough to execute a statement with a particular set of

conditions, it must be tested in all combinations of conditions ;
B. In the same sense, a path through a loop may have to be taken

several times before the conditions for error revelation are met;
C. Missing , but required-for-correctness, components of a program

(such as predicates or assigments) clearly cannot be identif led
by “cover-testing” a program;

D. Generally a program must be exami ned for what it actually does
instead of what the tester Is told the program does and, at each

point of interface, it must be examined for what it can do;
E. The environment, Incl udi ng the operating system, hardware processor

and language, have to be examined . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~..



r

2.1.3.1 Inside Out Testing
Several different techniques have been employed to develop test cases on the
basis of a specified set of valuations or outcomes of the program ’s predicate.
The mathematical expressions employed in the program predicates, are used to
develop a set of restrictions on the input data space. Solution of the set of
equations then produces a point or set of points that will achieve the path
through the program. The difficulty wiui the procedure is that the set of
equations i nvol ved often are not tractabl e , even for cases where only “area ”
(as distinct from point) solutions are required . This difficul ty is , to a
degree, allev iated by use of interactive entry of data and displ ay-guided
solu tions -

2.1.3.2 Symbolic Execution
Instead of operating on numerical (or logical ) values for variabl es in a pro-
cessing, the program ’s operations can be carried out on the, symbols themselves.
Thi s technique was i ndependently proposed by W. E. Howden (Reference 4) at
McDonnell Douglas Astronautics Company , B. Elspas, et al. (Reference 5) at
Stanford Research Institute , J. C.King of IBM (Reference 6) and Lori A. Clark
(Reference 7) of the University of Colorado.

Programs , so exercised, must be auguented so they become capable of symbolic
execution of expressions and provide means for selecting specified branches or
paths in them. Howden employs a system (DISSECT) processing the program that
i s to be symbol ically executed , along with a list of coninands that cause
symbolic execution .

The advantages of symbolic execution are clear. In certain cases the printout
consists of an explicit formula that is unambiguous to the reader. If the

formula is correct, the program is correct for all data and there is no
necessity for numerical comparisons or independent checks.

In many cases however, the output is far from clear to any but the most experienced

users. There is, for example, sometimes a need to maintain the list of possible
antecedents (a suspense file) for a program variable having several different

symbol s and values assigned to It. Further there is a context-dependency
that a given assignment may have , caused , for example, by different encounters

I
_ _ _ _ _ _ _ _ _ _ _ _ _ _  ., ~~~~~~~~~~~~~~ *~~~~~~~~



- 
-

~

t of an assignment during looping . This must be accounted for, and in the case
of DISSECT, the context is identifi ed by a number representing the dynamic
instruction number (as distinct from the static sequence number associated
wi th a listi ng). These and more complex problems have been faced by Howden
and others and they provide finished products that are proof that such
techniques can be used to good effect when the tools are in the hands of experts.

Whi le there are some barriers to the “field” use of such techniques, they do
not seem insurmountabl e and it is probably reasonable to expect that symbolic
execution can be of common use.

2.1.3.3 Automated Verification Systems
Several systems i nstrumenting a given program to permit the tallying of the uses
of its instructions , branches, and so forth, are class ified as automated verifi-
cation systems by Reifer (Reference 1). They are usually not automated in the
strict sense of the word. Al though they requ ire a set of input test data to
drive the program, there is no instantaneous feedback to change the data to
test new unexercised sections of the program. A complaint on word usage can be
al so made that these systems do not really verify the tested program, and
general ly do not even consider the output in respect to its accuracy, or even its
relevance.

A McDonnel l Douglas Automation Company tool , called PET (for Program Evaluator
and Tester) described by L. G. Stucki in a company report (Reference 8) and
in the open literature (Reference 9), is typical of this cl ass.

For a given data set, PET reports the usage by instruction and branch , which
the execution sequence represents. There are other useful metrics, including

the range of value for each of the program variables . Lists of unexercised

program components also are printed out.

An augmented version of PET, that formed segments consisting of “dynamically
contiguous ” program instructions, was used and described in a recent AFOSR-
sponsored study (Reference 10). In that study, as with most other applications
of PET, the emphasis is on the “coverage” of the tested program. Repeated tests

with randomly qenerated Input data were used , and their effects merged to produce

a composite (montage) of the testing status of the program. Unexercised segments

.. .—

~

—--—-

~

. . .-

~

--—-- . ..- , -—,.-..-~—— --.-.. . , -



. . 

~

.. —.-..—

~~~

—--..—==. - —.-- .-- — 

~

-- - .— . 

~~

—----—-—-- -.----—., ..-. 

~

.- - .— - ---—- -
~

were used to find the governing predicate or predicates in the program listing ,
and so-called constructed cases were then formed. The process was continued as
far as deemed possible to establish the testing degree.

This class of program monitors is useful in another way. Frequently exercised
portions of a program can be identified by the tall ies or counts and the
identified regions can be examined to see if improvements can be made in the
coding or basic algorittins.

2.1.3.4 Automatic Test Generators
Conceivably any particular segment of a program has some input data that will
cause it to be exercised. Since it i s possib le , as indicated i n the section
on inside-out testing , to back up from a particular point in the program to the
“top,” it should be possibl e to choose a set of inputs that will cause any
given segment to be exercised . The technique used amounts to an identification
of the program variabl es that are “active” at the segment, and then to relate
these to the input variabl es. This is illustrated in Section 2.2 where the
precise set of relations to the input date are developed explicitly from
a particular “straight line ” path through the program

Usual ly it will not be necessary to develop the precise relations (which, it ~ S

noted,is almost the same as symbol ic execution) between the program variabl es

and the inpu t, and it is only necessary to identify those inputs affecting

the selected program variable. This can be accomplished in an even less elegant

way by simply generating random numbers to serve as values for the input
variabl es.

Whatever scheme is used, the automatic test generators provide a basi s for

economically meaningful testing-to-”completion.” The idea is simply to

form a “feedback” loop between a cumulative record of the segments previously
tested to , what might be called , a scenario generator . The scenario generator
would provide a one-at-a-time selection for the untested segments, and the

standard test generators could be used to “find ” the required data. This

will then cause the new scenario update and a new selection. This idea Is

mentioned again later in connection with the use of “tracks” and the planned

automatic case generation process.

_ _  
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

U



2.1.3.5 Domain-TestIng Strategies
The point mentioned above, in connection with the possible creation of a truly
automatic test tool , brings up the important probl em identified earl ier, the
essential impossibility of producing a particular numerical value by the
usual kinds of random number generation . This is not a problem in estimating
the asymptotic limits to testing with such numbers , because of the infrequent
occurrence of these numbers in the sample. For the development of constructed
cases where exhaustive testing can be achieved , it is necessary to specify the
set of points in the input space which , after processing , will produce a
specified value for a program variable.

Generally speaking , the particular set of points achieving the specified value
has relatively small dimensionality (a point in two-space, a line in three-
space, etc.) making the problem of testi.ng boundaries important.

E .1. Cohen and L. J. White of Ohio State University (Reference 11), have
investigated this and similar problems and developed strategies that will
test domains with linear and non-linear boundaries (the latter only in two
dimensions at present) in efficient ways. As noted, work of this kind is
essential to any ultimately automatic testing scheme.

2.2 Prel iminary Tests

2.2.1 Preliminary Technical Discussion
The primary purpose of this section which contains a background for later
discussion is to explain the framework in which the testing will occur. Al so
important is the description of the criteria used in choosing software metrics.

2.2.1.1 Description of Testing Framework

Under A FOSR contract AF 44620-74-C-0008, MDAC developed a model which employs
random numbers as input data, and , on the basis of the trial numbers on which
“new” logical paths are driven by the input data, estimates the asymptotic,

or eventual , level of testing achieved wi th random numbers. The basIc analysis

mechanism is the original Jelinski-Moranda model (Reference 12). The measurement

used in the model is the number of trials occurring between the discovery of new

_ _ _ _ _ _ _ _ _  -- ,- .- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
, . . - -. —



~~~~~~~ 
. 

..— ~~ —.-.. —.—. .

r~r~
log ical paths (rather than times between errors which comprised the raw data
for the estimation of residual error content in the original application of
the model).

There is another relevant use of this same model . If the probabilit y law
governing the selection of input data is known, then the coupling of informa-
tion derived from sampling with universal (a priori ) error rate data will permit
an estimate of the operational reliability of the program. This procedure,
also developed under the same AFOSR contract was reported in Reference 13.

A second model employing program or software input data for analysis , is

due to TRW (Reference 3). In essence, this model uses a subdivision of the
input data space into equivalence classes , each characterized by the particular
logical path exercised by all of its members.

This subdivision was suggested earl ier by W. Howden (Reference 4) and also
by B. Elspas , et al. , (Reference 5). In appl ications the TRW model has been
used in the estimation of software reliability . The estimate is derived by
composing the assumed-to-be—known probability that each subdivision is
employed , with a sample-derived conditional probability of committing an
error when the subdivision is used. The problem in the application of such
a model is the difficulty invol ved in the formation of the subdivisions , confirmed

by almost everyone who has attempted to work from a specified logical path to
the descriptor of the input data associated with it. Another deficiency occurs

when the model is used for estimation because, a permanent program is assumed
whic h does not change to remedy the found errors. The problem of precisely

carving out the equivalent classes is a severe barrier to application of such
techniques . It is probably better to avoid the problem, as done in the appl ication
of random numbers described in Reference 10, or by using techniques l ike those

described by W. Miller and D. Spooner (Reference 14).

The use of random numbers as inputs to a software package has fundamental

l imitations . For example the occurrence of an input which takes r~ a zero value
is essentially impossible and this input , and others of a sim ilar nature, must
be supplied to produce a set of Inputs which will achieve such values.



Neverthel ess , as shown in earlier work (Reference 10), the fundamental limitation
can be numerically estimated for a given program on the basis of the set of
logical paths effected as a result of random drivers . It can be said that
the number found in this way is an always fair and often an excel lent bound
on the total number of logical paths which are ever actuall y exercised .

The work of Miller and Spooner avoid these problems with an elegant substi tute:
instead of attempting to solve , in the input data space, the set of equations
(or inequalities ) associated with a specified logical path, they insert a new
set of variabl es, one at each branching point in the program. An objective func-
tion of these variables is chosen so that when its functional value is positive ,
the input data is in the equivalence set associated with the specified logical
path. This method employs standard procedures from the field of system optimi-
zation , starting with a randomly chosen initial point in the input domain.

For additional background , a review is made of the means of representing the
flow graph by a connection matrix. As noted in prior work the matrix is con-
structed by assigning a 1 or 0 as an entry, according to whether or not
there is a connection between the nodes (or segments) corresponding to the
associated row and column of the matrix. A simple way of visualizing the
problem of exhaustive testing can be posed in matrix format. Since a connection

matrix C is a descriptor of potential links between segments, the execution

sequence in response to an input data value x1 (in most appl ications x1 is a

vector instead of a scalar), can be associated* with a submatrix of C, say 
~l

Since C is finite , the problem of exhaustive testing can be framed as fol~low s :
for C a given connection matrix find a set x1, X 2~~~•~~

X
m~ 

so that for the

associated subniatrices Sl~
S2~•••Sm

m
C B S.

1=1 1

*As di scussed i n Reference 10, an execution sequence can be mapped to submatrix
by i gnoring the ordering of its branches. This is valid only because of the

definition used here for exhaustive testing .

~ 

~~~~~~~
- - .-

~~~~~~~~~-~~ - - -. - ..



m
where B S.~ represents the Boolean union or sum of the S.. (This essentially

i~l 1
defines the nature of exhaustive testing.)

An efficient test would be one in which the number of test points , m , is
minimal .

As noted above, essentials of the process involve associating wi th each
decision point (two-way ) or predicate withi n the program, a function which
has a non-negative value when the predicate is true, and negative value when
it is fal se. In many cases, such as comparison between program variabl es
by inequaliti es, the expression in the predicate can serve directly to define
the function . If, for example , there is a test P~Q, then the variable assign-
ment, or function, C~P_Q , can be used. Since the functions are relations
among variables , they can be considered to be program variables. By forming
variables of this kind at each branch point , the program is augmented in such
a way that, in response to an i nput data set, an execution sequence will take
place in which values are given not only to all program variables but also to
the augmenting variabl es, which , as noted, are program vari ables .

Because the si gns (+ or -) of the augmenting variabl es , set up a unique  pattern

for any i nput data, they can be used to defi ne the equivalence classes mentioned
above. It is noted again that in the formation of the equivalence classes the
ordering of the sequence has been ignored.

In a different mode of usage, the sign of each of the augmenting variables can
be specified in advance, and a point (or region) in the i nput data space causing

this pre-specified pattern of signs can be sought. By assignment of any of a

number of simple objective functions of the augmenting variables , with

properties described subsequently, the problem can be stated as a search problem
generally identi fied with optimization problems. Generally the search is

made to find data which will make the objective function positive; it is not

necessary to achieve a maximum for the objective function , only that the
value of the function be positive. This problem is more simpl e than the optimi-

zation probl em.

. 
~~~~~~~~~~~~~~~~~~~

-.- . .



r -.., 

~~

— — —

~~~~~~

- - --

~~~~~~~~~

- -  

~
.-— . ~~~~~~~~~~~~~~~ 

-

A technique, due to W. Miller and D. Spooner (Reference 14) is illustrated by
thei r exampl e shown below . Their description of the example has been augmented
in several ways.

The problem of the exampl e i s one of triangularization of an NxN matrix by
Gaussian elimination.

The original code is shown in Figure 1. A combined flowchart and code with
predicates and branches identified , is shown in Figure 2. The predicates,
shown enclosed in rectangular boxes are attached to the node representing
the site of their occurrence. The augmented code employing the functions
associated with the predicates, is shown in Figure 3. The input data to the
program cons ists of the nine matrix entries : A( l ,l),A(2,l)...,A (3,3).

Formation of the augmented code is accompl ished by making a straight line
pass through the program under the assumption that the predicates inside
the DO loop 1 are all true, and all of the rest are val ued fal se.
It is noted that the test results denoted as K N , are governed by the input
assignment to the matrix order, N, here taken in the example as N=3. There
is a “false ” valuation until K~3. These valuations are implicitl y made in the
construction of the program into a straight line representation. Similarily
the tests, denoted as M=K , are completely determined by the tests in the
DO loop 1 and do not explicitly show in the augmented code; they are used

to develop the straight line code.

The variabl e C1, shown on the first line of Figure 3, is positive if the

predicate, ABS (A(2,l))-ABS (A(l,l)) , is true; and this condition has been
specified as holding , since the predicate is in the DO loop 1. A simi lar
remark applies to C2 and C7 in the straight line listing because they are
repeats of the same test encountered under new conditions. On the other

hand , the two tests shown In Figure 2, denoted as TzO, are taken to be
fal se on each encounter , and the value C3, C4, C5, C8 and C9 will all
test positive if the false branches are to be taken . (Since It is only
required that I be non-zero, the C’ s could also be chosen to be negative,
but the analysis is tailored around positive valuations.)

‘ I _

______________________ 
_ _  ~~~.- -~~-~~~--- -“-~~~



.—.

• • 

—

I 
ThOM QOFL T~ $~LSW~

) 
~Q D~.Q . —

I P ( N ) — l
006 K • iN

IF IK.E0.N) GO TO 5
KP1 - K+1
M - K
001 1 KP1 ,N

IF (A8S(A (I .K)I.GT .A BS(A(M ,KI)) M •
CONTINUE
IPfI(1 -~~M
IF IM.NE.K) IP(N) • -IP(NI
T -A ( M ,Kl
AIM.K) - A IK .KI
A~K .K ) - T
IF IT.E0.0.) GO TO 5
D0 2 I KP1 .N

2 A(I .K) — -A(I .KIFT
004 J - K P 1 .N

T A(M~JP
AIM,JJ A(K .JI
A IK . f l — T  

LIF IT .EQ.O.)GO 104
003 I KPi ,N

3 A U.J1 — A(I .J) + Aft ,K)~T
4 CONTINUE
5 IF IA(K .K).EQ.O.) IP IN~ - 06 CONTINUE

RET U RN
END

Figure I. Coding for Example Program

- r

I

a

- .-~~~~~~~- ~~~~~~~- - -— — - -  .-~~~~ .-—- ~~~~ 
---

~~ —~~~
- - . - .- -- -

~
-

~~~
--

~~~~~~
- -



T

6CR 34
—

006 K - 1~N

I

F K PI  —

M K
001 I - KPI.N

F 
— — A BS(A (I .K)) > AB S(A( M .K~~ ]

TRU E -

M . I

g P ( K ) - M

F 
f~~~~~

j
TRUE
IPIN) - -IPINI
T AIM .K)
AIM,K) - AIK .K)
A(K .K~ - I

T 

F 
— — —Eli: _i

D O 2 I KP1 .N

All .K) — •AlI .K)IT
2

004 J - K P 1 .N
I - AIM,J)
AIM.JI - AIK.J)
AtK .J) T 

_________

T
— — —

~~_
T 0

F

003 I - K P 1~N
AU.J I — A(I.J l + A(I.K ) T

3

4

5 — — —{_ A (K .KI
F T IPf N I . O

6

(3
Figure 2. Coflthin4~d flow Chart and Cod. of Exa ,ii i~le Program



r~ ~~~ 
.

~~~~~

.- ---—. -

~~~~~~

-— —-..--- . .- --,-. .. ,.—w ---- -

mis PA~~ ~~ 
14 

8~ fl34

11~
)M COF~

• ASS(A( 2.1)) — ABS(A(1.1II > 0
• A8S (A (3 , 1)) — ABS (A 12 ,1)) > 0

I — A(3. 1)
A(3 .1) • A(1.i)
AIi .1) • T

C
3 

A B S ( T ) > 0
A12.1) • -A (2 .1) /T
A13.1) -A 13 .I) /T
T — A(3.2)
A(3.2J~~A(1 .2)
A l12)~ T

— ABS IT) >0
A12.2) — A(2.2) + A(2 ,1 ) T
A13 .21 A(3.2) + A(3 .1 ) T
T — A(3,3)
A(3.3) — A(1 .3)
A ll)) — T

- ABS IT) > 0
A(2 .3) — A(2 .3) + A(2.I ) T
A(3 .3) — A(3 .3) + A(3 .111
A BS(A (I .1)) >0

C
7 

• ABS (A 13.2)) — ABSIA(2 .2)) > 0
T — A ( 3 .2)
A(3 .2g — A12.2)
A(2.2) - T

C
8 

ABS(TI > 0
A(3.2) - —A (3 .2)/T
T-A (3))
A13 .3) - A12.3)
AI2.3) — T

C
9 

- AB SITI > 0
AI3.3) — A 133 ) + A(3 .3)’T

C 10 — A BS(A I2.2)) > 0
C 11 • ABS IA I3.3)) > 0

F ,~ u,,. 3. ~~~~~~~~~ Code for Ex.i,npI ~ Prog ra,,,

S

•

1

——. .—-—— .-.,.. . .—-- .---.-- 4_ ... &~~~~~ . . .. -— ——-. .. —., -, -



r~ ‘T~I~k 
_______________ -~~~~~~=T.~:::~L . .

S

It is , of course, possible to express the C’ s to explicitly relate them to
the input data . This was done by Miller and Spooner threading back from the
predicate , where variabl e is defined, through intermediate ass ignments to
the original input data . This is fairly simple because the program is
straight-l ined. The technique is illustrated by a detailed analysis of the
auxiliary variabl e, C7. In terms of program variabl es .

C7 = ABS (A(3,2))-ABS(A(2,2)) ,

and these can be traced through the calculations and assignments as fol lows :

substituting for A(3 ,2) and A(2 ,2),

C7 
= ABS (A(3 ,2)+A(3, l)*T)_ABS(A(2 ,2) 0+A(2 ,l)*T) ;

then, since only A(2,2)° Is input data (and is marked by a superscrIpt, 0)
further backing is required; since I A(3,2)° at this point in the program,
and A(3 ,2) 0 is inp ut data , the expression can be written

C7 = ABS (A(3 ,2)+A(3, l)*A(3 ,2)°_ABS(A(2 ,2)0+A(2 ,l)*A(3 ,2) 0);

but A(3,2)’A(l,2)0, A(3,l)=.~A(3,l)°/A(3,l)° and A(3,l) in the numerator is
equal to A( l ,l)0. These and similar substitutions provide

C7 
= ABS{A(l ,2)°- (A(l ,l)°/A(#,l)°)*A (3,2)°]}_ABS{A(2 ,2)°

— [(A(2 ,l )°/A(3 ,l)°)*A(3 ,2)°]}.

This is an explicit representation of C7 in terms of input.

L _ _ _ _ _ _ _ _ _  _ _ _ _  _ _  -~~-~~~~~~~~~~~~—



— 
- - --- —.-..

~~~~ 

_______

Al though this process is feasibl e for simpl e programs , and In  many res pects
resembles symbol ic execution in reverse , it presents the same difficulties
accompanying the development of equivalence classes. An alternative is to
work forwardly from the input data to valuations of the C’s, and their asso-
ciated predicates. In this procedure, for properly picked input , all of the
C’ s will be positive and the execution path will proceed along the prespecified
path.

The new problem is then one of searching for areas rather than solving for points .
These may seem to be problems of the same order of difficulty but they are not.
In general applications the searching process need not proceed to the same
level of definition that the solving process does . An analogy can be made
with polynomial evaluati on: it is far easier to locate a point where a
polynomial is positive, than it is to find a root for the polynomial.

2.2.2 Tes t Techniques
To i llustrate some of the characteristics of the test techniques employed the
problem discussed above is taken in the framework of the flow diagram of
Figure 4. The node numbers shown are in a 1-1 relation to the instructions
and l abel s of Figure 2. DO-loops are easy to identify by the letters E (end)
and S (stay), emanating from the end of the loop. The predicates are also
easy to identify by means of the I and F letters l abelling the exits.
The DOl loop, for example, starts at node 6 and ends at node 9, similarly the
D06 loop starts at 2 and ends at 31. The specified path for the sample problem

can be identified in Figure 5. All predicate val uations (that are input dependent)

are false  except the one inside of the DOl loop. Both True and False branches
were shown to be taken of the nodes 3 and 11, corresponding to the predicates

= N and IM = K J . These are not assigned auxiliary variabl es but are
used to straightl ine the program; as a result they are permitted either

predicate valuation.

Miller and Spooner employ several “objective” functions, generically denoted

f(C 1,C2,...,Cm); each has the property that f>O , 
when one or more of the C’ s

Is negative, and hO when all of the C’ s are posi tive . As an example, the

func t ion
F(C 1,C2,...,C )~m1n(C1,C2,...,C)

would serve for that purpose.

ii

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



4.)
~

U)

U) N
N N

U)

LU

LU
0) 0 ~~N N

N

N U)
I-

U. U.
U-

LU
N 0) ‘~~ C’) CD

I- I- I-

U)
I-

CD

0~N

U-
I-

U-
0.

N C.) E
4,
KuJ

NC., C.,
0
0.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _



~~~~ - -—- ~~~
-.—-- — - - - - .- .‘

~
----.‘----—- . -. - — - . - -

-.-•-———-—- —
5-——.---

0 0 0

U,
N W
CD CD 0
,- r-

U)

- L U

-~~~ d d , - C., ’- ’-

w 0 < —i- _).
~ 
—.-- 

—.--------
<LU U) \~.J \ ~~1

I <
I -\ U-f

4 1 U)
U) _ U- . 1~~ Ui p—.

0 ‘~ (0)~~~~ (0~~~~(~~~ V
U.. 2 ~~~ ‘%~ ~~~~~~ _à~/~~

,
\

U)~~ 0<
C.’) .1

I-

U. 2 U-
Ui

LU U.
N 0) ‘ C’) CD LU

,- I-

C,,
I—

CD

C)
N

U-
I-

I.- U-

N C’) E
I,

0I
0

LU 0.
I.— NC., C., •~E
CO

U) 0

U-
0 2
z
LU

0.

‘4
S(n

. .-

L ~~T1~~



8
0 0 0

0 0 0

0 0 0 .

I.-

C,,

U) NC,) N N

U.. w
LU0) 0 •~~‘- N N

CD
N

CI)
U. U-

LU U-
N ‘~~ C.) CD LU

r I—

U)
I.-

CD

0)
N

IL.
I-

U-
N C.)

LU
C.)

U)

4,
0
S
N
0

‘4.4

I .
I



- — 

~~~~~~

The problem at hand, then, becomes one of searching over the Input data space
for val ues where f is positive for the specified execution track. In
the example probl em, Miller and Spooner start the search with a “randomly”
chosen matrix

(3 1 1
A = ( 1  4 1
° 

~ l 1 5

which produces f = -2

Us ing di rect search methods, they derive a data set
A =fo.3857 18.62 1.0

0.6268 -13.865 1.0
1 .439 1.0 5.0

which makes f 0.24l1. According to Miller and Spooner, this is accomplished
in less than 1 second of CPU time on an IBM 370/168. The resulting coverage
of the program is indicated in Figure 5. Because of multipl e passes over
some portions of the program, depiction is less than perfect. The specified
path , however , is achieved by the data.

The usefulness of this procedure is best appreciated when used in conjunction
w ith a comb ination of the “random” dr ivers , suggested in the earlier work,
augmented by constructed cases. The latter cases, are designed to “fill-in ”
for data that were taken so infrequently by random numbers that they make the
former process uneconomical .

For illustrative purposes, the initial input data Is taken as the “random”
matrix, used by Miller and Spooner to start the process. For this matrix as
input, the FALSE branch out of 7 is taken at least once. Thus, the “random”

start exercises a path segment which the “optimum ” data does not.

The predicates ~T 01 are not true unless the zero-valued matrix elements.

If the 3x3 zero matrix is used for data, all tests 1=0, as well as the final
A( K ,K)=O are true, and the constructed case produces the execution track
shown in Figure 6. 

~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



___________________________ _____ 

I)

Additional tests for programs can often be suggested by some built-in syninetrics
in the problem. Thus, for a short problem It can be generally assured that when
input data is permuted , the resulting execution tracks will be different.
When a polynomial solver is employed It is wel l known that a set cf syninetric
relations , invol ving the roots , define the coefficients of the polynomial .
Further , there are relations between the coeff ic ients of a polynomial and
the polynomial whose roots are shifted, squared, and inverted. In the
present instance of a matrix triangular izat ion, the interchange of two rows
can be expected to cause a different response.

As a matter of interest , when the matrix obtained by the optimi zation process
is used with its 1st and 2nd rows interchanged, the resulting track is shown
in Figure 7. The False branch out of node 7 is taken on the first entry, and
the True branch on (one or more) subsequent passes. (In the particular sequence
of tests employed , there is nothing new added by this test).

For the simpl e problem illustrated here, all segments of the program are
tested by the three cases consisti ng of the starting “random” matrix, the

zero matrix , and the matrix obtained by the optimization procedure.

The method suggested in the illustration leads to extensions of value to the

general problem of exhaustive testing . As noted in earlier work, the prob lem
of tes ting a program, only to the point where every instruction and every

branch has been executed, is generally a computationally small enough problem

making it feasible for almost any program. This is true basically because,

for a program with k predicates (two-way), there are no more than 2k data

points required to “test” the program in this way, whereas there are as
many as 2k different logical paths (many more If loops are permitted).

For the general testing problem, a sequence of random numbers or vectors may

be used to develop a set of tracing vectors whose components represent the

Boolean valuat ions of the C ’ s. These runs would general ly be both

inex pens ive and, because they are the first to be employed, would be of high
yield. After a reasonably large set of random numbers have been run , the set

of associated vectors (as distinct from the values of the auxiliary function

exemplified by f in the above discussion) can be examined. 



r ~
— 

—.4. .---
0 0 0

C) 4- 4- IC)

U)
ID N

CD 0
C.) CD
4- 4-

CD N
CD U) 0)
N CD C.)
C C.) ~

U) 0 0 ‘-

IC) NCl) N N
P I—

LU
U)

LU
0) 0 ~N (‘.1

I— COU) IN
4— 4v

N U) .

U- IL

:~F- LU 
CD Ui 0

4- 4- 4-

a
U) I

I- .

CD

i
U..

I— I-

U.
(N C’) S

U

~~~~~~~~LU (N !
C.)

c__ V 

U)

..———-—---  ...

~ 

- -~~~~ . . - . .--—
~~~~~~~~~~~~~~ -~~~~~~~~~~~~- ---~~~~-

- —
~~~~~~~~~~



- -.-.--- --‘—.‘. ~ .._

Except for cases where predicates i nvol ve equality between expressions involving
program variables , the vectors can be col l ected on the basis of component
compar isons . Thus , if there are both zeros and ones* in the first component
position , the testing has “exhausted” the cases provided by the first
predicate.

A simpl e sorti ng procedure will identify unexercised branches. In case specific
predicates are not represented by both “true ” and “false” values , the process
described above can be used to search for data that will force the program in
the desired way. Should there be neither valua tion, the same general procedure
can be used initially.

It is poss ib le in this scenario, that the so-called “scaling problem”, a result
of non-como n scales on the variables invol ved and tends to confuse some

optimi zation problems , can be used to advantage In the case of a search for
data to exercise a specific branch. For example, if a variable associated
wi th a predicate is made sensit ive by multiplication or division of appropriate
factors employed in its definition , then strong responses will occur with
only small changes in input. A sequence of applications of such factors to
each localized variable would , probably, produce good coverage.

The major use of the above technique is in establishing exhaustive tests for

a given program package. The utility as a software metric is clear. As noted

in Reference 10, one quality of software having universal appeal , i s the degree
to which a probl em has been tested. Ideally this would be measured in terms

of the ratio of the number of log ical paths executed by all tests performed
on the package , to the total number of paths present. However , the latter
i s almost never known, and there are many non-realizable paths which are not
apparent; even the realizable ones may not be easy to enumerate. Thus the

more easy to obtain rati o is a substi tute .

*A blank would indicate no test.

_ 
-.-. . -  .4



Reference 10 describes the method of estimating the total number of paths
real izable by random numbers. This method depended on the development of
the count of the number of trials between discovery of new paths. An
asymptotic l imit to the total was then developed on the basis of an algorithm .
This technique could be applied to individua l branches or to any sel ected
set of branches . Some measure of the degree to wh ich a program has been
tested may be developed from the combination of the yields obtained by using
constructed cases and from application of random numbers . In specific produc-
tion-type applications , studies of so-called impossible pairs may be made ,
but for development of a universal metric, such a fine-gralned investigation
is not warr anted .

The primary difficulty in employing the Miller and Spooner technique is the
cons truction of a stra ight line version of a program because it requires a
specification of values for all predicates on each encounter, and tracing
through all loops of the program. This may not be practical for even moderately
large programs. Some variation of the process is needed and the Program Testing

System ( PTS) , described in Reference 10, seems promis i ng. Th i s system instruments
a FORTRAN program so that the code sec tions or segments, that a given data set
exerc i se , can be identified . The branches from all decision points (or

predicate tests) are identified by the PTS.

As noted in Reference 10, the identificat ion of the particular execut ion
sequence a program takes in response to an i nput set, is difficult to make

primarily because certain segments are generally used many..times and the sequential

deta il required for establ ishi ng an execution sequence, becomes lost in the

sumary statistics. It is always possible to identify the segments making up

a logical path, and to count the number of times each segment is executed (in

cases of loops) , but there i s general ly no unique sequenc ing that can be
established from the data; sequences AABACCD, ABAACDC , AAABDCC all have the
same usage counts.  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _



I

One of the practical aids in establishing an execution sequence and in guiding
the testing , is to insert* variabl es of the type represented by C’ s in Mil ler
and Spooner technique, and provide valuations as part of the statistics pre-
pared by the PTS post-processor. The procedure of “straightlin ing ” is then
avoided , and the particular values taken at the program’s predicate test
point can be used to guide the choice of additional data.

*In case of loops It will be necessary to “create” these at the beginning of

each pass.

—

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  A



_ _ _ _

2.3 EVAL UATION OF SOFTWARE METRICS

2.3.1 Software Science Metrics
In the review paper by A. Fitzsinmons and 1. Love (Reference 15) the princ i pal
metrics employed in Software Science are discussed in some detail. They are
few i n number: length, volume , program level , language l evel , effort and time .

A troubl ing feature of these metrics is that they are all based on counts of
operators and operands and , as noted in the review, there are many cases

where it is not at all clear what particular mix of these fundamental elements a

given program instruction represents. The effects of this lack of precision in the

definition of operator and operand has been studied by J. L. Elshoff (Reference

29). In this study all of the primary metrics are computed for some 34 different

programs for each of eight different interpretations of the way in which the counts

of programmin g elements should be taken . These eight different methods produced
exceptional variability in the metrics in cases where there was a significant

effect in the vocabulary definitions . For exampl e, program No. 13 which is the

largest program, showed counts of 185 and 746 for operat ions and operands ,
respectively, under the first interpretation, and counts of 118 and 900 for
the second interpretation. The effects on the metrics under the two inter-

pretations are :

estimated length 9,645 versus 8,512 (11.7% smaller)

volume 91,902 82,373 (10.3% smaller)

level 0.00365 0.00212 (41.7% smaller)
minimum vol ume 334.6 174.2 (47.9% smal l er)
effort 25.243 38.945 (54.2% larger)
global level 1.1037 0.607 (45% smaller)

The variation in these metrics is Indicative of the effect that the subjective
choices (8 different types) can cause. In a separate comparison , the single
metric, effort, for the 8 options (for program No. 1) were : 0.783 , 0.881 ,
0.937, 1.010, 1.065, 0.764, 0.794, 0.679. This variability , which is over
50% (from mm to max) is evidence of a lack of “objectivity” in this (and
other ) measures . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~ --



J
2.3.1.1 Complexity (Software Science Interpretation)
In the abstract of the paper by Fltzsimons and Love it is noted that
compl exity of programs can be measured by the theory of Software Science.
It was difficul t to locate precisely where in the paper this complexity
is meas ured because the word appears only incidentally in the text. It
was determined, by direct inquiry, that it was measured by the effort
metric.

Thi s use of an extens ive measure for compl ex ity is indeed novel and does not
correspond to intuition or to any other measures advanced by others.
Halstead states that complexity of a program is measured by the total number
of elementary discriminations required to produce it , and this count depends
on the bul k of the program more than on its logical structure .

The previously published measures of complexity had to do with intensive
measures such as the (normal ized-to-unity) spectrum of the program listi ng
across its indenture levels , or the density of branching statements.

The recently described measure of compl exity by T. J. McCabe (Reference 17)
is the cyclomatic number obtained from the flow graph of the program.
This metric is described in a later section when the topic of complexity
is re-examined . Suffice it to say, it is more an intensive measure than
an extens ive measu re, and as McCabe points out (op.cit.) it is easy to write
a program that is physically small but ultra complex .

The complexity measure of software science is directly related to the length

of the program (the total number of operators and operands ) and is finally
developed on an absolute basis by the use of the so-called Stroud number ,
which is taken by M. Halstead to be 18 mental discrimi nations per second .

This Stroud number has , as its basis , some physical measurements of a human’s
ability to discriminate the frames of a kaleidoscopically presented visual

sequence of images (related to the “flicker rate ” in motiors pictures). The

use of this visual discrimi nation rate, as equal in value to the menta l

discriminations rate, i s surely questionnable.

-

~

.. 
~~~~~~~~~~~~

- - -
~~~~~~

--
~~~~~~~~~~~ --.- - . ..-



_ _ _ _ _ _-~~~~~ -.. .-~~~~~ . . -

~~~~~~~~~~ I

2.3.2 Software Metrics
Probably the best starting point for this discussion is a review of the metrics
presented in the book by Tom Gilb (Reference 18). This serves more to cover
the field than to make precise the concepts and definitions of the many metrics
identi fied . Following this is a list of metrics having a reasonable likel ihood
of surviving through test and time.

2.3.2.1 Review of Gilb Metrics

2.3.2.1.1 Maintainability
The fi rst definition offered by Gi lb is that of maintainability . He defines
i t as

“the probability that, when maintenance action is initiated
under stated conditi ons , a failed system will be restored
condition within a specified time.”

That definition Is essentially the same as that used for hardware. In the
hardware case the measure is almost always applied In a bottoms- up way,
that is the maintainability is deri ved for each major assemblage from the
records of its contained minor assemblies ; the system’s figure is derived
from the major assembl ies. Work records on the times to fix are estimated
duri ng design , and, once hardware is del ivered, records are kept of the
actual fix times.

Software should be amenabl e to the same broad guidelines . Some modules are
likely to be more easily fixed than others and a better systems-wise figure
can be developed from the bottoms-up composition . The records of maintenance
of individual modules should be used to extrapolate for new errors . The fact
that the process of error-findings tends to have long periods between finds
(probably) does not alter the fundamental measure of the average time to fix.

This is (probably) so because the late occurring errors are (probably)
not of a different level of difficulty than the early occurring errors .
(Should there be a trend towards longer fix times wi th the “age ” of the
error , a model would need to be developed). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ . J



. 

~~~~~~~~~~~~~~~ 
. . 

~
. .

~ 
,.
~~~~ 

______

2.3.2.1.2 Logical Complexity
Gilb’ s introduction Into this topic identifi es early work by L. Farr and
H J .  Zagors ki , who used the IF statement density as a measure of the logical
complexity . Gilb also mentions “psychological ” (his quotes) complexity
of source programs and refers to some statistical work by L. M. Weissman
which correlated metrizable program aids (comme nts, i ndentations , etc.)
to productivity and accuracy .

2.3.2.1.3 Structuredness
One of the metrics identified by Gilb Is structuredness. This was one of
many metrics proposed by TRW in a study for the National Bureau of Standards.

Structuredness is one of 12 low-level metrics identified by Glib , the others
are: device independence, completeness, accuracy, consistency, device
efficiency , access ibi lity , comunicativeness , self-descriptiveness, concise-
ness , legibility, and augmentability .

For structuredness, there are 9 submetrics wh ich are in actual i ty, questions
concerning the existence of module size limi ts , program flow , and so forth.
Glib ’s Figure 51 (page 103) can be referred to for identification of the
particular questions. It does not appear that the underlying metrics have any

quantitative basis, and necessarily have either a zero or an all value .

Typical of a question , under a column headed “Definition of Metrics to
Measure Structuredness ,” is: “Do all subprograms and functions have only
one entry point? ” Here , should the answer be no, there is no way of differ-
entiating between “all-but-one” and “none.”

Presumably a yes answer to all questions would indicate a perfectly
structured program. Using these the characterizing features (from Figure 51
of Gl ib) the program would be one which : H

A. Has rules for transfer of control between modules.
B. Has l imited modules sizes (Note: the limi t is not specIfied). 



C. Has the ordering : commentary header block , speci f icat ion

statements, executable code (Note: it is hard to imagine a
program that does not follow the order)

D. Subprograms all contain at most , one point of exi t
E. Subprograms and functions all have only one entry point
F. Program flow is always forward , except where commented
G. Overl ay structure is consistent with the subprogram ’s sequencing
H. Is subdivided into modules in accordance with readily recognized

functions .
I. Is wri tten in standard constructs

These submetrics are then scored as to their  “correlation” with a “high

score for the metric.” The use of “correl ation” as a descriptor for subjective
judgement is highly questionable: there are no numbers to associate with
the identifi ed metrics , and the numbers associated with the “score ,” if
present at all , are certainly vague.

Nonetheless , the “quanti fiability” of the metrics is judged agains t six
categories which , while neither exhaustive nor mutually exclusive, are
nonetheless indicated as such by the tabular entri es .

The other 12 metrics are probably treated in the same way as the structuredness
metric, and, beyond their identification, do not appear to merit additional
inquiry. (Sel f-descri ptiveness , coninunicativeness , and accessibility , for

exampl e, appear to be invented to exercise the invention process , and do not
represent useful metrics ; others , such as augmentability, may have some val ue) .

2.3.2.1.4 Reliability
Glib’ s definition of system reliability is in close accord with the customary
(hardware) definition. It sta tes that “reliability is the probability that the
sys tem will perform satisfactorily (with no malfunctions) for at least a given
time interval , when used under started conditions .” This is modified only
slightly under the definition offered later . Gilb’ s variat ion of his

definition for system reliability when applied to program or software reliability
are minor, a particular machine is denoted, and operations are “within design
limits .”

.. .—.——— . . -. -
~ 
-
~

I. 

-- — .~~_.~~~ - - - - -—.-_- . .~~~~~~~~.~- _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



2.3.2.1.5 Repairability
The concept of repairability is a variation of the maintainability concept , the
emphasis is on the probability of a repair within a specified time, when
maintenance is performed under specified conditions . The requisite tools parts
and men, are assumed to be ava i lable at the start, and this Is one of the
specified conditions .

2.3.2.1 .6 Serviceability
This metric is taken from hardware reliabi lity and is the degree of ease or
difficulty with which a system can be repaired . It is not considered quanti-

fiable at present.

2.3.2.1.7 Availability
Again , from the hardware rel iability definition , this is the probability

a system is operating satisfactorily at any point in time. it is usually
measured by a ratio of times or mean times , and Gilb offers three variations
of the concept (intrinsic- , operational -, and use-availability).

2.3.2.1.8 Attack Probability
This metric is one of several Gilb suggests in the security aspects of pro-
grams . This metric is the probability of an attack (of a particular type)
on a system during a particular time interval .

These attacks can be considered to be active (malicious) or passive ( typified
by Invalid data).

2.3.2.1.9 Security Probability
This is descri bed by its al ternative title, attack repulsion probability, and

is a metric gauging the probability of a successful rejection in the system
at any time. The attack type is specified . Gilb states that this concept

is close to the concept of error detection probability . This is less true

of active attacks (which may not persist) than It is for pass ive attacks such
as bad data.

2.3.2.1.10 Integrity Probability
This probability is the probability of no successful attack on the system:

4

_ _  ~ .. . . . .



F~~ w —

~~~

, 

~

.

= 1— [At.(l_S)]
where At is the attack probability for a particu lar time interval , and S is
the probability of rejection (for all times).

2.3.2.1.11 Accuracy
Several examples of the metric and a discussion contrasting it with precision
are given by Gill,. The measurement ratio, correct data/al l data, appears
to be too vague for use involving , as it does , the idea of “correct data ” .
Usually accuracy involves a continuum of values so that “correct” data is
too narrowly defined for practical usage.

2.3.2.1.12 Precision
The suggested measure of this metric, which aims to gauge the degree “to
which errors tend to have the same root cause,” is the ratio formed by
dividing the number of actual errors at source, by the number of corresponding
root errors observed In total caused by source bugs.

The difficul ties in first knowing how many errors there are at the source
seem unsurmountable, and tying together the “corresponding” errors with the

source would not seem to be an easy task.

2.3.2.1.13 Error Detection Probability
Gilb suggests a categorization of the error types and an assignment of the
likel ihood of detection of errors of the pre-specified type. The failure to
incl ude time aspects into the probl em makes for a flawed definition. The
probability of an eventual detection of an error is (probably) unity for
almost all error types.

2.3.2.1.14 Error Correction Probability
As defined by Gilb , this is the probability of reconstructing “data in the

form and content originally i ntended.” This is a vague concept when identif I-

cation of the random event is sought. The originally intended form and
content is generally not known, rather it develops as effects are judged
unsatisfactory and tentative changes are made. There is a chance that the
repair made will have an error that may lie undiscovered for a period of time,
and so time should be Invol ved In the measure in some way. 

j



—~ . —.---- - ~-n-~~----..-- —---. . - .-. -

2.3.2.1.15 Logical Complexity
In the text two metrics for logical compl exity are identi fied , the number

of binary decisions and the rat io of absolute logical compl exity to total
complexity . But Glib also suggests under the Figure 83 on page 161 that it
be measured by the number of possibl e logical path combinations in a program.

In this respect Glib illustrates with an unanswered question, the defect in

using even the density of branching statements as a measure of compl exity .
In his Figure 84, two programs are siiown, one which has 6 binary decision
points and the other only one . But for a sufficiently large number of
total instructi ons (say 239 as indicated in the description) the density
of the clearly more complex program is les s than the ul tra-simpl e one .
This alert is exami ned in the later discussion of complexity.

2.3.2.1.16 Flexibility
Gilb defines this as that part of complexity that is useful , and it is the
ratio of useful to total that is the metric.

2.3.2.1.17 Built -in Flexibility
This  is dei nfed as the ability of a program to immediately handle different
logical s4tuations . It must be built-in in order to respond without loss
of time .

2.3.2.1.18 Adaptability (open-ended flexibility )

Glib acknowledges the difficul ty of originating a metric for this concept

and suggests, as a tentative measure, the count of the linkages between

modules . This is the same as the metric used later for structural compl exity.

2.3.2.1.19 Tolerance
Th i s is defined as the ability of the system to accept di fferent forms of
the same information as va lid. The proposed metric is the count of the
number of different variations that can be handled by the system , where

variation means the different media, different formats of input , or log ical
variations (such as misspellings and synonyms). 

-.,.~~~



-
~ r ...I . ’~~ ~~~~ ~~~~

.—.~—~—---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — . ..
~ 

.- -. . . - ---  - -

2.3.2.1.20 Generality
The “degree of applicabilit y of a system within a stated environment”
constitutes generality. Its measurement is subjectively assigned (0 to 1).

2.3.2.1.21 Portability
This is defined as the ease of conversion of a system from one environment
to another. The metric is obtained by first forming the ratio of the resources
required to move the program to a target environment to the resources needed
to create the program for the target enviroment, and then subtracting the
ratio from unity . The resul t is the ratio of the cost difference to the
crea tion cost and, on the extremes, agrees with an economic measure of porta-
bility , because for a zero-cost move the portability is unity, and for a cost
equal to the creation cost, the portability value is zero.

2.3.2.1.22 Compatibility
This attribute is , accord ing to Gli b, related to the concept of portability,
the difference being that portability is a characteristic of a single system
whereas compatibility appl ies to an average over a class of systems. This
distinction provides the metric, an average portability over the collection
of program systems.

2.3.2.1.23 Redundancy Ratio
This is the first of what are called structural metrics by Glib. This ratio
generally is formed by taking the actual count of quantities to the minimum
possible count.

2.3.2.1.24 Hierarchy
Thi s structural metric descr ibes the number of indenture level s and the
spectrum of program elements across these levels.

2.3.2.1.25 Structural Complexity
As noted earlier In the section concerning adaptability , this is measured by

the number of modules(absol ute) or the ratio of linkages to the total
number of modules . This Is an easy metric to derive for some languages as
Gilb shows . For FORTRAN the modules are counted by the number of subroutines
and functions , and the number of linkages Is the total of subroutine parameters
and the references to the common area . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



~~~~~~~~~ . ~~~~~~~~~~~ — — -~~~~~~~-
. -

~~~~~~~~ . - -

I

2.3.2. 1.26 Modularity
Al though modularity is stated to be a synonym for structural complexity ,
it seems to stress the number of modules and not the linkages .

2.3.2. 1.27 Distinctness
Distinctness as defined by Gilb invol ves errors and , in fact, is measured by

a ratio between the number of bugs in the module and the number that are

common to the module and another (“simultaneously”). It is hard to see how
this ties to the intuitive concept of uniqueness, particularly how errors
are necessary components of distinctness.

2.3.2.1 .28 Effectiveness
Among the performance metrics , effectivenes s is listed first. It Is a probability
of “success ” within a given time and specified environment. The “success ”

means meeting an operational demand. Gill, composed efficiency from three

probabilities : reliability, readiness probability , and design adequacy
(on a scale from 0 to 1).

2.3.2.1.29 Efficiency
This attribute is defined as the ratio of useful work to the total expended.

2.3.2.1.30 Cost
Among financial metrics are costs and its major subdivisions , fixed and

variable. Gilb uses the terms capital and operational .

2.3.2.1.31 Time
Computer and “Human” time resource metrics .

2.3.2.1 .32 Space metrics
This is more commonly called the size of a program. It can be measured

on an atomic level by bits and bytes and, on the more common scale, by the
number of instructions .

2 .3.2.1.33 Information
(i ilb says that information content of a program Is not directly measurable,
and suggests use of “useful data” as an indirect means for measurement.

-- —
~~~ 

— . .
~~

_ _ _ __ _ _ _ _ _ _ _  
____ 

_ _ _



2.3.2.1.34 Evolution
This is a measure of the tncremental change to a system during a time
interval , t. If the change is so pervasive that it constitutes a
substitution , the metric would have a value of unit.

2.3.2.1.35 Stability
Stability is the complement of Evolution and it denotes the percentage of
unchanged content of a program (over a specified time period).

2.3.3 Candidate Metrics

• Clearly some of the questions that should have been asked of the community
severa l years ago are:

A. Are any attributes worth study?
B. Which attributes are useful?
C. Can these be measured in a form useful to the comunity?

/

It is clear from inspection of the Gilb metrics that there are many that will
not survive the tests required of practical gauges. Most of the 13 low-level
metrics identified by Gilb have little hope of common usage. The discussion
concerning structuredness , in that section, indicates that the concept is
initially vague and becomes amorphous after its component parts are
identified (in the form of questions).

Of the metrics listed above, the fol lowing are considered of primary value:
reliability, complexity , cost and time.

Regarding as secondary in importance are: maintainability and availability .

Supplementing these metrics are some that history may judge to be of more

value than any of themetrics ldentified above: mean-time-to-next error,
mean-time-to-perfection , error content , testedness, and purification level .

L~. ~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~~~~~~~~~~



~
-
~~~~~~

--—‘—--—----- 
~~~~~~~~~~~~~ .- .~ 

• 
-~~

Excepting the complex ity metric, it does not seem necessary to amplify on
the prev ious Glib definitions , and the fol lowing subsections deal with the
augmenting metrics.

2.3.3.1 Mean-Time-To-Next-Error
Of primary importance in the testing of programs is the decision on whether
or not to release a gi ven module or program. A good guide to this choice
lies in the time pattern of the errors found, whether this pattern lies in a
data base metered by CPU units, hours , days, or weeks is not relevant (exce pt
as its potential future uses may have to be considered). If the time pattern

indica tes a steady state or constant error rate, or , even worse , shows an
increasing failure rate, there i s cl early no reason for releas ing the module
and much evidence to the contrary. Once a pattern of decreasing counts (per
unit time) is achieved , any of severa l models can be applied to the data that
the error pattern represents , and estimate of the mean-time-to-next-erro r
can be obta i ned .

It is the magnitude 0f this mean-time-to-next-error, or more coninonly called

• the mean-time-to—failure, MTTF (which for a certain probability distribution,
and steady state cond itions , is the same as the mean-time-between-failures [MTBF]),
considered in the context of its expected use, that is important. For real-time
systems, governing , for example , weapons or a i rc raft, the MTT F shoul d be
several times as large as the mission duration . The proper figure for the MTTF
is determined by the reliability specified by the customer for the system.

Values for the MTTF are available in any of several models: Jel inski-Moranda ,
Shooman, Schick-Wolverton , Moranda Geometric Purification , Moranda Hybrid
Geometric-Poisson.

Littlewood and Verrall avoid MTTF and insist instead on percentiles (such as
the median) of the distribution describing the time between errors.

• 
_ _ _ _ _ _ _ _

• --~~~~ .-~~~~~~ .- -.- -- . .-——-~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~
- •



It is important to note, that for all model s the MTTF is a parameter that is

changed by either event or time. The Jelinski-Moranda model has an MTTF,

indexed by the dummy variable i, which increases at the occurrence of each
error , and can be given in terms of the model parameters N and 4 as

• MTTF - 1
J-M 

— 

[N-( i-1)]c1

The Schick-Wo lverton model has an “instantaneous” MTTF depending on both
• time and event, and it has an averaged MTTF that is obta i ned from the first

moment of the Rayleigh distribution for the time of next error. Thus,

• 1 1/2
MTTF5 w  J~ [(N_n)]~~

For the Geometric Purif ication model , the MTTF is

~~
TF G P  =

where D is the fa ilure rate for the f irst error, k is the geometric ratio
which is used to obtain the error rates, and n is the number of found errors .

The Shooman MTTF is given by

MTTF5 =

where C is a proportionality constant, E1 is the total error content.

2.3.3.2 Mean-Time-To-Perfection
Some models permit an estimate of the mean time required to achieve an error-

free program. Generally this estimate is accompanied by a variance (standard

deviation) that Is so large that it has little or marginal utility . It is

nonetheless a guide to management and it is changed, and generally made more
precise, as more errors are discovered .

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _



• -- --. • • -.

The simplest way to form this estimate is to sum the estimated MTTF ’s for
all remaining errors; hence (using MTTP for mean-time- to-perfection), the

estimate so formed for the Jeiinski-Moranda model is:

MTTPJ M  = 

~~ 

iI~T

For the Schick-Wolverton Model,

N- l 1/2
MTTPs w  =

~~~~~~[N ~j~~]

This last formula is i ncorrectly given in the latest Schick-Wolverton paper

(reference 19).

The Shooman model does not permit an estimate of the MTTP because the fa i lure
rate of that model is a continuous exponential . The mean time to achieve a

zero with the exponentially decreasing failure rate is infinite.

The Moranda Geometric Purification model also does not have a finite average
time perfection. Even though discrete, the failure rate does not attain a
zero value.

The Littl ewood and Verra ll model , based on Bayesian adjustment, does not
involve a parameter that can be directly related to the MTTF, and it is required
that some alternative be found. This can be provided by any of the percentiles
of the distribution formed by convolution of the family 0f related exponential
distributions they use in their examples . It is necessary, however, to rely
on the mos t recently ava i lable, a posteriori distribution for one of the two
parameters , and to continue the assumpt ion concern ing the way that the sequer ce
of values for the other parameters are related. It presents a difficult problem
analytically and probably has practical objections.

~1

_ _ _• .~~~~ • -~~~~~ •.



-. - - •

The recent publication by A. L. Goel and K. Okumoto ( reference 20) has
relevance to this and some of the other problems . Their work in the present
context employs a family of distributions that are the same as those used by
Jelinski and Moranda but with an essential difference , they assume an imperfect
repair and account for it with a parameter , p. that is the same for all errors .
Using these variations , the distributions of the “first passage” times (zero
errors) and of the times to achieve various l evels of purification are derived.

• 2.3.3.3 Error Content
Three models can be used to derive estimates of the error count. The Jeiinski-
Moranda model accomplishes it through use of equations devel oped from the
assumpti on that there is a di rect proport ion between error content and fa i lure
rate. The corresponding Shick and Wolverton assumption is that the failure
rate is proportional to both the number of errors and the “debugging time .”
The Shooman model can be used at two or more separated time intervals to estimate
the error content. From observations of the average MTTF for these intervals ,
parameters of the linear relation between failure rate and error content can
be found by simultaneous equations (for two intervals) or by least squares
(for three or more).

2.3.3.4 Purification Level
Al though some model s do not measure error content and may not ach ieve a perfect
state, there is a measure that, in some cases , can be used to describe the
state of perfection achieved at a given point in time. For error-content
models , the ratio Of the number found to the total number (estimated ) provides
the reasonable estimate. For the Moranda Geometric Purification process , the
purification state can be estimated by taking the ratio of the initial failure
rate to the achieved failure rate.

The purification level or percentage is clearly of more value than the error
content since the absolute number Is , by itself , generally a poor indicator

— 
of status because It is size-of-program related.



______ 
•

The several estimators of the purification percentage are (in terms of their
defined parameters):

Jelinski—Moranda n 100N X

Schick-Wolverton n 100N X

Shooman E
x 100

Geometric Purifi- (l—k~)(lOO)
cation

2.3.3.5 Tes tedness , Degree to Which a Program Has Been Tested
A metric of a different kind is represented by the degree to which the program
has been tested. There are several different types of “coverage” for a

— program, where “coverage” means that the program “elements ” have been executed.

E. C. Miller ( reference 21) presented a useful list of several different coverage
types in a sequence reflecting the increasingly larger size of the covering
unit. The lowest level of coverage is obtained when every statement is executed
at least once, the next level is achieved when each segment associated wi th
the explicit or implic it predicate outcome is executed. For complex programs
involving nested loops, the test coverage may necessarily be limited to the
exercising of the program so as to test, one time, all so-cal led boundaries

and interiors of loops, it bei ng assumed that all segments are exercised.
(Boundar ies are the entries and ex its from a loop .) A higher order of coverage
consists of multiple passes through loops, these are tests that iterate all
loops up to a certain specified limit (even 1) , and provides additional coverage.
The ultimate test coverage (with several other types in between) exercises all
logica l paths through a program.

One additional type is afforded by the testing of the type described in the
earl ier  subsection, where tracks were identified. Coverage by tracks is
intermediate between segment coverage and logical path coverage.



—

The metric for any of the types is simply the ratio of the number of “elements ”
(defined as instructions , segments , branches , predicates, tracks or logical
paths) to the total number of these elements.

A new concept was introduced by Moranda (reference 10) where the difficulty
of enumerating the number of different elements is avoided. By using random
numbers , it is possible (under some assumptions that are reasonable or
acce ptab le to some and quest ionab le or unacceptab le to others ) to estimate the
total number of program elements that will eventually be achieved by random
numbers. Thi s technique was used i n the or igi nal work ( reference 10) to es timate
the total number of “tracks ,” but could as eas ily be used to der ive the
asymptotic limit to the number of logical paths.

2.3.3.6 Complexity
As noted in the discussion on the effort metric employed for complexity
measures by the Software Science advocates , the use of an extensive measure
for complexity runs counter to intuition. The total number of “elementary
discriminations ” required to produce a program does not seem to properly
reflect the structural aspects of complexity , for a “straight-line ” program
(no loops) of extreme length would have a high effort value , but might be
judged rather simple.

Other measures were suggested in that same discussion . The density of
branching statements was suggested, but as noted in subsection 2.3.2.1.15
the density, as measured by instruction count, may be misleading . In that
section , a reasonably complex program containing six branches had so many
(hypothesized) instructions that the density of branching statements was less
than a short straight-line program (with one branch).

It is clearly necessary to alter the concept , and base the metri c on the

segment counts, rather than the instruction counts. This is a reasonable
position to take because some segments may contain a very large number of
instructions . As far as the intricacies or complexities of a program are
concerned, all segments are the same and do not depend on the number they
are comprised of.



• . 
- - -- -

~~~~ 
- --

~~
- --

Thus , a more satisfactory metric for complexity would be either the number
of segments or the number of logical paths . Since the latter are difficult
to count in many cases, the former can be used , even though the way they
connect is not measured thereby.

Another measure of complexity which may be of use is the indenture level
spectrum. This concept is rather simple in that it tallies into each indenture
level , each instruction of the program. By dividing the number in each
category by the total number of instructions , a normal ized-to-unity spectrum
can be produced . There are c learly some defic iencies in thi s approac h s ince
a program that “shifts” back and forth between two adjacent levels is not
judged to be more complex than one that has the same number of instructions
at each level and “shifts” but once. The metric would required a compl ementary
measure to prov ide a total measure of complex ity .

— 
A far better metric for complexity has been developed by T. J. McCabe
(reference 17). He suggests that the program be represented by a directed
graph , G , in the usual way. The way the nodes (or vertices) and segments
(edges) of G are connected is measure d by a cyclomatic number, denoted by
V(G), determined by the number of edges, verti ces , and connected components
(where the latter is a subgraph of G).

McCabe proves a theorem that permits an alternative way of finding the
cyclomatic number: for strongly connected graphs, the cyclomatic number
is the maximum number of linearly independent circu its. In order to apply
this theorem, it is necessary to form a strongly connected graph by looping
back from the exit node to the entrance node.

It is generally easy to identify the cyclomatic number of most reasonably
well-structured programs of small to moderate size. Where the program is
ex tens ive , the algebra set up by McCabe can be used to calculate the number.



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ : - ~~~~~~~~~~~~
—~~~~~ --- —• • - • - • • • —-•---— . • ••

~I I

3.0 PUBLICATIONS

1. P. B. Moranda , “Limits to Program Testing with Random Number Inputs,”
Proceed ings of COMSAC 1978, November 13-15, Ch icago, Ill inois

2. P. B. Moranda, “Event-Altered Rate Model s for General Rel iabIlity
Analysis ,” accept for publication in the coecial issue on Software
Reliability of the IEEE Transactions on Reliability .

3. P. B. Moranda, “Asymptotic Limits to Program Testing ,” to appear in
INFOTECH State-of-the-Art Report on Program Testing, ed. E. F. Miller,
1978.

4. P. B. Moranda , “Probability-Based Models for the Fai lures During Burn-In
Phase,” under review for publication in the Journal of the Operations
Research Society of America.



-

~~~~~~~~~~ 

- _ _ _ _ _  _

,~~•1

4. List of Professional Personnel
ZYGMUNT JELINSKI - Branch Chief , Computer Sciences
University of London: B.S., Economics and Statistics (1952)
Metropol itan Col lege , England : M.B.A., Business Administration (1953)
University of London : M.S., Mathematical Statistics (1954)

Mr. Jelinski has been managing computer research and development programs
for 23 years. As Branch Chief, Computer Sc iences , he currently directs
research in software reliability , model ing, validation and verification, language
processing , emulation , and simulation . Software tools developed and/or maintained

under his direction include the Program Evaluator and Tester (PET), the SUMC
Meta-assembler, the Compiler Writing System, the OPAL Development Tool (OPALDET),

CAMIL, and the Generalized Language Processor (METRAN). He was Study Manager,

or a contract to develop methodology for effective test case selection (a
research contract for the National Bureau of Standards) and he directed a
study for NASA on methodology for reliable software. Another program under

his direction was the Company-sponsored Software Validation Study, duri ng which
the nature and circumstances of software malfunctions were determined and
software validation methodology was developed and applied to a tactical software
system, resulting in accurate prediction of software malfunctions . He also
directed the Software Reliability Study sponsored by the Air Force Office of
Scientific Research . This study Involved research into the development and
evaluation of mathematical model s representing the pattern of software mal functions .
At Rockwel l International , Mr. Jelinski was Chief of Systems Programming
Technology . In this capacity , he directed the design and retrieval systems, and

engineeri ng desi gn aids . Earlier , he managed all programming for the RECOMP II
and III computers. At Philco Corporation, he was manager of Programming in support
of Philco 2000 computer marketing , and at RCA he was Manager of Applications

for RCA 4130 communication computers .

Mr. Jelinski ’s publications include the following :



r~ 
• -•- •-

~ 

•- -- . ________

HOLDET - Hi gher Order Language Development and Evaluati on Tool (coauthor) ,
MDAC Paper W D 2769, presented to Computers in Aeros pace Conference, Los Angeles ,
November 1977 (AIAA ,NASA,IEEE ,ACM) .

An Approach to Solution of Probl ems with Support Software as Deliverables ,
MDAC Paper WD 2759, presented to Defense Systems Management Review,
Ft. Belvo ir, Virginia, March 1978.

Recent Software Development Techniques in the United States, MDAC Paper WD
2706, presented to Polish Academy of Sciences , Warsaw , September 1976.

Software Reliability Predictions , with Dr. P. B . Moranda , NDAC Paper WD 2482,
presented to the Federation for Automatic Control , Boston, and published in
its proceedings, August 1975.

Can Statistics be Applied to Software - Historical Perspective, MDAC Paper
— WD 2531 ,presented to the Computer Science and Statistics 8th Annual Symposium

on the Interface , Los Angeles , February 1975.

Appl ications of a Probability-Based Model to a Code-Reading Experiment,

with Dr. P. B. Moranda, MDAC Paper WD 2067, presented to the Symposium on

Software Reliability Sponsored by IEEE , New York , and published in its
• proceedings , April-May 1973.

Generalized Events-Oriented Simulation System (GESS) - A Performance Evaluation
Too l , with Dr. G. S. Chung , MDAC Paper WD 2033, presented to Computer

Performance Evaluation Users Group sponsored by National Bureau of Standards ,
Washington , D.C., published in proceedings , October 1972.

Software Reliability Research , with Dr. P. B. Moranda, MDAC Paper WD 1808,
presented to the Conference on Statistical Methods for Evaluation of Computer

Systems Performance, Providence, R.I., and publ ished In its proceedings,
November 1971 .

_ _ _

_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



PAUL B. MORANDA - TECHNICAL ADVISOR
AB , Chemistry , 1942 , Fresno State College

• MA , Mathematics , 1948, Ohio State University
• PhD , Mathematics , 1953 , Ohio State University

McDonnell Douglas Pos iti on: I nformation Systems Adv isor , Senior
Dr. Moranda was the Princ i pal Investigator of a contract with AFOSR to investigate
the development of Quanti tative Methods for Software Reliability . He is
also working on Software Validation . During the first nine months of his
employment at MDAC he was Principa l Investigator for the Software Reliability
IRAD. During this period he developed mathematical models for software discre-
pancies and applied it to failure data to obtain estimates of the error content
of software packages, and estimates of their period of error-free performance.
For one year subsequent to that ass ig nment, he analyzed and developed logistics
model for the YC-l5 STOL aircraft.

• Previous E~perience: Prior to joining MDAC in 1971 , Dr. Moranda was Manager
of Systems Analysis at Computer Real Time Systems of Newport Beach. Prior
to this , he was employed by North American Rockwel l for a period of six years.

Before joining Computer Real Time Systems , he was Technical Advisor to the
Di rector of Data Management Systems at Autonetics ’ Information Systems Division .

• During this interval he participated in several systems studies and in—house

development efforts. In the field of transportation , he was responsible for

developing a system framework for the analysis of advanced marine transportation

systems. Additionally, he participated in: a quantitative analysis of the

operations of the over-the-counter trading department of Merrill , Lynch , Pierce ,
Fenner and Smith; an overview study of the American Stock Exchange; and a systems

analysis of the U.S. Federal Court System.

In 1967 he was appointed Scientific Advisor to the Director of Management Systems

in which capaci ty he developed methods of economic forecasting of sales ar.d

other business parameters employing random wavelet concepts. This work

led to the formulation of a simulation model which predicted , in a balanced

way , the sales , profit, cas h flow , headcount, backlog , and facilities

requirements for the entire corporation.



He devoted full time to work on the California integrated Transportation Study,
performi ng system synthesis , trade-off studies , and mathematical analyses .
In recent years , he has presented five lectures in the transportation field

• at leading universities : in October of 1966, he presented a lecture on
“Advanced Concepts in Transportation Planning” at Carnegie Institute of

• Technol ogy ; in June of 1966, and again in June of 1967 , he lectured on the
“Application of Systems Analysis to Large Scale Systems - Transportation”
at the University of California at Los Angeles ; in the Spri ng quarter of
1 967 he organized and administered a full time upper division course in

• Dynamic Modeling for the University of Cal ifornia at Berkeley, in which he
also delivered two lectures , including a summary of the California Transportation
Study and the application of analytical techniques to the study of transportation
problems .

Prior to joining Autonetics , Dr. F4oranda was at the Aeronutronics Division
of the Philco Ford Company, engaged in operations analys is of var ious

— projects . On a s pecial assignment to the Ford Motor Company, he was

responsible for mathematical modeling of the complete automobile production
process. Other assig r~ ents included development of a methodology for handl ing
fragmentary and unreliable data in a damage assessment center and development
of a war game model for assessing military missile effectiveness. In a
separate ass ignment, he held the position of Manager of Systems Analysis
for three years .

• _ _ _ ______ J



• 
5.  Interactions

5.1 EIA Symposium
P. B. Moranda presented a briefing on modeling in a session of a symposium
in November 1977 at San Diego sponsored by the Electronics Industry Associates.
Participated in a 3-day workshop on Softwa re Reliability at the same symposium.

5.2 3rd m t.  Conference on Software Engineering
P.B. Moranda participated in the bird-of-feather meeting on software modelling
with A. Sukert, RADC, M. Shooman of Polytechnic Insti tute of New York,
B. Littl ewood of the City University of London and A. Goel of Syracuse University.

5.3 Z. Jel inski - In October 1977 at the Electronics Industri es Associates
Eleventh Annual Data and Confi guration Management Workshop in San Diego co-chaired
panel enti tled Software Quality Assurance and Rel iability as it relates to
Configuration Management. Software Quality Metrics and factors i nfluenc ing

— the qua l i ty  were the main topics of discussions . Reconinendations were made
to the government and industry .

5.4 Z. Jel inski - In October 1977 at the AIAA/ NASA/ IEEE/ACM Computers in
Aerospace Conference in Los Angeles presented two papers :

1. “Decreasing Design Errors and Problems with Support Software as
Del iverabl es .”

2. With K. V. Smith “HOLDET - Higher Order Language Eval uation Tool ” .
In ensuing discussiogs for both papers Software reliability aspects

and software quality metrics were discussed .

5 . 5  Z.  Jel inski - In June 1978 at IEEE/NBS/IAS Workshop on “Organizing ADP

Projects” was a chairman of a panel for Functional Structure. Advantages and

disadvantages of various software management organizations were discussed.

A number of case studies were made. The question of software reliability

was correlated to the project organization structure .

5.6 Z. Jelinski - In March 1978 at NSIA/SQRAC Workshop on Software Reliability

in Arl ington , Virginia , chaired a panel on “Software Quality Models and

Metrics - discussions included the assessment and application of Software
• Reliabilit y Models to perspective problems.



• 
- -_ • • • • —

~~~ 
• •

~ 

_ _ _

6. References

1. D. J. Reifer. A Glossary of Software Tools and Techniques , Computer,
July 1977.

2. C. V. Ramamoorth~y and S. F. Ho. Testing Large Software with Automated
Software Evaluation Systems. IEEE Transactions on Software Engineering

• March 1975; Vol . SE-i , No. 1.

• 3. J. Goodenough and S. L. Gerhart. Toward a Theory of Test Data Selection.
Proceedi ngs of International Conference on Reliable Software, Los Angel es ,
Cal i fornia, 21-25 April 1975.

4. W. E. Howden. Methodology for the Automatic Generation of Program
Test Data. TR No. 41, McDonnell Douglas , February 1974.

5. B. Elspas , M. W Sreen, K. N. Levitt, and R. J. Wald inger. Research in
Interactive Program Proving Techniques : SRI Report 8398-Il,

• Stanford Research Institute, 1972, Menlo Park, California.

6. J. Ki ng . Symbolic Execution and Program Testing . Communications
of the ACM , July 1976.

7. L. Clarke. A System to Generate Test Data and Symbolically Execute
Programs. IEEE Transactions on Software Engineering , Sept. 1976;

SE-2 , No. 3.

8. L. G. Stucki , Program Eval uation and Tester: PET. McDonnel l Douglas

M2085074, 1974.

9. L. G. Stucki . Automatic Generation of Self-Metric Software. Proceedings

of the IEEE 1973 Symposium on Computer Software Reliabllity ,New York, 1973.

10. P. B. Moranda . Quantitative Methods for Software Reliabili ty Measurements.

McDonnell Douglas Astronautics Company, MDC G6553, Fi nal Report on AFOSR

F44620-74-C-008, December 1976.

I



11. E. I. Cohen and L. J. White. A Finite Domain-Testing Strategy for
Computer Program Testing. (CSU-CISRC-TR-77-l3). The Ohio State
University, Columbus , Ohio, August 1977.

12. Z. Jelinski and P. B. Moranda. Software Reliability Research in
Statistical Computer Performance Evaluation. Walter Freiberger,
Ed. Academic Press, New York, 1972.

• 13. P. B. Moranda . Estimation of A Priori Software Reliability. Computer
Science and Statistics Interface Symposium, February 1975, Los Angeles,
Cal ifornia.

14. W. Miller and D. L. Spooner. Automatic Generation of Floating-Point
Test Data. IEEE Transactions on Software EngIneering , September
1976, Vol . SE-2, No. 3.

15. A Fitzsiimnons and T. Love, “A Review and Evaluation of Software Science”,
ACM Computing Surveys, Vol.1 , No.1, March 1978.

16. J. L. Elshoff. An Investigation into the Effects of the Counting
Method Used on Software Science Measurements. IEEETSE, Vol . SE-2, No. 4,
December 1976.

17. 1. J. McCabe. A Complexity Measure. IEEE Transactions on Software
Engineering, December 1976; Vol . SE-2, No. 4.

18. T. Glib , Software Metrics , Winthrop Publishers , Inc., Cambridg , Mass. 1977.

19. G. J. Schick and R. W. Wolverton. An Analysis of Competing Software

Reliab ility Models. IEEETSE, March 1978; Vol . SE-4, No. 2, (reviewed

in section 3.1.8).



F _ _ • • • • _ _ _ •~~~~~~~~~.~~~~~~ —

_ -
• 

~~~~~~~~~~~~~~~~ 
•
~~~~~~~~~~~~~~

— -
~~ 

•

20. K. Okumoto and A . Goel . A Model for Reliability and Other Quantitative
Measures of Software System Subject to Imperfect Debugging (submitted
for publication). Summary available In RA DC-TR-77-1l2, March 1977 .

21. E. C. Miller . Tutorial on Program Testing Techniques. COMSAC77,

• Chicago , Illino is, 8-11 November 1977.

—

_ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _  _ _ _ _




