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Inclusion in the hamiltonian of a perturbing term which

describes the pairwise spin exchange between [Crao(CHSCOO)8

3COO)G(H2O)3]

C£~5H20 splits the unperturbed ground state into two nondegenerate

(H20)3]+ equilateral triangular clusters in [Crso(CH

Kramers doublets. The effect of this splitting is to introduce
a Schottky type anomaly in the thecretical heat capacity curve.
Excellent agreement between experimental and theoretical heat
capacities is found when two crystaiiographically inequivalent
pairs of equilateral trimer sites with different intercluster
exchange parameters are assumed. Low-temperature magnetic

susceptibility data for this complex are well reproduced by using

the parameters which are obtained from the heat capacity data.
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Previous theoretical modelsl™®

proposed to account for the
low-temperature thermal and magnetic susceptibility behavior of
[CPSO(CHSCOO)S(HZO)ajcz'6320 are based on physically unsub-
stantiated assumptions. These assﬁmptions derive from a
necessity to 1ift the degeneracy of the two Kramers doublets

which comprise the ground spin level. Although the czv(isosceles

triangle) model of Kambe which is given by
E = Jg(5;"8; + 8;°83) + J;(8,°8,), (1)

where El' §2,and §3 are spin operators, describes the low-
temperature heat capacity data for this compound, direct evidence
for a structurally-distorted Cr30 cluster is not available.
Furthermore, this model cannot simultaneously describe the magnetic
susceptibility and heat capacity data for this compcound. Alter-

natively Mishima and Uryu6

have recently calculated the magnetic
heat capacity for this material based on the Dzyaloshinskii-
Moriya exchange interaction given by

$ (8 8T - 879y,
§4 41 =l SN

This "antisymmetric" exchange hamiltonian splits the ground state
as required but fails to describe the magnetic heat capacity data
of the chromium acetate ccmplex. In actuality the Dzyaloshinskii-
Moriya exchange interaction alsc requires a structurally-distorted
Cr30 cluster in order that lgjﬂo. Finally, Uryu and Friedberg“

have calculated the magnetic susceptibility and heat capacity

functions derived from an axial crystal field model given by
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= g;£<si‘=;>‘ - 1/3 5;(8;+1)1, (37
/ 4
where go = £°(§1'§2+§2'§3+§3'§1) . In the same paper

they also investigated the effect of inclusion in the hamiltonian

of higher spin coupling terms given by
H = §O+Q'[(§l'§2)(§2'§3)*(§Q'§3)(§3'§1)*(§3'§1)(§1'§2)]. %)

Whereas Eq. (3) is not a satisfactory descripticn of the thermal
and magnetic data for the chromium acetate complex, Eq. (4) is

Hermitian only if an additional term of the type

Q'[(§3‘§2)(§2'§1)+(§1'§3)(§3'§2)+(§2‘§l)(§1'§3)] (5)
is added to Eq. (4).7 The effect of this additional term is to
restore the degeneracy of the two Kramers ground state doublets. °

In.view of the apparent failure of the above models to
describe the properties of the chromium acetatle trimer and be-
cause of our initial success in modeling the low-temperakure
magnetic susceptibility data for similar Fe(III) trimers 8 with
an intercluster spin exchange model, we felt it would be appro-
priate to consider the possible influence of such a model on the

properties of the chromium compound. We took as our hamiltonian

H = ‘-1-0(-5—1'§-2"§2'§-3’-s-3'§-1“i(§ﬁ‘§-8)’ (6)

where §*_and §_B are spin operators which couple cluster A with

cluster B. Basis spin levels §-iA and S;p were assumed to be the

unperturbed spin vectors of the individual trimeric Cr 0 clusters.

This analysis results in a 128-fold degenerate six-spin problem.
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The effect of tha hamiltonian given by Tq. (6) iz to 3plit the é
ground state into two Kramers doubliets separated by 2j. The %
first unperturbed excited state is split into four spin levels
with 123 total separation. Although only the lowest few of the
30 spin levels which result from Egq. (6) contribute to the low
temperature limiting form of the appropriate partition function,
we found it no less convenient to include all levels in the
ensuing calculations.

Heat capacities for [Crso(CH3COO)6(H20)3]CL'GH 0 obtained

2

2
were independently

by Sorai et al.5 and by Wucher and Wasscher
fit to the heat capacity expressiocn for Eg. (6). Because there |
is substantial disagreement between the two data sets we have i
chosen the more complete set of Sorai et al. to serve as a more
critical test of our model than the limited set of Wucher and i

Wasscher. Lattice heat corrections were applied to the experi-

mental gv as : '

oy = 523.9718; 3 XUx"eX/ (eX-1) 2 1ax n

2
for the Debye heat capacity, where " 120/T, and
CF = SUR Y3 [eX/eX°-1)7) (8)

for the Einstein heat capacity, where 1 * 270/T and R is the

gas constant. The magnetic heat capacity,gh, was obtained as

Qﬂ(obsd) = gg(obad) - _c§ -_q% . (9)

e T T

The experimental values of gm were fit to Eq. (6) by using
the Simplex optimization algorithm.9 Figure 1 compares the data
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of Sorai et al.® (open circles) and Wucher and Wasser ¢ (full
circles) with best fit curves calculated by Eq. (6). In order
to adequately describe the low-temperature heat capacity data
of Sorai et al. it was necessary to consider the presence of two
different equilateral Cry0 trimer sites having distinct values

of j. A distribution function of the type

C, (calecd) = Egm(go,il)+(l-g)ggfgo,12) (10)

was employed. Parameters Jo = -35k, j1 = +0.9k, iz = +3.6k, and
2=0.80, where k is Boltzman's constant, were obtained for the 1-
8K data of Sorai et al. The gm curve calculatéd with these values
is shown in Fig. 1. Data of W;Eher and Wasscher were well de-
scribed with go=-44£, jl=+1.55, 12=0.0§, and Z=1.0.

In order to test the validity of these parameters, the
magnetic susceptibility data of Schriempf and Friedberg3 were
modeled with parameters obtained from fitting the heat cgpacity
data of Sorai et al. Results of this calculation are shown in
Fig. 2. The experimental susceptibilities are reproducible to
+3%, an accuracy within the quoted experimental uncertainty.3

The mechanism for intercluster spin exchange is undoubtedly
associated with the hydrogen bonding between trimer centers. The

hydrogen bonding network in crystals of [Crj0(CH,C00)(H,0),]

C2'6H20 involves carboxyl oxygens, lattice water molecules and

chloride ions.lo

Because of the observed10 room-temperature dis-
order of the lattice water and halide sites we would anticipate
several possible types of intertrimer spin-exchange pathways in

| this material. It is however, not possible to make an a priori




6
statement about the number and magnitude of these pathwavs based
on current data. A finite value of z hewever indicztes that two
or more intercluster exchange pathways are available at low
temperatures in this material.

We believe that the intercluster model proposed above pro-

vides a physically realistic basis for understanding the proper-

ties of numerous similar cluster compounds. We propose that such | 1

a model be applied as a perturbation to the normal Heisenberg i

spin exchange model in those cases in which models such as Eqs.

(1) - (4) are not substantiated by direct physical measurements.

|
|
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Figure Captions

Fig. 1. Magnetic heat capacity of [CD3C(L13COO}6(H20)]Cz‘SHzo
o

versus 10 log T. Data of Sorai et al.” (0) fit to curve A with

parameters given in the text. Data of Wucher and Wasshcer2 (o)

fit to curve B with parameters given in the text.

Fig. 2. Reciprocal magnetic susceptibility versus 1.3 The smoocth
curve A represents the intercluster fit with parameters given in
the text. Curve B represents the Curie-Weiss law fit with C =

00393 and e= -0.13K.
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