
r
AD AOS5 190 WASHINGTON UNIV SEATTLE LAB FOR CHE’4OMETRICS FEIG 7/~ 

N 
LI ITHE GENERALIZED STANDARD ADDITION METHOD. (U)

SEP 78 8 E S*XBERG . B R KOWALSKI N000tl&—75—C—0535
UNCLASSIFIED NI..

J 4~~ I
Qesac

~.t t
____________ F ILME F

4 79
Doc

N p



- - -

~~~~

1’O ~ 2 8  

~~
~~~~5 IIIl~I~~~~3 5  

=

4 4 2 0
~~~~~~ —~

1111125 ~~~~~~~~~~



- ~~~~~~~
-

~
• --

-

SECURITY CLASSIFICAT ION OF THIS PAGE (~~~.a DII. EnI., .d~ 
•-  .1

UNCLASSIFIED

REPORT DOCUMENTATION PAGE L T C1NS

t . REPORT NUMBER 12 GOVT 0. 3 R C~~~ ALIJMSER
P L~~~~~ D R M

13 / 1 -- --
S. TYPE OF REPORT A PERIOD COVEREDITLE (aid Sub

(~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _

- Interim
- ps),9~.r- 

‘,f 3/ ~~~~~~~ 9
S. PERFORMING ORG. REPORT NUM•ER

____________________ I. CONTRACT OR GRANT WUM•ER(9)

~~~~ 
Bo E. H./ Saxberg 1

arir
~ ~~ )Bruce R.~Kowalgki ~ ~

‘j
~ ~~

$Ol4—75—C—O536~~~~~

~ RFORMING ORGANIZATION NAM E &sb ~AD0~~ESs 10. PROGRAM ELEMENT. PROJECT . T A SK

~ ~~~~oratory for Chemouzetric lDepartment of Chemi— 
A WOR K UNIT NUMBERS

~~ stry , University of WashThj~1,n , Seattle , WA NR 051—565
98195 — ______________________________

Materials Sciences Division Sep~ smber ~~ 78
II. CONTROL LING OFFICE NAME AND ADDRESS .U—RE-~ .,., . ~~~~~

Office of Naval Research ~~~~- HUU ~~SfI 8J r*us,s.
Arlington, Virginia 22217 38

14. MONITORING AGENCY NAME A ADORESS(U d,lf.,ail f~~~ Co.in. Slhig Of f I c e )  IS. SECURITY CLASS. (of hi. r•port)

F ~~~~~ o1i . ,/ UNCLASSIFIED

SCHEDULEi A p ~ ~l Q ~ 
15..

~~~~~~~~~~~~~~~~~~ $T*TSM* ? (l
~~~~~~~~

_
~~ ___________

Approved for public release; distribution unlimited

IT. mSTRISUTION STATEMENT (of lb. ab.t,•cl .nt.r.d lii Block 20. ii dllf.rai( fte.e Report) 
1) 1) c
B 22J9]~~~~~~L~J

• 

~~~

r? ~ ‘

IS. SUPPLEMENTARY NOTES 
_____ L~ U U

Prepared for publication in Analytical Chemistry .
~~. A

IS. KEY WORDS (CsnIInu. In r.v. ,.• .id. Si n.c ... y aid Id.ntlS)’ by block naaib.r)

GSAM
analyte
simultaneous deterinthation

,
,—

ABSTRACT (CaiURU. In r.ea.. old. IS n.c...ay aid Sd.nUIy by block maib.r)
e normal standard addition met nods assumes that , for any one analyte in a samp. e

there is an analytical sensor which responds to that analyte and no other unknow
in the sample. When the analytical sensor is not completely selective, so—calle
interference effects results which can be a major source of error. The general-
ized standard addition method provides a means of accounting for the interferenc
effects, to actually quantify the magnitude of the interferences, and simultan-
eously to determine the analyte concentrations.

DD JAN ~~ 
i473 EDITION OP MDV IS IS OB~~ LETIFORM .

UNCtASSIFIEDS/N OIO3 O14~ 1101 I
SECURITY CLA$$IF’

~CAtI ON OF THIS PAGE (lMi.n 5.1 . IbIa.d)

s9 0 ~~i Ut~3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.1.-—-—— —.. 
~~~~~ - -

.4



— -~ -~ —•——_—-_ --_— ----•--•— .~ — ---—-- . ---- - _-—-__——_-————--•.----~ -•- .-•-. .-—•

Yr a

OFFICE OF NAVAL RESEARCH

• Contract N000l4—75—C—0536 —

Task No. NR 051—565

The Generalized Standard Addition Method

Prepared for Publication

Analytical Chemistry

by

Bo E.H. Saxberg
• and

Bruce R. Kowalski
Laboratory for Chemometrics

Department of Chemistry, BG—1O • -
University of Washington 5* *m aSI~

Seattle, Washington 98195 ~~~~~~~~ 0
SW,—. a

I, - 
I4Ta~~IN /SSa~~~ rI~ _e

T~ ~~~~~~~~~~~
September 1978 / I

Reproduction in whole or in part is permitted for any
purpose of the United States Government

Approved for Public Release ; Distribution Unlimited

~ 

~~~~~~~ .• ~. -



. 4 

- 1

ABSTRACT

The normal standard addition method assumes that, for

any one analyte in a sample there is an analytical sensor which

responds to that analyte and no other unknown in the sample.

When the analytical sensor is not completely selective , so-

called interference effects result which can be a major source

of error. The generalized standard addition method provides

a means of accounting for the interference effects, to actualJ.v

quantify the magnitude of the interferences , and simultaneously

to determine the analyte concentrations. The GSAM as presented

here uses multiple linear regression to analyze multi-component

samples where the response-analyte concentration relationship

is of some arbitrary polynomial form ; for a non-linear polynomial

relationship, an iterative solution is required.
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The standard addition method (SAM) is well known to all

analytical chemists. A description of the method can be found

in almost every text book on any aspect of quantitative chemical

analysis including the most basic texts used in introductory

courses. By its use a number of sample~arid method—associated

interferences can be overcome ; it is particularly suited for

residual matrix effects and is most often the method of choice

for trace analysis.

Assuming a linear change in response for an increased con-

centration of an analyte , the response is measured before and

after several successive additions of the analyte to a sample

of unknown analyte concentration. Plotting response (ordinate)

by the amount of standard added (a bsc i ssa ) the analyte concen-

tration is found by fitting a line to the data and finding the

intercept on the abscissa .

Certain concepts which occur throughout this paper will

now be defined . The “analytical sensor” is that which provides

a measurement of one analytically valuable property. The analyti-

cal sensor is the source of the “analytical signal” which may

undergo a mathematical transformation to form the signal which

provides useful information for sample analysis. An example of

4-•single-instrument, single-sensor analytical method is the mea-

surement of the voltage between two electrodes in a sample solu-

tion (the pair constitutes a single sensor). An example of a

single-instrument, multiple-sensor analytical method is ‘the measure-

ment of u.v. absorbance spectra with a u.v. spectrophotometer ,
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• which can provide absorbance values at different wavelengths.

The instrument is a sensor when measuring the absorbance at any

one wavelength, hence the u.v. spectrophotometer is a multiple

sensor instrument as it can take readings at different wavelengths

and each wavelength can correspond to a single analyte. The

standard addition method assumes that for each analyte in a sample

there is an associated analytical signal which , ideally, is a

function only of that analyte and no other unknown sample compo-

nent.

By defining the transformed analytical signal obtained from

a sensor by some analytical method for the lth analyte of a sample

of ur}~nown composition as a “response”, Re~ to the concentration ,

c, of the analyte (“concentration ” is used here , though in some

applications it may not bear any meaning in relation to the amount

of an analyte in a sample), the model implied by the standard

addition method is:

Re c~k1 (tic + oc)kt ~
c.k e + 0c k 1 (1)

where ~c is the known change in concentration , 0c is the unknown

ini tial concentration of the analyte and k1 is the constant coef-

ficient in the linear relation between property L and the concen-

tration of the analyte. This equation reveals several drawbacks

to the traditional standard addition method : 1) the requirement

that the function relating response to concentration be linear,

2) the requirement that the response be zeroed , i.e., zero con-

centration of the analyte should evoke a zero response, and 3) as

a result of 2), if the measured property of RZ is affected by

other components than the one of interest, then the effect of
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these components must somehow be eliminated from the samples.

Given a multi-component mixture with several analytes of

interest, in order to use the standard addition method the ana-

lyst must either A ) use analytical methods which , in Kaiser ’s

terms (1), are “fully selective” so that each response will only

be affected by one analyte , allowing eq. 1 to be used , or B) be

able to remove all of the interfering components for a given

response and a given an~lyte to allow the use of eq. 1. In a

large number of cases , the requirement of full selectivity is

not obtainable in practice , and the isolation of each analyte

from all other interfering component s can present formidable

problems. In fact , much of the bulk of the current analytical

literature amounts to studies of matrix effects. There are

several important specialty areas of analytical chemistry (e.g.,

electroanalytical chemistry , atomic emission spectroscopy , etc.)

where the relation between the measured properties and the rela-

tive amounts of ‘various components can be transformed into a

linear equation analogous to eq. 1, but extended to include con-

tributions from several components for each response (the so-

called “interference” effects) as:

+ 0C5)k5t ~~
Ac5.k5t + 

~~o
c5 k5,e (2)

where there are r analytes of interest.

In this paper, we present the “Generalized Standard Addition

Method” for the simultaneous determination of any number of ana-

lytes using analytical sensors that have responses defined by

equation 2. The only assumptions are that each response can be

__________________ _____________________p 
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“zeroed” and that the number of analytical sensors is greater

than or equal to the number of analytes. The analyst no longer

needs to be concerned with the selec tivity or interferences of

analytical methods .

In formulating the generalized standard addition method

(hereafter referred to as the GSAM), this paper will present the

mathematics for a simultaneous multidimensional analysis by

multiple regression using multiple standard additions and ana-

lytical sensors for the linear model of eq. 2, and for the exten-

sion to the quadratic , cubic and higher order models (i.e.,

allowing k5~ to depend on the concentrations of the sample compo-

nents in a linear , quadratic or higher-order manner). We include

the method of the determination of the initial concentrations ,

and we also show how to recover the coefficients of the model

(e.g. the selectivity coefficients if the ks.e ’s are constants)

from the regression coefficients. The equation to be iteratively

solved for the initial concentrations for any non-linear model

is generalized to a model of arbitrary degree. Some discussion

is included of the construction of decision functions to help

avoid areas of local divergence of the iteration ( if any exist),

and the practical considerations of applying the GSAM are dis-

cussed.
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DEVELOPMENT OF THE METHOD

The simple linear model (eq. 2, with the ks.e’s as Constants)

is developed first, in traditional vector-matrix notation , to

illustrate the motivation for the approach used . The extension

to the quadratic model , again in traditional vector-matrix nota-

tion, will then be made. For the cubic model , new notation is

introduced which allows the extension to a model of arbitrary

degree to be readily grasped intuitively. However , cer ta in key

expressions are written out in detail using standard summation

notation to clarify the meaning of the more abstract notation .

First some background notation is established . Define

(R~1~ Rm2~ • •
~~ 

Rmp
) (3)

(C 1, Cm2~ 
Cmr
) ( 14 )

where is the vector of responses 1 through p (i.e., there are

p different analytical sensors) from a sample after m standard

additions containing analytes 1 through r in concentrations

listed in vector Cm have been made . From eq. 2 ,

Rm~ s~ l
cm5~~5~ 

1,.. .,p (5)

Writing this in matrix form,

(R~~ , R 2,..., Rmp) (Cm1~ 
Cm2~~~ •~ 

Cmr)[~ll k12...k1~~
k
22 (6)

ik krl r

= E~~~[K] (7)

~~~~~~~ • ~ I_T1T±II1.1I~I± •~~~~~~ ~~ . .~•1



Now define ri - ~ -~~~R1 C1
ER] =

~~ 
~~ and [C) (8)

i.e., [R) and [C] are the matrices of responses and concentrations

for the n successive standard additions . This gives the simple

formulation:

ER] = EC][K] (9)

The matrix ER] is known , as it is the matrix of measured responses.

The matrix [CI is unknown , as the concentrations of the analytes

in the sample during the process of making standard additions are

unknown . The matrix of coefficients, [K], is also unknown.

It should be noted that additions can be made for several

analytes at the same time in the process of making a single “stan-

dard addition” subject to certain restrictions detailed later.

The additions will therefore be called “multiple standard addi-

tions ”, or MSA ’s, to indicate the possibility of changing the

concentrations of several components at the same time.

Some way of expressing the relationship in eq. 9 in terms of

the known changes in concentration is now desirable. It is

assumed that volume corrections, etc., can be made so that any

error from not knowing the original concentration in calculating

the net change in concentration in the sample will be negligible.

Actually this is rarely a problem as minute volumes of high concen-

tration standards can be added so that volume changes are negli-

III~ ~~-.
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A separation of terms leads to,

[C) = [SC] + [C0] (10)

where [C0) is a matrix in which all rows are identically C0, the

unknown analyte concentrations , and [AC) is the matrix of the net

changes in concentration made through the MSA ’s (i.e., ~~~ is the

total change in concentrations made by the end of the xnth MSA , and

it is the mth row of [AC]). Note that in [C0], each row is the same

as every other row because the GSAN begins with a single sample , to

which successive NSA ’s are made to generate each row of [RI and [AC].

The ability to separate terms in c into terms in t~c and 0c

is crucial to what follows. This places a limit on the possible

functional relationships between concentration and response that

the GSAM can accomodate. However , as long as one can find a way

to transform the relationship so that the aforementioned criterion

is satisfied , the GSAM will be applicable to the problem . This

will become clearer in the derivations that follow.

Linear Model

The simplest model is given by assuming that the elements of

the matrix [K] are constants over the range of the experiment;

i.e., that [K] is a constant matrix . Then

ER] = [~C]EK] + (C0][K] = [AR] + ER0); ER0) ~
R01 R0 2 . . . R OP 1,

1R01 R02 • . .R0~ 1 
(11)

[
~~ 

R02 . . .R~J
(AR )  = (AC ] [K] , . 

(12)

ER] — [~c](K] = (C0](K] , ( 13)

and
— E~C] = [C0]. 

(14)
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This latter step assumes that [K]~~ exists , which requires

that the number of analytical signals, p, be the same as the number

of analytes, r, as [K] is an r x p matrix . If the number of MSA ’s

is also restricted to the number of analytes , then assuming [~ R]~~

and [~ C]~~ exist , the solution for [C0) is well defined , as seen in

— I)[AC] = [C0] (15)

[K] = [~~C]~~~[~~R) (16)

Though the problem is well defined when the number of MSA ’s is

equal to the number of analytes, it is always desirable to use

more data to characterize experimental error, i.e., a least squares

approach:

[~ C]
t[~ R] [~ C]

t[t.C][K] (17)

t —land assuming ([t~C] [AC]) exists ,

(E~ C]
t[~C))

_l
[t~C]

t[~R) = [K] (18)

Recalling (14), and remembering r equals p is necessary for [K]

to be invertible , [C0] is found by:

([R]([~C] t1AR])~~~[AC]t — I)[~ C] [C0]. (19)

By checking the results for each row of [C0], the “goodness of fit”

can be determined , as the rows should be identical. Note that the

matrix [K] can easily be computed once [~ C] t[~C] has been inverted .

Hence both the ini tial concentrations and the model coefficients

are obtained essentially for the price of the inversion of two

matrices. Note that the [AR ) matrix must have rank p which means

that none of the analytical sighals can be a linear combination of

the others.

‘
S. ~. ~~~~~~~~~~~~ ~~~~~ . —- .S , ~~~ .. • . .5.. • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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The preceding derivation has been produced here for two reasons:

1) as an introduction to what follows , and more importantly 2) as

a way for the analyst to have access to the fundamental GSAM if ,

for some reason , a multiple regression routine on a computer system

is not available. The above requires only the inversion of two

small matrices which can be done with a programmable calculator .

It is , however , with the use of multiple regression complete

with its assoéiated statistics that the GSAM fully comes into its own

as an analytical technique. Equations 7 and 11 are combined to obtain ,

= ~~~.[K) + E~~ [K] m = 1,.. .,n (2O~
-~~

which can be solved for [K] and C0 using a little algebra and a

standard multiple linear regression program found on most computers.

Technically it is a linear multiple linear regression , the first

“linear” referring to the linear relationship of the model , and the

• second “linear” referring to the assumption by the regression that

the independent variables (whether they are linear , square , cross

terms, etc., in some primary variable such as change in concentra-

tion here) are related to the dependent variable by a multi-linear

relationship as in

Y b + a1X1 + a2X2 + a3X3 + • .  . + arXr. (21)

Using ~c1, ~c2, • . .  , ~~~ as the independent variables for

tbe linear multiple regression, the coefficients for each indepen-

dent variable for each response will be found . The matrix [K]

will be just the matrix of these regression coefficients for the

r independent ~c1 variables and the p dependent response variables,

and the intercepts from the linear regression will be the entries

of the vector E~[K]. If r equals p, [K]~~ can be found , and since

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~~~(C0[K))[KF = C0, C0 can be recovered from the intercepts of the

regression .

As seen from eq. 16 and eq. 18 or 19 , the analyst should

make certain that the [AC ] matrix encompasses a minimum of r equals

p independent vectors; this is necessary because of the inversion

of (EAC ]t[AC]) (essentially the same argument holds for the mul-

tiple linear regression) which can be shown to be invertible if

and only if the n x r matrix [AC] contains r independent vectors

(n ) r+l, because there are r+l unknowns: the r coefficients and

the intercept , for each response). This requires the analyst to

choose with some consideration the changes in concentrations he

introduces: the more orthogonal the vectors are to each other ,

the more information one effectively obtains. However , in making

up standards for the MSA ’s one can make up standards containing

several components of interest. By adding a known amount of one

of these multicomponent standards , one effectively moves along a

non-axial line in the concentration domain (the basis vectors for

the concentration domain being exactly as implied by the notation

used above). In practice, all the analyst must take care to do

is to span the concentration domain through the additions made .

Taking the argument to extreme , a single standard , consisting of

a mixture of all components is insufficient by itself as it spans

Qnly a single dimension .

It should be noted that the matrix [K] is found in the regres-

sion, so that the analyst automatically can see the nature and

magnitude of the interferences , and can obtain a measure of the

selectivity of his experimental design . 

- •~~~~~~ ... .-
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It should be evident to the reader at this point that there

is no longer any particular advantage associated with a “fully

selective” set of analytical sensors; in fact, it may actually

be better to have a non-selective set in some cases, as this will

allow the use of information from several sources at the same time

for one analyte , thereby obtaining more information than one might

obtain from a single information source that is “fully selective ” .

Quadratic Model

The assumption that the response coefficients , ks.t, are con-

stant over the working range of the analytical sensor may not be

warranted. In that case , the linear analysis of the previous sec-

tion is insufficient . The obvious next extension is to quadratic

terms by including linear terms in the concentrations of the com-

ponents in the response coefficients:

~~a~ (sU•c 1 + y
~~ ; y~~ is a constant (22)

where ks.e is the response coefficient-function of the sth compo-

nent for the £th response . This model generates the following

equation for the response I (hereafter the subscript m is left off ,

as the reader should understand that the equations apply at every

step of the G SAM, so there is no need to distinguish the different

MSA ’s at this point):

= ~~c (~~~
ai (st).ci 4 

~ 
~~~~~~~~~~~~~ 

+ )c5.y~ 1 
(23)

where in the last form a subscript is moved to a more

convenient location for what follows. The reason that .i ranges

only from s to r in eq. 22 is to remove redundancy in eq. 23 with

regard to cross terms.
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Again c~ should be rewritten as A c~ + oc~ 
to express the

function in terms of the changes in concentration, but because of

the concentration cross terms and square terms in eq. 23 , a sepa-

ration of all cross terms, square terms, and linear terms in the

~c1’s, changes the coefficients. This can be seen in a more

general sense from

[R] = [C][K] = [Ac+C 0][AK+K0] = [A C] [AK) + [c 0 ] [A K ]  + [AC][K0]

+ [C0][K0
] (24)

where [AK] is the change in [K] due to change in CC). In the

simple , linear model , [AK] = [0], so the equation reduced to the

form in eq. 11. Now , however , [A K] ~ [0] and the linear terms in

Ac1 arise from both [C0][AK) and [AC][K 0].

Writing eqs. 22 and 23 to correspond to the form of eq. 2~

gives ,

+ 0k~~ = 
~~

a1
(
~~~

).Ac
~ 

+ ~~a1
(~~~)0c1 + (25)

r r r r
= ~ (Ac 5+oc5)(Ak~~

+0k51) ~ Ac5 Ak51 + ~ 0~5 Ak~~ + ~ Ac5.oks1 (26)
s l  s-l s-l s-

r
+ ~

s=l

= 
s~l 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + 

s
t’
l 

~
‘

Ac~~a15(1)•0c5 +

+
s 1

(okse will not be decomposed into its constituent terms for

the moment). Keeping in mind the following relation:

5L~. 
!Ac ja18(L)

b ocs = ) ~A0•.a15(e) 0c5, (27)

L -~~~~~~~~ -.



the coefficients of the linear terms in eq. 26 can be collected a~~:

1~l i(S~l~~~~~~~
0 5  

+ k.~
) 

(28)

Equation 26 now condenses to,

= 

~ 
~ Ac1•a 15(I)~Ac5 + 

i~i i(j1
aisct~~o

cs +

r (29)

+ ~
s l

where the last summation term is the constant 0R1, the initial

value of response I, before any MSA ’s have been performed .

This is now a suitable model for multiple linear regression.

The variables for the regres sion are all terms of the form A c1~ c~
(j ~ i) and all linear terms Ac1. The regression analysis will

then provide the coefficients of these variables. From eq. 29

it can be seen that the coefficients of the cross terms and square

terms are exactly the model coefficients , a
~ 5
(fl. The intercept

for each response , 0R1, is also given by the regression . How-

ever , the coefficients of the linear terms are not simply related

to the original model linear coefficients.

Now let R1 be redefined by

R1{A C } = R1 (30)

where R
1 

is as expressed in eq. 29 and is the vector (Ac 1,Ac2,

in this way the functional relationship is more expli-

cit. The equation for the regression analogous to eq. 29 is then

written in vector-matrix notation as

R1{AC ) 
:1 tA(Z)]~ AC + ~ç~’T.(~~(1)) + R1

{C0} (31)

where (A(t)] = [aj8U)) (note that (ACt)] is a lower triangular

- .
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matrix , the matrix of all regression coefficients for the cross

terms and square terms, which are the same as the model coeffi-

cients for these terms , for the tth response), [H(t)] is a col-

umn vector of the regression coefficients of the linear terms in

changes in conc entration, and R1{C0} is the intercept from the

regression . The reader should keep in mind that equation 31 is

a function of the net changes in concentration , since these are

the known independent variables.

There is, however , a special case when one can use total

concentration as an argument for the function; this is when

AC =

R1{—C 0
} ( C )T[A(fl](C) + ( C ) T[H (I)] +

(32)

(~~)
T[A(I)](C ) — (~~~)

T[H(I)] + R1{C0}

R1{—C .~} corresponds to the response when all of the initial

concentrations of the analytes have been subtracted from the

sample, and since

CR] = [C ] [ K ]  = [AC+C 0][K] [—C 0+C0J[K] [0][K] 0 (33)

equation 31 leads , in this special cas e, to,
-.~ _~~~~~~.,, —~ ~~ A

o = F,(c ) (C )~ tA (t))(C ) — (C )~~EH (L)] +
i.. 0 0 0 0 4- 0

I = 1, ... , p

The interested reader may actually show that this is the equation

which results when one attempts to solve for ~~ using eqs. 29 and

30 to relate the model and regression coefficients.

The only unknown in eq. 34 is ~~; 
all the rest of the variables

are the regression coefficients for the responses. The problem

of solving for then reduces to solving this system of p simul-

~~~~~
—.—• ——. . - —.— —  ~~~~~~~~~~~~~

—
~~~~~~——~~~~~~~~ — •  ~~~~~~

- . — —  • . ~~~~~
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taneous equations. The general problem of solving

F(~~) = 0; F:  p r.....4, &~, one component of F being F1: IR~
’—5.1R1 (35)

is a well known one , and many theorems and techniques exist for

approaching it (2). Note that eq. 34 is a quadratic in ~~~~~, so an

iterative technique such as a Newton-Raphson procedure is suggested.

The condition of the iteration problem will depend on the regres-

sion coefficients. There are computer programs available in

computer libraries which can solve eq. 35 even without knowing

the analytical form of the Jacobian , which is convenient as the

model becomes complex .

Using equation 29 the original model coefficients can be

recovered from the regression coefficients. This would be of

interest to the analyst concerned not only with knowing ~~~~~, but

also the values of the model coefficients which can provide a

measure of the selectivity of the responses to the various

components.

For the following, it is assumed that is known , either

because a known sample was used to begin with or because eq. 34

was solved for C0. From equation 29, the a15
(fl’ s are the regres-

sion coefficients of the square and cross terms. The only coef-

ficients left to recover are the y
51’s from equation 22. This

can easily be done, using eqs. 29 and 31 to give ,
—.5 .. 

+ 0k~~ 
= H1(t) = ~~a15

(t)•0c5 
+ 

~~
a
~~

(.t)oc~ 
+

= ([ACt)] + (A (Z ) ] T )~~ .~~~~+Y 11 = 1, ...‘ , r (36)

making use of eq. 21, the fact that H1(t) is the regression
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coefficient for Ac1 for response 1, and the fact that [A(fl]

is lower triangular . Therefore ,

H~ (t) — ([ACt)] + [A(I)]T)1~~~ (37)

and since is assumed known , either a priori or by solving

eq. 34, all the terms on the right hand side are known .

Thus the GSAM can simultaneously find the initial concentra-

tions of all the analytes as well as generate the coefficients

of eq. 22 to obtain the functional relation between response and

concentration according to the original model.

Cubic Model S Models of Arbitrary Degree

The above results are now extended to the cubic model. Exten-

sions to an arbitrary order to solve for are also formulated;

however the expansion and decomposi tion of the coefficients is only

done for the cubic case; sufficient information is presented to

allow the interested reader to perform this for higher degree

models if necessary . As shall be discussed later , there are some

problems associated with extending the models to high degrees if

there is no underlying, theoretical reason to do so.

For the cubic case the equation analogous to eq. 22 becomes ,

k51 
= 

~1 
~~b~1

(st).c
1
.c~ + Za 1(sfl c~ 

+ (38)

and this generates the following equation for response 1:

R1 = 1c~ .k51 = 
s~l 1L ~~b~1(st>c 5•c1~c~ + 

~~~~ 
Z a 1(sI)

c5 c
~

+ Zc .y 1 
(3 9 )  
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By analogy to earlier results , the regression model for the cubic

case is:

R1{~~ } = 
s~l i~s 

Z
4G~ 15~~~c5

.Ac
1~Ac~ 

+ 
s~ l 

Z
3G15t

.Ac
5
1A c

±

+ ¶ •Ac + (40)

where [AG] is the n—dimensional matrix of regression coefficients

for the p responses for the terms containing (n-l)Ac ’s. For

example, [3G) is the three dimensional matrix of coefficients for

the square and cross terms in change in concentration. Note also

that these coefficient matrices are lower triangular in an (n-i)

dimensional sense (observe the limits of the indices in eq. 40

and recall that I runs from 1 through p).

Using the same argument as in the quadratic model, the zero

of the following funct ion must be found

= — ~~
2G x  + 

s~1 
~~

3G
~51

.x
5
.x± — 

s~l 1L ~~
4G
~~5t

.x
5
.x 1

.x
~

(41)

since F(~~) = 0 implies that ~t = ?~~~~. This can be extended to a

regression model of arbitrary degree n:

= i... ~ ..•i 1 Ac~ ~Ac . 
. . •Ac .

i1 l 12 1 1n~~n—l 
n 1’ 1 12 in (42)

+ . 1 .Ac i ”~~ c i +  ... + ~~
2G .Ac +

• p-_ _ 

A
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= - 

i1
1
~~~ 

+ 
i1~l 

~~
3G~~11

.x
~1.xi 2

+

r r r (43)

+ (_ 1)fl 

il l i2~i1 in~i 1 2 ~~~~~
T
~

and, as before, the solution to F(~~) 0 must be determined .

The relationship between the regression coefficients and

the model coefficients for the cubic model are determined with

the introduction of a notational convenience: because R1~~~~ c5~k5~~
,

an effec tive dot product in the index s , an operator symbol

‘1< )*‘~ is used to represent this operation (the standard products

of matrices and vectors can be used with only two indices , as in

the quadratic model , but now three indices must be dealt with).

In other words , define

R1 = ~~~~~~~ (c~)~k51 
(44)

and

= 

s~l 
~~~~~~~~~~~

where it is understood that the product is over the index attached

to the variable inside the brackets for that variable ’s operation .

Equation 39 can now be written as,

= (c5)*k51 (c5,c1~c~)*b1~(st) 
+ (c5,c1)+ai(st) 

+ (c~)*
ys1 (4 6 )

where several terms have been grouped into the brackets, subject

to the following properties:

Commutative: (c61c~)*x51 = (ci,cs)*x51 
(4 7)

_ _  • .• .~~~~~ - —.- —~~~—— - - - - .•-• •-, - •—-. —- - . -
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Associative : (cs)*((ci,cj)*xsjj) = (c5,c~)~~((c~)nx51~) (48)

Distributive : (c5)*((cj)+(c~))~ x5~~ = ((c5~cj)+(c5,c~));~x5i~ (49)

All of the above properties follow from the definition of the

operator in eq. 44 and eq. 45 , and they can easily be verified by

the reader.

Proceed ing as befor e, separating c into Ac + c0, the expres-

sion for R1 becomes,

+ (Ac 5+0c5,Ac1+0c1)~a1(st
)

+

= ((Acs,Ac 1,Ac
~)+(A

c5,Ac i,oc~)+(Acs,0ci,Ac.)+(0c ,Ac .,Ac.)

+(Ac ,oci , c.)+(oc ,A ci ,0c.)+(0cs,oci,Ac~\+(oc ,0ci,0c~));th..(sI)

+((Ac5 ,Ac1)+(0c ,Ac.)+(Ac ,0c1)+(0c5 ,oc~)) 
eai (sI )

+((Ac + 
0
c5))~~y 51 

(50)

By collecting terms of similar power in Ac ’s, and consequently

renaming and reordering subscripts (actually, some order was pre-

served for clarity, being otherwise unnecessary due to the commu-

tativity of eq. 47), equation 50 becomes ,

=

+(0cj 2)*(aj 1s j 2 t + a~ 2 j1L )  +

+ (51)

-~~~~~~~~~~~~~~~~~~~~~~ ,-.—-~~~~~~~~~~~~~~~~~~
--— - - .

~~~~~~~~~~~~~~~~~~

_ _
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The reader will note the essential symmetry underlying the permu-

tations of the subscripts in eq. 51; this is expected from the

symmetry in eq. 50.

The relation between the regression coefficients of eq. 140

and the model coefficients of eq. 39 can now be seen. Once a

solution for has been found , then beginning by identifying

the matrix [B] (with elements b
~~
(se)) with the matrix [4G) , the

matrix [A] (with elements a
~
(st)) can be obtained using the coef-

ficients of [3G], and then the matrix [y] (with elements 
~sI~ 

IS

found using the coefficients of [2G]. It is noteworthy that the

original model coefficients can be recovered with only the simple

operations of vector and matrix multiplic ation, addition and

subtraction; there is no matrix inversion involved.

Using the notation introduced above , it should be apparent

to the reader how to express the regression coefficients in terms

of the model coefficients for a model of any degree. As an aid

to understanding , the reader can go back and solve the equations

for the quadratic case using th is new notation, checking the re-

suits with the ones obtained above.

Rewriting eq. 143 for clarity gives

F1G~) = ‘GL_ (x11)*
2Gj1e

+(x11
,x12

)+
3G12111 

~n+l 
(52)

+ (-1) (xi1,.~~., xi)

as the general function to solve for F(x) = [0] to find c0.

However, as is usually the case for higher order models, as the

degree of the model increases, the number of coefficients in the

model increases at a greater rate, despite the fact that the 

—5.-- -- -.---- - • -•--- .- •-- • 5.---. —•• - . • • . .- - -. .- • • - - • -.- -.• ,------- ,--- ‘-I
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matrices of coefficients are “lower triangular ” in an n—i dimen-

sional sense. In order for regression analysis to succeed , at

least one measurement must be made for each coefficient to be

determined . Hence , as the degree of the model rises , the number

of measurements that must be made increases rapidly. The GSAM

also becomes more demanding the greater the number of analytes

under study as shown in Table I. In addition , in a multiple

linear regression analysis the covariance of various variables must

also be considered . If some variabies have high intercorrelation ,

then the regression problem becomes ill—conditioned , and it may

not be possible to obtain a solution. Because the above model

takes into account all possible terms, such a problem might arise

if the degree of the model is too large for a given set of mea-

surements. But it should be noted that not all of the terms in

eq. 42 need be included in the regression; it may prove more fruit-

ful for the analyst to drop certain terms from the model by not

including the corresponding variable in the list of variables for

the regression. This effectively forces the coefficients of that

particular variable to be zero in the model of eq. 42. For

example , suppose it was decided to include only the cross terms

and not the square terms of the quadratic model. Then the variables

used for the multipl e linear regression would be the Ac t ’s and the

~~~~~~~~~~ for j< i .  The analyst bhould remember, however , that there

is an important difference between forcing a regression coeffi-

cient to zero by not including the corresponding variable, and

calculating a zero coefficient from the regression when the van-

able is included .
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Several excellent methods can be used to select a specified

number of var~ables from among a larger list of variables in order

to obtain a good fit to the measurements. Stepwise regression is

one example of a forward selecting method. In fact, a number of

these methods are available in computer program libraries. This

means that by specifying the maximum size of the set the analyst

will all ow , the number of regression coefficients the model will

have at any one time can be controlled , and the possibility of

two variables of high correlation being used in the model at the

same time is reduced . This in turn allows models of high degree

to be considered , without requiring an excessive number of data

points.

— • - 5. -I. ‘- 
• -
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TABLE I

Model Formula Minimum No. of Data PointsC
p r  2 3 14 5 10

Linear p + p.r 6 12 20 30 110

p•r(r+l)Quadratic p + p.r + 2 12 30 60 105 660

Cubic p + p~r + p~r(r+l) 22 72 180 380 4510
2

+ 
p.r (r+l) (2r+l)

6

~(assuming model includes all possible terms for each degree)

•

1 

-‘
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The GSAM can be generalized even further than has been done.

The restric tion is that terms in c be separable into terms in Ac

and c0. The word “separation” is deliberately vague, for the

nature of this separation will depend on several factors. If

= R{A ~~ + E~~ } = ~~~A~~} (53)

where the terms in c0are now mixed in with other coefficients ,

using the same argument as before , in general ,

= 0 (54)

must be solved as the solution is x = C
0
. In principle it is

possible to develop routines for multiple regression on functions

other than linear sums of independent variables. If, in a parti-

cular problem, the theoretical relation can be transformed to

one which is suitable for a multiple regression , and if the terms

in will combine with other coefficients to make up the regression

coefficients when the relation is expresse d as a function of the

changes in concentrations , then the fitted regression curve can

be used to solve for in eq. 54 (perhaps iteratively, perhaps

by some other means , depending on the nature of the function in

the regression), and possibly recov er the original model coeff 1-

cients. The severity of the required separation between terms in

Ac and c~ thus depends on the type of function used for a model

of the relationship between response and concentration and on the

type of function used for multiple regression . As an example,

if the only available technique is multiple linear regression ,

then the relation y = ln(ac) = ln(a~c + ac0) does not have a

- • ~~~~~- —  • - - . -5 .  - —- - - —-~~~~~~— - - .—~~~~~~~~~~~— —---,—~~~~ -—- ~~~~--- —-,
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sufficient separation between terms in Ac and c0, i.e., the

normal equations using ln(Ac) as the independent variable will

be nonlinear . Transforming the relation by exponentiation solves

this problem , and the separation is then sufficient for a mul-

tiple linear regression.

In this paper attention has been restricted to polynomial

forms, which allow multiple linear regression to be used . How-

ever, the basic concepts behind the GSAM can still be put to

work for quantitative chemical analysis and the understanding of

systems of analytical sensors with models having other than

simple polynomial forms.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - - — - —, •~~~~~~



___________ 5.’ 5.~~~~~~5.5.•’T’5.~’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ‘—-- ‘— -—•5.-.----.— --- - ’— ’

• 26
‘S

CONSIDERATIONS IN THE APPLICATION OF THE GSAM

Error Analysis

1) Random Error: Along with each coefficient , multiple linear

regression analysis also provides an estimate of the variance in

that coefficient which can be propagated to the model coefficients

or initial concentrations (see Larson et. al. for this in the

standard addition method (3)). In many cases, particularly for

the iterative solution required for the quadratic and higher order

models, this can become very tedious. Another estimate of the

error can be made based on the fact that with each regression

coefficient upper and lower confidence bounds can be obtained .

Given confidence bounds of, say, 90% or 95% , a measure of the

error in a regression coefficient can be taken as the following:

(x) - IU.C.B. (x) — L.C.B.(x)Ierr — 2 (55)

or err(x) max{U.C .B. (x)-x , x-L.C.B.(x))

where “U.C.B.” and “L.C.B.” are the upper and lower confidence

bounds. An error estimate for the solution of eq. 52 for C0

would appear most readily obtainable by perturbing the regression

coefficients within the confidence bounds and performing the

iteration again to solve for a new ~~~~~. The error in the initial

concentration can then be estimated by,

err(0C~
) = max (I~~ 

- ~~~~~~~~~ 
(56)

k:l,. . .
where corresponds to the kth perturbed iterative solution for

the initial concentration of component i. If t, the total number

of perturbations carried through, is large enough (which may not

____________ _____________ ________ ________

___________________________ -—-~~~---- .•- •
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be practical if the solution does not converge quickly), a better

estimate might be

err(0C~
) = 

tJ

”

k~l 

~~~~~~~~~~~

Using 95% confidence bounds can be expected to provide a conser-

vative estimate of the precision of the solution.

It is sometimes desired to weight certain measurements more

highly than others (p erhaps due to experimental design , errors

are smaller in a certain range of concentrations), in which case

a weighted multiple linear regression could be envisaged. The

introduction of weights, however , greatly complicates the statis-

tics of the regression.

2) Systematic Error: In reality, the response function may

not be zeroed when the concentrations are zero. In this case the

response function is better represented by

CR] = E C ] [ K ]  + [6R] [AC][K] + 10
C] [K ]  + [o R ] (58)

The effective change is that

[1G] [0C]tK) + [OR) (59)

is the regression intercept . Comparison with eq. 51 shows that

— (oR] (60)

is actually the equation that must be solved . The problem of

iteratively solving a perturbed system instead of the ideal sys-

tem, and the effect the perturbation has on the solution, is a

well known one, though not so well understood . The specific

- ___ a_-’_ .S” ‘~~•‘•S’ ~~.. .
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effects of the perturbation will depend on the application and

the nature of the function F(~ ) that is produced.

If OR is small compared to values of R , and the problem is

reasonably insensitive to perturbations (for example , a problem

with large gradients that converges quickly), then one can expect

the effect on the final solution to be small . By using a “blank”

to obtain a [p 0] (effectively the background signal), and using

ER’] = CR] — [p 0] (61)

as the reponse function, CR’] will usually be expected to follow

eq. 58 with [OR] being small (an exception to this is considered

below). The problem of zeroing the response function is simply

the multidimensional generalization of the same problem with the

standard addition method .

Notes on the Iterative Solution of Equation 35

Most methods for solving eq. 35 by iteration require an

initial approximation, a “guess”, as to the final solution in order

to start the iteration. The speed of convergence will often

depend on the accuracy of the estimate; if several zeroes exist ,

convergence to the “correct” zero (the zero corresponding to the

initial analyte concentrations) will also depend on the initial

approximation. It would be possible, for example, for the itera-

t~.bn to converge to a solution with large negative concentration

values in some problem--obviously a solution that should be rejected ,

but nevertheless a potential solution which could be found by the

iteration.

The natures of local and global convergence have been studied

for iterative solutions to eq. 35 and some elegant theorems exist,

- --‘- ~~~~~~~~-.-- ‘- - “5..-- .’
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which are beyond the scope of this paper. The analyst using the

GSAM for a non-linear model should be aquainted with the theorems

and their conditions , in order to recognize if the nature of his

function in eq. 51 is such that certain theorems (Ortega and Rhein-

boldt (2)) concerning convergence and divergence (local and

global) apply.

An estimate of an interval in which to start the iteration

can be obtained as follows. To obtain the best values for ~~~~ ,

the analyst should attempt to collect most of the data (obtained

by the MSA ’s) near the starting response values R1
(0), 1 1 ,. .,p,

as this will make the regression model fit the “true” function

nearest the point of interest , namely ~~~~~~. This means that , for

a sample of components of completely unknown concentrations , the

analyst must begin with low concentration MSA ’s which will result

in small changes in concentration of each analyte in the sam ple

until a change in the response from one sensor is achieved. At

this point , the unknown initial concentration must be within a

few orders of magnitude of the known added concentration , depend-

ing on the size of the response change that can be detected . (In

this method for establishing a s~arting interval , it is assumed

that the concentration of only one component at a time is being

changed as shall be made clear in the following discussion.) This

mQtivates the definition

• ~~~ .i = mir{~ciicx 1l ,..,p 
I R i{~~~~

1
~~0~~~{o}I )  ( 6 3 )

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~ 
B) (64)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  

I
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is then the smallest added concentration of analyte i which

produces a relative response change in at least one analytical

sensor greater than or equal to (uxlOO)%. is the largest

added concentration of analyte i which produced a relative res-

ponse change no greater than (BxlOO)% for any sensor. The interval

in which to start the iteration is then LA c ±,AE’~
]. ~ and e are

the parameters which define the width of the interval. For example ,

if cx:0.5 and 8:10 then Ac~ is the added concentration which gives

at least a 50% response change , in at least one analytical sensor

and AE~, is the added concentration which gives a 1000% response

change on no more than one sensor . In both cases , one looks at

the response most sensitive to changes in concentration for ana-

lyte i (most sensitive in the sense of largest relative gradient).

When cz=8=1, the change in analyte i required to double the

response in the most sensitive sensor for analyte i is found . I~
’

a linear model is assumed , then Ac
~
=Ac . would be the same size

as 0c~~
, provided that the most sensitive sensor for component i

in this concentration range is not affected by the presence of

other components than i nearly as much as it is by i. A “fully

selective” set of sensors would have this property no matter what

the concentrations of the components. This can be seen in eq. 66

given the condition of eq. 65.

R~(c) : k~~c1 ke~
Ac e + k~~0c1 = kt Act + R1{0} L l ,..,p:r (65)

R1
{~ c} = 2Re{O} * kt~~

ct = Rt{0} ~~ Act = 0c1 t l ,..,p:r (66)

In any case, for most reasonable models, u=0.l and 8:10

provide a broad enough interval so that, of several starting points

in the interval, at least one should be close enough to to allow

- - - 
~~~~~~~~~~ 
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convergence. The parameters a and 8 allow moderate interference

effects to be taken into account . Under extenuating conditions

(e.g., large interference effects on all responses for analyte i),

the parameters a and B would have to be adjusted by the analyst,

unless the regression coefficients provide good convergence quali-

ties to the iteration (i.e., if global , or a very large region

of rapid convergence exists, then the analyst can take any reason-

able starting guess).

It should be noted that the above technique has assumed that

large relative changes in the concentrations of interfering compo-

nents in the sample has not occurred , as these could interfere

with the responses to changes in analyte i’s concentration. Instead

of using eqs. 65 and 66, which require using a fresh amount of the

unknown sample for each component to determine the starting point

for the iteration , the following, slightly less accurate method

is suggested :

1) To a given amount of the unknown sample make successive changes

in the concentration of analyte ] only until the criterion for

has been surpassed .

2) Then make successive changes in the concentration of analyte 2

only, until the criterion for has been surpassed , using not

Rt2
{0) but ‘RL {0}, the final value of response ~ 2 

after the addi-

tions of step 1 Ct2 is that response which is most sensitive 
to

analyte 2), in order to subtract out the response due to the presence

of components before the additions of analyte 2.

3) Repeat for analyte 3, using 2Re3{0), 
defined similarily to

1R {O), in the criterion for A~ 3 and continue with the rest of£2
the analytes.

— - — --‘—— - -
~ r . -
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The eqs. 65 and 66 would be altered to appear as

Ac. min(’A c .l cz. ~ max ~RJ{~~ } — 
(i_l)Rf{0}I) (67)

1 1 £:l,..,p I1~t
f0.I ’l

= max4c~ I max 
~~~~~~~~~~~~~~~~~~ ~ 

(6 8 )
2. 

L £=l ,..,p I L I J
(the subscript on a and 8 denotes the fact that different para-

meters may be needed for different components). Performing the

above operation should give the analyst some idea of where ç
lies, and he can then use another sample of the unknown to collect

more data with simultaneous additions of several components , thus

allowing a more detailed exploration of the functional surface for

the regression , if it is needed . Adjustment of the parameters

will require some examination of the interference coefficients ,

so the analyst may wish to run a rough preliminary GSAM to obtain

some idea of the magnitudes of the interferences.

The reader should keep in mind that if he is fortunate enough

to have a problem which requires only the linear model, he need

not concern himself with the iterative process or with finding

some interval to start the iteration . Also , the problem of finding

the initial starting point for the GSAM is the same problem facing

the analyst applying the simple standard addition method.

Dimensionality

Up until now little attention has been paid to the dimensions

or ranks of the various matrices. Yet, as the reader may already

suspect, this is of great importance. As was stated earlier in

the linear model, it is required that the (AC] matrix span an

r dimensional space, where r is the number of analytes. That this

.I~
..z. . ‘ .
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is also a requirement for all higher degree models can be intu i-

tively grasped through the realization that r independent A~~ ’s

are needed to allow multiple linear regression to recover all of

the coefficients for each analyte; with less than r, at least one

of the analyte concentrations could then be expressed as a linear

function of the others ’, and the regression for r analytes would

no longer be meaningful . Also stated in the linear model was

that p, the number of linearly independent analytical signals , had

to equal r. This extends to the model of arbitrary degree. If

p is less than r, then sufficient information cannot be obtained

to determine the initial concentrations of all analytes , i.e .,

F(~~)=E0) is p equations in r unknowns , and so would have an inf i-

nite number of solutions . If p is greater than r, then the simul-

taneous equations cannot be solved for all p sensors (n).

Of course , one can select r of the p sensors and solve the

equation , then select a new set of r and solve again and so on ,

finally comparing the results for each iteration , which should

be identical . This may be useful if the analytical sensors are

very non-linear leading to several possible solutions for a given

iteration . In most cases, restricting solutions to have nonnegative

or, if negative, close to zero concentrations should be sufficient

to eliminate all solutions except one. If not, then by comparing

the sets of solutions obtained from each set of r out of p infor-

mation sources, the analyst may find only one solution that is

consistent in all sets, which hopefully is ~~~~~. This is, however,

a worst case scenario, as the majority of problems will not behave

this badly; p:r sensors should be sufficient to provide the

solution ~~~~~~.
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An important consequence of the above discussion surfaces

when there is a component in the sample that is not an analyte

but affects one or more of the responses, and if that component ’s

concentration is unknown so that it cannot be subtracted out as

background with the blank in eq. 61. Then, another sensor must

be included to make p r+l because the model must take into accoun t

the interference of the component even though it is not of interest .

The advantage of the GSAM is that the response of this sensor need

only be a function of the concentratio~ s of any of the components

in the sample that affect the other responses without regard for

the number or combination of components involved. With this free-

dom , the problem should be easily resolved in most cases. The

above condition can be expressed using a “binary dependence ”

matrix , D, which is r ’ x p and whose elements are defined by

d fi if component i affects response j (69)
~~ 1,~0 otherwise

where it is understood that none of the p analytical signals are

linearly dependent on the others. The GSAM requires only that

the rank of D be r’, where r’ is the total number of sample com-~

ponents which affect the p responses. Naturally, if an analyst

is interested in only two analytes in a mixture of, say, ten, then

by using two sensors that are affected only by the two analytes

t1~iere is no need to worry about more sensors. The case corresponds

to a 2 x 2 diagonal submatrix of the matrix 0 required for analysis

of all ten components; note that 0 is required only to be square,

but as stated before, one can have p>r.

The number of MSA ’s the analyst must make to just have enough
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information to determine the regression coefficients depends on

the degree of the model and the number of components under study .

Table I gives the formulas and some selected values for the linear ,

quadratic, and cubic models; from the general derivation of the

models (keeping in mind the (n-i) dimensional triangularity of

the n dimensional m G )  coefficient matrix), the reader should see

in principle how to perform this calculation for any degree model.

Good practice in a regression analysis would require that the

number of data points taken exceed by a significant amount the

minimum required to just determine the system . As a rule of

thumb, try to collect at least twice as many data points as the

minimum required.
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CONCLUSION

The method described in this paper is exactly what it purports

to be: the generalized standard addition method. It shares Some

of the disadvantages of the traditional standard addition method

in that response must be zeroed and some additional effort to

transform the measured property values into suitable form relating

response to concentrations may be required . This transformation

may introduce so-called “constants”, which are constant in theory,

but are often determined in practice by calibrating a given ana-

lytical sensor (e.g., the term RT/nF in ion—selective electrodes).

If these constants must be used in the transformation , then apply-

ing the GSAM requires a calibration of the measuring instrument ,

which is not the usual case in the traditional standard additior~

method .

The advantage of being able to simultaneousl y analyze for

different components in a mixture , while accounting for interfer-

ences, certainly outweighs the relatively minor disadvantages.

The ability to use non—linear models allows the analyst to better

fit the data for solving for the initial concentrations of th~

components than may be possible with a simple linear model; i~

also allows the GSAM as presented here to be used whenever a

transformation can bring the data into a polynomial relationship

of some degree from a known theoretical relationship. The GSAM

even permits theoretical studies to be done on the relationship

between underlying independent and dependent variables.

There are a great many areas where the GSAM will be applicable,

especially where interferences have been of concern in the past.

Indeed , our laboratory is currently applying this method to
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multiple ion selective electrodes where this is tbe case. We

expect the GSAM will become a standard analytical method in the

near future.
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