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This note describes a computer simulation of a model of a

rate-adaptive packetized network, based on the assumption that
users have available to them an embedded-coding type vocoder.
Queues are controlled at each link by stripping off lower priority
packets of the encoded speech. Three issues addressed in the

simulation were: >

1) The development of an adequate packet stripping strategy at each

node(/D

2) The development of an end-to-end feedback strategy that would
give stable results and yield an overall higher performance than

was realized in the absence of feedback, and

3) The integration of the speech packets with data packets.

Conclusions are that a judiciously chosen end-to-end feedback
strategy can not only improve the efficiency of the system but also
alleviate the problem of sudden rate drops due to 1link overload.
The inclusion of data traffic in the model resulted in overall

higher link utilization than was realized in the absence of data.
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1. INTRODUCTION

Due to the recent revolution in digital technology, it can be
confidently predicted that in the near future digital voice
terminals will be available at a sufficiently low cost and compact
size to make feasible the possibility of 1large scale digital
transmission of the speech signal (1]. Given this possibility, it
has become important to address the issues involved in the
efficient transmission of speech over a complex communications
network. Recent efforts include attempts to incorporate voice
traffic into an already existing packetized data network (the
ARPAnet) (2], and computer simulation experiments designed to
determine efficient design and control strategies for voice/data
integration [3-7]. One issue is the question of whether voice
should be transmitted over a packetized or a circuit switched
network. Forgie and Nemeth [5] have proposed a "packetized virtual
circuit" (PVC) strategy which attempts to take advantage of the
features of both types of systems. With such a system, packet
header information is kept at a minimum, thus allowing for
relatively efficient transmission of the short speech packets that
are preferred for reduced delay times. Because the packetized
concept is retained, the speech bit rate can be variable (and, in
particular, transmission can cease during silence intervals), and
speech and data - packets can be naturally integrated to share the

same network communications channels.

1
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A major requirement for successful transmission of speech
across a digital network is that delays at each node be kept under
a small fraction of a second. This requirement 1is in direct

conflict with the fact that bit flow typically fluctuates

significantly over short time intervals. Such fluctuations could
ordinarily be smoothed out at each link by allowing the queue to
expand and shrink as needed. However, with speech, the large
variations in the delay imposed by the resulting fluctuating queue
will create problems at the synthesizer, which requires a
continuous steady flow of bits to avoid glitches or annoying time

delays in the conversation.

Clearly, one source of variation is simply that the number of
users will wvary with time. Connections will continually be made
and broken as conversations are initiated and completed. A much
more rapid fluctuation will occur if wusers make use of TASI
(Time-Assigned Speech Interpolation) [8] to reduce the mean data
flow for a given vocoder rate. If the users only transmit during
talkspurt intervals, a greater than 50% decrease in the mean data
flow for a given vocoder bit rate could be realized. However, this
is realized at the expense of a much more rapid variation in the
actual bit flow, since users go into and out of talkspurt mode much
more frequently than the rate at which new users enter and leave
the system. If the network is able to handle both data and speech,

then there are even greater fluctuations 1in the load, due to




variations in the data traffic. And finally, the 1link capacity
itself may vary over time, due to fading or jamming, further
necessitating some kind of control strategy for regulating traffic

flow.

Unless there is some controlled means of reducing or
increasing the bit rate per customer at will, based on the
instantaneous customer load at a 1link, there 1is no other
alternative, given the above variables, than to restrict the number
of users on a given link such that on the average the wutilization
of the link is far below capacity. One could envision a variety of
possible control strategies. The simplest such strategy would be a
negotiation with the network for a vocoder bit rate at the
initiation of each call. The appropriate vocoder would be 1loaded
into both the transmitter and the receiver, and the bit rate for
that conversation would be fixed until termination. Such a
technique would probably be too sluggish to deal adequately with
the variations in the load, since conversations tend to be of

several minute durations.

A second, far more cumbersome, alternative would be for each
link in the path to communicate back to transmitters anticipated
conditions of overload. Transmitters would respond by replacing
the vocoder with a new one, of 1lower rate. There are several

problems inherent in this method. First is the complex bookkeeping




necessary for separate link-to-transmitter paths from all links to
all transmitters. Second is the critical timing problem necessary
for the receiver to load in the new vocoder in time to interpret
properly the bits now arriving with an entirely different encoding
structure. Third is the fact that the loading process will take a

significant amount of time during which speech cannot be vocoded,

and glitches will undoubtedly occur when rates are changed.
Finally, there is a critical time delay between when the 1link is

aware of imminent catastrophe and when the vocoder can act on such

awareness. The response to overload conditions may not be rapid

enough to avoid crisis.

With either of the above two methods, in the event that the

link becomes overloaded in spite of the (predicted to be

inadequate) control strategies, the only options open to the link
are to discard bits as queues build up to extreme levels. Such

discards will introduce gaps in the synthesized speech.

The third and most enticing method of controlling rate per
customer gives instantaneous response, requires no special paths
from links to transmitters, and avoids gaps in the speech due to
either reloading of machines or the discard of bits. This method,
first proposed by the Naval Research laboratory, assumes that users
have available to them a specialized "embedded-coding vocoder": a

vocoder whose analyzer produces bits at a high rate, but whose
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synthesizer can reconstruct speech at a variety of different rates,
from selected subsets of the bits produced by the analyzer. A
preliminary version of such a vocoder has recently been developed
at Lincoln Laboratory [9]1, and there is an ongoing research effort
to improve its performance. Some of the issues 1involved for a
strateqgy for adaptive rate control, given such a vocoder, are
addressed in [1@)]. This report describes a simulation experiment
designed to develop a further understanding of the performance of

such a vocoder in a network environment.

An embedded-coding vocoder fits quite naturally into a
packetized, as opposed to a circuit switched, network. As shown in
Figure 1, the analyzer would produce a set of packets with distinct
priority 1labels. Packets of priority one contain the information
necessary to reconstruct speech at the lowest available bit rate
(in the example, 24040 bits/sec). Bits in the packets of priority
level two can be added to the bits in priority level one packets to
produce speech at the next higher bit rate (48004 bits/sec). The
svynthesizer can reconstruct the highest quality or most robust
speech if packets of all priorities have arrived. With any
intermediate number of packets, there will be an intermediate

reconstruction.

Given such a vocoder, the network task is much simpler. Each

link in the network controls its incoming bit rate by discarding
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packets of low priority. At a given instant in time, the link has
a lowest-acceptance-priority or stripp.ng-priority level. Packets
of 1lower priority arriving at that 1link are discarded. By
constantly monitoring either the queue or the incoming bit rate,

the link can exercise tight control of overloads or underloads by

simply reassigning its stripping-priority level.

The problem becomes much more interesting if one assumes the
possibility of improving the overall performance by introducing a
strategy of end-to-end feedback. Without feedback, t%# analyzer
always transmits bits of all priority levels; 1in cur example,
16,007 bits/sec. Bits are discarded at various points in the
network, and the receiver finally receives a subset of the total.
Any bits discarded at nodes other than the first node in the path
are bits which needlessly jammed all preceding links in the path.
In particular, if the 1last 1link 1in the path could accept only
priority one packets, (due for example to a 1large data file
transfer), all of the other 1links 1in the path would have been
needlessly overlioaded with bits which had to be discarded Jjust

short of their destination.

If, instead, the receiver had informed the transmitter that he
was only receiving priority one packets, the transmitter could
respond by only transmitting priority one packets, and the load on

intermediate links in the path would be relieved. While the result
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would not improve the situation for the particular conversation
utilizing the feedback, it would possibly allow other users,
sharing intermediate nodes, to operate at a higher rate, because
bits formerly discarded just short of their destination are now

being discarded at the source.

If feedback is to exist, then there must also be probing [14],
in order for users to be able to recover from an easing up of the
network load. Continuing with the example above, after the
data-file transfer at the last link has been completed, the link
can now accept a much higher bit rate than before. However, the
synthesizer, in the case of feedback, will continue to report that
only priority one packets are being received, since these are all
that are being sent. The transmitter will have to be allowed some
strategy for periodically increasing his rate for a temporary
period, and then sustaining the increase if the receiver reports a
successful transmission of the 1lower ©priority packets. An
interesting question, then, which 1is the main subject of this
report, is whether feedback strategies with probing can be realized
which are both simple to implement, and responsive enough to give
an overall improved performance than is obtained without feedback.
In particular, feedback has a tendency to introduce instabilities,
and many of the issues which were the focus of this research effort

revolved around the problem of controlling such instabilities.




2. THE SIMULATION MODEL

The main requirements of the simulation model are that it be
simple enough to be feasibly implemented in a computer yet complex
enough that end-to-end feedback strategies can be meaningfully
examined. As shown in Figure 2, the modelled network consists of a

central node through which pass 16 paths connecting four nodes on

either side of the central node. The central node is assumed to
maintain independent queues for each outgoing path. It is assumed
that packet voice terminals are connected to all nodes except the
central node. The traffic is specified by a matrix which indicates
how many voice terminals at node i on the left of the center are in
conversation with terminals at node j on the right. A fixed
traffic matrix 1is assumed, but fluctuations in packet production
due to individual talkers oscillating between talkspurt and silence
are included in the simulation. Although all conversations would
actually be two-way, the simulation deals only with the traffic
proceeding from left to right. Thus the nodes on the 1left are
viewed as "sender" nodes, and the nodes on the right are "receiver"

nodes.

Users have available to them an embedded-coding vocoder whose
characteristics are set as a parameter of the system. For most of

the runs, the vocoder was assumed to be capable of synthesizing
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Fig. 2. Simulated network configuration. Varying thickness
of receiver links symbolizes imbalanced load.
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speech at 9 different rates, from 1204 bps to 10,800 bps, in
increments of 1204 bps. Thus packets of 9 different priority
levels are produced, and a stripping of the next higher priority
level packets at a link results in a reduction of the synthesized
bit rate by 12A7# bps. This vocoder may be somewhat unrealistic
compared with what may actually be feasible in terms of current
vocoder technology. However, it 1is clear that if the network
cannot be made to stabilize with such a vocoder, it is unlikely to
do any better with one with a more restricted repertoire of
possible synthesizer rates, and correspondingly fewer available

priority levels.

The traffic matrix is probably the most important parameter of
the system. If the load is balanced, i.e., the same fixed number
of conversations are in process on each of the 16 paths, then one
can expect to gain nothing from end-to-end feedback strategies. In
fact, the overall performance may very well be reduced over that
achieved without feedback. If the load is imbalanced, however, and
especially if che imbalance is in the receiver links, then it c&n
be expected that feedback will pay off, as will be demonstrated

later.

The performance for various 1link strategies and feedback
strategies was evaluated for a number of different traffic

matrices. The matrix that was found to be most useful was one with
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the same load on the four sender links but an imbalance in the load

on the four receiver links, as follows:

T(ij) = number of conversations on path(ij)

20 40 60 8@
T = 20 490 60 80
20 40 60 8a
20 40 60 80n

That 1is, there are 2@ ongoing conversations from each sender node
to the first receiver node, 4/ to the second, 50 to the third, and
84 to the fourth. Thus all sender 1links are equally loaded,
whereas there is an imbalance in the receiver links such that the
first, with a total of 80 conversations, is least heavily loaded,
and the fourth, with a total of 320 conversations, the most heavily
loaded. The differing thicknesses in the figqure of the four
receiver 1links are meant to symbolize the imbalanced traffic load.
It could be expected, with such a traffic matrix, that feedback
from the 4th receiver node, in particular, to all 4 sender nodes,
could cause a stripping of a significant number of bits at the
source rather than at the central node, thus relieving the sender

links of a useless additional load. The hoped-for result is that

12




users on paths leading to the first receiver node, in particular,
could now synthesize speech at a higher rate than was possible
without feedback. It is this traffic matrix that was used for

nearly all of the runs discussed in this report.

3. IMPLEMENTATION CONSIDERATIONS

Although the conversation load in the network is fixed, the
number of conversations on each path actually in talkspurt mode is
a variable which is continually changing at random time intervals.
One possible method to model this variable is to use Brady's (11}
measurements of talkspurt and silence duration distributions from
actual conversations to provide a statistical model for the
talkspurt/silence alternation of each individual speaker. By
aligning the time axes for all talkers on a given path, and
ultimately, for all talkers in the system, it can be determined, at
each instant, how many are in talkspurt mode, and hence what is the

actual bit load on the system.

Another, much simpler, method to model the dynamics of the
system is to ignore the identity of individual speakers and to
assume a Markov approximation [12] for the sum of the activities of
all talkers on a given path, even though the distribution of
silence intervals and talkspurt intervals for each individual
talker is not exponential. Weinstein [13] showed that this model

yielded results essentially equivalent to wusing the Brady
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statistics, as long as a sufficiently large number of talkers were
modeled simultaneously. With this method, a reasonably simple
model can be derived for generating random processes representative
of the talker activity on each path. The process for each path is
in state k(ij) whenever k(ij) of the N(ij) speakers on that path
are in talkspurt mode (Figure 3a). The two rates, XA and yu, are the
rate for each speaker of entering or leaving talkspurt mode. More
explicitly, A and p are the reciprocals of the average silence
duration and average talkspurt duration, respectively. Given that
the system is in state k(ij), the time interval before it leaves
that state 1is an exponentially distributed variable whose mean is
the 1inverse of the rate of 1leaving that state. After the
appropriate time interval, the state will change either to state
k(ij) + 1 or state k(ij) - 1. The probability of an upward change
is then the ratio of the upward state transition rate to the sum of

upward and downward transition rates.

A further simplification can be realized by combining the
speaker activity on all 16 paths(ij) into a single Poisson process
(Figure 3b). This avoids the problem of having to align 16 time
axes into a single time axis. A final step is then necessary to
identify on which of the 16 paths each event occurred, and this can
be determined straightforwardly based on likelihoods, through a
procedure analogous to that used for determining the probability of

an upward change. The results obtained are theoretically
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equivalent to those obtained when each path is modelled separately.

The procedure, then, is first to determine the time interval

before the next event occurs, somewhere in the system:

L =e/T 3

veNE L T b

T

The next step is to identify whether this event was an increase or

a decrease of the number of conversations in talkspurt mode:

Plup/k) = A p(down/k) = 1 - P(up/k)

Finally, the probability that the event occurred on path(ij), given
that the event was the addition of a new speaker to talkspurt mode,
P(ij)/up, 1is equal to the rate of going up on that particular path

over the sum of the rates of going up on all 16 paths:
(Nij - kij)k & Nij
L tNy. = RioYA -
i'j( i3 13) N - k
This formula reduces to simply the number of conversations on that

- k..
P(ij) /up = =

path currently in silence mode, and hence capable of entering
talkspurt mode, over the total number in the system currently in
silence mode, and thus 1is intuitively reasonable. The same

reasoning applies to P(ij)/down:
Kl K.
P(ij)/down = > MRS >
LKl k
. B
The procedure for each iteration through the program is first

to determine the time before the next event occurs, whether that
event was an increase or decrease in the number of conversations in

talkspurt mode, and on which of the 16 paths that event occurred.
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Following this, the program computes the incoming bit rate (in bps)
at each of the eight links. This rate depends on the number of
speakers in talkspurt mode on each path that includes that 1link,
the bit rate at which each of these speakers is transmitting bits,
the current stripping threshold at that link, and, in the case of
receiver 1links, the stripping threshold at the first link in each

path.

Once the incoming bit rate per second has been determined for
each 1link, it is a straightforward process to update the queues by
simply adding to the queue the product of the incoming bit rate and
the time elapsed since the previous update, and subtracting the

product of link capacity and time:

q=q+ (rate in - capacity)*time elapsed

Negative queues are set to zero, since data cannot be sent before
it arrives. At this point, a decision must be made, at each 1link,
as to whether the current stripping threshold should be changed.
Some of the strategies devised for this decision will be discussed
in the next section. The final step is to update the feedback
algorithm and decide whether transmitters on any of the 16 paths
should change their transmission rate. The discussion of these

considerations will also be deferred until a later section.

17
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The network simulation program was first implemented in the C
language on the Lincoln Laboratory PDP-11/45 facility. However, it
was discovered that the program required so much computer time that
only a few seconds of simulated time could be obtained even with an
overnight run. Hence the decision was made to rewrite the program
in Lincoln Digital Voice Terminal (LDVT) [14] code. The LDVT was
capable of doiﬁg all of the calculations in better than real time,
and the bottleneck in operations became the transfer of information
to the PDP-11 for display and interpretation. A version of the DVT
program was also created which operates in real time in conjunction
with a real-time embedded-coding vocoder residing in two Lincoln
Digital Signal Processers (LDSP's), with the analyzer in one and
the synthesizer in the other. The vocoder was assumed to be
transmitting bits along one of the 16 network paths, and the LDVT
actually performed the stripping operation according to the network

results, for real-time listening, as shown in Figure 4.

The important control parameters of the system are the rates )
and 1, the capacity of each of the eight links, the traffic matrix,
and the rates at which the embedded-coding vocoder 1is capable of
synthesizing speech. A and y were set at .77 and .83,respectively,
corresponding to a mean silence duration of 1.3 seconds and mean
talkspurt duration of 1.2 seconds. All of the eight 1links had
equal capacity of .4 megabit. The traffic matrix and vocoder

rates were given various settings for different simulation runs,

18
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(rate in)
Fig. 4.
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t(priority)
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PRIORITY
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ﬂ
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(rate out)
Q (queue)
(1)P = f(Q)
(2)P = f§ (Rz)
(3)P = f (Rz' Q)

Strategy for controlling queue at each link.
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but nearly all of the discussion in this report will be with an
assumed traffic matrix of (20, 404, 60, 80) for each row, as
discussed previously, and with a vocoder capable of synthesizing at

nine equally spaced rates from 1260 to 10,870 bits per second.

At the end of each second of simulated time, the non-real-time
version of the LDVT program sends to the PDP-11 a number of
parameters of interest, including the current transmitted and
received rate for each of the 16 paths, the maximum queue size on
each of the eight links over the previous second interval, the
percentage wutilization of each of the eight links, and the number
of bits stripped at the central node. In addition, the program
reports all changes in the transmitted and received rate for each
of the 16 paths and the time at which these changes occurred. A
display program is available which displays this information as a

plot of rate vs time.

4. LINK MANAGEMENT STRATEGY

A network which is to make use of an embedded-coding vocoder
successfully must have a strategy at each link for deciding at what
priority 1level it should be stripping bits to control the queues.
As shown in Figure 5, bits directed to a particular link come into
a node at rate Rl, a priority filter reduces this rate to rate R2,
by discarding packets of priority less than P, and a queue builds

up based on the relationship between R2 and capacity. The goal is

20
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STRIPPER

LDSP
(analyzer)

LDSP
(synthesizer)

CONTROL

DVT
{network simulation)

Fig. 5. Real-time system for evaluating embedded-coding
vocoder quality when received rate varies over time ac-
cording to network stripping strategy.
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to keep the rate R2 as close to link capacity as possible, while
maintaining a small enough queue size such that delays are always

kept under a fraction of a second.

In the simulation, the priority P is updated at random time

intervals whenever the number of users in talkspurt mode changes.

For each link, the decision of whether to raise, 1lower, or keep
fixed the priority P is based on both the measured rate R2 and the
queue size. To detect underflow, only the rate R2 was used, since

the queue, as computed in the simulation, will always be zero in

such a situation. For overflow, a prediction of the queue at some

future time was made, based on the current queue and the measured

rate R2, If this predicted queue exceeded a threshold, the

priority P was raised (R2 was reduced).

The simulation has available to it at any instant in time a
number which is precisely the instantaneous bit rate per second.
However, this number would not in general be available to a node in
a real network, and hence, to be more realistic, it was decided to
have each node measure the rate R2 over a fixed time interval. The
measuring process introduces a time delay before the node is aware
of a significant change 1in rate, and this delay necessitates a
reduction in efficiency of about 5%, compared with that realized

using the exact R2, in order to avoid catastrophic dropouts.

SN
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The strategy used for controlling queue sizes was as follows:
R2 was measured over a 100 msec period. If at the end of that
period, R2 was found to be less than a certain percentage, OL' of
the capacity of the link, the stripping priority P was lowered
(more bits were allowed through). If, on the other hand, the
projected queue after another 1AM msec period, based on the current
queue and the measured R2, was greater than another percentage, Oy »
of the capacity of the link, the stripping level P was raised
(fewer bits were allowed through). 1In addition, as an emergency
measure, if the queue itself became greater than 1A% of the 1link

capacity at any time, the priority P was raised.

It was found, through several experimental runs, that the
performance of the stripping strategy was critically dependent upon
the two numbers, GL and GU' the thresholds at which P was lowered
or raised. For example, OL could be set low enough (say 60% of
capacity) such that the system would finally settle at a steady
state condition where the rate fluctuated between 65% and 100% of
capacity, never crossing either threshold. In this case, the
stripping priority P would never change, and therefore, the

received rate would remain fixed.
However, with such a low threshold the link is 1likely to be

underutilized. If the threshold is set higher, say at 80% of

capacity, then there is a much greater likelihood of R2 crossing

23




the threshold due to statistical fluctuations in the load. If, for
example, the mean rate is 95% of capacity, the measured rate would
be much more likely, statistically, to reach 8@% than 608% of
capacity. The result would be an increase in the number of bits
accepted through the priority filter, which would quite 1likely

drive the projected queue over the threshold © forcing the rate

U'
back down again. On the other hand, the higher threshold should

result in an overall higher utilization on the link.

We experimented with several settings for the threshold GL ’
and found 7A% to be the best choice for maintaining a more or less
steady-state per formance without an excessive sacrifice in
utilization. Figure 6 shows the results (received rate vs time)
for the path 1i=1, 3j=1, for the network with the imbalanced load
(24, 49, 60, 88) with two settings for the threshold, .7 and .75.
It can be seen that with a setting of .7 the received rate stays

steady as a function of time, whereas with .75 there are occasional

dropouts due to overloads.

The issues for the threshold on the projected queue are
similar. If the threshold is set near zero, it is likely to be
crossed too frequently. If it is set too high, however,
intolerable delays are 1likely to build up. The number 10% of
capacity represented a compromise which kept delays under 1A# msec,
but allowed queues to build up somewhat over short term intervals

without causing unnecessary changes in stripping level.
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Fig. 6. Comparison of performance with no feedback for two
different settings for 0. Plot is of received rate vs
time for the path i =1, j = 1.
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5. FEEDBACK STRATEGIES

The most important goal of the simulation experiment was to
find an end-to-end feedback strategy that would give stable results
with higher performance (in terms of mean received rate) than was
obtained without feedback. Unless feedback increases the
per formance significantly, it cannot be justified in terms of the

added complexity that is introduced into the system.

In the simulation models, the assumption had been made that
all events occur simultaneously throughout the network. This is
not strictly true, for if there were queues at the two links in the
path, then a change in stripping threshold at the first link would
not be perceived as a change in received rate until after the two
queues had spilled out. However, to account for these delays in
the model would require a tremendous increase in bookkeeping, and
the results obtained would be 1little different from what is
obtained by assuming no time delays. The only place where it was
felt that such delays might be significant was in the feedback
algorithm, and hence an approximation to the expected delay before
an analyzer is aware of a change in the synthesizer's received rate
was included in the simulation. This delay was modelled as twice
the time it would take to spill out both queues in the path, and is

meant to represent a round-trip path, where the phantom return path
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is assumed to introduce the same time delays as the forward path.

Two feedback strategies, "continuous probe" and "periodic
probe", that were tried initially are obvious methods that appear
reasonable at first but are not effective in practice. With the
continuous probe strategy, users always transmit at the next higher
rate than the reported received rate, and hence can immediately
respond to a decrease in the network load. However, this quick
response is achieved at the cost of always having to transmit more
bits than are actually being received. Unless the traffic matrix
is extremely imbalanced, the method yields little or no improvement

in received rate over that realized without feedback.

The periodic probe method was an attempt to realize greater
gains, but it exhibited undesirable instability problems. For this
strategy, users transmit at the reported received rate. However,
if, over a fixed time interval (usually on the order of one second)
no bits have been discarded in the network, the transmitter
attempts a probe. He begins transmitting at the next higher rate,
and does so until he obtains the receiver's report on his received
rate. If the probe was successful, he continues transmitting at

the higher rate. If not, he drops back to the low rate.

The results for this feedback strategy are shown in Figure 7,

for a path which included the lightly loaded receiver link, given

27




TRAFFIC MATRIX
40 60 80

20 40 60 80
20 40 60 80
200 40 60 80

:i 10 T —— =T T
, — PERIODIC —
'r . | esm———— e e ———
Gy -
| Ak e I Icing, ;
[
g o — I — ‘- -
;E —
o —
« — —
x - —
2 —1
o -
1 o | | 1
0 10 20
TIME (sec)
Fig. 7. Transmitted and received rate vs time for periodic
probe feedback strategy, for path i =1, j = 1.
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an imbalanced traffic matrix (20, 49, 60, 8a@, discussed
previously). The path is from the first sender node to the first
receiver node (i=1,j=1). It would be expected that feedback from
the fourth receiver node would cause the corresponding transmitters
to reduce their transmission rate, which would allow the first
sender link to accept more bits through for users directed to the
first receiver 1link. Since the first receiver link is lightly
loaded (20x4 conversations), it 1is to be expected that the
bottleneck in the path would be the sender link, and hence by a
lightening of the load on this link through feedback an overall

higher received rate would be possible at the first receiver link.

In the figure, both transmitted and received rate are shown as
a function of time. Wherever there are two values for rate, the
higher one is the transmitted rate. Transmitted rates and received
rates for this method are usually equal, except in the case of an
unsuccessful probe. This means that almost no bits are being
discarded at the central node. The mean rate is significantly
higher than that obtained with no feedback. However, there seems
to be a pattern of a staircase-like rise followed by a rather
sudden collapse in the received rate. Such rapid fluctuations in
rate are not 1likely to be desirable for producing high quality
synthesized speech; nor would they be expected to produce the

highest possible mean received rate.
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This pattern arose as a consequence of several factors, which
may be understood by frequent reference to Figure 8. In Figure 8
is a schematized graph of received rate vs time for two paths
sharing the first sender link. The staircase rate is the pattern
observed for the path to the lightly loaded receiver link; the
other pattern is the rate observed for the path to the heavily
loaded receiver 1link. In the 1latter case, probes are always
unsuccessful, due to the heavy load on the receiver 1link. Probe
bits do get through the sender link, however, and since a large
number of users are probing, they represent a heavy additional load
on that link for the duration of the probe. At t = @, the
simulation initializes with all links accepting all priority bits.
There is a rapid initial collapse in the rate, as queues build up,
and users respond by immediately lowering their transmitted rate to
the 1low «crisis rate on the link. Once the queues spill out, the
sender link is wunderutilized, and hence probes are generally
successful. The result is that on the average the load on the link
steadily increases. At the beginning, when the link was only being
utilized to 60% of capacity, the short probe by users of the 4th
receiver link did not pose a problem to the first sender 1link.
However, when the load on the sender link was very near capacity,
the same probe by the numerous users on the heavily loaded receiver
path introduced a large excess load on the sender link which pushed
its input rate to far exceeding capacity. The link had to discard

bits, but it could not discard the probe bits because they were of
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Fig. 8. Schematized plot of transmission rate vs time for
two paths sharing first sender link and of percent utilization
on first sender link to illustrate instability phenomenon

with periodic probe strategy.
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high priority. Hence it had no choice but to collapse the rate of
those few users directed to the 1lightly loaded receiver link.
These users responded by setting their transmission rate to the
artificially low rate imposed by the temporary probe. They would
then begin their slow climb back up to 100% of capacity, and the

cycle would repeat.

The problems, then, can be enumerated as 1) users probe
simultaneously, 2) users respond too quickly and too completely to
a drop 1in the network rate, and too slowly to an increase, and 3)
fruitless probes introduce an excess 1load that interferes with
valid transmissions. The asymmetry in user response is the main
contributing factor; the simultaneity is only a secondary factor.
In fact, if the probe 1is modelled as a ramp rather than a siep
function, the slow rise/quick collapse pattern still 'occuré. The
problem occurs mainly as a consequence of transfer of control to
the users subsequent to each crash. Users will then continue to
up-probe until the load has exceeded link capacity, and a new crash

will ensue.

To solve the problem, an entirely new strategy was developed,
for which user response is sluggish and symmetrical, users no
longer act 1in unison, and fruitless probes are eliminated. To
eliminate fruitless probes, a new probing strategy was developed in

which the network actually writes into a field in all priority one
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packets information concerning the highest rate that could have
gotten through. The result is effectively as though the
transmitter had transmitted packets of all priority levels, and the
synthesizer had reported back the 1lowest 1level that was
successfully transmitted. However, instead of having to send nine
packets to obtain this information, the sender would only have to
transmit a 4 bit field with the number 9 written into it (Figure
%Y - Each 1link in the path would replace the number in the field
with the stripping priority, P, if P was 1less than the :number
currently in the field. Such a test-and-replace operation requires
very little processing overhead at each node, and the amount of
excess data that must be sent for probing is thus reduced to only a

4 bit attachment to priority one packets.

In the figure, two such fields are indicated, and the network
writes into only the left-most field. When the receiver receives
this information, he has no use for it, but instead simply
transfers it to the right-most field of the priority one packets
that he is transmitting in the return path. Eventually, then, the
loop will be closed, and the transmitter will know what rate the
network can support. A similar operation is occurring, meanwhile,
in the reverse path, and P2 in the figure is the lowest priority

that the reverse path can currently accept.
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An additional change in the new feedback strategy as compared

with the old one is that users are much more sluggish in their
response to network changes, and do not exhibit an asymmetry in
their response to a reduction in the rate the network can accept as
opposed to an increase. In the new strategy, each user is allowed
to change his rate at periodic time intervals, where the period,
equal for all users, is on the order of 5 seconds. If, at the end
of his period, a transmitter finds that the network can accept a
higher rate than that at which he is currently transmitting, he
responds by increasing his rate by one level. Likewise, if his
rate is higher_than that which the network can currently support,
he decreases his rate by one level. Otherwise, he makes no change,

until the time of his next update.

A final modification is that the users no 1longer act in
synchrony. One could imagine, in a real network, a strategy
whereby each user's first period begins at the time of dial up.
Since users will dial at random time intervals, this will result in
a randomization of the times of rate change for the various users
on a given path. Since it is not feasible in the simulation to
treat each conversation as a separate entity, a simplification was
made such that it is assumed that a certain percéntage of the users
have probed after the same percentage of the probing interval has

been exhausted.
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The results for a simulation run using the new strategy are

shown in Figure 10, for the same path (i=1,j=1) with the same
traffic matrix (20, 40, 60, 80) as was used for the previous
examples. Where formerly only 20 seconds of simulated time were
shown, this time the run was carried out for 120 seconds. Only the
received rate is shown, and the fractional rates are mean rate per
customer rather than realizable rates. It can be seen that the
system is much more sluggish, with a steady state condition being
reached only after 35 seconds. However, the received rate remains
steady for the remainder of the run, a much more pleasing result
than was obtained formerly. Furthermore, the mean received rate is
significantly higher than that obtained with no feedback. Overall
performance is considerably better (in terms of number of bits
stripped at the central node and mean percent utilization on the
links) than was obtained wusing either of the other two feedback

methods.

The overshoot exhibited at around 30 seconds is
characteristic, and occurs as a consequence of the fact that user
actions are more sluggish than link actions. Whenever the link can
transmit all of the bits Rl and still occasionally cross the
threshold OL, the link will eventually lower the priority P to the
lowest level. Users will then continually discover that they can
raise the transmission rate, and will do so until finally the link

must reduce P as a consequence of the projected queue exceeding GU.
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Fig. 10. Received rate vs time for the path i =1, j =1,
using sluggish feedback strategy. Rate is mean rate per
customer rather than realizable vocoder rates.
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The link effectively transfers control to the users, and thus the
increase in R2 is no longer controlled by GL' and will proceed

until finally the overload condition is reached.

The results using this method were compared with those
obtained without feedback for two different traffic matrices. The
first is the familiar (20, 40, 60, 8@) configuration. In this
case, the mean utilization on the links was 80% of capacity without
feedback. However, 15% of the bits transferred through the sender
links were stripped at the central node, effectively reducing the
utilization per 1link down to 72.5%. With feedback, the mean
utilization rose to 9@4.4%, and in addition only 2 1/2% of the bits
arriving at the central node were discarded. Hence the actual mean
utilization of the links was over 89%, considerably better than the

72.5% obtained without feedback.

The other traffic matrix tried was the transpose of the above
matrix: thus the receiver links were all equally loaded, but the
sender links were imbalanced, with the first one being the most
lightly loaded. In this case it would be anticipated that feedback
schemes could offer no advantage over no feedback, since bits would
be stripped at the input of heavily 1loaded sender 1links, rather
than at the central node. 1In fact, feedback would tend to reduce
the overall performance since senders could not immediately correct

for an improvement in the rate the network could accept.
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The overall utilization was found to be 91.4% with no
feedback, and only 88.9% with feedback. However, the surprise was
that the received rate as a function of time for .paths including
the 1lightly 1loaded sender 1links was very steady if feedback was
used, but tended to incur dropouts without feedback (Figure 11).
The reason for this phenomenon is that the feedback scheme operates
as a smoothing filter to control fluctuations in the rate Rl
arriving at each receiver link as a consequence of actions in the
sender links. For instance, when the priority level P is decreased
by one level at a particular sender link, the resulting increase in
the load 1is felt immediately at the receiver links if there is no
feedback, whereas a more gradual increase in the rate would be
observed if feedback is being utilized, as users one by one become
aware of the increased network rate. The result is that, without
feedback, receiver 1links are 1likely to have to cut back the
accepted rate for users of the lightly loaded sender link in order
to handle an overload introduced by a sudden increase in the rate
getting through a heavily loaded sender 1link. The problems are
somewhat analogous to those introduced by the "periodic probe"
feedback strategy, except that recovery from sudden drops in the

rate is much faster without the blanking period restriction.

6. INCLUSION OF DATA TRAFFIC

It would appear intuitively that an embedded-coding vocoder

could operate quite successfully in a network environment where the
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Fig. 11. Received rate vs time for path i =1, j = 1, for
transposed traffic matrix (imbalance is in sender links)
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link was being shared with data. The expectation would be that an
increase in the data 1load could be dealt with by dropping the
vocoder rate, and a potential sudden dropout in vocoder rate due to
a temporary overload could be averted by temporarily allowing data

queues to build up.

The first issue that must be resolved in combining data and
voice is a strategy for portioning out the link to the two types of
users, who have different requirements in terms of delays and
stripping. In particular, speech users cannot afford long delays,
but are only minimally disturbed (through degraded vocoder quality)
by losses of all but priority one packets. With data, on the other
hand, the only restriction on queue buildups is available buffer

space in the node, but none of the bits should be discarded.

A possible solution would be to give all data packets a
priority of one, which will assure that they are not discarded.
However, the network will have no way of knowing that data packets
can be delayed, and hence may insist on rushing these packets

through at the expense of lower priority speech packets.

Another solution is to keep the data in a separate queue, for
which there are 1less strict requirements on max imum size.
Fluctuations in the data 1load could then be smoothed out at the
point of exit on the link by allowing the queue to expand and

shrink as needed.
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For the experiment, the data was modelled as a stream of
packets arriving at exponentially distributed time intervals. All
data packets were of fixed size, 1200 bits, the ;ame size as the
speech packets. The capacity of all eight links in the system was
doubled (from .4 to .8 Megabits/sec), and the mean data load was
set to equal exactly the additional capacity on each 1link. Thus,
the speech users now have available to them a network with the same

mean capacity as formerly existed, but with a capacity which

effectively varies with time, as the data load fluctuates.

The strategy for apportioning the link to speech and data need
depend only on the data traffic, since speech bit rate can be
adjusted by stripping off 1lower priority packets as needed.
Although for the simulation the mean data rate is a fixed known
number, 1in general each node would have to predict the data load
based on some past statistics. In the simulation, the mean data
rate is measured for a fixed time interval and the value obtained
is used in conjunction with the data queue as an estimate for
deciding how often to send data packets out on the link for the
next fixed interval. Hence the model is designed to be able to
deal with a data load whose mean is an unknown variable rather than

a known constant, and thus represents a more realistic system.

Once it has been decided what percentage of the packets should

be data for a given time interval, a strategy is needed for
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actually realizing that percentage without ever holding up either
queue for a long time. One possibility (Figure 12) is to consider
a small number, M, of packets as a unit, and to send data and
speech alternately until the one with the lower allccation has met
its quota. The other type 1is then sent exclusively for the
remainder of the set of M. 1In addition, if the speech queue is
empty but instructions are to send speech, the node would send data
rather than let the link go idle. The same would hold for the
reverse. Thus only if both queues are empty will the link remain

idle.

The strategy which was developed was to measure the incoming

data rate over a one second interval, and to set the percentage of

the link devoted to data such that, if the same number of bits were
to arrive during the next second interval, the data queue would |
dwindle to exactly 2zero by the end of the next second. This 11
fraction was then truncated to 4 bits, or 16 levels, thus assuming |

M = 16, Truncation was thought to be preferred over rounding since

it was not necessary for the data queue to actually reach zero by
the end of the next second. Thus with truncation the data will be

allocated a capacity somewhat 1less than the estimate, where the

L s g A A S A3

estimate is generally somewhat more than is actually needed. When
the allocation turns out to be inadequate, the queue will have
built up by the end of the next second, at which time a larger
portion of the 1link will automatically be given to data, to é;

compensate.
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Fig. 12.

Strategy for portioning out link to speech and data.
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The strategy for speech, meanwhile, is the same as before,
with the packet stripping priority being based on the ratio of the
incoming rate R2 and the link capacity, C, as well as the queue
size. The only difference is that C, the allocated capacity after
data has been accounted for, will now change as a function of time,
and therefore the predicted queue will be 1less accurate than
formerly. The true capacity will not only be readjusted every
second, but will also fluctuate within the one second intervals,
because of the fact that the speech queue can spill out whenever
the data queue is zero. The consequence is that there is a greater
fluctuation in the ratio R2/C, and the computed ratio will not in

general equal the true ratio.

The results are shown in Figure 13 for the path i=1, j=1,
using the imbalanced traffic matrix. Speech users are assumed to
make use of end-to-end feedback. With the original settings for GL
and © (768 and 10%) (Figure 13a), there are frequent large

U
dropouts in the received rate, as a consequence of overload on the
links. Not only is the threshold setting too high because of the
greater fluctuations in the ratio R2/C, but also the crashes are
more severe because of the interplay of speech and data. As long
as the speech load is below, on the average, the capacity reserved
for speech, the data can obtain more capacity than has actually

been reserved for it because data gets the speech spillover. When

the speech bits begin to consume their entire allocation, however,
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Fig. 13. Received rate vs time for system with 50% data load;
data allocation is truncated; i =1, j =1
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the data no longer gets extra capacity, and hence its queue begins

to build up. A buildup in the data queue will result in an
increased allocation for data, which will shrink the portion
reserved for speech at a time when such a cutback can be

ill-afforded. The result is a sudden drastic drop in the received

rate.

This problem is a more extreme example of the basic problem
that has haunted the system from the beginning. The problem is
that when input rate exceeds capacity for even a short time, queues
build up very quickly to intolerable proportions. The obvious
solution in such a situation 1is to cut way back on the rate

temporarily, to let the oversized queues spill out.

A better alternative 1is to avoid such a situation by not
allowing the stripping priority P to decrease if such a decrease
may result in overload. This means a reduction in the threshold

0 Indeed, if OL is reduced to 60%, the performance is again

L
comparable to that obtained without data, i.e., dropouts are very
infrequent, as shown in Figure 13b. However, even for this run
there are two instances, one in paths through sender link 2 and the
other in paths through sender 1link 4, when the rate dropped
suddenly to only 2400 bits per second. Hence the frequency of the

sudden dropouts has been greatly improved, but their severity, when

they occur, remains the same.

47




A change in the threshold GU will not help the situation, for
queues will still build up rapidly, and the same sort of crash will
occur when the projected queue crosses a lower threshold as
occurred when it crossed a higher threshold. 1In fact, a lower
threshold would be crossed more frequently due to statistical
variations than would a higher threshold, thus aggravating the
problem. The preferred setting for OU was found in all cases to be
the maximum affordable level to keep speech queues within the 10%

tolerance range (keeping delays under 100 msec).

An alternative strategy to alleviate catastrophic dropouts is
to give the data a larger portion of the 1link capacity than it
needs such that data queues will not build up excessively. This
could be arranged by rounding rather than truncating the number
computed for the fraction of the link to allocate to data. Since
data is always allocated a portion greater than it actually needs,
data queues will not build up, even in the event of overload of
speech. Then a strategy could be devised for temporarily
reallocating the data portion (say cutting its allocation by 5@%)
whenever a crash is imminent. The data queue could then be viewed
as a reserve resource for getting over a heavy speech load
condition, to avoid having to suddenly drop the speech rate to a

very low level.
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The results for such a strategy are shown in Figure 14. Here
the thresholds OL and QUare kept at 70% and 10%, as in Figure 13a
and in the case of no data. However, the data is given a rounded
rather than truncated portion of capacity. Furthermore, whenever
the priority threshold P needs to be increased, the data portion is
simultaneously cut to 50% of its former value, for a 140 msec
period. Such a cut gives the speech a chance to spill out its
temporarily overloaded queue, at the expense of an affordable

buildup in the data queue.

As can be seen, there are several tradeoffs _involved here,
with a slightly higher efficiency being realized at the expense of
more frequent dropouts in received rate. Although the rounding
strategy for data results in a somewhat lower performance in terms
of efficiency than was obtained with truncation and a 668% threshold
(91.5% vs 92.2%), there is a much smaller danger of drastic
dropouts occurring, even when the threshold is set too high, i.e.,
the setting of the threshold is less critical when a conservative
allocation 1is wused for the data. Furthermore, the desired
threshold setting is more closely matched to the optimal setting
when no data is present. Certainly it is preferred not to require

a threshold setting that is a function of the mean data load.

Figure 15 shows the data queues and efficiency as a function

of time for the eight links for the first 30 seconds of the run
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Fig. 14. Performance with 50% data when data allocation is
rounded, and reduced by 50% for 100 msec whenever speech
rate drops. 0, = 70%.
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corresponding to Figure 14. The scales for the two functions are
different, and data queue size is expressed as a percentage of
total 1link capacity. Each point on the efficiency curve is the
mean efficiency over a one second interval, and each point on the
queue curve is the maximum queue observed over the one second
interval. 1t can be seen that the first receiver link (j = 1) has
a very small queue, because of the light speech load. Furthermore,
the efficiency for this link slowly climbs from a low of around 65%
to a high of around 98% over the interval, as users gradually
increase their transmission rate. The large queue on the second
receiver 1link occurs after the efficiency has been nearly 100% for
several seconds. This is an example of a situation where the data
queue has been allowed to build up to avert a crash in the speech
rate. Throughout the run, the maximum data queue observed was 10%
of the total link capacity, which is within practical bounds. This
would introduce a delay of somewhere between 200 and 400 msec,

depending on how long the data allocation was halved.

It is interesting that the performance in terms of percentage
link wutilization actually improved when data was added to the
system as compared with the performance with speech only (91.5% vs
89.1%). Such improvement 1is probably a consequence of the fact
that the speech bits can take advantage of excess capacity in the
data reserve and vice versa. However, this effect would be offset

by the fact that a greater variability in the ratio R2/C is
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introduced, and hence it was not immediately obvious that

per formance would improve.

The simulation has always assumed a fixed mean data rate and a
fixed mean speech rate. In a real network users will continually
enter and leave the system, and therefore the mean will change as a
function of time. The initialization and termination of
conversations is probably not an important effect, since the
observed effect will be a slow drift in the mean number of users,
which can be handled by the system. The data fluctuations are of
more concern, since a user could theoretically suddenly decide to
transmit an enormous file across a link. Here a strategy would be
needed to control the number of data bits that could enter the
system over a fixed time interval, by holding up the data at the
source. The details of the solution are not immediately obvious,
but will not be dealt with in this report. In any case, another
reason for desiring a generous rather than sparing data
apportionment is that the system 1is better able to cope with

increases in the data load.

7. SUMMARY AND CONCLUSIONS

A network simulation program has been implemented on the
LDVT-PDP-11/45 facility which has addressed several issues with
regard to the feasibility of using an embedded-coding vocoder in a

network environment. Although many assumptions were made for the
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simulation that are not strictly valid in a real network, it is
believed that the results obtained will be of use when an attempt
is made to incorporate an embedded-coding vocoder into a voice/data

network.

The major problem that occurred, and which reappeared at every

stage of the simulation, was the tendency for the received rate to
suddenly drop by several priority 1levels at times of overload.
This problem occurred even without feedback, if the setting for OL ;
was too high. Whenever statistical fluctuations in the measured
rate are such that the threshold GL will occasionally be crossed

even when the mean rate R2 approaches capacity, then such dropouts

will be expected to occur.

With a feedback strategy which is immediately responsive to
drops in the network rate, but sluggish in its return to a high
rate, such as was the periodic probe algorithm, the observed
received rate will be a repetition of a staircase-like rise
followed by a sudden collapse, Each such crash is unavoidable
because the network has passed control over to the users subsequent
to the previous crash, and the users will probe until the upper
limit OU is exceeded, without the benefit of the restrictions

ordinarily imposed by OL'
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The preferred feedback strategy is one where user response is
very sluggish, and symmetrical with respect to rate increases and
rate decreases. Each user is only allowed to change his rate once
every few seconds, and even then by at most one priority level.
Because the strategy is so sluggish, users are not capable of
crowding the threshold qj with a rapid increase in rate. Nor will
they suddenly set their rate to a low level subsequent to a network
rate collapse, should such a collapse occur. The only possible
disadvantage is that wusers take a long time to adjust to a large
sustained change in the network rate. The hope 1is that network
load will change slowly enough such that users can more or less
track such changes. If not, the result is not catastrophic, but
only a reduced efficiency (if the network can suddenly support a
higher rate) or a greater stripping of bits at intermediate nodes

(if the network must suddenly drop its rate).

The incorporation of data initially introduced more serious
collapses in the speech rate when the threshold OU was crossed, but
the problem was greatly alleviated by the modified strategy which
kept the data queues low except in times of imminent crashes. It
was concluded that a preferred algorithm is to give the data more
capacity than it actually needs except during times of trouble in
the speech domain, both to alleviate crashes and to allow some

flexibility if data loads should increase.
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The scope of this simulation program was somewhat restricted,
and there are many aspects of the problem which could be further
explored through a more complicated simulation experiment. The
simulation made use of only a two-hop network, did not allow for
any changes in the mean rate either for data or for speech,
investigated only a small set of different traffic matrices,
assumed an idealized vocoder that is probably better than what will
actually be available, and made many assumptions (such as Poisson
distribution) that are not strictly valid. Even with these
restrictions, however, it was found that effects were often
unanticipated and difficult to interpret. Further elaborations to
the system should await a fuller understanding of the more tightly

defined problem.

If the embedded-coding vocoder were less idealized, a rather
severe deterioration would ensue in the network performance. If,
for example, the vocoder available to users was capable of
synthesizing at only four rates, 24@a, 4800, 84@0d, and 16,8080 bps,
then a change in the stripping priority P could result in a drastic
change in the bit rate R2. For example, if users were sending at
16 kbps, and P was changed such that the lowest priority bits were
now rejected, the mean bit rate R2 would immediately drop to 50% of
its former value. There is a danger with such a situation of the
rate oscillating at very frequent intervals between 8 kbps and 16

kbps, to achieve some intermediate rate, or, what is worse, of the
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link raising the rate to 16 kbps and suddenly having to collapse to

the lowest rate due to overload.

One way to alleviate this problem is to maintain several, say,
16, possible priorities, and to assign, for example, the highest
priority to the.2400 bps needed to generate the low rate vocoder,
the next 5 priorities to the additional 240A% bps needed for a 48880
bps vocoder, 5 priorities to the 3204 bps that bring the rate up to
8 kbps, and finally the last 5 for the 8 kbps that would allow the
synthesized rate to go from 8kbps to 16 kbps. A single user would
then be assigned 4 numbers for the duration of his conversation,
for example, 1, 3, 14, and 15. Then the link would have 16
different priority levels to strip and each user would experience a

steadier received rate.

Another alternative, which is probably more cumbersome to
implement, is for each link to selectively strip a subset of the
users, and to maintain a record of which users have been stripped
to the 1lower rate. This technique would require considerable

bookkeeping, and hence is probably undesirable.

Perhaps the best alternative is to invent a vocoder that is

capable of synthesizing at a large variety of different rates.
Work is proceeding on the development of such a vocoder, and we

feel that the invested effort will be vindicated by the improvement
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in network performance and simplification of network tasks that

will result.
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