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Introduction
- A recent ARL report (Reference 1) dealt with the calculation of the

mean flow of a heated, laminar, water boundary layer on an axisymmetric
body. In the development of the pertinent equations a coordinate trans-
formation was used to eliminate explicit dependence on the coordinate in
the flow direction. The computed velocity and temperature profiles were
then given by similarity solutions. The detailed laminar boundry layer
characteristics that resulted from these solutions were used as a means
of developing a design procedure for specifying the distribution of wall
temperature necessary to keep the flow stable.
Although the procedure worked well, the required number of

¥ parameters made the interpolation process that was used rather cumbersome
and any presentation of data in tabular or graphical form was extensive.
It is possible with a different transformction to reduce the number of

parameters by one, thus reducing the complexity of the computations and

ultimately the design procedure.
The details of the transformations used in both boundary layer

computation methods and a description of the interrelation of the para-

meters will be presented. As in Reference 1, the effects of heating on

laminar separation and transition will be given.

Development of Equations and Their Solutions

In Reference 1, for steady mean flow the incompressible boundary

layer equations on a body of revolution were presented as:
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d(p*rxuk) . 3(pkr*vk)

ok Bye . " O
du _*
du* Ju* e ) du¥*
p* (u* sgn TV 3;;) o Ml — B (u* By* (69
du *
oT* o9T* e ) oT*
p*cp*(u* —a;-*— + v* a_y_;) = —p*u*ue* axk -4 ay* (k* ay*)

The boundary conditions for these equations are:

at y*=0 uk = yk =
as y*+w u* > U *
e
T* > Tw*

The third of Equations (1) is an energy balance equation in which buoyancy
and dissipation by friction are ignored. The stars indicate dimensional
quantities. In dimensionless terms (see List of Symbols), Equations (1)

become:

d(pru) + A(prv) _ 0

9x dy
du
b, Salp gaile geg < B
du
oT . dT. _e T 0 oT
pCp(u x ¥ 5;) ¥ —EpuUe dx e P_R_ 9y o ay)

Re
Equations (1) and (2) do not include transverse curvature terms; i.e.,
derivatives of r*(= r*o(x*) + y* cos ¢) with respect to y* are considered
small. 1In effect, then, r* = ro*(x*). Also, the Eckert number, E, when
evaluated for water at expeéted conditions in the free stream is a small
quantity and the term in which it appears can be dropped.
A stream function can be defined as:

b= (o % ik xx UM)E EOY) 3
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where N 1is the transformed y coordinate,
*

*
(%—;) dy*.
o

0
Using Equations (3) and (4) along with the definitions:

*
x* dUe

U * dx*
e

*
2 x* dro

s r * dx* °?
o

the last two of Equations (1) reduce to:

our) 4w - ph + EEIEL e g
P, 5D For + (ko) = 0 ™
where 0 is:
T* - T *
0= ﬁ (8)
The boundary conditions become:
at N=0 F'=F=0
0=1
as N> o FU o1
©-+>0

Equations (7) were solved with a slightly altered scheme of
Lowell and Reshotko presented in Reference 2. This scheme is based
on the numerical integration process developed by Nachtscheim and Swigert
(Reference 3). The procedure that was adopted was to assume a series of
values for the parameter M, A, and AT* (= Tw*-Tw*), tabulate the calculated

boundary layer characteristics, and use these results in a design procedure.
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If Equations (2) are transformed according to the Mangler-Levy-Lees

transformation,
» 2
dg = Uero dx 9)
dn = (Re/2£)% U,r dy, (10)

and a reduced stream function,

Vixy) = QIR E(E,M (11)
] and the parameter,
du
B8 - kb8
U £ (12)
e
are introduced, Equations (2) reduce to:

(Puf")' +££" + B(E - f'z) = JECECEE. ~ £"F.)

p £ €
(13)

l~__ rye v = ot ' A
PR (pkg") "' + Cpfg Z*CP(f gE g fg).
g 1is used here in place of T. If the functions f and g are

assumed to be independent of the transformed coordinate, I, the following

similar-type homogeneous equations result:

(PuE™) ' + e(% -£'2) 4 g5 g
(14)

L !"
PRCP fg' + (pkg') 0.

The attendant boundary conditions are:

at ns= 0 f = f' = 0
Sl
as n -+ £' > 1
g+1
AR G SO VRER R, Sl - ~— —— i
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~Ti
Although Equations (7) and (14) were derived by use of different trans-

formations, their makeup suggests that they can be related with an affine

transformation summarized as follows:

Set F = Af, n = BN. (15)
Therefore,
& 4 @n ol
dN  dn dN dn (16)
£ g OF A '
F 35 = B s ABf', (17)
1" 2"
F" = AB°f", (18)
and P AB3f"' : (19

The relation between g and © can be developed with

40 Tm* & T *
1 = e— = —— _E = «© 1
S R G o dn BT %8 (20)
w L w 4]
and
g
O" = B (_—'_T *—T *) g . (21)

Making these substitutions in Equations (7),

@B (ouem + EIEL aheen 4+ MG - A%%60%) = 0
T * T *
M+ A+ 1 AP )
Py DN T e B Gk =0 @)

From Equation (17) and the fact that in both systems f' = F' = u/Ue,
it follows that AB = 1. Furthermore, to reduce Equations (22) to

Equations (14),
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R TS SR (23)

B = —— il (24)

and

N e
B T (25)

Therefore, the M and A parameters can be combined to give one
parameter, B. A and M are, of course known for points on a given body
from the details of its contour and the pressure distribution, measured
or computed by way of the Douglas-Neumann procedure. The conclusion is,
of course, that Equations (14) are basically the equivalent of Equations
(7) and can be used to generate the data for the design procedure pre-
viously mentioned. 1In fact, solution of Equations (14) is less difficult.

A finite difference procedure due to H. B. Keller [4] was used in
solving Equations (14). The procedure, known as the box method, was deve-
loped by Keller and applied successfully by Cebici and Smith [5] to a wide
variety of problems. The physical properties of water, Cp, P, U and k are
a function of temperature and are known from information presented in

Reference 2.

Results of Boundary Layer Computations

The boundary layer computations were performed for a parametric study
in which the parameters were f and AT* (=Tw*=Tw*). In all cases the

free-stream temperature, T _*, was kept at 60° F. A summary of the results
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=135
of this parameter study is found in Table 1. Plots of these data are also

displayed in Figures 1 - 5.

The boundary layer thicknesses, 6* and 0O, are defined in the sense

of two-dimensional definitions,

©o

§* = I (1-p*u*)dy (26)
0

0 = J p*u*x (l-u*)dy*. (27)
0

This leads eventually to slight differences when comparing with thicknesses
resulting from axisymmetric considerations. Little difference in the shape
factor, H (= §*%/0), should result, however, when the point on the body under
consideration has a smallboundary layer thickness compared with the body
radius. For considerations of a laminar boundary layer this is, of course,
generally true.

The quantities, ns* and No» given in Table 1 and shown in Figures 1

and 2, must be transformed to get &* and © as follows:

( N[ vo*xx |k
§*% = 2 Ve %
TR U * Ns (28)
\ J \ e
e 2 ’%rvw*x*’5
* e A D U * o (29)
L J \ e J

The shear stress and heat flux quantities, Te and 9. must likewise

be transformed as follows to get T* and q*:

[ %
it B S [vw:] M+;+1l T (30)

Cc




’F“v . » v v - re— " - -~

4 January 1979

=14~ JJE:pjk
* Ue % M+ )+ 1“5
g =g ;;; it e (31)

Critical Reynolds Number Correlation

Stability information in terms of the critical Reynolds number, RG*crit
is available for two-dimensional flow both for the case of the unheated
boundary with pressure gradient and for the flow over a flat plate with
heating at the wall. The results of the unheated case are found in

Reference 6 as critical Reynolds number versus the Pohlhausen parameter

du
A =-% —Ef-, and the heated case results were obtained from Reference 2
as critical Reynolds number versus temperature difference. The A and
AT parameters were translated into the shape factor H = §*%/0 so that !
in each case R

6* .. could be plotted against H. The curves in
crit

Figure 6 are the result. It can be seen that the correlation is quite s i

good, indicating that the stability of the laminar boundary layer is
strongly dependent upon H, regardless of whether it is obtained by
favorable pressure gradient or by heat. A similar correlation is reported
in Reference 7.

This correlation provides the basis for the development of the type

of design information which will be presented here. Although based on two-
dimensional stability information, the correlation is considered valid for
the axisymmetric case because the stability equations, under the assumption
that the boundary layer thickness is small compared to the local body radius,
are the same for both cases.

The curve in Figure 6 for the variation in pressure gradient is re-

peated in Figure 7 and extrapolated in the low Rd* ok regardless of how

1~
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H 1is obtained. Table 2 gives specific values from this curve for ease in

effecting computations involving these curves.

Determination of Body Temperature Distribution

The procedure outlined here is essentially a simplified version of
that outlined in Reference 1. Two criteria were chosen to insure the
maintenance of laminar flow: (1) the provision of just enough heat to
keep the Reynolds number (based on displacement thickness) equal to the
critical Reynolds number and, (2) the provision of enough heat so that the
peak critical Reynolds number is maintained. These are referred to as

"minimum heat" and "

maximum heat" conditions respectively. The minimum
heat criterion implies that, for a particular free-stream velocity, enough
heat is added to make the operating Reynolds number Ré*, equal to the
critical value. This should insure that there will never be any amplifi-
cation of waves in the laminar boundary layer. The maximum heat criterion

fixes the R at its maximum value. Whether there is amplification

*

§ crit

depends upon the free-stream velocity being high enough to have the

* *

operating R6 exceed the maximum RG i’

In implementing the temperature hunting procedure, the data in Table 1

can be filed and then recovered by the computer for interpolation purposes.
The geometry and potential flow pressure distribution for a body will be
known so that an M and a A and, consequently, a B can be determined

for each point on the body under consideration. This will be designated as

Bo for a particular body point. The AT* required at a body station can

be determined by applying one of the criteria already mentioned and inter-

polating the data to get appropriate quantities corresponding to Bo.
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In the minimum heat case the procedure would be as follows:

(1)

Determine an Ho versus AT* curve corresponding to Bo as

illustrated by the interpolation procedure pictured in Figure 3.

The

curves can be represented by spline fits and values are

extracted accordingly. All the other quantities (na*, 9. Tc) can

be similarly handled so that a curve of each of these is known as

a function of AT* for particular Bo's.

(2)

AT*

First choose AT* = 0, The na* corresponding then to

=0 and 80 can be used to determine &* for a particular

free-stream velocity using Equation (28).

(3

Calculate RG* by means of

*
U *
* =
RG v

©0

(31)

This is the operating RG*'

(4)
H.

for
(5)
AT*
AT*
for

(6)

Enter Figure 7 with RG* from step (3) to determine a required
by entering with the operating RG* we are saying that, in order

this to be the RG* e e must produce a corresponding value of H.

cri
The H required from step (4) can be used with the Ho versus
curve of step (1) to determine the required AT*. This required
now will change the value of ns*, originally determined in step (2)
AT* = 0.

Repeat ~=teps (2), (3), (4), and (5) until the AT* required

converges within a desired accuracy.

)

and

Enter the q, and T, Vversus AT* curves established for Bo

get the q and T values from Equations (30) and (31).
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For the maximum heat case the somewhat different procedure is as
follows:

(1) Assume H = 2.29. This corresponds approximately to the point

where RG*crit reaches its maximum. This is not a very precise

number and it could be as low as H = 2.2. Adding heat beyond the

value that produces the maximum RG* will result in RG*

crit crit
becoming smaller (see Reference 4) and thus be counterproductive.
(2) Enter the curve of Ho versus AT*, determined in step (1) of
the minimum heat procedure, and extract the AT* required for

H = 2.29.

o

(3) Extract q. and T for the AT* of step (2) from curves of
q and Tc versus AT* also determined in step (1) of the minimum

heat procedure and again convert to q and T via Equations (30)

and (31).

Laminar Separation

An attempt was made to obtain limits of B for different AT* values
beyond which laminar separation would occur. Using the criterion that the
skin friction vanishes at the point of separation, curves of Tc versus
B were extrapolated to obtain the desired limits. The computer program will
not calculate a solution to the boundary layer equations at T = 0 so that
extrapolation is necessary. Figure 8 is the result of those extrapolations.
For a given local temperature difference, laminar separation will occur for
values of B below the curve. The relatively small effect of temperature

difference is apparent.
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As a check on the accuracy of the calculated separation f, an attempt
was made to get as close to separation as possible for the unheated two-
dimensional case. This is the solution for Falkner-Skan Flows where 8
is now the Falkner-Skan B. These results were then compared with those
presented in Reference 5 and the results are presented in Table 3. The
f"w values, representing the slope of the velocity profile at the wall,
and the corresponding B8 values are compared. Richardson's extrapolation
discussed in Reference 5 was used to get the ARL values of f"w'

As can be seen, the Smith and ARL values compare favorably near laminar
separation. The Keller-Cebeci Value of B at laminar separation does not
appear to plot smoothly with the rest of the values listed and thus appears
to be in error. A plot of f"w versus B for the ARL results appears in

Figure 9. Values corresponding to reverse flow also appear in this plot.

Transition

The prediction of transition for a given temperature distribution on
a body follows the same lines as presented in Reference 1. The basis for
the method used here is the plot of a band of calculated data supplied
through the courtesy of A.M.0. Smith (See Figure 10). The band marks the
range of values of Rx trans Versus H that were obtained from e9
stabilitity calculations performed for a variety of heated and unheated
wedges. It would be logical to choose the lower bound of this band as the
transition criterion. Values for such a curve are given in tubular form
in Table 4. Translating H into B for this transition curve, the plots

shown in Figure 11 result. These curves indicate the transition Reynolds

number that would correspond to particular values of B and AT*.

A A R W B A S
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As stated in Reference 1, the curve used as the criterion for transition

is generally optimistic, that is, it predicts transition at a higher Reynolds
number than some available unheated body transition data would indicate.

This is evidenced by the experimental points plotted in comparison with the
transition curve in Figure 12. The data points are taken from Refererce 8.
and the H values for these data were obtained from the information in
Table 1.

In work not reported in this memorandum, correlation between the
Transition Analysis Program System, TAPS, and the information from this
similar type solution indicates that the H values for a given temperature
distribution are consistantly higher for TAPS by a factor of about 1.03.
This correlation is with respect to bodies of the type that would produce
fairly flat pressure distributions and which would profit from the addition
of heat for boundary layer stabilization. A suggested approach for esti-
mating whether or not transition will occur is to replot the curve of Figure
12 with values of H reduced by 1.03 and then, using the calculated data
of Table 3 in establishing the boundary layer characteristics, one would
have a curve consistent with TAPS and experimental transition information.

The curves of Figure 11 could, of course, be similarly altered.
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Conclusions

Techniques developed in Reference 1 have been simplified and data have
been generated that permit one to estimate in a relatively easy manner the
temperature distribution necessary to stabilize the flow over an axisymmetric
body. Additionally, these tec;niques and data provide a means for deter-
mining the local heat flux, skin friction, the laminar separation point, and_
the point of transition for a heated axisymmetric body.

All these estimates can be made by using the values of the various
quantities presented in the tables and by following the interpolative pro-
cedures and criteria that have been outlined. A simple computer program to

do this can be easily written or one can interpolate between the curves that

are also included in this memorandum.
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TABLE 1. (con't)
Computed Laminar Boundary Layer Data
B 2 ng* o H A q,
(°F) (°F)
-0.12884 60.0 60.0 24346687 (0.585424 4.,011941 0.002027 0.00000%
-0.19883 600 U0« 24342079 0.585412 4,000732 0.0C3361 0.0000092
-0e19882 6U.0 66«0 2337443 0.585401 3.992693 0.004302 0.000002
-0.19881 60.0 t0.0 2.333660 0.565389 3,9€E6510 0.00507« 0.000000
-0.19880 60.0 60.0 2.330387 0.535373 3.980997 0.005745 0.000000
~0s19E50 6040 60.0 2.281900 0.585037 3.900435 0.015972 0.000000
-0.19750 60.0 0.0 2.210756 0.583943 3,.785911 0.,032011 0.000000
=0.1950u 60.0 60.0 2.116E16 0.501349 3.641214 0.055229 0.000000
-0.19000 6L«0 0.0 2.006623 0.576511 3.480631 0.C85738 0.0000092
-0.12000 6C.0 0.0 1.8714%4 0.567695 3.296658 0.126663 0.000000
-0Ge1600u 6040 0.0 1.706604 0.5521861 3.,090658 0.190&00 0.000000
-0.13G00 60.0 6CeU 1.551150 0.532256 2.914295 0.261439 0.000002
-0.10000 6040 60.0 1l.442681 0.515027 2.801174 0.319285 0.000002
-0405060 6042 500 14312355 0.490445 2.675848 0.400337 0.000000
0.00000 6U0 600 14216777 04469578 2.591214 0.469615 0.0000090
0.05000 60.9 60e0 1141737 0.451445 2.529073 0.531145 0.000000
Je 10000 60.0 60.U0 1.080322 0.435431 2.481042 0.587052 0.000000
0¢c000L 6040 0.0 (0.984163 0.408199 2.410986 0.686726 0.000000
0.3C00u 60G.0 ¢0.0 C(C.911000 0.385701 2.361935 0.774775 0.000000
040000 60.0 0.0 0V.852642 04366652 2.325477 0.854444 0.000000
0e5000u 6ULC 0.0 0.804557 0.350228 2.297236 0.927705 0.00000G9
-0.20893 6040 30.0 2.097875 0.5803C6 3.615118 0.0207067 19.329570
-0.20892 604U FUeQ 2.096681 0.550283 3.613205 0.021024 19.342323
-0.20090 60.0 0.0 Z2.094364 0.580237 3.6095C00 0.021525 19.367075
-JezuB8C 60«0 9C.U 2.083930 0.580018 3.,592874 0.023738 19.478611
-0.20870 6040 00 2.0740588 0.579813 3.578549 0.025790 19.575370
-0.20860 6040 90.0 2.06681l2 0.57961l8 3.565818 0.0275¢€5 19.661891
-0.20850 60.0 0.0 2.059455 0.579430 3.554276 0.029236 19.740772
-0,20750 60.0 30.0 2.005769 0.577771 3.471562 06041700 20.318500
-0.20500 60.0 90.0 1924881 0.574273 3.351856 0.061960 21.196521
-0620250 6040 J0.0 1.869508 04571155 3.273209 0.076934 21.803340
-0.2000u 60.0 90.0 1.825620 0.568247 3.212725 0.089487 22.287952
-0.19891 60.0 90.0 1.806807 0.567028 3.189980 0.094465 22.474502
-0.19%9880 60.0 90.0 1.807173 0.566906 3.187782 0.094953 22.4926560
-0.19850 60.0 90.0 1.802772 0.5€66576 3.181873 0.096275 22.541591
0419750 600 0.0 1.788641 0.565488 3.163007 0.100562 22.698951
-0.19500 60.9 0.0 14756391 0.562845 3.120561 0.110609 23.059513
-0.19000 60.0 90.0 1.701585 0.557833 3.050348 0.128559 23.677093
-0.18000 6040 9040 16615822 0.548625 2.945222 0.159041 24.656871
-0.1600u 60.0 90.0 1.493300 0.532410 2.804791 0.208316 26.08911!
-Ce13000 60.0 90.0 1.366991 0.511660 2.671677 0.267459 27.613670
=0.10000 6040 0.0 1.275009 0.493801 2.582028 0.316945 284761150
-0.0U500L 60.0 90.0 1.161749 0.468446 2.480004 0.386971 30.226741
C.00CO00 60.0 90.0 1.077358 0.4470%6 2.410002 0.4470738 31.364421
0.050600 60.0 J0.0 1.010544 0.428511 2.358267 0.500513 32.298393
0.1000u 60.0 90.0 0.955591 0.412213 2.318197 0.549049 33.092254
0620000 6040 90.0 )+ 869203 0.384630 2.259846 0.635467 34.395675
0430000 6040 90,0 (.£03296 0.361966 2.219259 0.711632 35.444625
f Ues000L  6ULD 0.0 0.750673 0.342869 2.189386 0.7803069 36.323066
é CeS0000 6040 9040 04707308 06326472 2.166520 0.843481 37.07896¢4
fBISFIﬂiISIISI
f TOOM OO0RX MERMISHRD 70 1 A
i




=23

4 January 1979

JJE:pjk

TABLE 1. (con't)

Computed Laminar Boundary Layer Data

y) B T Tw nG* "o A e 9
(°F) (°F)
-0.21624 60C.0 120 .Q 1.207363 0.571916 3.335039 0.030837 43,006950
« =0a21823% 60.0 120.0 1.906636 0.571889 3.333927 0.030999 43.0243207
=0«21822 . 60.0 120.0 1.905916 0.571862 3.332826 0.031160 43,041473
-0.21820 60.0 12040 1.904495 0.571808 3.330654 0.031477 43,07536¢6
=0.21810 60.0 120.9 1.697745 0.571547 3.320366 0.032993 43,236473
-0.21800 60.0 120.0 1.891496 0.571296 3.310883 0.034406 43,355727
-0.21750 60,0 120.0 1.8365260 0.570155 3.271494 0.040451 44,013335
~0.21500 6060 2050 1.782535 0.,9565583 3.15L677 0.060737 46.00439¢4
~0.21000 60.0 120.0 1.685818 0.558277 3.019682 0.087017 48.359115
020750 60.9 120.0 16560271 0.555035 2.973271 0.097434 49.232963
-0.20500 60.0 120.0 1.61933837 0.551968 2.933840 0.106842 49,996231
= 20259 60.0 1200 1.591915 0549040 2.899452 0.115499 50.678520
~0.20000 60.0 12020 1.567077 0.546228 2.868908 0.123569 51.298301
-0.19E91 60C.v 120.0 1.556332 0.545033 2.856582 0.126934 51 +952261
-D0.19880 60.0 1200 « 555929 04544914 2.855367 0.127269 51.577400
-D419850 60.0 120.0 1.553212 0.544589 2.852083 0.,1286178 51.645500
-0« 19750 60.0 120.0 1.544346 0.543514 2.841408 0.131165 51.868003
-019500 60.9 12040 1.523349 0.540888 2.816386 0.136306 52396461
-0e1900u 60.90 120.0 Lo 485516 0535859 1 2.702212 01518083 53.354301
-0 «18009 60.C 120.C Le421936 (526530 2.700580 0.175813 54,981666
-0.16000 60.90 1200 1.324418 0.509994 2.596931 0.216439 57.526435
] -0+.13000 60C.0 120.0 1.213404 0.488800 2.4926¢41 0.2668862 60.372184
-0+10000 60.C 120.0 1.138373 0.470591 2.420090 0.309670 62.572181
-005000 60.0 120.0 1.039121 0.444826 2.336016 0.370665 65.427765
) C.00COU 6042 120.0 Ce963869 0.,423162 22 L9 0.423209 67.667450
0.05000 6040 1200 Ue903895 0.404491 2.234651 De69969 69.515762
C.1000u 600 120.0 0.854374 0.388121 2.201307 0.512442 71.091400
0.200CC 60.C 12C.0 O0C.T776284 0.36054¢ 2.153070 0.588008 73.683960
030000 60.0 1200 04716587 0.338018 2.119970 0.654518 75, 772766
040000 6040 120.0 0.668893 0.319125 2.090024 0.714475 17.522247
050000 60.0 120.0 0.629591 0.302971 2.078055 0.,769422 79.027160
=0s22632 60s0 15040 1<668855 0555501 3.004236 0.056513 73.543930
-0e22430 6040 150.0 l1.668331 0.555461 3.003510 0.056644 73.564636
-0.2242¢ 6040 150.0 1.665739 0.555261 2.999920 0.057292 73.667144
-0+.22410 6040 1500 1.663189 0.555063 2.996397 0.057932 73.767929
-0622400 6049 150.0 1.660682 0.554867 2.992939 0.058563 73.867111
022350 60.0 150.0 1.648716 0.553907 2.976520 0.061601 T4.340744
~0622250 60+,0 1500 1.627128 0.552083 2.947254 0.067139 75.197006
-0+22000 60.0 150.0 1.582378 0.547908 2.888035 0.079226 76.979248
=0.21500 6040 150.0 1e514734 0.540569 2.802108 0.098c06¢ 72.694442
-0.21000 6040 150.0 1.462634 0.534045 2.738785 0.114727 81.805383
-0620500 6C.0 150.0 1.419570 0.528060 2.688269 0.1287c3 063.564804
s ~Ds20000 -60+0 15C.0 1.382571 0.522482 2.646161 0.141459 85.088073
-0419750 60.0 150.0 1.365801 0.519817 2.627465 0.147396 85.782272
-0419500 6040 150.0 1349986 0.517225 2.610054 0.153109 86.439193
-061900C 60.0 150.0 1320791 ©0,512238 2«5718471 0:16395% BT.657974
" ~0.1800U0 60,0 150.C 1.270015 0.,502926 2.525252 0.183791 89.79771¢4
-0.16000 6040 150.,0 1.185935 0.486326 2.444728 0.218205 93.27351>
-0.13000 60«0 15040 1.097691 0.465001 2.360620 0.2618062 97.28709¢4
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FROM COPY FURNISHED 10 DDC o
i i YRty 5




-0e1CUQ0
-0.05C00
3.000090
0.05000C
0.10000
0.20000
C.30000C
C.40000
C.50000

i

(°F)

60.(—‘
60.0
60.0
000
60.0
60'0
60G.0
60.0
60«0

T
w

(°F)

15“-0
1%50.C
150.0C
150.0
150.0
150.0
150.0
15C.0

150.0
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Computed Laminar Boundary Layer Data

nd*

1.627770
C.938c34
C.t71094
0.8168£24
U 71875
C.700824
0.646428
0.602951
G.567130

g

Ce446671
0420846
0.399193
0.380597
0.364347
0.337094
0.314944
0.296456
0.280713

H

2.300852
2.230822
2.182135
2.146166
2.118518
2.079018
2.052514
2.033863
2.020318

0.299266
0.352900
0.399247
0.440539
0.478057
0.544800
0.603514
0.656412
0.704865

100.450225%
104.6069333
107.893966
110.618316
112.946487
116.784454
119.860172
122.4737393
124.704559
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TABLE 2.

Critical Reynolds Number Variation with Shape Factor
¢ Rg* H
crit
105.000 3.80000

'S
» 2 115.000 3.50000
3 130.000 3.20000
4 150,000 3.00000
5 180.000 2.90000
6 232.000 2.80000
7 326.000 2.70000
8 485,000 2.60000
9 675.000 2.55000
10 10C0.000 2.51800
11 1500.000 2.48750
12 2000.000 2.46600
13 300C.00C0 2.43750
14 4000.000 2.41800
15 5000.000 2.40250
l6 6000.000 2.36950
17 7000.000 2.37550
18 8000.000 2.36050
19 9006C.0G0 2.34400
20 10000.000 232540
R z1 10500.000 2.31500
22 11000.000 2.29750

J

11210.000 2.2E000

r
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fll

w

(ARL)
+.00064672}
-.00076458

.0551894
.0857052
.128638
.190780
.239736
.319270
.400322

.469600

mw&»&*““ .

— 26~

Table 3

4 January 1979
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Comparison of Laminar Separation Results

for Two-Dimensional Unheated Case

f"w B
(Keller-Cebeci), (ARL)
(Smith)

0 -.19891
.05517 -.195
.08570 -.190
.12864 -.180
.19078 -.160
.23974 -.140
.31927 -.100
.40032 -.050
.46960 0

B

(Keller-Cebeci)

-.20259

.19528
-.19023

.18025

-.16016
-.14024

.10017

.05031

.00031

B

(Smith)

-.198838

-.195
-.190
-.180
-.160
-.140
-.100
-.050

0
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TABLE 4.

Transition Reynolds Number Variation with Shape Factor

2.20CCC
2.25C00
2.30CCC
2.35CCC
2.4CCCC
2.450CC
2.50C00
2.55CCC
2.600C0
2.65CCC
2.70CCO
2.75000
2.8CCCoO
2.84G99
2.90CCC
2.55C00

RX
trans

€.51732
E.2E045
8.04405
T.8CH882
7.57548
T.34473
711730
6.£9390C
6.67524
6.46204
6.255C1
6.05486
5.86231
5.67808
5.50287
5.33741

log, Ry

]

trans

0.32909E
0.19074E
C.11C67E
0.64390E
C.37€25E
0.22117E
C.121CCE
0.78324E
0.47341E
C.28976E
C.17G8&9E
0.11346E
0.72829¢E
0.47651E
0.21832E
C.21747E
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" PRESSURE GRADIENT PARAMETER, P
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Figure 8 ~ Laminar Separation Limit Curve
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