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perturbation of a, used to study the stability of the steady-

s
state motion, equation (3.8).
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damping coefficient.

modal damping coefficient.
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partial differentiation with respect to T , equation (2.3d).

elastic modulus.

terms in the solvability condition due to the parametric
resonance, equation (2.9).
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of parametric terms, equation (9.9) - (9.10).

cross-modal amplitude of the excitation, equation (2.1).
constants used to compute rnmpq'
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moment of inertia of the cross-section area, identity matrix.
terms in the solvability condition due to the internal

resonance, equation (2.9).
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J = matrix of Jordan Form, equation (9.11).
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scheme, zL = ¢.
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Qn = coefficients in the solvability conditions for the clamped-
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w, equation (2.1) - (2.2).

Uno,Unl = functions of T, and T, appearing in the expansion of Un,
equation (2.2).

u, = free stream velocity.

v = time-dependent coefficients in similarity transformation,
equation (9.13).

W = the deflection.

z = matrix used for similarity transformation, equation (9.13).

PP e s e T o AP LR e




SYMBOLS BASED ON THE GREEK ALPHABET

phase of Ay equation (3.1).
elements of aerodynamic pressure matrix, equation (9.8b).

phases introduced to put the solvability conditions in

autonomous form, equations (4.18) - (4.21) and (8.27) - (8.35).

coefficients of dynamic pressure terms, equation (5.1).
coefficients appearing in the governing equations for Un’
equation (2.1).

coefficients appearing in the solvability condition,
equation (2.9).

Kronecker delta.

scaling exponents of € used in nondistinct frequency analysis,
equations (5.1) - (5.4).

small parameter used in the perturbation scheme, the square
of the ratio of r to L.

aerodynamic detuning parameter, used as a measure of dynamic
pressure equation (5.1).

frequency of the parametric excitation, equation (2.1).
stability parameter, used as a measure of dynamic pressure,
equation (9.3).

critical value of stability at onset of flutter.

convenient phase angle introduced to put the solvability conditions

in autonomous form, equation (3.6c).
phases introduced to put the solvability conditions in

autonomous form, equations (8.19) - (8.23).

e oo




SYMBOLS BASED ON THE GREEK ALPHABET - Continued
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CHAPTER ONE

INTRODUCTION

Parametrically excited multi-degree-of-freedom systems have re-
ceived considerable attention. Linear models of such systems predict
regions of instability in the parameter space (in this case the para-
meters are essentially the frequency and the amplitude of the excitation)
where the amplitude of the response grows without bound. The inclusion
of damping in the model does not change the basic character of the
results.

0f course, amplitudes of real systems do not grow without bound:
the amplitudes are limited by nonlinear effects. Moreover, nonlinear
gffects make it possible for a bounded resonant motion to exist in
regions where the linear models predict such motions are impossible.

The interaction of the phase and amplitude, which is a characteristic of

nonlinear systems, is responsible for this.
The system of governing equations is a set of second-order non-
lTinear ordinary differential equations having variable coefficients. The

nonlinearity considered in this work is cubic in nature and considered

small. Thus the equations may be referred to as weakly nonlinear. The
excitation is considered to be harmonic. With some types of parametric
resonance several modes can be strongly excited by a single harmonic
frequency. Internal resonances can be responsible for strong modal
coupling and, as a consequence, for a significant transfer of energy

from one mode to another.




In what follows a general method of analyzing parametrically
excited nonlinear multi-degree~of-freedom systems will be described in
detail and applied to several physical examples. The parametric excitation
is assumed to be harmonic with constant amplitude and frequency. Both
internal and parametric resonances will be considered. The resonances to

be examined include:

a) parametric
XS z tLiu\.\i
b) internal
W, = L agu;
where. the n, Ny and a; are integers, \ represents the frequency associated
with the excitation, and the Wy s i=1, 2, 3..., represent the natural
frequencies of the system. Modal damping is also included.
The response of the system is examined for the case where the
natural frequencies, wy, are distinct as well as for the case where
there is one repeated frequency, i.e. the so-called flutter case.
Regions describing the existence of trivial and nontrivial solutions are
discussed along with the stability of these solutions within these
regions. Before proceeding further a survey of the literature concerning

parametrically excited nonlinear systems is in order.

1.1 jterature Review

—_—

A survey of the literature reveals that there is an abundance of
material written on parametric, nonlinear and resonance phenomenon. A

totally comprehensive review would be prohibitive here both in time and
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space. The most complete effort in this direction has been accom-
plished by Nayfeh and Mook (1979).

Faraday (1831) appears to be the first to have observed the phe-
nomenon of parametric resonance in conjunction with surface waves in
fluid-filled cylinders. He was followed by Melde (1859), Strutt (1887),
Stephenson (1906) and Raman (1912) who worked with vibrating strings.
Stephenson (1908) showed that periodic loading of columns can have a
stabilizing effect while Beliaev (1924) showed that a lateral motion can
occur even though the axial loading of a column is below the static
buckling load. Other early works on columns include Andronov and
Leontovich (1927), Krylov and Bogoliubov (1935) and Chelomei (1939).
Numerous books on parametric excitations include Bondarenko (1936),
McLachlan (1947,1950), Den Hartog (1947), Minorsky (1947,1962), Stoker
(1950), Hayashi, (1953a, 1964), Coddington and Levinson (1955), Malkin
(1956), Cunningham (1958), Kauderer (1958), Bogoliubov and Mitropolsky
(1961), Bolotin (1964), Andronov, Vitt, and Khaikin (1966), Meirovitch
(1970), Cesari (1971), Nayfeh (1973) and Evan-Iwanowski (1976).

Early studies of nonlinear vibrations of bars were conducted by
Woinowsky-Krieger (1950) and Burgreen (1951) and involved the use of
elliptic functions in conjunction with an assumed single mode spatial
function. Others who investigated the free oscillations of beams with
hinged ends using various techniques include Wagner (1965), Srinivasan
(1965,1967), Woodall (1966), Evensen (1968), Rehfield (1973, 1975) and
Lou and Sikarskie (1925). Multiple theoretical and experimental in-
vestigations were conducted by Eisley (1964b), Morris (1965), Srinivasan

> |
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(1966a), Bennett and Rinkel (1972), Bert and Fisher (1972) and Rehfield
(1974a), while multi-mode forced responses were investigated by Eisley
and Bennett (1970), Bennett and Eisley (1970) and Busby and Weingarten
(1972). Straight and buckled beams were investigated by Tseng and
Dugundji (1970, 1971) using harmonic balance. Others who analyzed
buckled beams include Eisley (1964a), and Min and Eisley (1972).

Atluri (1973) examined beams with large curvatures and Nayfeh
(1973a) studied a beam with slowly varying properties along its length.
Both used the method of multiple scales. Nayfeh, Mook and Lobitz (1974)
and Verma and Murthy (1974) analyzed nonuniform beams while Raju,
Venkateswara and Kanaka Raju (1976) studied tapered beams.

A comprehensive treatment of the vibrations of linear flat plates
is given in Leissa (1969). “Nonlinear vibrations of, plates has received
extensive treatment. Yamaki (1961), Smith, Malme and Gogos (1961),
Eisley (1964b), Murthy and Sherbourne (1972), Bayles, Lowery and Boyd
(1973), Vendham (1975a,b), Crawford and Atluri (1975), Venkateswara,
Raju and Kanaka Raju (1976a) all analyzed nonlinear vibrations of rec-
tangular plates. Anisotropic rectanéu]ar plates were treated by
Sathyamoorthy and Pandalai (1970), Bennett (1971) Chandra and Basava
Raju (1975a,b) and Chandra (1976). Plates of a variety of shapes were
investigated by numerous authors: circular by Yamaki (1961), Nowinski
(1962), Bulkeley (1963) Huang and Sandman (1971), Huang (1972a,b, 1973,
1974) and Sridhar, Mook and Nayfeh (1975, 1978); annular by Sandman and
Huang (1971), Huang and Woo (1973) and Huang, Woo and Walker (1976);
tringular by Vendhan and Dhoopar (1973), Vendhan and Das (1975) and
Vendhan, (1975b); and elliptic by Lobitz, Nayfeh and Mook (1977).




The phenomenon of flutter in plates and shells has received wide

attention. The book by Dowell (1975) discusses the probiem very suc-
cinctly. Other work in this area includes the study of flat plates by
Kobayashi (1962a,b), Bolotin (1963), Dugundji (1966), Dowell (1966,

1967a, 1973), Morino (1969), Vetres and Dowell (1970), Eastep and McIntosh
(1971), Kuo, Morino and Dugundji (1972) and Smith and Morino (1976).
Numerous authors have studied curved plates and shells. Interaction of
panel flutter with parametric excitation was analyzed by Dowell (1970a),

Dzygadlo (1970) and Kuo, Morino and Dugundji (1973).

1.2 Assessment of Previous Work

As demonstrated in the last section there is a tremendous volume of
material which has been written on free and forced vibration; parametric
excitations; linear and nonlinear systems; resonance; and single, two-
degree and multi-degree-of-freedom systems. An attempt to comment on
the value and limitations of each of these works and how each relates to
the current discussion would be of marginal utility. Instead, the
discussion will be limited to thcse few recent works which are the
most relavent and which are significant contributions in themselves.
Most authors cited here have discussed the various aspects of the
analysis described in the introduction. However, no one has attempted
to unify the analysis and make it comprehensive until now.

For instance, Tseng and Dugundji (1970, 1971) discussed straight
and buckled beams using harmonic balance, but their analysis did not
involve modal coupling. Atluri (1973) studied nonlinear vibrations of

hinged beams for large curvatures but did not consider axial excitation.




Nayfeh (1973a) considered a beam with slowly varying properties along
its length but did not consider modal coupling. Yamomoto and Saito
(1970) analyzed parametrically excited multi-degree-of-freedom systems
using the method of averaging. However, the system considered was linear
and did not include repeated frequencies. Hsu (1963, 1965) also studied
parametric excitation in multi-degree-of-freedom systems and developed
stability criteria. He used the method of averaging and considered
distinct frequencies. Tso and Asmis (1974) studied multiple parametric
resonances in nonlinear systems. They discussed parametric resonances
and combination resonances but confined their analysis to two-degree-
of-freedom systems. In addition, they did not include an all important
cubic term in the analysis. Fu and Nemat-Nasser (1972,1975) studied the
stability of multi-degree-of-freedom systems and included the effect of
repeated frequencies. However, their analysis was confined to linear
systems. Another excellent work on parametrically excited linear
systems having many degrees of freedom was conducted by Nayfeh and Mook
(1977). Additional studies were conducted by Sugiyama, Fujiwara, and
Sekiya (1968) using analog simulation, and they found combination
resonances. Iwatsubo, Saigo and Sugiyama (1973) and Iwatsubo, Sugiyama
and Ogino (1974) performed theoretical and experimental investigations
on parametrically excited columns and also demonstrated the existence of
combination resonances. They included the effects of internal and
external damping in their analysis but not internal resonance. The
effects of internal resonance have been virtually ignored in most works

until recently. The importance of internal resonance in the analysis of




ship motions has been demonstrated by Nayfeh, Mook and Marshall (1973,
1974) and Mook, Marshall and Nayfeh (1974). Its importance in the
analysis of structural vibrations has been shown by Nayfeh, Mook and
Sridhar (1973), Nayfeh, Mook and Lobitz (1974), Sridhar, Nayfeh and Mook
(1975) and Mook, Sridhar and Nayfeh (1978). These latter works have been
a major advancement toward unifying nonlinear, resonance studies.
However, they do not include parametric excitations.

The majority of work discussed so far deals with distinct fre-
quencies. When the natural frequencies are no longer distinct the response
enters the so-called flutter mode or condition. The.book by Dowell
(1975) provides an insight into the mechanism that can cause flutter.
Morino (1969) and Smith and Morino (1976) have presented an excellent
discussion demonstrating limit cycles and stability. Héwever, neither
included the effect of an in-plane excitation. The role of a parametric
excitation has thus been neglected. The numerical works of Dowell
(1966, 1970) suffer from the same deficiency as those of Kuo, Morino and
Dugundji (1972). Constant in-plane loads were used in these analyses.

A harmonic excitation and its influence on flutter were considered by
Dowell (1974), Dzygadlo (1970) and Kuo, Morino and Dugundji (1973).

However, the excitation was not parametric in nature.

1.3 Contributions of the Current Work

Though a vast amount of work has been cited here, there are some
significant facets of anmalysis of parametrically excited multi-degree-
of-freedom systems that have not been examined. The role that internal

resonance plays has been virtually ignored. Parametric excitations




in the nonlinear flutter problem has been similarly neglected. In
addition, there has been no single method of analysis that is general in
nature and applicable to a wide variety of problems. This work investigates
these fascinating aspects of multi-degree-of-freedom systems and thus
fills a longstanding void. In the process a unified versatile approach
is developed and some interesting behavior is discussed. The following
contributions are unique and significant:

a. A general method for analyzing parametrically excited non-
linear multi-degree-of-freedom systems is developed. To demonstrate its

versatility, we apply the method to the following physical systems:

1) Systems with distinct natural frequencies
a) .without internal resonance
b) with internal resonance
2) Systems with repeated natural frequencies
a) without internal resonance
b) with internal resonance
b. Regions where trivial and nontrivial solutions exist are
defined and the stability of the solutions within each region is dis-
cussed. Nontrivial, unstable solutions have been shown to exist in
regions where nontrivial stable solutions are known. Numerical solutions
do not hint at the existence of these solutions.
¢c. The role of internal resonance in parametrically excited,
nonlinear systems is explored. Strong modal interaction is demonstrated
as a consequence of the presence of the cubic nonlinearity and the

internal resonance. Because of this modal coupiing, modes other than




the one excited can dominate the response. A multiplicity of jumps is
shown to exist.

d. Parametric excitation in the nonlinear flutter problem has
been examined in detail for the first time, and includes the effects of
internal resonance.

e. Limit-cycle behavior in the flutter problem is developed in a
unique analytic way. The condition which predicts the onset of flutter
is developed by using a linear analysis. The solution grows without
bound. Interestingly, the same condition in the nonlinear analysis
predicts the existence of a real nontrivial solution with a finite
amplitude, the so-called limit cycle.

f. The current work is divided into several parts. In Part I,
the analysis deals with distinct natural frequencies. Chapter 2 is
devoted to the problem formulation and generation of the solvability
conditions. Chapter 3 deals with the analysis of parametric resonance
in the absense of internal resonance. Chapter 4 is the heart of the
analysis and includes the internal as well as the parametric resonance.

In Part II, the same general approach is followed for the analysis
of non-distinct natural frequencies. Chapter 5 develops the limit-cycle
behavior and the general solvability conditions for the situation in-
volving repeated frequencies. Chapter 6 considers parametric resonance
in the absence of internal resonance and Chapter 7 discusses internal
and parametric resonance.

Part IIl is devoted to numerical examples. Chapter 8 deals with
the case of distinct frequencies and uses the beam as an example.

Chapter 9 develops the flutter problem for a simply supported plate.




CHAPTER TWO

PROBLEM FORMULATION AND METHOD OF SOLUTION

In this chapter the nonlinear system studied is defined. Modifica-
tion of the basic system is made in a subsequent chapter when the case
of non-distinct natural frequencies is discussed. Solvability conditions

are developed by using the method of multiple scales.

2.1 Problem Formulation

The system to be analyzed is governed by the following set of

ordinary-differential equations:

o] (- -] @

f omdm ~ 2C.U, + bdif 3k uuu]

.. w
U + w2l = g[- 2cosat )
n nn m=1 p=1 g=1 nmpg mp q

m=1
for n = 1,2... (2.7}

where the w, are the distinct natural frequencies corresponding to the
linear free-oscillation modes; ¢ is a small dimensionless parameter; the
fnm are the amplitudes associated with the harmonic parametric excita-
tion; A is the constant frequency of excitation; the Cn are the modal
viscous damping coefficients; and the rnmpq are constant coefficients.
Experience has shown that a straightforward perturbation expansion
for Un' for small €, results in the emergence of secular terms, which
make this expansion not uniformly valid for large t. Hence, in order to
obtain a uniformly valid expansion, we employ the method of multiple
scales. Specifically, the derivative-expansion version of the method of
multiple scales is utilized to study the steady-state solutions and

their stability.

10
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2.2 Method of Solution

Following the method of multiple scales (Nayfeh, 1973), we assume
expansions for the Un in the form

Up(tse) = Upo(TouTa) + €Upa(ToaTa) + ... (2.2)
where

To=tand T, = et (2.3a)

The derivatives become

95700+ €Dy + 0(c?) (2.3b)
and
d2
EET — D% + EZDoDl “ 0(22) (2.3C)
where .
Do = 2 d D, =2
¢ = ST; an 1 ETT (2.3d)

Substituting equations (2.2) and (2.3) into equation (2.1) and

equating the coefficients of €° and €, we obtain

D%Uno + w:uno =0 (2-4)
D%Unl + w;Unx 8 - ZDoD1Uno - ZCOSATQ mZ]f"mum - zanoUno
© ) ®
+ z Z 2 r U oU QU 0 for ns ]’2,0.. (2-5)
ms1 p=1 q=1 "MPA M "pT"q

We can write the solution of equations (2.4) in the form
Uno - An(Tl)exp(iwnTo) + CC (2.5)

for n = 1,2,.., where cc stands for the complex conjugate of the pre-

ceding term and the An are, at this point, unspecified complex function
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of T,. They are determined by eliminating "troublesome" terms from the
Upt-

Substituting equation (2.6) into equation (2.5) leads to

Dsunl + m;Unx a - Zimn(D;An + C A Jexp(iuw, To) - mz) f o texPL (0

<« < ®©

+ + i{w, -
MTol + explifu, - A)Tol} + mZ] pZ] qgl anpq{AmApAq x

exp[i(wm + wp + mq)To] + AmApAaexP[i(wm + wy - wq)To]

+ IhAqexp[i(mm =y * wq)To] + AmFbIAEXP[i(wm - -wq)Ta]}

+ cc (2.7)
where the overbars denote the complex conjugaées.

The terms containing the factor exp(ximnTo) in equdtion (2.7) lead
to so-called secular terms in Un" while terms containing factors such
as exp(iQTy), where Q e 0(e), lead to so-called small-divisor terms
in Un" The former renders the expansion nonuniform (Unl/un° is not
bounded) as t increases, while the latter are inconsistent with the
assumed expansion (2.2) because they raise el,1 to the same order as
Un°' Consequently, both kinds of terms are "troublesome" and must be
eliminated for a uniform expansion.

Secular terms, for example, are associated with the combination

wm + wp - wq

when m = n and p = q. In addition to all these possible combinations,
there may be small-divisor terms associated with combinations having the

form

wy = Aw, + bwp + Cwq + eo, (2.8a)




where a, b, and c are integers such that |a| + |b| + |c| = 3, and o is
a detuning parameter. If equation (2.8a) is satisfied, an internal
resonance is said to exist. Finally, if there are combinations having

the form

A= ay, + bmn + ep (2.8b)

1 where a and b are integers such that |a| + |b| = 2, and o is another
detuning parameter, additional small-divisor terms arise. If equation
(2.85) is satisfied, a parametric resonance is said to exist.

It follows that the general form of the conditions that eliminate

the troublesome terms from the Un‘ is

- 21“n(D‘An + ann) o DZ1 y. AR + I, +E =0forn=1,2,...

nppp
(2.9)
where
3annn ifp=n
Yop ©
2(rnnpp * Tnonp * rnppn) if p#n

The terms In(Al,Az, ...) and En(Al,Az,...) are complex functions, re-
sulting from the internal and parametric resonances, respectively, if

any exist.

2.3 Summary

A general approach to the solution of equations (2.1) has been
developed using the method of multiple scales to obtain a uniformly

valid solution. The solvability conditions yielded equations (2.9),

D—
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which are general and can be applied to a large variety of problems,

depending on the form of the internal and parametric resonances in-

volved.

;
|
;
i




CHAPTER THREE

PARAMETRIC RESONANCE IN THE ABSENCE OF INTERNAL RESONANCE

In this chapter parametric resonance is examined in detail. The
effect of an internal resonance is discussed in the next chapter.
Various cases are considered and some general observations are given.

The emphasis is on the steady-state response and its stability.

3.1 No Internal Resonance

In this case In = 0 for all modes and En = 0 for all modes that are
not part of any resonance with the excitation. The En for the resonating
modes depend on the resonant combinations of frequencies. In the first

case considered, there is neither internal nor parametric resonance.

3.2 The Case of Modes Not Involved in a Parametric Resonance

For modes not associated with a parametric or internal resonance

—
1]
m
11}

0 in (2.9). Now we let

>
]

n = 7 3y (Tu)expliay (T1)] (3.1

where the amplitude a, and the phase a, are real functions of T,. Upon
substituting (3.1) into the solvability condition (2.9) and separating

the resulting equation into its real and imaginary parts, we obtain
wn(a;‘ + Cnan) =0 (3.2a)

¥l &
W%, * § 3, ¥ anaz =0 (3.2b)

15
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where the primes designate differentiation with respect to T,. The

solution of (3.2a) is

a, = aqexp[-CnT1] (3.3)

and it follows that a, > 0 as T; ~ =; so that the steady-state amplitude

a = 0. Therefore, the steady-state solution has the form

U, = 0(e) (3.4)

Consequently, only the directly excited modes and the modes involved in
an internal resonance can be part of the first approximation of the

steady-state response.

3.3 The Case Where A = Zwk, n#k

The first case to be considered is the case of a parametric reson-
ance where ) < Z“k' A detuning parameter, p, is introduced and used to

express the nearness of A to ka quantitatively according to
A= 2w +ep (3.5a)
It follows that

()\ - wk)To = wkTo + €Top = kao + oT) - (3.5b)

Then for n # k the resonant terms become

E, =0 forn # k (3.5¢)

and

f
B, = - FBexp(ioTy) = - -'2‘5 2, &xpl1(pTy = o )] (3.5d)
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Substituting (3.5) into the solvability conditions (2.9) and separating

into real and imaginary parts, we obtain

f
wk(a& + Ckak) + -gs-aksinu =0 (3.6a)
and
P v T )
W * g A le Ykpap -~ a cosy = 0 (3.6b)
where
u=ph - Zak (3.6¢)

For the steady-state solution all the aa = 0and pu' = 0. From equations
(3.3) and (3.4) it follows that a, 0 as T, » = so that the steady-
state amplitude a, ® 0 for n # k. The trivial solution a = 0 is a
solution of equations (3.6). For nontrivial solutions ay # 0, equations

»

(3.6) reduce to

ek
mkck g sinu = 0 (3.7a)
and
W ek
= + g Ykkai a5 cosp =0 ; (3.7b)
where
W' =0=p - 20 (3.7¢)

Equations (3.7) may now be solved for a, and u. Squaring and adding

(3.7a) and (3.7b) leads to

202 4 (pmk + 4 a2)? = fzkk
Witk 7 T8 Ykkk S g

=y

or
B 1
& k kk
ay Y—k: - % + m—k-r - C'z( (3.7d)
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We note that for nontrivial solutions to exist

Ifkkl 32‘”ka (3.7e) »
when p > 0 and Yek < 0. When p < 0 and Teg < 0
i
pt = q('r- - 4Ck2 {3.7%)

is required for nontrivial solutions. A more complete discussion of the
regions where solutions exist is contained in the numerical examples in
Chapter 8. We note here that Tk = 0 in those examples.

When equation (3.7d) is substituted into equations (2.2) and (2.6),

the resulting steady-state solution becomes

Uy

0(e) n#k (3.79)
and
U = akcos[(mk +¢€ %)t + rk] + 0(¢) (3.7h)
where the phase Tk is a constant that depends on the inifial conditions.
The stability of the steady-state solution can now be studied by
determining the behavior of the system when it is perturbed slightly.
Thus, we let

a = a, +da : (3.8a)

R (3.8b)

where ;k and ; represent steady-state values. Substituting (3.8) into

(3.6) yields

Zwk(a"‘ + Aaf( + ckak + CkAak) + fkk(‘k + Aak)sin(u +Au) =0

(3.9)




|
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and
~ . ] 3 fkk ~ A
wk(ak + Aak)ak tg Ykk(ak + Aak) e (a, + day)cos(u + Au) =0
(3.9b)
After expanding, neglecting products of small terms, and noting that

;i = 0, we obtain

Zwk(Aaé + CkAak) + kaakck + fkkAaksinu + fkkaksinu

+ fkkakcosuAu =0 (3.9¢)
[} A~ A f ~ ~
e (35 + wda(§) + § vl * § Vditay - 3 aycosy
f ~ ~ f ~
+ -§E-aksinuAu - —%5 Aakcosu =0 (3.9d)

Recalling the steady-state equations and letting

(dap,au) = exp(QTy)

we obtain
(2w, Q)na, + (f a cosa)Au =0 (3.10a)
Kk k kk“k
] A u)kQ
- (,‘- ykkak)Aak + (T + wka)Au =0 (3.10b)
from which
W02 + 2uEC,Q + T ykkS;fkkcosﬁ =0 (3.10¢)
or A,
Yoo fr A
a2 + 20,0 + —'%:z:'k—'s cosu = 0 (3.10d)
which has the solution
Yifer *
Q=-C :«v/gz - , ISu (3.11)
k k IEk




20

For stable solutions the real part of Q must be negative, or zero i.e.,

Re(Q) < 0 (3.12)
or for stability

cos u > 0 (3.13)

Hence, the p for stability can be determined from equation (3.7d).
Additional discussion of the ramifications of the stability conditions

will be presented in Chapter 8 in the numerical examples.

3.4 The Case Where ) = Wy + Wes M #k

The case of parametric resonance where A < Wy + W is analyzed.
The detuning parameter o is now used to measure the nearness of A to Wy + oWy

according to:

A=ty toep (3.14a)

It follows that

(A - wh)To = wTo + €Top = wTo * oTh (3.14b)
and
()\ - Luk)To = mmTo + €Top = (.umTo + oTy (3.]4C)
E, = 0 forn#korm (3.15a)
Emexp(imeo) = - fmkﬂkexp[i(x-mk)To] = - fmklkexp[i(mmTo + oTy)]
(3.15b)
and H

Ekexp(ikao) s . fkm‘ﬁ[1(k'wh)T°] s - fkmﬁﬁexp[i(wkTo + oT1)]
(3.15¢)




Using the polar notation in equation (3.1), we can write

fmkak p
Em = exp[1(pT1-ak)] (3.15d)

and

Substituting equations (3.15) into equation (2.9), dividing by exp(ian),

and separating the resulting equations into real and imaginary parts, we

obtain
[ mk % 13
wm(am + Cmam) + ——a,sinu = 0 (3.16a)
Fem
wk(ai + Ckak) e amsinu =0 ~(3.16b)
o f
waal +La I ke K a,cosu = 0 (3.16¢)
p=
R fem
Wy * 7 A 21 Ykpa; - = a,cosuy = 0 (3.16d)
_ p=
where
U= pTl - ak - am (3.]63)

For n # k, or m, the amplitudes and phases are governed by equations

(3.2) and (3.3); thus, these modes do not appear in the first approxima-
tion. For the steady-state solution all aa =0and u' = 0. It follows
that a =a = 0 is a solution to equation (3.16), but nontrivial solution
(i.e., a, # 0 and an # 0) are desired. Hence, the steady-state version

of equations (3.16a) and (3.16b) becomes

fmk ;
“mcmam * =g aksinu =0 (3.17a)

fkm b
“kckak s amsinu =0 | (3.17b)

Solving equations (3.16¢,d) for aﬁ and “i’ respectively, and substituting
the results into equation (3.16e), when differentiated, leads to
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Y Y Y a f a
‘ m

mm ak“’k
(3.18a)
Combining equations (3.17a) and (3.17b) leads to
w
k~k mk
a = P S (3.18b)
" “nlmikm K

Hence, for nontrivial solutions to exist fmk and fkm must have the same
sign. Substituting equation (3.18b) into equation (3.18a) and dividing

by ai. we obtain

Ol fmk 17, 9 fmk Cy Oy Fk (17
§ sy ) O3 (1 + ~)cosy + = ( ) /2 «
wm m km 2_ t_- 8 m m km
Yen . Yin. . &S Y
km k k mk kk
[0+ Shy( S )+( +=5Ja2=0  (3.18¢)
b B mem’ km W Tk
and hence
C w C f 1
k k*k mk \'/2
—(1 + = )Jecosu - pf )
2-“’ t; “m“m’ km
Y w,C, f Y, Y
J( k Mk ) /2 [( km )( k kfl'ﬂk ) & wlI'Ik + wkk )]
“mm km “m " km m k
(3.18d)
The steady state solution now has the following form:
U, = 0(e) n#korm (3.19)
- amcos[(wm + euﬁ)t + rm] + 0(¢e) (3.19b)
U = akcos[(wk + sai)t + Tk] + 0(¢e) (3.19¢)

where Tm and t, are constants depending on initial conditions. The

nonlinearity adjusts the frequencies so that
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wy + aaﬁ oyt ea& =u,tay tep =2 (3.20)

If both solutions (am =a =0anda #0,a # 0) are stable, then the
initial conditions determine which solution represents the response.
The stability of the system may be examined by the same method used in

the case of A near ka.

3.5 The Case Where X = W = Wy M #k i

The case of parametric resonance where A 2 W =W is analyzed. The

detuning parameter, p, is introduced and used to express the nearness of

A to W = W according to

A= w - u, toep (3.21a)

« from which we can write

(wk - \)To = (wh - €p)To = w.To = pTy (3.21b)
and

(>\ + (.um)To o (wk + SD)To = wkTo + pT1 (3.2]C)

En =0 forn#korm (3.22a)

Ekexp[ikao] = - fkmAmexp[i(A + wh)T°] = . fkmAmexp[1(kao + 0 T1)]
; (3.22b)

and

Emexp[imeo] = - fmkAkexp[i(mh - A)Te] = - fmkAkexp[(immTo - oT1)]

(3.22¢) g

Using the polar notation in equation (3.1), we can write ?
f,  a 5

E, = - =3 exp(i(oTy + o )] (3.22d) |

TSRS i i . o W_.——J
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and

kK
Eg = - —7— expli(-eT: + )] (3.22e)

Substituting equation (3.22) into equation (2.9), dividing by
exp(iak) and exp(iam), respectively, and separating the resulting

equations into real and imaginary parts leads to

ay

“’m(ar;\ + Cmam) - —"“2‘-— sinp = 0 (3.23a)
wk(al‘( + Ckak) + _k_rzn_m sinp = 0 (3.23b)

® £ .2
m“m Bﬂ Z ympaz - —m7k—£ cosu = 0 (3.23¢)
a o kma _
where

u=phi-a + a (3.23e)

For n # k or m, the amplitudes and phases are governed by equations
(3.2) and (3.3). For the steady-state solution all aj = 0 and u' = 0.
It follows that a‘.( o 0 is a solution to equations (3.23), but non-
trivial solutions (i.e., ay # 0 and L # 0) are desired. Hence, the

steady-state version of equations (3.23) becomes

fmkak

“’mcmam o sinu =0 (3.24a)
fkm‘

wkcka - sinu =0 (3.24b)

and

1 ¢=Ymm , Ykm 1 -Ymk ., Ykk
+ + —Ja2 + g [— + —Jai
PTE t W W m 8 . Wy k

km®
i [ a:;nk aku m]cosu =0 (3.24c)




which leads to

W
a =~ - kk_mk a, (3.25)

o “m“m' km

Thus, a solution can exist only if fkm and fmk have the different signs.
In this case, the result for a, can be obtained from (3.18d) by simply

changing the sign of W

3.6 Summary

Various cases concerning a parametric resonance have been discussed.
The following observations are pertinent in the absence of an internal
resonance:
(a) Only modes which are directly excited by a parametric resonance
are part of the steady-state response.
(b) For combination-type resonances the lower mode appears to be
dominant in the response.
(c) The steady-state response is essentially that of the forced
linear-oscillation modes with the frequency being adjusted.
(d) Stability criteria have been outlined when more than one
stable solution exists, the initial conditions will determine
the response.
More insight into the response in the presence of parametric resonance

will be gained in Chapter 8 where specific numerical examples are

presented.




CHAPTER FOUR

THE EFFECT OF INTERNAL RESONANCE

l

In this chapter we discuss the effect of an internal resonance.
Specifically, we examine in detail the case where Wy = 3wm. Part of the

rationale for this choice is that this combination occurs in physical

systems such as the beam considered in the numerical example in Chapter

8.

The parametric resonances of the last chapter are examined in the
presence of this internal resonance. See Chapter 2 for a review of

internal resonance.

An internal resonance emerges when equation (2.8a) is satisfied.

When the form of equation (2.8a) is

W = Wy + wp + wq + €0 (4.1)

it follows from equation (2.7) that the terms involved in the internal

resonance are given by the following:

I = T\ AR exp(-i0Ty) (4.2a)
I, = f‘mAkaIqexp(ioTl) (4.2b)
1 = FpAkR“Iqexp(iorl) (4.2¢)
Iy ® f‘quKmIpexp(icT.l) (4.2d)
i:k =T mpg * Tkomg * Tkpam * Tkgpm * Tkamp * Tkmgp (4-32)
i:m i I'mkpq & rmkqp % rmpkq 2 I‘rnqkp i r'mqu T rmqu (4.3b)

" 1
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= + +
o~ Tpmak * Tpamk * Tpmkq * Tpgkm * Tpkmq

kel +T

= + +
q~ Tqmpk * Tgpmk ¥ Tqmkp qpkm

When the form of equation (2.8a) is
W, = Wy + pr + €0
it follows from equation (2.7) that

—
I

g rkAmApzexp(-ich)

—t
"

A 2 "
rmAka exp(ioT,)
1. = FpAkAmKhexp(ioTl)

= =k +
T = Tkmpp * Tkpmp * Tkppm

=y 2
]

m rmppk N rmpkp 5 rmkpp

+ +
Tokpm * Tpkmp

= + + +
p = Tpmpk * Tppmk * Tppkm * Tpmkp
When the form of equation (2.8a) is
w = 3wm + €0
it follows that
Ik = kam’exp(-ioTl)
I = T AR, *exp(ioT))

where

~

Tk = Txmmm

A r‘pkqm

(4.

qkmp ¥ Tqkpm(4-

(4.

(4.
(4.
(4.
(4.

(4.

(4.

(4.

(4.

(4.

3c)

3d)

4)

5a)

5b)

5¢)

6a)

6b)

.6¢c)

7)

8a)

8b)

%)
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poo =

m mmmk 3 r‘mmkm i I‘mkmm (4.9b)

When the form of equation (2.8a) is
we = w, + wy - W + €0 (4.10)
it follows that

I, = f‘kAmApl_\'qexp(-ioTl) (4.11a)

I = f‘mAkaAqexp(ich) (4.11b)

1 - f'pAkaAqexp(iom (4.11c)

Iy = ?quApKkexp(-ioTl) (4.11d)
where Fk' }m’ §p, and Eq are given by eauations (4.3).

Other possible internal resonances can be treated in a similar way.

4.1 The Case Where ) 2 me and mk z 3wm.

The first case to be considered is A < me, W p 3wm. The detuning

parameters are defined in the following equations.

W = 3mm + €0 (4.12a)

A= th toeo =y -t e(p - o) (4.12b)

Eq = - fokAyexpl- (o - a)T:] 1
- fmﬁlhexp(ioTl) (4.13a)

Eg = - fkmAmexp[i(p - 0)T] (4.13b)
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—
]

~ z .
rmAkIﬁ exp(iaTy)

Using the polar form (3.1), substituting (4.13) and (4.14) into equation
(2.9), neglecting all except the m-th and the k-th modes, and separating

the results into real and imaginary parts, we obtain

' B fmam

“h(am + Cmam) - gﬂ akamzsinu = sing

f
- —%5 a,sin(g - u) =0

~

gl

+ 20 AN L]
Udn%m * 8 A(Yumn® t Y@k’ * g 3dp cosu

f a i 7
- —E%JE cosB - —%5 a cos(B - u) =0

fkmam

r
wk(ak' * Ckak) + -%-amasinu = sin(B-u) =0 (4.16a)

b (5

a
1 k 2 2 k 3
o' g ndn’ * V@) * g ap cosu

f, a
‘_k'g—mCOS(B'LI)=O

where

=
([}

oT, - 3am + o

B pTy - ZGm

For the steady-state solution it follows that a

For nontrivial solutions

u' =g+ ak' - 3am' =0

(4.14a)

(4.14b)

(4.15a)

(4.15b)

(4.16b)

(4.17a)

(4.17b)

it 0 is a solution.

(4.18a)
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g' = p - 2am' =0 (4.18b)
which leads to

at =5 ando' =32 -0 (4.19)

Equations (4. 16) become

~

mCa + —2-—s1n6-—2— ksm(s-u)-%— I‘aka 2sinp =0

(4.20a)
pa Y Y., a i f  a d
PR NI L R
+17 =0 (4.20b)
wkckak —EgJﬂ sin(g - u) + g ka 3siiiu = 0 (4.20¢)

Y fia
W) (29 - o) + aka2 + —%5 aﬁ - _E%Jl cos(B - u)

§ ka Scospy =0 (4.20d)

A detailed discussion of the behavior of the solution of equations

(4.20) is given in Chapter 8 in the numerical examples.

4.2 The Case Where A = ka and Wy < 3wm.

The next case to be considered is A = ka, W < 3“m- The detuning
parameters are defined as follows:

A= ka + ep (4.22a)

W, = du + €0 (4.22b)
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The parametric resonant terms are of the form

Em =0 (4.22c)

E

g™ " fkkikexp(ipTl) (4.22d)

and the internal resonant terms are the same as those in equations
(4.14). Substituting (4.22cd) and (4.14) into equation (2.9) and

separating the result into real and imaginary parts, we find that

um(a$ + Cmam) - %-Fm aka;sinu =0 (4.23a)
a 5
“mam“$ T —Em'(Ymma; e Ymkaﬁ) * %-Fmaka;cosu ot (4.23b)
kK 14
mk(ai + Ckak) +t—>—sing + 3 rka;sinu =0 (4.23¢)
o i o kKK ok

G * g (Yendn * Yidg) - —7— c0sB + g Tyapcosu = 0

(4.23d)
where
B = pT; - Zak (4.24a)
u=ol, + @ - 3am (4.24b)

For steady state solutions, it is easily seen that a = = 0 is a

solution. For nontrivial solutions equations (4.24) become

B'=p-20'=0 (4.25a)
u' =0+ ak' - 3am' =0 (4.25b)
so that

c* %

‘3

o' e g- and o' = ‘(4.26a)




and equations (4.23) become

12 e

mmcm - g Ty 3, sinu = 0 (4.27a)
|
o+ o A Y 5 ;
a — z s mm o, Mk, LT aacosy=0 (4.27b) |
Tk . 1 !
mkckak t—5—sing + ¢ I‘kamsinu =0 (4.27¢) |
Yem o . . Ykk ., (kK3 |

wA 5 * g aan tgoag - —5 cos8

+-% fka;cosu =0 (4.27d) i

A detailed discussion of the behavior of the solutions of equations

(4.27) is given in Chapter 8 in the numerical examples.

It should be noted here that it is possible for a . =0anda # 0,

in which case equations (4.27c,d) become

it e et s it o it

f a
©Cea + <5k sinf = 0 (4.28a)
and
i Y frid ;
| “a 5 +sEar - KK cosg =0 (4.28b) |
f This is exactly the same type of response that occurs when there is no

internal resonance, equations (3.7a,b). Thus, the only mode which
responds is the one which is directly excited. This is in contrast to

the case where the frequency of the excitation A is near me and a

single-mode response is not possible.
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4.3 The Case Where A X 4wm and W =5 3wm.

The last case to be considered is for X\ < 4wm and Wy - me.
In the presence of this internal resonance the parametric resonance can

be expressed equally well as A = Wy + Wy We may write
A=y tep=w oot elp - a) (4.29)

where

w, = 3w, *+ ec (4.29b)
k m

The terms involved in the parametric resonance are

B fmkAkexp[i(p - o)T,] (4.30a)
Ek = - fkmlﬁexpgi(p - a)T:] (4.30b) i

Substituting equations (4.30) and (4.14) into equation (2.9),
introducing the polar form (3.1), and separating the result into real 1

and imaginary parts, we obtain !
f a A ‘f

wm(aé + Cmam) + m; k sing --% 1y akazsinu =0 (4.31a) 1{
|
. e % 3 Vpmm * Ymkdk) - —m%L cosg |
‘ B
A i
+~% P aka;cosu =0 (4.31b) ]

mk(ak + Ckak) + _E%Jﬂ sing + % rka;sinu =0 (4.31¢)

a f _a
oy T (2 * Tdd) - —3-% cosg

+ % aicosy = 0 (4.31d)
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where

W
"

(p=0) Ty - o = o (4.32a)

praly day - 3o, (4.32b)

For the steady-state solution, it follows that a =3 = 0. For the

nontrivial solution,

B' =p -0 - ak‘ -a'=20 (4.33a)
and

W =gt et - 3am' =0 (4.33b)

which lead to

a' =8 and o' =F-o0 (4.33¢)
The steady-state equations can be written as
f ,a R
mmcmam + _ﬂg_K sing ~-% Fmaka;sinu =0 (4.34a)
aly a_aly, f . a
m'mm m k 'mk mk "k !
Glnd *—8 t-F— -7 Ccosb ;
+ %’§m aka;cosu =0 (4.34b)
f, . a A
w Cpdy * -E%Jn sing +'% rka;s1nu =0 (4.34c)
3 2 f,_ a |
3p - 40, 2kYkk . 2k®mYkm  km®m :
) e ek et Eatoi k. ;
+'% §k a;cosu =0 (4.34d)

|
A detailed discussion of the response predicted by these equations E
is given in Chapter 8. {

it it it R —_— . ‘
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4.4 Summary

Internal-resonance terms involving W e 3wm have been developed.
The response in the presence of this internal resonance and several
parametric resonances has been examined. The following comments are

pertinent:

a. It has been shown that, even in the presence of internal
resonance, it is possible for only the mode which is excited to enter
the response. The behavior is then essentially identical to that in the

absence of internal resonance.

b. In all cases discussed, strong modal interactions due to the
presence of internal resonance are possible. A full discussion of the
dominance of one mode over the others is presented in Chapter 8, which

contains the numerical examples.




CHAPTER FIVE

THE ANALYSIS OF SYSTEMS HAVING REPEATED FREQUENCIES IN THE
ABSENCE OF INTERNAL AND PARAMETRIC RESONANCES

In the last three chapters we have discussed the response of a
nonlinear system subject to a parametric excitation. Throughout the
entire analysis we have considered the natural frequencies tc be dis-
tinct. This is valid for the beam-column we discuss in Chapter 8 as
well as for many other phys{caI systems. The analysis contained in the
next three chapters deals with the situation where one of the natural
frequencies is repeated. As an example, this occurs in plates subject
to aerodynamic loading at the onset of flutter. Two natural structural
freguencies merge due to aeroelastic coupling. For a discussion of the

[ )
mechanism of flutter the reader is referred to Dowell (1975).

In this chapter we follow a format similar to that of Chapter 2.
The governing equations (2.1) are modified to account for the repeated
frequency and the aerodynamic loading. In addition, scaling factors
will be introduced in the form esi to insure that terms interact at the
proper order. The method of multiple scales is utilized to generate the
solvability conditions. The conditions that predict the onset of
flutter are developed and 1imit-cycle behavior is demonstrated. We begin
now with the governing equations when one natural frequency, Wy s is

repeated, thus we write

36
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. S ®
Uy + w:Un = ¢ F[-(2 cos At) mZ] f um]

GC 2 5N ® © ©
- g . BY $7 mZ1 pZ] q§1 rnmpqumupuq]

8 )
+ € A[ A Y &
m=1

nmUm] ne=1,2... n#k (5.1a)

and
8

. F ©
w2 = -

V) ) ® © ®©
o N
-e (gl + e mZ] pz] qZ] TkmpqUnUpla
) £
+eMA ] B U]  where k=j+1 (5.1b)

m=1

where k = j + 1, A is a detuning parameter (associated with the aero-
dynamic loading) to be explained later in a numerical example, and
GF’ GC’ GN’ and GA are constants to be chosen so as to insure the proper

interaction for the various resonances to be considered.

We note that, if the nonlinear, damping and forcing terms were
zero, the k-th mode would grow indefinitely, and the system would be in
flutter. In the present situation, we expect the k-th mode to have a
much larger amplitude than the j-th mode, and we have no indication of
the other amplitudes. Thus, using the method of multiple scales, we
obtain a uniformly valid approximation of the solution of equations

(5.1) in the form

-8
Up = € "DV, (ToaTiTo) + 20U (To,Ty,To)

+ oy (1o, TLTy) 14 ., (5.2a)
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where the 5n and 8, are more constants to be determined, and

Tn = gnaot (S.Zb)

The derivatives become

%f =D, + e6°Dl + e25°D2 + ... (5.3a)
and
; 2
$r=03 +250,0, + e2%0(p3 + 2040,) + ... (5.3b)
where
PR
D, = 3T (5.3c)

Substituting equations (5.2) and (5.3) into equations (5.1) yields

$
D%Un°+ uﬁUno * € °[D§Unl + uﬁUn1 + ZDoD1Un°]

+ ez‘s°[D%Un2 + uﬁUn2 + 20404, + D%Uno+ 2°°°1Un,]

6o+6k.6jU-1 +

§ot6p =6
s e2 k jU. ]

Gk-Gj
* &n (e UJ-o T e j2
GC 6C+60
+ e [chD°Un,] + e [zcn(Doun1+ Dl”no)]

6C+ 28,
€

+ (20, (0ay, + Dy T - Th T 6og(Up, * S
m’

§,.+8 - )
+ oy ye AT 6“] R T N 35°um1 + 525°um2) x

m=1 ,
SctS - ® ® ©
F*5n"%m e 8o
€ J(2cosAT,) mzl pz] qz] rnmpq(umo +e Uml

+ 626°Um2) x (uPo + €6°U + 526°Up2) x (qu . e:‘s"Uql

P1
Sy +6, -8 =6 =5
+ e26°uqz) x eN MO L0 n.,2,... (5.42)




k=3+1 ’ (5.4b)

s : (5.4¢)

and

1 when n = k
B ™ (5.4d)

n
0 otherwise
Equation (5.4a) is the basis for the analysis of syst:1s having a

repeated frequency, and we refer to it again in subsequent chapters.

In the present chapter, we consider the case in which there is
neither a parametric nor an internal resonance. Thds, here we consider
the flutter condition for the linear system and obtain the limit-cycle
behavior of the nonlinear system. In this chapter, we need to use only -
a two-term expansion, but in Chapter 6 where various parametric resonances
are studied, we need a three-term expansion.

For a reference, we use the j-th mode and hence let
Gj =0 (5.5)

In order to have the effect of damping included in a first approx-

imation, we must let
6c - 60 (5.6&)

And to account for the repeated frequency here, we must let

8y = Gj = 8§, or simply 8 = o (5.6b)

We presume that the j-th and k-th modes are the ones primarily
involved in the representation of the flutter system. Thus we focus

on these mode.
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It appears that to bring the effect of the aerodynamic loading into

the first approximation, we must put

8§, * Gn - & = &

A m

We note that, when n=j and m=k, this statement leads to

§, = 250 (5.7)

A

and when n=k and m=j, it leads to

GA =0

If 5A = 0, the aerodynamic term in the equation governing the Uj is
elevated to O(e'5°), which is unacceptable. On the other hand, if

6A = 284, such unacceptable result follows; thus, we let GA = 28o.

To account for the nonlinear terms in the first approximation, we

must put

GN + Gn = Gm = Gp - 6q = Qo

When n=j and m=p=q=k, this leads to

Sy = 460 (5.8)

N
For other combinations of modes, one obtains different results for GN'
but these all lead to inconsistencies.

Here we do not consider the effect of a parametric excitation.

ol e e ek e e e g g

Thus, for the time being, we consider

fmn =0 for all n and m (5.9)
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Finally, when n # j or k, we let

0< & < & (5.10)

5.1 The Case of Modes Having Repeated Frequencies

A. The Linear Response - The Flutter Condition

In the absence of both an internal and a parametric resonance
the only modes remaining in the analysis are the j-th and k-th modes.

For the linear response, we let

anpq =0 forall n,m p, q (5.11)

Substituting equations (5.5) thru (5.11) into equation (5.4) and equating
8o

coefficients of €"°?, we obtain
2 2 =
Dono + ijjo 0 (5.12&)
D%Uko + w;Uko = 0 (5-]2b)
D%Ukl + w;ukl e ZDODIUko Y UJ-O = zckDono (5-12d)

The solution of equations (5.12a) and (5.12b) can be written in the form

u

j0 Aj(Tl) exp(iijo) + cc (5.13a)

Uk° = Ak(Tl)exp(iijo) + ¢ (5.13b)
Substituting equations (5.13) into equations (5.12c) and (5.12d), and
separating the result into real and imaginary parts, we obtain the

following conditions for the elimination of secular terms




- 21wj(Aj ¥ CjAj) * AsjkAk =0 (5.14a)

Writing Aj and Ak as

.exp(AT;) and Ak = Bkexp(ATx) (5.15)

Ay =%

and substituting into equation (5.15) into equations (5.14) leads to

21mj(x + CJ.)Bj - AsjkBk =0 (5.16a)
Bj' + Ziwj(x + Ck)Bk =0 (5.16b)
Setting the determinant of the coefficients equal to zero, we obtain
=0 . (5.17a)
1 Ziwj(k + Ck)
or
ABs
A+, +EI +(CC «—dx])ep (5.17b)
J k J k 4w2
J
Hence
C, +C AB.
A S e il s j(c O L (5.17¢)
2 2 J k w;
From (5.17¢c) we see that the solution decays if
AB.
(C +C)2 > (G -C)2 +—ik (5.18a)
J k J k wj

v ———T—— .
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or
2
A > 4ijjCk/8jk (5.18b)

is the condition for flutter. Thus in the absence of damping, any value
of A will cause flutter. Here we should note that Bjk is a positive
aerodynamic coefficient that is associated with the so-called "piston-
theory" approximation. Then A is a detuning parameter that is associated
with the flutter speed; A is zero when the airspeed equals the flutter
speed for the undamped system. When A is greater than zero, the airspeed
is above the flutter speed. A more detailed explanation will be given in

the numerical example of Chapter 9.

B. The Nonlinear Response - Limit Cycle Behavior

To examine the effect of the nonlinearity on the response, we

no longer use equation (5.11). Again substituting equations (5.5) thru
So

(5.10) into equation (5.4a) and equating coefficients of €™, we obtain
D%UJQ + mgujo =0 (5.193)
Dono + w§Uka =0 (5.19b)

2 2 3

(5.19¢)
D%Ukl + U§Uk1 SR ZDoD1Uko = zckDono + Ujo (Snlgd)
The solution of equations (5.19a) and (5.19b) is eouations (5.13).

Substituting equations (5.13) into equations (5.19¢c) and (5.19d),

introducing the polar form (3.1), and separating the result into real
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and imaginary parts, we obtain the following conditions for the elim-

ination of secular terms:

AR
E 3 3 k =

mj(aj + cjaj) + (ﬁ'rjkkkak + ak)siny =0 (5.20a)
wjlag + G ) + 3 asiny = 0 (5.20b)

: 3 3 AB’k
aja ;s + (ﬁ'rjkkkak + ak)cosY =0 (5.20¢)
AL, W - ] a.cosy = 0 (5.20d)

Kk " 2 Y3 : :

where

Y =05 -0 (5.21a)

For steady-state solutions aj = a& = 0. We see immediately that aj =3,

= 0 are possible solutions. For nontrivial solutions, 3 # ay #0, it

follows that y' = 0 then
at = o (5.21b)

The equations governing the steady-state response then become

A8
wilyay * (% Txkk®k ‘z‘j‘k 3, )siny = 0 (5.22a)
3 AB k
ajaso; + (F Typqdy * 7‘1— a )cosy = 0 (5.22b)
a,siny
wiag * —4— =0 (5.22¢)

a.cosy

oy - L—-=0 (5.22d)

We now multiply (5.22a) by €, and (5.22¢) by Cjaj, subtract, and
obtain




-
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A8, C.a?

[(% I‘jkkkai + -ZJ—k- )Ckaﬁ - _%_j— Jsiny = 0 (5.23a)
Similarly we multiply (5.22b) by a, and (5.22d) by 355 subtract, and
obtain

AB; a2
[ Tyas * 7iai + pllcosy = 0 (5.23b)

The coefficient of siny in equation (5.23a) and the coefficient of cosy
in equation (5.23b) cannot be zero simultaneously. Moreover, siny and
cosy cannot be zero simultaneously. It follows from equation (5.22c)

that
siny # 0 (5.24a)
Thus, we must have

cosy = 0 (5.24b)

and

3 2 2 o

(I ijkkak + ABjk)ckak - Cjaj 0 (5.24c)
If cosy = 0, then from (5.22¢) it follcws that

siny = - 1 (5.24d)

Substituting (5.24d) into (5.22c) leads to

aj = ijckak (5.25a)
Then substituting (5.25a) into (5.24c) leads to

22C.C. - A8
3 = 2’\/ Jik _Jk (5.25b)
3T 5 kkk ’
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If ijkk is negative (this is the case in thea numerical example
considered in Chapter 9), the condition for the existence of a real

solution is
2
A > <t<,>J.cJ.c|(/eJ.k (5.25¢)

in full agreement with equation (5.18b), which predicts the onset of
flutter. The linear analysis merely predicts growth, while the nonlinear
analysis predicts the development of a finite-amplitude 1im't cycle.

The existence of limit cycles was found numerically, but rot ana’ytically,
by Dowell (1966,1970). Smith and Morino (1976) developed 1imit cycles

analytically but not in the presence of parametric excitation.

5.2 Summary

The analysis pf linear and nonlinear systems having one repeated
frequency has been carried out in the absence of either an internal or
a parametric resonance. The amplitudes of all the modes not associated
with the repeated frequency are shown to decay. For the two modes
associated with the repeated frequency, the linear analysis predicts an
infinitely growing solution if the condition

A > 4w§CjCk/Bjk (5.26)

is met. The nonlinear analysis requires that the same condition be met
if nontrivial solutions are to exist. However, the nonlinearity puts a
bound on the response and limit-cycle behavior is found.

Now we can write a complete generalization of the solvability
condition of equation (2.9) that is valid for the cases where either

distinct or repeated frequencies exist. It has the form




- Zimn(DxAn * ann) + A z Yok A+ In e Rl R 0

oky Tne'p'p
(5.27a)
where
-ZA A if n# #J
p_ B npp n#j.m
£ = pz] A8 Ay + Ay Z YiohFs ifn=j (5.27b)
§ Aka s + Ay Z ykpA'K - Aj ifn=k
=1 p=1 :
and 2
3T 5kkk if p =k
Yip (5.27¢)
2T5kpp * Typkp * Typpk s
and
W B ifp=j
kp =
(5.27d)
2(Cy5pp * Tkpgp * Tkpps MY

It should be noted that for the case of distinct frequencies the Kn term
is set equal to zero and equation (5.31a) becomes identically equation
(2.9). When repeated frequencies are considered and appropriate scaling
parameters, §,, are specified by equations (5.5) through (5.11),

then we note that in equation (5.27a) the term

pz] an

is a higher-order term and hence does not enter the analysis at this

level of approximation. In addition equation (5.27b) simplifies to




0 ifndjorkl
Kn ™ | M5h *+ 350 By i n = (5.27e)
- A, 85 %




CHAPTER SIX

PARAMETRIC RESONANCE IN THE ABSENCE OF
INTERNAL RESONANCE

In this chapter we investigate several cases of parametric resonance
in the absence of an internal resonance. We demonstrate that using a
two-term expansion used in the method of multiple scales is inadequate

and a three-term expansion is required for the combination resonance.

We recall from Chapter 5 that the modes not involved in an internal
or a parametric resonance decay as t >~ ». Here the emphasis is on

steady-state solution; thus, we do not consider these modes further.

6.1 The Case Where X = Zgi.

The. resonant condition associated with this case is

A= 20+ So : (6.1)

where § is a constant to be determined and p is a detuning parameter.
Based on equations (5.27a) and (5.27e), we see that the solvability

conditions for the elimination of secular terms have the form

- Ziwj(A3 + chj) + Ij + Ej + 3rjkkkA2kxk + AsjkAk (6.2a)

- 21mj(A& + CkAk) *t *E - Aj =0 (6.2b)

where In and En are terms resulting from internal and parametric resonances,
respectively. In the last chapter, we analyzed these equations with In =

E, = 0. To examine the effect of the above resonant combination, we

49
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must include the fjkuko term from equation (5.4a) with n = j. We keep
Ek =0 and Ij = Ik = 0. The condition for inclusion of this parametric

resonant term is

op * 6j -6 " So (6.3a)

Substituting equations (5.5) and (5.6b) into equation (6.3a) we have

§p = 280 (6.3b)

Hence the parametric resonant term becomes

E; = - fjklkexp[(iea°p)To] (6.4a)

Because the interaction occurs in the second terms of the expansion, we

put
§ = § (6.4b) ;
so that using equation (5.2b) we obtain
The solvability conditions for the elimination of secular terms become
(6.5a)

- i2wj(Aé 27 CkAk) - Aj 5 S (6.5b)

Introducing the polar form (3.1) and separating the result into real and

imaginary parts, we obtain
f B: a
wglaj + Cqag) + 4K asing + (3 Tjaf + 135 E)stny = 0
(6.6a)




f. B; a
' k 3 3 k“k i
wja a5 - —5— acosg + ('8' ijkkak + A—J-z—)cosy 0 (6.6b)

a
mj(a& + Ckak) + zi-siny =0 (6.6c)
a. ;
“jak“i - El cosy = 0 (6.6d)
where
B = pTl - ak - aj (6.73)
Y=oy - o (6.7b)

For steady-state conditions, a:‘] = a"( = 0. Either both aj and a, are

zero, or neither is zero. For nontrivial solutions,

e po ag o 20 (6.8a)
and *

Y'® aj - “k =0 (6.8b)
which yield
o =5 (6.9)

The steady-state equations become

f, Bspa
k 3 k“k
mjcja‘j + —g— a,sing + (3- r:jkkkali + A—JT— )siny = 0 (6.10a)

a
002y * 2L siny =0 (6.10b)
fik 3 Bikk
w35 % - -5— acosg + (B' I‘jkkkai + A -J?— Jcosy = 0
(6.10¢c)
WP = ajcosy = Q (6.10d)
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It is possible to combine equations (6.10b) and (6.10d) to obtain

a§ = m§a§ (p? + 4C§ ) (6.11a)

Equations (6.10b) and (6.10d) may be substituted into (6.10a) and

(6.10c), respectively, so that, upon solving for sing and cosg and

squaring the results, we can use (6.11a) to obtain a closed-form solution:

2= 2 g 2 2
ag = g[8y * wilac,C, - 0%) = ST - daleR(cy + ) ]
(6.11b)

We note that, if a nontrivial solution exists as fjk + 0, then p - 0 and

hence equation (6.11b) reduces to

2 - P
4chjck ABJk

8 =2 (6.11¢)
3r.
Jkkk
and (6.11a) reduces to
aj = ijckak (6.11d)

in full agreement with equation (5.25), which gives the amplitudes of

the 1imit cycle for the unforced response.

More discussion of the results can be found in Chapter 9 where a

numerical example is presented.

6.2 The Case Where A = W +A435.

The resonant combination associated with this case is

AT bt %o (6.12)
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To determine the effect of the resonant combination, we must include the
following terms in (5.4a): fjrur° when n = j and frk”k“ when n = r. We
now have three equations to analyze since the rth-mode has been drawn
into the response by the resonant combination of eauation (6.12). If the
scaling conditions specified in equations (5.5) thru (5.10) are met
along with equation (6.3b), we see that the resonant term of the form
fjnur° in equation (5.4a), for n = j, will be of higher order and will
not enter the two-term expansion. Satisfying equation (5.10) for

§, = So allows for inclusion of the ferr° term; however the term

frkUr° in equation (5.4a), for n = r, will be of higher order and will
not enter the two-term expansion. In this case the solution predicts
that Ar decays as t + ». Thus it appears that the original two-tarm
expansion is an inadequate approximation, and recourse is made to a

three-term expansion.

We re-examine equation (5.4a) and proceed with an analysis which
parallels that of Chapter 5.

6°, so that the

We arbitrarily choose the scaling coefficients, ¢
effects of damping, the repeated frequency, the aerodynamic loading, the
nonlinearity, and the parametric resonance all interact at the same
order'of approximation. We have already determined that this will not
occur at 0(55°), so we expect that a uniformly valid solution will exist

Thus the & in equation (6.12) is set at

§ = 28, (6.13a)
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For a reference, we again use the j-th mode and hence let

In order to include the effect of damping, now we must let

5C = 28, (6.13¢)

Accounting for the effect of the repeated frequency, we must let

‘Sk - Gj = 260

Using (6.13a) we obtain
8 = 28, (6.13d)
To bring the aerodynamic loading into the approximation, we set
y P -G,

where we note that for n = j and m = k
and forn =k and m = j

GA:O

Following the reasoning of Chapter 5, we conclude that equation (6.13e)

must be satisfied to produce acceptable results.
To account for the nonlinearity, we set
6N + Gn - 6m - Gp - dq = 28,

When n =j and m=p = q = k, this leads to

Sy = 880 (6.13f)
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Other combinations of n, m, p, and q lead to different values for GN’

but all these cases lead to inconsistencies in the expansion.
Finally, to include the effect of the parametric resonance, we set
6F+6n"6m=260

Setting

t' 5F = 38 : (6.]39)

I allows for acceptable solutions. If n =j and m = r, then equation

(6.13g) yields

Gy * G (6.13h)

and one of the parametric resonance terms fjr”r“ can be accomodated.

When n = r and m = k the other resonant terms frkUk° is also included.

Substituting equations (6.13) into equation (5.4a) and equating co-
So i

efficients of equal powers of e"°%, we obtain
D%Ujo + mﬁujo =0 (6.14a)
D%Uko + ”§Uk° =0 (6.14b)
DSUro + mguro =0 (6.14c)
D%UJI + m§uj, + ZDoD,Ujo + ijkUkocosATo =0 (6.15a)
osuk, + “gukl + 2D4D1Up o= 0 (6.15b)
DiUr; + mﬁUr; + 2DD1Up0 = 0 (6.15¢)
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D%sz + w}sz + ZDoDzUjo + D%Ujo + ZDODIUjl + zchono
¥ 3

+ Uj° =0 (6.16b)
D%UPZ + wiUrz + 20002Ur0+ D%Uro + ZDODIUrl + ZCrDoUro

+ ZfrkUkoCOSXTo =0 (6.16¢)

The solutions of equations (6.14) are

Uj° = Aj(Tx,Tz)exp(iijo) + cc (6.17a)
Uko = Ak(Tl,Tz)EXp(iijo) + cc (6.]7b)
Ur° = Ar(Tl,Tz)exp(imrTo) + cc (6.17¢)

Substituting equations (6.17) into equations (6.15),we find that secular

terms are eliminated provided
DlAj = DlAk = D)Ar - 0 i (6.]8)
and that the An are independent of T;.

It follows that

A expli(A + w;)T,o] A exp[i(x - ws)Tol
k A K s
Usi = Fy X ¥ 20)) i ) R

(6.19a)
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and
Uk‘ = Ur‘ =0 (6.19b)

Substituting (6.17) through (6.19) into (6.16) yields the solvability

conditions

: [ e : 2% =
- 21mj(Aj + CjAj) - f. A exp(ipTy) + 3r‘.kkkAkAk + AB.kAk =

Jjrr J J
(6.20a)
- Ziwj(A& + CkAk) - Aj =0 (6.20b)
- 2iw (AL + CA) - frkﬁkexp(ipTz) =0 (6.20c)

where primes denote differentiation with respect to T,. Letting

AJ o %‘ an(Tz)exp[ian(Tz)] n=3j, k, r (6.21)

substituting equation (6.21) into equations (6.20) and separating the

result into real and imaginary parts, we obtain

f. AB;
uﬁ(aj + Cjaj) + -%1 a.sing, + (% rjkkkai + —%& ak)siny =0
(6.22a)
s AB;
“3aj°3 - —%E'arCOSS1 + (%'ijkkai + k ak)c05y =0 (6.22b)
a.
uﬁ(aé + Ckak) + Zl siny = 0 (6.22¢)
a
wgaay - 7E cosy = 0 (6.22d)
frk
mr(a; + Crar) e aksine2 =0 (6.22e)
f

mrara; - ~££ a,cosB, = 0 (6.22f)




58
where
81 = pTz - ar - aj (6-23&)
Y ooy - o (6.23b)
Ba = T, = a. - o (6.23¢)
{ For the steady-state response, a3 = a& = a; =0and B} =y' =B =0
Thus
0.3 = a;( (6.243)
a;. + aj = 0";- + aé =p (6.24b)
s AB.
r 3 3 k i
ijjaj + a.sing; + fg rjkkkak + ——%— ak]siny— 0 (6.25a)
a.
w3Chay + ?J' siny = 0 (6.25b)
frk
wrcrar + =, sing; = 0 (6.25¢)
a. f  a
! rkk
0 s cosy + EG;E: cosB; (§.25d)
T AB
5 —mj;j {‘%ﬁ 30881~ [g Tjpppdy * x 3, Jcosy
f. .4
+ ;kak cosB2 (6.25e)
rr
acosy = 2a E%L a_cosB; - [3 r ad + ﬁ;i& a, Jcos
il k rcOoR1 = LT F jkkk%K k
(6.25f)

From (6.22) we see that in the steady-state if any one of the & * 0

the other two are also zero.
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These equations do not readily admit a closed-form solution. They
are discussed further in Chapter 9, where a numerical example is pre-
sented. We note that only five equations are independent, equation
(6.25f) being a combination of equations (6.25e) and (6.25d). A sixth

equation can be obtained from equations (6.23):

B2 = B + Y (6.25q9)

6.3 The Case Where A = w, = wi'

In this case the ordering scheme turns out to be the same as that
of the previous section. Hence, we write the resonant combination as

- 280
)\-wr-wj"' Et0 (6.26)

The resonant terms become

280

Ejexp(iijo) = fjrArexp[i(wj - € %)T,] (6.27a)
and
E exp(inTo) = f A expli(w, + 2590)T,] (6.27b)
with
B == gl P o, - o (6.28a)
ye oo (6.28b)
B2 = pTa-a. +o (6.28¢)

The governing equations have the same form as those of the last section.

Hence the steady-state equations become

TR R RREE————Sre.
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f AB;

mjcjaj + —%ﬁ arsinel + [% rjkkka; + ——%£ ak]siny =0 (6.29a)
a
oiCyay + 5L siny = 0 (6.29b)
frk
“’rcrar & g aksinez =0 (6.29¢)
fm‘a a
p = 2;;;: cosB8; + “jak cosy (6.29d)
f_ . a £
. Tk k 1 r o3 3
Zoa, cosg, + 5533 5= a cos: - [3 T 5kkkk
AR |
+ +k ak]cosy (6.2%)
a.cosy 1 f.r 3 : AB.k
ZZ]GT " Tpy {'i‘ 2,c0881 - [ 3 T2k *+ —% aJcosy
(6.29f)

6.4 Summar

'Several cases in which parametric resonances are involved have been
investigated. The resonance case \ < Zuj appears at first order, while
the resonance cases A < wp w5 appear at second order. Nothing con-

clusive is self-evident from a cursury examination of the steady-state

equations. Analysis and discussion await the coverage of numerical examples

in Chapter 9.




CHAPTER SEVEN
THE EFFECT OF INTERNAL RESONANCE

Again we choose to investigate an internal resonance of the form
W, = 3wj. In this chapter we examine parametric resonances in the presence
of this internal resonance. We also discuss the case where the internal
resonance is present but there is no parametric resonance, the only

excitation coming from the aerodynamic loading.

L h ~ ’ e =
7.1 The Case Where X Zmlrand W, 3wJ

The resonances associated with this case are

A= 2+ %o (7.1a)
and

w, * 3w, + e (7.1b)

r J

In this case, the general form of the solvability conditions is as
follows:

- Ziwj(A3 + chj) + Ij + Ej + 3ijkkAkAk + AejkAk =0 (7.2a)

- Ziuﬁ(Ai + CkAk) + Ik + Ek - Aj =0 (7.2b)

- Zimr(A; + CrAr) + Ir + Er =0 (7.2¢)

To obtain the best approximation, we need to develop an ordering
scheme which includes the effect of the repeated frequency, the parametric

resonance, the internal resonance, and as many other terms as it is

consistent to retain.
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Proceeding as in Section 6.1, we find that equations (5.5) thru

(5.10) and (6.3b) still hold and that
§ =0 (7.3a)

Thus, the nonzero resonant terms in the solvability conditions become

Ej = - fjk kexp(ipTl) (7.3b)
and
Ir = FrkkkAﬁexp(-ioTl) (7.3d)

Substituting equations (7.3b) - (7.3d) into equations (7.2), introducing

the polar form (3.1), and separating the result into real and imaginary

parts, we obtain

AB.
w; (a + C, aj) + —17——-51n81 + Cg Jkkk + ——%5 ak)s1ny =0

(7.4a)
AB.k
W (ak + ckak) + ?l siny = 0 (7.4c¢)
a
“jakai - 2i-cosy =0 (7.4d)
mr(a; + crar) - % rrkkkaﬁ sinu + %frkaksinez- 0 (7.4e)
wrara; +-% Prkkkaicosez- %frkakcossz =0 (7.4f)
where

B1 = o) - Y = Gj (7.4q)

Ye a0 (7.4h)




']
.

[
x~

}

o

"

"
Bl =8; =y

so that
p = a& + aj
a: = ak

and

o= 3a -

from which

jTop =%

Q

and

- %2 =

Q

f

u=-o0T + 3ak - o,

B2 = (p=-0)T, + Y = QT By > it

For the steady-state solutions a} = a& = a; = (0, and it follows that

J

0 are possible solutions.

The steady-state equations become

frkaksinsz

(7.44)

(7.43)

For non-trivial solutions

(7.5a)

(7.5b)

(7.5¢)

(7.5d)

(7.5e)

(7.5F)

., a AB:, 2
a
0iCd * L siny =0

w.Cpay - % TrgkkdSim + ——2—

TS AB;, 2
“’ja.i% g k?  cosg, + (% Tikkkdk * —'%Lk)cosY =0 (7.6d)

(7.6b)

=0 (7.6¢)

i e bl i i S i e .t A
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wjap - ajcosy = 0 (7.6e)

frkakcosez

“rarcge » gk % % I‘|r~kkkalic°s“ s =0 (7.6f)

Equations (7.6a, b, d, e) are identical to equations (6.10) and hence

can be reduced to

J
(7.69)
a5 = wjay v p? + 4Ck2 (7.6h)

Moreover, B8; and y can be obtained from these equations. To find a., B2
and u, we solve equations (7.6c,f) and (7.4j) numerically. The response
is the same as that in Chapter 6 for the two modes associated with the
repeated frequency. Due to the presence of an internal resonance, a
third mode is drawn into the response, but it does not influence the

Jj-th and k-th modes.

7.2 The Case Where A = W, + wj and W, ~ 3wj.

The resonances associated with this case are
A=, twt st (7.7a)
r J ¢
and
w, = 3, + o (7.7b)
r J s

The solvability conditions of equations (7.2) remain valid. Starting

with the formulation of the three-term expansion of Section 6.2, we note




that the parametric resonances have been accounted for and that we must

attempt to include the internal resonance terms

= i 8

and
I = Ty exp(-ie%aTo) (7.8b)

380

Unfortunately, both of these terms are order ¢ and do not enter at

this level of approximation.

We thus conclude that the effects of the parametric resonance and
the repeated frequency dominate the response and that the effect of the
internal resonance is of higher order. To this order of approximation
the response in the presence of a parametric resonance is the same

regardless of whether an internal resonance is present or not.

7.3 The Case of No Parametric Resonance with W, ~ 3wj.

Only an internal resonance is associated with this case and it is

associated with the combination
w, = 3w, + % (7.9)
r J -

The solvability conditions of equations (7.2) remain valid. There is no
parametric resonance so the En = 0. Using the scaling conditions of
equations (5.5) thru (5.10), (6.3b) and (7.3a), we find that the only

internal resonance term that appears to first order is

A3

I k

. ™ s exp(-ieSoT,) (7.10)




Substituting equation (7.10) into equation (7.2), introducing the polar

form (3.1), and separating the result into real and imaginary parts, we

obtain equations identical to equations (7.4) when
fjk = frk =0 (Z7.5%1)

The resulting steady-state equations lead to the following:

40.2C.C, - AB.
ifj jk Tk (7.12a)
3T 5 kkk

a =
aj = 2ijkak (7.12b)
and
1 r &
a_ = 8 rkik k (7.12¢)

r
Nﬁurz(crz + g2)

Hence we note that equations (7.12a) and (7.12b) are the limit-cycle
equations developed in Chapter 5 when no resonance was present. The
modes associated with the repeated frequency are independent of the

internal resonance, which only serves to draw the r-th mode into the
response. Moreover, the steady-state amplitudes aj and a predicted by
equations (7.6g) and (7.6h) approach those given by equations (7.12a)
and (7.12b) as fjk vanishes. We note that, if a steady-state solution

exists, Ifjkl > |p|2mj(Cj + ck) and hence p must vanish as fjk vanishes.

Finally, we note that equations (7.6¢c) and (7.6f) yield equation (7.12c)

as fjk and frk vanish.
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7.4 Summary

We have examined two cases of parametric resonance in the presence

of the internal resonance W, z 3wj.

a. When X is near twice the repeated frequency the response for
the repeated modes is the same as for the case of no internal resonance.

The third mode is merely drawn into the response.

b. When A is away from twice the repeated frequency the response
tends to be the same regardless of the presence of an internal resonance.
The effect of the parametric resonance and the repeated frequency dominate

the response.

c. In the case of no parametric resonance or a parametric resonance
away from twice the repeated frequency, the form of the response for the
modes associated with the repeated frequency is the same as that discussed
in Chapter 5 where no resonance was present. Hence the only mode affected

is the mode drawn into the response by the internal resonance.
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CHAPTER EIGHT
LATERAL VIBRATIONS OF COLUMNS

The lateral vibrations of columns are used as an example where the
analysis contained in Chapters, 2, 3, and 4 can be applied. The natural
frequencies of oscillations are distinct. The governing equation will
be nondimensionalized and converted to the form discussed in Chapters 2,

3, and 4.
8.1 General

Relatively large-amplitude Tateral deflections cause significant
stretching of the neutral axis when the longitudinal displacements of

the ends are restrained. For small, but finite deflections, one needs

to use nonlinear geometrical relationships to account for this stretching.

The equations governing the deflection can be written in the form
2

g oadY b 5 [ Gt oo
(8.1)
The cubic term accounts for the stretching. The terms which account for
shear deformation and rotary inertia are formally the same order as the
term which accounts for stretching. However, these terms are linear,
and consequently, they are responsible for only small perturbations of
the solution of the linear problem. Here the focus is on nonlinear

effects.

It is convenient to introduce nondimensional variables (denoted by

primes); thus, we let
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L 3 4
p(t) = EAQD) p'(t'), C=B JoE ¢, e[ EA  (8.2b)

Substituting equation (8.2) into equation (8.1) and dropping the primes,

we obtain
2
3w , 3%w  _ 1 aw(E,t) 2 32w oW
e [P(t)*zf S 1l - %5
O .

(8.3)
Here the characteristic length is one-half the actual length of the
beam. We seek approximate solutions of equation (8.3) which are valid
for small, but finite, values of e.
We express the deflection as an expansion in terms of the linear

free-oscillation modes as

©

w(x,t) = Z] Un(tsele, (x) (8.4)
m=
In equation (8.4), the ¢ are the orthonormal solutions of the following:
29 =
¢m1v - wp 0 (8.5a)
where
0y = 0 and ¢ =0 (8.5b)
at clamped ends and

o " 0 and ¢; =0 (8.5¢)

at hinged ends. The wy, are the natural frequencies and the ¢m are the
linear free-oscillation modes.
Substituting equation (8.4) into equation (8.3), multiplying by O

and integrating the result from x = 0 to x = 2, we obtain
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U +w2U = el-2cosAit J f U -2C0 + URTRUN
n n"n me]  nmm nn mZ1 pZ] qzl nmpq m p q
foen =1, 2, ... (8.6a)
where
P(t) = F cosxt
2 2
2f, = - F fo dpdidx = FJO- ondy dx (8.6b)
and
2 2
- ] {| 1 1 ]
anpq < ¥ f¢n¢mdx J: ¢p¢qu (8.6¢)

Equations (8.6a) and (2.1) are the same.

8.2 Hinged-Hinged Beam

In this case,

. sin /G; X (8.7a)

©
[}

and

w

| = g i’ (8.7b)

It follows that resonant combinations of natural frequencies abound;

however, for this beam

TR
anpq - z-wnwpénmépq (8.8a)

Thus all the In are zero. Essentially, there is no internal resonance
for this beam.
From equation (8.6b) it follows that

1
fom = 7 9nFm (8.8b)




Therefore, resonances of the combination type, A near w

n
possible for this beam.

* W» are not

Using equations (8.7) and considering A to be near 2wn, we obtain

the following from equations (3.7):

) 1 :
a, + Cnan + Z-Fans1nu =0

[ 3 l =
a o - 3anmn/32 i Fancosu =0

where
w=poh - 2.

For the non-trivial steady-state solution, we find that
4C 16p - 3w a?
sinp = -—Fﬂ ’ cosu = ——W_-'Lﬂ

and

= lég 8 2, o 2
an \/3“’“ + Tw—n' / F 16Cn
It follows from (8.10b) that

r > 4Cn

if a real solution for a  can exist. If F > 4C,, then
(1) when
o <-g/F* -l6cZ

no real solution exists;

(2] when

(8.9a)

(8.9b)

(8.9¢c)

(8.10a)

(6.10b)

(8.11)

(8.12a)

O S ———

. £ T g e O, e W i e PR P ¥ Y2
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one real solution exists;

(3) when
1 /2 2 ’
0> 3 F< - ]6Cn (8.12c)

two real solutions exist.

Ncw we consider the stability of the various possibilities . Using
the analysis in Chapter 3, equations (3.8) through (3.13), we find that

for this case equation (3.11) becomes

A/z 3wn 2 2 2
Q= - Cn + Cn tgp 2 vy F? - 4Cn (8.13)

ns

When the negative sign inside the radical is used, the real parts of

both values of Q are negative and hence the coresponding motion is
stable. The negative sign corresponds to the laréer a, given by equation®
(8.10b). Hence, when two real solutions exist, only the one with the
large amplitude is stable, and when only one real solution exists, it is

stable. |

The stability of the trivial solutions can be examined in a similar

fashion. It turns out that, when p is in the region where there is no

real solution of equation (8.10b), the trivial solution is stable; when
p is in the region where there is one real solution of equation (8.10b),
the trivial solution is unstable; and when p is in the region where
there are two real solutions of equation (8.10b), the trivial solution
is stable.

The results are illustrated in Figures 1-3 when A is near w;. For

combinations of F and p in Region I, no nontrivial steady-state solution




73

/
/)It i

REGION / T

F /
REGION II
REGION
I ' I

' B

F=4c, % s
1 REGION I TB'
0
f)

Figure 1. Parameter space, F is the amplitude and p(ep = A - 2w) is

the frequency of the excitation.
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exists, and the trivial solution is stable. In Region II, the trivial
solution is unstable, while the only nontrivial solution is stable.

In Region III, two nontrivial solutions are possible. The trivial
solution and the larger-amplitude nontrivial solution are stable, while

the smaller-amplitude nontrivial solution is unstable.

In Region I, it appears that regardless of how large the initial
amplitude is, the phasing never becomes such that the rate at which work
is being done is as large as the rate at which energy is being dissipated.
Indeed, if the damping term were deleted from equation (8.9a), the
predicted response would still decay. Thus, we conclude that, for the
linear as well as the nonlinear system, the phasing is such that the

force actually does negative work and contributes to the decay.

In Region II, for a Tinear system the phasing, which does not
change with amplitude, is such that work is being done at a faster rate
than energy is being dissipated and thus the response to any initial
disturbance grows without bound. For the nonlinear system, the phasing
for large amplitudes differs from the phasing in the linear system as a
consequence of the nonlinear term in equation (8.9a). The effect is to
limit the rate at which work is being done to the rate at which energy
is being dissipated and thereby to produce a bounded harmonic response.
If the initial disturbance is very large, the response will decay until
the steady-state solution is reached, while if the initial disturbance
is very small the response will grow (the system being governed by the
linear equations when the amplitude is small) until the nonlinear term

in equation (8.9b) becomes large enough to cause the phase to shift
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significantly. Thus, in Region II all initial disturbances produce the

same steady-state response.

In Region III, the response of the linear system to an initial
disturbance always decays. The mechanism causing the decay is the same
as in Region I. The results for the nonlinear system show that only the
larger of the two possible steady-state responses is stable. Thus, it
appears that, if the initial disturbance is small, the nonlinear term in
equation (8.9b) does not have a strong’influence on the resulting
motion and the system behaves essentially as a linear system; the motion
decays. On the other hand, when the initial disturbance is large enough
to produce the nontrivial steady-state response, the nonlinear term has
a strong influence, and changes in the phase occur. Thus, in Region III
there is the possibility of produci;g motions which have characteristics
that are similar to those of the motions in Region I as well as those in
Region II. The type of motion is determined by the amplitude and phase

of the initial disturbance. This is a rare example in which a nontrivial,

steady-state response of the nonlinear system exists in a region where

the response of the linear system decays.

Let us suppose that the frequency of the excitation is varied while

the amplitude is held fixed. This process is represented by the line

through points A;, A, and A,. Between points A, and A,, the trivial
solution is stable; moreover, it is the only steady-state solution
possible. Between points A, and A;, the trivial solution is unstable,
and the only realizable solution is the one given by equation (8.10b).

Beyond point A;, the trivial solution is again stable and two solutions |




|
1
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are realizable -- the trivial solution and the larger of the two solutions

given by equation (8.10b).

Finally, let us suppose the amplitude of the excitation is varied
while the frequency is held fixed. This process is represented by the
1ine through points B;, B, and B,. Between points B, and B,, only the
trivial solution is possible because the requirement of equation (8.11)
is not satisfied. Between points B, and B;, two solutions are realizable--
the trivial solution, which is stable, and the larger of the two solutions
given by equation (8.10b). Beyond point B,, the trivial solution is
unstable and the only realizable solution is the one given by equation

(8.10b).

For the first process, the amplitude of the solution is plotted as
a function of p in Figure 2. If the frequency of the excitation decreases
from a large value, we note that upon reaching point A;, where the
trivial solution becomes unstable, there is a jump in the value of a; up

from point A; to point A3. This process is indicated by the arrows.

For the second process, the amplitude of the solution is plotted as
a function of F in Figure 3. We note the presence of a jump phenomenon.
If F is increased slowly from Point O toward point B,, a, remains zero.
However, the trivial solution becomes unstable at B, and a slight
increase in F at this point causes a; to jump up to point Bi. Then
further increases cause a, to follow curve CB3D toward point D. When F
is decreased a;, follows curve CBiD away from point D pasts point Bj,
without jumping down to point B, until it reaches point C. At this

point a slight decrease in F causes a: to jump back to zero at point B:.




Figure 2.
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Amplitude of the response, a,, as a function of the frequency
of the excitation, p(ep = A - 2w;) for constant amplitude of

the excitation, F, —stable, ---- unstable.
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Figure 3. Amplitude of the response, a,, as a function of the
amplitude of the excitation, F, for constant frequency

of the excitation, p. —— stable, ---- unstable.




79

The arrows indicate this path. Figure 3 corresponds to p greater than
zero. As p decreases, point C approaches point B;, and the multi-valued

region and hence the jump vanish.

The results for )\ near Zmn, where n = 2, 3,..., are similar to

the above results.

Next we consider an example for which the internal resonance plays

an important role.

8.3 Hinged-Clamped Beam

For a beam which is hinged at the left end and clamped at the right

sin2v’3§;
4 = Y, [S'in ax - sinh /g x] (8.16a)
sinh2v/ Wy
where .
sinh2y Wy
¥y = (8.16b)

1
[sinh22/ Wy - sin?2/ W ] /2

and the w, are the roots of

tanhZ/mn - tan2/ w, =0 (8.16¢)
The first five roots of equation (8.16c) are
wy; = 3.855, w2 = 12.491, w; = 26.062, wy = 44.567, and

ws = 68.008
Referring to equation (2.8a), we find that for the first five modes the

combinations for which €o is below eight percent of w, are

3wy = w2 = €0, (8.]85)




o 1ﬁ;mnfs“
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wr tw2 Yy Tw t €02 (8.18b)
2wz + wy = ws + €03 (8.18¢c)
w2 *2w3 = ws *+ €0, (8.18d)
Wy * W3 - W = Wws + E0s (8.18e)
2wy - w3 = ws * €06 (8.18f)

Referring to equations (2.9), we find that the conditions for the

elimination of secular terms are
wi(al + Cia;) - 3Q,a%a,sinu; + Quazaszau.sinu, - Qsasasassinus

- Imag[E,exp(-ia;)] = 0 (8.19)

S
widaf +-% a; ) vy a2 + 3Qiafazcosu; + Q2a,a3a.C0SH;
gy AN E
+ Qsasa,ascosus + Re[E;exp(-ia1)] =0 (8.19b)

wz(as + Cpaz) + Qiajsinuy + Q2a;a3a,sinuy + 2Q3aza.assinus

+ Qua%assinu, - Imag[Ezexp(-iaz)] =0 (8.20a)
S
wzdza} + %-az mZ1 Yzma; + Qiajcosu:  + Q22,2334C0SU2
+ 2Q;a,a,assinu; + Qua3assinu, + RE[Eexp(-1a2)] = 0
(8.20b)

wi(aj + Csa;) + Qra;a,a,sinu, + 2Quaza3assinuy + Qsaja,assinus

- QeéaZassinug - Imag[Esexp(-ia;)] = 0 (8.21a)




5
1
w3dsa3 + 7 a3 Z] Ysma; + Q2a;a,a,C08u2 + 2Q4,223335COSHy
m=

+ Qsa,a,ascosus + Qgalascosus + Re[Esexp(-ias)] = 0

(8.21b)

wy(ad + Cuay) - Qa,a,a38inu; + Qsadassinus + Qsajasassinus

+ 2Qsasa,assinug - Imag[E.exp(-iay)] = 0 (8.22a)
1 : )
Wedual + g 2 mgl y“ma; + Qa,3,35C08u, + Qia3ascosy;

+ Qsaasascosus + 2Qsajasascosys + Re[E,exp(-iay)] = 0

(8.22b)

ws(ag + Csas) - 03a§ausinua = Qhaza§SiHUu - Qsa;asa,sinus
L}

- Qeasaisinug - Imag[Esexp(-ias)] =0 (8.23a)

5

wsasal + %’as z]
m=

mea; + Qiaja.cosu; + Qeazajsinu,
+ Qsajasa,cosus + QeasaZcosus + Re[Esexp(-ias)] = 0

(8.23b)
where

Q1 =T1112/8
Q2 = (Tyu2s * Tizsw + Ti1334)/4

Qs = (T22s4 + 2T2425)/8

B Qu = (2533 * 2T2335)/8
Qs = (T1uss * Tiszus + T1s3u)/4
Qe = (Fzsuu * zrauus)/a
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up = a2 = 301 + 00Ty

H2 S 0p = Q2 = 03 = Oy = 0T,

U3 = 202 + ay - as + 03T,
Uy = ap t 2&3 =g T G“Tl
Us Tas *ay =01 - as - 05T,

Ue = 204 - 03 = a5 + 06Ty

and the En depend on the excitation.
In this section, the following three cases are considered:
(1) X near 2w,

(2) X near 2w,

(3) X near w; + w2

It follows that the En’ for n = 3, 4, and 5, are zero for all three
cases being considered; thus, from equations (8.19) - (8.23), it follows

that a possible solution is
a; = ay =as =0
and a; and a, are given by "

wi(aj + C,a;) ~ 3Q,a%a,sinu; - Imag(E,exp(-ia;)] = 0 (8.24a)

waied + g ai(yial + vi223) + 301a%a,c05m; + Re[Esexp(-1a;)] = 0
(8.24b)

and

wz(as + Czaz) + Qiaisinu; - Imag[E,exp(-iaz)] = 0 (8.25a)

wadj03 + %‘az(sza% +y2,a}) + Qajcosu; + Re[Ezexp(-ia;)] = 0
(8.25b)

T e TS24 AP 0 3008 4 e g
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which are either equations (4.30) or (4.45) depending on the form of the
parametric resonance. Tso and Asmis considered the system above, but

took Q; to be zero.

Case (1), ) near 2uw;

To express the nearness of X to 2w,, we introduce another detuning

factor p defined by
A= 2w1 + €0 = w2 - w t+ E(Q = 01) (8.26)

where equation (8.18a) was used. Then equations (8.24) and (8.25) can
be rewritten exactly as (4.30) with m=1 and k=2.

wi(aj + Ca,) + %‘ fiia;8in8 - ]7 fiza2s8in(8 - 1)

- 3Q;a%a,sinu;, = 0 (8.27a)

wida) + % ai(ynal + vyiza3) - %fnalCOSB - Jz-fuazcosus - y1)

+ 3Q,a%azcosu; = 0 (8.27b)
wz(az + Craz) + % f2i1a158in(B - uy) + Qiaisinu, = 0 (8.27¢)

1
wadzaz + % az(yz21a1 + v22a3) - 5 f2131€08(8 - wy) + Qiajcosy, = 0

(8.27d)

where
B = pT) - 2a1 (8.283)
w =0Ty +az - 3o (8.28b)

For the steady-state response,

al=a3 =0 and ut = B8' =0 (8.29)
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It follows that the trivial solution is possible:

a, =a, =0 (8.30)

If neither a; nor a, is zero, one can use equations (8.28) and (8.29) to

rewrite equations (8.27) as
w;Cya, + %—flmsine - %‘ f123,51n(8 - uy) - 3Q;afazsinu; = 0
(8.31a)
1 1 2 2 1 1
7 wdip + g (vl + vyiaaf)ay - 5 fliai1cos8 - 5 fizazc08(8 - i)
+ 3Q,a%ascosu; = 0 (8.31b)
w2C,ra, +-% foia;5i1n(8 - u1) + Quaisinu; = 0 (8.31c)

wzaz(% p -o0p) + %’(Yzza% + YzzB%)az - %‘fZ!a]COS(B - W)
L}

+ Qiajcosy; = 0 (8.31d)

A Newton-Raphson technique is used to find the solutions of equations
(8.31).

In Figure 4, some typical results show the amplitudes of the first
and second modes (a, and a,) as functions of the amplitude of the ex-
citation F, (refer to equation 8.6b). We note the multiplicity of possible
jumps; jumps are indicated by the arrows. We can trace the histories of
a; and a; as F increases very slowly from zero to a large value and then
slowly decreases back to zero. Initially, both a; and a, are zero, and
they remain zero until point A is reached. At this point the trivial
solution becomes unstable. Then the amplitudes jump either to curve

BCDE or FGH. If the jump is to G, then as F continues to increase, the




"".

AD=A065 175 ARMY MILITARY PERSONNEL CENTER ALEXANDRIA VA F/6 20/11
PARAMETRICALLY EXCITED NONLINEAR MULTI=DEGREE=OF=FREEDOM SYSTEM==ETC(U)
MAR 79 E G TEZAK
UNCLASSIFIED

=
=

2 oF
&= -

n ‘rU

END




*a|qejsun ---- ‘a|qeys

*(tmg - Y = d3)d ‘uoL3eILOX3 3y} JO Aduanbauy juelsuod 4oy ¢4

‘uo1jelLoXa 3y} Jo apniLidwe 3yl jo suorduny se sapnii|dwe |epow 3yl “p danbr4

3
0009 o002

ﬁl-

-ﬂ%

vl

85

L ow {
126+ o
oogz= d ‘
ol -=o T 00!

T N e




86

response follows curve FGH. If the jump is to D, then as F continues to
increase the response follows BCDE until another jump occurs from E to
H. An additional increase in F causes the response to follow FGH again.
Decreasing F at this time causes the amplitudes to remain on FGH until F
is reached. Then a jump to either C or the trivial solution occurs. If
the jump is to C, then an increase or decrease in F causes the response
to follow BCDE until the next jump is encountered. The jump at E has
already been discussed and the one at B returns the amplitudes to the
trivial solution. In Figure 5 the amplitudes are shown as a function of
the detuning p. Possible jumps are again indicated by the arrows. The
response for a; is initially similar to that of Figure 2 beginning with
the trivial solution when p is very negative. As p increases the trivial
solution becomes unstable and the amplitudes follow curve ABC as in
Figure 2. As p increases beyond C a transfer of energy occurs between
the modes, and a, grows at the expense of a; until E is reached. The
dominance of the second mode is quite clear. An additional increase in
p produces jumps. The amplitudes jump either to G or they jump to the
trivial solution. A further increase in p will cause the response to
continue along FG or remain trivial, depending on which way the jump
occured.

At this point, if the trivial response was attained, the solution
would remain trivial for a decrease in p until H is reached. Here
another jump occurs from H to B since the trivial solution is unstable.
below H. Once at B, an increase or decrease in p would cause the response

to follow ABCDE.

"
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If the jump from E had been to G and then p decreased, the response
would follow GF to F where jumps again occur. Both amplitudes could
become trivial or jump to D. An increase or decrease in p at this point
woufd cause the response to follow ABCDE again or remain trivial until H
is reached as discussed above.

Case (2), A near 2uw,

In this case, we introduce the detuning parameter p according to

A= 2w + ep (8.32)
For the steady-state, equations (8.34) and (8.35) reduce to equations
(4.49) withm =1 and k = 2

al(wlcl - 30161325'"\].[1) =0 (8-333)

a1[w (04 +'% p)/3 +‘% (yi1a] +vi1:2a%3) + 3Qia;acosy;] = 0
(8.33b)

Gilyas 4 % fr03,5in8 + Qualsinu = 0 (8.34a)

1 1
%wzpaz *+ 3 (v21al + v2288)az - 5 frz2,c088 + Quaicosm = 0

(8.34b)
where
B = Ty - 202 (8.35a)
and as above
yr = 1Ty + a2 - 3oy (8.35b)

From equations (8.33) and (8.34), it appears that there are two

possibilities for a nontrivial solution: either a, is zero and a; is
nonzero or both a, and a, are nonzero. Thus, the situation is the same
as that in Case (1). When a, is zero, the results resemble those

illustrated in Figures 1-3; consequently, they are not given here.
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The results when both a; and a, differ from zero are illustrated in
Figures 6 and 7. The top and bottom branches go together, and the middle
two branches go together. The important thing to note is that over a
fairly wide range a, is much larger than a,. This means that the first
mode dominates the deflection, though the second mode is the only one
directly excited. Consequently, when both a, and a, differ from zero,
there can be a significant transfer of energy from the second mode to

the first.

Case (3), A near w; + w»

In this case we introduce a detuning parameter p defined as
A=4w +ep= w t+tw + elp-o0o1) (8.36)

Also, we let .

H1 o1Ty + a2 - 303 (8.373)

(p - 01)Ty = o= az (8.37b)

H2
For steady-state solutions aa =y, = 0, and equations (8.24) and (8.25)

yield those of (4.22) withm =1 and k = 2; that is

w,C,a; + ffzgz sinuz - 3Q,a%azsinu; = 0 (8.38a)

w1dy §-+ %(Yxxaf + y1.33)a, - fifgl cosuz + 3Q,a%a,cosy; = 0
(8.38b)

w2Cla, + flfgl sinu, + Q,aisinu, = 0 (8.39)

wzaz(%2 - 01) + %'(leai + vaqa})a, - fszL cosu, + Q,ajcosy; = 0
(8.39b)
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Figure 6. The modal amplitudes as functions of the

amplitude of the excitation F, for constant

frequency of the excitation, p(ep = A - 2wz).
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Two possibilities exist: either a, and a, are zero, or neither is
zero. Figures 8 and 9 show the variation of a, and a, with F and p. In
both figures, the top curves for a, go with the bottom curves for a:,
and the two middle curves go together. Again we note that over a wide
range, a; is much larger than a., and hence the first mode dominates the

response.

8.4 Observations - Internal and Parametric Resonances.

a. The Effect of the Detuning Parameter p on the Response,

a, vs F, X near 2uw;.

Some interesting observations may be noted concerning the behavior
represented in Figure 4, which depicts the relationship between the
response amplitudes, s and the amplitude of the;fbrcing function, F.
The detuning parameter p measures the closeness of the frequency of the
excitation to 2w,. In Figure 10, when p 1s_sma11, the response is
essentially indistinguishable from that of Figure 3, i.e. the case when
no internal resonance is present. The ampliitude of the second-mode is
almost zero. As the frequency of the excitation increases, (i.e., p
increases), the effect of the internal resonance begins to appear. The
response may resemble that in Figure 10, or the second mode may dominate
the first mode as shown in Figures 11 and 12. As the detuning of the
parametric resonance approaches that of the internal detuning (p = o),
we see in Figure 11, strong modal interaction and the possible dominance
of a; over a, for a large range of the amplitude of the excitation, F.

In Figures 4 and 12, for p greater than o, the second can dominate the
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first mode, over a very limited range of the amplitude of the ex-
cit§tion. However, strong modal coupling is present, and the second
mode amplitude becomes relatively significant at the expense of the
first; hence we note energy being transferred from the excited mode to
the one involved in the internal resonance. Figures 4, 10, 11, and 12
graphically demonstrate the transition from a single-mode response to

a multimode response. The Iarger the detuning p is, the more the second

mode enters the response.

b. The Effect of Damping and the Amplitudes of the Excitation

on the Response, a, vs p.

Using Figure 5 as a point of departure, we see that the effects of
damping on the system can be made apparent. As a general rule, the
smaller the damping coefficients cn are, the more interaction one can
expect. Increasing the damping coefficients tends to reduce the modal
interaction to the point where the second-mode response is below that of
the first mode, and there is no longer a crossover point between a,
and a;. In addition, jump phenomena tend to disappear as damping
increases. Figures 13 and 14 demonstrate both of these effects, As the
damping increases, the response approaches that of Figure 2 as a limit,
or the response aproaches the single-mode response without internal

resonance. Increasing the amplitude of the excitation tends to spread

the stable and unstable branches and straighten the curves, first the
unstable branch, then the stable one. We note this behavior in com-
paring Figure 13 with Figure 14 and Figure 5 with Figure 15. As F

increases beyond the zone where jumps can occur, (the central portion

'W"‘"M‘!—\"Mn S S

et e e e e N i




99

Figure 13.

The modal amplitudes as functions of the frequency
of the excitation, p(ep = A - 2w,), for constant
amplitude of the excitation, F. —— stable,

---- unstable.
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Figure 15. The modal amplitudes as functions of the frequency
of the excitation, p(ep = A - 2w ), for constant
amplitude of the excitation, F. —— stable,

--== unstable.




of Figure 4), then a further increase in F tends to force a single-mode

response, approaching that of Figure 2.

8.5 Summary

The method of solution described in Chapters 2, 3, and 4 is used to
solve two numerical examples -- one without internal resonances (a
hinged-hinged column) and one with internal resonances (a hinged-clamped

column).

For hinged-hinged columns, there are in effect no internal resonances
and no combination resonances. Thus, the parametric excitation can, in
the first approximation, excite only one mode. Jump phenomena can be
produced by varying either the frequency or the amplitude of the excita-
tion. In this case the frequency of the response is always one-half,

that of the excitation.

For hinged-clamped columns, there are both internal resonances and
combination resonances. When X\ is near 2w, or w; + w2, both the first
and second modes are strongly excited (i.e., appear in the first approx-
imation), but generally the first mode dominates the second. Qualitatively,
the response in both cases closely resembles a single-mode (the first)
response. However, in the first case () near 2w,) the frequency of
the response is one-half that of the excitation, while in the second
case it is one-fourth the frequency of the excitation.

When X is near 2wz, two nontrivial solutions are possible --
either the second mode only is strongly excited or the second and first
modes are strongly excited. In the second case, the first mode domi-

nates, and the response qualitatively resembles the response when )\ is

B

P E———
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near 2w; and when A is near w; + w,. Multiple jumps are possible. When
only the second mode is excited, the frequency of the response is one-
half that of the excitation; on the other hand, when both modes are
strongly excited, the frequency of the response is one-sixth that of the

excitation.

Thus, for the cases considered, it is possible to produce responses
having frequencies that are one-half, one-fourth, and one-sixth that of

the excitation.

One excitation can produce rather dissimilar responses. On the
other hand, several different excitations can produce responses which

appear to be quite similar.

When A is near 2w;, detuning the excitation allows the internal
resonance to induce strong modal coupling and the second mode can be
made to dominate the responée. Increasing the damping and/or the
amplitude of the excitation inhibits modal coupling. If the increase

is large enough, it can result in essentially a single-mode response.




CHAPTER NINE
PANEL FLUTTER

The analysis contained in Chapters 5, 6, and 7. is applied to
the motion of a plate in an airstream undergoing cylindrical bending (no
spanwise bending). As in the last chapter, the governing equations
are nondimensionalized, but here they are converted to the form discussed
in Chapters 5, 6, and 7. The process is slightly more involved than for

the beam.
9.1 General

Following Dowell (1966, 1975), we write the governing equation
as follows
a
2w %w Eh AWy 2 3w
D tombh =N+ 3 f (35)°de] 5%
0

2
aw ® oo W M2 - 2,1 ow
-C3F - z;;—:—;;173 g * (;;—:—T) 3 ] (9.1)

e U

where D is the flexurzl rigidity, Pm is the material density, h is the
panel thickness, a is the panel length, o_ is the density of the air in
the freestream, U_ is the freestream velocity, and M is the Mach number,
and Ny refers to the inplane parametric loading and is harmonic in what
follows. The edges of the plate are restrained so that stretching
occurs, and the term which accounts for it has the same cubic form as
that of a beam. Modal damping is again assumed. The final term accounts
for the aerodynamic pressure due to the plate motion and it is in the

form of the so-called "piston-theory" approximation.

104
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It is convenient to introduce nondimensional variables (denoted by

primes); thus we let

s DI h
X = %-ax', W= g—-w', t = % LS
F X N _ 3(1-v?)h? C a’
e 'R.= el e 5 2el s ——uiC
X 4D a 4 G:_b

The parameter which is a measure of the dynamic pressure is

S o, U2a’

A= WD (9.3)
The coefficient of the last aerodynamic term is

(W-2) i (9.4)

(Mz_]) [u Dn;h

and can be taken as smal!l because the ratio of the density of air to the

density of the material is small.

Substituting equations (9.2) and (9.3) into equation (9.1) and

dropping the primes, we obtain

g
Y : §
'w . d%w w _rF N OW(E,t)\2 . 32w
e taert A 5p cle Rote f( 35 ) €] 557
0
s
C. ow
-2 ¢ % (9.5)

where &g, GF, GN’ etc. conform with the ordering of Chapters 5-7.
We express the deflection as an expansion in terms of the linear free-

oscillation modes; that is

W(t) = I Upltieleg(x) (9.6)

A e S RS




The ¢ are the orthonormal solutions of

¢ =0 and ¢é =0 (9.7a)
at clamped edges and
¢, = 0 and ¢7 =0 (9.7b)

at hinged edges. The w, are the natural frequencies and the ¢ are the

linear free-oscillation modes.

Substituting equation (9.6) into equation (9.5), multiplying by One

and integrating the result from x = 0 to x = 2, we obtain

< ~ §
U, + 02U, + A Z ol = [-¢' Z 2c0sAtf, U
m= m=1
2 5c > 6N o oo 0
- + .
e CU, £ m§1 pZ] qZ1 nmqumUpUq] (9.8a)
where

o ‘ﬁ "n%d" (9.8b)
Rx = Fcosxt (9.8¢)
of = - FI b 0mdx = F I ondpdx = FG (9.8d)
nmpq f¢ ¢"dx J‘¢ ¢ dx = - nm Pq (9-88)

At this stage with the beam, we had achieved the desired form of the

governing equations, but this is not so for the flutter problem.
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Equation (9.8a) may be written in matrix form as

8 GN

@ £ 8¢
AU +BU =¢ FU+e CU+ € 'TU (9.9)

provided we use a finite number of terms in the summation. The matrices
U and U are column matricies of length M. The remainder are square

matrices of dimension M x M. Then we note that

(Al = [I] (9.10a)
The identity matrix

(8] = [w® ] + Ala,,] ' (9.10b)

where the frequency matrix is diagonal,

[F] = - 2cosxt[f ] (9.10¢)

€] « < & 10, (9.10d)
and

(7] = - (W' (6, 0UIC6,,] (9.10e)

The system of equations which has been analyzed in Chapters 5 through 7

is of the form
“ 5F GC 6A GN
IU+JU= ¢ F'U+ € C'U+ € “AB'U+ ¢ T'U (9.11a)

where the first coefficient matrix is the identity matrix and

—

g B S
1 o s e e B
e R S (9.11b)

0 L




is of the Jordan canonical form, which, in this case is a diagonal

matrix with one off-diagonal term that is non-zero; F', C' and T'
contain the same type of terms as their counter parts in equation

(9.9).

The matrix B' contains aerodynamic coefficients which appear when
the dynamic pressure causes the stability parameter i to be near the
criticai value ;c which causes two natural frequencies to merge and
flutter to ensue. A refinement of the matrix B' is required before an
attempt can be made to transform equation (9.9) into equation (9.11a),

the Jordan form. Equation (9.10b) may be written

8 = fog] + % lad - { X, - Nilao] (9.12a)
= [Bc] + (X - xc)[anml g (9.12b)
where i - ;c is a measure of the nearness of A to the critical value
ic, and can be expressed in terms of a detuning parameter as follows
§ o <
e? w xe (9.12¢)

Then it is actually Bc which must be converted to Jordan form when the
value of the stability parameter reaches the critical value, ic, and the
onset of flutter occurs. The two lowest eigenfrequencies of B, become
equal at this time The larger eigenfrequencies remain very near the W

for n > 3.

It is now possible to introduce a similarity transformation which
transforms the matrix Bc to a Jordan form. (A complete discussion of
the choice of this matrix is contained in Appendix A). We thus choose a

matrix Z such that
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U=12v

(9.13a)

_ Then the similarity transformation that leaves the eigenvalues unchanged

becomes F o
w2 0 O 0
4 - . 2
Z Bczv =JV = 1 W) 0 0
0 0 w3
2
¥ B “M
WV =712V =1V
Z"'FZV = F'V
and
T30 =Ty

-

-

Vv,
V2

(9.13b)

v

M
(9.13¢)

(9.13d)

(9.13e)

This Tast transformation merits some detailed consideration. From

equation (9.13a) we can write the transpose as

T o yToT

U v'Z

Then using equations (9.10e) and (9.13e) we write
-1 & 71 T,T
& *TY =L N'L GanVquZV

Letting
- 7V
Gy =2 Gan
we note that

vig,v

(9.13f)

(9.13q)

(9.13h)

(9.13i)

is a quadratic form and it is thus a scalar. Hence we may write equation

(9.139% as
i
V'G,VZ quZV

(9.13§)
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Letting
= BT
G, =2 quZ
we write
TV = - V16,V6,V

Equation (9.131) has the same cubic form as before, or

1L} r ')

m p q nmpgmpgq

where

r =G, G (9.14b)

nmpq nm"2pq

Finally, the second half of the aero-matrix of equation (9.12b) can be

transformed into

B' = -Z'ulZz =28 (9.15)

Hence

- ) § ) [
IW+dV=c FV+ eCCV+e Ty +e May (9.16)

and the panel flutter problem has been reduced to the form of equations
(5.1). We shall now discuss the response for the various cases of

parametric and internal resonances examined in Chapters 5-7.

9.2 Simply Supported Plate.

For cylindrical bending of a simply supported plate we may write

¢, = sin ﬁE; X (9.17a)

(9.17b)




m

where the ¢ and w_ are the free-oscillation modes and frequencies. It

n
follows from equation (9.8) that

—anm__ if  m+n is odd (9.18a)
n2 - m?
O%m "
0 if m+ n is even
9
fom = 7 0 FS 0 (9.18b)
sl
Gnm = E-wnénm (9.18¢)
B = =GB (9.18d)

The transformations of equations (9.13) are applied to equations (9.18)

to provide
Bi2 = 99.2 (9.19a)
g F
fi1z = 404.9-? (9.19b)
F
fi3 = - 3917 5 (9.19¢)
fiz = 1017 & (9.19d)
fas = 22.74 % (9.19e)
P1222= - 5729 (g.lgf)
and
3222 = 1.438 (9.]99)
The frequencies become
w; = w2 = 8.1076 (9.20a)
w3 = 22.066 (9.20b)
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While the critical value of the dynamic-pressure parameter is

ic = 42.917 (9.20¢)
where the Wy and ;c satisfy
¢iv + ; ' - wi =0 (9.21)
c n

The various cases of Chapters 5-7 are discussed, beginning with the
response in the presence of a parametric resonance. The cases considered

are
(1) X near 2w,
(2) X ‘near w; * w

9.3 Parametric Resonance

a. Case (1) » < 2w

The governing equations for this case were developed in Section 6.1,

and for convenience we rewrite equations (6.11) as

a3

[§P~:kk (=ABrs + WH4C1Cy 57) & ¥ ¥ - GulpT(Cy + C512)2
J :
(9.22a)

a; = wmaz / p? + 4C3% (9.22b)

A general observation that can be made immediately concerns the relative

sizes of a; and a,. If _
/ 1
2 —

p? + 4C% < -4 (9.23a)

Hence, for a; > a; the detuning must be very nearly zero and the damping

extremely small, otherwise a; > a,. We note that even though a, > a,
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the response is not necessarily dominated by the first mode. The modal

%9 and hence

amplitude a,; multiplies a one (1) whereas a, multiplies ¢
its effect can be much greater. Figure 16 shows the variation of the
modal amplitude with the amplitude of excitation and the response has
essentially the same form as that in Figure 3. The response contains
the same regions where trivial and nontrivial solutions exist and jump
phenomena are possible. We note that as the amplitude of the parametric
resonance term increases, 0 < F < Fy, the only solution is the trivial
one and it is stable. Then we enter the region where two nontrivial
solutions exist, Fi< F < F2, one stable and one unstable. Finally when
F > F, the trivial solution is unstable and only one nontrivial solution
exists, which is stable, and a jump occurs. If we scan in the opposite
direction we start with a nontrivial stable solution and remain on that
upper branch until we reach the region where the only solution is the
stable trivial solution and a jump occurs. One can refer to Figure 3
where the arrows indicate the jump phenomena and the regions where
trivial and nontrivial solutions exist are shown. The form of the
response for the second mode is the same as the first except the ampli-
tude is so small that it appears to be zero by comparison.

The analog of Figure 2, modal amplitude vs detuning of the excita-
tion frequency, is Figure 17. This figure shows the modal amplitude
a; vs the detuning of the dynamic-pressure parameter, A. However, the
form of the response is essentially the same and exhibits the same
regions of stability and jump phenomena. As we scan from large negative
A to large positive A, or alternatively, as we increase the dynamic

pressure from below the flutter speed, we encounter first the region
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Figure 16. First modal amplitude as a function of the amplitude of
the excitation, F, for constant frequency of the excitation
p(ep = A - 2w;), and constant aerodynamic detuning, A.
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where the trivial solution is the only solution and it is stable, A < A;.

Between Ay < A < A, the trivial solution is unstable and the only
nontrivial solution is stable. Beyond A > A, there is again a stable
trivial solution and two nontrivial solutions, only the larger one being
stable. Again the form of the second mode is essentially the same
except the magnitude appears to be zero by comparison.

In Figure 18 we plot the modal amplitude vs the detuning of the
parametric excitation p. This new graph has a character of its own and
has no analog with the case of distinct frequencies. However, it still
contains regions where multiple solutions exist and points out where
jumps can occur. We can scan the frequency axis and observe the fol-
lowing. For p < p; only the trivial solution exists and it is stable.
Between p; < p < p2 two nontrivial solutions exist, the larger being
stable, the smaller unstable. In addition, the trivial solution is
stable, and since we are scanning from the left, the response remains
trivial. Betwean p; < p < p3 only one nontrivial solution exists and it
is stable. Concurrently, the trivial solution becomes unstable and an
upward jump occurs. Arrows indicate the jumps and paths followed by a;.
As the frequency increases between p; < p < p, the response remains
nontrivial, since that solution is stable. A nontrivial, unstable
solution also exists as well as a stable trivial solution. For p > p,
we see that the only solution possible is the trivial one, which is
stable, and a downward jump occurs where the nontrivial solution ceases
to exist. Scanning from the right we note a mirror-image response. The

solution is first trivial until p = p;. It jumps to the nontrivial

st
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solution and remains nontrivial until p = p; at which time it jumps back
to the trivial solution for further decreases in p.

When the damping is small and the frequency of excitation is almost
exactly tuned, or p is very near zero, the condition of equation (9.23a)
can be met. The second mode is greater than the first mode and we note
from Figures 19 and 20 that the characteristic shape of the curves is
the same. Hence, the amount of detuning and damping will determine
which mode amplitude is larger.

It should be noted that for the plate considered, I'i,,2, is negative
in equations (9.22a) and the existence of any solution other than the
trivial one depends upon the conditions

ABiz - w}(4C,Co - 02) &/ £3, - 4wyp?(Cy + Cy )2 > 0
(9.24a)

and
fi2 > 4dwip? (C +C2 )2 (9.24b)

If (9.24b) is not satisfied then there are no nontrivial solutions. The
same holds for (9.24a). If both conditions are met then there are two
nontrivial solutions. The stable one is associated with the positive
value of the radical. When only one solution exists, it is also associated
with the positive value of the radical. In addition, it is dependent on
the magnitude of the amplitude, F, of the parameteric excitation, the h

relative sizes of the detuning and the damping, and the aerodynamic

detuning parameter, A. We note that in this case, By, is a positive
constant and that a positive value of A refers to a dynamic pressure in
excess of the critical flutter speed. The presence of large damping
tends to necessitate large forcing amplitudes, large detunings of the

parametric terms, and large values of dynamic pressures to produce
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nontrivial solutions. However, this same condition make a, very small
compared with a,. On the other hand, small damping permits strong
interaction of the modes and even allows a, to be much greater than a,
when detuning is small. The amplitude of the parametric excitation and
the aerodynamic detuning merely influence the amplitude of the response
but not the relative sizes of a; and a..

A few special cases may also be examined. If no parametric

resonance is present, (9.24a) has the form
AB12 - 4C,Cow% > 0 (9.25)

and there is either the trivial solution or one nontrivial solution,
depending on whether (9.25) is satisfied. Figure 21 illustrates the
response for small damping. When large damping is present a; > a,. As
C2 -0, a, >0 and the only mode excited is the second, in spite of
the parametric force exciting the first mode. The response is as shown
in Figure 21 without a; being present.

B. Case (2) X near wji * w,;.

The governing equations for these cases were developed in Sections
(6.2) and (6.3) and are
wiCia; + féi-agsinsl L 1 % T1222a3 + %'81232]51NY =0

(9.26a)
wiCats + %L siny =0 (9.26b)
Getaly f%i a,5ing,= 0 (9.26¢)

o faza
0 i;;:;— cosy + ?ﬁfi:_ COSRB, (9.26d)

afcosy = 2a; { ?Hacosex . [% Mi2228f + % szak]COSY(; 26e)
.coe

TIPS
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where
pTz - Q.r - G.J- for w3 + w
B1 = (9.275)
- pT, + . - oy for w3 - w
y = o5 - % (9.27b)
pTy - e = oy for w: + w
B2 = (9.27¢)
- pT2 - o + oy for w3 - w;

Equations (9.26) do not readily admit a closed-form solution so a
Newton-Raphson technique was used to produce Figures 22, 23, and 24 for
the case of A near w; + w;. A similar response to that of the last
section is evident. In the presence of large damping, a; > a, and a,.
Regions of stability exist as well as jump phenomena. Upon examining
the response, amplitude vs detuning, Figure 24, we note that there is a
loss of symmetry from the case of X near 2uw;.

9.4 Internal Resonance, w3 = 3w,

We now investigate the response in the presence of an internal
resonance of the form, ws near 3w;. For the simply supported case this
is within about 10%. By a proper choice of the boundary conditions, for
example some form of elastic supports, it would be possible to obtain a
relationship within much less than 10%. We now investigate the response
in the presence of an internal resonance for the case of parametric

resonance:
(1) A near 2w

(2) no parametric resonance
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A. Case (1) Where ) = 2uw;.

Equations (9.22) remain valid and the entire discussion, concerning
the response of the first and second modes, of Section 9.3 is valid. The
only change is that the third mode may now be drawn into the response

through equations (7.6¢c,f) or

w3Cia; - %?3222335in8 + fﬁziz siny =0 (9.28a)
3 1 . f .
wias(32 - o) * glsz20aicosg - 42 azcosy =0 (9.28b)

where for € = .001

22.066 - 3(8.1076)

( 00‘)1/2 = - 71.36 (9.28¢c)
. 007

Using a Newton-Raphson technique we find that the response is identical
to that of Section 9.3 for no internal resonance. The relative sizes

of a, and a, are controlled by the damping and detuning of the parametric
resonance. The amplitude a; is very small and the response appears as
shown in Figures 16 - 21. To obtain a qualitive feel for the conditions
under which a; is drawn into the response, we let the amplitude F

of the forcing term be small. Then equations (9.28) can be combined to

yield

Tz, a3 (9.29)
8(03 /C% + (12.2 - 0)2

33:

Thus, a; will be small as long as the radical of (9.29) is large. For

small damping the radical will be small only if

B . ¢ 20 (9.30)
£

e Jaan O Sha
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Since the internal-resonance detuning, o, is fixed by virtue of the form
of the boundary conditions, then the parametric detuning must be very
nearly 20/3 for a; to be significant. However, in this case o is large
and thus o must also be large. But from Section 9.3 we note that a
large detuning caused a, to be so large that a, was negligible by com-
parison. So that for large detuning of both internal and parametric
resonances the result is essentially that of Figures 16, 17, and 18.

As previously discussed, the detuning of the internal resonance is
governed by the boundary conditions. For small damping and small
detuning the response is depicted essentially as described by Figures 19
and 20 with the addition of the third mode; see Figures 25 and 26.

Thus any of the three modes can be made greater than the other two,
depending on the type of boundary conditions, damping, and detuning of
the parametric excitation. A very striking representation of the
relative sizes of the modes is portrayed in Figures 27 and 28. We note
here that the response of the third mode is the same as that for a
linear oscillator with a single degree-of-freedom. The second mode
amplitude a, merely acts as the external forcing function. A comparison
with Figure 18 can be made and we see how the decrease in damping allows
the second and. third modes to enter the response. The second mode can
be seen to be larger than the first when the detuning of the excitation
is near zero. Detuning the internal resonance shifts the response of

the third mode considerably.

B. The Case of No Parametric Resonance.

This is essentially a special case of the previous one. In the

absence of a parametric resonance the response for the first two modes

s ———— » ot i o
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remains the same, or
a, ___/ 4N§C1CZ - ABi1o (9.35‘)
34 T1222
a; = 2w;Csa, (9.35b)

and the third mode response is

1
8 Ti,0a3

Jud (€3 + o)

a; = (9.35¢)

The response is as shown in Figure 29. Again any of the three modes may
be the largest depending on the damping and detuning of the internal
resonance. For large damping a, > a, or a;. For small damping

a; or a; >a, depending on the detuning of the internal resonance. In
addition, the larger the dynamic pressure is the more 1ikely the third

mode will be greatest.
9.5. Summary

The method of solution described in Chapters 5, 6, and 7 is used to
solve numerical examples of a simply supported plate undergoing cylindri-
cal bending. Various combinations of internal and parametric resonances

have been examined.

When neither internal nor parametric resonances are present the
response depends on the extent to which the dynamic pressure exceeds the
critical value for 1ndué1ng flutter. The amplitude of the response
increases as the dynamic pressure increases. Both modes associated with
the repeated frequency are excited. Only one stable solution exists and

it is either trivial or nontrivial depending on the dynamic pressure.
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When a parametric resonance of the form A near 2uw; Or w3 * w; is
present, then two nontrivial solutions can exist but only one is stable.
The only modes excited are associated with the repeated frequency.

Jump phenomona can be produced by varying the frequency or amplitude of the
parametric excitation or the dynamic pressure.

When both internal and parametric resonances are present all three
modes can be excited. The detunings of internal and parametric resonances
have a great effect on the third and second modes, respectively. When
the detuning of the internal resonance is large, as in the case of the
simply supported plate considered, we see that the response is essentially
identical to the case of no internal resonance. Jump phenomena exist

regardless of which amplitude is largest.
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APPENDIX A
SIMILARITY TRANSFORMATIONS
A.1 General

Given a nonsingular matrix Z, then

(9] = [z7'](8](Z] (A1)
is a similarity transformation where the matrices [J] and [B] have the
same eigenvalues. The choice of [Z] can determine the complexity of the
form of [J], the simplist being the diagonal form when all the eigen-
values as distinct. If the eigenvalues are not all distinct [J] may
still be diagonal, if the eigenvectors corresponding to the repeated
roots are distinct. When the eigenvectors corresponding to repeated
roots are identical, then the matrix can at best take om the Jordan
form, where the eigenvalues appear as diagonal terms and a 1 (one)
appears as an off-diagonal term adjacent to the repeated roots; see
equation (9.11b). The number of off-diagonal terms depends on the
number of repeated frequencies or more precisely the number of times
a given root is repeated, and the corresponding number of independent
eigenvectors. The latter depends on the rank of the matrix which is not
the major topic of discussion of this appendix. However, a brief aside
is in order. The reader must accept what follows in this example with
faith or confirm if with rigor in a mathematics text such as Kreyszig
(1972) (pp. 256-279).

Given an n x n matrix with one repeated frequency, then, if the

rank of the matrix is r = n - 1, there is only one linearly independent

148

e e e e A .+ <P




149

eigenvector associated with the repeated frequency. If the rank is

r = n - 2 then there are two linearly independent eignevectors associated
with the repeated frequency. The last case will allow generation of a
diagonal matrix yhile the first will produce the Jordan form with one

off diagonal term.

The problem is one of determining the matrix [Z] which will put [B]
in Jordan form. Mathematics texts indicate [Z] exists and give examples
to prove it or direct the student to verify a sample problem with
mechanical computations. However, nowhere, does there appear to be a
method to determine the matrix [Z] in the first place. That is precisely
the purpose of this Appendix.

Finding the eigenvalues and eigenvectors of [B] is a relatively
trivial problem with the advent of sophisticated Tibrary Computer
programs. Using that as a starting point we proceed with a Newton-
Raphson iterative technique to generate the matrix [Z] from the set of

eigenvectors.

A.2 Determining the Form of [J].

We start with the matrix [B] and use any standard library computer
program which will return eigenvalues and eigenvectors. An inspection
of eigenvalues will indicate immediately if any are repeated. If they
are too numerous, a simple sort routine can be employed to order them
from highest to lowest to aid in identifying repeated roots. Once the
repeated roots are identified, the corresponding eigenvectors are
compared. The best way is to normalize them by dividing the elements,

usually returned as a column vector, by the value of the first element.

i
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The vectors which remain are either identical or they are not. If they
are identical then the Jordan form will evolve. There need not be

any discussion of rank, linear independence or whatever.

A.3 Newton-Raphson Iteration Technique

The Newton-Raphson technique is_especially useful in solving
nonlinear problems. It is "initial guess" sensitive to some degree but
converges rapidly if the system is fairly well behaved near the solution.
The basic problem is one where we are required to find the values of a

vector {x} which will make
{f(x)} =0 (A2)

For a 2 x 2 example we expand in a Taylor series and obtain

filxa) = filxio) + 30 (xiadaxs + 2L (ao)axg + ... (A3a)
fa(xa) = falxzo) + 322 (xap)ams + T2 (xp0)axe + ... (A3D)

where the Xno 3re the initial guesses. The Axn are the increments

which will cause all the fi(xn) to be zero simultaneously, so we write

M oaxy + 38 ax = - fi(ao) ' (Ada)
L g+ 3 s - falao) (A4b)

and we have a linear system which can be solved for the Axn to add to
the Xno and proceed to another iteration until we reach some pre-

determined 1imit of convergence in either the f, or Ax .

S
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A.4 The [Z] Matrix With One Repeated Frequency

The [Z] matrix is constructed as follows. The eigenvectors are
sorted so that the repeated vectors are in the first two columns and
are normalized so the top element in each column is one. We seek a
column vector to replace the first column, the repeated eigenvector.
The vector function, f, represents the first column of the matrix [J]

below the first element; that is

5 i
f1(x1)

{31} = | f2(x2) (ASa)
Lfn-l(xn1{

We wish the final result to be

= -

1
1

{1} =] 0 (A5b)

0
-

If the functional form f(xn) were known, we would have no problem in

evaluating the partial derivatives

e (A6)
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Here we must construct them numerically. We begin by assuming the first

column of the [Z] matrix to be

s
0
{Z,}, =| O (A7)
&
Then we compute
[J1 = [z7'1[8][zZ] (A8)
4 The first column of [J] becomes
B i
) fl(Xo)
{J1}e = | f2(x0) (A9)
f _1(x0)
g o.
Then we set 5
i
L
| {T:h 0 (A10) F

T




and compute (A8) again so that
fi1(x1)
fz(xz)
{31} = | fslxs) (A11)

PR
We may now compute the derivatives numerically as

ofy . _filxy) - f1(xo) Z

9Xy Ax,y fi(x1) - fi(xo) = 1y (A12a)
af, . fa(xy) - fa(xg) N (A12b)
X1 AXy 2\A1 2\ Xo 21

Since Ax; = 1. We repeat for
o -

1
0
{Z:}2 =| 1 (A13)
0
-0_
to obtain
B i
f1(xz2)
{31}z = |f2(xz) (A14)
fn,](xz)

so that the second column of derivatives may be computed according to

gz; & fx(Xz)A;sz‘Xn) = f1(x2) - fi(xo) = fi2

N "
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and so on, until we have a system of the form of (A4) and we write for

r=n -1
- e A i r o
fi1 F g kit f‘n Axy 1 - fi(xy)
By AR s AXa - fa(x2)
fii . IR ; : = - fi(x3) | (A15)
;fnl . ek S A fnn_ LAxn- ’ -fn(xn)_
where the right side was computed from
-]q
1
{ZI}R = |1 (A16)
1
1
2y

and the factor of one applied to the first element to satisfy (A5b).
Equations (A15) may now be solved for the Ax; and added to one to form a
new guess for the X Now the product of (A1) is computed tc determine
if the Jordan form has been achieved. Convergence is achieved by

specifying the accuracy with which (A17) is satisfied:
(z7'1[Bl(z] - [9]1 < 0O (A17)

In this problem one step was required to produce an accuracy of 107!° in

the element using double precision.
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PARAMETRICALLY EXCITED NONLINEAR
MULTI-DEGREE-OF-FREEDOM SYSTEMS
by
Edward G. Tezak
(ABSTRACT)

An analysis of parametrically excited nonlinear multi-degree-of-
freedom systems is presented. The nonlinearity considered is cubic and
small so that the system of equations is weakly nonlinear. Modal damping
is included and the parametric excitation is harmonic. The systems
examined include those with distinct natural frequencies as well as
those with a single repeated frequency. The significant role played by
the existence of an internal resonance is explored in depth. The de-
rivative-expansion version of the method of multiple scales, a per-
turbation technique, is used to develop solvability conditions for the
various combinations of internal and parametric resonances considered.

Regions where trivial and nontrivial solutions exist are defined
and the stability of the solutions within each region is discussed.
Nontrivial, unstable solutions have been shown to exist in regions where
nontrivial stable solutions are known. Numerical solutions do not hint
at the existence of these solutions.

The role of internal resonance in parametrically excited systems is
explored. Strong modal interaction is demonstrated as a consequence of

the presence of the cubic nonlinearity and the internal resonance.




Because of this modal coupling, modes other than the one excited can
dominate the response. A multiplicity of jumps is shown to exist.

Parametric excitation in the nonlinear flutter problem has been
examined in detail for the first time. The effect of the parametric
excitation can raise the flutter speed if the amplitude is small and
lower it if the amplitude is large.

Limit-cycle behavior in the flutter problem is developed in a
unique analytic way. The condition which predicts the onset of flutter
is developed by using a linear analysis. The solution grows without
bound. Interestingly, the same condition in the nonlinear analysis
predicts the existence of a real nontrivial solution with a finite

amplitude, the so-called limit-cycle.




