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SUMMARY

t. ~: Linear prediction filters (LPF) have recently found a large number of applications
• in such areas as speech analysis and power spectral estimation. An important application of

these filters is to aid the cancellation of additive broadband noise from narrowband signal
components. Provided the signal bandwidth is signifIcantly less than the noise bandwidth ,

• the LPF may be used to suppress the additive noise without requiring an external
reference noise input (as is required in many noise cancelling applications). The purpose
of this report is to provide an analytical basis for bounding the performance of a digital
LPF when applied to the problem of cancelling broadband additive noise from narrowband
signals. Experimental results obtained with a hardware implementation of an adaptive
Wiener filter are shown to verify the analytical results.
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I. INTRODUCTION
Frequently it is of interest to digitally filter out narrowband signals which are

t embedded in additive broadband noise. This filtering can often be accomplished using
fi xed bandpass digital filters (e.g., [1 1) provided the center frequencies of the signals and
their bandwid ths are known , a p i ,  and do not change with time. In many cases of
pract ical interest , however , such a priori information does not exist and alternate filtering
schemes must be employed .

When the signals and noise can be considered as random processes with given cross-
correlation and autocorrelation functions, Wiener filtering techniques are often effective .
The design of Wiener filters requires that the signal and noise be stationary and that the
various crosscorrelation and autocorrelation functions be known a priori [2]. Wiener filters
have a wide range of applications , however , because the required statistics may be estimated
directly fro m the data thereby alleviating the need for a priori knowledge of such parameters
as the signal frequencies.

The design of adaptive filters which continuously estimate the Wiener filter coeffi-
cients has been considered by a number of authors. The various adaptive estimation tech-
niq ues includ e the pioneering work of Widrow who developed the least mean square (LMS)
adaptive filter in References [3 —5 ] which employs a noisy gradient algorithm. Alternatives to the
LMS algorithm have also been developed in Refe rences [6—10] and a more complete discussion
of some of the various adaptive implementations of Wiener filters and their applications is
given in Reference [ I l l .  It should be noted that adaptive Wiener filters have found a number
of noise cancellation applications in such areas as medicine [ 5 1 , adaptive line enhancement

• [12 , 29] , and speech processing [13J . Other areas of applica tion of adaptive Wiener filters
includ e predictive deconvolution [37], acoustic Doppler extraction [38] , and real time
linear prediction [361.

In many applications of Wiener filtering to noise cancellation , an ext ernal reference
input is used [ 5 1 .  This external reference input should consist of noise which is uncorrelated
with the signal and highly correlated with the additive noise corruption in order for the
Wiener filter to effectively cancel the additive noise. In applications where an external refer-
ence for the additive noise is not available , it is possible to cancel the additive noise using a
Wiener linear prediction filter (LPF) if the signal bandwid th is significantly less than the
bandwidth of the additive noise.

A schematic d iagram of a finite impulse response (FIR) Wiener LPF is illustrated in
Figure 1. The impulse response , w5(k) (k 0, . .  . , L — 1), is chosen to minimize the power
in the error signal e(j), and the delay, A, represents the pred iction distance of the filter. The
noise suppression capabilities of the discrete LPF arise from the fact that the decorrelation
time for broadband noise is smaller than that for the narrowband signals. Therefore , it may
be possible to choose a value for A which will effectively decorrelate the broadband noise
and prevent the noise components from appearing in the LPF output (y(j) in Figure 1).

The application of LPF techniques to noise suppression presents a number of funda-
mental questions regarding, e.g., the values of A and L required for the maximum amount of
noise reduction without appreciable signal distortion. The elimination of signal distortion is
particularly relevant to the application of LPF method s to speech enhancement [13]. This
report will provide an analytical basis for bounding the performance of digital linear predic-
tion filters for input data consisting of narrowband signals embedded in additive broadband
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Figure 1. Linear prediction Wiener (liter.

noise. Specifica lly, the impulse response and transfer function of a theoret ical , discrete Wiener
LPF will be examined .t

Analytic expressions for the LPF impulse response when the input sequence, x(j), is
stationary and the z-transform of the autocorrelation function of x is a rational function of z
will be developed in Section II. The special case of narrowband signals embedded in additive
broadband noise will be treated in detail in Section III. Specifically, a rational spectral density
model will first be developed to approximate the power spectrum of the narrowband signals
plus noise. Then, using the results of Section II , the discrete LPF impulse response will be
derived . The limiting cases of all pole noise (no signals) and sinusoids in additive noise will be
examined.tt Finally, in Section IV , results of experimental simulations of an adaptive imple-
mentation of the LPF will be presented and discussed.

• t lt will be assumed tha t the autocorrelation function of the LPF input (x(j) in Figure 1) Is known exactly.
Therefore , questions regarding specific Implementations of an LPF (adaptive or otherwise) will not be
addressed in this report.

Interesting special case, which is amenable to detailed analysis occ u rs when the Input spectr um
contains a notch. This case is discussed In [24] .
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II. PROPERTIES OF THE DIGITAL WIENER PREDICTION FILTER
FOR INPUT S WITH RATIONAL POWER SPECTRA

The properties of the LPF structure discussed in this section are derived using discrete
Wiener filter theory [14—16]. A number of other interesting properties of linear prediction
filte rs, a discussion of their applications to a number of different fields, and an ext ensive bib-
liography can be found in the excellent review articles by Makhoul [171 and Kailath [18], as
well as in the book by Markel and Gray [34].

Referring to Figure 1 , the Wiener filter coefficients, w *(k) (k = 0, 1,. .. , L — 1),
which minimize the power in the error sequence , e(j) , satisfy the following set of linear equa-
tions (e.g., [17 , 20]) :

~~~~~x( w * xx(~~ ~
) Q =0 , 1 , . . . ,  L-  1 , (1)

where Øxx(k) represents the discrete autocorrelation function of x(j) and is given by
øxx(k) E[x(j ) x(j + k) ] where E L I  denotes expectation. Equation ( 1) represents the dis-
crete analog of the integral equation derived in Reference [19] for the continuous , fini te dura-
tion Wiener filter .

Our analysis will be restricted to the case when the z transform of Ø~~(k), i.e .,

00

S ‘z~= ~ ‘k~ z~~ • (1\
xx~~

,_ ‘~xx’~~ ‘

k=-co

• is a ratio nal function of z. There are two reasons for this. First, for this important case,
Eq. ( 1) can be solved by elementary methods and its solution provides insight into the ana-

• lytic structure of the LPF. Second , the special case of Sxx(z) being rational provides a good
description of a much broader class of stationary random inputs since any analytic function
may be closely approximated by a rational funcL~ In particular , as will be discussed in the
next section , relatively simple rational power spectrum models can be developed to describe
an important class of inpu ts, i.e., narrowband signals and additive broadband noise.

Therefore , we shall write Sxx(z) as

M
( z_ e Mm 4 J d m) (z 1 _ e Mm J8m)

Sxx (z) = A m l  (3

t fj z  - ~~~ ~~~‘fl)( z~ — e~~~ 
J a n)

where the TMm and are non-zero, positive real constants and

Also, in Eq. (3) A is a real , positive constant and an overbar denotes complex conjugation.
The expansion in Eq. (3) with z exp (ic’,) (— a < w  ~ a) represents the power spectrum of a

5
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complex process. For a real process, the zeroes and poles of Sxx(z) will either be real or
appear in complex conjug ate pairs. Therefore , the expansion in Eq. (3) is more general than
that for a real process and will prove useful in the later sections.t

In this report , we will explicitly treat the case of M ~ N. The case of M>  N can be
treated by a straightforward extension of the methods discussed here. As shown in Appen-
dices A and B, when M <N , w*(k) can be represented as follows [Appendix A, Eq. (A- 19)J :

w *(k) ~~ {B~~e_Pm jOmk +B~~e 1tm (L I _ k ) + i O mk}
m l

N-M
+~~~ {C~ 6 ( k — r + i ) ÷ ç ~6 ( k + r — L ) }  k = 0 , l , . . . , L _ l , (4)

r 1

where 6~k) is the Kronecker delta function , i.e., 6(k) = 0 for k *0 and 6(0) = 1. The con-
stants Bm and C~ may be obtained by solving the following set of linear equations [Appen-
dix B, Eq. (B- l 2)] .

+ 
B e ~~m~~~~~

)

n~~
’l 1 — ean — Pm H(c’.’n — Om) 1 — can + Pm J(~’n — 0m)

+ ~~ C~ e
an(r - I) - j~~n(r - l) = ~~~~ 

+ J ’n~ n = 1 ,... , N; (5)

and ,
M B~~e Pm L +j O mL B e Pm +j O m L

l _ e ~~f l_ P m _j(w fl
_ O m) l _ e ~~n +Pm _ j(~~n _ O m)

~~~~~~~~~~~~~~~~~~ n 1 , . . . , N. (6)

The solution of Eqs. (5) and (6), together with (4) provides the complete solution for w (k)
when M <N. The only modification which is needed when M = N is to remove the summa-
tion terms involving the delta functions in Eq. (4) and the summation terms involving the C~
in Eqs. (5) and (6). That is, when M = N only damped exponentials appear in the analyt ic
solution for the LPF coefficients, w (k).

A number of interesting properties of the FIR lincar prediction filter may be noted
from Eqs. (4) through (6). First , it is seen from Eq. (4) that w 5(k) consists of sums of
damped exponentials, exp (tpmk ~i Omk), as well as impulses. It is further seen that the
exponentials , which are the zeroes of Sxx(z), decay away from each end of the filter with the

t ft should be noted that tf~~) isa complex process, then w (k) will still be given by (I) but ~~(k) would
be gh’en by: ,~~k) ” E ( i1jJx(J+ k)J .

6
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B~ and B~ representing the amplitudes of the damped exponentials which decay from the
beginning and end of the filter, respectively. Likewise, the and C~ represent the ampli-

t •

• 
t udes of the impulses which occur at the beginning and end of the filter , respectively . There-

• 

. 
fore , the constants associated with the “—“ superscripts can be thought of as reflection ampli-
tudes which are the direct result of the finite filter length. From Eq. (5) it is seen that the
B couple into the N equations for the B~ and C~ th rough coupling coefficients which are
proportional to exp (—pm L). Vice versa , from Eq. (6) it is seen that the B~ couple into the
N equations for the B~ and C~ (the reflectio n amplitudes) through coupling coefficients
which are also proportional to exr t pm L). As L -+ co, these coupling coefficients approach
zero and from (6), the refl ection amplitu des , B~ and C~ also approach zero. Therefore , as
L —~ 00, i.e., as exp (—pm L) -~~ 0, the reflection amplitudes approach zero and w *(k) can be
represented as a sum of damped exponentials and impulses all of which occur at the begin-
ning of the filter. It should be noted that the reflection amplitudes , B~ and C~, are similar
to the reflection coefficients, Km, which appear in the Levinson-Durbin algorithm [17].  In

+ +fact , the Km may be related to all the amplitude s , Bj~ and C~ , through the relation [1 7] :

= w*(p), (7)

with p = L — 1 in Eq. (4). As is the case with the reflection amplitudes, it is seen from Eqs.
(4) through (7) that the reflection coefficients also decay to zero as the filter length becomes
infinite.

Equation (4) also enables one to write an explicit relation for the frequency response,
H~(c~) , of the discrete LPF in terms of the B~~, C~:

H~ (w) aE ~~ w*(k) ~~~~~ 
+ l) = ~~~ 

r~~ l 
{B~ 

1 

~ J(8 rn ci’)

1 — e(Pm ~ j(0 m —+ B  e Pm(~~~
1)

m l _ e (Pm +J(O m c~))

÷~ _i~’~~~
M 

{C~ e i’~’(~~ 
l) +C~ e_J(

~(L~~ ) ) .  (8)

AS Pm L~~ 
00, B~~, C~, and exp (~Pm L) -~~ 

I) and H~ (c’,) approaches:

* * 
M B~~e1”

lim HL(w)~~}IJc~P~~~~
1~ m l

N-M

• + ~~ C~ e1’~ . (9)
r 1

Note that from Eq. (9), IH~(w)I will tend to have peaks at the angular frequencies , 0m~ of
the zeroes of Sxx(z). This result is consistent with the “whitening” filter interpretation of an
LPF (with ~ 1). This interpretation (e.g., [1 7 J ,  [18] , [231) states that as L becomes large,
the power spectrum of the LPF error output , e(j) in Figure I , will become approximately flat

1
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when ~ = 1. Therefore , since the input spectrum has depressions at the angular frequencies
of the zeroes of Sxx(z), then the magnitude squared of the transfer function between e and x,
i.e., p i — H~(~~)I 2, should have peaks at the angular frequencie s of the zeroes of Sxx(Z) . This,
of course , implies that IH L( 1.’)I will also tend to have peaks at the angular frequencies of the
zeroes of Sxx(z) . It should be pointed out that although the “whitening” fitter argument
only applies when A = 1, it does provide an indication of the behavior of ~H L(~4I near the
angular frequencies o~ the zeroes of Sxx(z) even when ~~> 1. (Indeed , ~ only enters into
the expression for HL(~~)I through the scaling factors , e~~n A +j w ~~A which appear on the
right-hand side of Eq. (5).) When A = I and izm L ~ 0 (for any m), the LPF cannot com-
pletely whiten the input spectrum due to the interaction between the “+“ and “—“ coeffi-
cients in Eqs. (5) and (6).

* 
Equations (4) through (9) provide a simplified method for obtaining w*(k) and

HL(W) in terms of the poles and zeroes of Sx~(z). (Note that the dimensionality of these
equations is determined by N and M and is independent of L and is.) For many applications
this formulation allows L and ~ to be treated as adjustable design parameters which can be
optimized on the basis of desired performance criteria (e.g., [ 1 2 ) ,  [21 1). One of the main
difficulties in applying the above results is obtaining an appropriate , simple pole-zero model
for the input. This particular problem will be addressed in the next section.

111. LPF ANALYSIS FOR INPUTS CONSISTING OF NARROWBAND
PROCESSES AND ADDITIVE BROADBAND NOISE

DETERMINATIO N OF APPROPRIATE POLE-ZERO MODELS FOR NARROWBAND
PROCESSES IN ADD ITIVE BROADBAND NOISE

A representative model for a sum of bandpass processes embedded in additive broad-
band noise may be expressed by the following autocorrelation function:

= 0no0~ + 
t~~l 

~~ e~~n Ik 1 COS “~n~~ 
( 10)

In Eq. (10), o~, a~, and C*)n represent the power , 3-d B half bandwidth , and frequency, respec-
tively, of the n th signal and øno(k) represents the autocorrelation function for the background
additive noise . We will assume that the z-transform of ~~0(k), S~0(z), can be expressed as a
rational function of z, i.e.,

M01.-I ( z_ e1Lrn +1O r n ) ( z~~ — e Mrn J6 rn)

SflO( z ) = o ~O
m

N
I ( I I )

— ~~~~ 
+J(A)fl ) (z ” — ~~~~ 

—J (* )fl )

ii
8

-
~~~~~~~~~~~~~~~~

•—• -• • • • •- -
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where, as in the case of Eq. (3), the and are non-zero , positive real constants and

—a 
~ ‘4, 8~ ‘~~ a, for all m ,n.

Also, in Eq. ( 11), o~~ is a real positive constant and it will be assumed that M0 ~ N0.

Note that for l a e  k , ~no(k) will consist of sums of damped exponentials with mag-
nitu des decaying as e~~n’~. Therefore , the assumption that the decorrelation interval for the
broadband noise is much smaller than tha t for the narrowband processes is equivalent to
requiring that

n l , 2, . . . , N , (12)

where a’znin denotes the smallest of all the a~ (n = 1, 2,.  . . , No). It is this property of
broadba nd noise and narrowband signals which may be exploited when choosing a value for
~ as will be discussed later.

* 
As shown in the previous section, once the zeroes and poles of Sxx(z) are known , the

w (k) and HL (w) can be determined through Eqs. (4) through (6) and (8). Although
the poles of Sxx(z) are simply the poles of S~0(z) as well as those obtained from the 2N sig-
nal poles (i.e. , exp (±an ±jw~)(n = 1, 2, . . . , N)), the zeroes of Sxx(z) do not have a simple
analytic form (except for special cases involving small values of N , M0, and N0). However ,
when the a~ are all much smaller than unity so that the background iloise spectral density

• may 1e closely approximated from Sxx(eJ”) (w ~ w~) (i .e., no appreciable overlap of
signal spectra), the n a simple approximating expression for the zeroes may be derived.

The details of this appioximation are given in Appendix C. The resulting approxi-
• mate expressions for the zeroes are given by (Appendix C, Eq. (C-20)):

e~P ’m~~i0’m, m = I , . . . , M0 (13a)

and

e±Pn +j 4 m n , n l , . . . , 2N

where
• p~~~cosh~ ~cosh a n +~~SNRn sinh an~

and
• • (13b)

n i , . . . , N. (13c)

In Eq. (13), SNR~ a~/S~0(e3”n) and is the signal-to-noise spectral density ratio (SNR) at
the nth signal. It should be noted that for small an, Ø~ in (1 3b) may be further approximated

• by: 
____________

= + SNR~ a~ . (14)
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Equations (13a) through (13c) show that a~ the an approach zero, the zeroes of
Sxx(z) can be approximated by the M0 zeroes of Sno(z) and the zeroes due to the narrow-
band signals. These signal zeroes are displaced slightly back along radial lines from the signal
pole locations. As the signal bandwidths approach zero , both the signal zeroes and poles
approach the unit circle. However , the signal poles approach the unit circle faster (as a func-
tion of• the an) than the signal zeroes, i.e., we have from Eq. (14) (or (13b)) that :

( IS )
as

an -* 0 (SNR~ fixed).

Also, from Eq. (13), as the signal powers approach zero , the signal zeroes cover the signal
poles and Sxx(z) reduces to S~0(z) as it should.

To obtain a better feeling for the appro ximations involved in Eq. (13), plots are pre-
sented in Figures 2 through 5 of Sxx(eJw) (—ir <w <a) computed exactly and computed
appro ximately using Eq. (13) for two narrowband signals embedded in broadband noise. In
the cases selected , the autocorrelation function of the signals is given by

e~~l 1k 1 cos 2,rf 1k + e~~211’1 cos 2irf2k,

and the autocorrelation fu nction of the noise is given by

P08(k) + P1e~~09~l

In Figures 2 through 5 , o~~ o~~ l.0, P0 5.O, f 1 = 0.125, f2 0.375, a1 = 0.05, and a0,
a~, and P 1 are variable. As is seen in these figures , Eq. ( 13) provides a very good approxima-
tion to the true zeroes of the input power spectrum. In fact , in Figures 2 through 4, the
exact and approximate curves lie on top of each other. The only noticeable difference occurs
in Figure 5 in the vicinity of the lower signal frequency fi = 0.125 where the background
noise spectral density is not flat. As noted in Appendix C (C-l 9), the approximations

• expressed by Eq. (13) become worse when the spectral density of the noise iaries consider-
ably in the vicinity of the signal. 

•
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Figure 2. Exact aid approximate plots of S,~ (eJ~”) (in dB) for = = 1.0;
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THE LPF iMPULSE RESPONSE AND TRANSFER FUNCTION

Under the assumption of small an so that Eq. (13) is valid , we can now obtain the
impulse response, w*(k) (k = 0, 1,. . . , L — 1) directly from Eq. (4). In order to gain some
insight into the analytic structure of w*(k), it is useful to decompose the impulse response
as follows:

w*(k) = h5(k) + hno(k) k = 0, 1, . . .  , L - 1. (16)

In Eq. (16) hs(k) consists solely of damped exponentials at the signal zeroes and is given by:

h5(k) =~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ (17)

where Wn+N~~~~)n ( n  = 1 ,2,..., N). j3~ is given 
by Eq. (13), and the determination of the

B~S will be discussed presently. Also in Eq. (16), h~0(k) is given by:

M0

h~~0(k) = 

x~~ l 
(B~0 e iz~ k + jO~~k + B~~ e~~’m(L - 1 - k) +~6~~k}

+ ~~ {c~ 0 o ( k _ r +  l ) + C ~° 6 ( k + r — L)}. • 
(18)

r 1

In Eq. (18), the ~~ and O~~ are defined by Eq. ( 11) and the constants ~~~ C~°, as well as
the ~~ in Eq. (17) are determined as in Eqs. ( 5 )  and (6).

As can be seen from Eq. (17), h5(k) is closely connected with the signal part of the
input spectrum and hno(k) is associated with the noise part. However , h5 and hno are
coupled together through the constants, B~S, B~~, and C~°. In order to further understand
this coupling, one must analytically treat Eqs. (5) and (6). Such a treatme~it , which is
straightforward (though tedious), has been carried out in Appendix D and some useful

• appro ximate results are obtained for two important limiting cases of practical interest.

Description of LPF for L -.oo

The first limiting case considered is that of large filter length. Specifically, for this
case we require that :

L )’ -7— , for a l lm l , 2, . . . , M0 (19a)

and 
•

L ) ‘ ~ for all n 1 , 2,. .. , 2N. (19b)

This particular case provides an indication of the limiting resolution which can be achieved
by the LW. As discussed in Appendix D, when Eq. (19) Is satisfied and when the ~~ are
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very small (narrowband signal case), the B~ approach zero and the equations for the ~~
uncouple (approximately) resulting in the following expressions for the B~~ (Appendix D,
Eq. (D-13)):

B & n _ a n)e_an J ~~~~ n l , 2, . . . , 2N , (20)

where in Eq. (20), an+N a~ and wn+N —
~~~~~~ 

(n = 1 , 2,. .. , N). The approximations
required for the validity of Eq. (20) include Eq. (19) plus the conditions :

n l ,2,... ,N (21a)

and

~~~~~~~~~~~~ 
forall n,m. (2lb)

Note that the noise decorrelation condition Eq. (21 b) is consistent with the broadband noise
assumption expressed by Eq. (12).

Therefore, from Eqs. (17) and (20), it is seen that for large L, the signal part of the
LPF impulse response , h5(k) , will consist of a sum of damped exponentials decaying away
from the beginning of the filter and the amplitudes of these exponentials , 13n — an, are all
small. Additional insigh t into the signal part of the LPF may be obtained by examining the
freq uency response of h5(k) , i.e .,

• t H~,(w) e~~ ’ h5(k) ~~~~ ~ ~~ H~(w) (22a)

where

(fi -a )e~~n~~+J(4~n An n 
. (22b)n 1 _ ( 1 _ R  ) e J~”f l ” )• rn

Equation (22) reveals that the signal part of the LPF transfer function for large L
consists of sums of decoupled bandpass filters , ~~~~~ centered at the signal frequencies. The
gain of the nth filter at its center frequency is given by

IH~~u.n)I I _ . ) e an~~. (23)

For small values of a~, the value of this gain (from Eq. (14) and provided Eq. (2Ib) holds) is
given approximately by

~ 1 — ( 1  + SNR n/anY~
2. (24a)

Note from Eq. (24a) that as SNRn/an approaches zero , IH~(w~)I approaches zero as

• 
~~SNRn/an. (24b)

-
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Vice versa , as SNR n/an becomes large, IH~(~~ )I approaches unity as:

I — (a~/SNR~)~ . (24c)

Also, it is seen fro m Eq. (23) that as a~ A becomes large (so that Eq. (21 b) is violated), the
signal as well as the noise is decorrelated by the LPF and H~(w n )I approaches zero.

Another property of the ~th decoupled signal filter which is revealed by Eq. (22b) is
that its 3-dR half-bandwidth is approximately equal to ~3n (in angular frequency). This prop-
erty along with Eqs. (13) through ( 15) show that only for small values of SNR~ (SNR n <a n)
can the n th signal filter bandwidth reduce to the bandwidth of the ~th signal as L -~~ ~~~~. For
larger values of SNRn, the passband of H~(o.,) will become increasingly wider than the signal
bandwidth. This widening effect has the simple interpretation that when there is little noise
in the vicinity of the signal, the LPF frequency response can afford to widen at the signal
frequency. This is possible since there is very little input noise power near the signal which
will pass through to the LPF output. However , as the input power in the relatively uncorre-
lated noise increases near the signal frequency, the LPF frequency response becomes nar-
rower and smaller in magnitude (24b) in the vicinity of the signal in order to suppress the
increased un correlated noise as it passes to the LPF out put.

Note that the bandwidth and peak magnitude of the LPF output signal power spec-
trum will mai nly depend on the input signal-to-noise spectral density ratio and the input
signal bandwidth. Specifically, as the ratio , SNR/a , becomes small , the gain of the LPF at
the center frequency of the signal approaches zero (fro m Eq. (24b)), and the 3-dB bandwidth
of the LPF approaches the 3-d B bandwidth of the signal ((13) — ( 15)). Therefore , in this
limit the peak magnitude of the LPF output signal power spectrum will approach zero and
the 6-dB bandwidth of the output signal will approach the 3-dB bandwidth of the input sig-
nal , thereby producing considerable distortion in the output signal power spectrum. How-
ever , for large values of SNR/a , the gain of the LPF at the center frequency of the signal
approaches unity (from Eq. (24c)) and the 3-dB bandwidth of the LPF becomes increasingly
larger than that for the signal ((13) —(15)).  Therefore , as SNR/a becomes larger , the peak
magnitude and 3dB bandwidth of the output signal power spectrum are approximately equal
to that for the input signal power spectrum , thereby producing little signal distortion.

Another term which remains to be discussed is that part of the LPF which is associated
with the noise, i.e. , hno(k) which is wven by Eq. (18). As discussed in Appendix D , when
Eq. (19) is satisfied , the C 0 and B % J  in Eq. (18) approach zero and hno(k) will only consist
of damped exponentials and delta functions which occur at the beginning of the filter. Also,
as discussed in Appendix D, when Eq. (21) is satisfied the B~~ and C~~° in Eq. (18) can be
expressed as linear combinations of the B~~ which are given approximately by Eq. (20).

Further insight into the noise part of the LPF may be obtained by examining the fre-
quency response of hno(k) , i.e.,

E e1’~’ ~~ h~0(k) ~~~~
kzO

• N0-M0

= 

i~~ l 
H~ (w) + ~~ G~(w) (25a)
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where

JWB+O
H~1(c ,) = 

1 ~ e~~~~~J(°m ’~’) 
, (25b)

and

G~(o.,) = C~ ° ~~~~ (25c)

Note that the peak magnitude value of the H~(~~) is given by

IB~~~I
I H ~~(8 ’m) I = 

— 
, , (26)

1_ e Pm

and the peak magnitude of G~kc~,) is simply -

IG~k~ )I = IC~
0I. (27)

The relations expressed by Eqs. (25) through (27)  reveal that in general the noise part of the
LPF freq uency response can contribute non-negligible peaks to the total LPF transfer func-
tion , especially if some of the M’m are close to zero (as can be seen from Eq. (26)). However,
since the B~~ and C~° are linearly related to the B~~ as discussed previously , the magni-
tudes B~~ and C~° will become increasingly small as the differences , i3n — a~~~, all approach
zero as can be seen from Eq. (20). Therefore , provided the noise spectrum does not contain
deep nulls (i.e., small ~4n) and provided that the ~~ — an are all very small (e.g., narrowband
signal case), then the noise part of the LPF frequency response will be very small.

For purposes of numerically examining the approximate expressions derived in this
section , plots are presented in Figures 6—8 of IHLU~.,)I2 computed exactly using Eq. (1) and
computed appro ximately using Eq. (22) for three representative cases. (Note that the -

appro ximate expression given by Eq. (22) does not include the noise contributions to the
LPF transfer function.) In thcre figures, the forms of the input signal and noise autocorrela-
tion functions are equivalent to that used in Figures 2—5. Figures 6 and 7 correspond to thc
case of uncorrelated input noise. AS is seen in these two figures, there is excellent agreement
between the exact curve and the approximate curve (computed from Eq. (22)). Figure 8
corresponds to the case when the power spectral density of’ the input noise varies as a function
of the frequency. Note that in this figure, there is excellent agreement in the vicinity of the
signal peaks. However, there are discrepancies between the exact and approximate curves

• especially at f 0. These discrepancies are mainly due to the contributions from the noise
part of the LPF which are not included in the computation of the approximate curve. The
close agreement between the exact and approximate curves is indicative of the fact that the
noise contributions to the LPF transfer function are negligible when Eq. (21 b) is satisfied.

• It is interesting to compare Figures 6 and 8 with Figures 3 and 5 , especially at the sig-
nal frequen cy f’2 0.375. The increased 3-d B bandwidth of the LPF over the input signal
3-dB bandwidth is clearly seen.
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Figure 6. Exact and approximate plots of IHi.~w)I 2 (in dB) for o~f = 4 = 1.0; P0 = 5.0;
P1 =0; a~ =~~ = OO i ;~~ 0125; f2 = O .375; L 256; and A~ 1.
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Figure 8. Exact and approximate plots of IHL(w)12 (in dB) for = 4 = 1.0; P0 = P1 5.0;
ao=O .5 ;aI=a2 = o.0l ;f l = 0 .l2 5;f 2= 0 .375 ;L=25 6 ; and~~= 1o .

Description of LPF as the Input Signal Bandwidths Approach Zero

It must be emphasized that the results just discussed are only valid when L is large
enough so tha t Eq. (19) is satisfied. Clearly, in many cases of practical interest , Eq. (19) will
not be satisfied . In part icular. as the signal bandwidths approach zero , t h e  ~~ will also
approach zero and (1 9b) will eventually be violated for L fixed. It is this limiting case which
will be examined in this subsection. Specifically, it will be assumed that the a~ are small
enough so th at:

L~~l/13~, 
• 

for all n I , . . .  , 2N. (28)

Note that in this limit , the signal part of the autocorrelation fun ction becomes purely
sinusoidal for k 0, 1 , . . .  , L — 1 in Eq. (10). Therefore , the treatment in this section will
provide a description of the LPF for the special case when the input consists of sinusoids
embedded in additive broadband noise.

AS can be seen from Eq. (D-1 9) in Appendix D, the signal part of the LPF, hs(k),
• becomes approximately sinusoidal when Eq. (28) is satisfied, i.e.,

2N
h5(k) ~ A~ e

J(i~nk , for a~ ~ 0. (?9)
n=1

- 18



As discussed in Appendix D , when L is large enough for the LPF to resolve the sinusoids bu t
yet small enough so that Eq. (28) is satisfied, then the An are given approximately by

• (Appendix D, Eq. (D-20)):

SNR /2
A n 

eJ~
1) n A (30)

~‘ I + LSNR0/2

The validity of Eq. (30) also requires that the background noise be decorrelated by the LPF ,
i.e., Eq. (2 1b) must be satisfied.

• Equations (29) through (30) imply that the frequency response of the signal part of
the LPF , Hi(ci.~

) can be approximated by a superposition of uncoupled bandpass filters , i.e.,

~~~~~~~~~~~~~~~~ 
(3 1a)

where

/e
_
~1)(SNR~/ 2) eJ”n ’\~~ 11 - ej( ”n - CA))L \

+ LSNRn/2 1k 1 _ e i(”n ”) 
(3 1b)

The gain of the nth filter at its center frequency is given by: 
-

LSNR~/2
fl 

= I + LSNR~/2 
(32)

The results expressed by Eqs. (29) through (32) are straightforward extensions of the results
presented in References [121 and [22] for the uncorrelated background noise case. A fur-
ther discussion can be found in these references. • 

•

The noise part of the LPF, h~0(k) in Eq. (18), may be treated in analogy with the
treatment already presented (i.e., Eqs. (25) through (27)). Specifically provided Eq. (2 1h)
is satisfied , the B~~ and C~° in Eq. (18) will be linearly related to the A0 as discussed in
Appendix D. Further , when the magnitude of the A0 are small and provided there are no
deep nulls in the input noise spectrum (as discussed in the previous subsection), then the
effects of the noise part of the LPF will be small.

Plots of IHL(c.,) 12 which compare the exact solution for IHL(~~)I 2 obtained fro m
• Eq. ( 1) as well as the approximations provided by Eq. (31) are presented in Figures 9— 10 for

two representative cases. In these two figures , the forms of the signal and noise autocorrela-
tion functions are equivalent to that used in Figures 2—8. In Figure 9, the input noise is cor-
related. As in the case of Figure 8, there is good agreement between the exact and approxi-
mate curves near the signal peaks, but some discrepancies near f = 0. These discrepancies are
mainly the result of ignoring the noise part of the LPF in computing the approximate curve.
In Figure 10, the input noise is uncorrelated and the signal bandwidths are chosen such that
Eqs. (31) and (22) provide good approximations to the LPF response to the signals at
f 0. 1 25 and f = 0.375, respectIvely. Therefore , the LPF can be approximated as a sum of
two bandpass filters centered at fz  0.125 and (a 0.375, with Eqs. (31) and (22) providing
good appro ximations to the band pass filters located at f 0. 1 25 and f = 0.3 75 , respectively.
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Figure 9. Exact and approximate plots of (HL(.~)~
2 (in dB) for o~ 4 1.0; P0 = P 1 5.0;

ao= 0.5;~ I=a2 = 0.001;fI=0 .l25;f2=O.375; L=32;and~~= Io.
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FIgure 10. Exact and approximate plots of IHj .Aw)1 2 (in dB) for = 0.05; 4ao.5;
P0 — 5.0; P 1 0~, ~~ j  = 0.001; ~2 = 0.05; f ~ = 0.125; f2 = 0.375; L — 64; A = 1.
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As is seen in Figure 10, this approximation provides good agreement with the exact curve.
Note tha t the behavior of the LPF in the vicinity of f = 0.125 is oscillatory in contrast to its
behavior at f 0.3 75. This is a consequence of the fact that the LPF has completely resolved
(P1> l), the signal at f 0.375.

The approximate expressions given by Eq. (22) for large values of L43~ and those given
by Eq. (31) for small values of I~$n will provide a good description of an LPF for a rather

• 
. broad class of inputs which consist of narrowband processes and additive noise. Specifically ,

for an input consisting of N narrowband signals in noise, the LPF will form bandpass filters
at the signal freq uencies (provided the components of h5(k) in Eq. (17) decouple). The ana-
lytical structure of the nth bandpass filter will then be described either by Eq. (22) or Eq.
(31) depending on whether I~3~ ~~‘ I or Lj3~ ~~~ I , respectively (as in Figure 10). When
143~ 1, then h5(k) will consist of da mped exponentials decaying away from both ends of
the filter (see Eq. ( 17)). Assuming the components of h5(k) decouple , then an appro ximate
expression for the 0th bandpass filte r when ‘43n I may be obtained by solving the two
simultaneous equations for B~S and B~ which are provided by Eqs. (5) and (6) (with all the
c~ = 0and N M l i n Eqs. (5)and (6)).

A DERIVATION OF THE LPF FOR AN ALL-POLE NOISE SPECTRUM

In the last subsection , properties of the LPF were discussed for inputs consisting of
signals and noise. In this section , we will examine the special case when all of the signal
powers vanish and when the noise spectrum contains only poles. This particular case is of
interest as it provides additional insight into the basic structure of the LPF. For this special
case, Sxx(z) has the form:

oo2
Sxx (z) —i, , (33)

J
( z _ z n )( z~~

_ in )

where is a real positive constant and all the Z~ in Eq. (33) are assumed to lie inside the
unit circle.

The spectral representation in Eq. (33) is equivalent to the time series model repre-
sentation for x(j) [ 17] :

p-l
x(j) 5’ akx (j—k—l )+u(Jp), (34)

k~b
where u(j) is an uncorrelated sequence with power equal to a~. A process which can be
represented as in Eq. (34) is termed an autoregressive (AR) process of order p. From Eq.

• (33) it is seen that a FIR filter of order p can produce an output with a completely flat spec-
tru m when the input to the filter is an AR or all-pole process. In fact , from Eq. (34), it is
seen tha t the required coefficients for a FIR “whitening” filter are given by:

(1 , 40, 4 1, . . .  ~ 4p..4}. (35) 
•
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This fact , together with the “whitening” filter interpretation of the LPF discussed in Section
H reveals that provided ~ = 1 in Figure 1 , the LPF coefficien ts, w*(k), of an L-point predic-
tion filter (L ~‘ p) will be given by

* 
ak, k 0 , I , . . .  , p —  1

w (k) = . (36)
0, k p, . . . , L

The connection between the a~ in Eq. (34) and the coefficients of a p-point LPF can
be derived alternatively by multiplying both sides of Eq. (34) by x(j — 2 — 1) and taking expec-
tations. The resulting equations for 2 = 0, 1 , .. . , p — I are given by

p—l

~~~ak Øxx (Q k)~~ f~xx (Q+ 1) Q 0, 1 p~ 1 , (37)

which are identical to Eq. (1) for the LPF coefficients, w*(k), with L = p. Another property
of the a~ which relates them to the Zn in Eq. (33), is given by Eqs. ( 5 )  and (6) (with ~ = I;
N = p; C1~ = ak_ i ;  z~ = ~~~ 

+JO) n; and B~~, C~ 0), i.e .,

P—I

~~~ak zfl~~~Zn n 1 , . . . , p .  
• 

(38)

It should be noted that Eq. (38) is equivalent to the relationship between the a~ and Zn which
is derived by equating powers of z~~ between the polynomial

p— I
— ak Z~~~~’, (39a)

k 0

and the expansion

— z ~ zn ). (39b)

The p X p coefficient matrix of the a~ in Eq. (38) is a Vandermonde matrix and
many of its properties were derived in Reference [251 for purposes of treating the continuous
analog of Eq. (1). (See also References [26] and 127 1.) In the general case when ~~> I and
Sxx(z) is given by Eq. (33), there will still be only p non-zero LPF coefficients for an L-point
prediction filter (L 

~~~
‘ p), however, these coefficients will satisfy (fro m Eqs. (5) and (6)):

n =  1, 2, . . .  ‘p. (40)

An alternative treatment of the all-pole noise case for ~~ > I is given in Reference [281,
Chapter 7.
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IV . HARDWARE SIMULATIONS OF AN AD APTIVE
iMPLEMENTATION OF AN LPF

As discussed in Section 1, there are man y adaptive implementations of Wiener filters
which continuously estimate the Wiener filter coefficients. In this section , we will examine
the steady state response of an LMS adaptive filter [3—5 ] to three types of stationary ~ puts—
one-pole low pass noise , a narrowband signal plus one-pole low pass noise , and a sinusoid in
bandli mited noise. As will be seen , the -analysis presented in Sections II and Ill will provide
a good description of the experimental results presented in this section.

The specific configuration of the LMS adaptive filter considered in this section is
known as the Adaptive Line Enhancer (ALE). The LMS algorithm for the ALE is as follows:

w~÷j (k) w~(k) + 2px(j — — k) e(j) (4 1a)

and ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~ k 0 , l , . . . , L - l .  (4 lb)

In Eq. (41), wj (k) represents the kth ALE filter coefficient at iteration j; p is a scalar repre-
senting the influence of the input x(j ) on the (j + 1) update of w(k); and L and ~ are , respec-
tively, the number of weights and the delay.

A summary of many of the properties of the ALE can be found in References [ 12 1,
[211, [291 ,and [ 3 5 1 .  As discussed in these references , provided p is small enough and pro-
vided the input data is statistically stationary, then the mean of the ALE filter weights will
converge within a good approximation to the LPF coefficients described by Eq. ( 1). Since
the effective integration time of the ALE is finite, the steady-state ALE filter coefficients
will cont ain a random fluctuating component. However , the variance of this component can

• ,• be kept arbitrarily small by reducing p ~~~(O) (at the expense of increasing the ALE con-
vergence time). In the experiments described in this section, p was kept small enough that
weight vector noise was nf.~gligible and , therefore , Eq. (1) and the res~1ts presented in Sec-
tions II and III provided a good description of the steady state response of the ALE.

- The experimental data presented in this section were obtained on a variable length
hardware implementation of the ALE which was designed and built at the Naval Ocean Sys-
tems Center. Filter lengths of 8, 16, 32, 64, 128, and 256 weights can be obtained with this
hardware . Experimental plots of the steady state ALE weights were obtained by “freezing”

• 
- the weights at a particular instant (after convergence). Experim ental plots of the steady state

• frequency response of the ALE were obtained by first “freezing ” the weights (after conver-
gence) and then applying white noise to the input of the stationary filter and spectral-
analyzing the resulting output. The first case examined was when the ALE input consisted
of stationary noise which was generated by passing white noise through a one-pole , low pass
filter. For this case, the LPF impulse response consists of only one weight at the beginning

• 
- of the filter as discussed in the third subsection of Section III, i.e.,

w*(k) = e~~~6(k). (42)

J This was indeed observed as indicated in the experimental plots presented in Figure 11 for
three different values of ALE delay, £ In this figure , the vertical scale is not absolute,
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Figure 11. Plot of the ALE weights, w(k), vs k (after convergence) for three different values of delay.
The input autocorrelation function , ~xa(k), was given by P0e~~0Ik l where a~fs/2ir = 250 Hz and
L = 256. The sample hequency, f5, was 3500 Hz. (P~ was held constant in all three experiments .)

however, the magnitude of the first weight decreases as exp (-aA) with increasing ~ as would
be expected from Eq. (42). In fact, the ratio of the measured values of the first weight in
Figure 11 is given approximately by: 17.5:11.0:7.0 ~ 2.5:1.6: 1. This compares quite favor-
ably with the theoretical expression for this ratio (Eq. (42)), i.e.,

e~~’~:e~~ :l . 
- 

(43)

Using the measured value for a from Figure I i , it is seen that Eq. (43) predicts the ratio of
the first weights to be:

~ 2.5:1.6:1 ,

which agrees with the experimental results~
The second experimental case examined corresponds to an input consisting of a nar-

rowband signal embedded in additive one-pole low pass noise. The signal was generated by
filtering uncorrelated noise with a two-pole bandpass filter. The bandwidth of the signal was
small enough that the sinusoidal approximation is valid. This case illustrates the noise decor-
relation property of a variable delay (prediction distance) LPF. The expression for the LPF
impulse response may be obtained in Appendix D from Eqs. (D-l), (D-3), (D-l6) through
(D- 1 8), and (D-19) (with N 1 , N0 1, and MO = 0):

w (k) — A 1e
j wI k +A 2e iW lk +C~~ 8(k -r  + l)+Cj ° 6(k + r - L). (44)
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As can be seen from Eq. (44), the LPF impulse response consists of a sinusoid at the signal
• freq uency as well as two delta functions which occur at the beginning and end of tli,1e filter.

The constants A 1, A2, and Cf° in Eq. (44) can be obtained from Eqs. (D-I6) throuth (D-18).
The result is:

(45a)
L+ 2/SNR + (cosw 1 — e~~)/ (cosh a—cos c.,j )

2 A
C~° = ~~~ - 

n (45b)
n 1

2 jwnL
c~ =-  . (45c)I 

n l  1 _ e~~ +J~~fl

and

2 cosh ct— cos w 1
SNR = (o 1/P 0) 

. 
(45d)

sinh a

where in Eq. (45) A 2  = —
~~~~~~ , and of  and P~ represent the signal power and noise power,respectively. Equation (45a) is only an approximation for Al. In deriving this app roxima-

tion , we have neglected all coupling between Al and A2 which occurs in Eqs. (D-l6) through
(D- 18). This approximatio n is very good in the experimental case we are presently consider-
ing. Note tha t as th -~~ 00

, and further as L~ co and/or SNR -+ 0, Eq. (45a) reduces to Eq.
(30), as expected. Note also that in the limit of large L and/or small SNR , Al becomes very
small and provided aA ~ 1 , then C~

0 is given approximately by:

~~~~~~~~~ (46)

The characteristics of the LPF expre ssed by Eq. (45) were observed as indicated in
the experimental plots presented in Figure 12 for two different values of ALE delay, A. As
in the case of Figure 11 , the vertical scale in Figure 12 is not absolute. Also, the sinusoids in
Figure 12 were plotted with the frequency , phases, and amplitudes of these sinusoids being
estimated from the display of the weights on an oscilloscope. As can be seen , the magnitude
of the large impulse at the beginning of the filter decreases as the delay is increased. In fact ,
the ratio of the measured values of the first weight in Figure 12 is given approximately by:
20.0:6.0 = 3.3: I . Assuming the first weight to be given approximately by Eq. (46) gives the
following predicted value for this ratio:

e6”25013500:l = 3.9: 1.

This value is somewhat higher than the measured value. This discrepancy is due , in part , to
the fact tha t we are approximating the first weight by Eq. (46). Another characteristic of the
LPF which can be observed in FIgure 12 Is the increase in the amplitude of the sinusoid in the
ALE weights as the delay is increased. The ratio of the measured values of this amplitude in
Figure 12 is given by: 0.5:1. The predicted value for this ratio (calculated from Eq. (45a)
with b.= l and A =  4) is also given by 0.5 : 1.

_ _ _  
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Figure 12. Plot of the ALE weights, w(k), vs k (after covergence) for two different values of delay. .~~

The input autocorrela tion function , Ø,~ (k), was given by P0e
_
~0Ikl + o~f e~~1 1I~1 cos w 1k where

= 250 Hz; ni fs/2ir = 0.5 lIz ; ~lc/2~ = 250 Hz; and L = 64. The sample frequency, f5, was
350(J Hz. Po/c~f was held constant in both experiments.)
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FIgure 13. Plots of the steady state ALE frequency response corresponding to four different values of delay
for an Input consisting of a sinuseld embedded In additive bindlimited noise. The 3.dB bandwidth of the
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The noise decorrelation property of the LPF for this experimental case becomes
apparent by noting that the large impulse at the beginning of the filter gives rise to an all pass
component in the fi lter ’s freq uency response . For small values of A, the LPF will pass a con-
siderable amount of noise due to this all pass component. However , as A is increased , the

• LPF will suppress more noise as the magnitude of the all pass component decreases. Another
example which illustrates the noise suppression capabilities that can be achieved by varying
the prediction distance of the LPF is presented in Figure 13. In this figure , the steady state

• frequency response of the ALE is plotted for four different values of delay when the input
consists of a sinusoid embedded in additive bandlimited noise. The noise was generated by
filteri ng white noise through an eight-pole Butterworth low-pass filter followed by an eight-
pole Butterworth high pass filter. For purposes of comparison , the input spectru m is also
plotted in Figure 13. As indicated in Figure 13, the bandlimited noise is suppressed as A is
increased but the sinusoid is not attenuated for any value of ~ selected . A similar example
was examined in Reference [39] . Additional experiments which compare the steady state
LMS filter response with a theoretical Wiener filter may be found in References 1 12 1,  129 1,
and [361.

V. ~ONCLUS1ONS

In this report the Impulse Response (IR) and Frequency Response (FR) of a discrete
LPF were examined for stationary inputs consisting of narrowband signals embedded in
broadba nd additive noise. In Section lI the general analytic form of the IR and FR were
derive d for the general case when the z-transform , Sxx(z) , of the autocorrelation function of
the input was a rational function of z. It was shown that the IR consists of sums of damped
exponentials and impulses which occur at both ends of the LPF. Further , the ampli tudes of
the exponentials and impulses which occur at the end of the LPF (reflection amplitudes)

• approach zero as the length of the LPF becomes large.

In Section Ill , inputs consisting of narrowband signals and additive noise, were exam-
ined in detail. Specifically , in the first major subsection of Section III , rational spectrum
models were developed to approximate the true input power spectrum of the signals and
noise. In the next area of Section Ill , the results of Section II were used to examine the IR
and FR of the LPF for two limiting cases. First , when the length of the LPF becomes very
large, it was shown that its FR can be approximated by a superposition of decoupled band-
pass filte rs located at the signal frequencies. The gain of these filters at their center frequen-
cies were shown to approach unity as the product of the input signal-to-noise spectral density
ratio and the inverse signal 3-dB half bandwidth , i.e., SNR/a , becomes large. Also, the band-

• wid ths of these decoupled filters were shown to become increasingly wider than the signal
bandwidths as the ratios , SNR/a , become large . Therefore , only for large values of SNR/a
can the LPF filter the input noise without distorting the signal in the limit of large filter

• lengths.
A second limiting case was considered when all of the signal bandwidths approach

zero (sinusoidal limit). In this limit , it was shown that the LPF also forms a superposition of
• 

• bandpass filters located at the signal frequencies. As the product , L SNR/2 , becomes large it
was shown that the gain of these filte rs approaches unity . Therefore , only for large values of
L SNR/2 can the LPF filter the input noise without distorting the peak magnitude of the out-
put signal power spectrum in the sinusoidal limit. The special case when the LPF input con-
sists solely of all-pole noise was treated next a ely , in Section IV , resu lts of an
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experimental simulation of an adaptive implementation of an LPF were presented and dis-
cussed. It was shown that appropriate selection of the prediction distance A can provide an

I enhancement of the narrowband signal components by suppressing the additive broadband
noise contributions to the LPF impulse response.

H • 1
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T ~ APPENDIX A. GENERAL FORM OF THE DISCRETE LPF FOR STATIONAR Y
I NPUTS WI TH RATIONA L POWER SPECTRUM REPRESENTATIONS

t The purpose of this appendix is to develop a general form for the solution, w (k)
(k = 0 , . . . ,  L—l ), to the discrete analog of the Wiener-Hopf equation:

~xx (2
~~

) , Q = 0, . . .  , L l  , ( A l )

when the z-transform of øxx(k), S~~ (z), is a rational function of z. The specific form of
Sxx (z) considered here is

?‘i (~ — e~~m + JO m) (~ — 1 — e~~m — JOm)

5~~(z) = A m=l , (A-2)

lI ( z _ e ~~~
+
~~~~) (z~~ _ e~~

n
~~~’n )

where the 
~
.im and a~ are non-zero , positive real constant s and

for all m ,n ,

and A is a real, positive constant.

The treatment of Eq. (A-l) presented in this appendix represents a brief summary of
the rigorous treatments given in References [141 and [161 for the discrete problem and is
analogous to the t reatments given in References [19 1, 125] , and [311 for the continuous
problem. Alternative treatments of Eq. (A-I) or its continuous analog include the interest-

• ing development given in Reference [30] (Appendix E). To develop a simple expression for
w~’ (k) , we first note that if the power spectrum of x can be represented by Eq. (A-2) with
z = exp (j~,), then x(j) must obey a difference equation given by:

D(z~~) x(j) = P(z~~) u (j) . • (A-3)

In Eq. (A-3), D(z 1) and P(z 1) denote linear difference operators and u(j) represents a
stationary , uncorrelated sequence with power given by A in Eq. (A-2), i.e.,

EIu(j) u(j +m)] = AS(m) . (A-4)

The specific forms of D and P are given by:

N
D(z~~) [1(1 _ e~~~~ J”hI z l )

n l

N

~~ a~ z ’1 (A-Sa)
n 0
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and ,

P (z~~) = 

!~ 
(1 — e ’~m ~~

0m i— i )

= 

n~~0 
bm z_m (A-5 b)

where in Eq. (A-5 ) a0 b0 1. The operation of D(z~~) on x(j) in Eq. (A-3 ) results in a -
4

summation of the present and weighted past-values of x(j) , i.e.,

D(f 1) x(j) = an x(j-n ) . (A-6a)

Similarly, we have for P(z~~) u(j):

M
P(f~ ) u(j) = 

r~~0 
bm u(j—m) . (A-6b)

We now observe that 0xx (2—k ) satisfies Reference, [16] (chapter 6):

•xx~~’~~ = A P2 (z~~) ~~~~ G(2—k ) , (A-7a)

where G(Q — k) (which is a Green’s function [16 ,25]) is obtained from :

D2 (z)D 2(z~~) G(Q—k) = 6(2—k) . (A-7b)

The conjugate linear operator P(z) is defined by

~~(i) = bm~~(j+m) . (A-8)

A similar definition holds for D(z). The “2” subscripts on the operators in Eq. (A-7) denote
tha t they only operate with respect to the 2 variable~in Eq. (A-7). Equation (A-7) may be
verified by taking its z-transform (with k 0 )  and comparing with Eq. (A-2).

Substituting Eq. (A-7a) into Eq. (A-I) results in:

U-I -
w (k) P2(z~ ) ~j~

) G(Q — k) = A~~ Ø,~~(Q + ~) 2 = 0, .  . . , L-I ,
kaO

or , by the linearity of the operators:

P2(z~~) P2(z) F (2) — A 1 
~ XX~

2 + A) £ 0, . . .  , L—l - (A-9)
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where

F (Q) 
!
~:

l 
w*(k)G( 2_k) . (A-lU)

Note that Eq. (A-9) is in the form of an ordinary difference equation with constant coeffi-
cients. Therefore, a general solution of Eq. (A-9) is given by Reference [161:

F (2) = Fh (Q) + F~ (Q) . 0 ~ 2 ~ L—l . (A-I I )

In Eq. (A- I 1), Fh (2) represents the general solution of the homogeneous equation

PQ (z~~) P Q(z) Fh (Q) = 0 , (A-12)

and F (2) represents the particular solution of Eq. (A-9). The general solution of Eq.
(A-I2~ Fh(Q), can be expressed as a linear superposition of damped exponentials, i.e.,

Fh (Q) = 

n~~1 f d~~ e~~m~~~
J0 m 2

+çe
Mm~~~

J6 m
Q J  

. (A-l3)

Note that the exponentials , Zm E exp(± Mm + ~Orn ), are the roots of the polynomial
P2(z l ) P2(z). The particula r solution of Eq. (A-9), F~ (2 ), can be obtained by applying to
both sides the difference operator , (P2(z~~) PQ(z)r 1, which is inverse to the difference
operator , P2(z 1) P2(z). The result for F~ (Q) is given by Reference [16] :

= A~ (P 2 (z~~) ~ T~))
1 

~xx~
2 + A) . (A I4)

The final form for w*(k) can be obtained by applying the operator,

~~~~ D2(z~~)

to each side of Eq. (A-i 1) and using Eqs. (A-b ) and (A-7b). The resulting expressio n for
• - - w* (2) is given by

w*(2) = DQ(z) DQ(z~~) F *(2 ) 0~~~2~~~L—l , (A- I Sa )

where

F (Q) = ~~~ {d ~~e Mm 2+ J 8 m 2
+ d e Mm Q

~~
0m 2J

m 1

+A ~ (P2(z_ 1)~~~~)) 
1 

Ø (Q + A) O ’~~Q ’~~L—I . (A-l5b)

The expression for w (Q) which is obtained from Eq. (A-l5) will contain the delta function
and its differences at the end points of the interval 0 ~~ £ ~ U-I. The delta functions arise as
a result of applying the operator D2(z) D2(z~~) to F (Q) at the end points £ 0 and 2 a L—I.

-I-
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• Excluding these end point contributions, we havet

D2(z) D2(z_ l )d + e Mm 2 J ° m 2 
= B~~e ’~

Mm 2
~~J°m 2 

(A- l6)

0’~~Q~~ L-l ,

DQ(z) D2(z_ 1 )d; eMm 2 J ° m 2 
= B;e Mm~~~~~~~ J°m 2

0~~ Q~~ L— l , (A -I l)

and

A~~ D2(z) D2 (z~~) (P2 (z~~)~~~~) ) ’  ~~~(Q+~~) = 0 ,

0~~ Q~~ L—l . (A-l8)

Equation (A-l8) may be verified by operating on both sides of Eq. (A-7a) with the operator ,

A ’ D2 (z) D2(z~~) (P Q (z_ 1) 3)_ l

and using Eq. (A-7b) (with k = —A).

Using Eqs. (A-IS) through (A-I 8) and including the delta function contributions at
the ends of the interval 0 ‘~~~ k ~ L—l (as discussed above), we can write the final expression
for w* (k) as (See References [16], chapter 6; and 1141, chapter 13.)

w*(k) = 

i~~ l !B~~e Mm J0m
~~~B e M m l

~~~
+J0 m k !

+ 
~~M 

{c~ o(k-r+l)+c; 6 (k+r_L)} k = 0 , .  .. , L-1 . (A- 19)

• By definition , the sums of the delta functions in Eq. (A-l9) vanish when N ~ M. When N >
M, note that N—M delta functions arise at either end of the filter ,.w*(k). As shown in Ap-
pendix B, this will lead to precisely 2N equations which the 2N constants, B~~ and C~, must
satisfy. - 

-

tin operating on the functions on the left hand sides of Eqs. (A.I6) through (A.18) with DQ(z) DQ(r 1), It
Is tacitly assumed that these functions are extended outside the Interval 0 ~~ 2 ‘~~ L.-I , la., we are Ignoring
the end point contributions.
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4

APPENDIX B. DERIVATION OF THE COEFFICIENT
EQUATION S FOR THE Bt AND Ct

In order to determine the constants B~~, C~ which appear in the expansion for
we (k), one substitutes Eq. (A-l9) into Eq. (A-I). Before doing this, however, one must first
develop an explici t form for the autocorrelatio n function , ‘*xx (k), from the relation:

~ Sxx (z) zk_ l dz k 0 , ±l , ±2 , . . . ,  ( 8 I )
I z I I

with S~x(z) given by Eq. (A-2). As can be seen from Eq. (A-2), S~~(z) is a rational func-
tion of z with poles inside and outside the unit circle. Therefore , Eq. (B-i) can be simply •
evaluated as the sum of the various pole contributions of zk I  S~~ (z) which are inside the
unit circle , i.e.,

-a I k I + j ~~~k - -

~xx (k) = A~ e ~ for k~ ’0 , (B-2a)
n= I

and

— -a I k I +iw k
= An e for k <0 . (B-2b)

In Eq. (8-2), An is given by: -

+
A B e- ..a~ +jw ,1 a~ +jo.~e — e

1
fr!
1 (e~~~ 

+~Wn ....e Mm +J O m) ( ~~~ 
+jc~~ - eTMm +i6 m)

m l  . , ~B-3a)

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ )
2=1

- 
2*n 

-

where B is given by

-~~~~~ I M  . / N  1
B — ( 1 ) M N  

~ fl ~~~~ 
_ JO

m/ fl e~~’ JW n A , (B-3b)

L m I  / f l I  J
and A is defined by Eq. (A-2). in deriving the expansion for ~,~~(k) given by Eq. (8-2), it
has been tacitly assumed that M < N. When M ~ N then Eq. (8-2) must be modified to
include a linear combination of the delta functions: 5(k), S (k ±1),.. . , S (k ± (M—N)).
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Substituting Eq. (A-19) for w*(k) into Eq. (A-i) with ~~~(k) given by Eq. (8-2)
leads to the following equation : - •

M N . r ~~ ~~n JWn
V V 8+ _Mm +J O m I n e

L m e Li - ~~n Mm j(~.’n Om)m l n l  e

a -jw
A~ e n n -

— 

1 — ~~ 
— TMm — j ~~~ — 

~m)J e

I- — ~~~~~~~~~~

+8 ~ Lm (L I) Mm~~
J0m I A~~e

m e e

- 

A~ e~~~~J”1L 1 eMm2
~~
J°m2 1

i _ e ~~
+Mm~~~~~~

Om)~
j

+ 

~~l n~~I j  
A
n[ 1 - ~~ 

- Mm “ i ~~ n - 6m~

- Mm (L~l) 
~

+ 
B e  I ~~~~~~~~~

+ IJm L +JO m L

A 
-a~ L_j w ~ L~ 

Bm e •~
— ~ e

- Mm +J O m L 1 
- 

-

+ 
Bm e i a~ Q + j ~~~Q

l _ e ~~n + Mm _j
~~~~~ m hj

N-M N -

+ 
~~~~~ 

1~~~m n (Q_ r÷ 12 r l 1 2 r
~~~

r i  n 1

+ c J~ (9—L +r) e~~ 
£—L +r I + jw~ (Q—L+r ) } .

= 

~~l

2 = 0 , . . .  , L—l . (8-4)
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In Eq. (8-4), J~(Q) is defined by

J~ (Q) A~, 0<2

and

2 < 0

As noted above , it is tacitly assumed for the present that N> M. The case N = M will be
subsequently discussed and the case N < M can be treated by a straightforward extension of
the methods discussed here.

Equation (B-4) may be simplified considerably by first noting that the coefficients
multiplyin g the exponentia ls , exp(± Mm 2 + 

~°m 
2), must vanish, i.e.,

N 
~~ e’~ n J’~~ A

~ [~ - e~~~ 
Mm j( wn~~ m~~ I -e~~ 

Mm J~~ n _ O m )] 
= 0 , (B-5a)

and

N A e~~~ 
J(A~fl A ~~ ~~~

~~i [ i _ e ~~ ~~~~ n _6 m i - e  ~ Mm ( m~] 
0 .  (B-5h)

The validity of Eq. (B-5) can be simply established by first forming the z-transform of

~xx 0~ as given by Eq. (B-2), i.e.,

N -i 00

S~~ (z) = 
~~ 

A
an k + J w n k ...k +~~~ An e~~~~

+ J k z~~
]

N r —  ~~ j~~~JCA~n
~ç 1 A n e 

. 

An

~~
‘i LI~ e~~~’~~z ~~~~~~~~~~~~~

N [ A~~e~~h1 J’
~~ ~~~~~~~~~~~ 1

= ~ 
~~l ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

j . (B-6)

Eq uations (B-5a) and (B-5b) are now established by evaluating S~~ (z) given by Eq. (B-6) at
z = exp(± jim +jO m) and noting that the result must vanish (from Eq. (A-2)) .

An other important simplification of Eq. (B-4) results by observing that the absolute
. value signs in the arguments of the exponentials on the left hand side of Eq. (8-4) may be

removed. This can be seen by first noting that

35

~~
- ‘, - ~~

-
.
‘ -~~~- - - - 

~

-

~~~~~~
- ~~~~~~~~~~~~~~~~~~ 

— :‘- - - -~~.-, 4’- - ~~~V~~~~~~~~~. ~~~~~~~~~~~~____— —~-~~ 
— ~-



- - - - -. — — -~~~~~

—a IQ—r + I I+j w  (2—r+i)n

= An ~~~~~~~~~~~~~~~~~~ 
I)

+ 

~~ 
(A n e~~~~ 

~CA)~~~ -A~ ~~~ 
JW nP) &(2-r+l+p)

0<Q<L— 1 , (B-la)

and

~~~~~~~~ 
e 

2+r~ LI +jw n (Q +r—L)

— — j
~ n(Q+T L) n(~~~~L)A~ e

r-l 
(A fl e n P +~~ n P _ A ~ e +iw nP) 6(Q+r-L-p)

0<Q<L— l . (B-7b)

The summation appearing in Eq. (B-la) vanishes, by definition , when r I . Substituting Eq.
(B-7) into Eq. (B-4 ) gives rise to term s involving the delta functions which appear on the
right hand side of Eq. (B-7). Specifically, these terms are given by:

~~ C~ ~~ &( 2 —r+ l + p)  ~~ (A n e~~~~~~’~
n P _ A n e ’ J ’

~~1’)
r= I p=I n l

0 < 2 < L — 1 , (B-8a)

and

~~ c 8( Q +r—L—p) 
~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

O < 2 < L — i  . (B-8b)

It is now shown that Eqs. (B-8a) and (B-8b) vanish. To show this, we will show,
equivalently, that:

N N

n 1  
An e +J W~.,p 

=
‘

~~~~~ 

An e° ’ ~~
”
~~

0 < p < N — M - l  (B-9)
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Equation ( B-9) can be established by a conventional residue argument. Note from Eqs.
- I (8-2) and (A-2) that for p ~~~‘ 0:

N
~~
n 1

= ~& ~ d z z P~~~~M~~2,rj .P
=

JJ  ( z_ e Mm~~J°m) ( z _ e Mm +J0 m)
m I  (B-la)

The constant , B , in Eq. (B-IO) is given by Eq. (B-3b). The integral in Eq. (8-10) over the
unit circle is equal to an integra l over a large circle I zi = R (R>  max (eafl)) minus the resi-
due contributions at z~ = exp(a n +J~~ ). However , when 0< p < N— M— 1 , the integral over
the large circle vanishes (which can be seen by letting (R -+ 00)) and the only con tribut ions
to the integral in Eq. (B-l 0) are the residue contributions at z~ = exp(an + jW n). However ,
these contributions give , precisely, the right hand side of Eq. (B-9) and therefore , Eq. (B-9)
is established .

Substituting Eqs. (B-5) and (B-7 ) into Eq. (B-4) and using the result given by Eq.
(B-9) leads to the following relatioi s:

~~ I ~~~l {A n [ l~~e
an _M :~~i(~~n _o m)

B Mm (L l) 1
+ m e 

e n J n
1 ~~~~~~~~~~~~~~~~~~

I +

• A ~~ n~~~J(~n L I Bm e
- n

B Mm~~Om ” 1 -

+ m e I ~~2 + j w ~ 2 
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N-M N
+ ~~~

r 1 n= l

+ C A,.~ e~~ 
(Q +r— L) + J ’ n ( r~ L) } = 

~~l 
A~ ~~~~~ 

+~ C..i~1(~~+Q)

0 < Q < L - l  . (B-I l )

The constants B~~ and C~ can now be determined by equating coefficients of the
exponentials , exp(±a n Q +j w n Q), in Eq. (B-I I) . The desired relations for the B~~, C~ are
given by:

M B~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

a~ Mm j( W n _O m) + a~ + M m ~ “n 0m~m 1  1 — e  1 — e

- 

+ C~ e~~ 
(r— 1) — j~~,, (r— I) 

= e~~~ ~ 
+

n l ,..., N , (B-I2a)

and

M B~ e Mm L + 
~
0m L 

B; e
TMm + L

n Mm j(~~~_~~~) + 
n + Mm j( wn O m )

m l  —e -e

- 

- ~~~ c;ean t+~~n r 
= 0 n 1 , . . . , N . 

- 

(B-12b)

Equations (B-l2a) and (B- l2b) are valid when M <N. The only modification which is
needed when M = N is to remove the summation terms involving the C~ in Eqs. (B-12a) and
(B-l2b). That is, when M = N only damped exponentials appear in the analytic solution for
the LPF coefficients. It should be pointed out that Eq. (B-12) was originally presented in
Reference [221 without derivations. Also, analogous equations to Eq. (B- 12) appear in the
treatment of the continuous problem and a more complete analytical discussion of equa-
tions similar to Eq. (B-I2) is given in Reference [251 , Chapter 8.
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APPENDIX C. DEVELOPMEN T OF APP ROXIMATE POLE-ZERO MODEL S
FOR NARROWBAND PROCESSES IN ADDITIVE BROADBAND NOISE

In this Appendix , approximate rational spectru m models will be developed for nar-
rowband processes embedded in additive broadband noise. The cases of additive uncorrelat-
ed and additive correlated noise will be analyzed in parts 1 and 2, respectively.

I . NARROWBAND PROCESSES EMBEDDED IN ADDITIVE UNCORRELATED NOISEt

For this class of input s, the autocorrelation functio n may be expressed as

= ~no( k ) +ø s(k) , (C I)

where ~no (k) and ~5(k) represent the autocorrelation functions of the noise and signal ,
respectively. As discussed in Section III, the form of ~5(k) which will be considered here is
given by:

= ~~ a
2e~~~~~coswnk , (&2)

n 1

where o~, a0, and ~~ represent the power, 3-dB half bandwidth, and frequency, respective-
ly, of the n tt~ signal. For uncorrelated noise, the autocorrelation function of the noise is
given by:

= a2 6(k) , (C-3)

where ~~~ represents the noise power.

The model represented by Eq. (C-l) is a mixed autoregressive-movi ng average
(ARMA ) model with 2N AR terms and 2N MA terms. The z-transform of ~~~(k) is given
by:

-~~~~~ -a . 2
~~ ~~~~~~~~

5xx~~ 
= + 

~~~~~~ ( z  — e~~ 
+io.ln) ( z —1 ... e~~n ~ ‘n)

2N
— 2 V on e slflhl an
— 0no~~ L ( 

_a
n +~~(i~

n ) (  Z _ ~~a~~~~c0 1~

2 1 
( z _ e  J~ n ) ( z . . . ei3n l i

~ n )  
2= 0no 2N - 0no 0(z) . (C-4)

S I’—

t ihe material presented in this section was originally presented In Reference (331.
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I
- In (C-4),

°n+N = an for n = I , . .  . , N , (C-5a)

and

CA)n+N = 
~~ n for n = I , . .  . , N . (C-Sb)

As can be seen from Eq. (C4), Sxx(z) can be represented as a product of two factors. The
first , a~~, represents the flat power spectral density of the background uncorrelated noise.
The second factor, Q( z), is a rationa l function of z “ith poles located at the signal poles,
exp (±a~ + jw~). The zeroes of Q(z), exp (±j3~ + j~’~), may be obtained by factoring S~~(z)
in Eq. (C-4). in general , such a factorization of the spectrum is analytically tractable only
for small values of N and does not provide much insigh t into the analytical structure of the
zeroes of 0(z). How ever , as the signal 3-dB half bandwidths , an, all become small enough
so that the background noise spectral density, ak,, may be closely approximate d from
S~x (&~~) between the signal frequencies (i.e., no appreciable overlap of signal spectra), t
then a simple approximating expression for the zeroes of Q(z) may be derived .

The assumption that the background noise may be closely approximated from
S~x (&~~ is consistent with requiring that the poles and zeroes of Q(z) occur in pairs , i.e.,

j 
, ~~~~~~~~~ n I , . . .  , 2N , (C-6a)

and

I~ 3 + j ~, a + j ~~ l
L e n ~ , e ~ n I , . . .  , 2N , (C-6b)

and that the distance between each member of the pai r in Eq. (C-6) is very small.

Making this assumption , we can now obtain an approximate expression for the
zeroes of Q(z). From Eqs. (C-I) and (C-4), we have:

~xx (k) .~i_: ~ a~0 Q(z) z~~ dz . -

$zl I

Using Eq. (C-6) we obtain the following expression for Øxx (k):

2 
2N 

(e~
°
~’ 

+ ~~~ e~~ 
+i~ 0) ( -an + ~~~ — ~ 

+ j~L’n )
= 0no Q(0) 6(k) + 

e~
ah1 +j w n — e~~ ~~~~~

• Qn (~~~~~~ ”) ~~~~~~~~~~~~~~~~~~~~ ‘

k~~’0 . (C-~)

t Note that no appreciable signal spectra overlap also implies that the signal frequencies , ~~, are sufficiently
- 

- greater than zero so tha t there Is no overlap between the positive and negative frequency components of
the signals.
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In Eq. (C-i) , Qn (Z) is defined as

2N ( —t32 +i~i2 ) (  - ~2 ÷i~ 2 )L 
~~ Z~ 

= ri z — e z e (C-8
‘ — j  j  / -a2 +j~~2\ / a2 + jw 2

• 2 =1 \ z — e  z — e
Q*n

Under the assum ptions of small a
~

, and little signal overlap, we have app roximately that
• Q(0) I and

Qn ( e n
~~

J’1’
n)  = I . (C-9 )

Therefore , eq uating Eqs. (C-i) and (C-I) and using Eq. (C-9), we obtain the following ap-
proximations for ‘3n and ~I n :

= w~ , n l , . . . , 2N , (C-lOa) 
J

= cosh 1 
{

cosh a,~ +!SNR~ sinh an

and

13n+N = for n 1 , .  . .  , N . (C-lOb )

In Eq. (C-lO), SNRn = a~/a~~ is the signal-to-noise ratio of the n
th signal.

Eq uation (C- 10) shows that in the limit of small signal bandwidths, the zeroes of
Q( z) are displaced slightly back along radial lines from the signal pole locations. As the
an —~ 0, both the zeroes and the poles approach the unit circle. This implies tha t in the
limit of zero signal bandwidths (i.e., sinusoids in white noise) the appropriate time series
model for the process represented by Eq. (C-i) is an AR.MA model of order (2N , 2N) with
identica l AR and MA terms. This limiting result was also derived using a difference equation
approach in Refe rence [32 1.

The approximations exçressed by Eq. (C-lU) become increasingly axurate as the
4 distance between each member of the pole-zero pair in Eq. (C-6) becomes small , i.e., wher.

cosh~ cosh a~ + SNR J , sinh a
~ 

-a~ ~~~- 0 .  (C-I I a)

For small a
~ 
(with SNR~ fixed), Eq. (C-l Ia) reduces to (from Eq. (15)) 

-

- J SNR~ 0n ~ 0 . (C- i Ib )

Vice versa, for small SNR~ (with an fixed ) Eq. (C-I Ia) reduces to (from Eq. (14))

SNRn/2 ~ 0 . (C- I I c)

• Note that the actual values of the differences, 
~1n — 0n~ 

which are required for a desired
accuracy of the approximations given by Eq. (C-I 0) will depend on the frequency separa-
tions of the signals. This is because for fixed values of an and Pn’ the approximation ex-
pressed by Eq. (C-9) will become worse as the signal freq uency separations decrease, as is
seen from Eq. (C-8). In this case, there will be appreciable signal spectra overlap and the
approximations expressed by Eq. (C-l0) will become invalid.

—
~~~~~~ - 
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2. NARROWBAND PROCESSES EMBEDDED IN ADDITIVE CORRELATED NOISE
In this section , we will assume that the z-transform of the autocorrelation function

of the input , Sxx (z), can be represented as follows:

Sxx (z) = Sno (z) 1~Ss(Z) , (C-12)

where Sno(Z) is the z-transform of the noise autocorrelation function. As discussed in
Section III , it will be assumed that S~0(z) can be expressed as a rational function of z:

j i~ (~ — ~~~ 
+JO~~
) (~

— l — e ’~m 
_ itI

n )  

—

Sno(z) = a~0 
m=l , (C-I3)

( z _ e ~~~~~” ’) ( z~
1 

~~~~~~~~~ ) -

where G~~3~ p~~, and a~ are non-zero, positive real constants and

.1r~~~4,8~~ ”~ 7r , for all m ,n .

Also, in Eq. (C-12) S5(z) represents the z-transform of the signal autocorrelation function
and can be obtained from Eq. (C-4), i.e.,

—a2r. ~~~~~
. 2

S (z) = . . . (C-14)
n l  ( z _ e ~~~ +~~ n )  (~~ l _ e~~~~~~ n)

Based on the discussion presented in Section C-I , it is expected that a reasonable
approximation for Sxx (z) under the assumption of small a~ (li ttle signal overlap) will be
given by:

S~~(z) � Sno(Z) Q(z) . (C-IS)

Equation (C-IS) is directly analogous to Eq. (C-4) with a~ , replaced by S~0(z). Also, the
function Q(z) in Eq. (C-IS) is assumed to be represented by a rational function of z as in
Eq. (C-4) with 2N poles located at the signal poles, exp(±an + j wn), and 2N zeroes which
are represented by exp(±Pn +j t J ln). Equation (C-lS) implies that the input process can be
approximated by an ARMA process with 2N + M0 zeroes and 2N + N0 poles. It is impor-
tan t to point out that this is only an approximation since the order of the exact ARMA
mode l which represents the input process will , in general , be different (as can be seen from
Eqs. (C- I 2) through (C-14)) . How ever , as the a~ -~ 0, Eq. (C-IS) will provide an increasing-
ly accurate model as will be shown below. •

-J
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I
Carrying out the integral evaluation for 

~xx 0~ 
as in Eq. (C-7) with S~~(z) given by

Eq. (C-I S) gives:
t 

•~~(k) = -
~~~

-
~~ ~ S~~(z) Q(z) zk 1  dz

z I l

— k + 
~~~ (~

_ +jw n _13
ii +J~m n) ( ~~~~~~~~~~~~~~~~

0no~ ~ L ~~~~~~~ an +j U nn 1 e — e

~ n (e~~1i +~Un) s~0( e n ÷i~)n) ~~~~ 
+jw~) (k— I)

k~~~0 . (C-b )

In Eq. (C-I 6), Qn (Z) is defined as in Eq. (C-8) and ~no(k) represents the contribution to
the integral which arises from the poles of the function zk~ S~0(z). Assuming that these
poles are sufficiently separated from the signal poles so that Q (0) ~ 1 and

Q (e °
~~~~”) ~ 1 n I , . . .  , N0 , (C-Il)

the n ~noOc) will approximately equal the true autocorrelation function of the noise,
øno 4~’)~ 

Also, it is seen that the contribution from the signal poles in Eq. (C- l6) is practical-
ly identical to that for the white noise case (see Eq. (C-i)) . Their main difference is the
factor, Sno (e~~fl +JUn), in Eq. (C-I6). This quantity can be approximated for small a~ as
follows: .

5no (
~~a~ +iw n) 

~ 
5no ( ei

(A)
n )  

j i  

- 0n s~0 (d’~’n) is~0 (e~
’
~~)J  

.

(C- l8)

Therefore, provided

an S~o (e~
’
~”)iSno (d”n ) .~ I , (C-l9 )

then an approximation for the an and ~Pn can be obtai ned in direct analogy with Eq. (C-b ),
i.e.,

= , n 1, . . .  , 2N , (C-20a)

= cosh~~ cosh a~ + SNR0 sinh a~ , -

and

for n I ,. . .  , N . 
- 

(C-20b)

In Eq. (C-20)~ SNR~ ~ o~/S~0(d’~’fl) and is the signal-to-noise spectral density ratio
at the ~th signal . Note that Eq. (C-19) will be satisfied either in the limit of small signal
bandwidths or provided the background noise spectral density Is not varying too rapid ly in
the vicinity of the signal. If this is not the case, then the signal zeroes, exp(±fl~ +j *n), will
not , In general, lie on the same radlals as the signal poles.

~~~~~~~~~~~~~~~~~~~~~ 
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i~- ,  APPENDIX D. TREATMENT OF THE COEFFICIENT EQUATIONS FOR
NARROWBAND PROCESSES EMBEDDED IN BROADBAND NOISE

• In this Appendix , the coefficient Eqs. (5) and (6) will be analyzed for inputs consist-
ing of narrowband signal processes embedded in additive broadband noise. It will be as-
sumed, as in Section III , that the autocorrelation function of the input is given by Eq. ( 10),
the z-transform of the noise autocorrelation function is given by Eq. (1 1), and the zeroes of
S~~(z) are approximated by Eq. (13). The impulse response of the discrete LPF will be
expressed as follows:

w (k) = hs(k) + h no(k) k 0, 1 , . . .  , L I  , (D I)

where h5(k) is given by

h5(k) = 

~~~ ~ 
B~~ e~~ 

+ JU n k 
+ B~ e~~n(”

~~~’~ 
+jU ~ k 

, (D-2)

and h~0(k) is given by

- 

h~0(k) = 

i~~l I 
B~~ e h1m k 1

~
O m l(

+B °e UTh~~~ ’ l ~
) J O m k

N - M
+ 

I 
C~~ 6 ( k _ r + l ) + C ;

0 8(k+r _L)
) 

. (D-3)

The constants ~~~ B~~, and C~° can be determined from the coefficient Eqs. (5) and (6).
A general treatment of these equations is quite involved when there is appreciable coupling
between the different signal amplitudes , ~~~ However, when all of the signal bandwidths
are quite small and provided L is large enough , some useful approximations for the B~S can
be obtained. ln this Appendix , we will treat Eqs. (5) and (6) under two limiting ap-
proximations. First, we will consider the limit of large L such that

L ~ l/p~~ , m = 1 , . . .  , M~ (D-4a)

and
L) I/an , n = l i .. . , 2N . (D-4b)

Then , we will consider the limit of small signal bandwidths such that

(D-S)
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LIMIT OF LARGE L
As discussed in Section II , as L -. oo so that Eq. (D-4) is valid, all of the reflectio n

amplitudes~ B~~, B~~, and C~° approach zero. From Eq. (5) it is seen that in this limiting
case, the B~~ sat isfy

B~~ 
2N B~~n + 

m
a~ ~n an am j( Un Um )

l — e  m 1  I — e
m*n

M 0 B~°
+ 

i~~ l ~~~~~~~~~~~~~~~~~~~
N0-M0 -

+ 

r l  
~+ O a n (r_ I ) _ J U n (r_ l) 

= ~~~~~~~~~~

n 1 ,..., 2N , (D-6)

where in Eq. (D-6), an+N a~ (n = I , . .  . , N) . When the differences , Pn — an, are all very
small, then we can make the approximation:

I — e~~ ~~ — a~ ~ 1 n = I , . . .  , 2N . (D-7)

As seen from Eqs. (13) through ( 15) , Eq. (D-7) becomes valid eithe r in the limit of small
signal bandwidths or small SNR~. Also, provid ed the signals are all separated far enough
apa rt in frequency so that:

an — a~ .~~ I i  — e
a
~ — a m ~ ‘~n ”m~1 (D-8)

for n , m = I , . . . , 2 N (n *m )  ,

the n the coefficient matrix which multiplies the column vector with components B~~ in Eq.
(D-6) becomes approximately diagonal. Under this approximation , the coupling between
the B~~ in Eq. (D-6) vanishes and we have the following approximation:

B~~ ~ (Pn~~~n) f  
~~~~~~~~~~~~~~~

M0 B~
0

I~~l !_ e ~~
_
~~~~~~ n _ 8

~~
• - N0-M0

— ~~~~~

r 1

- i l l n =  I , . . .  , 2N . (D-9)
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We now ex amine the additio nal relat ions which the B~~ and C~~ must obey (from
Eq. ( 5 )  with L— ’ o°): -

M~ B~~
- - j ~~ - t?~~)m l  l — e

+ :!~~

0 

C~0 e~~ 
r i )  

-

+ 
B 

= ~~~~~~~~~~ (D- l O)an -13m -J(U n -w m )
m 1  ~-e

n = I , . . . , N0 .

Equation (D- l O) shows that provided the background noise is decorrelated, i.e.,

-a’ ~e n 
~ 0 , for all n I , . . .  , N0 , (D - II )

then the constants B~~ and C~° will be linearly rela ted to the amplitudes B~~. By substi-
tuting Eq. (D-9) into Eq. (D-l0) for the B~~ it is seen that the constantsB~~ and C~° are of
order ~Pn — an) for small values of (an — 

~~~ Therefore, if there is li tt ie signai decorrelation,
i.e.,

e
au1~ ~ I , for ail n I , . . .  , N , (D- l2)

and provided Eq. (D- i) holds, then from Eq. (D-9) it is seen that :

B~~ ~ (~3~ — a n)e ’~~ ~“n ’~ n = I , .  . . , 2N . (D-l3)

Equation (D-13) is the desired approximation for the B S in the limit of large L.

LIMIT OF SMALL SIGNAL BANDWI DTHS
As can be seen from Eq. (D-2), as a~ L -. 0, h5(k) is approximately given by

h5(k) 

~ t~~l ~~ 
.

0~~k~~L-I , (D-I4a)

where

An B~~+B~ (D 14b)
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~ I

and

= +s _ -s . -G~ Bn Bn 
(D 14c)

• As will be shown below , the Gn in Eq. (D-l4a) will approach zero as the an approach zero.
The method which is used in this section for analyzing Eqs. (5) and (6) consists of separat- —

ing the 2N + N0 equations in Eq. (5) and the 2N + N0 equations in Eq. (6) into 2N equa-
tions for the amplitudes, An, and 2N0 equations for the ampli tudes B~~ and C~°. As will
be seen, these two sets of equations will be coupled together in analogy with Eqs. (P-6) and —

(D- l O).

Using Eqs. (D-I4b) and (D-14c) in the coefficient Eqs. (5) and (6) ,  we can express
the equations for the B~S in terms of the An and Gn (in the limit as all of the an L -~~ O): t J -

+ ~ _j( ~~n _ w m )~~~m (2 _ a m~~
_

m am~~~
fh

m l l e
m*n

+~-A 
(2a n + a~~

L_ l))  1 G~ (2a~ — p 2 (L-l) )

2 n 
a~ — a~ 

2 
~~~~~

M0 B~° ~~~ 
-,4~ (L-l)

~~~~~~~~~ 

~e
an~~~~~~~~~

0
~~~ I ~~~~~~~~~~~~~~~ 

}
+ 

~~I 
~~~ e

(1
~
_
~ 

— iw~ (r— I ) 
= e n ~ 

+ Jw~ £~

n l , . . . , 2N (D-I5a)

and -

2N j (wn Um)L -

+ ~
- m I  I — c

S (2~~ +~~~ L+n) 
+‘G 

(w ~-~~~n)

• : - 

2 n 2 “ j3~ -a~ -

t in derIving Eq. (D-lS) we ume that ~~Lls smaIl1sa~~ ihat asp(t$,~L)~ I t~~L Also, the products
are neglec*ed ln compsrion wlth the ~rms~5(whl~ u.~~~O Ose~ q.(I5)) .
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M B+0e Mm U J O m~J U n L V _______________+e -an ~m -1 (w~ - 0m~m l  ~-e -

B~~ ePm~~ °m ”
+ 

I - ~~~~ 
IL~~ - j( Wn - O~~) j  - -

- 

N0-M 0 
C 0e

anT 3
~~~~~~ = 0 (D-I5b)

Notice that the Gm terms which appear in the summations in Eq. (D- l 5) are all multiplied -

by the am (which approach zero as am approaches zero). Notice also that the term ,

~ 
(2 a ~ -s~ (L-l ))  I

appears on the left hand sides of Eqs. (D-15a) and (D-l5b) . Transposing this term to the
right hand side of Eq. (Dl Sb), substituting the result into Eq. (D- 1 5a), and letting the
an -~ 0 (with the an approximated by Eq. (15)) results in the following limiting equations
for the An (which are independent of the Gn, an’ and as):

LSNRn/2+ I 
A + ~~ Am (  I ~ e J n ”m”~) - ~CA) n~ —

SNR n/2 n 
~~~l I — e~~

Un — Urn ) 
— e 

-

- m*n I

M0 
~~ ( I _ c  L -j  o~1) L) - 

. 

-
.

- 

~~ B _ P n _j (
~

) n 0 ’m)
m I  , —e

+ B~0 (e 
p~ (L- 1) 

~~~ 
_j (W n~8’m)L)

m

N0-M0
— I c ° e ~~~~~~ + ~;

O e n~~~~

n 1 , 2, . . . , 2N . (D-l6)
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I Additional equations for the B~~, C~°, and the A~ can be obtained from the 2N 0 equations
of Eqs. (5) and (6) that involve the noise poles. These equations are as follows (in the limit
asthe a —‘0):

M0 B~° B ° 
-p~~(L-l)

• m m e

a.1 -4~ 
-j( U~ -O~~)~~ a.1 + ~~~ -j(c4 - O~~)

m I  -e -e

+ 
A~~ , + 

N~-M0 
~+O e

a
~

(r l) iU ’n (r_ l)
r

m I  ~— e  r=l

L~~+JU~~~= e

n= 1 ,... ,N0 , (D- 17)

and

M0 B~° e 1~~
I
~ 

+j 9~~L B ° e~~ 
+jO ’m L

I -e~~~ 
_ p ’m _j (c4 _ O ’inY’

~ j -a’
n

+ I.L
~~~ 

-j ( c4—O ~~)

2N jUmL N0-M0
+ 

i~~~l I _ e J
~~~~~ ’m ’ 

~~I 
C;

0 e
an~~~

)(
~
)n h 

= 0 , (D- 1 8)

Note that Eqs. (D-l6) through (D-18) show that as the signal bandwidths , a~, ap- 
- 

-

proach zero, the An, B~~, and C~° all become independent of the an. Therefore , from Eq.
(D-I5b) it is seen that the term ,

~ Gn 
n n 

2 ~ Gn (SNR nan )~~~
2 

‘

a - an n

must approach a constant (independent of a~) as all of the a~ approach zero. Therefore , G~
approaches zero as an -, 0 and from Eq. (D-14) it is seen that h5 (k) is given approximately
by:

An . (D-I9)
n I

• It should be pointed out that Eqs. (D-l6) through (D-18) could also have been derived by
substituting Eqs. (Dl), (D-3), and (D- 19) into Eq. ( 1) and equating coefficients as discussed

- - - in Appendix B.
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As can be seen from the left hand side of Eq. (D-16), as the quantity (LSNR n/2+ 1)/
(SNRn/2) becomes large, the coefficient matrix which multiplies the column vector
with components An in Eq. (D- 16) becomes approximately diagonal. Also, provided the
background noise is decorrelated (D- l 1), then the amplit udes B~~ and C~0 will be linearly
related to the A~, as can be seen from Eqs. (D-17) and (D-l8). Therefore , in analogy with
the treatment of Eqs. (D-9) and (D-bO ) for large L, it is seen from Eqs. (D- 16) thro ugh
(D-18) that:

SNR~/2 JU A
A~ ~ + LSNR~/2 

e n = 1 ,. .. , 2N . (D-20)

Note that (LSNR~/2 + I )/(SNR~/2) becomes large either in the limit of large L or small
SNR~. Therefore , in either of these limits, Eq. (D-20) will provide a good approximation
for the A~.
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