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SUMMARY

The ability to make meaningful elastic moduli measurements ultrasonically is
reported for potential application to the nondestructive evaluation of aluminum
matrix composites. The materials were monitored for a change in elasticity as a
function of heat treatment that would affect the material's residual stress state.
We evaluate initial results obtained on two unidirectional (UD) systems: (1) con-
tinuous graphite (Gr) fiber reinforced Al, and (2) discontinuous SiC whisker rein-
forced Al. The requisite five elastic moduli Cj; for a UD system were obtained
by measuring bulk acoustic velocities, first in the as-fabricated material. The
engineering constants, e.g., longitudinal and transverse Young's moduli, were in
good agreement with available tensile test data. The samples were then subjected
to single cycle liquid nitrogen and elevated temperature excursions, and the elastic
moduli remeasured at room temperature. Results indicate a significant effect on
the residual stress state (specifically, a reduction in modulus) of Gr/Al, but no
effect on SiC/Al.
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PREFACE

The work reported here represents a portion of the research and development
carried out by the Materials Division of the Research and Technology Department
to evaluate the elastic properties of aluminum matrix composites. This work was
supported by the NAVSEA Metal Matrix Composites Block Program SF 54 594594. This
report summarizes ultrasonic test results and theoretical model calculations
obtained on both continuous and discontinuous fiber reinforced aluminum composites
in FY 78.




e R A ——

NSWC/WOL TR 78-159

- CONTENTS 1

Page
RNTRODUCTION, o oo oo ooinasve s a o osos sisiats ors s o siorsralais o8 6o sinie sistio s sisis sieisosigenioes 5

EXPERIMENTAL TECHNIOUE .. . . ... icoccnossoisiossssanminesssesiosocionasessssnse 6
BERPLEs UBEA. . . o. o iitrioiconiossesvsubonsisnabisies sl cissssssiisesiosssssaessss 6
UELEAROnEC BYEtai . . T e e s s N Tkl L s L B
Data ANBLYSLE APPTORCN . o iciaoiv i ve tis Nion s uiaoinsonovessinsssnessesanesnnseess B
Thermal Treatments Applied.......cccceveveescrcescocsosossocssescsanseseass 10

RBBULYNS : . oot oo oti Pikiiiares 60 e sid s iaboie Grolss st suaiar b o s i s e rwdasnl b a alidve i ev - O
Graphite/Aluminum CompPOSite.....ccoceereeeeecnceocncoaanennoanes T S T e L0
S1C/ALumInuUm COMPOBIER. o oo ccvvvvssioseansiononsiosspesissesssssssosssssseass 13

s e R R R
aha

CONCLUSIONS AND PLANS........cc0veveecesesocecocsnccssscsassssscsscncsssssss 15
ACKNOWLEDGEMENTS . . .. i .cccevcovsssoivesessoniosssososssossssnss Sies e s 18

“mcns.--------.o.........-...-.............-..-.--.-.............--.-.o 19

umtx...o-.-.-.-.......--.-...........o...-.............................. A-l

DIsnI'UTIou LIST.lot.oo.oo.o.ooo.o--o..ot...o.lto.c-uooo.n...o-ono--..nol.o I-l




A TR AU ) - b L S S —

NSWC/WOL TR 78-159

ey
1 st ik

ILLUSTRATIONS <

Figure Page |

1 Pictorial Illustration of Unidirectional (a) Continuous Fiber

Reinforced GR/Al Plate, and (b) Discontinuous Fiber

(Whisker) Reinforced SiC/Al Extruded Rod. The

Principal Fiber Direction is 3, with the Plane of

ISOCTORY TTANBVEEBL €O TE . . L. ociors danaloionseaioinsesiedionssseensses 6 i ]
2 SEM Photographs of 30 V/o GR/Al Plate Sliced Transverse

to the Fiber Direction (3) at Two Magnifications:

(a) 30X Illustrating the Sample Plate Boundaries and L

Random Fiber Bundle Arrangements; and (b) 100X

Illustrating the Al Infiltrated Array of Fibers

A0 BRel BUNALE ... . vio e, avnsnsnolsiseisasissessicnsissinioninsaesieonenss 7
3 Broadband Ultrasonic System Used to Measure Sound

Velocity By the Time-of-Flight Pulse-Echo Overlap

TEACKIIOUSE T - < i viais aiie nisio aolv ain oo sTalbisie sio vie s sieisie sis oo aine sosas s s 8

, | a

B st I

f Table

I Equations Relating the Measured Ultrasonic Velocities Vn to
the Elastic Moduli c s+ for a UD Composite with Fibers in
the‘g D1tectxon................................................ 9
] II Equations Relating Engineering Hodulx to the Ultrasonically
Determined Elastic Moduli Cij : for a UD Composite with
Fibers in the 2,Dxrectxon...................................... 11

II1 Sample Data Set for As-Fabricated 30 V/o Th 50/201 Al with ]
a Density of 2.44 gm/cm3. .. ..coveriinennnnnenenernennosnnnnenes 12
1v Ultrasonic Moduli (in GPa) of 30 V/o Th 50/201 Al Before

and After Two Separate Heat Treatments, Including
Theoretical Model Predictions.....c.cceeeeeeeeoeeooonscssncscanes 14
v Ultrasonic Moduli (in GPa) of 27 V/o SiC/Al Before and
After Extrusion, Including Theoretical Model
) gy o ) DR R S R e el R B R St 16
VI Ultrasonic Moduli (in GPa) of 27 V/o SiC/Al Extruded Rod
Before and After Heat Treatment at 5000C for 20

BEBBERD . ¢ o o v hivio s 8350 b BB TR AN o b s T e e s T Sainlee ve wile 17

R e




NSWC/WOL TR 78-159

The initial results of an ulttasonic sgtudy tO nondestructively characterize
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EXPERIMENTAL TECHNIQUE

Samples Used

Figure 1 illustrates the two composite systems investigated. The Gr/Al sample
was available in single-ply plate form 2.6 mm thick.? The plate was formed from
a multi-layer of precursor Gr/Al wires diffusion bonded with 0.15 mm of 2024 Al
on both surfaces. The precursor wires, with a nominal diameter of 1 mm, were formed
by liquid metal infiltration of graphite fiber bundles. The measured plate density
was 2.44 gm/cm3, indicating a net 30 V/o graphite fiber reinforcement. Parallel
face samples approximately 3.0 mm in length were cut transverse to and at 45° rela-
tive to the fiber direction. Figure 2 presents 30X and 100X magnifications normal
to the transverse cut, illustrating the random fiber-aluminum matrix geometry.

The SiC/Al sample was available in a 50 mm long by 40 mm diameter cast
cylindrical billet with a 27 V/o reinforcement.© The SiC whisker dimensions are
only approximately known: about 85% are particulate, and the remaining 15% have a
nominal aspect ratio (%/d) of 30, where d is v0.5 um, after billet fabrication.

The sample section taken from the 10:1 extruded bar was approximately 20 mm in length
and 10 mm diameter. The extrusion process was expected to align the whiskers by
shear viscous flow to produce a UD composite. From this extruded section, a 3.0 mm

thick parallel face cut at 45° to the extrusion direction was taken for three of
the velocity measurements.

lw

(a) (b)

Figure 1. Pictorial Illustration of Unidirectional (a) Continuous Fiber Reinforced
GR/Al Plate, and (b) Discontinuous Fiber (Whisker) Reinforced SiC/Al Extruded Rod.
The Principal Fiber Direction is 3, with the Plane of Isotropy Transverse to it.

'tlnte material fabricated by DWA Composite Specialities, Inc., Chatsworth, CA.
Scanning electron micrograph taken by M. K. Norr, NSWC, Silver Spring, Maryland.
CBillet fabricated by A. P. Divecha, NSWC, Silver Spring, Maryland.
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(a)

(b)

Figure 2. SEM Photographs of 30 V/o GR/Al Plate Sliced Transverse to the Fiber
Direction (3) at Two Magnifications: (a) 30X Illustrating the Sample Plate
Boundaries and Random Fiber Bundle Arrangements; and (b) 100X Illustrating
the Al Infiltrated Array of Fibers in Each Bundle.
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Ultrasonic System

Bulk acoustic velocity measurements of both longitudinal and shear waves were
made in specific directions relative to the composite fibers. All measurements
were made at room temperature by direct contact of transducer to sample or via a
delay rod.

The experimental system used is shown in Figure 3. The sharp spike voltage
excitation of a heavily damped PZT ceramic transducer for longitudinal waves, and
of a LiNbO3 single crystal for shear waves, produced broadband acoustic pulses
with a nominal 10 MHz center frequency. Time of flight velocity measurements were
made by pulse-echo overlap using the time delay of a 7000 series Tektronix oscil-
loscope. The digital readout time display provided a resolution of 1 ns for a
precision v'1:1000, with a like precision for the velocity. Minimum acoustic path
lengths, defined by the sample dimensions, were 6 mm round trip measured to a
resolution of 4 um or v1:1000.

Data Analysis Approach

By means of the stress-strain constitutive relationships for orthotropic media,
the elastic constants Cij were calculated knowing the material density p and the
direction of acoustic propagation k relative to the fiber direction 3. Table I
summarizes these relationships for a UD system, one that is transversely isotropic
or specially orthotropic. There are five independent Cij as originally shown by
Mason, 1l Musgravel? and others, but eight independent measurements are conveniently
made for three directions of wave propagation relative to the fibers:
k||l 3, k13, and x (k, 3) = 450. The additional three measurements serve to
check the other measurements.

PULSER/|__lvAR. ATTEN

RECEIVER
me.se ouT
TRIGGER
& Trour
RECEIVED
ACOUSTIC
PULSE TRANSDUCER
RAtER
DELAY ROD
SCOPE
GENERATOR m
SAMPLE
SIGNAL IN| EVeL
TRIGGER IN

Figure 3. Broadband Ultrasonic System Used to Measure Sound Velocity By the
Time-of-Flight Pulse-Echo Overlap Techmique.
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With the above-mentioned time resolution in the velocity measurement, the

| d precision of the calculated Cii is v%4: 1000. Provided all controllable variables
' such as acoustic frequency and sample dimensions are kept constant, we can then

t monitor changes in Cii as a function of thermal treatment to better than 0.5%.

The absolute uncertainty of this technique is estimated to be less than 1% for the

Cii. For C13, the number of variables involved in Equations 6 and 7 indicate

a somewhat reduced precision. In fact, we have experienced the accuracy of 013

to be very much reduced, as have other investigators.-?’

Finally, to relate the composite bulk elastic properties so obtained to
engineering quantities such as Young's modulus, we refer to Table II. The Emn, Gmn,
and v]3 are, respectively, Young's moduli, shear moduli and Poisson's ratio,
where the second subscript refers to the stress direction. The specific modulus
type and property direction are given in the last column of Table II. Similar
relationships exist for the other two Poisson's ratios pertinent to a UD composite.
The precision of the longitudinal Young's modulus, E33, a principal quantity of
interest for materials design, is estimated to be better than 2% with the above-
described measurement technique.

Thermal Treatments Applied

Two sets of Gr/Al samples were subjected to separate thermal treatments. One
set was subjected to a two-part cycle: first quenched in liquid nitrogen (LN7),
then heated at 260°C in a vacuum furnace for twenty minutes. This sample set
was observed to have slightly expanded dimensions (<0.5%) after treatment. The
second set was simply heated at 500°C under vacuum for twenty minutes. The LN2
quenching step was applied to relieve the residual stréss state of an as-fabricated
plate material. The elevated temperature excursions simulate excursions the plate
material experiences in net shape hardware fabrication and/or in service.

Only the 45° cut from the SiC/Al sample set was exposed to thermal treatment.
f It was heated at 500°C in the vacuum furnace for twenty minutes as was the Gr/Al
| sample set.

After thermal treatment, the elastic moduli of all specimens were remeasured
ultrasonically at room temperature.

RESULTS

Gr/Al Composite

g Table III provides a sample set of data for the 25 V/o Gr/Al specimens, together
with the calculated Cij moduli. Additional C44 and C)3 values (C44-2, C)3-2,

etc.) are calculated from the additionally measured velocities V6, V7 and V8. A
computer programd has been written to calculate the Cij and the related engineering

‘ moduli for an arbitrary angle of the fibers relative to the acoustic propagation

, k. Table II abo!eagivel these relationships (Equations 6, 7, 8) for the special

’ case of 0 = 45°.% In Table III, note that nine Cij vglues have been calculated

pEa from eight velocity measurements. The last value, C13 °, was obtained by

Ba | subtracting Equations 6 and 7 to solve for C]3.

dProgra- written by A. L. Bertram, NSWC, Silver Spring, Maryland.

10




suewId 9sSI9ASURI]

UT POINSVON UTRIIS
‘sx9qTd O3 TeITeIRd
S$8913S 0TIV 8,U0SSTOd

$I13qTJd 03 xernotpuadaed
duerd-ur :axeays

829qTd 03 TIdTTRIRg
‘sueTd-ul :axeadys

sx9qty 03
9sxaasuex] :3,b6unox

NSWC/WOL TR 78-159

8I19qId O3 ToTTRIRd
‘-buor :8,bunox

819qTd Y3ITA 9371soduwd an © 103 ﬁ«o TINPOW
A1teoyuosexlTn 9yl 03 TINPOW bButaeaurbugmg buraeray suorjenbg

b et L

S3I9QTJd O3 SATIRTSY °ITQ ¥

(09, _ 115) ,

T

99

144

‘ 8T, _ €85 TT,
Tﬂo 5 Qou = Suvmno._ 99, ,

e B TG -
€T,
z

(FT5) uoraouna

UOTIONITA § Oy U¥
OTISTTI pauTwINISq

ndﬁf

i1,

1T

€€

surnpow -bug

‘11 9Iqel

€1

(48

14

ot

G A




B L T

G ey

e S ———————————— —— N .

*S¥1°0 Aq ego # Ardratnu
‘(TsSW 10) 718d g0T 30 S3tun ug 1D ure3qo og .N.:z 0T =B T

69°%y = = g¢*1d LY 9t gAY
° - ”H '} . 4 .
§'6T = gD L3 ‘'t 0S¥°z = 8A
A €1
n 9°sz = 1-t'0 9 3 ‘¢ 'z ‘1 0L0°E = LA
& :
& sot = 2% S 99T°9 = 9A
2 by
m 8°8T =¢€-""0 83y I08 %E¢ €L0°Z = GA -
w -
= 6°8T =z-""o y €8L°T = PA %
68T = T-""> € €8L°Z = €A
g6 = Ll z 0v0°'y = zZA B
*Eht = 55 1 , Z¥9's = 1A A
(®dd9) 1 e I aTqel woxy (s#/umi) A3 TOOTSA &
p@sn suotrjenbd . am
. wo/ub yy*z 30 X3rsusq i
® YITA TV 102/0S UL O/A 0f PeILSTIqed-EY 103 395 e3eq srdwes *III oTqeL :
R e LA R SR TING S e - e

—




B

NSWC/WOL TR 78-159

Some of the Cij calculations deserve special attention, in particular the C]3
and C44 values. The large variation of C]3, even being negative, is not under-
stood at this time but has been reported by other investigators.i» Since the
V7 measurement yielded the most meaningful and consistent results from sample to
sample for both composite systems, C13 “ was used throughout to calculate Eij},

E33 and V)3 according to the relationships in Table II. Concerning the C44

values, although the particular data set in Table III shows excellent agreement

for all three measurements, there was as much as a 9% difference observed in another
sample between 044’1 and C44'2. This is well in excess of the experimental
precision of 0.5%. This may possibly be attributed to geometric dispersion sigcs
the acoustic wave length at 10 MHz is comparable to the average fiber spacing.”’

And these two shear measurements are made in one case with k parallel to the fibers,
and the other with k perpendicular to the fibers.

Table IV summarizes the effects of two separate heat treatments on two sets
of Gr/Al samples and compares the ultrasonic (UT) values with theoretical model
predictions for as-fabricated plate before heat treatment. The UT as-fabricated
values were calculated according to Equations 9-13 using the raw data of Table III.
Model predictions assumed perfect bonding of the graphite fibers to the Al
matrix,13,14 in addition to static stress conditions. (See Appendix for the rele-
vant formulae of the variational bounds model by Z. Hashin.) 1In spite of this, the
second and third columns of Table IV show very good agreement between experiment
and theory, except for Poisson's ratio v)3. At this point, we only note that
V13 is proportional to C]3, a quantity which itself presents interpretation diffi-
culties. Finally, we note that E33 modulus was in good agreement with the range of
values (131 to 165 GPa) obtained on a series of tensile specimens taken from the
same sample plate. In addition, the ultrasonic E]] and G)3 values were in good
agreement with available static test results obtained on similar plate
material.®

A comparison of the last two columns of Table IV with the first column shows
a measureable reduction in Young's moduli, in particular E33, after thermal treat-
ment. The changes in the shear moduli, however, are negligible. Lastly, although
the experimental precision is sufficient to detect a real change in Poisson's ratio,
the strong dependence cn C]3 (Equation 13) clouds any significance that might
be attached to its apparent increase.

Possible physical mechanisms for the reduction in E33 can only be conjectured
at the present time. The possible formation of A14C3 at the Gr/Al interface
is unreasofg?}; for such short duration heat treatments (twenty minutes) at 260°C
and 500°C. It is more plausible to consider the effects on the residual
stress state oflghe material, although reductions on the order of the 102 measured
are unexpected. Future heat treatments will help to elucidate the mechanism.

8iC/Al Composite

Table V compares ultrasonic moduli of 27 V/o S8iC/Al before and after extrusion,
including theoretical model predictions for the (presumed) unidirectional extruded
rod. The reinforced cast billet values in the first column represent a 70% increase
in stiffness over the isotropic Al matrix values of 70 and 27 GPa, respectively, ;
for E and G. The last two columns show good agreement between the ultrasonic values

€Tensile data provided by NETCO, Long Beach, California.
13 ;
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and theoretical model predictions. The difficulties experienced in the calculation
for C)13 for Gr/Al were not encountered with the SiC/Al data. The discontinuous
fiber reinforcement modf; sasumes 100% alignment of the elongated whiskers in the
direction of extrusion."”?? In addition, equal longitudinal and transverse
Young's moduli for whisker elasticity, estimated at 480 GPa, is assumed. More
recent evidence that the value may be closer to 700 GPa might be cause for ultra-
sonically measuring a modulus value E33 larger even than that predicted by a model
assuming perfect whisker-matrix bonding.

The high percentage of particulate SiC with 2/d vl is reflected by the high
elastic isotropy (nearly equal shear moduli Gj2 and G)3) measured. The available
tensile data on this sample, a three-test average value of 117 GPa for E3g, showed
reasonable agreement with the ultrasonically determined value of 132 GPa.

Table VI presents data on SiC/Al before and after a twenty-minute heat treatment
at 500°C. The calculated engineering moduli are bracketed to indicate that the
before-heat treatment data was necessarily used in part for these calculations.

Since only the 45° cut (to the extrusion direction) sample was available for heat
treatment, only the V6, V7 and V8 measurements could be made on the heat treated
specimen. However, the consistency of the three measurements, indicating a constant
or slightly increasing stiffness, lends confidence to the bracketed values. In
addition, data on several other heat treated specimens of extruded SiC/Al has con-
sistently demonstrated a slight increase in modulus value with elevated temperature
excursions. Both a more comparable thermal coefficient of expansion between SiC

and Al, and the short discontinuous fiber nature of SiC reinforcement, corroborates
the lesser heat treatment effects observed on the elasticity of SiC/Al than on Gr/Al.

CONCLUSIONS AND PLANS

The most significant result is the effect of thermal treatment on the two metal
matrix composites' elasticity: a measurable reduction in stiffness for Gr/Al but
no reduction for 8iC/Al. Secondly, the good agreement of the ultrasonic values
with machine tensile test data and model predictions demonstrates that the ultra-
sonic technique can be used to meaningfully characterize the material moduli.

An unresolved difficulty is the inconsistency of the C)3 calculations from
the 45° velocity measurements for Gr/Al. This principally reflects itself in
questionable values for the Poisson's ratio which are anomalously large in some
cases. The. small increase upon extrusion in the longitudinal modulus E33 for
8iC/Al indicates that the use of better quality reinforcement whiskers should
improve that material's already attractive properties.

Future investigations will be first to examine the effects of repeated heat
treatments on the material's elasticity. Secondly, multi-ply Gr/Al laminates stacked
at specific fiber angles (to improve the transverse properties) will be studied.
Finally, some long-range goals for the program include making a reliable nondestruc-
tive estimate of Young's modulus for a UD composite by means of a simple longitudinal
velocity measurement, and to relate the material's strength to ultrasonic parameters.

fE?ncilc data provided by C. R. Crowe, NSWC, Silver Spring, Hnrylan&.
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Table V. Ultrasonic Moduli (in GPa) of 27 V/o
sic/aAl Before and After Extrusion,
Including Theoretical Model Predictions

Eng.
Modulus CAST BILLET EXTRUDED ROD
Theor.
uT uT Modeld
, 44 116. 132. 124,
E)y - 116. 117.
G13 44.8 44.8 45.5
W13 0.29 0.29 0.30

| ‘Discontingguo fiber reinforcement model by Halpin
and Tsai.
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3 Table VI. Ultrasonic Moduli (in GPa) of 27 V/o
sic/Al Extruded Rod Bgfore and After
Heat Treatment at 500 C for 20 minutes

Eng. §
Modulus BEFORE AFTER g
| i
a | *
Ej, 132, [134] 1
Eiq 11e. [117.] 1
Gy3 44.8 [44.8]
Gyo 43.7 [43.7]
\)13 0.29 [0.28]

8 Brackets [ ] indicate values calculated‘ using BEFORE
heat treatment data in part.
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Appendix

Following are the formulae used to obtain the theoretical model predictions
by Hashin reported in Table IV for as-fabricated Gr/Al plate. The effective elastic
moduli for a unidirectional continuous fiber composite consisting of transversely
isotropic fibers and matrix are indicated by stars: Ex, E}, etc.

The particular relationships peculiar to a Gr/Al composite are EX and GX given
below in equations (A-2) and (A-4). These relationships represent the lower bound
solutions of the variational bounds method based on the composite cylinder assem-
blage model.l4 These results incorporate the boundary condition presented by
a matrix which has greater transverse moduli than the fiber.

In all the equations, on the right hand side the suffix 1 denotes matrix and
2 denotes fibers; and A denotes the axial or 3 direction, and T denotes the trans-
verge direction. The bulk modulus is k, and the respective volume fractions of
matrix and fiber are v; and v,. Equations (A-2) and (A-4) are for the case that

1

> G.r2 and ETl > ETZ'

2
4(vA2 - vAl) Vv,

E,, SEX=E, v. + E, v, + (A-1)

33 A Al'l A2 2 vllk2 + v2/k1 + I/GTl ]

4iHGE X

11 ® B T W@ o :

G,,v, + G,,(1 + v,) v ?

A1Vl A2 2 2

G,, S Gk =g : =G,, + (A-3)

13 A CAl FAz(l +Vy) + Gyovy Al T : vy 5

: Caz - Cu1 264
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"

| (Vg = Vo) (/i) = 1/k))v ]

172
‘ Via SVE =y v +V., v, + (A-5) ]
L 13 A VAl'l A2"2 v Tk, + v, Tk + 17?:Tl _
where: J
E,., E g 1
k, = A1 ;12 - (A-6)
2 EAZ (1 v,rz) -4 Er, Vas : ]
Ya
k* = k) + = (A-7)
1 1
+ S
Ky ey W AN i
bioroy? *
m* = ] + -F-— (A-8) 1
A
a= -rT-Y-B; (A-9)
Y + 8,
0 = s (A-10)
G.
T2 o
Y. (A-11)
N

81 - m-‘-r— (A-12)
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