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Johns Hopkins Rd., Laurel, Md. 20810

A lecture presented at Institut de Recherche d'Informatique et d'Automatique
in Rocquencourt, France, on May 11, 1978. This lecture is included in the
publication Seminaires IRIA Analyse et Contr8le de Systémes - 1978.

1. Introduction

The need for the reformulation of hydrodynamics presented here arose in con-
nection with the study of the hydrodynamic free surface problem. As the problem
is conventionally formulated, one looks for a solution (u(x,t),P(x,t),G{(t)) of
the initial value problem for the equations

1 -
u, *u - Vu= - % VP-gk , xe@(t), 0<t<T, (1.1a)

Veu=0 , xx@(),0<tc<r, (1.1b)

where u is the velocity field and P is the pressure. is the density of

P
0
water, g is the gravitational constant, and k is a unit vector in the z-direction.

The initial conditions for (l1.1) are
u(x,0) = u,, (1.2a)
A(0) 'Qo' (1.2b)

Boundary conditions are

P+ - Pp8Z as z+ - (1.3a)
u'n=V .n on 36%.(:) R (1,3b)
Pe=0on 3 .(t) , (1.3¢)

Separata copies of this paper are being sent to addresses on the distribution
1list for ONR Task No. NR 334-003.




Ven=u-+n on aﬁf(t). (1.34d)

where

@~ W VA, , 2 NQ -0 (1.4)

V . n is the outward normal velocity of the flow region 6{(:), and V8 «n is
prescribed on BGL(t). aqf is called the "free boundary". (For a more detailed
discussion of the asymptotic conditions (1.3a), see chapter II of the report by
Rogers (Ref. 6).)

For classical solutions of the differential equations (1.1), the velocity
field u(x,t) will possess derivatives with respect to x and t. When an initially
differentiable velocity field Yy evolves into a field u(x,t) which is no longer
differentiable, it becomes necessary to re-interpret the problem (1.1) - (1.4)
in a suitably generalized manner. Such, in fact, is the case when a wave spills
over and falls back on the surface. At the moment of impact with the surface,
the velocity field at the point of impact is discontinuous.

Pursuing further the problem of a wave spilling over, or in general of
the collision of two incompressible fluids with free surfaces, we may consider
the idealized problem shown in Figure 1. Here we imagine that we have a cylind-
er in a region of space where there is no gravity, and that this cylinder con-
tains two equal masses of liquid which are moving without friction with equal
and opposite velocities along the axis. The free surface of each liquid mass
consists of two components orthogonal to the cylinder'uxis. At the moment of
collision we expect the condition (1.1b) on the velocity to be violated. In-
stead, if we denote distance along the cylinder axis by z, set the origin in the
plane of collision, and denote the speed of each 1liquid mass before collision by

U, we get at the moment of collision
Veus=-206(2) . (1.5)

Thus this example indicates that we will need to re-evaluate the condition (1.1b)
in expressing the laws of hydrodynamics in a form suitable for treatment of the
general free boundary problem.

A different sort of problem arises in connection with the delineation of
the free boundary. When equations (1.1) - (1.4) have a classical solution, one

finds from the requirement of consistency between (l.la) and (1.1b) that
du, Odu
i

AP--QOZ-&;-T“:' (1-6)

The need for consistency between (l.la) and (1.3b) leads to a Neumann condition
on the pressure at GQ. . This, the asymptotic condition (1.3a), and the free
surface condition (1.3c) combine with (1.6) to determine the pressure throughout
Gi. With P determined, (1.la) can be solved for u, and (1.3d) then serves to
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determine the time evolution of Gi(t). In the case when 3@L = @, we find that
the problem (1.1) - (1.4) is invariant under the transformation

x' =ox, t' = a;’t (1.7)
for any constant a > 0. What this means is, for example, that if a flow start-
ing from rest with a particular initial surface deformation results in the fall-
ing over and splashing down of a wave in time TO' then the problem with similar
initial conditions, except that the surface deformation is scaled relative to
that in the first problem by a factor a < 1, results in the falling over and
splashing down of a wave in time akTo. Accordingly, we may generally expect
that, for any flow, small perturbations on the flow will have the property that
waves on sufficiently small scales will be continually falling over, and that
the topology of such perturbed flows may not even be determinate. In the case
of the breaking of a single wave, but even more so in this case of multiple
breaking, the determination of the evolution of the free surface through an
equation like (1.3d) becomes ambiguous, For, if we regard (1.3d) as an ordinary
differential equation for the motion of a fluid element on the free surface,
such an equation does not have a unique solution when the velocity field u is
discontinuous at the free surface. In addition, it is open to question whether
the portion of the free boundary contained in any unit ball will have bounded
measure, or whether the points on the free boundary will be regular points for
the Poisson equation (1.6). If they are not regular points, the meaning of the
condition (1.3c) will need re-examination.

2. Role of Conservation Laws

Experience with other free boundary problems has shown that the equation
which drives the motion of the free surface 1s often merely an expression of a
fundamental conservation law. For example, in the Stefan problem, conservation
of energy is paramount (Ref. 1) and in some model hyperbalic problems, the shock
conditions are an expression of other conservation laws (Ref. 7). Recognition
of this fact has made it possible to devise topology-independent algorithms to
solve such free boundary problems. The use of such methods is especially de-
sirable in the present problem where, as we have indicated, the surface may be-
come so complicated that it may become impossible to follow its motion, not only
in practice, but also in theory.

The question of what conservation laws are appropriate in order that our
mathematical model adequately represent a physical situation is, of course, a
problem of physics. In our relatively simple situation, the answer seems rather
clear. The best-known conservation laws of Newtonian physics are those of mass,
momentum, and energy. For the classical flow of an inviscid liquid one may de-
rive energy conservation from the conservation laws for mass and momentum and

¥ e kB




o Rl Rl T T SRR SN,
- g » o8 U T Nt o v
- B e !

whh -

generally energy conservation plays a subsidiary role, being derivable from the
equations of motion in reversible physical situations and requiring reformula-

ﬁiﬁ»mzé‘;gﬁ

and momentum conservation over energy conservation is assumed, for example, in

=

the derivation of the jump conditions for solutions of the nonlinear shallow
water equations (Ref. 12)., The energy which is lost is assumed somehow dissi-
pated in other, irreversible processes, or in turbulence. This relation of
energy loss to irreversibility is a natural complement to the connection of
energy conservation with temporal homogeneity in Hamiltonian mechanics. (In
dynamical systems which are richer in degrees of freedom than ours, the burden
of irreversibility is shifted from the energy to the entropy.)

Regarding the conservation laws, one notes that (1.la) is a statement of
conservation of momentum (in the case g = 0). For a fluid whose elements do not
undergo a density change as they move and whose velocity is uniformly differen-
tiable from one point to another, so that the trajectories of different elements
remain distinct, (1.1b) is a statement of mass conservation. When the density
varies discontinuously in space, as it does at the water surface, the governing
equation for the free surface, (1.3d), is also an expression of mass conserva-
tion. Thus, it would appear that at least one of the problems referred to above,
how the free surface evolves in time, may be resolved by writing a law of mass
conservation. When the density p and velocity u are differentiable, this takes
the form '

pt + V.(pu) = 0 ; (2.1)

!
tion in irreversible situations. In hydrodynamic theory the precedence of mass J
As we have noted, classically one may think of (1.1b) as an "equation of
state" in terms of which the pressure is determined. In the classical picture
the eguation of state is a constraint, and in the process of satisfying this
constraint the momentum is altered by the term ~VP. We go one step further, and
suggest thaﬁ in the absence of a constraint the pressure vanishes, that is, the
pressure arises only when the constraint cannot be satisfied without it. 1In
accordance with the kinetic theory interpretation of pressure, we may identify
the pressure with the transfer of momentum across the surface of a fluid element J
in the direction of its normal brought about by the action of the constraint. :
The boundary condition (1.3c) suggests that at the free boundary the constraint
is automatically satisfied.
Let us inquire further what the nature of the constraint should be for
| the generalized flows of interest to us. To this end, we reconsider the situa-
| tion depicted in Figure 1. We make two observations: First, the dynamics of
the system should in no way be affected by the way we extend the velocity field
( to the region where p = 0 -- it is momentum and not velocity which is dynamically
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important. Second, there is no problem with a velocity distribution whose di-
vergence approaches (1.5) at the moment of collision. The fundamental fact re-
garding the collision that we want to maintain is that the two bodies of fluid
should not enter each other. That is, the fluid density should not exceed po.

We write this as a one-sided constraint
P < 0pe (2.2)

We will see that (2.2) is the appropriate generalization of the classical con-
straint (1.1b) and also of the boundary condition (1.3c). Its one-sided nature
reminds us of variational inequalities.
3. Algorithmic Description of Hydrodynamics

One of our governing equations is the conservation of mass, (2.1). 1In
accordance with the observations of the last section, in the absence of the con-

straint we will have the equations of momentum "conservation':

(ou), + V- (ouw) = - pg k (3.1)

Equations (3.1) and (2.1) form a set of hyperbolic conservation laws. For the
actual hydrodynamic flow, we will solve them subject to the constraint (2.2).

0f course (2.1), (3.1), and (2.2) are generally inconsistent, and we have
to make clear what we mean by "solving" (2.1) and (3.1) subject to (2.2). We
will do this by giving an algorithm for approximating the solution of the evo-
lutionary problem in which we start with initial data p(0), u(0) and try to find
p(t), u(t) for t > 0. Our algorithm will be dependent on a parameter T which
we call the time step, and will generate from a pair of quantities p, pu, with p
satisfying (2.2), another pair of quantities p, pu, with p satisfying (2.2).
We denote the result of this operation symbolically as

(p, pu) = (1) (p, PU) . (3.2)
When we speak of "solution' of the problem, we mean that for t > 0 the operators

E &))" + s (3.3)
as n + o, (3.3) is to be understood to hold in an appropriate function space.
More will be said about this in our next lecture (Ref. 9). However, it be-
hooves us to point out that we have not yet proven the crucial step (3.3), and
thus we cannot speak of a "solution'" of the problem in any rigorous mathematical
sense. In this lecture we content ourselves with an indication that, when the
flow quantities have sufficient regularity in space and time, our algorithm re-
duces to an approximate algorithm for solving the Euler equations, which may be
expected to converge to the actual solution as T + 0, under the same presupposi-
tions regarding regularity. The next lecture will focus on the sorts of
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solutions we expect to emerge from the analysis of convergence, and the sense in
which the inviscid hydrodynamic initial value problem may generally be regarded
as well-posed. But the problems of convergence and regularity of the flows con-
verged to are ongoing problems, presently uncompleted.

Our algorithm "solves" (2.1) and (3.1) subject to (2.2) in the following
sense: The hyperbolic conservation laws (2.1) and (3.1) are "solved" for a time
interval T. Then the densities of mass and momentum are adjusted to satisfy
(2.2), in a manner consistent with global conservation of mass and momentum.
When we say that incompressible flows may be considered to evolve through a
system of conservation laws in conjunction with a constraint, our statement is
premised on the conjectured, but as yet unproven, existence of the limit of the
algorithm as T + 0. There is no doubt a certain lack of elegance in our
approach through a family of solutions dependent on a parameter T, but it is
perhaps no worse than the situation which arises in making precise the solution
of an initial value problem for an ordinary differential equation.

In what follows, we will attempt a reasonably complete description of the
algorithm which is to render an approximation to the flow. However, what we
present is by no means our first approach to the problem, and along the way
mathematical simplifications have arisen which have removed the algorithm some-
what from its pristine physical orientation. For a more complete description of
the physical considerations which led us to make some of our initial choices, we
refer the reader to a more complete write-up (Ref. 10). What we present here is
a mathematical object, which will rise to the status of theory or fall into
disrepute according to its internal consistency. No doubt later versions will
differ in detail, but we suspect that the main elements will remain intact.

To "solve" the conservation laws (2.1) and (3.1) for a time T, we intro-
duce a distribution function F(x,v,t) satisfying the collisionless Boltzmann

equation
oF
P dn,e VF - g 3;; =0 ,0%<¢t<1, (3.4a)
and initial conditions
F(x,v,0) = p(x) 6 (v-u(x)) . (3.4b)

It is easiest to give boundary conditions for F in terms of the characteristics,

whose equations, away from boundaries, are

-
-:—:.-v. —:—:—--sk (3-5)

These are just the equations of classical particles moving under the influence
of gravity without collisions. At a rigid boundary, we require that the equa-
tions of the characteristics describe the trajectories of particles reflecting
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specularly from the boundary. Thus, if a characteristic strikes a rigid boundary
at time t. and the velocity of the rigid boundary is V8 at the point and time
where it is struck by the characteristic, we set

x(e) = x(t) (3.62)
v(t) = ax (v(t)xn) + (V. n - v(t) - m)n, (3.6b)

where n is the unit outward normal to the boundary at the point and time referr-
ed to. ;
Finally, we determine approximate solutions of (2.1) and (3.1) at time T

through
P = [E(x,v,Ddv | (3.7a)
By = SVF(x,v,T)dv . (3.7b)

In physical language, equations (3.7) state that all fluid elements at the

same location after the passage of time T have collided inelastically. We point
out that this assumption that collisions are inelastic is not mandatory, but it
seems like a simple and reasonable first approximation for the problems that in-
terest us. Other assumptions are possible. The allowance of inelastic colli-
sions permits the decay of energy, and an element of irreversibility enters into
our algorithm, although the Euler equations themselves are formally reversible‘
in time. We note that some additional assumptions regarding the nature of colli-
sions have been needed to make the evolutionary problem determinate in the gen-
eral case, and our treatment of the conservation laws has provided a set of such
assumptions. For example, in the situation depicted in Figure 1, a number of
possibilities after collision will be consistent with the requirements we have
made heretofore. One possibility is for the two liquid masses to collide and
them come to rest instantaneously, with all energy lost inelastically at the
moment of impact. Another possibility is for them to collide totally elastically,
bouncing off one another, with the flow totally reversible. There are also inter-
mediate possibilities, with a loss of speed for all the fluid being one, and
with some of the fluid being brought to rest and the remainder rebounding elas-
tically being another. Although we are getting somewhat out of sequence, since
we have not described how the algorithm treats the constraint condition (2.2)
yet, we note that, according to the assumption of inelastic collisions made in
(3.7), in the limit as T + 0 for the case shown in Figure 1, we will get the
first poulibiliiy listed above.

Classical flows in which the velocity is Lipschitz continuous in space un-
iformly in time will not permit the collision of fluid elements for T sufficiently

| R i e A e T
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small, and thus this element of irreversibility will not enter. We will refer

to the conservation laws (2.1) and (3.1) with g = 0 as the higher-dimensional
form of Burgers' equation. We have noted elsewhere (Ref. 7) how in one dimension
the proper solution of (2.1) and (3.1), as outlined in (3.4) and (3.7), differs
from the solution of the formally equivalent conservation law

()
ut + 5 L =0 .

We will say nothing in this lecture about the convergence as T + 0 of the solu-
tion of the conservation laws outlined in (3.4) and (3.7). The subject will be
raised in the next lecture.

Assuming that we have adequately solved (2.1) and (3.1), let us see how
we satisfy the comstraint (2.2). If 3‘5 po, the constraint has no effect, and
we set p = 3, pu = Bﬁ. If 3 > po somewhere, in violation of (2.2), we have to
realize that during the time T while mass was being convected according to (3.4),
(3.5), (3.6), and (3.7a), other processes were also taking place. It may help
to observe that 3 is a linear functional of p, and that we may envisage 3 as
the accumulation of independently moving mass densities, or "streams". The
other processes that took place in the time T were of the following sort:
Whenever there was an accumulation of mass yielding a density > po. the particles
in the region of excess density were considered to be undergoing rapid elastic
collisions which resulted in their spreading out from the region of density ex-
cess in an isotropic manner. As new density excesses arrived at a point from
additional streams, they also, in addit..: to the excess particles which had not
yet spread out from previous collisions and which therefore still contributed
to the density excess at the point, underwent such elastic collisions with a
resultant spreading out. Such collisions occurred with extreme rapidity, with
the result that after the time T all streams which had contributed to the den-
sity excess at a point had spread out and no excess was left.

Each group of collisions with attendant spreading out of mass was iso-
tropic, and there were many such processes going on, until a sort of '"steady
state" was achieved. Now in fact the effect of an isotropic spreading out of a
mass distribution do(x) is to replace do by

(JP(x,x"')do(x"'))dx

where
JP(x,x")dx = 1 , (3.8a)

/P(x,x')(x-x")dx = 0 , (3.8b)
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fP(x,x')(x-x')i(x-x') dx = q(x")6 (3.8¢)

] 13
Repeated application of minute (q + 0) processes of this sort is equivalent to
repeated application of Gaussian distributions (Ref. 4), and thus we may replace
P by a Gaussian with small variance:

A (x—x')2/4da(x')

1
P(x,x') + e (3.9)
(hmda(x" )2

(3.9) holds in the interior of the
Of course, at a rigid boundary any fluid which spreads out cannot pass

where N is the dimensionality of the space.
fluid.
through the boundary. Instead, there must be a reflection at the boundary, as
there was in the case described by equations (3.6).

(3.9) by

So in general, we replace

At da(x")

P(x,x') + e = st(da(x")) (3.10)

where S+(da(x')) is the semigroup generated by the Laplace operator for the re-
gion exclusive of rigid bodies, with the requirement of zero normal gradient at
the rigid boundaries.

In the hydrodynamic case only that part of the mass distribution corre-
sponding to density exceeding po spreads out, and thus the operator S+(da(x'))

acts only on

£(p(x'))dx’
where
9 6-0 020
£(5) = Ul e (3.11)
0 RN

and P is a general mass density. What happens, then, is that an initial mass
density 6 is replaced by

6D =5 - £ + 5T, xE@ =F B, (3.12a)
61 15 replaced by
8P = o = 5 - 3 Mye stan,x'n) €6y, Gz
and 1in general 7™ is replaced by
gD g | 6™ 5™ _e3™) 4 st@a ) £ ™). (20

After many such collisions n + « we achieve a steady state.
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Referring to (3.10) and letting da(x') + 0, we see that the steady state
is the steady state (a + ») of the equation

8, = 8" (mex,) £ (B , (3.13a)
6 (@a=0) =p (3.13b)

where
Hx,0) = D g 2 P g(x,0) (3.13¢)

and the assumption that collisions take place wherever there is a mass density
excess is reflected in the condition

u(x,a) > 0 (3.134)

?)'has been envisioned as the accumulation of a number of independently moving
streams, and hence to find the new mass density after all the mass redistribu-
tions due to collisions have taken place, we should solve equation (3.13) with
an initial density 8 and an inhomogeneous term on the right- hand side reflecting
the addition of other contributions to 3 as the parameter 0 runs from 0 to « .
However, we have found (Ref. 8) that the steady state is independent of the
order in which contributions to 3 are inserted into the equation. A reduction
in u(x,a) may be viewed as a change in the order in which contributions appear,
and thus we note that the steady state is the same as that for the problem

6, = INE RN (3.14a)

8=0) = ¢ . (3.14b)
(3.14) 18 recognized as a one-phase Stefan problsm. In terms of the solution
of this problem, the new mass density is

i lim
[ 2aud

P 8 (a). (3.15)
(3.14) and (3.15) serve to determine the location of the hydrodynamic free
boundary.

We turn next to the effect of the mass redistribution on the momentum den-
sity. Just as the elastically colliding particles carry a mass with them as
they move, they also carry a velocity u, which is as yet undetermined. But in
addition, since velocity is nothing but rate of spatial displacement, the
particles must have associated with them a momentum due to the fact of their re-
distribution. Since all these processes take place in a time T, to lowest

order in T we may associate with a particle which has moved from x' to x the

AN A 0




L velocity (x-x')/t. Away from a rigid boundary, in the process represented by
45 (3.12a), the momentum density 83 will be replaced by

AN (1)

(ow)'*) = pu - G £(p) + $(da, (x")) (£(P))

! . 2 " A
f +.[ 1 73 x;x e-(X'x') /l’dal(x )f(p(xl))dxl
: (4mdar, (x"

= Pu + (S(doy (x"))-1) (3 £(P))

-%v (S(da; (x)) £((x"))da, (x')) (3.16a)

where

S(da, (x')) = % () (3.16b)

The process represented by (3.12c) will result in the replacement of (83)(n) by
@D ™ o @@ 4 (s, x) - 1 @ £6™))
- 2 v(s(ao,, ' EE™ o, () (3.16¢)

Letting n + « and dai(x')* 0, we get, independent of the order in which the

collisional processes associated with the mass redistribution occur,

ou = W+ &oy) - % v (3.17a)

where

00

v=f, f®d (3.17b)
and 0 satisfies (3.14). (3.17) is to be solved subject to the boundary condi-
tion (3.6) on u at the rigid boundary aﬁL(t). (More precisely, the normal com-
ponent u * n satisfies (1.3b), and the derivative in the normal direction of
the tangential component uXn vanishes.)

It may seem that there is some mystery associated with our determination
of a velocity field in terms of the displacement of moving particles in a time
interval, as opposed to its determination through higher order time derivatives
of the displacement, namely, the acceleration. However, the determination here
really has grown out of a consistency argument, and we can give an example from

elementary mechanics to illustrate our point.

Consider the situation shown in Figure 2. We have a particle moving on
the surface of a rigid body under the influence of gravity. The particle may
move on the surface or above it, but may not enter the rigid body. Thus we
have a one-sided constraint on the motion of the particle, similar in some
respects to (2.2). One may devise an algorithm to determine the motion of the
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particle as follows: Given the particle position and velocity (r,u) at a given
time, we let the particle follow the familiar parabolic path appropriate to mo-
tion 1in a gravitational field without any constraints. This carries the
particle to % after a time T, when it has velocity 3. 1f ? lies on or above the

rigid body, no correction is necessary, and we can set P = T U for the new

‘position and velocity of the constrained motion. If 3 lies inside the rigid

body, we satisfy the constraint by moving the particle back to the nearest point
P on the body's surface. Then, to be consistent with the fact that velocity is
rate of spatial displacement,.we have to add to 3 the displacement from ? to P
divided by t. This addition to t is known in mechanics as the normal force
exerted on the particle by the body. At a point Pf on the body the particle may
leave the surface. P. may be thought of as a "free boundary".

We regard the region of flow where 0 < p < p, to be a "gpray". This is
more a mathematical artifice than a physically complete representation of an
actual spray. A more detailed description of some of the physical assumptions
made in our characterization of the fluid in the region where 0 < p < po as
a spray is given elsewhere (Ref. 10). The possibility of the development of a
spray in the non-classical formulation of hydrodynamics is analogous to the
possibility of "slush" formation in the non-classical formulation of the Stefan
problem (Ref. 1). Indeed, as seen in (3.11) and (3.14), there is a clear cor-
respondence between the enthalpy and latent heat in the one-phase Stefan pro-
blem, on the one hand, and the mass and 1iquid density in hydrodynamics, on the
other. Similar interpretations may likewise be given to "spray" and "slush".
In the latter case, slush occupying a region Qof positive measure may be con-
ceived as a mixture of minute volumes of two phases of a substance, such that
the volume of each pause has a positive measure in each subset of positive
measure 1nQ . In the former case, we think of spray occupying a region Q of
positive measure as consisting of minute volumes of liquid (p = po) and vacuum
(p = 0), with the volume of each phase in each subset of(a’of positive measure
having positive measure. As yet we do not have any examples of flows in which
we can show rigorously that sprays must develop in order for a solution of the
equations to exist. Nevertheless, as we pointed out in the Introductiom, it is
by no means clear that the hydrodynamic free boundary can always be sharply de-
fined, and we leave open the possibility of the formation of a diffuse free
boundary.

In concluding this section dealing with an algorithmic representation of
a generalized hydrodynamics, we remark that numerical results based on the al-
gorithm have been obtained, and are currently being prepared for publication
(Ref. 11). The numerical treatment of the hyperbolic conservation laws follows
the path laid down in (3.4) - (3.7). ?hn steady state of the one-phase Stefan
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problem (3.14) is found using the algorithm (3.12) for the case dui(x') = da
(Ref. 1). The linear elliptic problem (3.17) is solved by finding the steady
state of a parabolic equation, which is in turn solved through a variation on

an algorithm applicable to a class of hyperbolic and parabolic problems (Ref. 2).
4. Consistency of the Algorithm

To demonstrate consistency of the reformulated hydrodynamics with clas-
sical hydrodynamics in the regime where the latter is meaningful, we examine
alternate forms of our equations when the veleccity field is differentiable.
Consistency will be demonstrated if we show that the'lowest order terms in T
are identical in both formulations. The consistency of (3.4) - (3.7) with the
hyperbolic conservation laws (2.1) and (3.1) is quite straightforward. As we
have pointed out, when the velocities are differentiable no collisions of fluid
elements will occur for T sufficiently small, and (3.4) - (3.7) will then solve
(2.1) and (3.1) exactly in the interior of the flow region. As regards bound-
ary conditions, it follows from (3.6) that the average, over a small time in-
terval, of the component of momentum normal to a rigid boundary must approach
that component of velocity of the boundary times the average over the same time
interval of the density, as thé distance to the boundary approaches zero. This
is consistent with (1.3b).

Let us then focus attention on the second half of the algorithm, which
deals with the ramifications of the constraint (2.2). If we can show that (3.17)

goes over, to first order in T, to the equation

pu = pu - TVP (4.1)
vhere P satisfies (1.6), we will have shown that our algor’thm reverts to a
split-step scheme for solving the classical (l1.1). Comparing (4.1) wicth (3.17),

we see that the obvious correspondence to make is that

2? va+p (4.2)
T

(3.17b), (3.14), and (3.15) lead to
Adtvep -3 (4.3)

Suppose at a given time we have a density p 5,00 and a velocity u satisfying
(1.1b). In the interior of the liquid, p= Po Now, assume the velocity is
differentiable, so that (2.1) and (3.1) imply
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