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INCOMPRESSIBLE FLOWS AS A SYSTEM OF CONSERVATION LAWS
WITH A CONSTRAINT
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Joel C. W. Rogers
Applied Physics Laboratory of the

Johns Hopkins University
Johns Hopkins Rd., Laurel , Md. 20810

A lecture presented at Institut de Recherche d’Informatique et d’Automatique
in Rocquencourt, France, on May 11, 1978. This lecture is included in the
publication Seminaires IRIA Analyse et Contr8le de Syst&ues — 1978.

1. Introduction

The need for the reformulation of hydrodynamics presented here arose in con-
nection with the study of the hydrodynamic free surface problem. As the problem

is conventionally formulated, one looks for a solution (u(x,t),P(x ,t),~~ (t)) of
the initial value problem for the equations

u~ + u Vu — — ~~
. VP—gD , xc~~ (t) , 0 ( t < T, (1.la)

V • u 0  , xc~~~(t) , 0~~~t < T , (1.lb)

where u is the velocity field and P is the pressure. p
0 is the density of

water, g is the gravitational constant, and is a unit vector in the s—direction.

The initial conditions for (1.1) are

u(x,O) — u0, (1.2a)

~~(0) ~~~~~~~~ (1.2b)

Boundary conditions are

P*- p~gz as z - ~~—~~ , (1.3a)

u • n a . n on a~~5(t) , (1.3b)

P — 0 on a~~f (~) , (1.3c)

Separate copies of this paper are being sent to address.. on the distribution

list for ONR Task No. NR 334—003.
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I
V • n — U • fl 011 a~~f(t), (1.3d)

where

~~~~~~ 3Qf U 3~ , — 0 , (1.4)

V . n is the outward normal velocity of the flow region~~~(t), and V
5 • n is

prescribed on ~~5(t). ~~ 
is called the “free boundary”. (For a more detailed

discussion of the asymptotic conditions (1.3a), see chapter II of the report by

Rogers (Ref. 6).)

For classical solutions of the differential equations (1.1), the velocity

f ield u(x ,t) will possess derivatives with respect to x and t. When an initially
differentiable velocity field u0 evolves into a field u(x,t) which is no longer

differentiable, it becomes necessary to re—interpret the problem (1.1) — (1.4)

in a suitably generalized manner. Such, in fact, is the case when a wave spills

over and falls back on the surface. At the moment of impact with the surface,

the velocity field at the point of Impact is discontinuous.

Pursuing further the problem of a wave spilling over, or in general of
the collision of two incompressible fluids with free surfaces, we may consider

the idealized problem shown in Figure 1. Here we imagine that we have a cylind-

er in a region of space where there is no gravity, and that this cylinder con-

tains two equal masses of liquid which are moving without friction with equal

and opposite velocities along the axis. The free surface of each liquid mass

consists of two components orthogonal to the cylinder axis. At the moment of

collision we expect the condition (1.lb) on the velocity to be violated. In— 0

stead , if we denote distance along the cylinder axis by z, set the origin in the
plane of collision, and denote the speed of each liquid mass before collision by

U, we get at the moment of collision

V • — — 2 U’5(s) . (1.5)

Thus this example indicates that we will need to re—evaluate the condition (1.lb)

in expressing the laws of hydrodynamics in a form suitable for treatment of the

general free boundary problem.

A different sort of problem arises in connection with the delineation of

the free boundary . When equations (1.1) — (1.4) have a classical solution, one

finds from the requirement of consistency between (1.la) and (1.lb) that

— — p 0 ~~ ~~~~~~ . •~ i. (1.6)

The need for consistency between (1.la) and (1.3b) l.ads to a Neumann condition
on th. pressure at 

~~~~~~~~~~ 

This, the asymptotic condition (1.3a), and the free
surface condition (1.3c) combine with (1.6) to determine the pressure throughout

With P determined , (1.la) can be solved for u, and (1.3d) then serves to
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0 
determine the t ime evolution of (~ (t). In the case when a45 — 0, we find that
the problem (1.1) — (1.4) is invariant under the transformation

— ax, t’ — a½t (1.7)
for any constan t a > 0. What this means is, for example, that if a flow start—
lag from rest with a particular initial surface deformation results in the fall—
lag over and splashing down of a wave In time T0, then the problem with similar

initial conditions, except that the surface deformation is scaled relative to

that in the first problem by a factor a < 1, results in the falling over and
splashing down of a wave in time a½T0. Accordingly, we may generally expect
that, for any flow, small perturbations on the flow will have the property that

waves on suff iciently small scales will be continually falling over , and that
the topology of such perturbed flows may not even be determinate. In the case

of the breaking of a single wave, but even more so in this case of multiple 
‘1

breaking, the determination of the evolution of the free surface through an

equation like (1.3d) becomes ambiguous. For, if we regard (1.3d) as an ordinary

differential equation for the motion of a fluid element on the free surface,
such an equation does not have a unique solution when the velocity field u is

discontinuous at the free surface. In addition, it is open to question whether

the portion of the free boundary contained in any unit ball will have bounded
measure, or whether the points on the free boundary will be regular points for

the Poisson equation (1.6). If they are not regular points, the meaning of the

condition (1.3c) will need re—examination.

2. Role of Conservation Laws

Experience with other free boundary problems has shown that the equation
which drives the motion of the free surface is often merely an expression of a
fundamental conservation law. For example , in the Stefan problem, conservation

of energy is paramount (Ref. 1) and in some model hyperbolic problems , the shock

0 
conditions are an expression of other conservation laws (Ref. 7). Lecognition
of this fact ha. made it possible to devis, topology—independent algorithms to
solve such free boundary problems. The use of such methods is especially de-
sirabl. in the pres ent problem where , as we have indicated , the surface may be-
come so complicated that It may become impossibl, to follow its motion, not only

in practice, but also i~i theory.

0 The question of whet conservation laws are appropriate in order that our
mathematical .od.l adequately represent a physical situation is, of course , a
problem of physics. In our relatively simpl. situation , the answer seems rather
clear . The b.st—known con..rvat ion laws of Newtonian physics are those of mass,
momentum , and energy. For th. classical flow of an tuviscid liquid one may de-
rive energy conservatio n from th. conservation laws for mass and momentum and

“
~~~ 

.. — - 

~~~~~~ T~~~~



— 4 —

generally energy conservation plays a subsidiary role, being derivable from the
equations of motion in reversible physical situations and requiring reforaula—
tion in irreversible situations. In hydrodynamic theory the precedence of mass

and momentum conservation over energy conservation is assumed, for example, in

the derivation of the jump conditions for solutions of the nonlinear shallow

water equations (Ref. 12). The energy which is lost is assumed somehow dissi-

pated in other, irreversible processes, or in turbulence. This relation of
energy loss to irreversibility is a natural complement to the connection of

energy conservation with temporal homogeneity in Hamiltonian mechanics. (In

dynamical systems which are richer in degrees of freedom than ours, the burden
of irreversibility is shifted from the energy to the entropy.)

Regarding the conservation laws, one notes that (1.la) is a statement of

conservation of momentum (in the case g — 0). For a fluid whose elements do not

undergo a density change as they move and whose velocity is uniformly differen— 
0

tiable from one point to another, so that the trajectories of different elements

remain distinct, (1.lb) is a statement of mass conservation. When the density

varies discontinuously in space, as it does at the water surface, the governing

equation for the free surface, (1.3d), Is also an expression of mass conserva-

tion. Thus, it would appear that at least one of the problems referred to above,

how the free surface evolves in time, may be resolved by writing a law of mass
conservation. When the density p and velocity u are differentiable, this takes
the form

pt + V.(pu) — 0 - (2.1)

As we have noted, classically one may think of (1.lb) as an “equation of

state” in terms of which the pressure is determined. In the classical picture
the equation of state is a constraint, and in the process of satisfying this

constraint the momentum is altered by the term —VP. We go one step further , and

suggest that in the absence of a constraint the pressure vanièhes, that is, the

pressure arises only when the constraint cannot be satisfied without it. In

accordance with the kinetic theory interpretation of pressure, we may identify
the pressure with the transfer of momentum across the surface of a fluid element

in the direction of its normal brought about by the action of the constraint.

The boundary condition (1.3c) suggests that at the free boundary the constraint

is automatically satisfied.

Let us inquire further what the nature of the constraint should be for
the generalized flows of interest to us. To this end , we reconsider the situa —
tion depicted in Figure 1. We make two observations: First , the dynamics of
the system should in no way be affected by the way we extend the velocity field
to the region where p — 0 — it is momentum and not velocity which is dynamically

— 
-
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important. Second, there is no problem with a velocity distribution whose di-

vergence approaches (1.5) at the moment of collision . The fundamental fact re-
garding the collision that we want to maintain is that the two bodies of fluid
should not enter each other. That is , the fluid density should not exceed p0.
We write this as a one—sided constraint

p < p0. (2.2)

We will see that (2.2) is the appropriate generalization of the classical con-
straint (l.lb) and also of the boundary condition (1.3c). Its one—sided nature

reminds us of variational inequalities.

3. Algorithmic Description of Hydrodynamics

One of our governing equations is the conservation of mass, (2.1). In

accordance with the observations of the last section, in the absence of the con-

straint we will have the equations of momentum “conservation”:

(Pu)
t 

+ V . (puu) — — pg (3.1)

Equations (3.1) and (2.1) form a set of hyperbolic conservation laws. For the

actual hydrodynamic flow, we will solve them subject to the constraint (2.2).

Of course (2.1), (3.1), and (2.2) are generally inconsistent, and we have
to make clear what we mean by “solving” (2.1) and (3.1) subject to (2.2). We

will do this by giving an algorithm for appioximating the solution of the evo—

lutionary problem in which we start with initial data p(0), u(O) and try to find

0 
p(e), u(t) for t > 0. Our algorithm will be dependent on a parameter t which

we call the time step, and will generate from a pair of quantities p, Pu, with p

satisfying (2.2), another pair of quantities ~~, ~~~~, with ~ satisfying (2.2).

We denote the result of this operation symbolically as

(~ , ~~) — ~(r) (p Pu) . (3.2)

When we speak of “solution” of the problem, we mean that for t > 0 the operators

(
~ 

(
~~

))
hl 

-~ S*(t) (3.3)

as n -
~~ ~~

. (3.3) is to be understood to hold in an appropriate function space.

More will, be said about this in our next lecture (Ref. 9). However, it be—

hooves us to point out that we have not yet proven the crucial step (3.3), and
thus we cannot speak of a “solution” of the problem in any rigorous mathematical

• sense. In this lecture we content ourselves with an indication that, when the
flow quantities have sufficient regularity in space and time, our algorithm re-
duces to an approximate algorithm for solving the Euler equations, which may be
expected to converge to the actual solution as t 4’ 0, under the same presupposi—
tions regarding regularity . The next lecture will focus on the sorts of 

- -‘---r - .
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solutions we expect to emerge from the analysis of convergence, and the sense in
which the inviscid hydrodynamic initial value problem may generally be regarded
as well—posed. But the problems of convergence and regularity of the flows con-

verged to are ongoing problems, presently uncompleted.
Our algorithm “solves” (2.1) and (3.1) subject to (2.2) in the following

sense : The hyperbolic conservation laws (2.1) and (3.1) are “solved” for a time

interval 1. Then the densities of mass and momentum are adjusted to satisfy

(2.2), in a manner consistent with global conservation of mass and momentum.

When we say that incompressible flows may be considered to evolve through a

system of conservation laws in conjunction with a constraint, our statement is

premised on the conjectured, but as yet unproven, existence of the limit of the

algorithm as ~r + 0. There is no doubt a certain lack of elegance in our

approach through a family of solutions dependent on a parameter T, but it is

perhaps no worse than the situation which arises in making precise the solution

of an initial value problem for an ordinary differential equation.

In what follows, we will attempt a reasonably complete description of the
algorithm which is to render an approximation to the flow. However, what we 0

present is by no means our first approach to the problem, and along the way

mathematical simplifications have arisen which have removed the algorithm some— 0

what from its pristine physical orientation . For a more complete description of
the physical considerations which led us to make some of our initial choices, we
refer the reader to a more complete write—up (Ref. 10). What we present here is
a mathematical object, which will rise to the status of theory or fall into

disrepute according to its internal consistency. No doubt later versions will

differ in detail, but we suspect that the main elements will remain intact.

To “solve” the conservation laws (2.1) and (3.1) for a time r, we intro-

duce a distribution function F(x,v,t) satisfying the collisionless Boltzmann

equation

Ft + v  . V F — g ~~~~~— O  , O < t < r  , (3.4a)

and initial conditions

F(x ,v,0) — p (z) 6 (v—u(x) ) . (3.4b)

It ii easiest to give boundary conditions for F in terms of the characteristics ,
whose equations, away from boundaries, are

a- — v , ~~~ “ — g ~~ (3.5)

These are just the equations of classical particles moving under the influence
of gravity without collisions. At a rigid boundary , we requir, that the equa—

tion. of the characteristics describe the trajectories of particles reflecti ng

IIL 

- 
~~~~~
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specularly from the boundary. Thus, if a characteristic strikes a rigid boundary
at time t~ and the velocity of the rigid boundary is V5 at the point and time
where it is struck by the characteristic, we set

0 0  

~(t~) — x(t ) , (3.6a)

v(t~) — n x  (v(t )xn )  + (2V
8~ 

n — v( t ) n)n , (3.6b)

where n is the unit outward normal to the boundary at the point and time referr—
ed to. -

Finally , we determine approximate solutions of (2.1) and (3.1) at time r
through

— fF(x,v,r)dv (3.7a)

Pu — fvF(x,v,r)dv . (3.7b)

In physical language, equations (3.7) state that all fluid elements at the

same location after the passage of time T have collided inelastically. We point

out that this assumption that collisions are inelastic is not mandatory, but it

seems like a simple and reasonable first approximation for the problems that in—

terest us. Other assumptions are possible. The allowance of inelastic colli-

sions permits the decay of energy, and an element of irreversibility enters into

our algorithm, although the Euler equations themselves are formally reversible
in t ime . We note that some additional assumptions regarding the nature of colli-
sions have been needed to make the evolutionary problem determinate in the gen-

eral case, and our treatment of the conservation laws has provided a set of such

assumptions . For example, In the situation depicted in Figure 1, a number of
possibilities after collision will be consistent with the requirements we have
made heretofore. One possibility is for the two liquid masses to collide and
them come to rest instantaneously, with all energy lost inelastically at the
moment of impact. Another possibility is for them to collide totally elastically,

bouncing off one another , with the flow totally reversible. There are also inter-

mediate possibilities, with a loss of speed for all the fluid being one, and

with some of the fluid being brought to rest and the remainder rebounding elas—

tically being another. Although we are getting somewhat out of sequence, since

we have not described how the algorithm treats the constraint condition (2.2)
0 

yet , we note that, according to the assumption of inelastic collisions made in

(3.7), in the limit as T + 0 for the case shown in Figure 1, we will get the
first possibility listed above.

Classical flows in which the velocity is Lipschitz continuous in space un—
iformly in time will not permit the collision of fluid element, for r sufficiently

_____ a
— ~~~~— —
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small , and thus this element of irreversibility will not enter. We will refer

to the conservation laws (2.1) and (3.1) with g — 0 as the higher—dimensional

form of Burgers ’ equat ion . We have noted elsewhere (Ref . 7) how in one dimension
the proper solution of (2.1) and (3.1), as outlined in (3.4) and (3.7), differs
from the solution of the formally equivalent conservation law

— O

We will say nothing in this lecture about the convergence as T + 0 of the solu-

tion of the conservation laws outlined in (3.4) and (3.7). The subject will be
raised in the next lecture.

Assuming that we have adequately solved (2.1) and (3.1), let us see how

we satisfy the constraint (2.2). If ~~~< p0, the constraint has no effect, and
we set — ~ , ~~ — ~~~~. If > P0 somewhere, in violation of (2.2), we have to
realize that during the time t while mass was being convected according to (3.4),
(3.5), (3.6), and (3.7a), other processes were also taking place. It may help

to observe that is a linear functional of p ,  and that we may envisage as

the accumulation of independently moving mass densities, or “streams”. The

other processes that took place in the time t were of the following sort:

Whenever there was an accumulation of mass yielding a density > p0, the particles
in the region of excess density were considered to be undergoing rapid elastic

collisions which resulted in their spreading out from the region of density ex-

cess in an isotropic manner. As new density excesses arrived at a point from

additional streams, they also, in addit~ to the excess particles which had not
yet spread out from previous collisions and which therefore still contributed
to the density excess at the point , underwent such elastic collisions with a
resultant spreading out . Such collisions occurred with extreme rapidity , with
the result that after the time T all streams which had contributed to the den-
sity excess at a point had spread out and no excess was left.

Each group of collisions with attendant spreading out of mass was iso-

tropic, and there were many such processes going on , until a sort of “steady
state ’ was achieved . Now in fac t the effect of . an isotropic spreading out of a
mass distribution da(x) is to replace do by

(fP(x ,x ’)d~ (x ’))d x

whir.

fP(x ,x ’)dx — 1 , (3~g~)

JP(z,z ’)(x—x ’)dx — 0 , (3.8b)
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• fP(x~x ’)(x_ x ’)~~(x_x ’)~ d x _  q(x ’)6 1j (3.8c)

Repeated application of minute (q 4’ 0) processes of this sort is equivalent to
repeated application of Gaussian distributions (Ref. 4 ) ,  and thus we may replace
P by a Gaussian with small variance :

— 
(x—x’)2/4dct(x’)

P(x ,x ’) ~~‘ /2 e (3.9)
(4lTda (x

where N is the dimensionality of the space . (3.9) holds in the interior of the
fluid . Of course , at a rigid boundary any fluid which spreads out cannot pass
through the boundary . Instead , there must be a reflection at the boundary, as
there was in the case described by equations (3.6) . So in general , we replace
(3.9) by

P(x ,x’) + e~
1 dcz(x ’) 

— S
F
(dcz(xt ) )  (3.10)

where S+(dct(x~)) is the semigroup generated by the Laplace operator for the re—
0 gion exclusive of rigid bodies , with the requirement of zero normal gradient at

the rigid boundaries.

In the hydrodynamic case only that part of the mass distribution corre—
sponding to density exceeding p0 spreads out , and thus the operator S+(dct(x I ) )

acts only on

0 
f(p(x ’))d x ’

where
0~ 

~ — p O ~~~~PO1(p) — (3.11)
0 p < p 0

and is a general mass density. What happens , then , is that an initial mass

density ~ is replaced by

“(1) ‘- + A

P — p — f (p)  + S (du 1(x ’) f(p)  F1p , (3.lZa)

~(1) i, replaced by

0 ~(2) 
— F2p~~~ — — f (p (~~ )~ S 1’(dcz2 (x ’)) f ( ) ) , (3.12b)

A m )
and in general p is replaced by

A(  ) A(  ) A(n) + A(  )P — F~~1 p — p —f(p )  + S (dcz~~1(x ’))  f (p ) .  (3.12c)

After many such collisions n + ~ we achieve a steady state.

1~ ~~~~~~
—. , .~~~~~~~

~0~• • ~~~~~~~~~~~~~~ -~~~~ 
-
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Referring to (3.10) and letting dcz(x’) + 0, we see that the steady state
is the steady state (a + co) of the equat ion

e — ~~ (~1(x,a) f (6)) , (3.13a)

A A

0 (a — 0) — p (3.13b)

where

1A(x ,a) — ~~~~~~ , da — ~~ da(x,ct) , (3.13c)

and the assumption that collisions take place wherever there is a mass density
excess is reflected in the condition

~i(x,a) > 0 (3.13d)

~~has been envisioned as the accumulation of a number of independently moving
streams, and hence to find the new mass density after all the mass redistribu—
tions due to collisions have taken place , we should solve equation (3.13) with
an initial density ~ and an inhomogeneous term on the right-hand side reflecting
the addition of other contributions to as the parameter a runs from 0 to ~
However, we have found (Ref . 8) that the steady state is independent of the
order in which contributions to are inserted into the equation . A reduction
in p(x,a) may be viewed as a change in the order in which contributions appear,
and thus we note that the steady state is the same as that for the problem

— f (0), (3.14a)

04x — 0) — . (3.14b)

(3.14) is recognized as a one—phase Stefan problam . In terms of the solution
of this problem, the new mass density is

— 0 (a) . (3.15)

(3.14) and (3.15) serve to determine the location of the hydrodynamic free
boundary.

We turn next to the effect of the mass redistribution on the momentum den-
sity. Just as the elastically colliding particles carry a mass with them as
they move , they also carry a velocity u . which is as yet undetermined. But in
addition , since velocity is nothing but rate of spatial displacement, the
par ticles must have associated with them a momentum due to the fact of their re-
distribution. Since all these processes take place in a tim. r , to lowest
order in t we may associate with a particle which has moved from ic to x the

-~~~‘: “~i:r~ ~ 
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velocity (x—x ’)/r. Away from a rigid boundary, in the process represented by
A (3.12a) , the momentum density will be replaced by

(~~)(1) 
— — ~ f(s) + S(da

1
(x’))(f(p) )

+1 1 
/2 ~~ s.!- e_ (X

~~
’) 2/4~~1(x ’) f(~ (x~))dx I

J (4irdct~(x ’)~

— + (S(dcx 1(x ’) ) — l) (i f(p))

2 A
— V (S(da 1(x ’)) f ( p ( x ’))d cx 1(x ’)) , (3.16a)

where

S(da1(x ’)) — e~
dCti (

~ ’) (3.16b)

A A( )The process represented by (3.12c) will result in the replacement of (Pu) by

AA (n+1) .SA ( )
— (Pu) — (Pu) n + (S(dcz~1,1(x’)) — 1) (i~ f(p ))

- ~ V(S(da~~1(x ’)) f ( ~~~~ (x ’))Ia~~ 1(x ’)) (3 16c)

Letting n ~ cc and dct (x ’)~ 0 , we get , independent of the order in which the
collisional processes associated with the mass redistribution occur ,

— + ~(iv) — — Vv (3.17a)

where

v —f 0 f( 0)d a (3.17b)

and 0 satisfies (3.14) . (3.17) is to be solved subject to the boundary condi—
tion (3.6) on at the rigid boundary 3Q5(t). (More precisely, the normal com—
ponent ~ n satisfies (1.3b), and the derivat ive in the normal direction of

-the tangential component uXn vanishes.)

It may seem that there is some mystery associated with our determination
of a velocity field in terms of the displacement of moving particles in a time
interval, as opposed to its determination through higher order time derivatives
of the displacement , namely, the acceleration. However , the determination here
really has grown out of a consistency argument, and we can give an example from
elementary mechanics to illustrate our point.

- -
. Consider the situation shown in Figure 2. We have a particle moving on

the surface of a rigid body under the influence of gravity. The particle may
move on the surface or above it , but may not enter the rigid body. Thus we

• have a one—sided constraint on the motion of the particle , similar in some
respects to (2.2). One may devise an algorithm to determine th. motion of the 

- -~~~~~~-~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • •‘
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particle as follows : Given the particle position and velocity (r ,u) at a given

time, we let the particle follow the familiar parabolic path appropriate to no—
tion in a gravitational field without any constraints. This carries the
particle to after a time r, when it has velocity 2~. If lies on or above the
rigid body, no correction is necessary , and we can set — ~ , U — for the new

• position and velocity of the constrained motion . If lies inside the rigid

body , we satisfy the constraint by moving the particle back to the nearest point
on the body ’s surface. Then , to be consistent with the fact that velocity is

rate of spatial displacement, -we have to add to the displacement from to
divided by r. This addition to is known in mechanics as the normal force

exerted on the particle by the body. At a point Pf On the body the particle may

leave the surface. Pf may be thought of as a “free boundary
”.

We regard the region of flow where 0 < p < P0 to be a “spray”. This is

more a mathematical artifice than a physically complete representation of an 
0

actual spray. A more detailed description of some of the physical assumptions

made in our characterization of the fluid in the region where 0 < p ‘C p
0 as

a Spray is given elsewhere (Ref . 10) . The possibility of the development of a
spray in the non—classical formulation of hydrodynamics is analogous to the

possibility of “slush” formation in the non—classical formulation of the Stefan

problem (Ref. 1). Indeed , as seen in (3.11) and (3.14) , there is a clear cor-

respondence between the enthalpy and latent heat in the one—phase Stefan pro—

blem, on the one hand, and the mass and liquid density in hydrodynamics, on the

other. Similar interpretations may likewise be given to “spray” and “slush”.

In the latter case, slush occupying a region~~~of positive measure may be con-

ceived as a mixture of minute volumes of two phases of a substance, such that

the volume of each pnase has a positive measure in each ‘~iubaet of positive

measure in~~ . In the former case, we think of spray occupying a regi~,n~~~of

positive measure as consisting of minute volumes of liquid (p — p0) and vacuum
(p — 0),  with the volume of each phase in each subset of~~~of positive measure
having positive measure. As yet we do not have any examples of flows in which

we can show rigorously that sprays must develop in order for a solution of the

equations to exist. Nevertheless, as we pointed Out in the Introduction, it is

by no means clear that the hydrodynamic free boundary can always be sharply de-

fined, and we leave open the possibility of the formation of a diff use free
boundary. - 

‘

In concluding this section dealing with an algorithmic representation of

a generalized hydrodynamics, we remark that numerical results based on the al—

gorithm have been obtained, and are currently being prepared for publication
(Ref. 11). The numsrical treatment of the hyperbolic conservation laws follows

the path laid down in (3.4) — (3.7) . The steady state of the one—phase Stefan

— — 

—— — 
‘. ~‘
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• problem (3.14) is found using the algorithm (3.12) for the case dcI~(x ’) — da
(Ref. 1). The linear elliptic problem (3.17) is solved by finding the steady
state of a parabolic equation, which is in turn solved through a variation on

an algorithm applicable to a class of hyperbolic and parabolic problems (Ref . 2).
4. Consistency of the Algorithm

To demonstrate consistency of the reformulated hydrodynamics with clas-
sical hydrodynamics in the regime where the latter is meaningful, we examine
alternate forms of our equations when the velocity field is differentiable.

Consistency will be demonstrated if we show that the ‘lowest order terms in t

are identical in both forinulatious. The consistency of (3.4) — (3.7) with the

hyperbolic conservation laws (2.1) and (3.1) is quite straightforward. As we

have pointed out, when the velocities are differentiable no collisions of fluid
elements will occur for r sufficiently small, and (3.4) — (3.7) will then solve
(2.1) and (3.1) exactly in the interior of the flow region. As regards bound-

ary conditions, it follows from (3.6) that the average, over a small time in— 0

terval, of the component of momentum normal to a rigid boundary must approach

that component of velocity of the boundary times the average over the same time

interval of the density, as the distance to the boundary approaches zero. This
- 

is consistent with (1.3b).

Let us then focus attention on the second half of the algorithm, which

deals with the ramifications of the constraint (2.2). If we can show that (3.17)

goes over, to first order in r, to the equation 
0

--Pu — p u — tVP (4.1)

where P satisfies (1.6) , we will have shown that our algor’thm reverts to a

split—step scheme for solving the classical (1.1) . Comparing (4.1) with (3.17),
we see that the obvious correspondence to make is that

~~~v + p  (4.2)
T

(3.llb) , (3.14) , and (3.15) lead to

(4.3)

Suppose at a given time we have a density P ‘C p
0 and a veloci ty u satisfying

(1.lb) . In the interior of the liquid , 0 — P0. Now, assume the velocity is
0 differentiable , so that (2. 1) and (3.1) imply

+ u • Vu — ~~~~~~ 
(4.4)

Integrating ( .4) over the time interval r to get ?~, we find to first order

- ‘ ‘
~~~

:-
~~~~~~~~
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tnt

V ‘~i —TE.5~~ 
~~~ a1. (4.5)

j I

The equation of mass conservation,

Pt + u . V P — _ p V . u ,

gives for in the interior of the region 
~~~~~ 

to second order in r

I I,’.,
p — p 0 — p 0~~~(V 

u+V .u)

t2 ~
U
i 

au 1 • (4.6)
- p0 + 

~o r 
E~ ~~~~~~

..
For points interior to the liquid region at the given time (p — p0) and also
the liquid region a time step later (~ — p0) ,  it follows from (4.3) that

t~v — — 
~~~~~~~~~~~~~ ‘

in agreement with (1.6) and the correspondence (4.2) . We recall that (1.6) is

just the condition to make V ~i — 0 to lowest order in t.
With respect to boundary conditions, if we have a classical flow with a

sharp free boundary, will fall rapidly from the expression (4.6) to 0 at the

free boundary. In the interior of the liquid, as r + 0, we find from (4.6)

and (4.3) that j~v I is small compared to whereas outside the free boundary

we will have approximately Av — p0. Thus, although one derives from (3.17b)

and (4.3) that v — Vv — 0 at the free boundary, there will be a sort of “bound-
ary layer” there in which Vv changes from 0 to a finite value. Since by (4.6)

will differ from 
~0 by 0 (12) in the interior of the liquid , mass conserva-

tion will require tha-c this “boundary layer” have thickness 0(t 2) if the free
boundary has bounded curvatures . From (4.3) , Vv will change by 0(t 2) over this
boundary layer and v will change by 0(t4) .  Just inside the boundary layer
2/r2JVv will assume a value which does not necessarily vanish as t ~ 0, but
2/r ’) v will + 0 as r + 0. Hence to lowest order in i’ the boundary condition
(1.3c) will be redeemed.

Something sim ilar occurs at the rigid boundaries. On account of (3.14) ,
we get n Vv — 0 at rigid boundaries. However, (3 .4)— (3.7) predict that ,
over a “boundary layer” with thickness 0(812) ,  ~ — p will be 0(p ) .  Across

this boundary layer 2/t n Vv will jump from 0 to a value 0(p~g). Interpret-

ing the asymptotic condition (1.3*) as an approximation to the case where the
fluid is bounded below by a portion of a rigid plane situated at a large nega—

• 
tive valu, of z, we easily confirm the validity with respect to this condition
of the correspondence (4.2). Similar results obtain at other rigid boundaries ,

-— 
but we note that agreement between the different formulations ii built in by

_ _ _ _ _  _ _ _- 1~ 
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requiring solutions of (3.17) to have the derivative in the normal direction of
k ‘ their tangential component vanish , and to have the normal component satisfy

(1.3b) .

With the correspondence (4 .2) , the term ~ (~v) on the right of (3.17a) is

seen to be 0(T 2) ,  and thus to have no effect on the consistency of our formula-

tion with the classical equations (1.1) — (1.4) . Reference to (3.16) and the
discussion preceding (3.16) shows that the extra term represents the fact that
the elastically colliding particles in our picture carry the mean velocity ~i
with them. Even though this term may be removed from (3. 17a) without changing

the consistency of the equations , we have retained it , since without it the

equations would lack Galileian invariance .
In the Introduction we raised the question of whether points on the free

boundary 
~~~ 

would generally be regular points for the Poisson equation (1.6) .
This was one of the reasons for our search for ‘. formulation of the problem
which did not entail the solution of a partial differential equation in the

• liquid region subject to boundary data on 
~~~~~~

. In our reformulation of the 4
problem , the one—phase Stefan problem (3. 14) and (3.17b) take the place of (1.6)

and (1.3c) . We have indicated that (3.14) is solved in practice by using the
algorithm (3.12) with dcti(x ’) — da. The result of such an algorithm has been
proven to converge to a solution of the problem (3.14) for any given a —

da + 0 (Ref . 2) ,  and it is not hard to extend this to a proof of convergence to
the steady state solution . Our remarks in this section indicate that, inside
a boundary layer of thickness 0(T 2) near the boundary , we may expect (21r 2)v and

v~2/r 2)v to converge to p and VP , respectively.
Accordingly, it is of some interest to inquire to what extent , when the

boundary layer becomes infinitely thin and the steady state Stefan problem
reverts to a linear elliptic boundary value problem , the boundary conditions
demanded by (1.3c) at the free boundary are actually attained by the result
of our algorithm in the limit da 4 0. Note that this’l.imit of an infinitely

thin boundary layer can also be achieved by letting p~ 
+ ~ in (3.11), (3.14),

(3.17b), and (4.3). An error bound (Ref. 10) indicates that, for smooth
boundaries the steady state G(dct) given by the algorithm (3.12) with

dcz1
(x ’) — dci and (3.17b) in the limit p

0 ~ a° has an L~ error , when N — 3 of

IG(da)—G(x,x0)j $ 0 , — 0 (!~ (in ( —1-)) ) , d — dist(x0, B~f), (4.7)

for the computation of G(x ,x0
) given by

t~Ga - 6(x-x0) XØEqf, 0

• cJ2~ — 0 .

4~4 ~~~

0 

~~~~ 

—
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~ ; (A recent paper (Ref. 3) in which the same algorithm is described appears to
give an error o(,’~), which is better than the one given above. I have not
tracked down the discrepancy in the estimates.*) Our analysis (Ref. 10) also
shows , for more general regions (~f~ that the steady state G(da) converges to
a limit

G( 0) — G(da) (4.8)

as dci + 0 , and that G(0)~ 0 as one approaches a regular point of ~(~fU4f) from
the interior Of~~ f .  Similar results would apply to the lim it as dci 4 0 of the
steady state for p0 

4
~~computed by (3.12) with da1

(x ’) — dci, • (3.17b), and (4.2),

that is , P — 0 at all, regular points of ~(~ f ~~f ) . From a physical point of

view, this may be more reasonable than requiring P — 0 at all regular points
Of a~f. as in (1.3c) .
5. Other Versions

We have noted that there is some arbitrariness in the algorithm presented

in Section 3 regarding the presence of higher order terms in t , as there has to
be for anything short of an exact solution for that time interval. What terms

are added or dropped is largely a matter of taste. For example, the term

~(v) was left in (3.17a) to guarantee Galileian invariance.

Eugene Isaacson has called our attention to a general approach for solving
equations subject to a constraint (Ref. 5). In this approach one would add a

perturbation to the equations so that the constraints might be satisfied, and
then try to minimize the perturbation in some appropriate sense. For example,

if one had the constraint (1.lb) on a velocity field, one could add a vector

field to the right—hr.rd side of the hyperbolic conservation laws (3.1). It is

well known that the L2 minimum vector field with given divergence and r.uitable

homogeneous boundary cond~ttions is a gradient, and one might in this way arrive

at (1.la). In our case, the only appropriate extension of this to the steady

state one—phase Stefan problem we are aware of appears to be that, if A is a

vector f ield satisfy ir~g

V . A — p0 — , xt~~, (5.la)

A . nI~~ 0 (5.lb)

and p satisfies
“I

.~~~ 
p0, 

~~~~~~ 
, (5.2a)

S 

— 0 , , 
- 

(5.2b)

S 
* I am indebted to Bertrand Mercier for informing me of this work and providing

- - -1 ~ “~:21 me with a preprint .

~~
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- --- -- -

-a

—17 —

then the minimum of .~~A 2dx over all A satisfying (5.1) and over all~~’~~ is

j achieved for
-
~~~ A — Vv (5.3)

0 

with v given by (3. 17b) and (3.14) with A~
’ replaced by A for 1N• We have not

followed this line of thinking in searching for a generalized hydrodynamics,
bec~use we have felt more secure proceeding on grounds with a more direct con—
nection to physics.

• Another item which we have not yet discussed relates to the degree to

which the various stages of our algorithm conserve energy. It is obvious from

(~.4) 
— (3.7) that energy cannot increase in the first half of our split—step

• 
0 scheme:

f(½~~
2 + ~gz) dx < I (½pu 2 + pgz)dx (5.4)

For the second half , the result is not so simple. From (3.17) and (4.3) we
may derive

t --2 ‘~“~‘2 ~~~~~~ 4 - - 2- pu — p (u—u) + v V . u — 2v(Vu)

- ~~ ‘ V ’ (v~j) . (5.5)

S • The only term which can increase the energy here is v V . ~~. To first order
in r , we have seen that an initially divergenceless velocity field remains so

- as long as the flow is a classical one , and hence to first order there is no
energy change. Even if we had the possibility of a velocity field with a
divergence , we would generally expect to lowest order in t that ‘C p0 where

V u > 0  and > p0 whai:e V .  u ‘C 0. Then to lowest order we wouli expect v — 0

where V • u > 0 and v > 0 where V . u ‘C 0. To lowest order in r , we co’.i~,d replace

V . ~ by V • ii and thus conclude that v V~ ~ would tend to reduce the energy.

Our general feeling is this: It may be acceptable f or energy to be
created in the second half of a time step as a compensation for too much energy

• dissipated in the inelastic collisions of the first half, but it is not physi-

cally acceptable for energy to be gained overall. On the - other hand, a slight
energy increase which is a manifestation of the time discretization in the

• algorithm as opposed to a sign of instability may not be disastrous. As it is ,
we can give an example of a flom~ for which the algorithm of Section 3 will pre—

• dict a net increase of energy over a time step (Ref. 10). Needless to say,

• such a flow does not exhibit any great degree of regularity over the t ime step,
and its treatment by (3.4) — (3.7) over the first half of the time step is

• ques t ionable.

:5
7.
.
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~~ We may add a term to the right—hand side of (3.17*) which preserves no—

mentum conservation , Galileian invariance, and consistency to lowest order in t
For example , we may write

— + A(~~v) - + E~
j — G~~ . (5.6)

In place of (5.5) we get

——2 “,‘i~2 ‘~~~~ — ‘t, 2 4 — — 2pu — pu — — p(u — u) + — v V • u — 2v (Vu)

- 

+ A(v~) 2 
— V (v~)—2 E~t G~~ + 2 E~~’ 

( iGij ).  (5.7)

A more detailed investigation (Ref . 10) suggests that is is possible to choose

Gij so as to preserve Galileian invariance and consistency, and to make

f~~
2dx ~~~~~~~

in all cases . However , the price may be to replace (3.17a) by a nonlinear

equation for ~, whose solution may have to be obtained iteratively. We have
gone to some lengths to discuss to what extent energy conservation or nonconser—
vation is an essential part of our theory because of our belief , elaborated on
more fully in the next lecture , that the status of energy conservation for the
limiting flow obtained as 1 4 0 has a dee-per connection to important qualitative
propertie. of the flow (Ref . 9) . As we have already indicated , (3.17a) is

likely subject to further enendation, and it may be -that there is no uniquely
simple and acceptable formula for ~~, in contrast to equations (3.14) and (3.13)

for P.

6. Stratified F3~ow •~~d Transonic Flow
Iaco~~r.ssible flows with a non-constant density are amenable 1o a treat-

ment like that offered here for the constant—density case. In this case we
introduce , in addition to p and u, a new dependent variable 9’ which represents
the vol~~e fr action of space filled at each point . Our hyperbolic conservation
lawe consist of

+ V.(Vpu) — 0 , (6.1)

(
~
‘Pu)

~ 
+ V.9puu) — — .7~’g~ (6.2)

end a conservation law for voliae:
(6.3)

In place of (2.2) we have the fundamental constraint

(6.4)

-
. 
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U before, we proceed for the first half time step from (~
‘, p, Pu) to

(~‘, ~ , ~~) by “solving” (6.1) , (6 .2) , and (6.3) for a time 1. To satisfy the
constraint (6.4) we solve

(6.5a)

with

O*(ci.O) . (6.5b)

Here

* *f*(O*)~~ 
0 — l  e � i

0 0 * � 1 • (6.6)

is given by

— 0*(ci) . (6.7)

We def ine

v* — f* (9*)dci (6.8)

and find ~ from

f~ 
—

~~~~~ 
+ A(~v*) (6.9)

In place of (3.17a) we have

f~ ~~~~~ -~~V(~v*) + A ( ~~v*) (6.10)

The algorithm in Section 3 is then a special case of (6.1) — (6.10) . Note that

in this section p refers to an intrinsic fluids property, whereas earlier in this

paper p refers to mass density.-: To get the algorithm of Section 3 from (6.1) —

(6.10), take the case where p — — — p0 in (6.1) — (6.10), and then replace
1p~

, ~~~ and ~ p0 wherever they -occur in (6.1) — (6.10) by p, ~ , and ~, respec-
tively .

The equation of state (2 .2) may be considered to be a special case of the

more general equation of state for a barotropic flow:

• P — P( p) . (6.11)

• Since we have solved (2 .2)  by solving a one—phase Stefan problem (3 .14) , one may

ask if (6.11) can also be obtained th rough the solution of a nonlinear parabolic

equation. One night even wonder if , for a polytropic fluid , the analog to the

one-phase Stefan problem is the equation for f low in a porous medium. The 
•

answer to this seems quite clearly to be “No. ” We shall indicate some analogies _ ‘_
~

i _ _ _ _ _
~
.5
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which may carry over to the transonic case , but we do not think these have any

practical computational value .
Let

(F) E sup{x~P(x) — (6.12)

In the hydrodynamic case, ~~ (~ ) — ~ 0. Then an analog to (3.14) may
be written as

— M ( 9 ( a) , v (cz)) (6.13a)

0(cg — 0) — (6.13b)

where
f(0 ,v) — max (e_~~.1(1~ ~ o) (6.14)

v(ci) — .~~~~ f(O( cz ’), v(cs’))dcl’ (6.15)

1 d~~
1

(~ )
In the cases of greatest interest ,~~

’ (0) Oand d~ 
is bounded and non-

negative . In such cases we can show that (Ref . 10) O and v achieve limits ~ and

as ci -‘ ~, that

— ~~~~~~~ — - (6.16)
I -

and that ~ and ~ depend monotonically on ~~~. Also , if has compac t suppor t , so

does ~ when we have a polytronic fluid

P(p) — Ap~
’ (6.17)

with y > 1.
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