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On the Applicability of Directed Fluid Jets tc

Newtonian and Non-Newtonian Flowse

by

P. M. Naghdi

Abstract. This paper elaborates on the applicability of a direct formulation
of the theory of jets to Newtonian and non-Newtonian fluid flow problems.
Following a general discussion of the nature of direct theories, we record the
basic equations of the theory of directed curves for any finitc number of
directors. Reference is then made to some recent results for incompressible
Newtonian viscous flows, including the problem of jet breakup. The major
portion of the paper is concerned with application of the direct approach to
an incompressible non-Newtonian Poiseuille flow in a circular pipe. The
results are compared to those of the three-dimensional theory and are found
to include the effect of "normal force" corresponding to the "normal stress"
effect.
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¥ Introduction. General background.

The objective of this paper is to indicate the manner in which a mechanical

Ty

i theory of fluid jets constructed by a direct approach (rather than from the

three-dimensional equations) may be used to treat certain one-dimensional
Newtonian and non-Newtonian flow problems which may not be tractable with the
use of exact three-dimensional equations. This direct approach for fluid jets

is based on one-dimensional models called Cosserat (or directed) curves (defined

in Sec. 2), which are curves in a Kuclidean 3-space endowed with additional
structure in the form of kinematical vector fields called directors. Clearly,
if full three-dimensional information is desired regarding the motion, deforma-
tion and distribution of stresses of the continuum under study, then there is
no point in developing a one-dimensional theory. In fact the aim of a one-
dimensional theory of the type considered here is to provide only partial
information in some specific sense: for example, in the case of a fluid jet or
fluid flow in a pipe, information concerning quantities which can be regarded
as representing the medium response effectively confined to a neighborhood of a
curve as a consequence of the (three-dimensional) motion of the body, or the
determination of certain weighted averages of quantities resulting from the
(three-dimensional) motion of the body.

The development of the basic theory of Cosserat curves is exact in the
sense that it rests on (one-dimensional) postulates valid for nonlinear behavior
of materials. By the nature of its construction, the theory necessarily satisfies
the requirements of invariance under superposed rigid body motions that arise

from physical considerations and, of course, is also consistent and fully {

invariant in the mathematical sense. Moreover, the development by the direct i

approach is conceptually simple and is free from the difficulties involved in

the approximations usually made in the derivation of jet theories from three-

dimensional equstions.
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It should be remarked here that the use of a direct approach based on
Cosserat curves in formulating one-dimensional theories does not mean that one
ignores the nature of the field equations in the three-dimensional theory. In
fact, some of the developments of the field equations by direct procedure are
materially aided or are influenced by available information which can be
obtained from the three-dimensional theory. For example, the integrated three-
dimensional equations of motion establish guidelines for a statement of the
conservation laws of the one-dimensional direct theories, and also provide some
insight into the nature of inertia terms and the kinetic energy that appear in
the latter theoriesf

Such difficulties as are associated with the derivation of one-dimensional
theories from the *hree-dimensional equations most often arise in the construction
of constitutive equations, and it is in fact here that the direct approach
offers much appeal. While an approximation to the constitutive equations in
the three-dimensional theory retains the cunstitutive coefficients which have
been predetermined within the scope of the three-dimensional theory, the use
of such results in a one-dimensional theory may in general lead to incorrect
results. In this connection, it should be observed that the constitutive
coefficients of the direct theory, in general, may involve contributions from
both the material propertics of the three-dimensional medium and the local
geometry of the body (here, the jet-like body)? The procedure employed in the
direct theory, on the other hand, leaves the constitutive coefficients unspecified
and while the determination of these coefficients may require substantial effort,

they can eventually either be related to those of the exact three-dimensional

theory or else be determined by suitable experiments.

*See also the remarks following equations (2.15).

*as an illustration, see for example Eqs. (62) of [4] in which the constitutive
equations for an incompressible, viscous, elliptical jet depend not only on the
shear viscosity buc also on the local time-dependent geometry of the cross-
section of the jet.
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As defined in Appendix A, a jet is a three-dimensional body whose boundary
surface has special features and to this extent it is similar to a rod although
the nature of the specified surface (or boundary) conditions in the two bodies
may be different. Moreover, the kinematics of jets and rods are identical and
it is only through the constitutive equations that a distinction appears between
rods and jets. In many ways the development of the theory of Cosserat curves

is similar to that of the two-dimensional theory of Cosserat (or directed)

surfaces which are relevant to fluid sheets and to shells. For a brief
historical account of the developments of the theory of directed surfaces and
directed curves and for further background information pertaining to a direct
formulation of fluid sheets and fluid jets, together with additional references,
the reader is referred to a recent expository paper by Naghdi [1]. The first
application of the theory of a directed curve to an incompressible Newtonian
fluid jet was given by Green and Laws [2] and further work on the subject was
contained in a paper by Green [3]. These papers are concerned with a nonlinear
theory of circular jets, which includes the effects of both surface tension and
gravity. More recent studies on the subject, which will be referred to below,
deal with temporal instability and spatial instability of incompressible Newtonian
viscous, circular jets [4,5].

The simplest theory appropriate for fluid jets that can be constructed on
the basis of a Cosserat curve comprises a material curve and a pair of directors.
This theory is suitable for many applications as is clearly evident from the
contents of papers of Caulk and Naghdi [4] and of Bogy [5]. The former deals
with the onset of breakup of a Newtonian viscous jet, while the latter is mainly
concerned with the related problem of jet breakup formulated as a boundary-value
problem in connection with ink-jet printing. A brief account of the developments
which utilize the theory of a Cosserat curve with two directors is discussed in

section 3 of this paper.
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Several technologically important problems in rheology, including the
swelling effect, are concerned with fluid flow in a pipe. With the hope that <
it will eventually be possible to treat such problems by direct approach, most
of the remainder of the paper is devoted to a Poiseuille flow which requires the
use of the next hierarchical theory of Cosserat curves, namely that comprising
a material curve with five directors. Instead of developing separately this
next hierarchical theory with five directors, it is just as convenient to con-
sider the more general theory of Cosserat curves having any finite number of
directors. Thus, in section 2 we construct the theory of directed curves with
L (Z2) directors and then briefly discuss the results of the special theories 4
when the number of directors are two and five, respectively. The kinematics of a
special Poiseuille flow in a straight circular pipe is considered in section 4 ' i
in the context of an approximation procedure whereby the position vector in the
three-dimensional theory is taken in the form of a Taylor series expansion and is
then assumed to be quadratic in the cross-section coordinates (see Eq. (Al18) of s
Appendix A). The kinematical results of section 4 motivate the choice of the
corresponding kinematical ingredients in the theory of a Cosserat curve with

five directors. The latti r is employed in the discussion of Poiseuillc flow in

a circular pipe by direct approach in section 5. It should be noted that this

solution includes the eff:ct of "normal force" corresponding to the "normal stress"
effect in the three-dimensional theory. 1In fact, the relationship between the

two effects is evident from the results of section 6, where the identification

of certain quantities in the direct theory is discussed.
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2. Directed fluid jets with L directors

Deformable media which are modelled by a material curve, embedded in a
Euclidean 3-space, together with L (LZ2) directors assigned to every point of

the curve will be called Cosserat curves or directed curves and may be con-

veniently referred to as Ry (K=1,2,...). All such directed curves have the
same material curve but the number of assigned directors differ for eachf RK.
Let ¢, the material curve of RK in the present configuration at time t, be

defined by its position vector E'relative to a fixed origin; and let € be a

convected (Lagrargian) coordinate identifying points along the curve. Further,

let L directors at r be denoted by the vector functions Ealdz--naN(al’aé""°N==1’2;
N=1,2,...,K), which are assumed to be symmetric in the indices Q0 e <Ol Then,

a motion of the directed curve RK is specified by

A(g t) d 3 (g,t) (N=1,2 K) (2.1)
r =r(g, ’ = s ’ T lacgeeey .
~ ~ hqlag. . .GN ~qlq2. . .aN

The velocity and the director velocities are defined by

v = é‘ 5 i 5 (2.2)
~ qudencgaN halaznuoaN

where a superposed dot denotes material time differentiation holding € fixed.

Also, the tangent vector to the curve ¢ denoted by 28 is given by
A
g
85 = 83(8,t) = 55 (5:¢) . (2.3)

Corresponding to the requirement in the three-dimensional theory [see (A7) of

Appendix A)] that a nonzero volume cannot be continuously deformed into a zero

volume, some restrictions on the directors d are necessary but we leave
Ty

these unspecified here. It is more convenient to specify such conditions as

they arise in special cases of the general theory.

The relationship between the number of directors L and the number K in

(2.1) which identifies the order of the hierarchical theory of Cosserat

1'In the absence of the directors, we merely have a one-dimensional curve which
can serve as a model for the construction of string theory by direct approach.

a
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K
curves is seen tc be L=g(N+l) so that
1
e g (K+1) +K = 53535 " (2.4)

This result is in agreement with a corresponding development of the kine-

matics of a jet~like (or rod-like) body from three-dimensional theory of continuum
mechanics contained in the paper of Green et al. [6], Green and Naghdi [7] and
Green et al. [8]. According to (2.4), with K=1 the number L=2 and the

Cosserat curve Rl==3 consists of a material curve and a pair of directors
attached at each point of the curve. Similarly, in the case of the Cosserat

curve Rz, the number of directors is five and so on.

We assume that the kinetic energy per unit length of the curve c is given by

K «o oo

T=pldv.v+ zylaz an

~ o~ o Ot Gy o e+ O
K O vee@ B eeeB
i Piiteg o Do “w ] (2.5)
Nel,Mel oo ety By -eBy
al--.aM
where p= p(€,t) is the mass per unit length, the coefficients y and
aqeen

dl-o.al\laloooaM *
y " are functions of € and t, y are symmetric with respect to

[~ B.oo a-ooa DN e 4
S BM y . ML o and are also symmetric with respect

indices Qe ¥ =

to al%oouaNand slaanno & B
e | o 1 IR
LG SR g il N =yr . (2.6)
al (+ 4

We define the momertum corresponding to the velocity v by

K Qiéorw
'g%=9[)£+ Zyl an ] b (2.7)
;2 N=1 i e |

per unit length of ¢. Similarly, momenta corresponding to director velocities

are

Qyeee K oyeeetByoce
= ., “Ny by By BM"Lp ] (2.8)
~ly e el M=1 l"'aM

per unit length of c.

»*
Although the coefficients in (2.5) are regarded as functions of both € and t, it
will be proved presently that they are in fact independent of t.

6.
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Consider now an arbitrary part of the curve c whose element of arc length is

1
I 2
ds = (a d = . . 2.
Bapl™i8 o 855 %8s o2 (2.9) ‘
%8 Let ¢ be bounded by €=, and E=E, (§l<§2) and define the following quantities: 1
: o P
{ 3 The contact force n=n(g,t) and the contact director forces P 1% aN

(g€,t), each a three-dimensional vector field, in the present configura-

pdlag. -odN

tionf; the assigned force f= f(g,t) per unit mass and the assigned director forces

[0 2o RPN (o 0, JR 1
1%2° % 172 o‘N(g t) per unit mass; the intrinsic (curve) director forces
By Oy« » vy 1°‘2"'°‘N

~& Sy %o Oy j
b n

=
I
=

l

E,t) such that (a are measured per unit length

"
A

33

of ¢ and make no contributions to the balance laws for moment of momentum and

energy; the specific internal energy € =e(€,t); the specific heat supply r =r(g,t)

aha

per unit time; and the heat flux h=h(g,t) along ¢, in the direction of increasing
€, per unit time. The contact director forces, the intrinsic director forces and 1
the assigned director forces are all assumed to be symmetric with respect to {
. indices R ]
The contact force n has the physical dimension of [MT—Z], where [M] and [T]
stand for the physical dimensions of mass and time. The dimensions of the vector
fields 1) lagaN depend on the choice of the dimensions for the directors.
For example, if each of the vectors d is chosen to have the
dimension of 1length, then the coeffi:?.ent:M 1% yalae”.aNBlﬁz.“BM
°’1°‘2"'°’N
in (2.5) are dimensionless and the vector fields P have the same
dimensions as n. A parallel remark applies also to the physical dimension of
the assigned fields alag---aN. In the present paper we choose the directors
to have the dimension of length.
In terms of the foregoing definitions of the various field quantities and

with reference to the present configuration at time t, the conservation laws of

1’Dependi.ng on the physical dimension specified for the directors, the field quan-

tities palaz o may also be referred to as the director couples. In fact, for

M=1 in (2. 1) , corresponding to the Cosserat curve R’l the terminology of both

the director torce vectors and the director couple vectors is used for p %
in the literature. A parallel statement holds also for the fields l. 105""




the purely mechanical theory of a directed curve QK are:

a % a S %
Ef.[ pds =0 , d_tj‘ oy OtNds=O Mzl oK) (2.10)
&1 &1
K ok eeis ;
a % h oe Oy & &
— plv+ T y W Jds = pfds+[n] P (2533)
dt J‘;' P hal...aN j‘gl ~ ~§l
g T P ' K a...aNB...B
d 2 i 1 Al 1 M
— ply Y By w lds
dt .[gl ~ Mol ~B, -+ By
Oy oo _1 O eee (o ANPOTas g
=f§2£pzl Wb M e TR 0 ()
e, 33° % €
| O K O alelis
%Igzp{z;xz‘-fx;x Zyl an + ¥ d xyl oLNV
£ N=1 TN Y i
K Oy eoe@yBeesh
Cr L gAY gk WL i
N=1,M=1 ~O1° "% ~By By
S Qoo
= [Pofrxr+a xgt Mg
..gl ~"~ nql...aN ~
(o' T
+[rxn+d xpl aN]§2 > (2.13)
B iy &1

where use is made of the notation
%
[f]gl = 0(8) - £(8, ) ,

The first two of the above equations, namely (2.10)., and (2.10)2, represent the

il
mathematical statement of conservation of mass (or inertia) while the remaining
equations in the order ‘isted are mathematical statements of the conservation of
linear momentum, conservation of director momenta and the conservation of moment
of momentum (including contributions from both the ordinary momentum and the

director momenta).

We also record here the law of conservation of energy for RK’ namely

K "0is
ad? .[gz[pg-i-T]ds = J.ggp{r-#-f. v+ % [,al aN.w ]ds
€1 &1 T T Nel” e iy
K Q. ooaaN §2
+n-v+gp W EN Gl (2.14)
~ o~ N=l~ hal-o.aN gl

The assigned field f in (2.10) represents the combined effect of (i) an integrated

contribution arising from the three-dimensional body force denoted by Eb’ e.8ey
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that due to gravitational acceleration, and (ii) an integrated contribution of

the stress vector on the lateral surface of the jet-like body# denoted by zc'

A parallel statement holds for the assigned fields éela2..'aN. Similarly, the
assigned heat supply r represents the combined effect of (i) an integrated

contribution arising from the three-dimensional heat supply denoted by res and
(ii) an integrated contribution of the heat supply entering the lateral surface

of the jet-like body from the swrroundirg environment, denoted by r,. Thus, we

may write

b

&,H:
AH)

; £fi°é°"aN - ﬁzlaé'..aN4-£:iab...aN
(2.15)

oo e o .
b e

The various quantities in (2.15) are free to be specified in a manner which
depends on the particular application in mind and, in the context of the

theory of Cosserat curves, the inertia coefficients in (2.4) and the mass

fo) Sieie
density p require constitutive equations. Indeed, £c’ @claé L and rc
; : o e
(or certain of their features), as well as Eb’ £b and r,» can be

identified with the corresponding expressions in a derivation from the three-
dimensional equations. Likewise, the inertia coefficients in (2.4) and the
mass density p may be identified with easily accessible results from the
three-dimensional equations.

Assuming smoothness, we may deduce the local form of the balance equations

(2,10)1’2 to be

X =D w iy Balyisak)

(2.16)

1
A=) = paZ;

*A definition for jet-like bodies is provided in Appendix A. Its lateral

surface is specified by equation (Allk).




Ol o 00 0¥
so that )\ and y 1 N are independent of t and are functions of g only. Then,

the remaining conservation laws (2.11) to (2.13) yield the field equations

on
e .
5 M=0 , (2.17)
Qb ooe
by oniigy
ap O o0 Qoo
P, 1 h
o A = TR TSR (2.18)
ad
K [0 P, P VI (o PR
By XD z(a onh N+——la——:‘£xpl aN)=9. > (2.19)
~ IJ:lAal.--dN ~ g o~
where
K o s
— . l .
£: E-,Y,- 2y an s (N=l,...,K) ) (2020)
N:l Aal-ooaN

Qpeecly  QeecOy  QqeeeOy, K al...aNBl...BM :

q =4 -y v- Ty o AWl e Kl . {2581)
"~ ~ ~ M:l '\61.'.BM

With the help of (2.16) to (2.19), the equation for conservation of energy can

be reduced to

. 3h
xr-xe-%g—+P=0 y (2.22)
w
v K. e K @qees ~Qly s oo
Pon.Z+ T’ L +5pt %—%ﬁ:o ; (2.23)
> N=1 e e

where P is the mechanical power. It may be noted here that within the scope of
the purely mechanicul theory, the expression (2.23) for mechanical work can be
obtained also by ccnsidering the rate of work by all contact force and director
forces and all assigned force and assigned director forces acting on the curve c
and its end points minus the rate of increase of the kinetic energy aﬁd by setting
J!

In the remainder of the paper we shall be concerned with special cases of

this equal to P d€; in this connection, see for example [1, Egq. (3.16)].

the above equations appropriate for directed curves ﬁ2 and Rl. In particular,

for the directed curve R,, the appropriate differential equations of the

10.
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mechanical theory consist of (2.16)2 with N=2, (2.16)1,3, (2.17) and

-a-g- +ag” = e (2.24)
a%:a + 1g%® = o (2.25)
2,3XE*%XEQ+%BXEQB+%XRa+E%QXEGB=2 . (2.26)

Also, the exprevt':sion for the mechanical power in this case is given by
P::2.%+Ea.za+zaﬂ.yaa+ga.%+gaa%%ﬁ 5 (2.27)

A special cese of the above general developmeﬂt with two directors, i.e.,
for a Cosserat cu;;ve R.=Rl, was first given by Green and Laws [9] in the context
of thermomechanics. A related development of a mechanical theory employing
three directors is contained in a paper by Cohen [10]. Further, aspects of the

basic theory with two directors appropriate for a Cosserat curve R are contained

in a more recent paper by Green et al. [11].

11.
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3. Straight Newtonian viscous jets.

We consider here a special case of the general theory of section 2 for a
directed curve Rl==ﬂ, which may include the effects of gravity and surface
tension, and go on to illustrate its applicability to certain Newtonian flows
and related problems of instability or breakup of straight, incompressible,
viscous jets of circular cross-section. The motion of the directed curve R is
specified by (2.1)l and by (2.1)2 with N=1. Also, the velocity, the director
velocity and the inertia coefficients in this case are given by (2.2)1, (2.6)1
and (2.6)2’3, respectively. The only kinetical quantities which occur in the
theory of a directed curve with only two directors are the forces* 2,2?,2? and
the fields £,£§. Tnus, in the context of the purely mechanical theory, the
local forms of the relevant conservation laws are the mass conservation

(2.16) the equations of motion (2.17) and (2.24) and the consequence of

1,3°
moment of momentum is given by (2.26) after omitting terms which involve EaB
d .
and a~aa/ 3¢
For a constrained theory of the directed curve R, we assume that each of

the functions n’EF’E? is determined to within an additive constraint response

so that
e e o =o, N R A
BrRtn W nmEN R N (3.1)
A Ny Ny

where n,n",p" are determined by constitutive equations and the constraint
responses E,Ea,EF are arbitrary functions of g,t and do no work. For the class
of fluid jet problems discussed in [3,4,5], the condition of incompressibility

can be shown to yield

':T (dydpas] =0 . (3.2)

Then, assuming that for an incompressible Newtonian viscous fluid at constant

*These are special cases of those defined in section 2 following (2.9).




yf temperature the constraint response E,;a Ea do not depend explicitly on the

]

kinematical quantities

e
o

-
b ag 2 (3‘3)

’ : it can be shown that [3,12]

1 A% ) E“=-qe°legsxg3 , =0 , (3.4)

where the Lagrange multiplier q is an arbitrary scalar function of g,t and ec"B

is defined by
e = e =0 3 e == =l . (3'5)

We now specialize the results of the previous section to straight jets
of elliptical cross-section. In order to display some details of the kine-
matics of a straight jet, including the rotation of the directors in a plane
normal to the jet axis, it is convenient to introduce a fixed system of
rectangular Cartesian coordinates (x,y,z) with the z-axis parallel to the
jet. Further, let the unit base vectors of the rectangular Cartesian axes
be denoted by (i;l)h) and introduce, for later conveniehce, the additional

base vectors

=£cos e+g‘sine s f2=-£sin 9+icose 3 23'='13 s (3.6) "

~

k where 0 is a smooth function of z and t. We assume that the directors are so

. restricted that they describe an elliptical cross-section of smoothly varying
orientation along the length of the jet and that at each z =const., the base

vectors & and & lie along the major and minor axes of the ellipse, recpec=-

A
tively. Then, the angle 6= 6(z,t), called the sectional orientation, specifies ,

the orientation of the cross-section at z = constant as a function of time. With

this background, we now restrict motions of the directed curve R such that in

13.




the present configuration at time t,

A
ErEREL 4 B m sy L G

i X (3.7)
¢l = ¢l(g’t) > ¢2 = @2(§,t) 5

where 2 and ¢, measure the semiaxes of the elliptical cross-section. In the
case of a circular jet, $1 = 05e

The complete theory of the directed jet of this section also requires the
specification of explicit values for )\,ya,yaa,g and '&a. In particular, the
values for )\,ym,yc"B may be obtained by an appeal to certain results from the
three-dimensional description of(‘ the jet. For this purpose, we may approximate
the vector functicn gx on the right-hand side or (Al) of Appendix A and write

«

this as
r=r+e® . ' (3.8)
~ r\a

Further, we choose the curve ed= O as the line of centroids of the jet-like
body and identify this curve with the curve c in the theory of a Cosserat

curve. This leads to the identification

i o S SR

v * L
A= p(a33)2 = I o glaetas®
1 v ; (3.9) ;
* = * 5 e =
W= [ o'efetuetad® -0, W% = [ g'gfe%fag'ad” !
a a :
where p  is the three-dimensional mass density in (All) and the determinant g
defined by (AS)3 is calculated from the approximation (3.8). - Again, with the
use of (3.7) and thet equations of motion (2.9)2 3’ the expressions for f and A%
’ ~ ~
*
: can be identified in terms of the integrated body force £ over the cross-
section @ and specified pressure and surface tension over the boundary
3 of @ (for details, see, for example, Caulk and Naghdi [12]). We observe

that since y¥=0 by (3.9)2, the equations of motion (3.8) and (3.9) assume a

lh.
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slightly simpler form. We do not record here the system of ordinary
differential equations which can be obtained for both inviscid and linear
visgcous fluids. These are readily available elsewhere and are also dis-
cussed in [1].

The development of constitutive equations for an incompressible Newtonian
viscous jet of both circular [3] and elliptical [4] cross-sections are readily
available in the papers cited, and the constitutive coefficients are identified
in terms of the shear viscosity and the geometry of the cross-section of the
jet. We do not elabérate here on these results and refer the reader to the
papers of Green [3] and Caulk and Naghdi [L4].

In the rest of this section we briefly describe some evidence of the
relevance and applicability of the direct formulation of viscous fluid jets,
especially to problems of instability of viscous jets which utilize the basic
equations of the theory of direct fluid jets of this section. For definite-
ness we consider the linearized version of the relevant equations, neglect the
effect of gravity aud discuss the onset of breakup of a viscous jet due to
surface tension, i.e., the so-called capillary instability. Although our
interest here centers mainly on Newtonian viscous jets, in order to assess
the nature of the prediction of the direct approach, it is desirable to con-
sider also the breakup of an inviscid jet since this enables us to compare
the results with the available exact analysis of the breakup of inviscid jets
due to Rayleigh obtained by means of the linearized three-dimensional equations?
For both inviscid snd viscous jets, Rayleigh derived the explicit result that
the jet is unstable only in the axisymmetric mode‘of disturbance. Inasmuch
as the direct theory considered here does not begin with the three-dimensional

equations, all modes of disturbance which occur in the present one-dimensional

*References to Rayleigh's papers on the subject are cited in [L].
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direct theory must be examined for stabilityf Thus, in order to allow for
the growth of a general disturbance which is not necessarily symmetric,

L f Caulk and Naghdi ucilizing the results of [12] derive in [4] a system of
linearized equations governing the small motions of a (nonrotating) incom-
) pressible inviscid jet of elliptical cross-section superposed on uniform
flow of a circular jet. They show that the solution to these linearized

equations can be decomposed into two modes, representing a symmetric and an

anti-symmetric disturbance in the shape of the free surface. The anti-
symmetric mode is stable for all wavelengths, while the symmetric mode is
found to be unstable over a range of longer wavelengths. In terms of a
description of growth in the unstable mode, comparison of the conclusions
is found to agree extremely well with the corresponding exact three-
dimensional analysis of Rayleigh.

In the case of a straight incompressible Newtonian viscous jet, through
a comparison with available three-dimensional numerical results (Chandrasekhar
[13]), the solution obtained is shown to be an improvement over an existing
approximate solution of the problem by Weber [14]. A related study by Bogy
[5], concerning the instability of an incompressible viscous liquid jet of
circular section, partly overlaps with the work of Caulk and Naghdi [4] on

the temporal instability of a viscous jet. Bogy [5] confines attention to

the symmetric mode of disturbance, and considers mainly the spatial instability
of a cemi-infinite jet formulated as a boundary-value problem. For additional

background on breskup and drop formation in viscous jets of circular cross-

section, see a recent article by Bogy [15] which containsvadditional references é

, on the subject.

! *If, in the context of the direct theory of this section, the stability analysis
' is confined through a priori assumptions to the symmetric mode of disturbance
only, then any conditions for instability are only sufficient.
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Kinematics »f flow in a pipe: A special Poiseuille flow.

We elaborate hLere on some three-dimensional kinematical aspects of a fluid
A : flow in a straight circular pipe, using the notation of Appendix A. We first 1
recall that for a Poiseuille flow in a fixed, infinite, circular pipe, the only
nonvanishing component of the velocity vector xf is its axial component and this
is a function of the radius of the cross-section. Moreover, the path lines are 1
straight and parallel to the axis of the pipe; and the boundary conditions
imposed on the flow are the vanishing of the axial velocity at the wall of the
pipe and continuity of the stress tensor at the center line of the pipe. We
keep this background information in mind in the development of this section. i
Consider now the kinematics of flow in a pipe of uniform circular cross-
section in the context of an approximation procedure in which the position 1
vector is approximated by the expression (Al8) of Appendix A. Let xi==(x,y,z)
be a fixed right-handed rectangular Cartesian coordinate system and let the
associated unit base vectors be denoted by 222;£ (see Fig. 2). We identify the

center line of the pipe with the z-axis and specify its cross-section of constant

radius a by
4y wa ~ (k.1)

It is convenient to consider first the kinematics of the flow at time t=t. o
* AL P A
Thus, recalling the rotation of Appendix A, let r (t)=r (o ,7), r(7)=r(g,7),
A e G0 : ; ;
Qu(T)f:Eu(g’T)’ gua(T)==guﬁ(§,T) designate the various quantities in (Al8) at
time 7; and, with reference to the present configuration at time t, we adopt

? = *( ) =r(t) =d (t) = a( ) v
i - - & e
| the notations r =r (t), r=r(t), d =4 (t), d (t Then, given th

Lo

* *
approximetion (A18) the position vector ¥ (7) and the velocity v () are:
£ (1) = 5(n)+ 6% (1) + o%Pa (1) (k.2)
AQESIOR S NORTS L INORE (4.3)
17.
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where v(T), 20(7), # (7) are defined as in (Al9). The position vector of the

~of

center line of the pipe and the velocity of a particle on the center line are,
* *

respectively, r (O,O,g,7)==£(g,7) and v (0,0,e,7)=v(T). Since the z-axis is

taken to be coincident with the center line and since in a Poiseuille flow

particles on the center line move with a constant velocity, we set

r(t) = 2(0k , v(r) = z(1)k = vk , (k1)

~

where ;(T)==Q(0,0,§,T), a superposed dot in (4.4) and elsewhere in this section
designates material time differentiation with respect to T and v is a positive

constant. At this point, without loss in generality, we identify the convected
coordinate £ of a pafticle with its z-coordinate in the reference configuration

at time L l.e.,
iy S0
8= Z(To) 1= Z(e »0 >§,TO) . (h-5)

Hence, for particles on the center line of the pipe in'the reference configura-

tion we have
(4.6)

We also choose the convected coordinates el and 62 such that they are, respec-
tively, % times the x and y coordinates of a particle in the reference configuration
at time To* Moreover, observing that the x,y coordinates of a particle do not

change in the special flow under consideration, we set

(r)) :
el v To " Eill s x(1)

Al 2
& : x(67,0 ,8,7)

(4.7)

y(r.)
92 - -_:2_ i xill ’ y(T) 9(91,923537) .

Integration of the second equation in (l&.h)2 and the use of (14.6)l results in

18.
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i & 7(71) = v(T-TO)4';(TO) = V(T-To)4'§ ’ (4.8)

; - § so that (h.h)l may now be written as

(1) = x(r,) +v(r-1 )k

I

le+v(r-r )]k . (4.9)

In order to obtain some restrictions on the functions Ea(T) and gaB(T)

*
in the expression for r (1), consider first the scalar product of (4.2) and

k, i.e.,
* —
r*(1) k= 2(r) + o' (1) - k+ 4, (n) - k i
+ (6924 (1) - x+ (824, (1) - k+2676°d (1) * k . (4.10)
Stk doo ~ 2Nt R 1
*
. In view of the symmetry of the flow, the scalar r -« k must remain unaltered ]

under the transformations
(a) x=-x, y=y ; (b) x=x, y=-y ; (c) x=-x, y=-y . (k.11)

Hence, from the symmetry transformations (4.11), in the order listed, we obtain )

1 1.2 1
6d) (1) k+260°, k=0 ,
0°d,(7) - k+26'6°d), k=0 (k.12)
0'a (1) - k+e°d (1) k=0 .
7 .i It follows from the above three conditions that 1
d,(1) k=0, d(r) k=0 , d(r) k=0 . (4.13) |




According to (4.12), the vector functions iiq(‘r) and %2(1) have no components
along the axis of the pipe and thus cannot contribute to the axial velocity

v*(w). Thus, in view of (1+.13)2 3> Ve set
o )

_gl('r) =ai , ge('r) =aj . (4.14)
Next, using (k.l&)l end (4.14), from the scalar product of (4.2) and i we have

] :
r(r)-1= ela+(el)2gll(7) i+ (92)2922(7) -i~+2elegc}‘12 o (4.15)

*
In view of the symmetry of the flow, the scalar e ':Lmust, remain unaltered
under the transformation (b) in (4.11) and the resulting expression when

compared with (4.15) yields heleeglz «i=0 so that
d.alr) o1 =0 . (4.16)

*
Similarly, by regquiring that r . :l be unaltered under the transformation (a)

in (4.11), we arrcive at
4p(r)-g=0 . (4.17)
It follows from (h.13)l, (4.16) and (4.17) that
a,(1) =0 . (4.18)
On substitution of (4.9), (4.14) and (4.18), (4.2) and (4.3) reduce to
r(1) = v(rer Jk+x(r ) +a(e'n+ 68g) + (61)%a () + (69)°a (1) (4.19)
and
v (1) = vk+ (91)2m+(92)2!22 , (4.20)

Again the symmetry of the flow requires that at points along the x-axis

* *
and the y-axis we have v (0,1,€,7) =y (1,0,€,7). This leads us to conclude that

20.
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Wy 1) = ?122(7) (k.21)

and (4.20) can be rewritten as
v (1) = vicr [(69)7 + (691w (1) (4.22)

From the condition that the particle velocity vanishes at the wall of the pipe,

il.e.,

v'(1) =0 when (1)2+(f)P=1 , (4.23)
we have

Wy (1) ==vk . (k.24)

Integration of (4.23) with respect to T yields

4, (1) ==v(r-r )k | (4.25)

where the reference value of Ell(T) at r_, i.e., 211(70), arising from the

integration has been set equal to zero. Recalling (4.20), in a similar manner

we also obtain
222(1) = gll(w) =-v(T-T°)E a (4.26)

We now summarize the foregoing results and record below the expressions
for the position vector and the particle velocity both in the reference

configuration at time Ty and at time 7:

r'(r,) = gk+a(@'i+e°y) = Gkexity) (4.27)




r'(1) = a(g'i+6g) + (g +v(r-r )L~ (612 - (£)%13
2 2
= xiryg g v(Terg )1 -5 - Gk
a a
2
= rsr~+{g-+v(T-TO)(l-§§)}h y (4.28)
vi(n) = (- (697 - (69l = [1- B2 - @ik = (1- EPIvk ,  (4.29)

it
where r=:[x2+y2]2 is the radial distance in cylindrical polar coordinates (r,9,z)

with associated orthonormal base vectors (Sr’Se’k)' It is clear from (4.28) that

2
2(1) = g+v(rr )1-55) (4.30)

a

which reduces to (4.8) on the center line of the pipe (r=0). It is clear from
(h.29)2 that (dVy(T)/aT)==O for fixed values of x and y and hence the motion is
steady. Also, using (4.29), we may calculate the rate of shear K* as ordinarily
defined for helical flow in the context of the three-dimensional theory (see, for
example, [16, p. 23]). Thus, since the expression (14.29)3 is a function of r

alone, we have

. - Ee )
¢ =|—V§—\='z‘—;r , (4.31)

where v;(1)==z(7)- i and the double vertical bar stands for the absolute value.
Figures 2 and 3 depict the position vectors Ef(w) and Ef(fo) for the

special Poiseuille flow in a circular pipe discussed in this section. These

figures explicitly indicate the interpretations associated with the functions

ga(T) and (1) as given by (4.14), (4.18) and (4.26). It can be seen from

Lop
Figs. 2(b) and 2(c) that fluid, which in a reference configuration at time A
occupies a cylindrical region such as that bounded by the normal sections at

gl and €, in the configuration at time 7 occupies the region between the
paraboloids of revoiution CA’D and EB'F. Figure 3 exhibits how a material line

such as BE in the configuration at time Ts deforms into a portion of a parabola

22.
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indicated by B’E.
Before closing this section, we indicate that the flow characterized by
(4.28) is isochoric, i.e., the volume of each part of the body remains unchanged.

With the use of (h.28)l, (AS)l and the notation (A2)3 of Appendix A, the

-

> . o B
scalar g° which occurs in (A7) is

e

1’
g* =§lxge-g3=a2 , (4.32)

which is a constant. Hence é% g

S

*The expressions for the base vectors g, are recorded in section 6; see

B T ——

Egs. (6.5). o 3 |
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Se A Poiseuille flow in the theory of directed jets.

We discuss here a Poiseuille flow for an incompressible viscoelastic fluid
in a circular pipe employing the theory of a directed curve Rz in the absence
of the effects of gravity and surface tension. The motion of R2 is specified
by (2.1)l and (2.1)2 with K=2. It is convenient to consider first the motion

of R, at time r=t. Thus, we write

2

£(1) = (61, a(n) =8 (e, d(n) = & (gn) (5.1)

~af

and, with reference to the present configuration at time t, we adopt the

notations

re el 5 B B8 L, A glr) . (5.2)

As in section U4, again let xi==(x,y,z) be a fixed right-handed rectangular
Cartesian coordinate system but here we use the notation e for the unit base
vectors in place of i,i,h.

Let the curve c of ﬁ2 be the center line of the pipe, and identify the
latter with the z-axis. Also, we choose the directors ga(w) such that they
describe the symmetries of the flow. In a Poiseuille flow the path lines are
straight and parallel to the axis of the pipe, the velocity of the center line
is constant and the particles located at the wall of the pipe must remain
there. With this beckground and guided by the kinematical results of section 4,

for the motion under consideration we set

r(1) = ot ) +vlr-r)es » z(1,) =gy » 4 (r) =ae

(5.3)

I
10

4y, (1) = dyp(7) =-V(T-To)g3 s 495

where r(TO) is the position vector of the fluid particle on the center line in

some reference configuration at time %% and it should be noted that for the

2k,

P ——

ey




sk T

motion- (5.3) the tangent vector 85 = &3¢ By (2.2), the velocity v and the

director velocities at time T are

Blt) = vep My =W, =-ve,
(5.k4)
oSt g

With the above choice of kinematical ingredients, it is clear that the motion
is steady.

To complete the theory of the directed curve ﬂ2 for an incompressible medium
(see the discussion at the end of Appendix A following (A26)), we assume that

each of the functions

E,Ed’gd’ndﬁ’gda (5.5)
in (2.27) is determined to within an additive constraint response so that
SR A
R R R L
A (5.6)
ofF 0 g P B8
where
A
G, o (5.7)
are determined by ccnstitutive equations and the ciuastraint responses
PR P P g (5.8)

are arbitrary functions of g,t and do no work. We assume that the constraint

responses (5.8) do not depend explicitly on the gradient of the velocities

v(T), za(T), w (1) and since they are workless we have

~af




=i

¥

H'i,+3—a'%+;a8'!qa+§u'm+sua'%=o 2 (5.9)
where for convenience we have introduced the notation
()'=s2() . (5.10)
g
Next, we introduce a set of Lagrange multipliers
g s q¥ s gl gthe giee (5.11)

and note that each of the multipliers q, §Y= (ql,qe), an: (qll,ql2, 21,(122),
etc., may depend on € and T. Then, incorporating the conditions (A28) to (A31)
of Appendix A in (5.9) by the usual procedure, after a lengthy manipulation we
obtain the appropriate expressions for the constraint responses (5.8) in terms
of (5.11) and the kinematic quantities (5.2) and their spatial derivatives.
Since some of the expressions for the constraint responses are quite lengthy

and, in any case, will not be needed in the present development, we do not

record them here. We note, however, a typical expression, namely

qM=gM | (5.12)

13=1|

=-e®(lqd xa_+q¥a xd _+29¥Ma_ xa
Tlaag X Qg a g X dyp * 20 ey X dyp]

In view of the choice (5.3), most of the terms in the constraint responses

s NI

vanish for the special Poiseuille flow under consideration; and, in particular,

the expression (5.12) reduces to
E =-q3223 ~aLv('r-'|'0)qY‘<~elY b (5.13)

The response of an incompressible viscoelastic directed fluid jet may
AN A
depend on the ertire history of the functions r ’Sa ,d : in (5.1) and their

*
derivatives. As in the corresponding constrained three-dimensional theory, we

assume that the quantities (5.7) are determined by the history of

Wr) = (55(1)sdo(7),8 g (1), ()i (1) - (5.14)

AN A
*While the derivatives may be calculated from the histories of r,d ,‘g?
if the latter are sufficiently smooth, their inclusion is for e ”fic gness.
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It is clear from (2.3) and (5.3)2 3.k that for the flow under discussion
I

e

the above kinematical quantities reduce to
= u(r) = (5,88 0-v(7-7 )e;,0,0) . (5.15)

’ A
! A typical constitutive equation, for example that for n, may be written as

t
n =% (u(r) . (5.16)

But, since the argument U(t) of the functional in (5.16) has the form (5.15),
it follows that the right-hand side of (5.16) can be regarded as a function of
v and we have

£= Q(v) 5 (5.17)

with similar expressiohs for all other kinematical quantities. We require that
all constitutive functionals or constitutive functions, such as those in (5.16)
and (5.17), vanish for v=0. This requirement is similar to the normalization
of the constitutive response functionals in the three-dimensional theory.
Referred to the orthonormal basis Sd:=(lﬁgfb)’ the functions (5.5) can be

expressed in terms ¢f their components in the form

o o o o

E::ni'eVi A ="~iE¢i 2o =p'is4'.i. ? (5.17) !
P - 0B s gda=pa-aiii 7

~ LS iNi

s e —

: a_ aB _
Also, since the effect of gravity is neglected, £b==9, Eb"g’ ﬁb -Q‘and in the

notation of (2.15), ,» we have
L

b ; a _ ap _ ,0B
A PR AR b ST e (5.18)

The quantities (5.18) may be regarded as representing the forces that must be
supplied by the pipe wall in order to sustain the assumed flow.
As a consequence of the symmetry of the assumed flow, an examination of

the equations of motion suggests that we put
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! n, =n, = O
|
B el e e St I L e
i j N s RS, a0 3ol B wi, SR ¥0 4
(5.19)
2}2 o h?l 4, 0 A}Z 5 g?l =0 .
11 11 22 22 11 11 22 22

P =R L s

Wop MmN "™ Per T Poa

Using the assumptions (5.19), the functions (5.5) can be written in terms of

their nonvanishing components as

e § oo 7 i g
~ g 3&3 & E 1 ﬂolnll 2 2 i “'2'\2 ? Tr'l ﬂ‘2 ?
(5.20)
S 8 Sl g0
TPah » & TRah s Va4 =Py
and
M Les L Ak LN
Rt 3 ¥ 2
(5.21)
o SRR S i SRR
B PR SELgy AR BFRagr

N

Corresponding to a uniform "pressure" gradient in the fluid, we also assume that

an3/a§,_as well as ap%l/ag are independent of €, i.e.,

dn 3151 f
. Bl " A - ; ’

‘Also, an examination of the equations of motion (2.24) and (2.25), together

with (5.19) to (5.21), easily reveals that

g b

SR 2 o
‘42=z.3=f.1 =0 ’ (5‘23)

"
=

11 22 22

ll -
Fuog ™ Woug S by W B g ® 0




2Eg
1 1 2 2 1 2
Mo=Mq& 5 M =Me 5 Ly =L, (5.24)
| 11 = a RC ¥ 1LE 150 R
M M M 3% + A a8 5 -

In view of the assumptions (5.18), the constraint responses further

simplify. For example, since n,=n_,=0 by (5.19), then the Lagrange multiplier

L T2

qY in (5.13) must be zero. In this way, we find that the final expression for

the constraint responses are given by

1 = -gae
—Saad S
T o=-aag , T =-dag, (5.25)
=] . 11 =2 22 qek 22
P =-2aV\T-TO)q e 5 B =-2av(1—70)q & » 4 =4

and

=L = =ppl s =12 =0l
m =mn =1

R e
pll =-a2q o : 522 =-32q22e ’ (5.26)
=2 =2 q
A g

In view of the assumed forms of 232? and E?B in (5.19) and (5.20), it is
at once apparent that the conservation equation (2.26) is identically satisfied.
Since the nonvanishing components of the response functions (5.7) have the forms
(5.17) and are therefore independent of €, it follows from (2.17), (2.20) and

(5.18) that at time t

(5.27)

Recalling (5.20)l and (5.25)1, from (5.22)1 we obtain 3q/3€ =0, which upon

integration yields
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q = A (t)g+A(t) (5.28)

and hence

ny =-at(ay(t)g+ay(t)) , agy = afA(t) (5.29)

where the coefficients Al and A2 are functions of t only. Consider next the

conservation equations (2.24) and recall that q%= ¥ specified by (5.18)2.

Since 1{:0’ and Sd are independent of € and since ™ may be a function of g, the

equation for a=1 in (2.24) after using (5.20) and (5.2h)l can be written as
1
)

dfn o ey
3 +M’-1 = : (5.30)

SRR

| Now with the use of (5.2‘5)2 ), and (5.22)2 and by argument similar to that which
’

resulted in (5.28) and (5.29) we obtain

pry =-2av(t-t )a't = B (t)g+B,(t) Ga)
{
and %
AN
M'%l = "%l- Bl(t) -a[Al(t)g-Az(t)] . (5.32)

Awin s

Since the left-hand side of (5.31) vanishes at t=17, for all f, it follows

that Bl('ro) = 132(10) =0,
Again, in a similar fashion, from (2.25), (5.23), (5.24), (5.26) and

e - e
.

(5.31) we obtain

2 -11 :
S (t-1.)B,.5 = B (£)E+By(¢) (5.33)

2v 13 iy A1 % TR
5 (et 3 = TF (e WS- B(8) A3 = 45 -

b The expressions (5.29)1 09 (5.31)1, (5.32) and (5.34) involve the four undeter- :
s .
mined functions Al’Az’Bl ,B2. We determine these in the next sections by an J

appeal to corresponding results in the three-dimensional theory.
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Before closing this section, we observe that consistent with (5,.22)1 > )
b
and corresponding to uniform "pressure” gradient in the fluid, the difference

in the values of n_ at any two different sections of the pipe is
2

2
An, = n -n =-a A AE ,
3 7 (Lo 5 Il 1
5% 7186 (5.35)
HEs §2 2 gl
while the difference Apj.'l is given by
{03 1 i
AP = P-l' -p%ll - BlAg Ap%l('ro) =B (r )ag=0 . (5.36)
§=5, =€)

Afy o P




6. Determination of the unknown coefficients and the constitutive response
functions in the solution of section 5.

This section is concerned with the determination of the unknown coefficients

Al,A2 bl,B2 which occur in (5.29)l 5 and (5.31) to (5.34), as well as the relation-
b

shlps between the constitutive response functions (5.7) and the corresponding
resulté calculated from the three-dimensional solution of Poiseuille flow. We

recall that the final results in section 5 make use of the fact that the gradient

of the axial force n. along the center line of the pipe is uniform and this cor-

3

responds to a uniform "pressure' gradient in the fluid. A result of this kind,

if necessary, enables one to identify the coefficients A, and B, in (5.35) and

(5.36) experimentally after an appeal to the expression for the resultants n and
por in (A20). Here, however, we discuss the determination of the unknown functions

Al’ 2 l’B2 through a comparison of certain expressions in section 5 with cor-

responding results in the three-dimensional solution of non-Newtonian Poiseuille

*
flow.

Preliminary to our main objective, we need to recall certain expressions

and results from the three-dimensional theory. Let (e s€ ) denote the unit

~’%3

base vectors of cylindrical polar coordinates (r,8,z) and recall the relationships

cos Q e, +s8in @ e

L}

% L e e L R A SR
(6.1)
e, =cos Be -singe, , & = sin @ Er;+cos ) ey

where as in section 5 the unit base. vectors (Ea’fe) ar- used in place of (i,j).
For the axisymmetric probleﬁ under discussion, the Cauchy stress tensor referred

to (Sr,ge,ga) can be written as [see (A9) of Appendix A1

*An account of non-Newtonian Poiseuille flow may be found in [16, Sec. 19].
The solution to such viscometric flows within the scope of the theory of
viscoelastic fluids was originally given by Rivlin [17].
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e ®e +T e Qe , (6.2)

Y e s Tl oy

where T are the nonvanishing physical components of the

Q‘r)’TQ'z>’*<ee>’T<zz>
stress tensor T in cylindrical polar coordinates. For the three-dimensional

Poiseuille flow, these stresses are given by [16, p. 20]:

g 5 * * ] * * n £ *
Faa - VIR Lrplf g Bm i b,
T T (k")
<rrs <ee> % K 2
(6.3)

g g e
<33> <ee> %2 ’

7 _ 1 /\*(5 f*)ci + f*+ *

<r> "] ¢ % it R

* * * .
where 1 1is the shear stress function, oy and o, are the normal stress functions,

) Ax *
the functions q, are related to G2 (m=1,2), by

¥, *

oK) = anlr* ()] = op(s™) » m=1,2) ,

* *
the rate of shear k¥ is defined by (4.31), the scalar q- can be computed once
: *
the stresses are known on 8 cross-section z = constant and f , called the

specific driving force, is a constant given by

* F*
e

2 b
W i (6.4)
*
F =2n_fo['r<33> -T<33> Jrar .
2 - %

¥ ¥, % * *
The three-dimensional viscometric functions = 10730, and the scalars q ,f

Z Z

correspond, respectively, to 75010, and q,f of [16, Sec. 10]. For further

. : *
properties of these functions, including the existence of the inverse of t ,
see [16, Sec. 11]. 1In particular, we note that by virtue of a normalization of

the constitutive respunse functionals, the viscometric functions all vanish

e T .




*
¢ for v=0 (and hence for Kk =0).

Using (As)l 5 along with (A18) and (4.28), the base vectors g; and their
F) ~,

reciprocals gl are calculated to be

§
g = ail-'dv('r-'rol)el% = a(cos e, -sinbe, ) -2v(r- e ) -fcos 923 5
& = ase-zv(T-TO)92£3 = a(sinesr'rcos eie) -2v('r--ro) %sinesa > (6.5)
87 33
and
gl = %31 % (cosegr-smege) . gg = %fz = ai .(sinegr+cosﬁge) s
(6.6)

3

o 2 fhne e 2 4
g == (-1 ){e7e +0 92]+53 t e (7 To)rfr+-33 .
Then, by (A10) , the vectors ™ at time t may be expressed as
1.’5 "

ik

ZZ = CcOoS8 BT<m‘>'e.z‘r-smeT<e e +cos eT<r3>33 5
L7°_ sineT e _+cos@T e +8in@®T e (6.7)
8 % QXr>ar <0>~0 <3>3 :
L ‘ 2
= [ev(t 'ro)rTqr>+a T<r3>]§r+ [ev(t To)rTq3>+a <33>]e
Clearly with the use of (6.1)l 09 the above results may also be expressac
relative to the basis (e €1280983 Y
Now with the use of (6.7), the definitions (A20) and following a lengthy
calculation, the resultant forces at time t are:
* A* 5
n = n{a (f g£+q ) r(a +r A -2rg,)drle, , (6.8)
~ 2 ~3
ik R A
‘ B - LR e SE S
! (6.9)

| 4 s | 1 A% - 2* »
| w, = m[-_[: S oar+ef +v(t-t) F+al ,

3k,
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2 a b L4 * (6.10)
YL AT 1 r -a Ax * £k
P, "Po=% If -1;+V(t-fo)[aj; e o dr +€f +v(t-1)) S-+q 1} ,
i ,
Ell = 222 '—"E a2f 23 , 212 L E21. = g 3 (6-11)
1) 3 4 * ah
p -g | [ = al+r oeldr+1;(f g+q)-V(t-TO)f e o
(6.12)
- -
e ke
Also, from (A24), (6.7), the expressions for yﬁ,x&?,xzde at time t are:
¥
M =-maf & (6.13)
1 1 3 2 1 2 &1 Ax % %
M= Me s M= M e s M) = M =na[-_[o;cldr+§f +tq] , (6.14)
and
3 B s 12 .21
MM =T ey s M e =0 (6.15)

It is worth observing that while the motion is steady both in the solution
via the three-dimensional theory and the direct theory, and while the three-
dimensional stress field E(x,y,z,t) is also steady, the expressions for E} in
(6.7) and for the resultants 2,2?, etc., obtained from (A20) involve the time t
explicitly. This is due to the fact that the vector E? in (6.7) and hence the
resultants 232?, ete., are calculated relative to the convected coordinate
surface € = constant which varies with z and t, as can readily be seen from
Fig. 2 or Eq. (4.30). 1In this connection, it may bé recalled that the base
vector g? which is normal to the surface g = constant varies with time but is
independent of both € and z.

Now the coefficients A, and Bl in the solution of section 5 may be

1

e




i

§
! !
|

determined by requiring that the difference resultants An3 and Ap%l in

(5.35) and (5.36) be the same as the corresponding expressions calculated

from (6.8) and (6.10)3 j+ In this way, we obtain
b

S * 4 —TE at ¥*
B, et ., B =73 v(t '\’o)f ’ (6.16)

A
By (5.29), (6.16)l and the fact that n3(0) =0, in the solution of section 5, we

o Comparison of this with the corresponding result

calculated from the three-dimensional solution yieids

have n3(0) = 53(0) = -a2A

A2 :—‘n‘q . (6'17)
It remains to identify the coefficient B2. This can be effected with the use
of (5.31) and (5.33, and by comparing the results for p%l and p%%3:
B = 1% o(t-r )y . (6.18)
2 2 o

An examination of the various results also reveals that the Lagrange multiplier
qll=:q22 which occurs in (5.22) is not an independent quantity and is related

to the multiplier g in (5.25) by
qll - % q - (6019)

Having made the identifications (6.16) to (6.18), the constitutive
response functions (5.7) may be also identified from the corresponding
expressions in the three-dimensional solution. We omit details here but note,

A
in particular, the =xpression for n

iven b
3 given by

A 2002 M M

which clearly relutes the effect of "normal force" to the "normal stress"

effect.
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Appendix A

We record in *“his appendix certain details of an approximation procedure
[6,7,8] whereby the basic equations governing the motion of jets (or rods) can
be derived by integration from the three-dimensional equations of classical
continuum mecharics. Although the integrated equations have been obtained
previously (6,7,3] for any number of directors, we record here only those which
correspond to a directed fluid jet with five directors. We also record the con-
straint conditions appropriate for the incompressible Poiseuille flow discussed

in the present pager.

First we define what is mednt by a jet-like body. For this purpose,
consider a finite three-dimensional body ® in a Euclidean 3-space, and let
convected coordinates ei (i=1,2,3) be assigned to each particle (or material
point) of 8. Further, let+ {f be the position vector, from a fixed origin, of
a typical particle of ® in the present configuration at time t. ‘Then, a motion
of the (three-dimensional) body is defined by a vector-valued function gﬁ which

*
assigns position r to each particle of B at each instant of time, i.e.?

2= (eh,6%,0%t) . (A1)
We assume that the vactor function £* -~ a l-parameter family of configurations
with t as the real parameter -- is sufficiently smooth in the sense that it is
differentiable with respect to ei and t as many times as required. It is

convenient to set @ = £ and adopt the notation

o- = (e%8) , o = g (A2)

We shall be concernei here with material curves (not necessarily straight lines)

+The use of an asterisk attached to various symbols is for later convenience.
The corresponding symbols without the asterisks are reserved for different
definitions or designations to be introduced later.

§Recall that when the particles of a continuum are referred to a convected
coordinate system, the numerical values of the coordinates associated with
each particle remain the same for all time.




e

s e an e s

in ® defined by the equations %= ¥

(), (a=1,2); the equation resulting from
(1.1) with ea==aa(g) represents the parametric form of this material curve in
the current configuration and describes a l-parameter family of curves in
space, each of which we assume to be smooth and nonintersecting. We designate
the space curve aa==0 in the current configuration by c¢. A point of this curve

is specified by the position vector r, relative to the same fixed origin to

*
which r is referred, where
A A¥%
£ = I;(E,t) = !; (O,O,E,,t) ) (A3)

with € belonging to a finite interval [§1’§2]' Let El’ﬁe and 23 denote the
unit principal normal, the unit binormal and the tangent vector, respectively,
to the curve c. At each point of c¢ imagine material filaments lying in the
ﬁorhal plane, i.e., the plane perpendicular to 23, and forming the ncrmal cross--
section’ ah. The surface swept out by the closed boundary curve aah of an is
called the lateral surface. Such a three-dimensional body is called jet-like
if the dimensioas in the plane of the normal cross-section are small compared
to some characteristic dimension L(c) of c (see Fig. 1), e.g., its local radius
of curvature l/K, or the length of ¢ in the case of a straight curve. A jet-
like body is said to be slender if the largest dimension of' (1,n is much smaller
than L(c). If ah is independent of €, the body is said to be of uniform cross-
section, otherwise of variable cross-section. Let the (three-dimensional) jet-

like body in some neighborhood of c be boundary by material surfaces €= gl,

=g, (indicated in Fig. 1) and a material surface of the form
r(e',6%,8) =0 , (Ak)

which is chosen such that € = constant are curved sections of the body bounded

*The normal cross-section of a jet is a portion of the normal plane to the
curve ¢, i.e., the intersection of the body and the normal plane.

p—

e A w8 M0

St ke B = e




by closed curves on this surface with ¢ lying on or within (Ah)t+ In the
development of a general theory, it is preferable to leave unspecified the
choice of the reiation of the curve c¢ to the boundary surface (A4). 1In special
cases or in specific applications, however, it is necessary to fix the relation
of ¢ to the surface (Ak4).

We recall the formulae

N¥
B TR R By R det(g; ;)
: (a5)
i i i ij i i
e T
1
av = g2d61d92d63 (A6)
and further assume tnat*
1
& = [gge] >0 - (A7)

In (A5)-(A6), g; #nd g} are the covariant and the contravariant base vectors at

J

is its conjugate, 61 is the

‘ J
Kronecker. symbol in 3-space and dv the volume element in the present configuration.

time t, respectively, gij is the metric tensor, gl

*
The velocity vector v of a particle of the three-dimensional body in the

present configuration is defined by
* . %
v o=r (a8)

where a superposed dot denotes material time differentiation with respect to t
holding ei fixed. The stress vector E'across a surface in the present configura-

*
tion with outward unit normal y is given by

++For most purposes,we could assume_a less general form for the lateral bounding
surface of the body and write F(gl,8°) =0 instead of (Ak4).

*The choice of positive sign in (A7) is for definiteness. , Alternatively, for
physically possible motions we only need to assume that g%¥()w1th the under-
standing that in any given motion [ 53] is either >0 or < 0. The condition

(A7) also requires that @l be a right-handed coordinate system.




* -1 * ik -1 4 k
e 2mi _ 34 2 4l
e T e ¢ D HE LR R R (A9)
where
i Lij 3ij * * 4 *i ij 1 j
T B E Y e, T =g, (A10)

2 is the symmetric Cauchy stress tensor and ® denotes the tensor product of two
vectors. In terms of quantities defined in (A5)-(A10), the local field equations
which follow from the integral forms of the three-dimensional conservation laws

for mass, linear momentum and moment of momentum, respectively, are

(A11)

i 5 o % i
L 4P =gy L EXE =0,

Ll |

where p* is the three-dimensional mass density, ff is the body force field per
unit mass and a comma denotes partial differentiation with respect to ei.

Let @ (not necessarily the same as the normal cross-section an defined
above) denote the curved section of the surface g = constant bounded by 3@, i.e.,
a closed curve whichk is the intersection of the surface g = constant and the
surface (AL). Further, let the points €, and E,, with € <g,, form endpoints
of a segment of the curve (A3) which we denote by ?, and designafe by al and Gb
the particular sections associated with gl and §2, respectively. Now consider
an arbitrary part of F* of the three-dimensional region occupied by the body
such that: (i) ﬁf contains @; and (ii) the boundary aFr of F# consists of the
sections @) and G, and a portion of the surface (A4) vounded at each end by
aal and aaé. A body so described is called a jet-like body and the part P*
forms a portion of such a body.

The mass m* of a portion of the jet-like body is given by

n'(P) = ‘[p* P dv = J},* o'etagtasay . (A12)




P e

*
where p is the mass density of the (three-dimensional) continuum and dv is the
element of volume ir the present configuration at time t. In terms of the
segment P of the material curve (A3), the same mass has the alternative

representation
* R B
m =j_jpgdede]dg=j'p(a33)dg=fpds=m(P) 7 (A13)
PYa (o4 P
where the density p per unit length of the curve (A3) is defined by
3 *4 1 2
x=p(a33) =ngdede A (A1k4)
Qa
In view of (All)l, we note that
A=0 . (A15)
The curve (A3) is fixed in the jet-like body by the condition [6]
* Lo 1.2
fpgedede=o " (A16)
a

As in the paper of Green and Naghdi [7], we assume that for the jet-like
*
body described in this appendix, the position vector r in (Al) can be repre-

sented by the expansion

r (67,0 ,§,t) =r+g 0 leaé.--e Nd ) (A17)
i K i S o :
where r and 4 are vector functions of €,t. In (Al7), the vectors

AR :
2“1“?"’“@ are completely symmetric in the indices @) 2050050 the summation
is over all values of @& ,0,s+++say and N=1,2,3,... We assume that (A17) may
be differentiuted as many times as required with respect to any of its variables.
In the rest of this appendix we consider a special case of (Al7) and restrict

attention to the approximation

rN(8,6%,6,8) = £(6,0) + 0% (8,8) + o%ePa o (6,8) (A18)




Using this assumption in (Al), (A5) and (A8), we obtain

AR AL 6 TR i JP
(A19)

= B = (¢ P W] as, Vi
= + = + + =
g da 29"d s B a o d 9 0d s a r

where a piime denotes partial differentiation with respect to €. We also

recall the following definitions for the resultants E’E?’E?’H?B’Qeﬁz

1 1
n=[ Tedlad® , pf- ] rheled , p¥- | Defuses”
4 g (A20)
n® - oo, o[ %Paslas® , pf - j' 1e%Pag’ a0’

.

i a
The equations of motion in terms of the resultants (A20) are obtained by

suitable integration of (All)2 3over a section @ and are given by (for details
b

see [6,7]):

an an?
_ . ~ o _ o, , of°
e TN, MmN | (Aﬂ.)' Xl
BP0, ) 1
= i = : A
SR e LA e T g |
o o s ’ af _
SRS A P SUne At T i |
provided that '
* * d. D S
Af=j‘pg dede+‘[ [(de eT)+T(xde rde )l , !
e R
|
L ‘ ) !
¥ - I e“p g’ dede +_[ e“[(deegl-delf) +33(x & et (A24)

Mo - j %P, ng dede +j' 6%P[ (2T - d9112)+T3(x agt - ztae?)]

and

W - ] o *ofactad , WPV - Joe SoePaVelagias® (A25)




where xa= A ga and )\ is a vector tangential to the boundary surface (A4).

If we adopt the approximation (Al8) and identify the vectors Ea’gaa and ;
the position vecter r in (A18) with the directors in (2.1)2 and the position |

vector (2.1)l of the curve c, then the development of this appendix and the
corresponding results given in section 2 are formally equivalent. In particular,
comparison of the equations (Al5) and (A21) to (A23) with those in (2.32)
reveals a 1l-1 correspondence between the two systems of equations provided we
identify the expressions (A24) to (A25), respectively, with the assigned fields
and the inertia coefficients in the theory of a directed curve with five
directors discussed at the end of section 2.

Before closing this appendix, we discuss an appropriate constraint con-
dition arising from incompressibility when the position vector is approximated
by (Al18). For a three-dimensional incompressible medium, the mass density p*

is constant and by (All)l the condition of incompressibility at time t=t is
L (ggegl=-0 (A26)
ar ~l§~3 4

1
where g° is defined by (A7)l. . If we confine attention to the special case in
which the position vector is specified by the approximation (A18), then with “he

use of (‘A5)l, we find

s% = [gld~9581+9”{[d d.d ]+2e""[dwa3]]

N A Y ! (1h ’
670" ([4d,d) 1+2e*"(a d) 4 ']

+ b, .2.3]1“29 otev{2ld dq4,4)]
e a 4,11 + be%ePere¥la japar ] (A27)

Av

where e"¥ and the operator ( )’ are respectively defined by (3.5) and (5.10).

5 After substituting the above result in (A26) and following a routine calculation,
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we obtain the following conditions

d
dar [dléeia] o
AV iy
dT [ d ]+2€ [d)\w\’a?)] =0 ,

—-[g‘lged'yhe“" ([aa, a)+laa arl+ala 1}=0 .

Iidei T St T Stats

pvoa /
™ 5 fla vdna]+[d g,na]+[dgma B]+[d ged]+[d ’ﬂdB]

+ (i‘apfmo%” =0 ,
e""—d-[[d a a4’ J+[da d a’ J+la, a 4’ ]
dr “~ypo~aB” T ~yp~Bo~allt T ~Bp~Tio~ary
" Uagtrotin " agtpolin)
* Iy dnoteyt = 0 -

On the basis of the 1-1 correspondence noted in the preceding paragraph, we
may employ the five conditions (A28)-(A32) as constraint conditions for the

special motion of *he theory of a Cosserat curve of an incompressible fluid

discussed in seztion 5.’

(A28)
(A29)

(A30)

(A31)

(A32)

R TReTpp——




Figure 1: A jet-like body in the present configuration showing the curve ¢
with position vector r (defined in Appendix A) as the line of
centroids and the end normal planes &= §» €=65- Also shown are
the unit principal normal 85 the unit binormal a5 and the tangent

e ‘

vector 2'3 to the curve c.
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Figure 2. A spec’al Poiseuille flow in a circular pipe: Fig. 2(a) depicts a
reference configuration at time 7 ; Fig. 2(b) depicts the corresponding
flow configuration at time T; and’ Fig. 2(c), along with Fig. 2(b),
indicate the locations A’ and B’ of particles on the center line of
the pipe wkich at time 7, were at A and B, respectively.
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Figure 3: A sketch of an enlarged portion of Fig. 2(c) for the upper-half of
a cross-section of the flow in the x-z plane showing the pogition
vector r (7) of a fluid particle at time r.

SO SR ——
1




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGF (When Datsn :I;;:arad)
REPORT DOCUMENTATION PAGE STt e T RUCTIONS
T REEG : Y 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
|
| 4. TITLE (and Subtitle) | ] ORT & PERIOD
S ' On the Applicability of Directed Fluid Technical/Rgg::)'l

Jets to Newtonian-and Non-Newtonian Flows ¢ s.Wn

7. AUT, : . )
P. M. [Naghdi @N}dﬂﬁlh-76-c-¢h'{hz

9. PERFORMING ORGANIZATION NAME AND ADDRESS / 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Department of Mechanical Engineering
University of California NR 062-534
Berkeley, California 94720
11. CONTROLLING OFFICE NAME AND ADDRESS
Fluid Dynamics Program
Office of Naval Research - NUMBER O
Arlington, Virginia 22217 49

14. MONITORING AGENCY NAME A ADDRESS(/! different from Controlling Ollice) 15, SECURITY CLASS. (of thie report)

| Unclassified

L
[Ts-. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, I{ dillerent froc» Report)

18. SUPPLEMENTARY NUTES

19. KEY WORDS (Continue on reverse side il necessary and identily by block number)

Directed fluid jets, Newtonian flow, jet breakup, non-Newtonian
Poiseuille flow, incompressible viscoelastic fluid, circular pipe,
determination of response functions, comparison with the predictions
of three-dimensional theory.

zowuﬂuct (Continue on reverse eslde Il necessary and identily by block number)

T v

This paper elaborates on the applicability of a direct formulation of the
theory of jets to Newtonian and non-Newtonian fluid flow problems. ;
Following a general discussion of the nature of direct theories, we
record the basic equations of the theory of directed curves for any
finite number of directors. Reference is then mede to some recent
results for incompressible Newtonian viscous flows, including the
problem of jet breakup. The major portion of the paper is concerned
DD ,"5n'ss 1473  eoition oF 1 wov 68 is oBsOLETE UNCLASS IFIED Z %i i
S/N 0102-014- 6601 |

: :— { 0 Y2t

W s oy g o R £ e g o . xgn -




UNCLASSIFIED |

LLURITY CLASSIFICATION OF THIS PAGE(When Datae Entered)

\

\\\ 20. (continued)

“with application of the direct approach to an incompressible non-
Newtonian Poiseuille flow in a circular .pipe. The results are compared
to those of the three-dimensional theory and are found to include the
effect of /normal force"“corresponding-to the "normal stress" effect.

; i

SECURITY CLASSIFICATION OF THIS PAGE/Whan Dote Entered)




