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Abstract. This paper elaborates on the applicability of a direct formulation
of the theory of jets to Newtonian and non-Newtonian fluid flow problems.
Following a general discussion of the nature of direct theories, we record the
basic equations of the theory of directed curves for any finite number of
directors. Reference is then made to Some recent results for incompressible
Newtonian viscous flows, including the problem of jet breakup. The major
portion of the paper is concerned with application of the direct approach to
an incompressible non-Newtonian Poiseulile flow in a circular pipe. The
results are compared to those of’ the three-dimensional theory and are found
to include the effect of “normal force” corresponding to the “normal stress”
effect.
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1. Introduction. General background.

The objective of this paper is to indicate the manner in which a mechanical

theory of fluid jets constructed by a direct approach (rather than from the

three-dimensional equations) may be used to treat certain one-dimensional

Newtonian and non-Newtonian flow problems which may not be tractable with the

use of exact three-dimensional equations. This direct approach for fluid jets

is based on one-dimensional models called Cosserat (or directed) curves (defined

in Fee . 2), which .~re curves in a Euclideen 3-space endowed with additional

structure in the form of kinematical vector fields called directors. Clearly,

if full three-dime~isional information is desired regarding the motion, deforma-

tion arid distribution of stresses of the continuum under study, then there is

no point in developing a one-dimensional theory. In fact the aim of a one-

dimensional theor~, of the type considered here is to provide only partial

information in some specific sense: for example , in the case of a fluid jet or

fluid flow in a pipe, information concerning quantities which can be regarded

as representing the medium response effectively confined to a neighborhood of a

curve as a consequence of the (three-dimensional) motion of the body, or the

determination of certain weighted averages of quantities resulting from the

(three-dimensional) motion of the body.

The developmenh~ of the basic theory of Cosserat curves is exact in the

sense that it rests on (one-dimensional) postulates valid for nonlinear behavior

of materials. By tne nature of its construction, the theory necessarily sat isf ies

the requirements of invariance under superposed rigid body motions that arise

from physical considerations and, of course , is also consistent and full y

invariant in the mathematical sense. Moreover, the development by the direct

approach is conceptually simple and is free from the difficulties involved in

the approximations usually made in the derivation of jet theories from three-

dimensional equations.
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It should be remarked here that the use of a direct approach based on

Cosserat curves in formulating one-dimensional theories does not mean that one

ignores the natur e of the field equations in the three-dimensional theory. In

fact , some of the developments of the field equations by direct procedure are

materially aided or are influenced by ava ilable information which can be

obtained from the three-dimensional theory. For example, the integrated three-

dimensional equations of motion establish guidelines for a statement of’ the

conservation laws of’ the one-dimensional direct theories, and also provide some

insight into the nature of inertia terms and the kinetic energy that appear in

*
the latter theories.

Such difficulties as ~re associated with the derivation of one-dimensional

theories from the three-dimensional equations most often arise in the construction

of constitutive equations , and, it is in fact here that the direct approach

offers much appeal. While an approximation to the constitutive equations in

the three-dimensional theory retains the constitutive coefficients which have

been predetermined within the scope of the three-dimensional theory, the use

of such results in ~ one-dimensional theory may in general lead to incorrect

results. In this connection, it should be observed that the constitutive

coefficients of the direct theory, in general, may involve contributions from

both the material properti.s of the three-dimensional medium and the looal

geometry of’ the body (here, the jet-like body)~ The procedure employed in the

direct theory, on the other hand, leaves the constitutive coefficients unspecified

and while the determination of these coefficients may require substantial effort,

they can eventuall,y either be related to those of the exact three-dimensional

theory or else be determined by suitable experiments.

*
See also the re1nerks following equations (2.l~ ).

1’As an illustratio r , see for example &~s. (62) of [1~J in which the constitutive
equations for an incompressible, viscous , elliptical jet depend not only on the
shear viscosity bu~ also on the local time-dependent geometry of the cross-
section of the jet.
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As defined in Appendix A , a jet is a three-dimensional body whose boundary

surface has special features and to this extent it is similar to a rod although

the nature of the specified surface (or boundary) conditions in the two bodies

may be different. Moreover, the kinematics of jets and rods are identical and

it is only through the constitutive equations that a distinction appears between

rods and jets. In many ways the development of the theory of Cosserat curves

is similar to that of the two-dimensional theory of Cosserat (or directed)

surfaces which are relevant to fluid sheets and to shells. For a brief

histor ical account of the developments of the theory of directed surfaces and

directed curves and for further background information pertaining to a direct

fornnilation of fluid sheets and fluid jets, together with additional references,

the reader is referred to a recent expository paper by Naghdi [1]. The first

application of the theory of a directed curve to an incompressible Newtonian

fluid jet was given by Green and Laws [211 and further work on the subject was

contained in a paper by Green [3]. These papers are concerned with a nonlinear

theory of circular jets, which includes the effects of both surface tension and

gravity. More recent studies on the subject, which will be referred to below,

deal with temporal instability and spatial instability of incompressible Newtonian

viscous , circular jets [~ , 5] .

The simplest theory appropriate for fluid jets that can be constructed on

the basis of a Cosserat curve comprises a material curve and a pair of directors.

This theory is suitable for many applications as is clearly evident from the

contents of papers of Caulk and Naghdi I’d and of Bogy [ 5 ] .  The former deals

with the onset of breakup of a Newtonian viscous jet, while the latter is mainly

concerned with the related problem of jet breakup formulated as a boundary-value

problem in connection with ink-jet printing. A brief account of the develo~mtents

which utilize the theory of a Cosserat curve with two directors is discussed in

section 3 of’ this paper.
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Several technologically important problems in rheology, including the

swelling effect, are concerned with fluid flow in a pipe. With the hope that

it will eventuall:i be possible to treat such problems by direct approach, most

of the remainder of the paper is devoted to a Poiseuille flow which requires the

use of the next hIerarchical theory of Cosserat curves, namely that comprising

a material curve with five directors. Instead of developing separately this

next hierarchical th eory with five directors , it is Just as convenient to con-

sider the more general theory of Cosserat curves having any finite number of

directors. Thus, in section 2 we construct the theory of directed curves with

L (~~2) directors and then briefly discuss the results of’ the special theories

when the number of’ directors are two and five, respectively. The kinematics of a

special Poiseuille flow in a straight circular pipe is considered in section 11.

in the context of an approximation procedure whereby the position vector in the

three-dimensional theory is taken in the form of a Taylor series expansion and is

then assumed to be quadratic in the cross-section coordinates (see Eq. (Al8) of

Appendix A). The kinematical results of section 1+ motivate the choice of the

corresponding kineinatica.1 in~~edients in the theory of a Cosserat curve with

five directors. The latt r is employed in the discussion of Pbiseuifl’ flow in

a circular pipe b ,r direct approach in section 5. It should be noted that this

solution includes the eff et of “normal f’orce” corresponding to the “normal stress”

effect in the three-dimen~ional theory. In fact, the relationship between the

two effects is evident from the results of section 6, where the identification

of certain quantities in the direct theory is discussed.

If.
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2. Directed fluid jets with L directors

Deformable media which are modelled by a material curve , embedded in a

- 
t Euclidean 3-space, together with L (L~~2) directors assigned to every point of

the curve will be called Cosserat curves or directed curves and may be con-

veniently referred to as RK 
(K=l ,2,...). All such directed curves have the

same material curve but the number of assigned directors differ for eacht

Let c , the material curve of in the present configuration at time t, be

defined by its position vector r relative to a fixed origin; and let ~ be a

convected (Lagrar.gian) coordinate identifying points along the curve. Further,

let L directors at r be denoted by the vector functions d 
~~~~~~~~~~~~~~~~

~~l~2
”
~~NN = l ,2 , . . . ,K ) ,  which are assumed to be symmetric in the indices 

~lc~~~~~ N Then ,

a motion of the directed curve is specif ied by

r ~ (~~,t )  , d = (~~,t )  , ( N = l ,2 , . . . ,K) (2.1)
~N 

“~l~2”

The velocity and the director velocities are defined by

v = r  , w = d  , (2.2)
— 

~~l~2
’ 

~N ~~l
0(2~

where a superposed dot denotes material time differentiation holding ~ fixed.

Also, the tangent vector to the curve c denoted by 5
3 

is given by
A

= a
3
(~ ,t) = (~~,t )  . (2.3)

Corresponding to the requirement in the three-dimensional theory [see (A7) of

Appendix A)] that a nonzero volume cannot be continuously deformed into a zero

volume , some restrictions on the directors ci are necessary but we leave
-a1~2.. O~

these unspecified here. It is more convenient to specify such conditions as

they arise in special cases of the general theory.

The relationship between the number of directors L and the number K in

(2.1) which identifies the order of the hierarchical theory of Cosserat

the absence of the directors , we merely have a one-dimensional curve which
can serve as a model for the construction of string theory by direct approach.
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K
4 curves is seen to be L= E ( N + l )  so that

H 1

L - ~~ (K+1) + K K2+3K (2. If)

This result is in agreement with a corresponding development of the kine-

matics of a jet-like (or rod-like) body from three-dimensional theory of continuum

mechanics contained in the paper of Green et al. [6], Green and Naghdi [7] and

Green et al. [8]. According to (2.If), with K=l the number L=2 and the

Cosserat curve R1
= %  consists of a material curve and a pair of directors

attached at each point of the curve. Similarly, in the case of the Cosserat

curve R2, the number of directors is five and so on.

We assume that the kinetic energy per unit length of the curve c is given by

K o~1 1
T = p [~v .v + Ey v .w

— N=1 — 

~~l~2

K ~~~~~~ ~ • . . B
1 N i  M
2 L~ 

y w w
N=l ,M=l ‘~ 1 • rJfN ~e1•

where p= p(~ ,t) is the mass per unit length , the coefficients y and

~l
’’ N~l

”
~~M 

*y - are functions of ~ and t , y are symmetr ic with respect to

indices 
~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ and are also symmetric with respect

to ~~~~~~~~~~~~~~~~~~~~~ In the special case of’ ~i 
with L=2, we may use the notations

w = w  , y 1 = y ~ . (2.6)

We define the in~ ier.tum corresponding to the velocity v by

K ~~~~~~~~~~~~~~~

= p [v +  E “ “ w 11 (2.7)
N=l

per unit length of c. Similarly, momenta corresponding to dir ector velocities

are

= p[y~~~~~~ v +  ~~~~~~~~~~~~~~~~~~ ] (2.8)
aN M=l “~l 

•

per unit length of c.

f *Alth~~~h the coefficients in (2.5) are r egarded as functions of both ~ and t it
will be proved presently tha t they are in fact independent of t.

6.
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t

Consider now an arbitrary part of the curve c whose element of arc length is

ds = (a 33
)~ d~ a33 

= a
3
.a

3 
(2.9)

L Let c be bounded by 
~~~~~~~ 

and 
~
=
~2 

(
~~<~~) and define the following quantities:

The contact force n=n(~~,t) and the contact director forces p =

p (~ ,t), each a three-dimensional vector field, in the present configura-

tiont ; the assigned force f = f ( ~ ,t) per unit mass and the assi~~ed director forces

£ =L (~ ,t) per unit mass; the intrinsic (curve) director forces

~~~~~~~~~~~~~~~~~~~~~~~~~ such that (a33) ~ir l~2 aN are measured per unit length

of c and make no contributions to the balance laws for moment of momentum and

energy; the specific internal energy c=e(~ ,t); the specific heat supply r=r(~ ,t)

per unit time ; and the heat flux h=h(~ ,t) along c, in the direction of increasing

~~, per unit time. The contact director forces, the intrinsic director forces and.

the assigned director forces are all assumed to be symmetric with respect to

indices al. a
~N
.

The contact force ri has the physical dimension of [MT 2], where EM] and [T]

stand for the physical dimensions of mass and time. The dimensions of the vector

fields depend on the choice of the dimensions for the directors.

For example , if each of the vectors ci is chosen to have the
a1 c~~.. ~~ a1~~ . ‘Yl~2~~ 

3~4dimension of length, then the coeff icients y , y

In (2.5) are dimensionless and the vector fields p have the same

dimensions as n. A parallel remark applies also to the physical dimension of
— 

~l~2
”
~~Nthe assigned fields £ . In the present paper we choose the directors

to have the dLmension of Length.

In terms of the foregoing definitions of the various field quantities and

• with reference to the present configuration at time t , the conservation laws of

t Depending on the physical dimension specified for the directors , the field quan-
• tities may also be referred to as the director couples . In fact , for

M = l  In (2.1) , corresponding to the Cosserat curve ft the terminology of both

the director force vectors and the director couple vectors is used for p =pa

in the literature. A parallel statement holds also for the fields £

7.

~~~ ~~



the purely mechanical theory of a directed curve are:
~~ 

p ds = 0 , 

~~ 
$~ 

py~~~ ~~~ds = 0 (N = 1,. .. ,K) , (2.10 )

K ~~~~~~~~~~~~~~~~

~ 
j p [v + E y w ]ds = j p f ds + En] , (2.11 )

N=l ‘~~l”~~ N —

1

d ~~ ~l
”
~ aN 

K 
~l .aN~1 ”BM

~~ j p [y v +  E y  w~ ~ ]ds
M=l

= 
S~~

1pL~~
”

~~~~
_ (a 33

) n 1 N ]ds + {p 1 a N]~
2 (N = l ,...,K) , (2.~~~)

d K x 1. ..aN K

~~ ~
U1
...a

N N 1 ~
U1...aN 

)ds
N=l,M=1 ‘~~l ~~l’”BM

= r’~p (rxf +d X L
1 ’

~~)d.s
—

+[rxn+d x P ~~~~~
aN ]~~ (2.13) -

where use is made of the notation

{f]~~ = f(~ 2
) - f(~]~)

The first two of the above equations , namely (2.10)1 and (2.10)2, repres ent the

mathematical statement of conservation of mass (or inertia) while the remaining

equations in the order ‘.isted are mathematical statements of the conservation of

linear momentum, conservation of director momenta and the conservation of moment

of momentum (including contributions from both the ordinary momentum and the

director momenta).

We also record here the law of’ conservation of energy for R,~, namely
K

[p. + T]ds = J p (r+f .v+ E £ 1 .w  )ds
N=l ‘

~~l 
aN

+ f n . v + ~~~p ~ ~‘ ‘w - h]  ‘ . (2.lIf)
— N=f” ‘

~~1
.
~~
aN ~l

The assIgned field £ ifl (; .lO) represents the combined effect of ( i )  an integrated

contribution arising from the three-dimensional body force denoted by ~~,, e.g.,

8. 
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that due to gravitational acceleration , and (i i)  an integrated contribution of

the stress vector on the lateral surface of the jet-like body~ denoted by f .

A parallel statement holds for the assigned fields £ . Similarly, the

assigned. heat supp2.y r represents the combined effect of (1) an integrated

contribution arising from the three-dimensional heat supply denoted by rb, and

(ii) an integrated contribution of the heat supply entering the lateral surface

of the jet-like body from the surrounding environment, denoted by rc
. Thus, we

may wr ite

1’ = f + f , ~~~~~ 
• aN ~~l~2 aN + L l0

~2 aN— —C — ‘—C
(2.15)

r = r  +r
b c

The various quantities in (2.15) are free to be specified in a manner which

depends on the particular application in mind and, in the context of the

theory of Cosserat curves , the inertia coefficients in (2. 11.) and the mass

density p require constitutive equations . Indeed , ~~~~~, L . and rc
(or certain of their features), as well as ~~~~~

, and r
b, 

can be

identified with the corresponding expressions in a derivation from the three-

dimensional equations. Likewise, the inertia coefficients in (2. I~) and the

mass density p may be identified with easily accessible results from the

three-dimensional equations .

Assuming smoothness, we may deduce the local form of the balance equations

(2.10)1,2 
to be

• a . .
= 0  , (N=l ,...,K)

1 
(2.16)

x =  x(~
) pa~3

definition for jet-like bodies is provided in Appendix A. Its lateral
surface is specified by equation (Alk). 

~~~~~~~~~~~~~ 
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C
~N

‘
V so that ~,. and y are independent of t and. are functions of ~ only. Then,

the remaining conservation laws (2.11) to (2.13) yield the field equations

—

(2.17 )

• -aN
_ _ _ _  ~~~~~+ = ii , (N~~l,...,K) , (2.18)

a xn~ :(d ~~~~~~~~~ ÷ ~~i a N  x p
l a N) = 

‘ (2.19)
—

where

K
I = f - v -  E y 1 w , (N=1 ,...,K) , (2.20 )
— N=1 —a1

..

~~~~~~~~~~~~~~ ~~...a ~~~~~~~~~~~~~~ K ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

q = L  - y  v -  ~~y w~ , N = 1 , . . . ,K . (2.21)
— M=1

With the help of (2.16) to (2.19), the equation for conservation of energy can

be reduced to

(2.22 )

(2.23)

where P is the mechanical power. It may be noted here that within the scope of

the purely mechanical theory, the expression (2.23) for mechanical work can be

obtained also by cc.r.sidering the rate of work by all contact force and director

forces ~nd all assigned force and assigned director forces acting on the curve c

and its end points minus the rate of increase of the kinetic energy and by setting

this equal to 
J~~~

Pd~ ; in this connection, see for example [1, Eq. (3.16)].

In the remainder of the paper we sha ll be concerned with special cases of

the above equations appropriate for directed curves ft2 and ft1. In particular,

for the directed curve K2, the appropriate differential equations of the
p

10.
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mechanical theory consist of (2.16) 2 with N = 2 , (2.16 )13, (2.17 ) and

+ ~qa = , 
(2.2l1~)— —

+ ~~~~ = , 
(2.25)

II , —
~d

a x n + d  x r r a÷d ~~~~~~~~~~~~~~~~~~~~~~~~~ = 0 . (2.26)
—3 -- --a — ~—a~~ — ~~~~ — — —

Also , the expre~ssion for the mechanical power in this case is given by

P~~~n .~~~~+~?. w + ir~~~.w  ~~~~~~~~~~~~~~~~~~~ . (2.27)
- a —  -am — ~ —

A special case of the above general development with two directors , i.e.,

for a Cosserat cu~.’ve ~ =R1, was first given by Green and Laws [9] in the context

of thermoxnechariics. A related development of a mechanical theory employing

three directors is contained in a paper by Cohen [10]. Further, aspects of the

basic theory with two directors appropriate for a Cosserat curve ft are contained

in a more recent paper by Green et al. [11].

11.
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3. Straight Newtonian viscous jets.

We consider here ~i special case of the general theory of section 2 for a

directed curve ft 1 = F~, which may include the effects of gravity and surface

tension , and go on to illustrate its applicability to certain Newtonian flows

and related problems of instability or breakup of straight , incompressible,

viscous jet s of circular cross-section. The motion of the directed curve ft is

specified by (2.1) 1 and by (2.1) 2 with N = 1.  Also , the velocity, the director

velocity and the inertia coefficients in this case are given by (2.2)
1
, (2.6)

1

and (2.6) 2 3 ~ 
respectively. The only kinetical quantities which occur in the

theory of a directed curve with only two directors are the forces n ,p ,~ y and

the fi elds £,La. Tnus , in the context of the purely mechanical theory, the

local forms of the relevant conservation laws are the mass conservation

(2.16)1,3, the equations of motion (2.17) and (2.24) and the consequence of

moment of momentum is given by (2.26) after omitting terms which involve

and

For a constrained theory of the directed curve K, we assume that each of’

the functions ~~~~~~ is determined to within an additive constraint response

so that

n = ~~ +r , ~~~~~~~~~~~~~~~ , ~a =~~~~+~~~ , (3.1)

where ~~~~ ,~~~ are determined by constitutive equations and the constraint

responses ~~~~~~ are arbitrary functions of ~,t and do no work. For the class

of’ fluid jet problems discussed in [3, Il~,5], the condition of incompressibility

can be shown to yield

~~ 
[d~~~a3

] = 0 . (3.2)

Then, assuming that for an incompressible Newtonian viscous fluid at constant
*These are special cases of those defined in section 2 foll~’iing (2.9).

12.
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temperature the constraint respons e ~~~~~~~ do not depend explicitly on the

kinematical quantities

—
~~~ w —

~~~~~ 
(3 3)

‘--a ‘ ‘

it can be shown that [3, 12]

u = - q d xd , .n~~= - q e~~d x a  , 
j~~= o  , (3.11.)

— -~L - 2  — ~~~~~ —

where the Lagrange multiplier q is an arbitrary scalar function of ~ ,t and e~~

is defined by

II 22 12 21e = e  = 0  , e = - e  = 1  • (3.5)

We now specialize the results of the previous section to straight jets

of elliptical cross-section. In order to display some details of the kine-

matics of a straight jet, including the rotation of the directors in a plane

normal to the jet axis, it is convenient to intr oduce a fixed system of

rectangular Cartesian coordinates (x,y,z) with the z-axis parallel to the

jet. F’urther, let the unit base vectors of the rectangular Cartesian axes

be denoted. by (i ,~~,k) and introduce, for later convenience, the additional

base vectors

~~~ = i c o s  ~+j  sin 9 , ~~~= - i sin 9+j cos e , ~~~= k  , (3.6)

where B is a smooth function of z and t. We assume that the directors are so

restricted that they describe an elliptical cross-section of smoothly varying

orientation along the length of the jet and that at each z = c on s t . ,  the base

vectors and lie along the major and minor axes of the ellipse, rec~’ec-

tively. Then, the angle 9=9(z,t), called the sectional orientation, specifies

the orientation of the cross-section at z=constant as a function of time. With

j  this background, we n~~ restrict motions of the directed curve ft such that in

- 
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

-..



—

the present configura tion at time t ,

A
.5 r = r (~ ,t) ‘ 

~1~~~~l~l 
‘ 

~2
=
~~2~2

A A 
(3.~’)

= ~1(~~,t) ~2 = ~2 (~~,t)

where 
~l 

and 
~2 measure the semiaxes of the elliptical cross-section. In the

case of a circular jet, 
~l

=
~~2~

The complete theory of the dix~ected jet of this section also requires the

specification of explicit values for ~~~~~~~~~~ and £~ . In particular, the

values for x,y°~,y~~ may be obtained by an appeal to certain results fr om the

three-dimensional description of the jet. For this purpose, we may approximate
Ax

the vector function r on the right-hand side of (Al) of Appendix A and write

this as

*
r = r + $ ad . - (3.8)

— -a

Further , we choose the curve Oa = 0 as the line of centroids of the jet-like

body and identify this curve with the curve c in the theory of a Cosserat

curve. This leads to the identification

~ f ’ *~~~~l 2
= p(a

3~ ) = p g dB dB
-, a (

~~
) F

Xya 
$ p ~g~~~delde2 

= 0 = ~~~~~~~~~~~~~~~

Where p is the three-dimensional mass density in (All) and the determinant g

defined by (A5)
3 

is calculated fr om the approx imation (3.8) . Again, with the

use of ( 3.7) and th~ equations of motion (2.9) , the expressions for f and La
2 ,3 —

*can be identified in terms of the integrated body force £ over the cross-

section a and specified pressure and surface tension over the boundary

~a of a (for details, see, f or example, Caulk and Naghdi [12]). We observe

that since ~a=0 by 
~~~~~ 

the equations of motion (3.8) and. (3.9) assume a

111..
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slightly simpler form. We do not record here the system of ordinary

differential equations which can be obtained for both inviscid and linear

viscous fluids . Thes e are readily available elsewhere and are also dis-

I , cussed in [1].

The development of constitutive equations for an incompressible Newtonian

viscous jet of both circular [3] and elliptical {1~] cross-sections are readily

available in the papers cited , and the constitutive coefficients are identified

in terms of the shear viscosity and the geometry of the cross-section of the

jet . We do not elaborate her e on these results and refer the reader to the

papers of Green [3j and Caulk and Naghdi [I l.].

In the rest of this section we briefly describe some evidence of the

relevance and applicability of the direct formulation of viscous fluid jets,

especially to problems of instability of viscous jets which utilize the basic

equations of the theory of direct fluid jets of this section. For definite-

ness we consider the linearized version of the relevant equations, neglect the

effect of gravity and discuss the onset of lweakup of a viscous jet due to

surface tension, i.e., the so-called capillary instability. Although our

interest here centers mainly on Newtonian viscous jets, in order to assess

the nature of’ the prediction of the direct approach, it is desirable to con-

sider also the breakup of an inviscid jet since this enables us to compare

the results with the available exact analysis of the breakup of inviscid jets

*due to Rayleigh obtained by means of the linearized three-dimensional equations.

For both inviscid and viscous jets, Rayleigh derived the explicit result that

the jet is unstable only in the axisymmetric mode of disturbance. Inasmuch

as the direct theory considered here does not begin with the three-dimensional

equations, all modes of disturbance which occur in the present one-dimensional

*Refer~
1ceB to Rayle’gh’s papers on the subject are cited in [14).
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*direct theory must be examined for stability. Thus, in order to a.Uow for

the growth of a general disturbance which is not necessarily symmetric,

Caulk and Naghdi u~.ilizing the results of [12] derive in [ 14]  a system of

linearized equations governing the small motions of a (nonrotating) incom-

pressible inviscid jet of elliptical cross-section superposed on uniform

flow of a circular jet. They show that the solution to these linearized

equations can be decomposed into two modes, representing a synmietric and an

anti-symmetric disturbance in the shape of the free surface. The anti-

symmetric mode is stable for all wavelengths , while the symmetric mode is

found to be unstable over a range of longer wavelengths . In terms of a

description of growth in the unstable mode, comparison of the conclusions

is found to agree extremely well with the corresponding exact three-

dimensional analysis of Rayleigh.

In the case of a straight incompressible Newtonian viscous jet, through 
- 

-

a comparison with available three-dimensional numerical results (Chandrasekhar

[13]), the solution obtained is shown to be an improvement over an existing

approximate solution of the problem by Weber [114]. A related study by Bogy

[5] ,  concerning the instability of an incompressible viscous liquid jet of

circular section , partly overlaps with the work of Caulk and Naghdi [ 4 )  on

the temporal instability of a viscous jet. Bogy [5] confines attention to

the sysinetr l.c mode of disturbance, and consider s mainly the spatia l instability

of a semi-infinite jet formu.lated as a boundary-value problem. For additional

background on breakup and drop formation in viscous jets of circular cross-

section , see a recent article by Bogy [15] which contains additional references

on the subject. 
- 

-

*
If, in the context of the direct theory of this section, the stability analysis
is confined through a priori assumptions to the sysmietric m ode of disturbance
only, then any conditions for instability are only sufficient.

16.
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l4~ Kinematics ~f flow in a pipe: A special Poiseuille flow.

We elaborate here on some three-dimensional kinematical aspects of a fluid

flow in a straight circular pipe , using the notation of Appendix A. We first

recall that for a Po±seuille flow in a fixed, infinite, circular pipe, the only

*
nonvanishing component of the velocity vector v is its axial component and this

is a function of the radius of the cross-section. Moreover , the path lines are

straight and para].lel to the axis of the pipe; and the boundary conditions

imposed on the flow are the vanishing of the axial velocity at the wall of the

pipe and continuity c.~f the stress tensor at the center line of the pipe. We

keep this background information in mind in the development of this section.

Consider now th~ kinematics of flow in a pipe of uniform circular cross-

section in the context of an approximation procedure in which the position

vector is approximated by the expression (A18) of Appendix A . Let x
1= (x,y,

z)

be a fixed right-handed rectangular Cartesian coordinate system and let the

associated unit base vectors be denoted by £,~,
,k (see Fig. 2). We identify the

center line of the pipe with the z-axis and specify its cross-section of constant

radius a by

2 2  2x +y = a . - y+.l

It is convenient to consider first the kinematics of the flow at time r~~t.

Thus, recalling the rotation of Appendix A , let r*( .r )=P * ($i ,T ) , L( T ) = L (
~~,

1),

1) = ~~~(g, 1) , ~~~~r)= (~ , r )  designate the various qua ntities in (A18) at

time ~; and , with reference to the present configuration at time t , we adopt

the notations r*=r *(t ),  r=r(t), d = d (t), ~~~=~~~(t). Then, given the

approximation (Al8) the position vector r*(.r) and the velocity v*(.r) are:

= r ( r )  + e~~(T) + BaOBd (,.) , (11.2)

= v(T) + e~~~~( T ) + BaO~~~~ (~~) , ( 14.3)

— -



where v(’r), w ( i ) ,  ~i (r) are defined as in (A19). The position vector of the

center line of the pipe and the velocity of a particle on the center line are,

respectively, r (0,0,~~,’r)=r(~~,T) and v
*
(0,0,~~,,r)=v(r). Since the z—axis is

taken to be coincident with the center line and since in a Poiseuifle flow

particles on the center line move with a constant velocity , we set

r(’r) = z ( i ) k  , v( ’r ) = ~(r)k = vk , (4 .4)

wher e ~ (i-)=~~(O ,O,~ ,T), a superposed dot in (4 . 14) and elsewhere in this section

designates material time differentiation with respect to ‘~ and v is a positive

constant. At this point, without loss in generality, we identify the convected

coordinate ~ of a particle with its z-coordinate in the refer ence configuration

at time i’
~~
, i.e.,

= z(r~) = ~
‘(e1 e2~~T ) . ( 14.~~)

Hence , for particles on the center line of the pipe in the reference configura-

tion we have

= ~ ( r ~ ) = z(0 ,0,~~,T0 )

(14.6)
r( -r  ) = ~ (‘r )k = ~k
— 0  0 —  —

We also choose the convected coordinates 6
1 and e

2 such that they are , respec-

tively, times the x and y coordinates of a particle in the reference configuration

• at time r~,. More ver, observing that the x,y coordinates of a particle do not

change in the special flow under consideration , we set •

= 

x(:0 ) 
= , x(-r) ~(9

l
,8
2
,~ ,,r) ,

) (11.7)
~“ 

= ZLT1 
, y(T) = ~(8

l
,e
2,~ ,T) .

Integration of the second equation in 
~~~~~ 

and the use of (14.6)
~ 
results in

-~ - 18.
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I
= v(T- i  ) +

~~~

‘
(T

~~
) = v (-r-i)+~ , (14.8)

so that 
~~~~~~~~~ 

may now be written as

(‘r ) =

= [~~+v (T-r ))k . (14.9)

In order to obtain some restrictions on the functions d (r) and d (r)

in the expression for r (-r), consider first the scalar product of (14.2) and

~~~, i.e.,

*( )  . k = ~(-~) + 9~~~ ( T )  • k +  e2~~(T) - k

÷ (e
1)2~~~(i) . k (2)2~~~() . k+2 919

2
~~~(r) k . (4.10)

*In view of the symmetry of the flow , the scalar r k must remain unaltered

under the transformations

(a) x- -c~ y— y  ; (b) x-x , y-.-y ; (c) x--x , y-’-y . (li . U)

Hence, from the symnLietry transformations (14.1.1), in the order listed, we obtain

k+2919
2
~~ . k = 0 ,

k = 0 , (4 .12)

e’~~
(
~

) k+ 9
2d ( ~~ 

. k = 0

It follows from the above three conditions that

a , ~~ (-r ) ‘ k =  0 , ~~( r)  - k =  0 . (11.13)

I - 19.
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• According to (4.13), the vector functions d (r) and 
~~~~~ 

have no components

along the axis of the pipe and thus cannot contribute to the axial velocity

v~(T). Thus , in view of (4.13)23 , we set

= aj , ~~~~(i) 
= aj . (14.14)

Next, using 
~~~~~~~~~ 

end (14.i4), from the scalar product of (14.2) and iwe have

r *(.r) . i =  6
1a + ( 9 1)2d11( T ) . i + ( 8 2 )2~~ 2 ( T ) . i + 2 8’8

2
~~~~.j  . (4.i~ )

*In view of the symmetry of the flow, the scaler r I must remain unaltered

under the transformation (b) in (14.11) and the resulting expression when

compared with (4.15) yields 4~
1
~
2
~~2 .i=O so that

~l2(T)~~~~~ 
0 . (4.16)

*Similarly , by req~uiring that r . j be unaltered under the transformation (a)

in (4.11), we ar~
4.ve at

~.l2
(1) j  = 0 . (4.17)

It follows from (14.13)
~
, (4.16) and (4.17) that

~12(’r ) = 0 . (4.18)

On substitution of (14.9), (l i..lll.) and (4.18), (14.2) and (14.3) reduce to

r*(.r) = v(T-T )k+r(~~)+a(8
11+$2~)+(9

1)2~~1(T)+(9
2)2~~2(r) (4.19)

and

v*(.r) = vk+ (o’)2~~~+(e
2)2~~2 , (14.20)

Again the syimnetry of’ the flow requires that at points along the x-axis

and the y-axis we have v *(0 ,l,~~,T ) = v *(1,0,~~, r ) .  This leads us to conclude that

20.
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~Ll(1) = 

~22~~~ 
(4.21)

and (4.20) can be rewritten as

= vk+ [(9
1
)
2
+(9

2
)
2
~~~1(~

) . (4.22)

Fr om the condition that the particle velocity vanishes at the wall of the pipe ,

i.e.,

= 0 when (~ l )2 ÷ ( ~ 2 )2 
= 1 , 

(4.23)

we have

~ll~~~ 
= - v k  . (4.214)

Integration of (I~.23 ) with respect to i yields

~~~~~~ 
= - v(~ -i )k , 

(4.25)

where the reference value of d11( r )  at 
~~~~~, 

i.e., 
~~i

(To)~ 
arising from the

integration has been set equal to zero. Recalling (4 .20), in a similar manner

we also obtain

- 

~~~~~ 
= 

~~~~~~~~~ 
=-v(T-T0)k . (4.26)

We now sl.m2xnarlze the foregoing results and record below the expressions

f or the position vector and the particle velocity both in the reference

configuration at time and at time i:

*( )  = ~k+a ( 91i+82
~,) = ~k ÷ x i+ y ~, , 

(14.27)

21.
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• * ( )  ~~a(B
1
i+9

2
j)+ (~~+v(T-T )[l-(91)

2
- (B

2
)
2
])k

2 2
=xi+yj+ (~~+v (T-T0

)[l-~~~-~~~])k

= r e + ~~~+v(T-T )(l-~~ .))k , (4.28)

v~ (- r ) = [ 1- (81) 2 - ( 8 2 )2 J v k =  [ l- ( ~~)2 - ( ~~)2 ]vk = [l-(~ )
2]vk , (4.29)

2 2 1
where r = Ix +y J 2  is the radial distance in cylindrical polar coordinates (r,e,z)

with associated or thonormal base vectors (e ,~~~,k ) .  It is clear from (14.28) that

2
z( -r ) = ~ +v (T ~.T )(l -~~~) , (4.30)

which reduces to (14.8) on the center line of the pipe (r=0). It is clear from

(4. 29) 2 that (dv~ (-r)/~ r )  = 0 for fixed values of x and y and hence the motion is

steady. Also , using (4 .29) ,  we may calculate the rate of shear K as ordinarily

defined for helical flow in the context of the three-dimensional theory (see, for

example, [16, p. 23]) .  Thus , since the expression (4 .29)
3 
is a function of r

alone , we have

*K =~~~ ~~~~ t = ~~~
r , (4.31)

where v (-r ) = v(’r) . i~ and the double vertical bar stands for the absolute value.

Figures 2 and 3 depict the position vectors r *(1) and r*(.ro) for the

special Poiseuille flow in a circular pipe discussed in this section. These

figures explicitly indicate the interpretations associated with the functions

d (-r) and ~~~~~
(T) as given by (4.i4), (4.18) and (14.26). It can be seen from

• Figs. 2(b) and 2(c) that fluid, which in a reference configuration at time

occupies a cylindrical region such as that bounded by the normal sections at

and ~~~, in the configuration at time T occupies the region between the

paraboloids of revolution CA ’D and EB’F. Figure 3 exhibits how a material line

such as BE in th~ configuration at time deforms into a portion of a parabola

22.
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A indicated by B’E.

Before closing this section, we indicate that the flow characterized by

( 14.28) is isochoric , i .e. ,  the volume of each part of the body remains unchanged.

With the use of (4 .28)1, (A5) 1 and the notation (A2)
3 
of Appendix A , the

I 
*scalar g2 which occurs in (A7) is

g~~= g 1x~2 .g
3 = a 2 , (4.32)

which i~ a constant . Hence ~~ g
2 a 0.

*The expressions for the base vectors are recorded In section 6; see
Eqs. (6.5).
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4 • 5. A Poiseuille flow in the theory of directed jets.

• We discuss here a Poiseuille flow for an incompressible viscoelastic fluid

ir, a circular pipe employing the theory of a directed curve a2 
in the absence

of the effects of g.’avity and surface tension. The motion of is specified

by (2.1)
1 and (2.1)2 

with K=2. It is convenient to consider f irst  the motion

of at time i ’t. Thus , we write

r(’r) ~

‘
(~~~, T )  , ~~t~r) = 

~~(~ ,-r) , d~~(i) = ~~~ (~~,-r )  (5.1)

and , with reference to the present configuration at time t , we adopt the

notations

r =  r(t) , d =  d ( t )  , = ~~~ ( t )  . (5.2)

As in section 14, again let x .~~ (x ,y, z)  be a fixed right-handed rectangular

Cartesian coordinate system but her e we use the notation for the unit base

vector s in place of i , j , k.

Let the curve c of ft 2 be the center line of the pipe , and identify the

latter with the z-axis. Also , we choose the directors d (~~) such that they

describe the symmetries of the flow. In a Poiseuifle flow the path lines are

straight and parallel to the axis of the pipe , the velocity of the center line

is constant and the particles located at the wall of the pipe must remain

there. With this bcckground. and guided by the kinematical results of section 4 ,

for the motion under consideration we set

r(-r) = r ( i ) + v ( ~r - r ) e
3 , r(i~) = ~e3 

d(~) ae

(5.3)

~Ll~~~ 
= 
~~~~~ 

= - v ( r - r
~

)
~~ , = 0

where r (-r0) is the position vector of the fluid particle on the center line in

some reference configuration at time r and it should be noted that for the

213.
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I

motion - ( 5 . 3)  the taztgent vector a = e . By (2.2), the velocity v and the
— 3 — 3  —

director velocities at time T are

• v( T) = ye
3 ‘ 

~ll 
= 

~22 = - ve
3

(5 .14)

With the above choice of kinematical ingredients, it is clear that the motion

is steady.

To complete the theory of the directed curve for an incompressible medium

(see the discussion at the end of Appendix A following (A26)), we assume that

each of the functions

(5.5)

in (2.27) is determ~ned to within an additive constraint response so that

(~.6)

= + =

where

(5.7)

are determined by constitutive equations and the ~~.~straint responses

(5 . 8 )

are arbitrary functions of ~,t and do no work. We assume that the constraint

responses (5.8) do ‘riot depend explicitly on the gradient of the velocities

v ( r ) ,  w ( r ) ,  
~~~

(r) and since they are workiess we have

25. 
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(5.9)

where for convenieiice we have introduced the notation

)‘ 
~~~
- ( ) . (5.10)

Next , we introduce a set of Lagrange multipliers

q , q~ , q~~ q~~O , qV~aP (5.11)

~ ‘ 1 2 v~fl 11 12 21 22and note that each of the multipliers q, q = (q ,q ), q = (q ,q ,q ,q ),

etc., m ay depend on ~ and r. Then, incorporating the conditions (A28) to (A31)

• of Appendix A in (5.9) by the usual procedure, after a lengthy manipulation we

obtain the appropriate expressions for the constraint responses (5.8) in terms

of (5.lJ ) and the kinematic quantities (5.2) and their spatial derivatives.

Since some of the expressions for the constraint responses are quite lengthy

and, in any case, wIll not be needed in the present development , we do not

record them here. We note, however, a typical expression, namely

, qYl~=qTh1 . (5.12)

In view of the choice (5.3), most of the terms in the constraint responses

vanish for the special Poiseuill e flow under consideration ; and , in particular .

the expression (5.12) reduces to

(5.13)

The response of an incompressible viscoeleatic directed fluid jet may
A A  A

depend on the er.tIre history of the functions r,d ,~~~ in (5.1) and their

derivatives~ As in the corresponding constrained three-dimensional theory, we

assume that the quantities (5.7) are determined by the history of

* 

tj(-t ) = (a
3

(i) , d ( r ) , ~ 0~ ( T ) , d ’(-r ) ,~~~~( r) )  

~ A A A 

(5.111)

While the derivatives may be calculated from the histories of r,d, ~~~~
if the latter are sufficiently smooth, their inclusion is for ex~~ic!tness.

26.
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It i~ clear from (2.3) and (5.3) that for the flow under discussion
2,3,14

the above kinematical quantities reduce to

~j(~ ) = (e3,ae ,-v(T-T~~~~~,0,0) . (5.15)

AA typical constitutive equation, for example that for ri, may be written as

A t
n = ~~(~j(i)) . (5.16 )

-

But, since the argwnent l j( i)  of the functional in (5.16) has the form (5.15),

it follows that the right-hand side of (5.16) can be regarded as a function of

v and we have
A A
ri = n(v) 

, (5.17)

with similar expressions for all other kinematical quantities. We require that

all constitutive functionals or constitutive functions, such as those in (5.16)

and (5.17), vanish for v=0. This requirement is similar to the normalization

• 
- 

of the constituti,e response functionals in the three-dimensional theory.

Referred to the orthonormal basis e. = (i ,~ ,k), the functions (5.5) can be

expressed in terms of their components in the form

, u~~= rr ~~e. , p~~= p ~~e. ,
— i—d. — .i~i ‘ i M ~. (5 17)

~e _ 
~~~ - n  e , p -p .e

— ‘i_i — -i—i

Also, since the effect of gravity is neglected , ~~~~~~~~~ ~~=0, ~ =0 and in the

notation of (2.15), 2’ we have

, ~~~= ?  , ~~~~~~~~~~~~~ . (5.18)

The quantities (5.18) may be regarded as representing the forces that must be

supplied by the pipe wall in order to sustain the assumed flow. -j
As a cons equence of the symanetry of the assumed flow, an examination of

the equations of motion suggests that we put •

27.
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n1 = n
2
= 0

1 1 2 2 1 1 2 2
1T 2 = 1 1

3
= 1 T 1

= 1 T
3

= O  , p 2 = p
3

= p 1= p
3

= 0  ,

(5.19)
12 21 12 21

~. = m  = 9 ’ ~~ 
=

~~~~ 
=

~~~~~~~
.

11 11 22 22 11 11 22 22
11 l 11 2 11 1 11 2 0 , p 1 = p 2 = p 1 = p 2 = 0

Using the assumptions (5.19), the functions (5.5) can be written in terms of

their nonvanishing components as

1 1 2 2 1 2
a n

3
e
3 , 11 = , TI = , Il l = 11 2

(5.20)
1 1 2 2 1 2

= r’•l~ L 
= r’ .2~ 2 , P .1 = P .2

and

11 22 11 ll 22
ii = n  = T I 3~~ , 11 3 = 1 1 3

(5.21)
13. 22 U 11 22

~ . 
=

~~~~ 
= p .3~3 

, p~~3
= p ~~3

Corresponding to a uniform “pressur e” gradient in the fluid, we also assume that

as wefl as 
~~p

3j/~~~~ 
are independent of ~~~, i.e.,

1 0 ~
•l c~ ., 

- 
(5.22)

Also, an examination of the equations of motion (2.211) and (2.25), together

with (5.19) to (5.2:1), easily reveals that

f1 = f2 = 0  ,

• = = 
~~l 

= = 0 , - (5.23)

so that -
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/

XL2 = 
2~2 

£.l = £ 2 , (5.24)

XL
11 

= = XL
11

3
e

3 ~ = £ 3

In view of the assumptions (5.18), the constraint responses further

• simplify. For example, since n1 = n
2 

= 0 by (5.19), then the Lagrange multiplier

q~
’ in (5.13) must be zero. In this way, we find that the final expression for

the constraint responses axe given by

— 2f l = - qa e
3

—1 —
~~ /

it =-qa e~ , ii =-qa~~ , ~5.25

—l 11 —2 22 U 22p = - 2 a vy r - T 0)q ~ , p =-2av(r-70)q ~~ , q = q

and

—11 —22 —12 —21

~ =z =
~~i = x ~; 

=
~~~~~~~‘

~~~~~~~ 

= - a~q~~e3 
, ~~2 = a

2
q
22
e , (5.26)

—12 —21
E =

~~~~ 
=

~~~~

• In view of the assumed forms of n,ii~ and in (5.19) and (5.20), it is

• at once apparent that the conservation equation (2.26) is identically satisfied.

Since the nonvaniohing components of the response functions (5.7) have the forms

(5.17) and are therefore independent of ~~~, it follows from (2.17) ,  (2.20 ) and

(5 . 18) that at time t

• .
~~~ + ) ~f3 

= o . (5.27)

• Recalling (5.20)~ 
and (5 .25 )1, from (5.22)~ 

we obtain ~aJ~~ =0, which upon

integration yields

—1 

~~~ 
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q = A1(t)~
+A
2(t) (5.28)

and hence

ri
3 
= - a

2
(A1

(t)~~+A2(t)) , = a2A1
(t) , (5.29)

wh ere the coeff icients A
1 
and A

2 are functions of t only. Consider next the

conservation equations (2.214) and recall that q~ = L a specified by (5.18)2.

• Since and are independent of ~ and since ~~ may be a function of ~~~, the

equation for cr =- 1 in (2.214) after using (5.20) and (5.214)1 
can be written as

1
• ~~.1 1 A1 —l
• ~~~~~~~ 

= 11
1

+ 11
1 

. (5.30)

Now with the use of (5.25)2 ,4 
and (5.22)2 and by argument similar to that which

• resulted in (5 .28) and (5.29) we obtain

~•1 
=-2av (t-r0)q

11 B1(t )~~+ B 2 (t)  , (5.31)

and

3.
XL 1 = TT 1-B1(t)-a[A1(t)~~-A 2(t)] . (5.32)

Since the left-hand side of (5.31) vanishes at t = r 0 for all ~~~, it follows

that B1(r0)=B2(T0Y=
0.

Again, in a sim±lar fashion , from (2.25) ,  (5.23), (5.24), (5.26) and j -

(5.31) we obtain

~~ (t-~~)~~
1
3 

= B1(t)~~+B2(t) , (5.33 )

~~ (t- r~,)XL
11
~ = ~~~~~ (t- r0

)1~~~3
-B1(t) , = £ 3 -

The expressions (5.29) , (5.31) , (5.32) and (5.311 ) involve the four undeter-
1,2 . 1

mined functions A1,A2, B1, B2 . We deter mine these in the next sections by an

appea l to correspondi ng results in the three-d imensional theory.
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Before closing this sect ion, we observe that consistent with (5.22)1,2
and corresponding to uniform “pressur e” gradient in the fluid, the difference

in the values of n , at any two differ ent sections of the pipe is

= n
3 

- n
3 

= - a2A1A~ ,

~~~ ~
=
~1 (5 . 3 5)

while the difference AP
1
1 is given by

= = B1~~ , ~P
:
~1

(.~0) = B1(T)~~ = 0 . (5.36)

- ‘ ‘
I
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U. Determination of the unknown coefficients and the const itutive response
functions in the solution of section 5.

This section is concerned with the determination of the unknown coefficients

A1,A2,
i~1,B2 

wh ich occur in (5.29)12  and (5.31) to (5.34), as well as the relation-

ships between the ~onstitutive response functions (5.7) and the corresponding

results calculated fr om the three-dimensional solution of Poiseuille flow . We

recall that the final results in section 5 make use of the fact tha t the gradient

of the axial force n
3 
along the center line of the pipe is uniform and this cor-

responds to a uniform “pressure” gradient in the fluid. A result of this kind,

if necessary, enables one to identify the coefficients A 1 and B1 in (5.35) and

(5.36) experimentally after an appeal to the expression for the resultants n and

p~ in (A20) .  Here , however , we discuss the determination of the unknown functions

A1,A2, B1, B2 thr ough a comparison of certain expressions in section 5 with cor-

responding results in the three-dimensiona l solution of non-Newtonian Poiseuille
*

flow.

Preliminary to ‘ur main objective, we need to recall certain expressions

and results from the three-dimensional theory. Let ~~~~~~~~~ denote the unit

base vectors of cyl~ndrica 1 polar coordinates (r ,e,z)  and recall the relationships

= cos e ÷ sin e , = - sin 9 + cos B
(6.1)

- 
• 

~.l 
= cos 9 - sin B , = sin B e + cos 9

where as in section 5 the unit base- vectors ~~~~~~ ar~ us d in place of (i,j).

For the axisymmetric problem under discuss ion, the Cauchy stress tensor referred

to (e ,~~ ,e3
) Cat L be written as [see (A9) of Appendix A]

An account of non-Newtonian Poiseuille flow may be found in [16, Sec. 19).
The solution to such viscomnetric flows within the scope of the theory of
viscoelastic fluids was originally given by Rivlin [17].
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t
4 T = T e ~~e +T (e ~~e +e Øe )

• ~~ ~~r>.~’ —r ~~~~
‘ 3> ~~~~ —3 —.3 ‘~~~

- 

+ T<99>~~~~e 8 +T 33
e

3~~e3 
(6.2)

where T
~~~~

,T
~~~~

,T
BB>

,T<Z 
are the nonvanishing physical components of the

stress tensor T in  ~y1indrica1 polar coordinates. For the three-dimensional

Poiseuille flow, these stresses are given by [16, p. 20]:

T~~3 
=-  *( *) = _ 5* 

= 
r

T~~~~- T<9~ , = 

~~~ 
)

(6.3)

T<33 -T<99> 
=

* * *T~~r> = J 
~ 

O::~•
(
~~ 
f )dC +zf +q , -

where ~ is the shear stres s function, 01 and are the normal stress functions,

the functions are related to am~ 
(m= 1,2), by

• *( *) = ~*[~*~
l
(S*) ] = 

A*
(
*
) , (m=l,2)

* *the rate of shear K is defined by (4.31), the scalar q: can be computed once

*the stresses are known on a cross-section z = constant and f , called the

specific driving force, is a co::t:nt gi::n by

• ira (z2
_z
l) (6. 14)

= 
~~ SO T

~3>I Z2~
T
~3>I Z1~~

dr . 

* *The three-dimensional v-iscomnetric functions , ,a~ ,a2 and the scalars q ,f

correspond, respecti-iely, to ~r ,a1,a2 and q,f of [16, Sec. 10]. For further

properties of the3e functions, including the existence of the inverse of ~

see [16, Eec. II]. In particular, we note that by virtue of a normalization of

the constitutive response functionals, the viscometric functions all -vanish
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for v- =0 (arid henc€ for K =0).

Using (A5) along with (Al8) and (14.28), the base vectors g and their
1,5 -.1.

1
reciprocals g d”e calculated to be

= a~~~-2v
(i-i )9

1e
3 

= a(cos B e  - sin B~~~) - 2v(i-, ) 
£ cos

2 r
= a~~ - 2v ( T-’r 0 )B e

3 
= a(sin Be + cos B 

~~
) - 2v(,-T0) 

— siri B e
3 

(6.5)

and

1 
= = ~~~ (cosBe -siri B~~ ) , = ~~e = ~ (sinGe + cos~~~0

) ,
(6.6)

3 2v ~~~l 2 2vg = - —  (i-.r
~~

[e ~~ + $  ~~ ] + e ~ = —
~~~ 

(T_T
O)r~~

+e
3

Then , by (AlO) 1,5, the vectors at time t may be expressed as

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
,

- ~~T
2 

= 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

, (6.7)

= [2v(t_ r o )rT
~~r>+ a2T 

3
]e + [2v(t-T0)rT~~3>

+ a2T
<33

]e
3 

.

Clearly with the use-of (6.1)12, the above results may also be express ?c~

relative to the basis ~~~~~~~~~

Now with the ‘ise of (6.7) , the definitions (A20) and following a lengthy

calculation , the refultant forces at time t are:

= ~(~2 (f ~~~+q*)~~f(
5 +

~~
_ 

~~ -2r~~)dr)~~ , (6.8)

•l 1 2 2 1 2
iT ft = fT~~~~~~ ~ = fl

.2 ‘

(6.9)
1 r8 lA * * f* *

= lm[-j ~ ~1dr+~~f +v ( t - r ) ~~ +q ] ,
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1 1 2 2
E P.i~a ‘ E = P .2~2

2 a 14 14 * 
(6.10)

p1 = p2 = ~~ ~~~ ~~ +v (t-
.r )[4$ 

r ~a 
~~(fr +~~f +v(t-i~~) 

~ _~~q*]3

• 11 22 , i 2 *  12 21
U = i t  = -~~~a f e

3 , ii = ir = 0  , (6.11)

~ll = ~~ 
1$
a
[ 3r~+a

14 
~~ +r

3
~~]dr +~~ ~~~~~~~~~~~~~~~~~~~~~~~

a (6.12)
12 21
p = p  = 0

Also , from (A2 14), (6 .7) ,  the expressions for Xf ,XL~ ,XL~~ at time t are:— — —
X f=_ r r a f~~~ , (6.13)

1 1 2 2 1 2 a lA * * *= XL .l~:,]~ = 

~~~~~~ 
= ~~~~ 

= ~ [-$~ ~ ‘
~~

+
~~~~ 

+q j , (6.111)

and

XL
11 

= XL
22 ita2 * 

, XL~~ = ~~
2l 

= o . (6.15)

It is worth observing that while the motion is steady both in the solution

via the three-dimensional theory and the direct theory, and. while the three-

dimensional stress field T(x,y,z,t) is also steady, the expressions for ‘I in

(6.7) and for the resultants n,p~, etc., obtained from (A20) involve the time t

explicitly. This is due to the fact tha t the vector Ti in (6.7) and hence the

resultants n ,p~ , etc., are calculated relative to the convected coordinate

surface ~ = constant which varies with z and t , as can readily be seen from

• Fig. 2 or B~, . ( 14.30). In this connection , it may be recalled that the base

vector g3 which iS normal to the surface ~ = constant varies with time but is

independent of both ~ and z.

Now the coefficients A1 and B1 in the solution of section 5 may be
~~~ 0 -
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determined by requiring that the difference resultants ~n3 
and L~p~~ 

in

(5.35) and (5.36) be the same as the corresponding expressions calculated

LL from (6.8) and (6.10) 3 1 4 .  In this way, we obtain

A1 = - , B1 = ~~~ v (t_ r0)f
* . (6.16)

By (5.29), (6.16)1 arid the fact that n
3
(0)=0 , in the solution of section 5, we

have n
3

( 0 ) = ~~3
( 0 ) = - a 2A2 . Comparison of this with the corresponding result

calculated from the three-dimensional solution yieids

A2 
= _ r rq* . (6.17)

It remains to identify the coeff icient B
2
. This can be effected with the use

of (5.31) and (5.33 ) and by comparing the results for p 1
j end p

11
3
:

B2 
= ~~~ v(t_T

0)q
* . (6.18)

An examination of the various results also reveals tha t the Lagrange multiplier

which occurs in (5.22) is not an independent quantity and is related

to the multiplier q in (5.25) by

qU =~~~q (6.19)

Having made the identifications (6.16) to (6.18), the constitutive

response functions (5.7) may be also identified from the corresponding

expressions in the three-dimensional solution. We omit details here but note,

A
in particular , the ?xpression for a3 

given by

rc
a 4 T  

~~ -2r ~~ ]dr , (6.20) •

• which clearly relates the effect of “normal force” to the “normal stress ”

effect.

36.

I.. — - - • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 



.4 Acknowledgments. The results reported here were obtained in the course of
research supported by the U.S. Office of Naval Research under Contract

- ,  
N000l14-76-C-014714, Froj ect NR 062-5314, with the Univer sity of California,
Berkeley. I em grateful to J. Casey for checking the details of the calcula-

t - tions summarized in section 6.

37.

-



- 4. References

1. P. M. Naghdi , “Fluid jets and fluid sheets: A direct formulation,” Proc.
12th Symp. on Naval Hydrodynamics (Wash., D.C., June 1978), to appear.

2. A. E. Green and N. Laws, Int . J. Engng . Sci. 6 (1968) 317.

3. A. E. Green > m t. J. Engng. ~ Ci. 114 (1976 ) 149.

14. D. A. Caulk and P. M. Naghdi, J. Appl. Mech., to appear = Rept. No.
UCB/AM-78..3, DtpL. of Mechanical Engineering, University of Calif.,
Berkeley (July 1978).

5. D. B. Bogy, Phys. Fluids 21 (1978) 190.

6. A. E. Green, N. Laws and P. M. Naghcli, Proc. Cambridge Fl-u i. Soc. 614
(1968~ 895 .

7. A. E. Green ~nd P. N. Naghdi, m t. J. Solids and Structures 6 (1970) 209.

8. A. E. Green , P. M. Naghdi and M. L. Werner , Proc. Royal Soc. Lord. A ~~~
(19714) 145i .

9. A. E. Green and N. Laws, Proc. Royal Soc. Lond. A ~~~ (1966) 1145.

10. II. Cohen, Int. J. Engng. Sci. 14 (1966) 511.

11. A. E. Green, P. M. Naghdi and M. L. Werner, Proc. Royal Soc. Lond. A
(19714)1485.

12. D. A. Caulk end P. M. N~ghdi, Arch. Rational Mech. Anal., to appear =
Rept. No. UCB/AM-77-5, Dept. of Mechanical Engineering, Univer sity
of Calif.. Berkeley (June 1977).

13. S. Chandresekha:~, Hydrodynamic and Hydromagnetic Stability, Oxford:
Clarendon Press, 1961.

114. C. Weber, ZAMM 11 (1931) 136.

15. D. B. Bogy, Ann. Rev. Fluid Mech. 11 (1979), to appear.

16. B. D. Col~nan, H. Markovitz and W. Noll, Viscometric Flow of Non-Newtonian
Fluids, Springer-Verlag, New York, 1966.

17. P. S. Rivlin, 3. Rational Mech. Anal. ~ (1956) 179.

38.

•L• - 
~—i: 

-. 

~~~~
- •

~
‘:

- 
- 1ii• ~~~~~ ~- : ~~~ -~



Appendix A

We record in ~.his appendix certain details of an approximation procedure

[6 ,7, 8] whereby the basic equations governing the motion of jets (or rods) can

be derived by integration from the three-dimensional equations of classical

continuum mechanics. Although th~ integrated equations have been obtained

prevIously [6 ,7,8] for any number of directors , we record here only those which

correspond to a directed fluid jet with five directors. We also record the con-

straint conditions appropriate for the incompressible Poiseuille flow discussed

in the present paper. 
-

First we define what is meant by a jet-like body . For this purpose,

cons ider a finite three-dimensional body ~ in a Euclidean 3-space, and let

convected coordinates e’ (1= 1,2,3) be assigned to each particle (or material

+ *
point) of ~~. Further, let r be the position vector , from a fixed origin, of

a typical particle ~f ~ in the present configuration at time t. Then, a motion
• 

-

of the (three-dimensional) body is defined by a vector-valued function r which

* *assigns position r to each particle of~~ at each instant of time, i.e.,

* A* 1 2 3
r = r (e ,e ,e ,t) . (Al)

We assume that the v-~ctor function r -- a 1-parameter family of configurations

with t as the real parameter -- is sufficiently smooth in the sense that it is

differentiable with -espect to and t as many times as required. It is

convenient to set e3 = ~ and adopt the notation

= (e~,~
) 

, = . (A2 )

We shall be concerned here with material curves (not necessarily straight lines)

+The use of an aater~•sk attached to various symbols is for later convenience.
The corresponding symbols without the asterisks are reserved for different
definitions or designations to be introduced later .

*Recall that when the particles of a continuum are referred to a convected.
coordinate system, the numerical values of the coordinates associated with
each particle remain the same for all time.

_ _ _ _ _ _  
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-~ in (~ defined by the equations e~ = ~~~~~~~~~~~~~ 
(cw=1 ,2); the equation resulting f r om

(1.1) with 9a~~~~ (~~) r epresents the parametric form of this material curve in

the current configuration and describes a 1-parameter family of curves in

space , each of which we assume to be smooth and nonintersecting. We designate

the space curve ~~= 0 in the current configuration by c. A point of this curve

is specified by the position vector r, relative to the same fixed. origin to

*which r is referr ed, where

A A*r = r(~ ,t) r (o ,o,~ ,t) , (A3)

with ~ belonging to a finite interval Let and denote the

unit principal normal, the unit binormal a rid the tangent vector , respectively,

to the curve c. At each point of c imagine material filaments lying in the

normal plane, i.e., the plane perpendicular to ~~~~~, and forming the nc~rmal cross~
section+ a~ . - 

The surface swept out by the closed boundary curve ~a of Q is

called the lateral surface. Such a three-dimensional body is called jet-like

if the dimensioas in the plane of the normal cross-section are small compared

to some characteristic dimension L(c) of c (see Fig. 1), e.g., its local radium

of curvature l/~c, or the length of c in the case of a straight curve. A jet-

like body is said. to be slender if the largest dimension of an is much sinafler

than L(c). If a~ is independent of ~~~, the body is said to be of uniform cross-

section , otherwise of variable cross-section. Let the (three-dimensional) jet-

like body in some neighborhood of c be boundary by material surfaces ~ =

~~~~~~~~ (indicated in Fig. 1) and a material surface of the form

= 0 , (All.)

which is chosen such that ~ = constant are curved sections of the body bounded

+The normal. oros8-sec~i~~ of a jet is a portion of the normal plane to the
curve c, i.e., the intersection of the body and the normal plane.
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by closed curves on this surface with c lying on or within (A14)~~ In the

development of a general theory, it is preferable to leave unspecified the

choice of the relation of the curve c to the boundary surface (A14). In special

cases or in specif±c applications , however , it is necessary to fix the relation

of c to the surface (A14).

We recall the formulae

= —~~~~~ 
‘ 

g~~ = , g = det(~~~) ,

(A5)
1~ — 

i i _ ii i j iig , g - g  , g .g  — g

1 1dv = g2de d8 dB (A6)

*and further assume that

g2 = 
~~~~~~~ 

> 0 . (A7)

• In (A5)-(A6), ~~ and g
1 are the covariant and the contravariant base vectors at

time t , respectivelj, g~~ is the metric tensor , gii is its conjugate, is the

Kronecker . symbol ~n 3-space arid dv the volume el~ nent in the present configuration.
*

The velocity vector v of a particle of the three-dimensional body in tee

present configuration is defined by

* .*

- 

v = r  , (A8)

wher e a superposed dot denotes material time differentiation with respect to t

holding fixed. The stress vector t across a surface in the present configura-

* 

—

tion with outward unit normal ~ 
is given by

+•fFor most purposes,we could assume a less general form for the lateral bounding
surface of the body and write F(91,62) = 0 instead of (All .).

*The choice of positive sign in (A7 ) is for definiteness. 1 Alternatively, for
physically possible motions we only need to assume that g~~~O with the under-
standing tha t in any given motion [

~~~~
] is either >0 or <0. The condition

(A7 ) also requires that et be a rig~i~~handed coordinate system.

~.1.
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* _ 1 
~ * j j ç  -1 i ikA t=v .g T = ViT g , T = g~~~g 

2T = .i. , (A9)

where

i ~~ij ~~i j  * *i *i ij i jT = g .r 
~~~~~~~~~ , v = v  , ~ = g  .Tg , (AlO)

T is the symmetric Cauchy stress tensor and ~ denotes the tensor product of two

vectors. In te:~ms of quantities defined in (A5)-(Alo), the local field equations

which follow from the integral forms of the three-dimensional conservation laws

for mass , linear monentu.m and moment of momentum, respectively, are

* 1
p g~~= 0

(Au)
i **1 *1.* I
~~~1+P~~~

g2 Pg 2~ , ~~ X = 0 ,

where p is the three-di.mensional mass density, f is the body force field per

unit mass and a comma denotes partial differentiation with respect to e~.

Let a (not necessarily the same as the normal cross-section Q defined

above) denote the curved section of the surface ~ = constant bounded by ~U, i.e.,

a closed curve which is the intersection of the surface ~= constant and the

surface (A14). Further, let the points 
~l 

and ~~~~~, with 
~l 

< form endpoints

of a se~nent of the curve (A3) which we denote by P, and designate by (1~ and.

the particular section: associated with 
~l 

and ~~~~~, respectively. Now consider

an arbitrary part of P of the three-dimensional region occupied by the body

* * *such that: (i) P contains P; and (ii) the boundary ~P of P consists of the

sections C.~ and a2 and a portion of the surface (All.) bounded at each end by-

and 
~~~ 

A body so described is called a jet-like body and the part P

forms a portion of such a body.
*The mass m of a portion of the jet-l ike body is given by

= $ * dv = $ * ~~~~~~~~~~~ . (A12 )
P P

If~~~~~~~

. 
-

- --, - - .- - , 
-

~~~~~~~~ -
-
~~~~~ --

-
,~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~



where p is the mass density of the (three-dimensional) continuum and dv is the

el~nent of volume in the present configuration at time t. In terms of the

se~ nent P of the material curve (A3),  the same mass has the alternative

repres entation

= $ ~$ 
p g 2d9ld92]d~ = $ p(a33)~d~ = 

$
pds = m(P) , (Al3)

where the density ç~ per unit length of the curve (A3) is defined by

.~.- i~ *1 1 2
= p (a33

)2 = p g~de dO . (Alli.)
a

In view of (All)1, we note that

x = o  . (A15 )

The curve (A3) is fixed in the jet-like body by the condition [6]

t’ *l ~~ 1 2
j  p g20 dO dO = 0 . (Al6)
a

As in the paper of Green and Naghdi [7], we assume that for the jet-like
*

body described in this appendix , the position vector r in (Al) can be repre-

sented by the expansion

~.*(e
l

O
2
~~~t) = r +~~ 

~~~~~~~~~~~~~~~~~~~~~~ 
‘ 

(Al7)

where r and d are vector functions of ~,t. In (Al7), the vectors
—

d are completely symme~tric in the indices 
~~~~~~~~~~~~ 

the summation

is over all values of 
~~~~~~~~~~~~~~~~~~ 

and N = l ,2 ,3,... We assume that (A17 ) may

be differentit~ted ~*s many times as required with r espect to any of its variables .

In the rest of this appendix we consider a special case of (A17) and restrict

attention to the appr~ cimation

,.*(el e2

~~

t)  = r(~ ,t)  + e~d ( ~,t) + $aOB~~,
(~ ,t) . (A16 )
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Using this assumption in (Al), (A5) and (A8), we obtain

v = v + r 3~w +9~~~w , v = r  , w = d  , w = d  ,
-~ — —a —a~ — — -a —a —c~~ ‘-ag

(Al9)
g = d +2$~d , g = a +9~d

’+9~9~d
’ , a = r’

-a -a —aB —3 —3 —a ‘-an —3 —

where a prime denotes partial differentiation with respect to ~~. We also

recall the follo~ring definitions for the resultants n,u ,pa,it~~,p~~:

n = $ T3d91d02 , = $ T~d91d~2 , p
~ = $ T3e~de1de2 ,

— a — a ’~ 
— 

(*20)

= + , = $ T~~~d91d92 , p~~ = $ T3 e~ e8dB’d8
2

a — — a
The equations of motion in terms of the resultants (A20) are obtained by

sui table integration of (All)2,3 over a section G and are given by (for details

see [6 ,7]):

+ Xf~ = ~v , 
-
~~~~
- + = + y~~w~ , (A21) 

-

- 

+ = 8 ÷xy ~~’1~~ , (A22)

xn +d xrr~ -f- d x ~ +d ’xP~~+d ’ xp~~~= 0  , (A23)— ‘-am — —a — -aR — —
provided that

Xf 
~ 

P g ~f d O
1
de2

+ f  [(de2
~~~-a$1T2 ) + T 3(x 2

de1- x 1de2 ))

= $ ~~~~~~~~~~~~~ + $ e~[(de
2T1 - d.e’T2 ) + T3(x

2d01 - x1d92 ) ]  , (~~~ 14)

XL~
6 = $ ~~~~~~~~~~~~~~~~~ eas~[(d$2

~r
l
~~delT2 ) ÷ T 3(x2ael~~Xlde2 )]  ,

a
and

= j
a

p*
~~0a0~~0l~b02 

, Xy~~~
6 

= •çp
*g~9~$a9~Y96d8ld92 (*25)

—
(
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where x~~= x .  ga and X is a vector tangential to the boundary surface (A14).

If we adopt the approximation (A18) and identify the vectors d ,~~~ and

the position vector r in (Al8) with the directors in (2.1)
2 

and the position

vector (2.l)i of th e curve c , then the development of this appendix and. the

• corresponding results given in section 2 are formally equivalent. In particular,

comparison of the equations (A15 ) and (A21) to (A23 ) with those in (2.32)

reveals a 1-1 correspondence between the two systems of equations provided we

identify the expressions (A214) to (A25), respectively, with the assigned fields

and the inertia coefficients in the theory of a directed curve with five

directors discui~sed at the end of section 2.

Before closing this appendix , we discuss an appropriate constraint con-

dition arising from incompressibility when the position vector is approximated

by (Al8). For a three-dimensional incompressible medium, the mass density p

is constant and by (All)1 the condition of incompressibility at time i~~t is

d
~~ [~~~ g~] = 0 , (A26)

I
where g2 is defined by (A7)1. If’ we confine attention to the special case in

which the position vector is specified by the approximation (A18), then with the

use of (A5 )1, we find -

g~ = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 53])

÷

+

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , (*27 )

where e~” and. the operator ( ) ‘  are respectively defined by (3.5) and (5.10).

After substituting the above result in (A26) and following a routine calculation ,

li.5.
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we obtain the following conditions

-t dT ~~~~~~~~ 
= 0 (A28)

~~~

— +2e~~ ~ r X~ iv~3~ 
= 0 (*29)

- 

~~~~~ [~~~~~~~]+e I~ ~~~~
- ([d d.~~d ’] + [ d d d~ ]+ 2 [ d ~1~~,~~a3

]) = 0 . (A30)

e~~ 
~~~

- 

~~~~~~~~~~~~~ 
+ 

~~~~~~~ 
+ + ~~~~~~~~ +

÷ ~~~~~~~~ = 0 , (*31)

e~~ ~~~
— 

~{d d d ’ ]+[d d d’ I + Ed d. d ’ ]
di —~p—T ’-aB —~yp’-~a~a11 ‘-~p—TIa—a1

+ [d d d’ ]+[d d d’ ]
-ap-’Ya—~~ ~ap~ea~’(11

- 

+ [
~~~~~~~]3 = 0 . (A32) 

•

On the basis of the 1-1 correspondence noted in the preceding paragraph, we

may employ the five conditions (A28)-(A32) as constraint conditions for the

special motion of the theory of a Cosserat curve of an incompressible fluid

discussed in section 5.
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Figure 1: A jet-like body in the present configuration showing the curve c

with positIon vector r (defined in Appendix A) as the line of
centroids aT~d the end normal p-lanes ~ = ç~, ~ = ~~~ . Lisa shown are -

the unit principal normal ~~~~~, the unit binorinal and. the tangent
- vector to the curve c 
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Figure 2. A spec~.a]. Poiseuille flow in a circular pipe: Fig. 2(a) depicts a
reference configuration at time i~~~; Fig. 2(b) depicts the corresponding
flow conti.guration at time ~; and Fig. 2 (c ) ,  along with Fig. 2(b),
indicate the locations A ’ and B ’ of particles on the center line of
the pipe which at time were at A and. B, respectively.
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Figure 3: A sketch of an enlarged portion of Fig. 2 (c)  for the upper-half of
a cross-section of the flow in the x-z plane showing the po~ition

*vector r ( r )  of a -fluid particle at time r .

119.

‘I
- - 

T _ ~~~~~~
’E ~~~~c:~~ 

• :
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •



UNCLASSIFI ED
SECURITY CLASSIF ICATI ON OF THIS PAGF (ITh.n f l . l . F n l er r d)

REPORT DOCUMENTATION PAGE I BEFORE COMPLETING F ORM
I- REP~~~~~ u . ~~~ j 2. GOVT ACCESS ION NO.1 3. RECIPIENrS C A T A L O G  NUMB ER

‘‘__c~1AM-79-l
__I 

_____________________________

4. TITLE ~d SubIlIl.) I ORT & PERIOD co~l!7o

(~~1o~ the Applicability of Directed F~~iid Technical~,ie~~~l I
~~~~~~~~~~ Newtonian - and Non-Newto~~~~~~1ows. •. • un _ . ’

7. AUT -, 6. ST 5 ‘~~~~~~~~~~ ‘ )
~~~~~~~~~~ 

M./
(~a~h~~_/ 

~~~~~~~~~~~~~~ -~j~j
1”

I. PERFORMING ORGANIZATI ON NAME AND AODRESS 10. PROGRAM ELEMENT. PR OJ ECT , TA SK

/ AREA 6 WORK UNIT NUMBERS
Department of Mechan ical Engineer ing
University of California NR 062-5314
Berkeley,_California__914720 _________________________

II. CONTROLLING OFFICE NAME AND ADDRESS

Fluid Dynamics Program /  Jan d79 /
Office of Naval Research • N UI 4 BEA O~ AGES

Arlington , Virginia 22217 149
14. MONItORING AGENCY HAM AOORESS(II dHf•rwl from Conf rolling OtfIc.) IS. SECURITY CLASS. (of 11th r.po.i)

/  ~~~~~~~~~~~~ 
Unclassified

IS.. DECLA SSIFICAT ION IDOWNG RAO ING

IL DISTRIBUTION STAT EMENT (of thu. R.porl)

Approved for public release; distribution unlim~.ted.

17. DISTRIBUTION STATEMENT (of ffi. ab•Irach .nl•,.d In Shock 20, II dlfl.,wt I,... R.p.if )

IS. SUPPLCMENTA RY NOTES

IS. kEY WORDS (C.nihnu. on r.vlr.. .1* If n.c... ~~y .,d Id.R. SI, by Mock o~~ 6 r )

Directed fluid jets , Newtonian flow , jet breakup , non-Newtonian
Poiseuille flow, incompressible viscoelastic fluid, circular pipe,
determination of respons e functions , cL ’!parison with the predictions
of three-dimensional theory.

3O~\y.STPIACT (C.nllnu. n r•vir•~ .gd It n••~•i v  ond Id.niIIy b~’ b1•*& ‘ s I b f )

This paper elaborates on the applicability of a direct formulation of the
theor y of jets to Newtonian and non-Newtonia n fluid flow problems . 

j

Following a general discussion of the natwe of direct theories , we
record the basic equations of the theory of directed curves for any
finite number of directors . Reference is then mede to some recent
results for incompressible Newtonian viscous flow3, including the
problem of Jet breakup. The major portion of the pa per is concerned ~~~ ~~~~

00 ~~~~~~ 1413 EDITION OF I NOV SI IS OBSOLETE 
- 

UNCLASSIFIED ~~~~— 
S/N OIO2-O I4~~4SO I I

I - 

~~~~~~~~~~~~~~~~~~~~ ~~~~ 
SECURItY CLAIZIPIC*t IOR OF THIS ~~~~~~~~~~~~~~~~~~~~~~~~~

—I. —_ 
—~~ 0~ I;

_ 
“ 

••~ -

_ _ _ _ _ _



UNCLASSIFIED
..LLIJNI1 ’Y C LASSIF IC AT ION OF T HIS PA GE(W h on Dab Ent.r.d)

\~~2o. (continued)

with apçlication of the direct approach to an incompressible non-
Newtonian Poiseuille flow in a circular .pipe . The results are compared
to those of the three-dimensional theory and are found to include the
effect of( ’~normal force~~i~orresponding to th~(~norma l stress”~effect.

--

SECURI~~Y CLASSIF ICAT ION OP THIS PAOtfl~~on 01. I~i.~~d)

—
~~——--.~~ —- —-- -.— • ——-.~~-.- - — --—.-

~~ 
-
~~ ‘.‘~~~~w.r~~yr’ ~~~~~~~~~~ — — —.—-• -.•-— - .--—-.- -.‘ -..—.-~-—. --~-.~ -r. —~~.—- -—

~.- 
- —---‘

~
‘‘

~~ ~~ 

I 1’ 
~~~~

‘ III ~~ .~~~~~~~~~~~~~~~


