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An Efficient Barotrop ic
Vort icity Equat ion Model on a Sphere

1. INTRODUCTION

The time evolution of planetary waves in the troposphere may be described,

to a first approximation , by the barotropic vorttcity equation (Rossby 1).

*= J(n,~
,) 

, 
(la)

where the absolute vorticity ,~ 
and the stream function ~1’ must satisfy the physical

constraint

( ib)

Here f  is the Corlolis paramete r. For a spherical earth with radius r, colatitude

coordinate ~~, longitude coordinate A, and rotation rate (~ about the polar axis, the

symbols In Eq. (1) are defined by

j( ~
,) = 

I flu .K. - lu. k~.1sin 9 ØA 8A aej •

(Received for pub1tcatior~ 9 November 1978)
1. Rossby, C. G. et al (1939) Relation between variations In the intensity of the

zonal circulation of the atmosphere nd the displacements of the semi-
t permanent centers of action, J. Marine Re.. 2138-55.
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r~~stn ø [fr ~~°3o + si •~~J~
f~~~2cz cos o

This model, by virtue of its realism and simplicity, has been extensively

used in theoretical studies or the properties of atmospheric planetary waves.

Among the large number of such studies reported in the meteorological literature ,
we may mention, for example, the classical work of Fj ortoft 2 on the changes in

the spectral distribution of atmospheric kinetic energy, and the work of Kuo3 and

Lorenz4 on barotropic instability. Indeed, a model similar to this one was chosen,
though wtth additional constraints, by Charney et al 5 to be the first of a hierarchy
of models used to conduct numerical weather prediction (NWP) experiments for a
limited area covering most of North America.

However, a solution in spherical coordinates (or this model, simple as it is,
(a not easy to obtain. Thus in the case of theoretical studies, an infinite u-plane
approximation is commonly introduced to alleviate the geometric complexity of
the problem. In the case of NWP applications , this model has been traditionally
applied, using a polar stereographic projection, only to extra-tropical regions of
the globe. Solving Eq. (1) f o r  a limited region of the globe requires, however,
artificial lateral boundary conditions. It is difficult and often impossible, to con-

s’ruct a set of boundary cond itions which are consistent with the differential equa-
t ions. But because the number of arithmetic computations needed for the numeri-
cal solution of Eq. (ib) on a sphere ~ as prohibitive, the dilemma of imposing
ext raneous artificial lateral boundary conditions to the model equations was
accepted in the past as a necessary evil.

With the development of computational mathematics, it is now possible to ob-
tain an approximate solution to Eq. ( ib) on a sphere with relatively little computing

effort (cf. Yee6). It has thus become less taxing, in terms of computer resources,

2. Fj ortoft , R. (1954) On the changes in the spectral distribution of kinetic energy
for two-dimensional, non-divergent flow, Tellus 5:225-230.

3. Kuo, H. -L. (1949) Dynamic instability of two-dimensional non-divergent flow
in a barotropic atmosphere , J. Meteor. 6:105-122.

4. Lorenz, E.N. (1972) Barotropic instabilit y of Roosby wave motion, .1. Atmos.
Sd .  29:258-264.

5. Charney, J, G. , Fjortoft, R. , and von Neumann, J. (1950) Numerical integra-
tion of the barotroptc vorticity equation, Tellus 2:237-254 .

6. Yee, S.Y. K. (1976) An efficient method for a finite difference solution of the
Poisson equation on the surface of a sphere, J. Computational Phys. 22 :
215-228. —
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to conduct controlled experiments in NWP En a global setting. Among the prob-
lems which we plan to explore, using a global barotropic model , are the follow ing:
(1) the stability of barotropic flows on the surface of a sphere, (2) changes in the
spectral distribution of kinetic energy in a barotropic atmosphere, (3) the effect
of non-uniform spatial and temporal increments in a global model, and (4) the
effect of assuming a u free_slip H boundary condition at the equator in a hemispheric
model.

2. FINITE-DIFFERENCE APPROXIMATIONS

If we cover the surface of the earth with a grid formed by the intersections
(I , j ) of latitudes and longitudes, we may approximate Eq. (1) by the difference
analogs

(~~ )i.j  ~ r2 ’m i 
J i,~ 

(i~,ç1# ) , (2a)

~ ~i,)  ~~~ (2b)

where

J1 ~(x~ y) 
~TA(x , y) + jB~

; y) + 
~~~~~~~~~~ 

y) (2c)

~~A~~’ y) 0 (X i+l j  - xi_ 1, j~~~i, j+l - ~i, j -l~ 
- (Y~~1, ~ 

- Y1 1 , J
)

— x 1 j ..j ) ~

~~B~~’ y) 1
~ i J+1

(
~ci+1, j+ l  - X1_1, j +l~ 

- y1 ~ .1(x 1÷1 ~~~~~ 

- x~_ 1, ~ -~~~J -

~~i+i , j (x i+l ~~~ 
— xi+j ~~~~~~ 

— ri—i , j (X 1..1 ~~~~ 
— Xi_ l , j — l ~

1

J C~~
, Y) • 1x 1 j÷i~~i÷i , ~~~ 

— Y1—1 , ~~~~~ 
— X

i j — i ~~t+i i_ i  — yt _ l . j — l~ 
—

• 
• 

tx 1~1, j~~i+i , ~~~ 
— y1~ 1 ~~~~~~~ 

— x1 1 , j~~i—i , ~~~ 
— yi— 1, j _~~)J •
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a a~x 1_ 1 , ~ 
+ bi x 1+1 ~ 

+ c1(x 1, ~~~~~ 

+ x L ~+~ ) — (a 1 + b1 + 2c 1) x1 ~

x 1 ~ 
= x(0 1, X. ) , m 1 = 4 AO AX sin 0

/ ~ 
s1n 61_ 1 20 = l i — — l A O , a. = 21 

~
, 

2 /  1 AG sin G 1

= j  AX 
b - ~~~

~ A0 2 s i n 0
AG = 1/ I .

AX = 2~ /J , c 1 2 
1 

2AX sin

Here we have divided a latitude circle into J equal increments of AX and a merid-
ian into I equal increments of AG. We have also excluded the coordinate singulari-
ties at the poles by constructing the grid in such a way that the poles are not grid
points. This is done by placing the first grid-latitude at 0 1 = A9/2. The finite-
difference Jacobian 3 

~ 
in Eq. (2) is due to Arakawa, except that it has been

modified here for the spherical coordinates. A second order five-point centered-
difference formula has been used for the Laplacian

It we now discretize the time derivative in the left ’hand side of Eq. (2a) by a
centered-difference “leap-frog” approximation, we have

~ (~~~

s.’... ~ -‘),i~ At (3)

where At is the size of the time increment and a ~(9 1, A1, 
nAt) is the value of

i~ at grid-point (t , j)  and time-step n. With these approximations in space and time,
Eq. (2a) now takes the form

~fl+l 
= ,7n-l + 

r~~~~i 
~~~~ (v~~~) . (4 )

7. Arakaw a, A. (1966) ComputatIonal design for long-term numerical Integration
of the equations of fluid motion : two-dimensional incompressible flow , 1,
J. Computational Phys. 1:119-143.
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For the very first time-step, we use forward-dtfferencing in time,

= • + ~ t 

~ ~~~~~~~ . (5)
~~~ ,~~ r

By and large, these are the diiference formulae which we shall use to approximate
Eq. ( 1). We shall, however, experiment with the flexible-increment approxima-
tion described below for possible improvements in computational efficiency.

One of the more troublesome numerical aspects in getting a solution for
Eq. (2) is the problem of computational instability due to the convergence of
meridians of the spherical coordinates at the poles. For a constant angular in-
crement AX, the convergence of the meridians causes a decrease, on approaching
the poles, of the linear spatial increment As = AXr sin 0 along a grid-latitude.
Thus in order to maintain computational stability, we must use very small At
values near the polar regions . Various schemes have been proposed in the litera-
ture to overcome this difficulty.

In a previous study in connection with the efficient finite-difference solution
of Eq. (2b) on a sphere (Yee8), we adopted a computational scheme in which dif-
ferent sizes of angular increment are used at different lat itudes to approximate the
X-derivatives. We write at latitude O~, for example,

1 I 1 
) (6)r sin 9

~ ~, & X ) ’  I 
— r sin 0~ h1 24r ~i1 J+h1 

- 

~~ i-h i

where

~~ j +h. = ~i( tA0 , (j + h1)A X)

Here h1 is a positive integer which is less than J and is numerically closest to the
number

h’ - 1
sin

The restriction that h1 be Integers is necessary here to insure that the points
(i, j + h1) coincide with the computational grid points. With this formulation, since

8. Yee, S.Y.K. (1977) An Efficient. Accurate Numerical Method for the Solution
of a Poisson Equation on a Sphere, AFGL-TR-77-0246, Air Force Geophysics
Laboratory, ifanscom AFB.
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sin 1, the linear increment As 1 = AX rh~ sin 01 
is approximately constant

for all O~.
This approach has met w ith considerable success for a stable rapid solution

method for Eq. (2b). We shall extend this concept to the t ime-integration of Eq.

(2a). The difference Jacobian in Eq. (2c) now takes the form

J~ ~(x . y) 3.A (x , y) + J~~(x , y) + J~~
(x , y))/ 3 (7)

where

J~~(x ,y) a (x ~ 1~ - x j l J )(Y I J+h - Y t ,J -h 1~ 
- ( y~+~~~ -

JB(x , y) a [y 1 j +h1~~i+l , j +h . - X 1_ 1~ j +h1~ 
- 

~i ~_h
1
(x l+l , j -h~ 

- x
~_ i , j-h1~

1 -

(y~+1 3
(x~~1 j +h1 

— X~ •~•1 J —h 1~ 
— 

~‘i—l , 3
(x 1_ 1, j+h~ 

— x t..i i—h i>’

Jc(x ,y )  a [X
i J+h .~~ i+l j+ h~ 

- Y( 1 ,~ ÷h~
) - x i, j_ h . (Y i+l .j _ h 1 

- 
~L_ l ,J_h~~ 

-

[x 1~1 j~’i+l, J+hi 
— 

~~~~ J —h ~ 
— x 1 1 , 3~~1 1 , j +h1 

— y1_1, j—h 1~
1

And Eq. (4) becomes

= + 

~~~~~ 
J j , 3 (Th~~’) , 

(8)

where mr 4 AG AX h 1 sin 0~. We reiterate here that with this scheme, tim e-
integration is to be performed at every grid point (i , j ) . Only in the difference
approximations to the A-derivatives do we invoke the idea of variable increments
in A.

3. RESULTS

We have coded the model Eq. (2) in Fortran for test calculations in a CDC
6600 computer. In actual computations, we introduced the non-dimensional
parameters

12
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,c~
’

tcz

=
so that Eq. (2) can now be written as

-• • ( * * ) , (9a)
8t m i .3

2 * *4~ = -2 cos O
~ 
. (9b)

This simple scaling reduces the amount of computation somewhat in our time-
integration procedure. Grid resolutions of AG K AX = 2i/36 and At * = 2 1r/24
(At = 1 hr) have been used for the sample results given in this section. For initial
conditions we used variations of the now classic Rossby-Haurwitz waves given by
Phillips .

K - w3 cos 0 + w2 cos 9 sinm 0 cos mX . (10)

Here m is the zonal wave number and w2, w3 are constants in units of ci. Note
that ~i ’~’ in Eq. (10) Increases with 9 and is antisymmetric about the equator. In
most so-called global time-integrations, symmetry of the wind field about the
equator is assumed; and time-Integrations are then carried out only for a hemi-
sphere or portions of a hemisphere. In our time-integrations, the following initial
fields have been adopted:

m2
cos 0 > w2(m) 5i~m 

~ ~~~ mX(l - 0(m) - 0. l~ (0)) - w3 cos 0 . (11)
m=m 1

Here o(m) , ~(0)  are random numbers which fall within the range (0, 1). Note that
random phase-shafts are permitted In Eq. (11) , and the ~~~ field is now no longer
antisymmetric about the equator. For m2 m 1 and 0(m) g3(e) K 0, however, Eq.
(11) reduces to Eq. (10) , which gives us an unperturbed initial field.

We present here in Figures 1 through 3 the stream function fields for the cases
m2 1, 2, and 3 respectively, In each of these cases, m 1 is set to equal 1.

9. Phillips , N.A.  (1959) Numerical integration of the primitive equations on the
hemisphere, Mon. Wea. Rev. 87:333-345.
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These figures are intended only to give a feeling of the time evolution of simple
• planetary waves in our model. We have examined more detailed model outputs

and found that for the cases m 1 = m2, a(m) f3(0) = 0, the phase velocity of the
waves in our model agrees well with that given by Phillips ,

m(m + 3)w - 2c1

~
‘ (m + 1)(m + 2)

For example, for the case m 1 = m2 
K 1, w3 = 0. 061� , the waves indeed retrograde

at a constant angular velocity with a period close to 3. 5 days . For the cases
presented, time-integration was terminated arbitrarily after 30 model days . We
have, however, integrated some cases with unperturbed initial fields (m 2 < 3 )  for
up to 100 model days and detect no signs of numerical instability. Although not
needed to maintain computational stability for the cases presented here, a 4th order
linear filter designed by Shapiro 10 has been applied at each time-step to the vor-
ticity field. Present indications are that a Shapiro-type filter is needed to main-
tain numerical stability in long-term integrations for cases with m2 > 3. In terms
of central processor time, a typical integration of 2400 time steps takes roughly
260 sec in a CDC 6600. Thus both in terms of stability and efficiency, the algorithm
reported here seems to be well suited for numerical experimentation.

4. REMARKS

(1) Many studies have been conducted on the numerical solution to barotropic
models in spherical coord inates. These studies may be classified into two broad~
categories : those dealing with “ filtered” vorticity equation models and those deal-
ing with “ primitive’~ shallow-water equation models. In the filtered equation
models, fast moving gravity and sound waves are “ filtered out” on physical gr ounds.
Early numerical attemps (for example, Silberman, Baer and Platzman ’2 ), to
solve such model equations approximate the stream function with a finite sum of
surface spherical harmonics, a natural choice for a basis function on a sphere.

10. Shapiro, R. (1978) Personal communications.
11. Silberman , 1. (1954) Planetary waves In the atmosphere, J. Meteor. 11:27-34.
12. Baer, F. , and Platzman, G. W. (1961) A procedure for numerical integrat ion

of the spectral vorticity equation, J. Meteor. 18:393-401.
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This approach requires, however , a prohibitive amount of arithmetic computation.
Thus only linearized flows or flows with two or three travelling waves were
investigated.

The initial success of the barotropic vorticity equation model in operational
NWP for a limited area (Cressman 13) apparently spurred much Interest in the 60’s
to formulate global finite-difference grids. The works of Gates and Riegel, 14

Sadourny, Arakawa and Mintz , 15 and Williamson ’6 are but a few examples of
studies in this area.

With the realization that, in terms of NWP skills , the quasigeostrophic model
has reached its theoretical plateau and that the next higher order approximation in
filtered equation models involves mathematical difficulties , the tendency since the
60’s has been to forego filtering out the fast waves and to return to the use of the
“ primite” equation models. Beginning with Phillips , Kurihara, 17 Grimmer and
Shaw, 18 Holloway, Spelman and Manabe, 19 Williamson and Browning, 20 Kida, 21

and Umscheid and Bannon22 among others have contributed to the numerical study
of the barotropic primitive equation model on a sphere. Unlike the simple scheme
described in Section 2, the majority of the work cited above resorted, however, to
complicated computational design.

(2) With the advent of the fast Fourier transform, it has become more practical
to perform time-integration of atmospheric models by the so-called pseudo-spectral

13. Cressman, G. P. (1958) Barotropic divergence and very long atmospheric
waves, Mon. Wea. Rev. 86:293-297.

14. Gates , W.L. , and Riegel, C.A. ( 1962) A study of numerical errors in the
integration of barotropic flow on a spherical grid , J. Geophys. Res.
67:773-784.

15. Sadourny, R. ,  Arakawa, A. , and M intz , Y. (1968) Integration of the non -
divergent barotropic vorticity equation with an icosahedral-hexagonal grid
for the sphere, Mon. Wea. Rev. 96:351-356.

16. Williamson, D. L. (1968) Integration of the barotropic vorticity equation on a
spherical geodesic grid, Tellus 20:642-653.

17. Kurthara, Y. (1965) Numerical Integration of the primitive equations on a
spherical grid, Mon. Wea. Rev. 93 :399-415.

18. Grimmer, M., and Shaw, D. B. (1967) Energy-preserving Integrations of the
primitive equation on the sphere, Quant. J. Roy. Met. Soc. 93:337-349.

19. Holloway, J. L., Spelman, M . J . , and Manabe, S. (1973) Latitude-Longitude
grid suitable for numerical time integration of a global atmospheric model,
Mon. Wea. Rev. 101:69-78.

20. WillIamson, D. 1=. , and Browning, 0. L. (1973)  Comparison of gr ids and
difference approximations for numerical weather prediction over a sphere,
3. Appl. Meteor. 12:264-274.

21. Kida, H. (1974) Tests of spherical grid systems for the primitive equations,
J. Meteor. Soc. Japan 52:1-10.

22. Umscheid, L. • and Bannon, P.R. (1977) A comparison of three global grids
used In numerical weather prediction models, Mon. Wea. Rev. 105:618-835.

18 

.. . i

~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~



method discussed by orszag. 23 Intense effort in recent years in this area of
research has enabled the Canadian Atmospheric Environment Service to launch
in 1976 the first spectral model into operational NWP (Daley et al ). It is. how-

• ever, not our purpose here to contrast the finite-difference method with the
pseudo-spectral method.

(3) We may look at the differencing scheme given in Section 2 from two dif-
• ferent points of view.

(a) A non-uniform angular increment AX i = h
~ AX gives us a relatively

constant linear increment As~ for all 0~. Since h~ increases toward the poles, we
have in effect , on approaching the poles, coarser and coarser resolutions in the
A-derivatives. The time-integration performed at every grid point is really
nothing more than just a means by which we avoid altogether the problem of inter-
polation usually associated with a grid of m ixed resolution.

(b) The use of a variable AX
~ for the X-derivattves may also be interpreted

as the use of a variable At 1 in Eq. ( ) , for we may write Eq. (8) as

n+l n-i 2At
~ j

*fl

~~ 
= T7

~ 
+ 
r2 m

~ 
~, ~ 

(r~, ~
i)

where At 1 = At/h 1. Since h~ 1/sin 0~. At~ decreases toward the poles. Thus the
poleward increase of AX

~ 
in the evaluation of X-derivatives is equivalent to keeping

a uniform AX but reducing the size of At1 on approaching the poles. This is some-
what similar to the method given by Grimmer and Shaw. 18

(4) For our flexible differencing scheme, the truncation error in A-deriva-
tives increases toward the poles. This may turn out to be a problem for certain
flow patterns as far as accuracy is concerned. This potential problem area
deserves and will receive our closest attention.

23. Orazag, S.A. (1970) Transform method for calculation of vector coupled sums:
application to the spectral form of the vorticity equation, 3. Atmos. Sd.
27:890-895.

24. Daisy, R . • Girard, C. , and Henderson, 3. (1978) Short-term forecasting with
a multi-level spectral primitive equation model, Part I - model formulation,

• Atmosphere 14:98-116.
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