
)—A 065 111 MITRE CORP BEDFORD MASS F~ Ø 9/2A VALIDATION TECHNIQUE FOR COMPUTER SECURITY BASED ON THE THEOR eEYC (U)DCC 76 F C FURYCK FI962O—78—c~ ooo1UNCLASSIFIED MTR—3661 ESO—TR—76—1$2 Nt

~~~~ 

___ 
-

~~ 

--

- - 
-

~~

-I!! !_



— - n~. ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~ ‘*-..~~.W ....-JUT

ESD-TR-78-182 MTR-366 1

A VALIDATION TECHNIQUE
,..4 FOR COMPUTER SECURiTY

BASED ON THE THEORY OF CONSTRAINTS

BY FREDERICK C. FURTEK 
~
‘ I) D C

DECEMBER 1978 
&IA~~ 1

~~
919

1]
Prepared for c

DEPUTY FOR TECHNICAL OPERATIONS
ELECTRONIC 8YSTEM8 DIVISIO N
AIR FORC E SYSTEMS COMMAN D

UNITED STATES AIR FORCE
Hanscom Air Force Base, Massachusetts

_ LEVE~~.
H

Project No. 5720
Prepar ed by

THE MITRE CORPORATION
A ,..o..d for pub4ãc ,~s.ui. Bedford , Massaohuaetta
di *vlbutiou Ufl4kflèNd . Contnct No. F19628-78-C-0001

79 02 26 13~
!~~ r~



4

When U.S. Governmen t drawings, specifications.
or other dat, are used for any purpose other
than a definitely related government procurement
operat ion , the government thereby incurs no
responsibility nor any oblig ation whatsoe ve r; and
the fact that the governm.nt may have formu-
lated . furnish ed, or in any way supplied th . said

• drawings, specifications, or other data is not to be
regarded by implication or othi’wise, as in any
manner licensing the holder or any other person
or corporation , or conveying any rights or per-
mission to manufacture, use, or s*ll any pet.nted
invention th.t may in any way be related ther.to.

Do not return thi, copy. Retain or destroy.

REV IEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

~g~J .~~~~~ ~~~ ~~~~~~~~~~ L.
DANIEL R. BAKER, Captain, USAF CHARLES 3. GREWE, Jr., Lt Colonel , USAF
Technology Applications Division S Chief , Technolo gy Appli cations Division

FOR THE C(JIMANJ)ER

1
I/I21~4Lt~LJ# f/L~1di~I~~11NO~ (AND MICHAUD, Colonel, USA?

• Director, Computer Syrtems Engineering
• l~puty for Technical Operations

- 
~~ • -:T 

_ _



• ~~~~~~~~~~~~~~~ 
• •~~~,r’  ~~~~~~ 

~~~~~~

UNCLASSIFIED
S CUR rY CL ASSI F ICATION O~

THI S PAGE (IPh..e 0.i. EnI.r.d)
•

~~~~~~~~~~~ DA (~~ READ INSTRUCTIONS
j  REPORT DOCUMEN i ~ i i” BEFORE COMPLETING FORM
L 

~~~~~~~~~ 
2. GOVT ACCESSION NO 3. RECIPIENT’S CA1’ALOO NUMBER

D R-78~~~~~
t_ -1:1-3 5. TYPE OF REPORT S PERIOD COVERED

~_,
I ~~~AL1DATION~~~ CHNIQUE FOR.cOMPUTE~~ JI ~~ECURIT Y BASED ON THE ,,’~HEORY OF /

_ _ _ _ _ _ _ _ _ _

CONSTRAI
~~

S
~ /‘

-• •
(~~~

~~~~~~~~~~~~~flU ., 3~~~7REPORT NUMBER

7 AUT HOR(s )  ~~i~~t O R G  ANT NUMBER( s)

1~ [Frede~~ C. /Furtek ~?7Fl962s_78...C... *,~i 1
9 PERFORMING ORGANIZATION NAM E AND ADDRESS IC. PROGRAM ELEMENT, PROJECT , TASK

AREA & WORK UNIT NuMBERS
The MiTRE Corporation 1
P. 0. Box 208 Project No. 57’

~0
Bedford. MA 01730 _____________________________

II . CONTROLLING OFFICE NAME AND ADDRESS j
~., ~~~~~~~ InTl

Deputy for Technical Operations ( I j_~~C_~:._ L7i7
Electronic Systems Division , AFSC . ,rcrc~ vi’ PA~1C.~

• Hanscom AFB, MA 01731 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~4. MONITOR ING AGENCY NAME & ADDRESS(II If ffic.) 15. SECURITY CLASS. (of thu r.port)

/1. ~~~ 17 
~~
. UNCLASSIFIED

15a, OECLA SSIFICATIOPI/DOW NGRADING
SCHEDULE

• 16. DISTRIBUTION STATEMENT (of thi s Report)

Approved for public release; distributton unitinited.

I?. DISTRIB UTION STATEMENT (~ f the .b.ft act .nf.,sd Sn Block 20, If dift.renl from R.porl)

IS. SUPPLEMENTARY NOTES

IC. KEY WORDS (Continue on revere. aid. if n.c..a.ry ~ id id.ntify by block nu.,b.r)

AUTOMATA THEORY MULTIPLE-VALUED LOGIC
• • COMPUTER SECURiTY PRIME CONSTRAINTS

CONSENSUS PRIME IMPLICANTS
DEDUCTION RESOLUTION

SWiTCHING THEORY
ABSTRACT (Conlinus on r•v•re• aid, if osc.a..,y ond identify by block number)

A validation technique is described that is both necessary and sufficient to test for
security compromise. A LISP program documented In this report automates
a substantial portion of the validation process. The theory of constraints , which
incorporates elements of switching theory and automata theory, provides the
mathematical foundation In addition to detecting compromise, the approach may —

~~~
.s

(cont.)

DO ~~ 1473 EDITION OF 1 NOV S ~~~$OI. ITS
~ j j , (,.A - UNCLASSIFIED•

~ 3 3~
QS C.)

7$I(7 AUIF
~~~~~

I2F TNl~~~~ tG~~~~~~on 

°T
~~~~ 3

~~~~~~~ ~•~~r - ~ .• - 

~~~~
•
•
~~~

• •



_____________ • • . •_,,...__..•,
~
_• ~~~~~~~~~~~ ~~ -

UNCLASSIFIED
SECURITY CLASSI FICATION OF THIS PAOI(IThen bet. J.t.,e4~

• 20. ABSTRACT (concluded)

-,)be used to prove a wide range of properties about system behavior . The technique
Is suited to both hardware and software , and is applicable at varioua levels
of specification.

I

UNCLA$SIFr.g;
SECURItY Ct.AUIFICATIO$S or tsi ~ PA$t(B5,.., ba. L,tpi.i~

~~~~~ ~~~~~~~~~~~~~~~~~~~~ • • .:~~ • 
- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -I 
— •-- 

4 ~
. ,

~~~ •~~~ 4J•••~~~~~~~~~~~


• •

ACKNOWLEDGMENT S

This report has been prepared by The MITRE Corporation under
Project No. 5720. The contract is sponsored by the Electronic
Systems Division, Air Force Systems Command, Hanscom Air Force Base,
Massachusetts.

• The author is indebted to Margaret Corasick and Jonathan Milieu
for their many valuable comments.

• ‘~ 3’
-

- r ~- • • •

• :...\

1

S.

-

~~~~~~~~~~~~~ ~~~~~~ 

.‘.
~~~~~~~~~~~ ~~~~~~~‘


• •• ... • . .
~~

• ~~~~~~~~~~~~~~~~~~~~~~~~
•

TABLE OF CONTENTS

Section ____

LIST OF ILLUSTRATIONS 5

1 INTRODUCTION 6

LIMITATIONS OF EXISTING VALIDATION TECHNIQUES 6
A NEW APPROACH 6
OUTLINE OF THE REPORT 7

2 BACKGROUND 8

A PROBLEM 8
OUR MODEL 9
CONSTRAINTS 10
DEDUCTIONS 10

3 THE PRIME—CONSTRAINT GRAPH 13

REPRESENTING PRIME CONSTRAINTS 13
LOOPS 15
CHECKING FOR A DEDUCTION 16
USING THE TOOL 19

~ THE ALGORITHM 22

OVER VIEW 22
PRIME IMPLICPINTS 22
FEX AND BEX 23
NODES AND ARCS 24
THE INITIALIZE PHASE 27
RESOLUTION 28
EXTENSION 31
FEX’S AND BEX’S OF A RESOLVENT 31
THE GENERATE PHASE 32
THE UPDATE PHASE 35

5 CONCLUSION S 43.

• ACCOMPLISHMENTS 41
• COMPLEXITY 41

HIERARCHICAL VALIDATION 42
SUPPORTING TOOLS 42

-“I,

- ii — — —~~i

~11
TABLE OF CONTENTS (Conclu ded)

REFERENCES 44

APP~ IDIX A. MODULE DESCRIPTIONS 45

APPENDIX B. PCGRAPH LISTING 54

4

‘,j~-
, -

~~~~
-

~~ -
~~.

~~~~~~~~ ~~~~~~~~~
-- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

LIST OF ILLUSTRATIONS

Figure Number

1 Prime-Constraint Graph for Four—Stage Shift Register 14
2 Prime—Constraint Graph with a Loop 15
3 Flow Diagram 17
k Prime—Constraint Graph for Program Example 18
5 Mutually—Exclusive Patterns 19
6 Fex ’s and Bex’s for z = <(aO) U (cii> 25
7 Fex ’s and Rex ’s t’~r z = <(aOl (al) (cii> 25
8 Fex’s and Sex’s for z = <(} (bO l (cli> 26
9 Initial Graph 28
10 Fex’s for Clauses x , y, and z 32
ii Bex’s for Clauses x, y, and z 33
12 Graph at End of Generate Phase 36
13 Updating a FEX 37
11$ Splitting a Node 38
15 Updated Graph 39
16 Newly Updated Graph 39
17 Final Graph 40

I

1 5

SECTION 1

INTRODUCTION

LIMITATIONS OF EXISTING VALIDATION TECHNI QUES

Considera ble effort has been directed over the past several
years at developing formal techniques for security validation.
Al though substant ial gains have been made , there remain a number of
problems:

a. t~bst of the work so far has concentrated on val idat ing
software , and very few of the results are applicable to
hardware.

b. The existing security tests are stronger than is necessrry.
It is therefore possible for a secure system to be rejected
as insecure.

C

c. Present techniques have difficulty in handling the subtle
compromises due to ‘modulat ion ’ and ‘timing ’ channels.

d. None of the techniques so far developed has been completely
automated. Typically, a large part of the val idat ion
effort requires human intervention .

e. Most existing validation approaches are applicable at only
a single level of deta il — for instance , the operating—
system level or the assembly—language level. No approach
is applicable across all levels of detail.

f. The issues of ‘data integrity’ and ‘denial of service’ have
not been addressed .

It was with these limitations in mind that MITRE began looking for a
more suitable approach to formal security validation.

A NEW APPROACH

The initial effort at MITRE in overcoming these limitations
produced some promising results. It was discovered that the
compromise of information is intimately related to the concept of a
‘prime constraint’. With prime constraints it was now possible to
state a necessary and sufficient condition for the existence of
compromise. A compromise would therefore be detected if , and only

6

~~~-1~~~~~ 
•• • - • ••__ • 

• -



if, one , in fact , existed. This emerging technique also appeared to
be general enough to handle both hardware and software, and flexible
enough to be applied at any level of detail. In short, it looked as
if prime constra ints would prov ide the key to overcoming many of the
limitations of existing techniques.

There was , however, one major obstacle: There was no ef~~~tive
procedure known to test for the existence of a prime constraint of a
specified type. Without this ability it was not possible to test
for compromise. Most of the difficulty stemmed from the fact that a
finite system could have an infinite number of prime constraints,
and so it was not possible to exhaustively check each prime
constraint for potential compromises.

Clearly , what was needed was a f inite representation for a
possibly—infinite set of prime constraints and an algorithm for
generating that representation. It is just such a representation

• and algorithm that we describe in this report. The ‘prime—
• constraint graph ’ of a system is a finite graph in which every prime

constraint is represented by a path. With this graph it is a
straightforward matter to determine what compromises, if any , are
possible.

OUTLINE OF THE REPORT

Section 2 reviews the five basic concepts underlying our model:
‘condit ions ’, ‘variables’, ‘states ’, ‘transitions’, and
‘s imulat ions ’. The notions of ‘constraint’ and ‘prime constraint’
are also presented, along with the ‘deduction theorem’ which
establishes the relationship between prime constraints and the
compromise of information.

The ‘prime-constraint graph’ of a system is discussed in
Section 3, and the user interface of an automated tool for
generating the graph is described .

In Section ~$ the algorithm for generating the prime-constraint
graph is described , and some of the mathematical results underlying
the algorithm are presented .

A summary of the results achieved and suggestions for future
work are included in Section 5.

I

• ~~~~~~~

_

~~~
• • . •~~~~•• - ,•

.• - .
~~~~~~~~~~

.•



SECTION 2

BACKG ROUND

A PROBLEM

‘Information—flow analysis’ (1 ,2] is currently the primary
technique for establishing the security of computer programs. The
ideas behind this approach are straightforward : The elementary
information flows for each program statement are established first.
In general , if a var iable x is a funct ion of the var iables
yl ,... ,yn, then there is said to be a flow from each of the y ’s to
x. The next step is to take the ‘transitive closure’ of the flow
relation . This means that if there is a flow from x to y and a flow
from y to z, then there is assumed to be a flow from x to z. Once
all of the inf ormat ion flows have been established , it is then
simply a matter of determining whether any of the flows produces a
security violation . In the case of multi—level security, this
involves checking to see that there is no flow from a variable with
a high security level to a variable with a low security level.

The claim that is made for information—flow analysis is that if
a program has a flow v iolation, then that violation will be exposed .
The converse , however , is not true . For a secure program ,
information—flow analysis may detect a flow violation that, in fact ,
is not a compromise . Consider the following simple program (in
which • denotes modulo—2 addition):

Boolean : a,b ,o,d
b :
c :
d : :b•c

Information—flow analysis establishes the following flows:

• b-——— >d

• Now if Variable ‘a ’ is at a higher security level than Variable ‘d ’ ,
• then a flow violation is detected because there is a flow from ‘a ’

to ‘d’ . It turns out , however , that when the assignment d:sbso is
made , d is always assigned the value ‘0’ — regardle ss of the value
of a. ( ‘b ’  and ‘C ’ will always be equal when the assignment is

8

*I ~~~~ 
• 

• 

. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• . • • • • •

~~~
• •

• • • • • ••.~ . •—-  •



made.) Under these circumstances, we would like to say that there
is no flow from a to d , but conventional information—flow analysis
is unable to accept that conclusion .

The problem is that information flow is not transitive. Flows
from x to y and from y to z do not necessarily imply a flow from x
to z. What is needed is a more sophisticated notion of information
flow , one that does not assume transitivity.

The concept of a prime constraint provides us with just the
tool we need. Although prime constraints do not deal explicitly
with the notion of information flow, they give us something more
valuable . They tell us under what circumstances ‘deductions’ can be
made, and , as we have shown (33, deductions are the key to
determining whether or not a system is secure. (In the example
above, knowing the value of d after the last assignment is made does
not permit us to deduce anything about a.)

OUR MODEL

The model upon which our approach is based has already been
described in earlier papers (3 , 1~,5]. For reference , we review here
the essential definitions.

A system is asssumed to have associated with it a finite set of
variables, with each variable ranging over a finite set of values.
A condition is an assignment of a value to a variable. A state is
any set of conditions containing exactly one condition for each
variable .

We assume that each system has a finite set of state
transitions which define the allowable behavior for the system. A
simulation is any state sequence for which every ordered pair of
consecutive states is a state transition . We place no restrictions
on the initial state of a simulation.

A ~~~~~~~~~~ is any set of conditions such that no variable has all
its conditions in that set. For a term t, .~tates(t) denotes the setof states s such that for each variable with conditions in t, s
contains one of those conditions . The empty set is a term of
special interest since states((}) is the set of all states .

1 9

:. ~~



f t

A clause is a finite (possibly empty) sequence of terms. For a
clause x, aea(x) denotes the set of state sequences u such that:l

1. w is the same length as x , and

2. w(i) is a member of states(x(i)).

CONSTRAINT S

The concepts of a ‘constraint’ and of a ‘prime constraint’ have
already appeared in a number of papers (3,1

~,5,6,7). Although the
two definitions are simple , they are somewhat counter—intuitive
since they deal with excluded state sequences (nonsimulations).

First of all., a constraint is any clause x such that seq(x)
contains no simulations. A constraint, in effect, represents an

• incompatibility among successive states in a simulation. We refer
• to a constraint of length n as an .~—olace constraint.

In order to define a prime constraint, we must first introduce
the notion of one clause ‘covering’ another. Clause x is said to
cover Clause y if and only if there exists a (consecutive)

• 
• 

subsequence z of y such that x and z are the same length and
states (z(i))cstates(x(i)). From this definition it follows that if
Constraint x covers Constraint y, then every state sequence excluded
by y is also excluded by x. (Note that any extension of a
nonsimulation is also a nonsimulation.)

A orime constraint is simply any constraint that is not
(properly) oover~d by another constraint. A prime constraint thus
may be viewed as a ‘maximally reduced’ constraint. The set of two—

• place prime constraints has a special significance since it is
equivalent to the set of state transitions. From the standpoint of
security, prime constraints are of interest because they determine
precisely what ‘deductions’ may be made in a system.

DEDUCTIONS

Let us suppose that there is a person with access to a subset
• of variables A. This means that the person knows for every

1 For a sequence z and an integer i, z(i) denotes the i’th component
of

10

- 
•

~~ 

•• • 

~ •
_ ;



simulation of the system what the conditions are for each of the
variables in A. It is not important whether this access is through
observation (reading), modification (writing), or some combination
of the two.

Now consider a second subset of variables B which is disjoint
from A. We shall assume that all of the knowledge that the person
has about the behavior of the variables in B is gained from his
knowledge about the behavior of the variables in A and from his
knowledge about the ‘structure of the system. The person has no
direct access to any of the variables in B.

We now ask the following question: Under what circumstances
can access to the variables in A be used to deduce something about
the behavior of the variables in B? Before answering that question,
we first need to clarify what it means to ‘deduce something’. We
shall say that access to a set of variables A can be used to deduce
something about a disjoint set of variables B if and only if,

There exist two simulations u and v, both the ~same length, for
which there is no third simulation w , the same length as u and
v, such that WA U A  and wB=vB.2

This requirement is a formal way of saying that the pattern uA and
the pattern v8 are mutually exclusive. That is, the presence of uA
in a simulation of length n excludes the presence of v8, and vice
versa. Thus, a person observing the pattern UA in any simulation oflength n is able to deduce that the pattern VB could not also have
occurred; But the person knows that 

~B 
could have occurred under

different circumstances — for instance, if he ha.d observed
Observing UA in a siiiulat ion x of length n therefore provides
additional Information about what patterns are possible for xB. In
particular , the observer now knows that x8 ~ Va. (Notice that it isnot necessary for the obser~’er to know precisely what X~ is. It is
sufficient that he is able to narrow the set of possibilities.)

Having formalized the concept of deduction, we can now answer
the question posed above.

• 2 If x is a clause and Q a set of variables , then x0 denotes the new
clause that i~ obtained from x by removing all oondLtions not
belonging to a var iable in Q.

• 11



F
,

•

.1

U
Theorem : Access to a set of variables A can be used to
deduce something about a dis joint set of Variables B (and
vice versa)

• if and only if

there exists a prime constraint that contains at least one
condition belonging to a variable in A , at least one
condition belonging to a variable in B, but no conditions
belonging to any other variables.3

So we see that the concept of deduction is intimately tied to the
concept of a prime constraint. The ability to determine the prime
constraints of a system gives -us the ability to determine the
deductions of a system.

The problem now is to find a way of generating the prime
constraints of a system.

- 4

S

3 A proof of this theorem is given in (3).

12

• 
• 

~~•: ~~~~~~ ‘~ I~ ~



• SECTION 3

THE PRIME—CONSTRAINT GRAPH

REPRESENTING PRIME CONSTRAINTS

Because the number of prime constraints associated with a
system may be inf inite , it is not always possible to simply list
them. But as we show in this section and the next, it is possible
to generate a (finite) graph, called the prime—constraint ~raoh,that represents completely the set of prime constraints for a
system.

To help illustrate the idea of a prime—constraint graph , we
consider a four—stage shift register as an example. There are four
binary variables: a, b, c, a~nd d. Now if x is one of these
variables and v is one of the values ‘0’ or ‘1’ , then xv will be
used to denote the condition representing the assignment of v to x.
Thus , the condition bi represents the assignment of a ‘1’ to

• Variable b. The operation of the four—stage shift resister is
• determ ined by its set of two—place prime constraints:’

<taO) (b i)> <(bO) (ci)> <{cOJ (dl)>

< (all {bO}> <{bl) (cO)> <(ci) (dO)>

From these constraints the prime—constraint graph depicted in
Figure 1 is generated.

In a prime—constraint graph, each arc is labelled with a term,
and thus each path through the graph is associated with a clause.
The interpretation of the graph is straightforward: A clause is a
prime constraint if and only if it is associated with a maximal path
in the prime constraint graph. The requirement that the path be• maximal simply means that the path must start at a node with no• input arcs and terminate at an node with no output arcs. For the
graph shown, there are only a finite number of maximal paths . The

• 
• prime constraints associated with these paths are:

As a notational convenience , we omit ooemas in our representations
• 

- 
of sets and sequences.

13 
.

• ‘ 
‘ 

•~~~~~~~~~ •~~~~~~~ • • •~~~~~~~• ~~~~~~ • • •~~ •
• • • ~~~ • ~~• , • •• 7~~



F, 
_ _ _ _

+ + +
I I I

I I I
I I I a

( aOfl (bO H (cOfl
I I I
I I I

( I  : ( } •
S.,

+ -  > + -  >+
I I

t I I

I I I
(bl}I (ci): (dlfl

I I

+ +
+ + +
I I I
I $ I

(alfl (b lf l  ( cifl
I I I

. 

(

_ __ >
~~~
.... >t ‘

• (bO}I (oO}I (dOll
I I

+ + +

Figure 1. Prime—Constraint Graph for Four—Stage Shift Register

<(*0) (bl}> <(bO} (ci)> < (aOl (di)>

• < (*1) (bO)> <(bl} (oO)> <(01) (dO)>

<(aO l (} (ci)> <(bO). (} (dl)>

<(all (1 (aO}> < (bl} (I (dO)>

• <(aO} 1) (1 (dl)>

<(.1) (1 (1 (dO)>

A litti. thought should convince the reader that these prime
constraints do indeed reflect the behavior of a tour—stage shift
register. For example, the prim. constraint < (b1)~() (do)) says

1~~ 14

-
~ ~~~~~~~

-
~~~~~~~~~~~~~ , ~~~ ‘i~ ~~r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

M



• • — - ~~~~~~~~•__ ~~~~__• ~~~~~~~~~~~~~~~~~~~~

- that if a state in a simulation contains a bi , then the state two
• frames later (if there is one) cannot contain a dO, and therefore
• must contain a di.

In the next subsection we look at what happens when a system
has a~ infinite number of prime constraints.

LOOPS

It might be supposed that a system with an infinite number of
t prime constraints would have to be fairly complicated. This is not

the case . Consider the system with a single binary variable a =• ((aO l (a i}}5 and a single two—place prime constraint <(*0) (all>.

The prime—constraint graph is shown in Figure 2.

• ( I
• 

1~~

• Figure 2. Prime-Constraint Graph with a Loop

- 

Il
The notable feature of this graph is the loop labelled with (}.

It is this loop that permits an infinite number of prime constraints
to be represented. A path from the (unique) starting node to the 4
(unique) terminating node may traverse the loop any number of times
(including zero), with each such traversal adding another (} . The
set of prime constraints thus forms the following infinite sequence:

0 

We have taken the liberty of identifying the set of conditions
belonging to a variable with the variable itself.

‘1 
‘5

-‘ ~~~~~~~~ ‘ _ _



- — - -  - - ‘

<( aOl (*1)>

<(*0) (1 ( a l l>

<t aO) (1 (1 (all>

The interpretation for this sequence of prime constraints is simple:
If the value of Variable a is ‘0’, then it will always be ‘0’. And
conversely, if the value of Variable a is ‘1’ , then it must always
have been ‘1’ .

This example is a trivial one . In general , a pr~ime—constraint
graph is not restricted to a single loop, nor is a loop restricted
to a single arc. As a result, some very intricate structures are
possible.

CHECKING FOR A DEDUCTION

At the beginning of the last section , we looked at the possible
information flows in the following program:

Boolean: a,b ,c,d 
-

b::a
c:=a
d::bsc

We convinced ourselves that there was no flow from Variable a t’
Variable d even though a (conventional) information—flow analysis
concluded that there was such a flow and an apparent security
violation . An analysis of this program based on prime constraints
eliminates this discrepancy.

• Let us first remove the inessential timing details of the
program by converting it into the closely—related ‘flow d iagram ’

• 
- 

, shown in Figure 3. It is then a simple matter to derive a
- 

specification of the program in terms of two—place constraints:

• 16

~~~ 
~~~ 

_ _ _



F,

S

I copyl 

/
• / S.

S.

b1t
5
’ • /

S.
’

I . :

k
Figure 3. Flow Diagram

<(aOl (b i)> <(aO} (cl}>

<fall (bO }> < (al l  fa Q) >

<(b O cO} (dl }>

<fb i ci) (di)>

• <(bO c i)  (do)>

<f b i  oO} (do)>

The associated prime—constraint graph is shown in Figure 1~.

Let us consider some of the deductions possible. From the
prime constraint <(bO oil  (do)> we see , among other things , that
access to Variables b and d permits a deduction about Variable a.
Specifically, if the partial simulation in Figure 5(a) is observed,
then one can deduce that the partial simulation in Figure 5(b) did
not also occur . (By the same token, it the pattern in Figure 5(b)
is observed, then one can conclude that the pattern in Figure 5(a)

:.~ 
did not occur.) -

17

T~~~. •~•~• ;~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -I



- (aO fl Uall

1’+ +
fbi) ‘‘5 ’ . (ci) (bO} #‘5’~.(oO}— •5 _, 55 a’ 5.

• ~~~+ +‘~‘

+

S.’

• 

• 

(bO c1},”5 ’~~5’(bi cO} I

/ 5
’

• + I +

I f )
• 

+
.‘ : ,

+ 
•

5%

(bO oO’~55 ,ibi oil

• i {dl}

+

• + +S. /•5 ,
- 

(bO cii’ ..’ ,lbl aOl

I ( d O)

• Figure ~• Prime—Constraint Graph for Program gxample

Returning to the question of information flow from Variable a• to Variable d, we note that there is no prime constraint containing
• conditions for both Variables a and d and for no other variables .

Pros the deduction theorem in Section 2, we therefore oonolude that

1$

iT± 
~~~~~~~~~~~~~~~ 

‘
~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~



a b c d a b c d

F r a m e l :  b O I  1 1 1 I c i l 1
I I I I I I I I I I
I I I I

Frame 2: 1 I I d o l 1 1

(a) (b)•

• Figure 5. Mutually—Exclusive Patterns

access to Variable d does not permit a deduction about Variable a
• (and vice versa). So we see that an analysis of the above program

based on prime constraints is consistent with the conclusion reached
earlier that Variable a is not compromised by access to Variable d.

We might note that access to Variable d does tell us something
interesting. From the prime constraint <() ( )  (dl)> , it follows
that if a dl appears in a simulation, then there could not have
been two or more states preceding the state with the dl. In other
words , a dl may appear in only the first or second state of a
simulation. The fact that a dl may appear at all reflects the
possibility that a simulation may be initialized with a dl , or may
be initialized with a bO and ci or a bi and cO.

USING THE TOOL •

Dc2raoh is the name of a LISP program6 running on the RADC
(Rome Air Development Center) Multics time—sharing system. It

• accepts as input a system specification in the form of two
arguments: (1) a set of variables and (2) a set of two—place
constraints. It produces as output the prime—constraint graph of
the system. Note that it is not necessary for the two—place
constraints to be prime. pcgraph will automatically generate the
two—place prime constraints in the course of constructing the
prime—constraint graph.

6 Append ix A contains a descr iption of each of the modules
comprising pograph , while Appendix B contains a listing of the
program.

19

- ~



• To illustrate how pcgraph is used , we cqnsider the example in
the preceding subsection. The first argument, the set of variables,
is expressed as a list of lists:

(( aO a i ) (bO b l )  (cO c i ) (do d l ) )

Parentheses are used exclusively since this is the only grouping
symbol recognized by LISP. Spaces act as separators. The program
treats the conditions aO, al , bO, bi , cO , ci , dO , and dl as ‘atomic
symbols ’ and does not attempt to analyze the individual characters
making up such a symbol. Thus, the fact that *0 and al both contain
an ‘a’ and the fact that bi and ci both contain a ‘1’ are totally
ignored. What is important is the grouping of conditions. Because
aO and a i are grouped together in a sublist, they are interpreted as
alternative conditions of a single (binary) variable , and similarly
for bO and bi , cO and ci , and dO and di. The only restriction on
the choice of symbols for conditions is that no symbol may appear in
more than one sublist. This requirement reflects the tact that a
condition is associated with a unique variable.

The second argumen t , the set of two—place constraints , is
expressed as:

(((*0) (bi)) ((*1) (bO)) ((aO) (ci)) (Cal) (cO)) -

((bO cO) (di)) ((bi ci) (di)) ((bO ci) (do))  ((bi oO) (do)))

Each two—place constraint is of the form : ((cond itions)
(conditions)). The first set of conditions represents the first
term of the constraint , and the second set of conditions the second
term. The ordering of the two terms for a constraint is clearl y
important, •but the ordering of conditions within a term and the
ordering of constraints is imaterial. •

• 
• Before invoking pograph , it is useful to first create two
atomic symbols, one whose value is the set of variables and the
other whose value is the set of two—place constraints . (This is
most easily done using the ‘setq ’ function.) If we let V be the
first atomic symbol and C the second, then pograph is invoked by the
following coimnand in the LISP enviroruent:

( pagraph V C)

• When pograph terminates, it will type out a list of symbols
representing all the nodes of the prime—constraint graph except for
the uniqu. starting node REND ( for Back ~~D) and the unique
terminating node FEND (for Front END) . (The prime—constraint graphs
given earlier were drawn with multiple starting nodes and aultiple

• terminating nodes merely for convenience.) Par our example there

20

I
- 

~~~~~~~~~~ 
J~~~~~~I~~~~~~~~~~~~

~~~~~ _ _ _ _ _ _ _  _ _  _ _ _ _ _



are five nodes, excluding BEND and FEND, and so pcgraph upon
terminating will type a list something like:

(nO123 n0120 nOO6O nOO43 nOOJ4O)

These character strings are internally generated and have no
significance other than to provide unique names for the nodes.

In order to obtain the arcs of the prime—constraint graph , the
user types:

( expand ARCS )

The program will then return with a list of arcs. For the example
being considered this list might look like:

((*0129 nil back n0060 fore nOl2O)
(a0128 (bi ol) back BEND fore nOl2O)
(a012 7 (bi cO) back BEND fore n0i23)
(a0l2 6 (ci bO) n0060 fore FEND )
(a0122 (dl ) back nOl2O fore FEND)
(a012 1 (bO cO) back BEN D fore n0120)
(*0110 (bO) back n001ê3 fore FEND)
(*0108 (cO) back nOOk3 fore FEND)
(aOlOl Cal) back BEND fore nOO~3)
(aOO61~ nil back BEND fore n0060)(aOiO 5 (*0) back BEND fore nOOIIO)
(a0106 (c i)  back nOO~0 fore FEND)
(aOiO9 (bi) back nOOkO fore FEND)
(aOl i7 (cO bi) back nOO6O fore FEND)
(aOl2II (bO ci) back BEND fore n0i23)
(a0i25 (do) back n0 123 fore FEND ))

Each line represents an arc. The first character string in a line
is the name of the arc . As with nodes , this name is internally
generated and has no signifioance . The second character itring

• represents the term associated with the arc. And the remaining
• strings indicate the two nodes connected by the arc. The initial

• node follows the word ‘back’ and the terednal node follows the word
‘fore’. With this interpretation, a check will show that the nodes
and arcs above correspond to the graph in Figure ~$.

The reader now has the background necesssry to begin using
pcgraph. The next section is intended for those who want to learn
about the algorithm underlying pagraph.

21

Iii_
_ _ _ _ _ _ _ _ _  

- ___



SECTION ~t

THE ALGORITHM

OVER VIEW

The algorithm for generating the prime—constraint graph of a
system consists of three phases: (1) Initialize, (2) Generate, and
( 3) Update . The major task of the Initialize phase is to construct
an initial graph from which the second phase proceeds. In this
construct ion , each two—place constraint supplied as input is
represented by a pair of arcs. In the Generate phase a technique
known as ‘resolution’ is used to enlarge the graph to the point
where every prime constra int (of arbitrary length) is represented by
a path from the (unique) starting node to the (unique) finishing
node. This enlarged graph, however, also contains, in general,
paths corresponding to constraints that are not prime. The purpose
of the Update phase is to eliminate these ‘non—prime’ paths. The
result is a graph in which: ( 1)  every path from the starting node to
the finishing node corresponds to a prime constraint and (2) every

• prime constraint corresponds to such a path.

Before discussing the three phases, we must first introduce
three concepts that will allow us to state a necessary and
sufficient condition for a clause to be a prime constraint.

PRIME IMPL ‘(iNTS

The notion of a ‘prime implicant’ is familiar to anyone who has
studied switching theory . First of all , an isslinant of a set of
states 0 is just a term t such that etates(t)cQ. A arise isalicant
of Q is any implicant of Q not covered by a ‘larger ’ implioant.

One of our principal uses for prime implicants will be as a
convenient representation for an arbitrary set of etatea . Consider
a system in which the set of var iables is ((sO all (bO bi b2)
(cO c i ) ) .  For the set of states

({aO bO cO) (aO bO ci) (aO bi cOl (aO bi ci) (aO b2 ci) (ai b2 ci))

• we have the following set of pri e iaplioants:

(l aO bO b l )  (b2 a l l  laO c i ) )

22

— -



(

This set provides a representation that is equivalent to the listing
of states.

In what follows, we will be using two binary operations on sets
of prime implicants. If A and B are each a set of prime implicants,
then su m(A .B) denotes the set of prime implicants for states(A) U
states(B) , and oroduct(A.B1 denotes the set of prime implicants for
states(A)flstates(B).7 For the choice of variables given above ,

sum ({{aO bi b2} ( b l c i ) )  I (bO l l )  ( l aO ) (bO } (bO bi c l }}

product({(aO} (bO b2)} ((all (bill) ((al bO b21 Lao b l l } .

FEX AND BEX

Consider the clause z = <LaO bi} (1> from the four—stage
shift—register described in Section 3. We are interested in the set
of states s such that: for each state sequence w in seq(z), us is
~~~~~~~ 

a simulation. There are eight such states:

(taO bO ci do) laO bO ci dl) laO bl ci do) taO bl ci d l)
(a i bO c i do) (al bO ci d l) (al bi ci do) (al bl ci d i }}

The result of appending any one of these states to the front end of
any state sequence in seq(z) is a nonsimulation . Furthermore, these
are the only states with this property. For example , if
laO bO cO di) is appended to the front end of <(aO bl cO dl)
laO bO cl do)> , which is in seq(z) , the result is a simulation . If
we now convert the above set of states into its equivalent
representation as a set of prime implicants, we get ((ci)). This
set of prime implicants is known as fex(z) (for Lorwards ~~clusion).As might be expected , there is also a dual concept for the back end
of a clause . For the same clause z , bex(z) = (l a O)) .

I
7 The ‘states ’ function defined earlier for a single term is
extended to a set of terms in the natural way. For a set of terms

• A ,
states(A) = U states(t)

teA

For two sets of terms A and B, we shall say that A covers B if and
only if states(A)�.tates(R).

1

23

* _ _ _ _ _

:
•

Our interest in fex and bex is motivated by an important result
that provides us with a necessary and sufficient condition for a
clause to be a prime constraint.

Theorem: A clause z of length n is a prime constraint if
and only if the following three conditions are satisfied
for iIi.�J~:8

1. z(i) is a member of sum(fex(z—(j)),bex(z+(i))).

2. z(i) is a member of fex(z (i)) only for i=n.

3. z(i) is a member of bex(z~ (i)) only for i=i.

• The first condition says, in effect, that no term of z can be
enlarged without yielding a non—constraint. The second condition
says that z cannot be shortened on the front end without producing a
non—constraint. And the third condition says that z cannot be
shortened on the back end without yielding a non—constraint .

To illustrate the preceding theorem we consider three clauses
• from our shift—register example. Shown in Figures 6 through 8 are

the fex ’s and hex’s for the three clauses. For the clause <(aOl (I• (ci)> we see that all three of the conditions in the theore. are
• satisfied for each of the three terms, and we conclude that this
• clause is a prime constraint. For the clause <laO) (all (ci)> ,

however, we see that Condition 1 is not satisfied for iz2 since (all
is not a member of sisa(fex(((aO)>) ,bex(<(cll>)). And for the clause
< (} (bO) (c i)> we see that Condition 3 is not satisf ied f o r iz2

• since (bO) is a member of bex(< {ol l>) but iii. We conclude that
neither of theu€ last two clauses is a prime constraint.

NODES AND ARCS

J Throughout the construction of the prime—constraint graph , we(shall be dealing with a changing set of ARCS and a ohanging set of
•

I I
NODES . A node n is defined by two sets of prime implicants , denoted

I FEX(n) and REX (n) . There are two nodes of ~pecial interest , BEND
(for Back END) and FEND (for Front END) , where ,

8 z (i) denotes the maximal subolauae of z pr~gc.dinv the L’th term.z4 (j) denotes the maximal subclauae of a followina the t’th term.

_ _

24

_ _ • • • •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

i=1 i=2 i=3

z(i) (aO l (} (ci)
a a

<laO)>
I •
I a

fex(z (i)) (1 : ubin ((ci))
a

z~(i) <o ld)> <(ci)>
I a

I

bex(z~(i)) ((aO l) ((bO ll I)
I I

sum(fex(z-(1)),bex(z+(i))) i {{aO)}

Figure 6. Fex’s and Bex ’s for z = <(aO l () (ci)>

i=1 iz2 i:3

z(i) I (aO l I (a i) I (ci) I

~— (i) I <> I <(aOl> <(aO }(a l)> I
• I

fex(z (i))

z (i) <(ai)(ci)> <(ci)>

bex(z~(i)) I ((sO)) ((boll (I
• a a

J I

sum(fex(z—(i)),bex(z~(i))) $ ((sO)) U)) I ((bOld))

• Figure 7. Fex ’s and Bex’s for a ~ ((aOl ta ll (c i)>

FEX(BEND) I) FEX(FEND) = (U)
BEX(BEND) (U) BEX(FEND) (I

An ~~~ a is defined by two nodes and a term, denoted, respectively,
BACK(s), PORE(s), and TER M (a) .

The interrelationship between nodes and arcs is expressed by
five properties that are preserved at every step of the algorithm:

25

~~

U

•

isi iz2 i:3

z(i) I (I I (bO) I (ci)

z (i) I <> <U > I < (l (b O) >

fex(z (i)) 1 0) 1 (1 1 ((c i))

z~(i) I <(bO)(ci)> I <(ci)> I <>
I I

bex(z~(j)) (U) I ((bo}} I ()

sum(fex(z— (i)),bex(z~(i))) I ((I) I
—

((boll I ((ci))

Figure 8. Fex’s and Bex ’s for z = <(} (bO) (oil>

Property 1: For each node n and for each clause z
associated with a path leading from BEND to n, fex(z)
covers FEX(n).

Property 2: For each node n and for each clause z
associated with a path leading from n to FEND, bex(z)
covers BE X(n) .

Property 3: For each arc a, TERM(a) is a member of
sum(FEX(BACK(a)), BEX(FORE(a))).

Property ~$: For i~ich arc a 1 TERM(a) is a member of
FEX(BACK(a)) only when FORE(a) FEND.

Property 5 :• • For each arc a, TERM(a) is a member of
BEX(FORE(a)) only when BACK(a) BEND.

• • We should add that when the algorithm terminates the following
• • two properties , which are stro nger versions of Prop erties 1 and 2 ,

will hold :

Prop erty 1’ : For each node n and for each clause a leading
from BEND to a, FEX(n) a f.x(z) .

Property 2’ : For eaoh node n and for each clause a leading
from a to FEND, BEX(a) a baa(s) .

26

—

V4
-

_ _ ___

—

I

-
We then see that, at termination, Properties 3, 1~, and 5 guarantee
that each clause associated with a path leading from BEND to FEND is
a prime constraint. (Recall the theorem earlier in this section.)

THE INITIALIZE PHASE

In discussing the algorithm, it will be helpful to consider the
following simple example: 4

variables = (laO ai) (bO bi) leO ci) (do di) leO elI)

constraints = (<LaO bO) (Cl)>
<leO) (di)>
(LaO) fell>

• <(eO) (di)>)

The first step of the algorithm is to construct a graph in
which each of the two—place constraints supplied as an input is
represented by a path. Let z=<ti t2> be such an input constraint.

- Because z is a constraint, it must be that states(ti)c
• states(bex(<t2>)) and states(t2) ~ states(fex(<tl>)). We,therefore, construct this two—arc path to represent z:

I

BEND ti a t2 FEND
+ >+ >+

where BEX (n) = (t i l and FEX(n) = (t2) . Note that in constructing
- this subgraph we are preserving Properties 1 — 5.

When this construction is applied to each of the two—place
• constraints in our example, we get the initial graph shown in

• •
• Figure 9 where , -

BEX(nl) = ((aO bO)) FEX (ni) a ((c i))
BEX(n2) = (t oo)) FEX(n2) = ((d i))
BEX(n3) = ((aOl) FEX(n3) = (tel))r BEX(n~3) a (leO)) FEX(n4) = ((d l))

Once the Initialize phase of our algorithm is completed, the
• • techniques of ‘resolution ’ and ‘extension’ are uaed to generate the

additional nodes and arcs needed to represent an arbitrary prime
constraint.

27

‘
~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ - _ _ _ __ _ _ _



BEND (aO bO) ni (ci)  FEND
+ >+——a 

BEND (cO) n2 (di) FEND
+ >+ >+

BEND (aOl n3 (eli FEND
+ >+ >+

BEND leO ) n~ (d l )  FEND
• + >+ >+

Figure 9. Initial Graph

RESOLUTION

Røsolution , also known as consensus , iS a technique from
propositional logic and switching theory for generating the prime
implicants of a Boolean expression . (A variation of this techn i que

• - is used in the imp lementation of’ the st~ and product operations.) We
• show here how a natural extension of resolution can be used to

generate the prime constraints or a system. To define this new
concept , we must first introduce the ‘gib’ and ‘lub ’ operations.

• Suppose that ti and t2 are terms such that the Sntersecti3n of
stateS(tl) and states(t2) is noflempty. Under these oiroi.*stsnce$,
ti and t2 have a s~g~~ lower bound with respect to the ‘covers ’
partial order. This bound , which is denoted glb(t l t2) , turns out
to be the unique prime implicant of ststes(tl)flat*tee(t2) . In the

• case where the intersection of atat.s(ti) and ststes(t2 ) is empty,
the gib of ti and t2 simply does not exist.

Consider a system in which the set of variables is ((sO ai s2)
(ho b i l l .  We then have , for example ,

glbUaO},(bt}) I ( aO b i)

glbUaO),(ai *2)) does not exist

glbUaO .11,1*1 a2)) • (all

glb(U ,(al .2 bO))  * (*1 *2 hO).

28

H 
_ _ _ _ _ _ _  _ _  

_ _  

_ _ _ _ _

~~~~~~~~~~~~ 
_ _ _

_ _ _

— • • -

• --•. • • - ———-———- ——• • • • - -• •

Now let t l and t2 be two arbitrary terms. The least unner
bàund (with respect to the ‘covers ’ partial order) of ti and t2
always exists and is denoted lub (tl ,t2). The lub of ti and t2 is
the unique prime imp].icant of those states s such that every
condition in s appears either in a state of states(tl) or in a state
of states(t2). Returning to the set of variables given just above,
we have ,

lub((aO),(bl}) = (I

lubUaO),(a2}) = taO a2)

lub((aO),(ai a21) = Ii

].ub ((aO a l) , (ai a2)) = ()

lub((aO bi},(ai bi)) = (sO ai bi)

lu b (() , (a l bO)) = U .

Let us suppose now that there are two clauses x and y, both of
length n, and a variable v such that for some Ifl�.n:

1. x(m)flv and y(m)flv are incomparable. That is,
x(m)flv~~y(m)flv and y(m)flv~~x(m)flv.

2. glb(x(m)—v,y(m)—v) exists.

3. glb(x(i),y(i)) exists for ljt~�p and i~m.

-
The clause z, of length n, defined as follows is then a reaolvent of
x and y: •

1. z(m) = lub (x(m)flv ,y(m)flv) U glb(x (m)—v ,y(a)— v)
•

2. z(i) = g lb(x(i) ,y (i)) for ~~~~ and i~m.

To illustrate this idea , consider the clauses

a = <t aO) laO bOl U> •

y a <(aO a2 b l) (a2) (*1 hO)>

over the variables taO *1 *2) and (ho b i) . Let m a 2 and let v a

laO al a2). We then see that ,

29

~~~~~ ~~~~~~~~~~~~~ 
—



I’

x(2)flv a laO )

y(2)flv • (*2)

lub(x(2)flv ,y(2)flv) a laO *2)

x (2 )— v = (bO )

y(2)—v = ( 1

glb( x (2 )— v ,y(2 )— v) = (bO )

• glb( x ( i ) , y ( i ) )  = laO bi )

g].b( x (3 ) ,y( 3 ) )  = (al bO}.

The clause z = <(aO bi) (*0 *2 bO) (al ho )> is thus a ‘resolvent of x
i nd y.

The essential properties of a reaolvent are contained in the
t followir~ result.

Theorem: If z is a resolvent of the clauses x and y, then,

1. seq(z) ç seq(x)U-seq(y)

2. seq(z) ~ seq(x)

3. sag(s) ~ ..q(y)

This result is primarily of interest to us for the case where both x
and y are constraints.

CorOUary: If a is a resoivent of the constraints x and y,
then.,

1. z is also a constraint.

2. z is not covered by x.

3. a is not covered by y.

Resolution can thus be used to generat, new oenatrair,ts from
existing ones.

30
~

_ _ _ _ _ _ _ _ _ _ _ _  - 
~~ •

•
~~~~~ ~~~~ ••

•-

~~~~~~~~~~~~~~ 
•



-~~~~~ 
-- - 

~~~~~~~~~~~~~~ - • • - • • • • - • • •—~~~~~—

EXTENSION

As we have just seen, resolution can be applied only to clauses
• of the sane length, and then only when the terms to be resolved are

corresponding terms.. These restrictions thus prevent the
constraints <(sO) (bl}> and <(bO) (ci)> in our shift—register
example from being resolved. In resolving constraints, however , we
can take advantage of a useful property:

Property: Any extension of a constraint is also a
constraint.

Let us now append a () to the front end of the constraint
< (aOl (bi)> and a () to the back end of the constraint <(bO) (cli>.
The two new constraints,

<LaO) (hi) U>
- and

<U (bO} (ci)>,
can then be resolved (using the bi and bO) to produce the new
constraint ,

<(aO l I) (ci)>.

It can be shown that , together, resolution and extension are
sufficient to generate any prime constraint of a system from the set
of two—place constraints.

-

FEX’S AND BEX’S OF A RT~SOLVENT

Let z be a resolvent of the clauses x and y. We wish to know ~•what the relationship is between the fex ’s and bex ’s of z and the
• fex ’s and hex ’s of x and y. As it turns out, that relationship is

fairly interesting. •
•

Theorem: If x and y are clauses of length n, and z is
obtained from x and y by resolving a variable in the m ’th
terms of x and y, then ,

1. fex(z (i)) covers sua(fex(x (i)),fex(y (i)))
for ~~~~~

2. fex(z—(j)) covers produot(fex(r~(i)),fex(r(i)))for m<~j n.

31

2. ~~~~ 2

— _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _

L

3. bex(z ’(f l) covers sum(bex(x ’~(i)) , bex(y4 (i)))
I

• for mj1~.n.

l . bex(z°(i)) covers produot(bex(x~(i)),bex(y+(j)))for 1~ i<m.

So we see that the relationship between fex(z—(i)) , tez(r (i)), and
fex (y— (i)) depends upon whether 1�s or i>a, and that the
relationship between bex(z+(i)) , bex(x+(i)), and bex(y+(i)) depends
upon whether 1~�pi or i<m.

Let us consider the clauses x=< (aO)(bi)(J> and y=<U(bO){ci)>
from the shift—register example. As we noted earlier, the clause

• z=<(aOW(ci)> can be obtained from x and y by resolving the
variable (hO bi) in the second terms of x and y. The above theorem
can be checked by comparing the fex ’s and bex ’s for x, y, and z as
given in Figures iO and 11. •

i=i i=2 1:3

fex(x (j)) () ((bi)} (U) t
•

•
fex(y (j)) (I (I ((ci)) •

sum(fex(x (i)),fex(y (i))) (I I ((bill n.a. I

product(tex(r~(i)),fex(y—(i))) n.a. I n.a. I ((ci))

fex(z (j)) (I 1 ((l.~1)) ((ci))

Figure 10. Fex’s for Clauses a, y, and a -

THE GENERATE PHASE

In the Generate phase , the ideas of the preceding three
sections are used to enlarge the graph produced by the Initialize
phase so that every prime constraint (of arbitrary length) is
represented by a path from BEND to FEND . The procedure consists of
a aeriea of resolutions .

7 32
,~ I

~
-
‘ ~~~~~~ ~~~~~~~~~~ ~~ ~~~~~

•

T
•

1:1 i=2 1:3

bex(x’~(i)) I ((aOl) 1 (1 1 (1 1

bex(y~(i)) 1 (U) I ((bO)) I (I I
sum(bex(x~(i)),bex(x+(j))) I n.a. I ((bO }} I (I I

product (bex (x+(i)) , bex(y+ (i))) I (taO)) 1 n.a. I n.a. I
bex(z~(i)) I ((aol) I ((boll I (I I

• Figure ii. Bex’s for Clauses x , y, and z

The first step In a resolution Is to find a pair of arcs a and
b in the current graph such that for some variable v:

• i. TERM (a)flv and TERM (b)flv are incomparable .

2. glb(TERM(a)—v ,TERM(b)—v) exists.

The next step is to find two paths Pa and Pb in the current graph
•

~• such that:

• 3. Pa and Pb are the same length.

IL Arc • a and Arc b appear in the same relative positions of Pa
• and Pb, respectively.

-

5. Either Pa or Pb begins at BEND, and either Pa or Pb ends at
FEND.

6. For each pair of arcs a’ia and b’~b that appear in the samerelative positions of Pa and Pb , respectively ,
• glb(TERM(a’),TERM(b’)) exists.

If all six requirements are met, then a new path Pc is
tentatively constructed. (It will, be added to the graph only if
certain additional requirements are satisfied.) In the construction ,

• each pair of corresponding nodes in Pa and Pb is transformed into a
node of Pc, and •aoh pair of corresponding arcs in Pa and Pb is
transformed into an arc of Pc. The rules for the creation of this
new path are as follows:

1’ • 33

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
• • • 

_ _ _



i .  Corresponding nodes a and n in Pa and Pb that p~ecede Arcs aand b are transformed into the node q where ,

FEX(q) sum(FEX(m),FEX(n))

BEX(q) = produot(BEX(m) ,BEX(n) )

2. Corresponding nodes m and n in Pa and Pb that follow Arcs a
and b are transformed into the node q where,

FEX(q) = product(FEX(m),FEX(n))

BEX(q) = sum(BEX(m),BE X (n ))

3. Arcs a and b are transformed into the arc c where,

TERII(c)  = lub(TERPI(a)flv ,TERM (b)flv)
U glb (TERM(a)—v,TERM(b)—v)

BACK(c) is the result of transforming
BACK(a) and BACK(b).

FORE (c) is the result of transforming
FORE(a) and FORE(b).

14. Correapondlng arcs a’4a and b’~b in Pa and Pb are
transformed 1.nto the arc e’ where ,

TERM(c’) = glb(TERM(a ’) , TERt4(b ’ ) )

BACE(3’) is the result of transforming
• BACK( a’) and BACK( b ’) .

• FORE(c ’) is the result of transforming
• 

• FORE ( a’) and ?ORE ( b ’) .
• Having constructed Pc , we aust now check to see if Properties

i—5 (on p. 21) are satisfied by the nodes and arcs of Pc~ In the
case of Properties 1 and 2, our method of construction, together
with the theorem in the preceding subsection , guarantees that these
two properties will, be satisfied . For Properties 3, 14, and 5,
however ,, there 1* no such assurance, and these propsrtiea must be
individually oh.olced for eaoh arc of Pc. If Properties 3, 14 , and 5

• are satistisd, then the path Pc Is added to the graph . (Note that
some psrta , or .11 , of Pa may already exist.)

The process of resolution Just described is repeated for other
- ~~~~~~~ arcs and other pathS . The process continues until no new nodes and

34

•~~~~~~~~~~~~:; ~~~~~~~~~~~~~~~~~~~~~~~~~~ •- • T  - ~~
- 

~~
• ~~~~~~~~~~~~~~~



t
L ~

no new arcs can be created. At that point the Generate phase is
terminated.

To Illustrate the process of resolution, let us return to the
• example considered for the Initialize phase. Let a be the arc,

n i (n i )  FEND
+ >+

and let b be the arc,

BEND Leo ) n2
+ >+

and let v be the variable (cO ci). We see immediately that
TERt4(a)flv and TERM(b)flv are incomparable, and that

• glb(TERM(a)—v,TERM(b)—v) exists. Now let Pa be the path consisting
of just Arc a, and Pb the path consisting of just Arc b. We observe
immediately that Requirements 3, 1~, and 5 are satisfied.
Requirement 6 Is trivially satisfied because there are no other arcs
besides a and b. In constructing the path Pc, the pair of nodes ni

• and BEND are transformed into the node ni , and the pair of nodes
• FEND and n2 are transformed into the node n2. (Recall that

FEX(BEND)=U, BEX(BEND)=((l), FEX(FEND)=U)}, and BEX(FEND)s{}.)
Arcs a and b are transformed into the are o where TERM ( o ) =U ,

• BACK(c)=ni , and FORE (o)=n2 . The result is the path Pa:

ni ( )  n2
+ 

- 
..>~~

.

Since FEX(ni):((ci)} and BEX(n2)={(oO}}, we see that Properties 3,
1~, and 5 are satisfied. And so the arc comprising Pc is added to
our graph.

The graph at the end of the Generate phase , when all possible
resolutions have been exhausted , is shown in Figure 12.

THE UPDATE. PHA SE •

Although the graph produced at the end of the Generate phase
has a path for every prime constraint, the converse is not

35

I 
- — —

~ ~~~~~~~ 
~~ 

— — —•—- — 
-
~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



BEND LaO hO) ni (ci) FEND
+ >+ >+

1( 1

BEND toO) (dl) FEND
+ >+ >+

n2

BEND LaO) n3 tel) FEND
+ >+— >+

I t )
I -

BEND LeO ) (di) FEND
+ >+ >+

nIs

Figure 12. Graph at End of Generate Phase J
• necessarily true. It is possible for a path from BEND to FEND to

represent a constraint that is not prime. The graph in Figure 12
provides an illustration of this point. Consider the two paths:

BEND (aO bO) ni (I  n2 (di) FEND
+ >+ >+ >+

BEND (aO l n3 ( I  nk (dl) FEND
+ >4.— >+ >+

The constraints associated with these two paths are
<( sO ho) ( )  ( d i ) >  and <t aO ) (I (di)>. Since the first constraint is

• properly covered by the second , the first constraint cannot be
prim..

36

- 

~~~~ 
•

.

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• •



The problem stems from the fact that the FEX of a node may not
be equal to the fex of each path leading from BEND to that node.
And similarly, the BEX of a node may not be equal to the bex of each
path leading from that node to FEND. In the case of our example,
BEX (n l )  = (LaO bO )) but bex(<() ( d l ) > )  = ( ( aO }) .  The purpose of the
Update phase is to eliminate this discrepancy.

Suppose that P1 and P2 are two paths in the current graph . P1
begins at BEND and ends at Node a, and is associated with the clause
x . (See Figure 13.) P2 has a terminal node of n, and is associated
with the clause z. Now suppose that x and z are the same length,
and that x covers z. It follows that fex(z) covers fex(x). From
Property 1 we know that tex(x) covers FEX(m), and , therefore, fex(z)
must cover FEX(m). The question is whether or not FEX(n) covers
FEX (m) . It it does, then there is no problem. It, however, FEX( n)
does not cover FEX (m ) , then It is necessary to change the terminal
node of P2.

BEND x a
P1 : + >+ . . . + >+

• z n
P2: + >+ . . . + >+

Figure 13. Updating a FEX

The transformation Is represented in Figure 114. A new node n ’
is created where FEX(n’) : sum(FEX(n),FEX(m)) and BEX(n’) = BEX (n) .
(Note that n’ may be an already existing node.) The last arc of P2
is replaced by an arc leading to n ’, and emergent arcs are added to
n ’ to ‘duplicate ’ the emergent arcs of n. Once the transformation
is completed , the newly—created arcs are checked to see that they
satisfy Properties 3, 1$, and 5. Any arcs not satisfying these
properties are deleted. Finally, any arc or node that is no longer
part of a path leading from BEND to FEND is removed. This entire
process is repeated until no further ‘updatings’ of FEX’s are

• possible. A similar procedure is then performed for the BEX ’ s of
nodes. When this task is completed , the algorithm terminates , and
the resulting graph is the prime—constraint graph for the system

• that was supplied as input.

37

~~~~~~~ 

-

~~~~~~
. 

•

~~ 
• - --- - • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~ ~~~~•

~

~ -

-4

+sç~~~ -:~~~~~

Figure iJ4. Splitting a Node

•
• To illustrate the process of updating, we return to our sample

system. Let P1 and P2 be the two paths:

BEND (sO) n3
P1: +— >+

:1 BEND LaO bO} ni
-

P2: +— >+

Since P1 and P2 meet the necessary requirements and since
FEX(ni)=Ucll} does not cover FEX(n3)=Ueifl, we proceed with an
update. A new node n5 is created where FEX(n5)
sum(((ci)),((ei)}) = ((ci) (el)) and BEX(n5) = BEX(ni) = (t aO bo l l .
Aft er the required arcs are attached to n5 and after the last (itnd

• only) arc of P2 is deleted , we have the structure shown in
Figure iS. We see that Node ni and its two emergent arcs are no

• longer contained In paths leading from BEND to FEND , and so they are
deleted .

We next consider the fol lowing two paths :

n3 (I n14 (di) FEND
-

>+ e>+

• n5 (I n2 (di) FEND
+ >+e >+

38

I L..

- --~ •-~• •• . • ~~ ~~

n5
(ci)

(aO bO),’ I
, I

BEND ,’ ni (ci) ~~ .FEND
+
,

•:‘
() ‘

~
‘, 1(1

BEND (cO (di} FEND

n2

• Figure 15. Updated Graph

We observe that BEX(n5) = (LaO boll does not cover BEX(n3) = ((aO l) .
It is therefore necesssary to create a new node n6 where FEX(n6)
FEX(n5) = ((a l l t e l)) and BEX(n6) sum(((aO bOll, ((aOfl) = ((aol) .
The resulting structure is shown in Figure i6. We note, however ,
that the arc leading from BEND to n6 does not satisfy Property 3
since LaO bO) is not a member of ((aOl). This arc, and also the arc

-
leading from n6 to n14, are therefore deleted .

BEND LaO bO) n5 (ci) FEND
>+ >+

LaO bO}” ..
n6

-
+

I
-

• U)

BEND Lao) (d i) FEND
+ >+ >+

n2

Figure 16. Newly Updated Graph

• •

-

39

I

I
~~

_ _ _ _ _ _ _ _ _

r f

It turns out that there are two additional updat’~s to be made.
A new node n7, where FEX(n7) = ((d l)) and BEX(n7) s (toO) (.0)), is
created in the process . The final graph is shown in Figure 17. In
this graph the FEX of each node is equal to the fex of each path
leading from BEND to that node, and the BEX of each node is equal to
the bex of each path leading from that node to FEND. We have thus
produced the prime—constraint graph for our system.

BEND LaO ho) n5 (ci) FEND

-

+ >+ >+
- I

BEND LaO) n3 (.1) FEN D
+ >.~. >4.

U)
—

BEND (cO) n7 (dl) FEND
+— — — — ——— — — — — —— — >+ >+

• 1’

UsO)

+

BEND

Figure 17. Final Graph
0

I.

40

4 — ---- — —

—, .,¼* . -‘ _______

• — - — • — —————— — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

SECTION 5

CONCLUSIONS : -

ACCOMPLISHMENTS

In this report we have described a new technique for security
validation based on the concept of a prime constraint . We have also
documented a computer program that automates an important part of
the analysis: the generation of a system’s prime—constraint graph.
We have seen that the set of prime constraints , as represented by
the prime—constraint graph , allows us to determine what deductions
are possible in a system. Validation of security is then Just a
matter of determining which of the deductions , if any , constitute a
compromise .

There are various criteria for making that determination. In
the case of multi—level security, the most straightforward approach
is to assign a security level to each of the ‘visible’ variables ,
and then check for a prime constraint that shows a variable at one• security level being compromised by other variables at lower
security levels. The important thing to note here is that a
‘deduction ’ is now the means for determining compromise rather than
the existence of an ‘information flow ’.

COMPLEXITY

The most pressing problem that needs to be addressed is
complexity. We know that While the prime—constraint graph grows
quite aodestly for some systems ,9 such as shift registers and many
control structures, it grows exponentially for other systems, such
as adders and multipliers . It appears that this exponential growth
is most likely to occur in those systems corresponding to Boolean
functions for which the number of prime implieants grows
exponentially (i.e., adders and multipliers). There is also a large
class of systems for which we simply do not know how sericus the
complexity problem is. For example , we have no idea how oo.plex the
prime—constraint graph of a typioal operating system would be.

9 The growth of the prime-constraint graph is measured relative to
th. number of two—plac , p rime oonstraints.

j 41

4 —

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



4

There are a number of ways of dealing with complexity. One can
simply choose to model a system in less detail, or one can try to
configure a system so that the essential aspects of behavior become

• tractable . (Partitioning a system into separate ‘control’ and ‘data
flow’ components is one approach.) None of these techniques ,
however , really solves the problem of complexity since there will be
everyday systems that remain completely intractable. The only real
solution, if there is one, will have to come from further research
and a deeper understanding of the theory of constraints.

HIERAR CHICAL VALIDATION

Another problem, which is related to the complexity of the
prime—constraint graph, is the computational load placed on the
program for generating that graph. In some cases, it is possible
for the execution time of the program to be enormously long even
though the final prime—constraint graph is of modest size.

In a hierarchically-structured system it is possible to get
around this problem through a ‘hierarchical validation’. One begins

- 

• by generating the ‘external prime—constraint graph’ for each of the
lowest—level modules. This graph is obtained from - the complete
prime—constraint graph by eliminating all arcs having conditions
belonging to ‘hidden’ variables. These graphs are then ‘merged ’ by
applying the Generate and Update phases described in Section 14 to

• the composite graph. The process is repeated for each euccessive
level. The final result is the external prime—constraint graph for
the top—most module(s). This final graph represents those prime
constraints that involve only externally—visible variables. These
prime constraints are the only ones we really need be concerned with
in order to perform a security validation. What makes this appro&ch

- • attractive, in contrast to the prevailing methodology for security
validation, is that the same concepts and the same techniques are
applicable across all levels.

SUPPORTING TOOLS

In order to make the tool described in this report more readily
accessible, we have to develop programs for both preprocessing and
postprocess ing. Preprocessing is needed to convert a system
descri ption in an applications —oriented language, such as a
pr ogram—sp ecification language or a hardware -descri ption language ,
into the language of constraints. Postprooessi ng is neadsd to

• analyze the prime—constraint graph for various properties For
securit y validat ion, this analysis entails checking for oomprosia..

• 
• 42

- 

- ~~T •- 
- - 

~~~~~~~~~~~~~~~~~~~~~~ -
.~~~~~~~

-
~ -:
~TT . 4 •~~~~~~~JI~~~~~~~~

-

-

,- -.
~- •~~•-~~~~~~ ‘ - -


~~~1

Once the preprocessing and postprooessing programs are
• implemented , we will then have a completely automated tool for

- . security validation.

• •

4
• •

- 
43

1

• 
~~~~~~~~~~~~~~~~~~ 

~t
-

~~

-

~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~ ~ . $ ~~~~~~~Th~~~L__ —



A 
-

REFERENCES

1. Denning, D.E., “A Lattice Model of Secure Information Flow,”
Come. of the ACM, Vol. 19, No. 5, May 1976, pp. 236—242.

2. Denning, D.E. and Denning, P.3., “Certification of Programs
for Secure Information Flow,” Come. of the ACM, Vol. 20,
No. 7, July 1977, pp. 504—513.

3. Furtek, F.C., “Constraints and Compromise,” Foundations of
Secure Computation, Academic Press, N.Y., 1978, pp. 189—204.

4. Furtek, F.C., A Theory of Constraints, M78-204, The MITRE
Corporation, November 1977.

5. Furtek, F.C., Constraints, M78—205, The MITRE Corporation,
• 

• 
December 1977.

6. Millen, J.IC, “Constraints and Multilevel Security,”
Foundations of Secure Computation, Academic Press, N.Y., 1978,
pp. 205—222. -

7. Milieu , J.L, Causal System Security, ESD—TR—78—17l,
Electronic Systems Division, AFSC, Hanscom APB, MA ,
October 1978.

- 

‘
-

I

44

.~ L _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  

_____
__

___

- 

I 
- 

- 
-

~ 

, 

~~~~ ~

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~



4
APPENDIX A

MODULE DESCRIPTION S

In each module description , an interpretation is provided for
each argument . The LISP structure corresponding to each
interpretation is as follows:

set — list
• condition — atomic symbol (with ‘variable ’ property)

variable — atomic symbol (with ‘resolved’ and ‘unresolved’ properties)
term — set of conditions
node — atomic symbol (with ‘fex ’ , ‘bex ’ , ‘fore ’ , and ‘back’ properties)
arc — atomic symbol (with ‘fore’ and ‘back’ properties)
pnode — atomic symbol (with ‘fex’, ‘bex’, ‘fore’ or ‘back’, and

• • ‘fl ag ’ properties)

The following descriptions assume that the reader is familiar with
the programeing language LISP and with the algorithm described in
Section 14. •

union2 2 arguments: ea ch argum ent : a set

(union2 X Y) returns the union of X and Y.

unioni 1 argumen t argument: a set of sets

(unioni Q) returns the union of the sets in Q.

intersect2 2 arguments each argument: a set

(intersect X Y) returns the intersection of X and Y.

interseoti 1 argument argument: a set of sets

(intersecti Q) returns the intersection of the sets in Q.

45

~~ 
-

~~~~~ ~~~~~~~~~~~~~~~~~~~


subtract 2 arguments each argument: a set

(subtract X Y) returns X - 1.

includes 2 argunent8 each argument: a set

(includes X ‘1) returns t if X conta ins Y , and nil otherwise .

same 2 arguments each argument: a set

(same X Y) returns t if X and V represent the same set , and nil
• otherwise.

like 2 arguments each argument: a set of sets

Identical to ‘same’ except that each argument is treated as a
• set of sets .

pairs 2 arguments each argument: a set

(pairs X I> returns the Cartesian product of X and V.

varsyms .1 argument argument: a term

(varsyms tra) returns a list of those variables with conditions
in trm.

inout 2 arguments 1st argument: a variable
2nd argument: a term

(inout var tra) returns a dotted—pair, the oar of which is a
the set of conditions in tra belonging to var , and the odr of
which is the set of conditions in trm not belonging to var. •

46

•
-
~~~I•

•• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
•
i ~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _


covers 2 arguments each argument: a term

(covers trm l trm2) returns t if trml covers trm2, and nil j
otherwise.

embraces 2 arguments 1st argument: a set of terms
2nd argument: a term

• (embraces Q trm) returns t if one of the terms in Q covere trm ,
and nil otherwise.

contains 2 arguments each argument: a set of terms

(contains X Y) returns t if X covers I , and nil otherwise. It
is assumed that X is the set of all prime implicants for the
set of states covered by X. -

glb . 2 arguments each argument: a term

(glb trml trm2) returns the greatest lower bound of trml and
• • trm2. It there is no gib, then ‘no’ is returned.

resolve 3 arg~iments 1st argument: a variable
2nd & 3rd arguments: terms

(resolve var tria l trm2) returns the resolvent of trial and trm2
using var as the resolving variable.

resolvents 2 arguments 1st argument: a term
- 2nd argument: a set of terms

(resolvents trm Q) returns a dotted—pair. Its car is the set
of all resolvents between trm and each of the terms in Q. Its
cdr is the set of all terms in Q not covered by tria.

• •47

___•*____ _ _ _ _ ••• - - • - - - - - - • • • - - • - •

primes 2 arguments each argument: a set of terms

(primes X Y) returns the set of prime implicants for the union
of states(X) and states(Y).

sum 2 arguments each argument: a set of terms

Identical to ‘primes’ except that ‘sum’ assumes that the terms
in each argument are relatively prime.

product 2 arguments each argument: a set of terms

• (product X Y) returns the set of prime implicants for the
intersection of states(X) and states(Y).

set’variable 1 argument argument: a set of conditions

(setvariable v) creates a variable whose value is v. The
wiriable is given two properties, ‘resolved’ and ‘unresolved’,
which are set to nil. The new variable is returned. -4r •

4
getnode 1$ arguments 1st & 3rd arguments: ‘fe x ’ & ‘bex ’

or
‘bex’ & ‘fex’

2nd & 4th arguments: sets of terms

(getnode exl xl ex2 x2) causes a search for an existing node
whose exi property is xl , and whose ex2 property is x2. If no
such node is found, then one is created. The name of the• existing or newly—created node is returned.

I
48

• -
~~~~~

•
~~~~~~~ ~~~~~~

~~~

- 
~ 

_ _ _  
__ _



_ _ _  — ~~~~~~~ -- • -----_________ • • - - •

getaro 5 arguments 1st argument: a term
2nd & 14th arguments : ‘fore ’ & ‘back’

or
‘back’ & ‘fore’

3rd & 5th arguments: nodes

(getarc trm din dl dir2 d2) causes a search for an existing
arc whose value is trm , whose din is dl , and whose dir2 is d2.
If no such arc is found , then one is created. The name of the
existing or newly—created arc is returned.

m i t  1 argument argument: a two—term list

Interprets its argument as a two—place constraint , and creates 4
a two—arc path from BEND to FEND.

initialize 2 arguments 1st argument: a set of sets
of conditions

2nd argument: a set. of two—term
- lists

- 
Performs a ‘setvariable’ for each set of conditions in the
first argument. Creates the BEND and FEND nodes. Performs an
‘m it ’ for each of the two—term lists in the second argument.

check 2 arguments 1st argument: a term
2nd argument: a set of terms

(check trm Q) returns t if tm is not properly covered by any
• of the terms in Q, and nil otherwise.

pairnodes 5 arguments 1st & 2nd arguments: nodes
3rd , 14th , & 5th arguments :

‘bex ’ , ‘f ex ’ , & ‘BEND’
• or

‘ fex ’ , ‘bex ’ , & ‘FEND’
• (pairnodes a n exl ex2 end) computes the ‘transform’ of m and

n. The two choices for cxl , x2, and end determine whether the
two nodes are assumed to precede or follow the arcs being

49

-



—

— —•~~~— _-____. •— —- ——• __ -_a_,._• - • -

I
L •

resolved by nresolve. If either m or n is end, then the other
node is returned. Otherwise, the fex and bex of a potential
new node are computed. The exi property of this potential node
is set to the sum of m ’s and n’s cxl properties, and the ex2
property is set to the product of in ’s and n’s ex2 property. If
the ex2 property of this potential node is nil , then ‘b ad’ is
returned. Otherwise, an atomic symbol, called a ‘pnode’, is
created from exi , a, and n. If this pnode did not previously
exist, or if it had existed but had not been ‘merged ’, then the
pnode is returned as the value of paimnodes . If, however, the

• pnode had existed and had been merged , then the value of the
pnode will be the transform of a and n, and it is this node

• that is returned by pairnodes .

complete 6 arguments 1st argument: a pnode
-
~~ 2nd argument: a two—arc set

3rd—6th arguments: ç
‘bex ’ , ‘ fex ’ , ‘ ba ck’ , & ‘BEND ’

or
‘fex ’ , ‘box ’ , ‘fore ’ , & ‘FEND ’

( complete y p exi ex2 dir end) attempts to complete the pair of
paths that led to y being created . The two arcs in p are the
candidates for the next step in this completion. First, the

J glb of the terms associated with these two arcs is computed.
If it does not exist , then complete indicates that no
completions are possib le by returni ng witho ut taking any
further action. Otherwise, paimnodes is called for the two dir
nodes associated with the two arcs in p. If ‘bed’ is returned ,

• then complete terminates i~~ediately indicating that no
completions are possible. Otherwise , two tests are made to
insure that the two arcs are suitable for being merged. If
either test tails, then complete again return s i .diately. If
all hurdles are overcome, then the symbol returned by psirn odes
is checked . If it is a node or a ‘merged ’ pnode , then a
pointer to thi s node or pnode is added to y in anticipation of
a possible merge , and control is returned. If, however, the

• symbol returned by pairnodes is an ‘unmerged’ pnode, then
complete is called for that symbol and each pair of next-
possible arcs . If at the end of these calls the pnode has

• accumulated at least one pointe r , then a pointer to this pnode
is added to y . The program then terminates.

_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _  - 

so

~~~~~~~ 
~~~~

_
4~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


I
merge 3 arguments let argument: a pnode

2nd & 3rd arguments: ‘back’ & ‘fore’
• or

‘fore’ & ‘back’

(merge z din dlr2) first causes a node to be created for the
fex and box supplied by z. The value of z is set to this node .

• Then each pointer of z is checked to see if it points to a
node, a ‘merged’ pnode, or an ‘unmerged ’ pnode . The ‘unmerged’
pnode is merged imeediately. The appropriate arc is then added
between the node associated with the pointer and the node
associated with z. The program then returns.

ncovered 6 arguments 1st argument: an arc
2nd argument: a set of arcs
3rd—5th arguments: ‘back’ & ‘fore’

(ncovered a Q din dir2 ox done) returns t if a prefix of every
path beginning with Arc a and proceeding in the din direction
is covered by a path beginning with an arc in Q, also
proceeding in the din direction , and terminating at either
BEND or FEND . nil is returned otherwise.

remove 3 arguments 1st argument: an arc
2nd & 3rd arguments: ‘back’ & ‘fore ’

or
‘fore ’ & ‘b ack ’

(remove a din dir2) removes Arc a and all those nodes and arcs
in the din direction that are no longer part of a path from
BENV to FEND.

prune 3 arguments lst—3rd arguments:
‘back’, ‘fore’, & ‘fex’

or
‘fore ’ , ‘back ’ , & ‘box ’

Prunes from the current graph those newly—created arcs and
those arcs hav ing a node in oo on with a newl y—created ar c
that are superfluous. Note: prune is included only for the
sake of effioiinoy and is not essential to the algorithm .

51

.
•

c i ’

I

nresolve 3 arguments let argument: a variable
2nd & 3rd arguments: arcs

(nreso lve van al a2) attempts a resolution centered around Arcs - •

al and a2 with var as the resolving variable. Complete finds
the necessary pains ot paths and merge performs the actual
‘merging’ of these paths .

generate I arg ument argument: a variable

(genera te v) causes (nresolve v al a2) to be performed ton each
pair of arcs al and a2 that have not been previously nresolved
and that have terms with at least one condition belonging to v.

split 7 arguments let & 2nd arguments: nodes
3rd—7 th arguments:
‘box ’, ‘fox’, ‘back’, ‘fore’, & ‘FEND’

t or
‘fox ’ , ‘box ’ , ‘fore ’ , ‘back’ , & ‘BEND’

(spltt a n exi ex2 din dm 2 end) looks for a pair of nodes
•nexta and nextn for which there are two arcs a and b such that:

m is the dir2 of a, n is the dm 2 of b, nextm is the din of a,
noxtn is the din of b, and the term for a covers the term for
b. The •x2 of nextm is then used to ‘update’ the ex2 of nextn.

update 5 arguments lst—Sth arguments:
‘box ’ , ‘fox’, ‘back’, ‘fore’, & ‘FEND’

or
‘fez’, ‘box’, ‘fore’, ‘back’, & ‘BEND’

Updates the fox ’s and box ’s of the nodes produced by the
generate phase~

32

~
‘ _ _ _

‘ I
I

pcgraph 2 arguments let argument: a set of sets
of conditions

2nd argument: a set of two—term
lists

(pcgraph V C) generates the prime constraint graph for the set
of variables V and the set of two—place constraints C. Initial
function called by the user.

expand 1 argument argument: ‘ARCS ’

Expands the set of arcs. Final function called by the user.
-

:

•

53

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ : -  •i~~ - p~~~



APP~~IDIX B

PCGRAPH LISTING

(ERRAT UM: The use of ‘fez ’ and ‘bex’ in this listing is reversed
from that in the text. A ‘fez’ in the listing corresponds to a
‘box’ in the text, and vice versa.)

54

_ _ _ _ _ _ _  _ _ _ _  

_ _  
_ _  

_ _

_ _ _

_ V
~~~~~~~~~

_

J ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

I
I .

I
—a a .4— a C C

• -

a a a 4, 4,4 — -‘ aa
— — —a — a
a ~. a a

.3C 0 -4-a —. .4 -.4•
.3 Il C C

• ... C L C C Co o ‘.0 0 C)
~
.. . 4,

I3 a -

• C a
_

1. 8 Z —
a.3 a I) #.. • a.3 a

• • • a C
a H ~~ a a C g
a • .3 ..% a 4, a a

C3 ~~ I) -~~‘. ag • a~~~~~~~~~ ~~~~.3 a . 3 a N NU a U a 0 a a a C) a C)a . ..4 — — a a a

!~ ~i
J I i

- •

m ~~~~~~~~~~~~~~~~ ~~~

-

~~~ 1 ~~~~~~~~~~~~ 
•

~~~~~~ —~~~~~~~~~ d - 4 0  .. -4 0  ~~~.-4 O 
~~~
Il.... alaII1 1 .~,gM .1 ~5 4, .~ V 4 , .4 V .-4 V _ ~~ 

_
— -4 u s —  ~~~~~~~ 4,~~~~~~.. .3 — — ~~~~~~~

(~4.~~~4, ~~~~~~~~~~~~~~~~ 2 .~eI U44 ~~~~~~~~~~~~C —-- C - I 3 C~~~~-
..- I.~~~

.— ~~~~~~ - I 3 O  -4o .3 4~ .4 ... .~~~ Q

ii
• F F F F F F FE

• 55

- ~~~~~~~~~~~~~~~~~~~ • -:~~-~ 
— 

•

. ~~: 
-

‘ 
~~~~ ~~~~~~~~~~~~~~~~


N

aa .4
C

.4
• C —

a

—— i

I !g J ~ J!!ii ~
I ~ ~ !~ i!~ I i~ °—i ’~’- — — 1 ~~~14,4IIa ;d~~;j~ii~!iil!~!~B !j~I~ !J H!j!~1

La! La! ja!

36

- _ _ _ _ _ _ _ _ _ ~~ ~~ Ti

- --•--- — —— ———---------~ • —, —.~~~~~~• -~~~~~~~ •--- — -——- - ____t_~• ••___ .• • .•__I_-__~~~~~~
• • • - • • -- _

•-*
~

!•

I. —

Ii .

~a
C 41 4, a a V a a

C — — — a — C ~~
C • I 3 D . Z ~~~~-0a• I~~C •

1)01 . 4,4) 1 .0 0 1 . ~~~~~- .3 ~~~~~~ 4) V - 17
-

—4 1 0) — 0
(SJ

~~
.
~~ 17 C U •.~ 4, 4, 4, 4, —• a • 1 4 4 1 _ v .3 1. . 3 . 3 . 3 4) .3— 0 . 3 0. -. ~~~ V 4 1 a 0 . 3 1) 0 1. ~1. 4) 1)1) — C — .--- 4) a

- a ~
) _ 4) ~ 0 4) 0) .4 — a

CM — 1. 1 .0 I3~~~~C C — - — a
1. a •a~~~~~C aa a

.4 ‘_. 1 . 0 0 1)
1) .4 C C. — — —i ‘-. — .4 1..--
4) C .4.4 C 0

~~ ~ ~~~ -
~~~~~~ 

..,—ø 

~~~~~~~~~~
- ~ a C .~~ ~~~~~~~ 333

- Ca .C 4, . 3 . 3 . 3 17. aa -• 4) — . 3 . 3 . 3 ~~~~~~~~~— CII 0) -4 0 i -.3 .~4M C .4 V • ‘-0 C
C. C — a 4) 1. 1.41

a a a a
- ‘

~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~
- - -

— r m .J1 ~~~~~~

~~~aL~~~ aIJ ~~~~~~~,. 
-
~~~ ~ 

_
•

b~~~~~4 1 M 4 1~~~~~~~~~$I O ~~~~V ~~~C •
-

~~~~~~~....•— i’$ ’ .~
-- ‘

~~‘I~~~~ 1 ~1 ‘
—~~~

- ~

- 

-

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

M 4 1 —

-
a I~!L If’

r r
• . .3 . I 1V V V

• — — —-

.
~~~~~~~~~ ~~~~~~~~~~~ - —,. 

- 

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

.~~~~~~~~~~
!_ • -•~

j•.~

,
1~

•

•
-

~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~ E
— a -

U
—

C • ~~4 - N L a
4)

-~~ ~~~~~~~~~~
O — 0~~~

-0
4__

_ ~~~~~~~ o o o a f1)o ~~~

~~~ iii ~~i~~i ~
a 

- • 

~~~~~~~~~~~ al  r’--
~

I •I !!uii !-j~ ~i!iiI1I1h
ü;j

~~•
- *~~~ .4 . 4 C0 C C~~~~

.-.
~~ ~~L a c ~j L.4 —

~ ~~~~~~IUII~
.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

,~~ 

-

~~~~~~i~~~~~

_ _____
!! ~~~~~~~C~~ J~~~ 4,J333

~~~‘U L & 1 $ E1  ~— — — — — — — __ 
S — S ‘— — — —. — — —

r - r
I I I

58

- I

~~~~~~~~~~~~~~~~ _ _ _ _  _ _ _ _  _ _ _


I

• • 4~

N— a
4 3 C M

I
4)4) 0
4)

-

4) N

a
• a 4) e) a

a 43 CM

1) 4)
4) 4 1 _ N

C
—
— .-
4’ N •0 C . .~~~4) D C . - —4 • C
1. 4) ~~~~~~~~~a 41 a .4

a 41 - O . 4 N N N~~~~a I) Ca C. —
0 — 4) 0 0 —

00)1.1.1.• C. a a
• 17 a — .- -4) 14 4) 41

• 0) - 0— -C) a
— C. a 0 ~- — — —Øa — 0

1 C)— a Ø a •0)4 a
4 .4 — 0 0)
-4 U C
— - -

• ~~~~~~
a

- a

-

-~~~~0 0
0~~.. 0 - C I a

• C C ’ !3~~~
- — 1.1. 4) 0 4)a

,7Z- ~~~~ C • 1) O a
.4 ~~ a 4) 4~ C. 0 — — - a

$.-4~~~~C S - N
— L 1 . 4 1 O a
V — I

U 0 a a 5 aa!~~~
— ~! !~

r~ !j
i~~~~~~~~i~~~~~~~~~~~~~~~~~~~~j~~~i I JII~~~~

• — 3
~ -~ h -- 4’

__
~~~ S 3~~ 

- -$

• ~~~~~~~~~~~~~~ ~~~~! !!
• 

~iUH~HHh1i ~i* — — — — — — — — — — — — — — 

- 

- 

-

.- - 4— — — — 
- - 

-

59

I 

~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~. ~~~~~~~~~~~~~~~~



_ _ _  

/ 
_ _ _ _ _ _

I. a
.4 CM
V I.

.4
•0

.4 — •V C.a .4
V

C C4 ) 4 )
4) a 4)

$CM O  M~— 4,
a 4 ) — a - ..4 C a

V N  -a
“ .- 0 4 )  —-.4 N 1 .A -  3.—IC .3.4. 4 3a4) V C
- ° a~~~~~~ 

— C
C 0)1.4441 — - 4C. . 4 4 3 4 )  — 0
~~ ~~ V I 3 C .

a 4) 4 )— .4~~~~~a I. .IOa U aV — ~~. — 
~~~~Ca

5 •4 1 C . 4) —a 04)..4 — C M
— 0~~~ V 4.) 4— —— -4 4 3 . 4— N - 4 0) 0— — a41
Na 0. 4) C 0

— 4)_ * ‘—~~~~ 0 _— 4’ __ -N 4) ..-~~~~ a —4))~ 0 —. 1. a (%j

•

~~~~~~~~~~~~~~

~~~~ I ! ~~

•

a

-

~~~~~~~~ ~~~

— 
N-’ ~~~C C..4171. ~~~4, a - 2— . 3 4 1

-

~~

C —

~~
_-

41~~~
_-

0)~~~~N 4’ 

~~ 3V 2

i I ~~~ 
~~ N~~~~~~~~~$~~~ •~~ - •

‘
~ ~-a.! f~ - I ’~~-~ ~~

~
0..- — —

ii’hit 1 

4.

a! 
-

60

~~~~~~~
“ ‘

~~~_
-: :-~~~?~~ - 

.~: ~~ T~
-
~
-
~

: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &



- -4- -

I

a

a 41

I 
~I11;;

C C. ~~~~~~~~~~~~~~ 1.’..’ .4

a .~~
0 1.L-c — ; 

~~~C V

- - 4) ..4 ’4 0 - ~~~& 0 0) a ~~~I.C - C .-4~~~~l 0.CC• — 0 ~~ o 4 3 0O O 4) 4)0

a
aa N ~~ -4 1. C C 7

4) C. 4-)VC - —~~~C.a a 0L •4 .4 (II a .-- 4 3 0 4) 0) - - — 0 0
V .4- -‘. . C C C

44
V C. V C C C 4)

.4 0 4 4 44 4 4 ~~ . 4 1 4

-~~~~~~ Z ~ 8 $ U a . a~~~~~ 4.Ø ,_..~~~~a17 4) - .4 C — . — .- CM ~~ a0) 0—’ N 44 - -•
4) 17 C . L~~~~ 0 C .
1. 44 — .4 .4 C) 1. - 4) —
— 0 4) a V V O O 0 . 3 . 3 0 —

4) 4) — a _0 - 1) — —O ‘ N a ..., — a a a - C. a a
a 4) a N N a — — 4) 4) a C’.) U Cl) •C 0 . 4 4) 0 0 0 0. ~~~5,0 -‘. ~~~-0~~~~IU

4) N — —4 — a 4) 414 k — 0) .4— V — 0 —•
~~~~~~~~ 

- 
:~~~~~~

•
~~ 44 

~~~~~ 
—
. -.

•

I!.~~~~a I __ i~it~
•

~~~~~~~~~~

~~~~~~~~ ~~~ 3~~ ~~~~~~0 
~~
g_ -’ .

~~~
.’
~~ 

C C - 0) 0 . 0 .  ~~~~~~~~~ 
4.)

~~~~~~~~~~~ .~~ ~~~~~~~~~~~ 5 4 1~~~~~~~~~~~~~~~

•

~~~~~~~ ~~~~~~C C  
~~~~~~~~~~~4,~~~~0 4 ) ~~ ‘ . 4

N
~
OU

~~~~~~$ H h$~~~

~~~~~~~ 
—~~ ~~~~a ’~~~

~~ ~~~~~~~~~~~~~~~~~~~~~~
g 33~~~ 3~~~ ~ 334$~HI

SI
i- —

a! — -

• 61

I~~~

l

~~~~~ ~~~~~~ L ~~ -: 
- 

._ ‘.
_

_~~T_~~~~
-_ 

- 

- J3t ~



—— — ~~ •• .  .W ---4m. t-a ’~~~~~~~~~*-. • - -

• 1  

- 

- II!
0.44) a —a .4 a a

a 41.-. C -~~ 4)a 1) C. C~ 1.a - 0 0

1* ~~~~~~~~~~~CM C.
C. C . m 4 ) - . -  a a
0 .4 C)
0 V 4) 0 a  C,

— — 2  a4 ~a 1 . 1.0 1 7  a-  a~~
~* -4 i4~~~170.3.4 X C ’ . )  —

• 
~~ 0 -~~

_ •
~

-1 i~ !~

2 ~° ~~ ~ tO~ ‘ ‘
-0 14 14 0 — — 4- $ Sa 4) 4) 4) N 41 a4 I  — — - •

~j 
41 0) • 0 ‘. 4) 0.4)4) 0.044• .4 .4 - - 4.. .-. X O  — 0 ) 3 .3 04..U N  — — ‘—X —~~~

a _
~~~1)

__
33

1. a CI 1. 0 C . . 4 0 C . . 4 0 4)O a a
~ 0 4) .4-4 . 3 . 4 . 4 0) 4)4.) a 4) a — 0 4... 4) .3 I S o ~~ _- —17a C) — —• — ~~ . 4 0 . C .-4 0. 17

.3 a —. —, — — — —
C. * ~~ — a - —

• 2~~
C

~~~~~~~~~~~~~~~~~~~~~~ a •

~~ a •s 0’.
17...’ 0) II 0 4) a S — 0 0 0 0 0 .4.4

C ~~ 14~~~ CM~~~ ’v$ . .3 0 .3 4) 00
-.4 -4 0 I) -.-4~~ 4.) ~~ 4) — — — ). 

~~0 C) _-~~~_ -~~~~~~~ 0 
— — 

4 ) 4 )
a Ca V  a-  4 3 4 ) 4 ) 4 )  a a

• a ~ 4 — a 4 )  — - L 4) — a —a — P41. 0 2 ~ 4)
• 

~~~~~ ~~
~~~~~~~~~~~~~~~~~~~ ~~

O t r n a  a
’.

a~~~~~~~~~~
3’

~~~~~~~~
’.

~~~~~~~~_ 
4

• 
~~~~~~~~!a! 

~~~~~ 
~

4)
~~

0I4..$~~~

j~~ UI fl I I HIIIh
~ 

‘ — — ————— — —

62

_____________ -~~~~~ - 

~ ~~ 
: -

~~~
- -:

~~I! ~~~~~~
-

- -

•~~~

_- ; - -

- - - ~~~~~~~ L — ~~~ - - • -~~• • • • • • - - _________________

I t

-4

~ (: I

-

• C C4) 4 1 a
• -;:

1 7 1 7 5

-~~~~1— ~ V a 4 3 4)~~
j

~~C a0
~~~~~~ - 0 . 4  • 4 1 C
— 4 0  — . 0) — a4 ,  0) 4

• 0 0 ) 1 7  ~‘ .‘.a — . 3)4 .4 4)
0)4)17 a ,  aa C V 4 ) . 4 0 3

V L C 8  —‘ 41a Cd
• 

~~2 .
~~

• 

_~~~~ .
~~~~~ I “2
5 - - a

a M ~~~t41. 4(

L-.. a a~~ .4 C5~— ~~ C0 -~~~ V 4 11.
~ — ~~ a 0 1. 14 0. V

~~ 4) .4 a 0 4 4 0 4 4 4 4
~~~~~~~04 C.)41 • .~~ V 0 C I S  S f

~~~ ~ 
-

~~~~~ J ~~~~~i 1’~ 
ij ” 

——

~ h Ill ~ 
I I I

~~

! !Ijjii ~ t 
~~iiij llhI!!i’i1!

- ~~ j  ~~~~S i ~ — _ 0 a a . c c~~~ N C_ -_ -  C’..’a
~ a. ~

‘.!3X333~~ 
- 

• 33~• L~~H ~
.
~~!!!!!! !.!‘.!- .

— ~~~

• r a!

63

M ~~~ _ _ _ _ _  

_ _ _ _ _ _



_______ --— ~~~
. ~~~~434)~~~~ ~~ -

I

Cd
I..4
V

I.
.4 a
V a

V N
1’$

V a 0 N
2 02-- 17

5— 17 44
1.4. 0) —4) .4 a —

2 2V C  17 2 0 —I a —a a 4) — 0) —•41 4) I Sa  a a Cd0.3 C .4a 
~~ 4, . _  

—_ S O  .417 ~~ — C C4) a—— — a  0 4 ) ) -  .4- C. 4) 2 a C) 0 11) 4.4 0 ) C  a 0CI V C 
~~‘ 

a 0)0. 0.3 4’ ~~ 17 0 00 a 04) 4) 0 -‘ —• — N 1) 0 - 0 a— 1. 4) — 2 a — Ca —a .4 a~~~ a 14 a It.a a V C a a — ~~ U V C —— N ~~~44 a~~~ 0 ~ CCd 2 V 43.3 —4’ a 17 0 • C  .4C. 4) a 17.4 ~~ 4) 17 .4.4 C ~~~4) . 4  X C C a 4) 4)
17 1 70 V.’ .- 01. C I S I SCd C ~~~~~~~ N 4) .4.4 .3C N CI.)’-’ 04) — 14 0 0 .4 —4 —— 4) 0 C. 0) a a 0 4)  0) — —a 14 .4 .  4 1 . 4  C 17 4 . 0 )  — — aa V C .  .3.4 ~~~)‘...4 — —a  —-4—  C •- .4 .4~~~~ 4) 0 .4 1. a C 17 —0 4. 14 17 V .4 C C — — .4 a — — C‘-‘.4 -) 4) 2 ‘.‘Cd a V a

V S  4)a C .4~~~~.- 0 )  a 0 0  a 4)a 
~~ C CV 0 ) 0  0 4 4 1 . C 0- ’ .a  V V  a 0)-lCd ’—. 4) S.C ~~ N.4 0 0 0 0  4’) .4. 4 1, N — .4 O C  O O V O  4 ) 1 4  5 . 3  —4C . 4 . - 4  a4 ,  1 . 0  0~~ ‘ - . C  — 4)5.4 1)0 0 0.V.4 C .4 0’ —— C X 0 .4 —4 —U ~ — V O  a•4 ) 2~~~ _ - a 0 ’  — —2 0 C  4) 4) — ~~~~~~~~4 , 0 ) 4 ) *  — .  —— 4) a X 41 -.4 C 14 1.— — C

— 
~~~~~~ 2

.

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
S4 _ 3 3~~~~C.~~~~~~3 ;~~ 

aa
—~.8 ! v . w  aonf 2aV! ~~~ !! —j~; ~~iI ~~~~~~!I~~~~~ :~~ —

~~

~ I~ ~~ I i~i-
~~~~~~~~333 s. I Z~~~~~~~ ~~~~~~ ~~~$ 5 51  E$$, 8 8 1 5 .  ~~ ‘ . ~~V 3 .4 —— 

~~~~~ ~~ —h ;
ii !~i I~~i!~! pJ 

-—— — —  V I —  ~ •g~~~~~ •e

;i ~~~~~~~~~~~~~~~~~isa: — — — — — — — r ~ 
— —

—

-~~ ~~~~~
•
- - I

~~ - :~ ~~r - 
- ~~~~~~~~~~~4~~~~~~ TV~ 

~~~~~~~~~~ -~~~


