AD-A065 100 WOODS HOLE OCEANOGRAPHIC INSTITUTION MASS F/G 13/10 FREE-DRIFTING BUOY TRAJECTORIES IN THE GULF STREAM SYSTEM (1975ETC(U) JAN 79 P L RICHARDSON, J J WHEAT, D BENNETT N00014-74-C-0262 UNCLASSIFIED WH0I-79-4 NL												
1 OF 2 ADE5100				t		and a second sec	i Em.					
												100 m
									Mulli			
			Next Homosophies and Homosophi		Construction of the second sec			ŧ	grandina di		S. S.	
	(the second	Bernard B					marine and
	N. M.					I	A A A A A A A A A A A A A A A A A A A	Contraction of the second				
	(mananana)	A second		1						*		

1/79 UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER DRT NUMBER WHOI-79-4 WPE OF BEROAT Contratal TITCETON FREE-DRIFTING BUOY TRAJECTORIES IN THE GULF Technical # STREAM SYSTEM (1975-1978), A DATA REPORT. RECEMING ORG. REPORT NUMBER 5 AUTHORIA NOOØ14-74-C-Ø262 P. L. Richardson, J. J. Wheat and D. Bennett -OCE 75-08765 OCE 77-08045 9. PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Woods Hole Oceanographic Institution/ NR 083-004 Woods Hole, MA 02543 11. CONTROLLING OFFICE NAME AND ADDRESS -----Jan 2079 NORDA National Space Technology Laboratory 158 Bay St. Louis, MS 39529 14. MONITORING AGENCY NAME & ADDRESS(II dillog 15. SECURITY CLASS. (of this report) Unclassified 154. DECLASSIFICATION DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 1. Satellite tracked buoy 2. Trajectories at buoys 3. Gulf Stream System 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) From 1975 to 1978, thirty-one satellite-tracked free-drifting surface buoys were launched in the Gulf Stream system. Most of these buoys were launched in cyclonic rings, as part of an interdisciplinary Gulf Stream ring experiment. Other buoys were launched in anticyclonic rings and the Gulf Stream itself; one buoy was launched in a cyclonic Kuroshio ring. The basic data set consists of buoy trajectories and sea surface temperature and velocity measurements along trajectories. _(Cont. on back) DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED 1/79 S/N 0102-014-6601 | SECURITY CLASSIFICATION OF THIS PAGE (When Date Enter

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

CONI

The main results consist of a series of 19 buoy trajectories in rings from which the movement of rings is inferred and a series of 20 buoy trajectories in the Gulf/Stream. Rings frequently coalesced with the Gulf/ Stream; and some reformed as modified rings. The trajectories of buoys in the Stream reveal that at times surface currents are strongly influenced by topographic features such as seamounts and ridges. Most buoys in the Stream continued to move eastward until they reached the vicinity of the Grand Banks (50°W) where they rapidly fanned out, some moving northward, others eastward across the mid-Atlantic Ridge, still others southward and westward.

WHOI-79-4

FREE DRIFTING BUOY TRAJECTORIES IN THE GULF STREAM SYSTEM

(1975-1978)

A DATA REPORT

by

P. L. Richardson J. J. Wheat D. Bennett

WOODS HOLE OCEANOGRAPHIC INSTITUTION Woods Hole, Massachusetts 02543

January 1979

TECHNICAL REPORT

Prepared for the Office of Naval Research under Contract N00014-74-C-0262; NR 083-004 and for the National Science Foundation under Grants OCE 75-008765 and OCE 77-08045.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanographic Institution Technical Report WHOI-79-4.

Approved for public release; distribution unlimited.

Approved for Distribution:

hhh hh

Valentine Worthington, Chairman Department of Physical Oceanography

ABSTRACT

From 1975 to 1978, thirty-one satellite-tracked free-drifting surface buoys were launched in the Gulf Stream system. Most of these buoys were launched in cyclonic rings, as part of an interdisciplinary Gulf Stream ring experiment. Other buoys were launched in anticyclonic rings and the Gulf Stream itself; one buoy was launched in a cyclonic Kuroshio ring. The basic data set consists of buoy trajectories and sea surface temperature and velocity measurements along trajectories.

The main results consist of a series of 19 buoy trajectories in rings from which the movement of rings is inferred and a series of 20 buoy trajectories in the Gulf Stream. Rings frequently coalesced with the Gulf Stream, and some reformed as modified rings. The trajectories of buoys in the Stream reveal that at times surface currents are strongly influenced by topographic features such as seamounts and ridges. Most buoys in the Stream continued to move eastward until they reached the vicinity of the Grand Banks (50°W) where they rapidly fanned out, some moving northward, others eastward across the mid-Atlantic Ridge, still others southward and westward.

(1)

TABLE OF CONTENTS

Page

ABSTRACT	i
TABLE OF CONTENTS	.i
LIST OF TABLES	.11
LIST OF FIGURES	v
INTRODUCTION	1
THE BUOYS	2
I. Temperature and Drogue Sensors	8
THE DATA	9
RESULTS	.0
II. Buoys in Gulf Stream Rings	.5
III. Buoys Influenced by Seamounts	:4
SUMMARY	13
ACKNOWLEDGEMENTS	13
REFERENCES	15
APPENDIX A - Individual Buoy Data	37
APPENDIX B - Supplemental Buoy Data	13
APPENDIX C - Buoy Position Accuracy and Data Editing	8

(11)

(111)

LIST OF TABLES

Page No.

Table 1.	Recovered Buoys.	6
Table 2.	Buoys whose drogue sensors indicated that the drogues came off.	7
Table A-1.	Buoy Summary.	38
Table A-2.	The number of each day of the year.	39
Table C-1.	Subdivision of Fixes into Quality Classes.	155

(iv)

LIST OF FIGURES

Figure	1.	A drawing of the COSRAMS Buoy, made by Polar Research Laboratory.	3
Figure	2.	The lifetime of buoys.	4
Figure	3.	Location of buoy launch sites.	11
Figure	4.	The number of buoys simultaneously tracked.	12
Figure	5.	Trajectories of thirty-six free-drifting buoys.	13
Figure	6.	Monthly displacement vectors of thirty-six drifting buoys.	14
Figure	7.	Trajectories of three buoys in the Gulf Stream beginning near 64°W in May 1977.	16
Figure	8.	Trajectories of four buoys launched across the width of the Gulf Stream near 57°W in July 1977.	17
Figure	9.	Trajectories of all rings continuously tracked with free-drifting buoys plus one, just west of Bermuda, tracked by SOFAR float (Cheney <i>et al.</i> , 1976).	19
Figure	10.	Ring Al in December 1976 and the subsequent trajec- tories of the two pieces as it split apart, measured with free-drifting buoys.	20
Figure	11.	Trajectory of buoy 162 launched in ring Art, 14 December 1976.	21
Figure	12.	Trajectory of buoy 215 launched in ring Al, 4 December 1976.	23
Figure	13.	Trajectory of buoy 731A, launched 14 April 1977 in ring Bob.	25
Figure	14.	Simultaneous trajectories of three rings, Bob, Charlie and Dave (dark lines) from April to November 1977 and portions of four buoy trajec- tories (light lines).	26
Figure	15.	A North-South section through the New England Seamounts.	28
Figure	16.	Trajectories of six buoys which were caught in strong eddy motion near the New England Seamounts.	29

LIST OF FIGURES (Contd)

		Page NO.
Figure 17.	Superposition of the six trajectories shown in the previous figure.	30
Figure 18.	Trajectory of buoy 1076A as it passed in a small anticyclonic loop over the Atlantis II Seamount.	31
Figure 19.	Trajectory of buoy 0113B as it first stopped at the edge of the Corner Rise Seamounts and then began to loop over the seamounts.	32
Figure C-1.	Examples of buoy position data provided by NASA.	150
Figure C-2.	Satellite elevation angle vs. great circle angle between satellite subpoint and buoy position.	152
Figure C-3.	Error vs. great circle angle.	154
Figure C-4.	Distribution of the magnitude of fix errors.	156

(v)

INTRODUCTION

This report contains the free-drifting buoy data obtained from two experiments, a Gulf Stream ring experiment and a Gulf Stream experiment. The objectives of the ring experiment were to measure the movement of rings in the Sargasso Sea in order to learn where rings go, what their eventual fate is, and what influences their motion. The work is one component of a cooperative and interdisciplinary experiment to study cyclonic Gulf Stream rings. Two rings were followed over their lifetimes and a series of cruises to them were made. On these cruises we measured the rings' physical, chemical and biological characteristics and their changes with time. In addition we have obtained trajectories of ten other rings.

Rings are formed from large Gulf Stream meanders which pinch off from the main current and form intense eddies of swiftly flowing water (Fuglister, 1972, 1977; Saunders, 1971; Gotthardt, 1973). During the formation of a cyclonic or cold core ring a sizable mass of Slope Water, originally located north of the Stream and containing biological and chemical components characteristic of that region, is carried south of the Stream and into the Sargasso Sea. Rings are large eddies with diameters up to 300 km; they occur frequently in the Northwestern Atlantic and have primary importance to that region and to the size and shape of the Gulf Stream gyre (Parker, 1971; Lai and Richardson, 1977; Richardson, Cheney and Worthington, 1978).

Fuglister (1972, 1977) was first to follow the movement of rings. He used ship observations (XBTs and hydrographic stations) and also buoys tracked from ship. Fuglister's study indicated that surface buoys stayed in a ring for long periods of time (six months) and thus they provided a good technique to follow rings. These results encouraged us to try using satellite tracked buoys to measure the continuous movement of rings. Richardson, Cheney and Mantini (1977) describe the first of our buoys that worked successfully. At the present time we have obtained a series of 19 buoy trajectories in twelve rings.

The purpose of the Gulf Stream experiment was to investigate the

-1-

general problem of where the Gulf Stream goes and how it disperses and recirculates after passing the Grand Banks of Newfoundland. Worthington (1976) contended that the Gulf Stream returns to the southwest in a relatively tight gyre while Mann (1967) maintained that the Gulf Stream branches near the Grand Banks, one branch turning toward the northeast and forming the North Atlantic current, the other branch flowing southward.

In order to help resolve the near surface flow pattern of the Gulf Stream, several buoys were launched in the Stream in 1977. In addition, many of the buoys originally launched in rings became entrained into the Stream as the rings coalesced with the Stream; these buoys provide additional trajectories in the Gulf Stream. We have also obtained data from buoys in rings, the Stream and nearby areas kindly made available by other investigators; these data complement our data and are included in Appendix B.

THE BUOYS

Two types of buoys were used. The first was made by Nova University (hull)* and American Electronics Laboratory (electronics). The second type of buoy was made by Polar Research Laboratory. Beginning in October 1975 we launched six Nova/AEL buoys. They had a short mean lifetime of 50 days; two of them worked for four days, one for 132 days (1151A, see Richardson, Cheney and Mantini, 1977).

In October 1976 we began using Polar Research Laboratory (PRL) buoys (Fig. 1). They are smaller, lighter, less expensive and proved to be more reliable than the Nova/AEL buoys. The mean lifetime of twenty PRL buoys is presently 228 days (Fig. 2). This value includes the life of five buoys recovered at sea (mean lifetime of 300 days). Three of the PRL buoys worked for over 400 days. Lifetime is defined to be the time from which the buoys were launched until the time of the last good fix before they stopped transmitting or, in the case of recovery, the time when they were picked up. None was recovered after it stopped transmitting.

*Three of these buoys had hulls constructed of PVC tubing, three of reinforced fibreglass.

-2-

-3--

-4-

The PRL buoys are 3 m long and are constructed of a .32 cm welded aluminum hull; they each weigh 200 lbs (Fig. 1). A fibreglass antenna housing is attached to the top, and a flotation collar is located just below the antenna. Six PRL buoys were recovered (Table 1); all were structurally sound and three of them (264B, 731B, 437B) were repowered and relaunched.

I. Temperature and Drogue Sensors

The PRL buoys contained a temperature sensor located near the base of the buoy at a depth of 2 m and a drogue tension sensor. The temperature data from the first few buoys were noisy, but the problem was corrected by PRL on subsequent buoys. The buoy temperature data were found to agree with XBTs taken when the buoys were launched.

The drogue tension sensor consists of an on/off switch which is activated by a 50 lb load to the tether attachment point. When sufficient tension is applied to the tether, rubber toroids are compressed and a magnet is pulled away from a magnetic on/off switch. Four of the six recovered drogue sensors had become overloaded and had jammed in a "drogue on" position.* A fifth sensor (0437A) indicated that the drogue came off after being at sea 12 days and this sensor was working properly when recovered. A sixth sensor (731B), modified by PRL, was working properly when it was recovered after 71 days at sea.

Of all the PRL buoys launched, only six of them indicated that their drogues came off; all within a 23 day period after launch (Table 2). Thus after 23 days we think most of the drogue sensors jammed in an "on" position and therefore we do not know how long most of the drogues remained attached to the buoys. The failure of the drogue tension sensor may have been caused by high shock loadings transmitted to the sensor through the relatively unelastic tethers. PRL has made a design change that they think will eliminate failures of the drogue tension sensors and we are presently testing three of the new sensors. One of these (731B) was recovered and was working properly. We are also exploring ways to decouple the movement of the buoy from that of the drogue.

-5-

^{*}Only one of six Nova/AEL drogue sensors worked properly, the others failed to transmit any tension data.

Table 1 - Recovered Buoys

Last (e) Failure	Shackle	Shackle	Line	Shackle	Line	None	
Recovered hardware	Chain only	Chain only	Thimble only	Chain only	Chain, thimble	All recovered	
Original tether/drogue ^(d)	5 m, 3/8" chain; 200 m, 1.50" pp/WS	5 m, 3/8" chain; 200 m, 1.50" pp/WS	400 m, 1/4" dacron/WS	5 m, 3/8" chain; 200 m, 1.25" pp/WT	5 m, 3/8" chain; 200 m, 1.50" pp/WS	5 m, 3/8" chain; 200 m, 1.25" pp/WT	
Time at Sea (days)	326	326	244	416	196	11	
Buoy ID ^(a)	1138	264A	437A ^(b)	707A	731A	731B ^(c)	

- us by the NOAA Data Buoy Office. The direction finder first received the buoys' signal at a distance These buoys (except for 437) were recovered using an OAR automatic radio direction finder loaned to of 8-9 miles. (a)
- The drogue sensor indicated that the drogue came off after 12 days at sea. Four of the other drogue sensors failed due to overloading and indicated that the drogues were on (see text). (9)
- Buoy 731B was retrieved after 71 days at sea in the vicinity of the Grand Banks of Newfoundland. This buoy contained a modified drogue sensor which was working properly when recovered. (c)
- (d) WS window shade drogue, 25 m², 100 lbs.
 WT 100 lb weight.

WT - 100 lb weight. pp - Polypropylene. From the visual inspection of the recovered 3/8" safety shackles it appears that the ones that failed had become so corroded that either the bolt broke or the stainless steel cotter pin and nut dropped off and the bolt worked its way out of the shackle. (e)

đ

-6-

Table 2 - Buoys whose drogue sensors indicated that the drogues came off

3

Comments	Kuroshio ring recovered with bare thimble and no tether after 244 days at sea	air launched buoy		Nova/AEL buoy
Tether/drogue	200 m, 3/8" nylon/WS 400 m, 1/4" dacron/WS	50 m, 3/8" nylon/WS 5 m, 3/8" chain; 200 m, 1.25" pp/WS	5 m, 3/8" chain; 200 m, 1.25" pp/WT 5 m, 3/8" chain; 200 m, 1.50" pp/WT	200 m, 5/8" nylon/WS
Time(days) ^(a)	14 12	11 13	11 23	56
Buoy ID	0401A 0437A	0557A 1076A	1370A 1406A	1511A

Time at sea before drogue came off as indicated by drogue sensor. After about 23 days the PRL drogue sensors became jammed in an "on" position and thus we do not know how long most of the drogues stayed attached to the buoys. Only one Nova/AEL drogue sensor functioned; it indicated the drogue stayed on for 56 days. (a)

-7-

II. Drogues and Tethers.

We tried several different drogue-tether combinations. Our conclusions based on the recovered buoys (Table 1) and drogue tension sensor data (Table 2) are 1) that our thin tethers parted rather quickly, sometimes as early as a few weeks after launch, 2) the thick tethers lasted longer but we do not know how long and 3) the safety shackles corroded and parted after about 300 days at sea.

On nine buoys we used a 25 m^2 window shade drogue (1.7 m x 14.5 m, 100 lbs) and a relatively thin (1.4 - 5/8" diameter) tether, usually 200 m long. The evidence from the drogue sensors suggests these drogue/ tether combinations came off after a period from 11 to 56 days. To alleviate the problem of drogue-tether failures which we thought could be due to chafe and/or fishbite we began using a 200 m section of thick (1.25"-1.50" diameter) polypropylene tether, and we added a 5 meter section of 3/8" galvanized chain between the tether and the buoy. We attached a window shade drogue to seven of the thick tethers and a 100 1b weight to 15 others. When the thick line was used without a window shade drogue attached to it the line itself (area \sim 6 m²) became the drogue. Five of the buoys with thick tethers were recovered (Table 1). Only one (731B) had a window shade drogue or weight attached; it was recovered after 71 days at sea with line and hardware in good condition. Another buoy had the chain and a thimble attached to it but no line was around the thimble; the shackles connecting the chain to the thimble had been highly corroded. Three buoys had only the chain; the shackles had parted.

In summary the drogues did not stay attached to the buoys very long. The thin tethers parted after periods of two weeks to two months. The thick tethers sometimes parted as early as two weeks after launch but because of the jammed drogue tension sensors we do not know how long they did last. Evidence suggests that the one buoy recovered complete after 71 days at sea was in good condition.

We are presently experimenting with two different drogue tether systems. One consists of 5 meters of 3/8" chain connected to 10 meters

-8-

of 1" diameter rubber (stretches to 20 m under the static load of drogue and wire), connected to 175 m of nylon jacketed 3/32" wire, connected to a window shade drogue. A second consists of a 100 m section of stiff (to keep it from wrapping around the buoy) line which lies on the water surface and is attached to a float, slightly positively buoyant. Below the float is attached a 100 m wire and a window shade drogue.

THE DATA

The buoy transmits a signal (401.2 mHz) for approximately 1 sec each minute. Signals consist of a NASA buoy identification number and sensor data. The buoy's position is calculated by NASA from the Doppler shift of the signal as it is received by the Nimbus 6 satellite. The Nimbus 6 is sun-synchronous; has a high-noon passage, an altitude of 1100 km and a period of 108 minutes.

Typically five fixes per buoy per day are obtained; they have an RMS error of about 5 km. Position errors are introduced from several sources including weak signals, low number of signal transmissions received, low or high angle of satellite pass, unknown velocity of the buoy, and errors of the satellite position. In practice it was found that the errors of fixes could be reduced to 1-2 km by eliminating suspect fixes (see Appendix C for a more complete discussion).

Data editing and processing consisted of the following five steps.

- The data were obtained from NASA on computer printout sheets. Obviously bad fixes were eliminated; the rest were entered into a buoy file.
- Trajectories of each buoy were plotted and velocity between successive fixes calculated.
- 3) Two good-quality fixes per day, a half-day apart, were selected based on a visual inspection of the trajectory, velocity and the quality parameters of each fix (Appendix C). At times, for example when a buoy ran low on power, fewer than two good fixes per day were retained.

4) A cubic spline function* was used to compute buoy positions

*The spline function was developed and programmed for the Sigma 7 by Glenn Flierl and Roger Goldsmith.

-9-

and velocities evenly spaced in time (two per day). The spline function filled in gaps in the data and provided a uniform time series with which we could do further analysis. A benefit of using data evenly spaced in time is that by looking at the spacing of semi-daily dots on trajectories, one can get a good feeling for a buoy's velocity and its variations.

5) Plots of the trajectories, velocity-stick diagrams, speed, direction and temperature time series were generated using the edited and splined data.

RESULTS

During the period from October 1975 to June 1978, thirty-one buoys were launched in various parts of the Gulf Stream system (Fig. 3). Two records are short, only four days long, and are not included. In mid-1977 the number of buoys that we were simultaneously tracking peaked at 17 (Fig. 4). A summary of the trajectories plus seven others obtained from other investigators is shown on Figures 5 and 6. Detailed plots of the trajectories and buoy velocities can be seen in Appendices A and B.

Several very different types of trajectories can be identified on the summary plots. The trajectories reflect the different flow regimes in features such as the Gulf Stream, rings, topographic and other mesoscale eddies, and also in different geographical areas such as near the mid-Atlantic ridge and in the Western and Eastern Basins of the North Atlantic.

I. Buoys in the Gulf Stream

In the region west of 60°W, buoys located outside the Stream showed a strong tendency to be entrained into the Gulf Stream. Once in the Stream buoys usually moved rapidly eastward to the region of the Grand Banks (50°W). The trajectories indicate the Stream reaches its maximum latitude between 55-60°W. From here the Stream flows southeastward along the western side of the southeast Newfoundland Rise. East of

Figure 5. Trajectories of thirty-six free-drifting buoys. Two positions per day are shown by dots.

-13-

60°W the buoy trajectories spread out and the spreading is increased in the region between 40-50°W. It is interesting that none of the drifters spun off into the Slope Water on the north, or at least that any buoys that did move into the Slope Water region were quickly entrained into the Gulf Stream again.

The buoy trajectories suggest three possible branches of the surface currents.* One branch swings around the Southeast Newfoundland Rise and turns northeastward. From here the current divides, one part continues northeastward and the other part moves eastward across the mid-Atlantic Ridge, north of the Azores, near latitude 42-43°N. A second branch of the Stream continues to flow southeastward from the main current, running along the western side of the Southeast Newfoundland Rise; it crosses the mid-Atlantic Ridge south of the Azores, near latitude 33°N. The third branch consists of a southwestward flow on the south side of the Gulf Stream. Approximately one-half of the buoys moved out of the Stream and into the southwestward flow; the other half continued moving eastward. The westward flow is difficult to resolve because it is dominated by highly energetic eddy motion. The energy of the eddies decreases quite rapidly with decreasing latitude.

On two occasions buoys began to drift in the Gulf Stream from near the same location and time. The trajectories of the buoys give a measure of how rapidly particles in the Stream disperse. On the first occasion, three buoys passed very close to one another near 64°W longitude purely by chance (Fig. 7). On the second occasion four buoys were launched at four sites located across the width of the Stream near longitude 57°W (Fig. 8).

II. Buoys in Gulf Stream rings.

Twenty-one buoys were launched in rings as part of the interdisciplinary ring experiment. When launched near the center of a ring these buoys tended to move radially outward toward the high velocity part of

-15-

^{*} The effect of wind and waves on the buoys both with and without drogues is presently being investigated. In this discussion of the preliminary results the wind effect will be ignored.

.

-17-

the ring and to stay there circling the ring with periods from two days to 10 days. One buoy stayed in a ring as long as eight months and completed 86 loops.

The movement of the center of rings was inferred from the looping motion of the buoys (Fig. 9). The trajectories suggest that rings frequently coalesce with the Gulf Stream and that as this occurs, the buoys are swept away in the Stream.

Rings north of Bermuda exhibited large clockwise loops as they became attached to the Stream and reformed again. This type of movement is also seen in Fuglister's 1967 ring (Fuglister, 1977). There is evidence for a semi-permanent and complicated ring/meander structure lying along the New England Seamounts. Rings near the seamounts did not last long before coalescing with the Stream. There is evidence of a general southwestward movement, similar to that described by Lai and Richardson (1977), of those rings which were not touching the Stream. The southwestward movement is apparently affected by the shallow depth of the Blake Plateau and possibly the Blake Bahama Outer Rise. There are two cases in which a ring was attached to the Stream and moving downstream, when it collided with another ring which coalesced with the Stream and was lost. Three buoys were located in anticyclonic rings north of the Stream. These buoys all came out of the rings and went into the Stream rather quickly (typically in one month).

During 1976 and 1977 we followed two rings, Al and Bob, with drifting buoys and made a series of cruises to them. The first ring, Al, formed in September 1976 from a large Gulf Stream meander located just west of the New England Seamount chain. During December 1976 the ring split apart into two rings, Al and Art, (Fig. 10). Art, the smaller eastern part, moved rapidly (10 cm/sec) eastward and coalesced with the Stream over the New England Seamounts in January (Fig. 11). Evidence from six other buoys suggests that the Gulf Stream formed a semi-permanent ring/ meander along the seamounts from January to at least August 1977. The trajectories suggest that by early January 1977 Art had come in contact with the Stream and was advected rapidly eastward.

-18-

Figure 9. Trajectories of all rings continuously tracked with free-drifting buoys plus one, just west of Bermuda, tracked by SOFAR float (Cheney et al., 1976).

Figure 10. Ring Al in December 1976 and the subsequent trajectories of the two pieces as it split apart, measured with free-drifting buoys. Shaded area is water colder than 15°C at a depth of 600 m based on an XBT survey.

-20--

-21-

Al moved first in a small counterclockwise loop and then a large clockwise loop; it never translated far from its early December 1976 (or September) position (Fig. 12). As Al reached its northerly limit on the clockwise loop at the end of February, it became attached to the Stream and then reformed as a modified ring, smaller in size but with a faster rotation rate. After reforming, Al moved southward, then westward and collided with a ring/meander (Bob) which was moving eastward. By May 2 Al had coalesced with the Gulf Stream, had accelerated northeastward and was lost. The buoy which had been in Al, moved eastward in the Stream and was caught by the same ring/meander with which Art had coalesced.

A five month trajectory of the buoy launched in Al in December 1976 is shown in Figure 12. During the first two weeks the buoy moved radially outward until it reached a radius of 35 km (radial speed 6 cm/sec) and a period of five days (tangential speed of 51 cm/sec). This radius was located within the rapidly rotating part of the ring and also within a strong horizontal salinity gradient in the upper 200 m. The small loops (radius 20 km, period 2.0 days, tangential velocity 73 cm/sec) which occurred in March as Al moved away from the Stream indicate that the ring's characteristics had changed. In April, as Al was coalescing for the final time we made a short XBT survey of it and found it to be much reduced in size. When the translation rate of the ring is subtracted from the buoy trajectory, the looping motion can be seen to continue until May 1. Evidence suggests that the remains of ring Al were advected eastward in the Stream. One explanation for the looping motion of the ring is that Al moved eastward when attached to the Stream, and westward when in the return flow south of the Stream.

During March 1977 it became clear that Al had become modified through its interaction with the Gulf Stream; we suspected that Al would not last much longer. As a result we chose to study a very intense ring, Bob, which formed in February 1977. An excellent series of satellite infrared images (NOAA 5) provided a good picture of the exact time and location of its formation (Doblar and Cheney, 1977). In April 1977, we launched three buoys in Bob and in August 1977 the more.

-22-

Figure 12. Trajectory of buoy 215 launched in ring Al, 4 December 1976. Dark line is inferred path of the center of ring Al. Ring Al coalesced with the Gulf Stream at the end of April 1977 as the Stream formed another, more intense ring, Bob, to the west of Al.

-23-

A six month trajectory (14 April to 26 October 1977) of one of three buoys launched in Bob is shown in Figure 13. In April Bob became attached to the Gulf Stream and moved rapidly eastward 180 km in 10 days. As Bob moved eastward it collided with Al which coalesced completely with the Stream. In early May Bob split off from the Stream again and moved southwestward for four months. In September 1977 Bob coalesced completely with the Gulf Stream near Cape Hatteras and was lost. The coalescence was observed with an XBT survey on the R/V ENDEAVOR (Watts and Olson; 1978), as well as with four drifting buoys.

The trajectories of three rings, Bob plus two others, Charlie and Dave, which we were tracking at the same time are shown in Figure 14. Ring Charlie did one large clockwise loop, moved southward and collided with the Blake Escarpment, at which time the buoy came out of Charlie and was entrained into the Gulf Stream. Dave moved northward around the Blake Spur, became attached to the Gulf Stream and collided with Bob. As Dave and Bob collided, the buoy that had been in Dave for five months looped once around Bob, the more intense of the two rings, and moved off in the Stream. The buoy located nearest the center of Bob passed through the Stream and into the Slope Water on the other side; after one last loop near the continental slope it moved off in the Stream.

As Bob coalesced with it, the main Gulf Stream current appeared to be diverted around the southeastern side of Bob, and three of the four buoys in Bob were swept away in the Stream. Of the four buoys that were in Bob, the first one moved off in the Stream and stopped transmitting, the second moved off in the Stream, was entrained by a warm core ring for a month and then moved eastward again in the Stream, the third moved eastward in the Stream, and the fourth moved into the Sargasso Sea. The evidence suggests that most of the water near the surface of the ring was entrained into the Stream.

III. Buoys influenced by seamounts.

As the Gulf Stream flows eastward it must cross over the New England Seamounts which are an impressive mountain chain, reaching quite close to the ocean surface and occupying a large portion of the deep water region

-24-

Figure 13. Trajectory of buoy 731A, launched 14 April 1977 in ring Bob. The trajectory was calculated with a cubic spline. The straight lines are three hour segments; one dot per day is shown and the numbers represent the consecutive day of the year beginning with January 1 (see Table A-2, page 39).

-25-

Figure 14. Simultaneous trajectories of three rings, Bob, Charlie and Dave (dark lines) from April to November 1977 and portions of four buoy trajectories (lighter lines). In August two additional buoys were launched in Bob bringing the total to three buoys. All three plus a fourth that had been in Dave but had become entrained into Bob were swept away in the Gulf Stream as Bob coalesced with the Stream.

-26-

6

• ,

(Fig. 15). The deep water of the Stream must pass either over the seamounts or between them. Several buoys that moved eastward in the Gulf Stream showed that surface currents can be strongly influenced by individual seamounts as well as clusters of seamounts. Approximately half of all the buoys in the Stream passing the New England Seamounts became trapped in a complicated meander/ring/eddy structure lying near the seamounts (Figs. 16 and 17). This region is also one in which rings frequently form and also coalesce with the Stream (Fig. 9).

One buoy (1076A) which passed over the Atlantis II Seamount suggests the presence of a Taylor (1917) column (Fig. 18). This buoy moving eastward in the Gulf Stream with speeds of 100-150 cm/sec, slowed to 5-10 cm/sec as it passed over the top of the seamount in a partial anticyclonic* (clockwise) loop and then speeded up again to 100 cm/sec. The buoy remained near the seamounts caught in strong eddy motion for four months. The motion of the buoy as it passed over the seamount is very similar to that suggested by McCartney (1975, Fig. 4; 1976, Fig. 5) who modelled the formation of Taylor columns over seamounts by an impinging flow. McCartney shows a small trapped region of anticyclonic flow over a seamount and a meandering wake downstream (eastward) of the seamount. Under certain circumstances the wake forms a train of cyclonic and anticyclonic eddies. Vastano and Warren (1976) have reported finding warm-core and cold-core eddies in the lee of the Atlantis II Seamount in agreement with McCartney's model.

Additional evidence for the presence of Taylor columns over seamounts is given by buoy 113B, which looped over the Corner Rise Seamounts (Fig. 19). This buoy, launched in the Gulf Stream, moved eastward then southward, and as it approached the Corner Rise it stopped. After it reached what looks like a stagnation point in the flow, the buoy began to loop (anticyclonic loops) over the seamounts. The buoy looped four times (period \sim 12 days, diameter 40-100 km, mean speed \sim 35 cm/sec) over the seamounts and then once more as the eddy in which it was embedded was swept away to the southwest. Two other buoys (1040A, 1076A) also made anticyclonic loops in the

*Note that rings south of the Stream have cyclonic (counterclockwise) circulation.

-27-

-28-

r,

.

.

Figure 16. Trajectories of six buoys which were caught in strong eddy motion near the New England Seamounts.

-29-

Figure 17. Superposition of the six trajectories shown in the previous figure.

-30-

ž

Figure 18. Trajectory of buoy 1076A as it passed in a small anticyclonic loop over the Atlantis II Seamount.

Figure 19. Trajectory of buoy 0113B as it first stopped at the edge of the Corner Rise Seamounts and then began to loop over the seamounts.

vicinity of the Corner Rise Seamounts. In addition, one buoy moving eastward in the Kuroshio Current was observed to make a series of anticyclonic loops over the Emperor Seamount Chain (Cheney, Richardson and Nagasaka, 1978).

SUMMARY

The buoys have revealed some interesting aspects of the ocean flow, including the movement of rings, paths of the Gulf Stream and the influence of bathymetric features such as seamounts on the surface flow. Although the buoy trajectories are a measurement of the near surface currents (very close to the surface, two meters, for the buoys without drogues), these currents frequently extend to great depths, at least in the case of rings and the Gulf Stream.

While buoys were in strong currents the influence of the wind on the buoy either directly or via surface waves and wind drift currents was probably small. One buoy stayed in a ring for eight months; the wind had little or no effect on this one, or on other bucys in rings. As the buoys moved into the eastern regions where slower currents were observed (over the mid-Atlantic Ridge for example), the wind influence on the buoy's motion may have become important and thus these trajectories need to be interpreted with caution. We are presently examining the problem of windinduced buoy velocity.

ACKNOWLEDGEMENTS

This research was made possible with funds provided by the National Science Foundation (Grants OCE75-08765, OCE77-08045) and the Office of Naval Research (Contract N00014-74-C-0262, NR 083-004). Many people aided in this study especially those who formed the nucleus of the ring experiment, D. Kester, A. Vastano and P. Wiebe.

The buoys were launched and retrieved on a series of cruises by numerous people namely G. Cotter, G. Knapp, V. Worthington, D. Lai, D. Mountain, G. Tupper, G. Volkmann, P. LaViolette, R. Harbison, M. Briscoe, D. Moller and N. Hogg. M. Burdette (NDBO) provided the direction finder which was used to locate the buoys, D. Simoneau rigged most of the tethers

-33-

and A. Morton repowered several buoys.

NASA provided the buoy positions and telemetered data. B. Seechuck and M. McElroy assisted by sending data to us at sea so we could follow the movement of the buoys by ship. R. Goldsmith prepared the basic buoy data processing and plotting programs. G. Flierl developed the cubic spline interpolating program. S. Waskilewicz and G. Knapp assisted in the data processing and T. McKee created the final time series plots.

Unpublished data from buoys which were part of other experiments were provided by J. Fornshell, E. Kerut, D. Kirwan, A. Leetmaa and R. Weir. Some of these buoy trajectories are shown in Appendix B.

-34-

REFERENCES

Cheney, R. E., P. L. Richardson, and K. Nagasaka, 1978. Tracking a Kuroshio Cold Ring with a Free-drifting Buoy. <u>Deep-Sea Res</u>. (submitted).

Cheney, R. E., W. H. Gemmill, M. K. Shank, P. L. Richardson, and D. Webb. 1976. Tracking a Gulf Stream ring with SOFAR floats. J. Phys. Oceanogr. 6:741-749.

- Doblar, R. A. and R. E. Cheney. 1977. Observed formation of a Gulf Stream cold core ring. J. Phys. Oceanogr. 7:944-946.
- Fuglister, F. C. 1972. Cyclonic rings formed by the Gulf Stream, 1965-1966. Studies in <u>Physical Oceanography</u>, Vol. 1, Gordon and Breach, 137-167.
- Fuglister, F. C. 1977. A cyclonic ring formed by the Gulf Stream 1967. A Voyage of Discovery, Pergamon Press, 177-198.
- Gotthardt, G. A. 1973. Observed formation of a Gulf Stream anticyclonic eddy. J. Phys. Oceanogr. 3:237-238.
- Greene, C. R. 1978. RAMS Position Accuracy Analysis, Technote No. 52. Polar Research Laboratory, Inc., Santa Barbara, CA.
- Kirwan, A. D. Jr., G. McNally and J. Coehlo. 1976. Gulf Stream Kinematics Inferred from a Satellite-Tracked Drifter. <u>J. Phys</u>. Oceanogr. 6:750-755.
- Lai, D. Y. and P. L. Richardson. 1977. Distribution and Movement of Gulf Stream Rings. <u>J. Phys. Oceanogr</u>. 7:670-683.
- Mann, C. R. 1967. The termination of the Gulf Stream and the beginning of the North Atlantic current. <u>Deep-Sea Res.</u> 14:337-360.
- Martin, P., C. R. Gillespie. 1978. Arctic Odyssey-Five years of Data Buoys in AIDJEX. <u>AIDJEX Bulletin</u> No. 40:7-14.

McCartney, M. S. 1975. Inertial Taylor columns on a beta plane. J. Fluid Mech. 68:71-95.

McCartney, M. S. 1976. The interactions of zonal currents with topography with application to the Southern Ocean. <u>Deep-Sea Res</u>. 23: 413-427.

Nie, N. H., C. H. Hull, J. G. Jenkins, K. Steinbrenner and D. H. Bent. 1975. <u>Statistical Package for the Social Sciences</u>. McGraw-Hill. New York. 675p.

- Parker, C. E. 1971. Gulf Stream rings in the Sargasso Sea. <u>Deep-Sea</u> <u>Res</u>. 18:981-993.
- Richardson, P. L., R. E. Cheney and L. A. Mantini. 1977. Tracking a Gulf Stream ring with a Free-drifting Surface Buoy. J. Phys. <u>Oceanogr</u>. 7:580-590.
- Richardson, P. L., R. E. Cheney and L. V. Worthington. 1978. A Census of Gulf Stream Rings, Spring 1975 J. Geophys. Res. (in press).
- Saunders, P. M. 1971. Anticyclonic eddies formed from shoreward meanders of the Gulf Stream. Deep-Sea Res. 18:1207-1219.
- Taylor, G. I. 1917. Motion of solids in fluids when the flow is not irrotational. Proc. Roy. Soc. A93, 99-113.
- U. S. Coast Guard. 1978. Report of the International Ice Patrol Service in the North Atlantic Ocean. USCG Bulletin Nos. 62, 63, 64; CG-188-31, 32, 33. (in press).
- Vastano, A. C. and B. A. Warren. 1976. Perturbations to the Gulf Stream by Atlantis II Seamount. <u>Deep-Sea Res</u>. 23:681-694.
- Watts, D. R. and D. B. Olson. 1978. Gulf Stream Coalescence with the Gulf Stream off Cape Hatteras. Science 202, 971-972.
- Worthington, L. V. 1976. On the North Atlantic circulation. <u>The Johns</u> <u>Hopkins Oceanographic Series</u>, Vol. 6, The Johns Hopkins University Press, Baltimore, 110pp.

APPENDIX A

Individual Buoy Data

This section of the report contains a summary of each buoy's launch position, drogue, tether and life (Table A-1) and a series for each buoy containing a buoy information sheet, a plot of the trajectory (two dots per day) and a plot of the velocity, speed, direction and temperature vs time. Note that "up" on the velocity stick diagrams corresponds to an eastward velocity. Table A-2 which converts year day to month and day, is included.

Information sheets and plots for five buoys obtained from other investigators is included in Appendix B.

	2	0	
-	э	ο	-

Table A-1 BUOY SUMMARY

					LAUNCH	POSITION				LIFE
BUOY ID(a)		DATI	E	CRUISE	LOCATION	LAT.	LONG.	TETHER (b)	DROGUE ^(e)	(days)
0113A	7	IV	76	OCEANUS 7	Ring D	31*50'	75°27'	.62 nylon	WS	92
0113B	9	VII	77	KNORR 66	Gulf Stream	40 30	56 24	1.5 pp	WS	316(c)
0125A	5	XII	76	KNORR 62	Ring Al	36 34	65 17	.62 nylon	WS	40
0125B	9	VI	77	KNORR 66	Gulf Stream	39 48	57 15	1.5 pp	WS	80
0154A	12	VI	76	OCEANUS 7	Ring Lai	34 45	70 17	.62 nylon	WS	28
0154B	10	VII	77	KNORR 66	Gulf Stream	38 54	58 42	1.25 pp	WT	42
0162A	14	XII	76	KNORR 62	Ring Art	36 37	62 33	1.5 pp	WT	420
0215A	4	XII	76	KNORR 62	Ring Al	36 14	65 34	1.5 pp	WT	328
0252A	10	IV	77	KNORR 65	Ring Dave	29 01	77 26	1.25 pp	WT	206
0264A	17	XII	76	KNORR 62	Ring Al	36 10	66 07	1.5 pp	WS	326(c)
0264B	5	IV	78	EVERGREEN	N. Atl. Current	42 43	45 11	1.5 pp	WT	(51 ⁺)(d)
0401A	23	x	76	BARTLETT	Kuroshio Ring	33 00	143 19	.37 nylon	WS	237
0437A	26	x	76	KNORR 60	Ring Valentine	37 20	58 08	.25 dacron	WS	244(c)
0512A	31	VII	77	ENDEAVOR 11	Ring Bob	34 30	71 27	1.5 pp	WT	(298+)
0557A	13	1X	77	CG C-130	Ring/Meander	41 31	64 00	.37 nylon	WS	157
0614A	14	VII	77	ENDEAVOR 11	Ring Bob	34 39	72 02	1.5 pp	WT	31
0707A	12	1V	77	KNORR 65	Ring Charlie	32 48	73 10	1.25 pp	WT	416(c)
0731A	14	IV	77	KNORR 65	Ring Bob	36 04	69 40	1.25 pp	WS	196(c)
0731B	13	IV	78	EVERGREEN	Labrador Current	48 34	49 02	1.5 pp	WT	(44 ⁺)(c)
1040A	14	IV	77	KNORR 65	Ring Bob	37 03	68 58	1.25 pp	WS	426
1076A	15	IV	77	KNORR 65	Ring Bob	36 34	69 32	1.25 pp	WS	374
1151A	3	XII	75	TRIDENT 175	Ring George	36 10	58 00	.62 nylon	WS	133
1212A	12	VIII	1.77	ENDEAVOR 11	Near Ring Bob	34 17	70 26	1.5 pp	WT	75
1224A	1	XI	77	KNORR 71	Ring Franklin	36 37	65 46	1.5 pp	WT	(207 ⁺)
1322A	5	VI	77	KNORR 66	Mid-Atlantic Ridge	33 31	32 59	1.25 pp	WT	302
1346A	31	VI	77	KNORR 66	Gulf Stream	36 50	46 22	1.25 pp	WT	96
1370A	17	XI	77	KNORR 71	Ring Q	39 42	67 30	1.25 pp	WT	(190+)
1406A	27	x	77	KNORR 71	Ring Emerson	34 51	70 08	1.5 pp	WT	91
1475A	16	x	75	EASTWARD	Ring D	35 30	71 20	.62 nylon	WS	4
1552A	9	VII	77	KNORR 66	Gulf Stream	40 40	56 18	1.5 pp	WS	202
1773A	8	XII	75	TRIDENT 175	Ring	34 40	65 40	.62 nylon	WS	4

(a) A refers to first time identification number was used, B the second, etc.

(b) 200 m line except for 0437A which had 400 m and 0557A which had 50 m. The number refers to diameter in inches.

(c) Buoy was recovered.

(d) (+) buoy still working

- (e) WS window shade drogue
 - WT 100 pound weight

Day of Mo.	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Day of Mo.
1 2	1 2	32 33	60 61	91 92	121 122	152 153	182 183	213 214	244 245	274 275	305 306	335 336	1 2
4	3 4	34 35	62 63	93 94	123	154 155	184 185	215 216	246	276 277	307 308	337 338	3 4
5 6 7 8 9	5 6 7 8 9	36 37 38 39 40	64 65 66 67 68	95 96 97 98 99	125 126 127 128 129	156 157 158 159 160	186 187 188 189	217 218 219 220 221	248 249 250 251 252	278 279 280 281 282	309 310 311 312 313	339 340 341 342 343	5 6 7 8 9
10 11 12 13 14	10 11 12 13 14	41 42 43 44 45	69 70 71 72 73	100 101 102 103 104	130 131 132 133 134	161 162 163 164 165	191 192 193 194 195	222 223 224 225 226	253 254 255 256 257	283 284 285 286 287	314 315 316 317 318	344 345 346 347 348	10 11 12 13 14
15 16 17 18 19	15 16 17 18 19	46 47 48 49 50	74 75 76 77 78	105 106 107 108 109	135 136 137 138 139	166 167 168 169 170	196 197 198 199 200	227 228 229 230 231	258 259 260 261 262	288 289 290 291 292	319 320 321 322 323	349 350 351 352 353	15 16 17 18 19
20 21 22 23 24	20 21 22 23 24	51 52 53 54 55	79 80 81 82 83	110 111 112 113 114	140 141 142 143 144	171 172 173 174 175	201 202 203 204 205	232 233 234 235 236	263 264 265 266 267	293 294 295 296 297	324 325 326 327 328	354 355 356 357 358	20 21 22 23 24
25 26 27 28 29	25 26 27 28 29	56 57 58 59 *	84 85 86 87 88	115 116 117 118 119	145 146 147 148 149	176 177 178 179 180	206 207 208 209 210	237 238 239 240 241	268 269 270 271 272	298 299 300 301 302	329 330 331 332 333	359 360 361 362 363	25 26 27 28 29
30 31	30 31		89 90	120	150 151	181	211 212	242 243	273	303 304	334	364 365	30 31

TABLE A-2 THE NUMBER OF EACH DAY OF THE YEAR

* In leap years, after February 28, add 1 to the tabulated number.

-39-

1

۰.

t)

Buoy Identification Number 0113A

Project Gulf Stream Rings

Funding NSF OCE75-08765

Data Obtained from NASA

(1) Launch Information

Cruise OCEANUS 7

Date/Time (GMT) June 7, 1976, 2209 z (JD 159)

Position 31°50' 75°27'

Depth of 15° 292m

Comments Ring D. Launched by David Lai

(2) Buoy Configuration

Hull FG (Nova U)

Electronics AEL

Drogue WS (window shade, 1.8 x 13.7 m)

Tether 5/8" dia. nylon line, 200 m

Temperature Sensor yes, did not work

Drogue Tension Sensoryes, did not work

Anemometer yes, did not work

Comments

(3) Buoy Recovery/Last Position

Date/Time (GMT) Sept. 8, 1976 (JD252)

Position 31°56' 75°23'

Life of Buoy (days) 92

Depth 15°C_____

Date Drogue came off_____

-42-

Buoy Identification Number 0113B (reused 1	[D]
--	-----

Project <u>Gulf Stream</u>

Funding NSF OCE77-08045

Data Obtained from NASA

(1) Launch Information

Cruise KNORR 66

Date/Time (GMT) <u>9 July 1977, 1555 z (JD 190)</u>

Position 40°30' 56°24'W

Depth of 15°<u>390</u>

Comments _____ Gulf Stream _____

(2) Buoy Configuration

3

Hull PRL Electronics PRL

Drogue WS

Tether 600 ft, 1-1/2 in dia. pp line, 5 m chain

Temperature Sensor<u>Yes</u>

Drogue Tension Sensor<u>Yes</u>

Anemometer No

Comments

(3) Buoy Recovery/Last Position

Date/Time (GMT) 20 May, 1978 0610 z. (JD 140)

Position 28° 07'N 50°49'W

Life of Buoy (days) <u>Recovered by ATLANTIS II (G. Tupper)</u> 316 days Depth 15°C

Date Drogue came off Drogue off when recovered, chain only,

shackle corroded and parted.

-45-

1

i.

Buoy Identification Number 0125A

Project <u>Gulf Stream Rings</u>

Funding NSF OCE75-08765

Data Obtained from NASA

(1) Launch Information

Cruise KNORR 62

Date/Time (GMT) 5 Dec 1976, 0107 z, (JD 240)

Position 36°34' 65°17'

Depth of 15° 406 m

Comments Ring Al

(2) Buoy Configuration

Hull <u>FG (Nova U)</u> Electronics <u>AEL</u> Drogue <u>WS</u> Tether <u>200 m, 5/8" nylon line, 5 m chain</u>

Temperature Sensor Yes, did not work

Drogue Tension Sensor Yes, did not work

Anemometer Yes, did not work

Comments

(3) Buoy Recovery/Last Position

 Date/Time (GMT) 13 Jan 1977 (JD 013)

 Position 35°49'N 65°59'W

 Life of Buoy (days) 40

 Depth 15°C

 Date Drogue came off

-48-

Buoy	Identification	Number 0	125B	(reused ID)
Proje	ect_ Gulf Stream			
Fundi	ing <u>NSF (OCE77-08</u>	3045)		
Data	Obtained from	NASA		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
<u>(1)</u>	Launch Informat	ion		
	Date/Time (GMT)	9 July 1977, 2	100 :	z, (JD 190)
	Position	39°48'N, 57°15	'W	
	Depth of 15°	615		
	Comments	South side of	Gulf	Stream

(2) Buoy Configuration

2.

3

	Hull ppr	
	Electronics PRL	
	Drogue WS	
	Tether 600 ft, 1-1/2" o	<u>lia, pp l</u> ine, 5 m chain
	Temperature Sensor	Yes
	Drogue Tension Senso	r <u>Yes</u>
	Anemometer	No
	Comments	
(3)	Buoy Recovery/Last P	osition
	Date/Time (GMT)	26 Sept 1977, 1340 GMT (JD 269)
	Position	34°44' 54°47'
	Life of Buoy (days)_	80
	Depth 15°C	
	Date Drogue came off	11 12 11 11

-49-

-50-

.

-51-

d

15

Buoy	Identification	Number	0154A	

Project Gulf Stream Rings

Funding NSF (OCE75-08765)

Data Obtained from NASA

(1) Launch Information

Cruise OCEANUS 7

Date/Time (GMT) <u>12 June 1976, 1430 z (JD 164)</u>

Position <u>34°45'N 70°17'W</u>

Depth of 15° 304m

Comments Ring LAI, launched by David Lai

(2) Buoy Configuration

Date Drogue came off_____

--54-

Buoy	Identification	Number	0154B	(reused ID)
------	----------------	--------	-------	-------------

Project Gulf Stream

1

•

Funding NSF (OCE77-08045)

Data Obtained from NASA

(1) Launch Information

Cruise KNORR 66

Date/Time (GMT) 10 July 1977, 0530 z (JD 191)

Position 38°54'N, 58°42'W

Depth of 15° ____ 670 ____

Comments South side of Gulf Stream

(2) Buoy Configuration

Hull______PPL_____ Electronics_____PRL_____

Drogue 100 1b weight

Tether 200 m. 1 1/4 in. dia. pp line, 5 m chain

Temperature Sensor Yes

Drogue Tension Sensor Yes

Anemometer No

Comments

(3) Buoy Recovery/Last Position

Date/Time (GMT) Aug. 20, 1977, 1431 GMT (JD 232)

Position 36°42' 55°20'

Life of Buoy (days) 42

Depth 15°C

Date Drogue came off

-56-

1

-57-

Buoy Identific	cation Number0162A
Project	Culf Stream Rings
Funding	ONR
Data Obtained	from NASA

(1) Launch Information

Cruise KNORR 62

Date/Time (GMT) 14 Dec 1976, 0628 z (JD 349)

Position 36°37' 62°33'

Depth of 15° 465 m

Comments Ring Art

(2) Buoy Configuration

Hull PRL

Electronics PRL

Drogue 100 1b weight

Tether 600 ft, 1 1/2" dia. pp line, 5 m chain

Temperature Sensor Yes

Drogue Tension Sensor<u>Yes</u>

Anemometer No

Comments

(3) Buoy Recovery/Last Position

Date/Time (GMT) 6 Feb 1978, 1323 z (JD 037)

Position 41°01'N 20°50'W

Life of Buoy (days) 420

Depth 15°C_____

Date Drogue came off

The second second

-60-

1

Buoy Identific	ation Number 0215A
Project	Gulf Stream Rings
Funding	ONR
Data Obtained	from NASA

(1) Launch Information

Cruise KNORR 62	
Date/Time (GMT) <u>4 Dec 1976, 0319 z, (JD 339)</u>	
Position 36°14' 65°34'	
Depth of 15°	
Comments Ring Al	

(2) Buoy Configuration

	HullPRL
	Electronics PRL
	Drogue 100 1b weight
	Tether 600 ft, 1 1/2 " dia. pp line, 5 m chain
	Temperature Sensor Yes
	Drogue Tension Sensor <u>Yes</u>
	Anemometer No
	Comments
(3)	Buoy Recovery/Last Position
	Date/Time (GMT) 27 Oct 1977 (JD 300)
	Position 36°26'N 52°38'W
	Life of Buoy (days) 328
	Depth 15°C
	Date Drogue came off

-62-

-63--
Buoy Identification Number 0252A
ProjectGulf Stream Rings
Funding NSF_OCE75-08765
Data Obtained from NASA
(1) Launch Information
Cruise KNORR 65
Date/Time (GMT) 10 April 1977.2025 z. (JD 100)
Position 20°01'N 77°26'W
Donth of 159
Depth of 15° - 415 m
Comments Ring Dave
(2) Buoy Configuration
HullPRL
Electronics _{PEL}
Drogue 100 1b weight
Tether 200 m, 1 1/4" dia. pp line, 5 m chain
Temperature Sensor Yes
Drogue Tension Sensor Yes
Anemometer No

Comments_____

(3) Buoy Recovery/Last Position

Date/Time (GMT) 1 Nov 1977, 1326 z, (JD 305)

Position 40°23'N, 49°07'W

Life of Buoy (days) 206

Depth 15°C_____

Date Drogue came off_____

3

-65-

-67-

Buoy Identification Number 0264A						
Project <u>Gulf Stream rings</u>						
Funding ONR						
Data Obtained from NASA						
(1) Launch Information						
Cruise KNORR 62						
Date/Time (GMT) <u>17 Dec 1976, 1615 z, (JD 352)</u>						
Position 36°10'N. 66°07'W						
Depth of 15°						
Comments Ring Al						
(2) Buoy Configuration						
Hull PRL						
Electronics PRL						
Drogue W.S.						
Tether 600 ft, 1.1/2" dia. p.p. line, 5 m chain						
Temperature Sensor Yes						
Drogue Tension Sensor						
Anemometer						
Comments						
(3) Buoy Recovery/Last Position						
Date/Time (GMT) 7 Nov 1977, 1705 z, (JD 311)						
Position 37°07'N, 64°54'W (85 miles from launch)						
Life of Buoy (days) 326 Recovered on KNORR 71						
Depth 15°C						
Date Drogue came off <u>No drogue or line when recovered</u> , chain only, shackle corroded and let go.						

-69-

0264 A

ŧ

...

-70-

Buoy Identification Number 0264B (relaunched)

Project Gulf Stream

Funding ONR

Data Obtained from NASA

(1) Launch Information

Cruise EVERGREEN

Date/Time (GMT) 5 April 1978, 0521 z, (JD 095)

Position 42°43'N, 45°11'W

Depth of 15°_____

Comments East of Grand Banks

(2) Buoy Configuration

Hull PRL

Electronics PRL

Drogue 100 1b weight

Tether 600 ft. 1 1/2" dia. pp line, 5 m chain

Temperature Sensor Yes

Drogue Tension Sensor Yes, modified-stops added

Anemometer No

Comments Taped thimbles

(3) Buoy Recovery/Last Position

Date/Time (GMT) 25 May 1978, 1245 (JD 145)

Position 39°52', 40°02'W

Life of Buoy (days) <u>Buoy still operational (51+)</u> Depth 15°C

Date Drogue came off____

-72--

-73-

0264 B

Buoy Identification Number 0401A

Project Kuroshio rings

Funding NSF OCE75-08765

Data Obtained from NASA

(1) Launch Information

Cruise BARTLETT

Date/Time (GMT) 28 Oct 1976, 0700 z, (JD 297)

Position 33°00'N, 143°19'E

Depth of 15°

Comments Kuroshio ring See Cheney, Richardson and Nagasaka (1978)

(2) Buoy Configuration

Hull PRL	
Electronics prl	
Drogue W.S.	
Tether 200 m, 3/8 m dia. ny	<u>lon l</u> ine
Temperature Sensor	No
Drogue Tension Sensor	Yes
Anemometer	No
Comments	

(3) Buoy Recovery/Last Position

 Date/Time (GMT) 16 June 1977, 1210 z (JD 167)

 Position 32°24'N, 179°08'

 Life of Buoy (days) 237

 Depth 15°C

 Date Drogue came off 6 Nov 1976

-75-

-76-

Buoy Identification Number	0437A
Project Gulf Stream rings	
Funding <u>NSF OCE75-08765</u>	
Data Obtained from	NASA
(1) Launch Information	

Cruise KNORR 60

Date/Time (GMT) 26 Oct 1976, 1400 z, (JD 300)

Position 37°20', 58°08'

Depth of 15° 265

Comments Ring Valentine

(2) Buoy Configuration

HullPRI
Electronics PRL
Drogue W.S.
Tether 400 m. 1/4" dia., dacron line
Temperature Sensor <u>No</u>
Drogue Tension Sensor Yes
Anemometer No
Comments

(3) Buoy Recovery/Last Position

Date/Time (GMT) 26 June 1977, 1150 (JD 177)

Position 41°02'. 26°41'

Life of Buoy (days) <u>244 (retrieved by fishing boat, taken</u> to France) Depth 15°C

Date Drogue came off _____7 Nov 1976, no line when recovered, only empty thimble

-79-

.1

Buoy	Identification Number	0512 A
Proj	ectGulf Stream rings	
Fund	ingONR	
Data	Obtained from <u>NASA</u>	
(1)	Launch Information	

Cruise <u>ENDEAVOR 11</u> Date/Time (GMT) <u>31 July 1977, 0100 z, (JD 212)</u>

Position 34°30', 71°27'

Depth of 15° 104 m

Comments Ring Bob

(2) Buoy Configuration

and the first of the state of

-80-

-83-

Project	Gulf Stream rings
Funding Buoy p	rovided by NDBO, Coast Guard provided flight

(1) Launch Information

Crister Flight Coast Guard C-130 "Elizabeth City"

Date/Time (GMT) 13 Sept 1977, 1930 z, (JD 256)

Position 41°31'N, 64°00'W

Depth of 15°

Comments Tested PRL air droppable buoy in warm core ring

(2) Buoy Configuration

Hull_____PRL. (airdroppable)_____

Electronics PRL

Drogue W.S.

Tether 50 m. 3/8" dia. nylon line

Temperature Sensor <u>No</u>

Drogue Tension Sensor Yes

Anemometer No

Comments parachute did not release when buoy hit water (during first

10 min. anyway). Drogue deployed (by drogue sensor).

(3) Buoy Recovery/Last Position

Date/Time (GMT) 16 Feb. 1978, 1520 z, (JD 047)

Position 39°06', 42°10'

Life of Buoy (days) 157

Depth 15°C

Date Drogue came off 24 Sept. 1977

-85-

1

State of the state

-86-

ð

3

Buoy Identific	ation Number 0614A
ProjectC	ulf Stream ringe
Funding0	NR
Data Obtained	from <u>NASA</u>

(1) Launch Information

*

۰.

Cruise ENDEAVOR 11

Date/Time (GMT) 14 Aug 1977, 1030 z, (JD 226)

Position 34°39'N, 78°02'W

Depth of 15° _____ 259 m

Comments Ring Bob

(2) Buoy Configuration

Hull PRL	
Electronics	_PRL
Drogue 100 1b weight	t
Tether 600 ft, 1 1/2	2", pp line, 5 m chain
Temperature Sensor	Yes
Drogue Tension Sens	sor Yes
Anemometer	No
Comments	

(3) Buoy Recovery/Last Position

Date/Time (GMT)13 Sept. 1977 (JD256)
Position 36°46', 73°47'
Life of Buoy (days) 31
Depth 15°C
Date Droque came off

AD-A06	5 100 SIFIED	WOODS FREE-DI JAN 79	HOLE OC RIFTING P L R WHOI-79	EANOGRA BUOY T ICHARDS -4	PHIC IN RAJECTO	STITUT: DRIES IN J WHEAT	ION MAS	SS ULF STR NETT	EAM SYS	F TEM (19 -74-C-0	/G 13/: 075ET(0262 NL	10 C(U)	Y
	2 of 2 A065/00				1910 12	Ø.							
				1. A.S.	Normal States					8	12 12 12 12 12 12 12 12 12 12 12 12 12 1		
			A SO				ĪŪ.		2		A manufacture of the second se		
		2027 18			-						in the second se		
provide the second s	2 3 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	N.C.	Contraction of									and the second sec	
				THERE IN A CONTRACT OF THE SECOND OF THE SEC	Dari Bari Ling Ling Dari Dari Ling Ling	END DATE FILMED .4 79- DDC							
1													

-88-

ð

....

Ŷ

..

-89-

3

t

Buoy Identification Number 0707A
Project <u>Gulf Stream rings</u>
Funding NSF OCE75-08765
Data Obtained from NASA
(1) Launch Information
CruiseKNORP 65
Date/Time (GMT) <u>12 April 1977, 1230 z, (JD 102)</u>
Position 32°48'N, 73°10'W
Depth of 15°391 m
Comments <u>Ring Charlie</u>
(2) Buoy Configuration
HullPRL
Electronics PRL

Drogue 100 1b weight

Tether 200 m. 1 1/2" dia.. pp line, 5 m chain

Temperature Sensor Yes

Drogue Tension Sensor Yes

Anemometer No

Comments

(3) Buoy Recovery/Last Position recovered by ATLANTIS II (George Tupper) Date/Time (GMT) 1 June 1978, 1840 z, (JD 152)

Date Drogue came off <u>no drogue when recovered, chain only</u>, shackle corroded and let go

-91-

-93-

Buoy Identification Number 0731A

Project <u>Gulf Stream rings</u>

Data	Obtained from MASA
(1)	Launch Information
	Cruise KNORR 65
	Date/Time (GMT) 14 April 1977, 1545 z, (JD104)
	Position 36°04'N, 69°40'W
	Depth of 15°
	CommentsRing Bob
(2)	Buoy Configuration
	Hull PRI
	Electronics PPI
	Drogue H S
	Tether 200 m. 1 1/4" dia pp line, 5 m chain
	Temperature Sensor Yes
	Drogue Tension Sensor Yes
	Anemometer No
	Comments
(3)	Buoy Recovery/Last Position
	Date/Time (GMT) 26 Oct 1977, 2230 z. (JD299)
	Position 34°52', 72°17'
	Life of Buoy (days) 196 (recovered on KNORR 71)
	Depth 15°C
	Date Drogue came off <u>no drogue nor</u> line when recovered, or chain and empty thimble.
	· · · · · · · · · · · · · · · · · · ·

۲.

-95-

2

-96-

Project <u>Gulf Stream/Labrador</u> Funding <u>ONR</u> Data Obtained from <u>NASA</u>	Current		
Funding <u>ONR</u> Data Obtained from <u>NASA</u>			
Data Obtained from <u>NASA</u>			
Data Obtained from <u>NASA</u>			
(1) Launch Information			
Cruise EVERGRE	3EN		
Date/Time (GMT) 13 Apr	L1 1978, 1317 z, (JD103)		
Position 48°34'	N. 49°02'W		
Depth of 15°			
Comments Labrade	or Current		
(2) Buoy Configuration			
Hull PRL			
Electronics PRL			
Drogue 100 1b weight			
Tether 600 ft, 1 1/2" df	La. pp line, 5 m chain		
Temperature Sensor	Yes		
Drogue Tension Sensor	Ves: modified (stops added)		
Anemometer	No		
Comments	<u>_NO</u>		
conunerius taped t	:nimble		
(3) Buoy Recovery/Last Pos	sition		
Date/Time (CMT)	1070 0520 - (751/()		
Dace/lime (GPI/ 26 May	Date/IIme (Grif/ <u>26 May 1978, 0520 z. (JD146)</u>		
Position 41°53'N	I. 51°31'W		
Life of Buoy (days) _{stil}	1 operational (44+) *		
Depth 15°C			
Date Drogue came off	* picked up by AII on 23 June 1978		

recovered.

-97-

-98-

5

-99-

Buoy Identification Number 1040 A	
Project <u>Gulf Stream rings</u>	
Funding ONR	
Data Obtained from NASA	
(1) Launch Information	
CruiseKNORR 65	
Date/Time (GMT) <u>14 April 1977, 2150</u>) z, (JD104)
Position <u>37°03', 68°58'</u>	

Depth of 15° 460 m

Comments Ring Bob

(2) Buoy Configuration

Iull	PRL		
Electronics_	PRL		
rogue	W.S.		
Tether 200 m.	1 1/4" dia. 1	<u>op li</u> ne; 5 m o	chain
Cemperature	Sensor	Yes	
orogue Tensi	on Sensor	Yes	
nemometer		No	
comments			

(3) Buoy Recovery/Last Position

Date/Time (GMT) 14 June 1978, 1305z, (JD165)

Position 34°46'N, 40°37'W

Life of Buoy (days) 426

Depth 15°C_____

Date Drogue came off______

-102-

Buoy Identification Number 1076 A
Project <u>Gulf Stream rings</u>
Funding ONR
Data Obtained from NASA
(1) Launch Information
Cruise KNORR 65
Date/Time (GMT) 15 April 1977, 1515 z, (JD105)
Position
Depth of 15°40 m
Comments Ring Bob
(2) Buoy Configuration
HullPRL
Electronics PRL
DrogueW.S
Tether 200 m 1 1/4" dia. pp line, 5 m chain
Temperature Sensor Yes
Drogue Tension Sensor Yes
AnemometerNo
Comments
(3) Buoy Recovery/Last Position
Date/Time (GMT)23 April, 1978, 0150 z, (JD113)
Position
Life of Buoy (days)374
Depth 15°C
Date Drogue came off28 April 1977

-104-

t

-

.

-105-

1076 A

Proj	ect onle Street rings (see Richardson, Cheney, and Mantini,
Fund	
Data	Obtained from NASA
Data	obtained from MADA
(1)	Launch Information
	Cruise TRIDENT 175 (last TRIDENT cruise)
	Date/Time (GMT) <u>3 Dec 1975, 1600 z, (JD</u> 337)
	Position
	Depth of 15° <u>132 m</u>
	Comments Center of cyclonic ring George
(2)	Buoy Configuration
(2)	Budy configuration
	Hull <u>Nova U (PVC pipe) reinforc</u> ed with steel rods and F.G.
	Hull <u>Nova U (PVC pipe) reinforc</u> ed with steel rods and F.G. Electronics <u>AEL</u>
	Hull <u>Nova U (PVC pipe) reinforc</u> ed with steel rods and F.G. Electronics <u>AEL</u> Drogue <u>W.S.</u>
	Hull <u>Nova U (PVC pipe) reinforc</u> ed with steel rods and F.G. Electronics <u>AEL</u> Drogue <u>W.S.</u> Tether 200 m. 5/8m dia. nylon line
	Hull Nova U (PVC pipe) reinforced with steel rods and F.G. Electronics AEL Drogue W.S. Tether 200 m. 5/8m dia. nylon line Temperature Sensor Yes
	Hull Nova U (PVC pipe) reinforced with steel rods and F.G. Electronics AEL Drogue W.S. Tether 200 m. 5/8m dia. nylon line Temperature Sensor Yes Drogue Tension Sensor Yes
	Hull Nova U (PVC pipe) reinforced with steel rods and F.G. Electronics AEL Drogue W.S. Tether 200 m. 5/8m dia. nylon line Temperature Sensor Yes Drogue Tension Sensor Yes Anemometer Yes
	Hull Nova U (PVC pipe) reinforced with steel rods and F.G. Electronics AEL Drogue W.S. Tether 200 m. 5/8m dia. nylon line Temperature Sensor Yes Drogue Tension Sensor Yes Anemometer Yes Comments The first buoy that worked
	Hull Nova U (PVC pipe) reinforced with steel rods and F.G. Electronics AEL Drogue W.S. Tether 200 m. 5/8m dia. nylon 1 Temperature Sensor Yes Drogue Tension Sensor Yes Anemometer Yes Comments The first buoy that worked
(3)	Hull_Nova U (PVC pipe) reinforced with steel rods and F.G. Electronics
(3)	Hull_Nova U (PVC pipe) reinforced with steel rods and F.G. ElectronicsAEL DrogueW.S Tether 200 m. 5/8m dia. nylon line Temperature SensorYes Drogue Tension SensorYes AnemometerYes Comments_The first buoy that worked Buoy Recovery/Last Position Date/Time (GMT)_14 April 1976, 1340z, (JD104)
(3)	Hull_Nova U (PVC pipe) reinforced with steel rods and F.G. Electronics
(3)	Hull Nova U (PVC pipe) reinforced with steel rods and F.G. Electronics AEL Drogue W.S. Tether 200 m. 5/8m dia. nylon line Temperature Sensor Yes Drogue Tension Sensor Yes Anemometer Yes Comments The first buoy that worked Buoy Recovery/Last Position Date/Time (GMT) 14 April 1976, 1340z, (JD104) Position 39°50', 49°58' Life of Buoy (days) 133
(3)	Hull Nova U (PVC pipe) reinforced with steel rods and F.G. Electronics AEL Drogue W.S. Tether 200 m. 5/8m dia. nylon line Temperature Sensor Yes Drogue Tension Sensor Yes Anemometer Yes Comments The first buoy that worked Buoy Recovery/Last Position Date/Time (GMT) 14 April 1976, 1340z, (JD104) Position 39°50', 49°58' Life of Buoy (days) 133 Depth 15°C

-107-

1. /

-108-

-	1	0	9	-

Buoy Identification Number 1212A

Project <u>Gulf Stream rings</u>

Data	Obtained from NASA
(1)	Launch Information
	Cruise ENDEAVOR II
	Date/Time (GMT) <u>12 Aug 1977, 2210z, (JD224)</u>
	Position 34°17', 70°26'W
	Depth of 15° <u>680 m</u>
	Comments Behind (east) of Ring Bob
(2)	Buoy Configuration
	Hull PRL
	Electronics PRL
	Drogue 100 1h weight
	Tether 600 ft, 1 1/2" dia. pp line, 5 m chain
	Temperature Sensor Yes
	Drogue Tension Sensor Yes, did not work
	Anemometer No
	Comments
(3)	Buoy Recovery/Last Position
	Date/Time (GMT) 25 Oct 1977, 1440z, (JD298)
	Position <u>36°32', 71°06'</u>
	Life of Buoy (days)75
	Depth 15°C
	Date Drogue came off

-110-

-111-

Buoy Identification N	lumber1224A
Project <u>Culf Stream</u> r	ings
Funding ONR	
Data Obtained from	NASA
(1) Launch Informati	on
Cruise	KNORR 71
Date/Time (GMT)_	1 Nov 1977, 1915z (JD305)
Position	36°37'N, 65°46'W
Depth of 15°	160 m
Comments	Ring Franklin

(2) Buoy Configuration

HullPRL
Electronics PRL
Drogue 100 1b weight
Tether <u>600 ft 1 1/2" dia pp line</u> , swivel, 5 m chain
Temperature Sensor Yes
Drogue Tension Sensor Yes
Anemometer No
Comments taped thimble
Buoy Recovery/Last Position
Date/Time (GMT) 26 May 1978, 0515z, (JD146)

Position 49°15'N, 38°08'W

Life of Buoy (days) still operational (207+)

Depth 15°C_____

(3)

Date Drogue came off_____

-113-

-115-

Buoy Identification Number 1322 A
ProjectGulf_Stream
Funding NSF OCE77-08045
Data Obtained from NASA
(1) Launch Information
Cruise KNORR 66
Date/Time (GMT) <u>5 June 1977, 1615z</u> (JD156)
Position 33°31'N, 32°59'W
Depth of 15°
Comments Gulf Stream/mid-Atlantic Ridge
(2) Buoy Configuration
Hull PRL

Electronics PRL

Drogue 100 1b weight

Tether 200m, 1 1/4" dia pp line, 5 m chain

Temperature Sensor Yes

Drogue Tension Sensor Yes

Anemometer No_____

Comments_____

(3) Buoy Recovery/Last Position

 Date/Time (GMT) _____2 Apríl 1978 (JD092)

 Position _____31°30', 27°33'

 Life of Buoy (days) ______302

 Depth 15°C ______

 Date Drogue came off ______

-118-

Buoy	Identification Number 1346 A
Proje	ectGulf_Stream
Fund	ingNSF0CE77-08045
Data	Obtained from NASA
(1)	Launch Information
	Cruise KNORR 66
	Date/Time (GMT) <u>31 May 1977, 2116z, (JD151)</u>
	Position
	Depth of 15° 477
	Comments <u>Gulf Stream, Grand Banks</u>
(2)	Buon Configuration
(2)	
	HullPRL
	Electronics PRL
	Drogue 100 1b weight
	Tether 200 m. 1 1/4" dia. pp line, 5m chain
	Temperature Sensor Yes
	Drogue Tension Sensor Yes
	AnemometerNo
	Comments
(3)	Buoy Recovery/Last Position
	Date/Time (GMT)3 Sept.1977. 0140z. (JD246)
	Position 34°25'N. 31°09'N
	Life of Buoy (days) 96
	Depth 15°C
	Date Drogue came off

-120-

-121-

Buoy Identification Number 1370 A
Project <u>Gulf Stream rings</u>
Funding NSF OCE75-08765
Data Obtained from NASA
(1) Launch Information
Cruise KNORR 71
Date/Time (GMT) 17 Nov 1977, 0415z, (JD321)
Position 39°42'N, 67°30'W
Depth of 15° 401
Comments Ring Q (warm core ring)
(2) Buoy Configuration
HullPRL
Electronics ppl
Drogue 100 1b weight
Tether 200m, 1 1/4" dia. pp line, swivel, 5 m chain
Temperature Sensor Yes
Drogue Tension Sensor Yes
AnemometerNo

Comments taped thimbles

(3) Buoy Recovery/Last Position

Date/Time (GMT) 25 May 1978, 1105z, (JD145)

Position_______ 37°47'N, 35°49'W

Life of Buoy (days) still operational (190+)

Depth 15°C____

Date Drogue came off 28 Nov 1977 (JD332)

-124-

1

.

Buoy Identification Number 1406A	_
Project	-
Funding	_
Data Obtained from <u>NASA</u>	_
(1) Launch Information	
	-
Date/Time (GMT) <u>27 Oct 1977, 2032z, (JD300)</u>	-
Position	-
Depth of 15° 240m	-
Comments Ring Emerson	-
	-
(2) Buoy Configuration	
HullPRL	
Electronics PRL	
Drogue 100 1b weight	
Tether 600 ft. 1 1/2" dia. pp line, 5m chain	
Temperature Sensor Yes	
Drogue Tension Sensor Yes	
Anemometer No	
Comments taped thimbles	_
(3) Buoy Recovery/Last Position	
Date/Time (GMT) 25 Jan 1978, 1435z, (JD025)	
Position 31°30'N, 73°04'W	
Life of Buoy (days) 91	
Depth 15°C	
Date Drogue came off 19 Nov 1977	

-126-

-127-

Buoy	Identification Number 1475A
Proje	ectGulf_Stream_rings
Fund	IngNSFOCE75-08765
Data	Obtained from NASA
(1)	Launch Information
	CruiseEASTWARD
	Date/Time (GMT) 16 Oct 1975
	Position 35°30'N. 71°20'W
	Depth of 15°
	Comments Ring D (launched by Nelson Hogg)
(2)	Buoy Configuration
	Hull Nova U (PVC pipe)
	Electronics AEL
	DrogueW.S
	Tether 200m, 5/8" dia, nylon line
	Temperature Sensor <u>Yes</u>
	Drogue Tension Sensor Yes
	Anemometer Yes
	Comments <u>Worked for 4 days, no plots generated</u>
(2)	
(3)	Date (Time (CNT)
	Date/Time (GMT)
	Position
	Life of Buoy (days)4
	Depth 15°C
	Date Drogue came off

C

1

Fund	ing NCF 0CF77-08045
)=+=	Obtained from week
Jaca	obtained from NASA
(1)	Launch Information
	CruiseKNORR 66
	Date/Time (GMT) 9 July 1977, 1430 z, (JD190)
	Position 40°40'N, 56°18'W
	Depth of 15° 279 m
	CommentsGulf Stream
(2)	Buoy Configuration
	HullPRL
	Electronics PRI.
	Drogue W.S.
	Tether 600' 1 1/2" dia on line 5 m chain
	Temperature Sensor Ver
	Droque Tension Sensor yes
	Anemometer
	Comments
3)	Buoy Recovery/Last Position
	Date/Time (GMT) 26 Jan 1978, 1350z (JD026)
	Position 32°39' 47°41'W

Date Drogue came off_____

-130-

-131-

-

Buoy	Identification	Number	17734
Daoj			1// 1

Project Gulf Stream rings

Funding NSF OCE75-08765

Data Obtained from NASA

(1) Launch Information

Cruise TRIDENT 175 (last TRIDENT cruise)

Date/Time (GMT) 8 Dec 1975,

Position 34°40'M. 65°50'W

Depth of 15°

Comments Ring

(2) Buoy Configuration

Hull Nova II (PVC pipe)

Electronics AEL

Drogue W.S.

Tether 200m, 5/8" dia. nylon line.

Temperature Sensor Yes

Drogue Tension Sensor Yes

Anemometer Yes

Comments worked for four days . no plots generated

(3) Buoy Recovery/Last Position

Date/Time (GMT)
Position
Life of Buoy (days)4
Depth 15°C
Date Droque came off

APPENDIX B

Supplemental Buoy Data

This Appendix contains information sheets and the plots of trajectory and velocity of five buoys. The data was generously provided by J. Fornshell, E. Kerut, D. Kirwan, and R. Weir.

-133-

11

. .

Buoy	Identification Number 0177 A See U.S. Coast Guard (1978) .
Proje	ect Ice Patrol Survey
Fundi	ing
Data	Obtained from <u>Coast Guard Ice Patrol (R. Weir)</u>
(1)	Launch Information
	Cruise EVERGREEN
	Date/Time (GMT) <u>4 April 1976, 1900 z, (JD095)</u>
	Position46°59'N, 47°15'W
	Depth of 15°
	Comments Labrador Current
(2)	Buoy Configuration Hull Nova II (FG) 2
	Electronics AFL ?
	Droguews
	Tether75m
	Temperature Sensor Yes. did not work
	Drogue Tension Sensor Yes, did not work
	Anemometer Yes, did not work
	Comments <u>intermittent fixes after day 129</u>
(3)	Buoy Recovery/Last Position
	Date/Time (GMT) <u>15 Sept 1976 (JD259)</u>
	Position 38°46', 22°38'
	Life of Buoy (days) <u>165</u>
	Depth 15°C
	Date Drogue came off

-135-

Ø

24

Buoy	Identification Number 0271A See U.S. Coast Guard (1978) .
Proje	ect <u>Coast Guard Oceanographic Unit study of warm rings</u>
Fund	ing
Data	Obtained from <u>Coast Guard Ice Patrol (R. Weir)</u>
(1)	Launch Information
	Cruise <u>evergreen</u>
	Date/Time (GMT) <u>28 Sept. 1977, 1300 z, (JD271)</u>
	Position 41°59', 65°00'W
	Depth of 15°
	Comments Launched by John Fornshell, eastward of
	ring 0 in slope water
(2)	Buoy Configuration
	HullPRL
	Electronics PRL
	Drogue <u>WS (shackled to buoy</u>)
	Tethernone
	Temperature Sensor Yes
	Drogue Tension Sensor Yes
	Anemometer No
	Comments
(3)	Buoy Recovery/Last Position
	Date/Time (GMT) 2 June 1978, 1235 z, (JD153)
	Position 45°39'N. 42°48'W
	Life of Buoy (days) 248
	Depth 15°C
	Date Drogue came off

a laboration

1

Ó

0271 A

3

13

2

-138-

-139-

0271 A

0

0

Buoy	Identification	Number	0343 A
------	----------------	--------	--------

Project Argo Merchant oil spill observations

Funding_____

13

3

Data Obtained from NDBO

(1) Launch Information

Cruise U.S. Coast Guard H-3 Helicopter

Date/Time (GMT) <u>1 Jan. 1977, 0317 z</u>, (JD001)

Position 39°58'N, 66°47'W

Depth of 15°_____

Comments Launched in 35 x 75 foot pancake of oil

(2) Buoy Configuration

Hull PRL ______

Drogue <u>None</u>

Tether None

Temperature Sensor

Drogue Tension Sensor

Anemometer_____

Comments

(3) Buoy Recovery/Last Position

Date/Time (GMT) <u>28 August 1977 (JD240)</u>

Position ______ 38°40'N, 32°50'W

Life of Buoy (days) 240

a contract of the second se

Depth 15°C

Date Drogue came off_____

-142-

3

Buoy	Identification Number 0357A
Proje	ectGulf Stream Rings
Fundi	ing
Data	Obtained from D. Kirwan (See Kirwan A.D., Jr., G.McNally and J. Coehio; 1976).
(1)	Launch Information
	Cruise USS PRESERVER
	Date/Time (GMT) <u>21 July 1975 (JD202)</u>
	Position 29°02'N, 80°01'W
	Depth of 15°
	Comments Launched in Gulf Stream
(2)	Buoy Configuration
	Hull Nova U (FG)
	ElectronicsAEL?
	Drogue 9.2m parachute, on at least for six days
	Tether 35m, 1.18 cm steel cable
	Temperature Sensor
	Drogue Tension Sensor
	Anemometer
	Comments
(3)	Buoy Recovery/Last Position
	Date/Time (GMT) 16 Dec 1975 (JD350)
	Position 32°33'N, 38°02'W
	Life of Buoy (days) 149
	Depth 15°C
	Date Drogue came off

٠.

0357 A

Buoy	Identification Number 0373 A
Proje	ect
Fund	ing
Data	Obtained from NDBO
	Taunch Information
(1)	Cruico unos putto
	Cruise USCGC DALLAS
	Date/Time (GMT) 29 Dec 1976. 1728 z (JD364)
	Position <u>39°29'N. 70°32'W</u>
	Depth of 15°
	Comments Launched near the continental shelf
(2)	Buoy Configuration
	Hull PRL
	Electronics PRL
	Drogue?
	Tether ?
	Temperature Sensor?
	Drogue Tension Sensor?
	Anemometer No
	Comments
(3)	Buoy Recovery/Last Position
	Date/Time (GMT) <u>31 March 1977 (JD090)</u>
	Position 35°46'N. 61°19'W
	Life of Buoy (days) 93
	Depth 15°C

Date Drogue came off_____

٩

-147-

-148-

APPENDIX C

Buoy Position Error and Data Editing

ABSTRACT

Errors associated with satellite fixes of drifting buoys were investigated by analyzing 364 buoy fixes at a known location. The relationship between fix errors and four fix quality parameters provided by NASA were determined. By means of the quality parameters the data were subdivided into four groups: the excellent data (mean error 1.3 km), the good data (mean error 1.5 km), the marginal data (mean error 2.3 km), and the rejected data (mean error 190 km). The marginal, good and excellent data, when combined comprise 75% of the total data and have a mean error of 1.6 km. This value indicates that the retained positions have smaller errors than the ±5km suggested by NASA as being representative of the Nimbus 6 satellite fixes.

INTRODUCTION

A significant number of buoy positions provided by NASA were found to have medium to large errors. In order to be able to eliminate poor fixes we investigated a series of fixes obtained while the buoys were at a known location. The error of each fix was compared to several fix quality parameters and a system was developed to classify the quality of fixes. This system was then used to edit our data; we selected two good fixes per day a half day apart for each buoy. Because of its potential benefit to other Nimbus F users we have described the data, analysis and classification system in considerable detail.

DATA

The data were obtained from six COSRAMS buoys (ID's: 264, 557, 731, 1224, 1307, 1406) that were left on the WHOI dock while transmitting for periods ranging from four to seventy days. These buoys provided 364 fixes with an average of 2.3 fixes per buoy per day. Data were provided by NASA in the form of computer printouts (Fig. C-1), and are also available on magnetic tape and computer cards.

-149 -

DATA	
POSITION	
BUOY	VSVN
OF	ž
XAMPLES	ROVIDED

FROM COPY FURMISHED TO DDC

-150-

The fixes provided by NASA on computer printouts are rounded to the nearest .01 degree which corresponds to 1.11 km for latitude and .83 km for longitude at Woods Hole, Mass. The estimated rms radial error* due to this roundoff is 0.5 km. The average position of the dock given by 224 of the best data points is 41.522°N and 289.324, and since 96% of these points came from buoys within 0.10 km of the Port Office at 41. 524°N and 289.328°E, the mean error is .002° in latitude and .004 in longitude, a radial distance of about 0.4 km. This value (0.4 km) reflects the overall accuracy of the system. In this study we are more concerned with the precision of individual fixes, the scatter of fixes about the known location.

Two types of fixes are given by NASA: one-pass and two-pass fixes (Fig. C-1). A two-pass fix is one calculated from two successive satellite passes separated in time by 108 minutes. For a one-pass fix, two possible positions are computed, one on each side of the satellite path. For each of these possible positions a standard Error Index (EI) is computed. The EI is a measure of the fit of the raw data to a theoretical doppler curve on a scale of 0 to 100. The position with the highest EI is marked with an asterisk indicating that it is probably the correct position and another parameter, the F value, gives the estimated reliability of that choice in percent. In this error analysis NASA's choice was always used even when it was obvious that the other position was better. Two-pass fixes consist of only one position and, therefore, no F value. They do have EI's, however (listed in the same place as the one pass F value). In addition to the EI and F value, two other parameters were used in this analysis. One of these parameters is the number of messages used to calculate the fix; the number of messages ranges from 4 to 15. The final parameter was the great circle angle (GCA) between the computed buoy position and the subpoint of the satellite's closest approach to the buoy. The GCA ranges from 0° to 26° corresponding to a range in elevation angle, the angle of the satellite measured from the horizon at the buoy's position, of 90° to 6° (Fig. C-2).

*The radial error refers to the radial distance of the fix from the known location of the buoy on the dock.

-151-

Figure C-2

¢

¢

Fix errors were computed and compared to the four parameters (GCA, EI, F value, and messages) provided by NASA for the 364 fixes. Most of the fixes had small errors; 75% had errors less than 3 km. However, 10% of the fixes had errors greater than 20 km.

METHODS

)

Several techniques were used to develop an error estimation and data editing scheme. First the data were abstracted from the NASA printouts and the fix errors from the WHOI Port Office calculated. Next, several scatter plots were made to search for relationships between the errors and parameters. The only scatter plot that revealed a functional relationship was the plot of error vs. great circle angle (Fig. C-3). A clear correlation between the elevation angle and the number of messages received by the satellite was also observed. Examination of the scatter plots led to the development of an editing system which eliminated bad data. A multiple regression analysis was used in an attempt to extract a more definite functional relationship between the error and all four quality criteria. The Statistical Package for the Social Sciences (Nie et al., 1975) was used for the multiple regression analysis, to produce scatter plots, to classify the data and to compute statistics that were very helpful during the development of the editing system.

RESULTS

The main result is that the fixes could be subdivided into four quality classes, excellent, good, marginal, and poor on the basis of the size of their errors and the values of the parameters (Table C-1, Fig. C-4). The best fixes (excellent) were those two-pass fixes with EI's of at least 45, GCA's greater than 3.2° (elevation angles less than 69°) and more than five messages. The mean error for these fixes was 1.34±.08 km, the 68th percentile error was 1.66 km, and the standard deviation was 1.37 km*. Twenty-five percent of the data fell into the excellent category.

The second best class of fixes (good) included those one-pass *Distances given are distances of the fixes from the WHOI dock.

-153-

fixes with EI's of at least 45, F values greater than or equal to 90 and GCA's greater than 3.2° . This group included 36% of the data and has a mean error of $1.52\pm.08$ km. When this class was combined with the first (62% of the data) the mean error became $1.45\pm.08$ km.

Marginal fixes included two-pass fixes with GCA's greater than 1.7° and EI's of at least 40 that were not included in the first category as well as one-pass fixes that met the requirements of the good class with the exception that their angles were between 1.7° and 3.2° . The mean error for the marginal fixes was $2.24\pm.10$ km and these fixes included 13% of the data. The first three classes were combined in a group of acceptable fixes (75% of the fixes) and their mean error was $1.59\pm$.08 km.

The final group of fixes was the rejected fixes which included all the remaining fixes (25%). The mean error for this group was 190 ± 50 km and the 68th percentile is at 33 km. A more complete presentation of the fix quality classes is given in Table C-1 and Figure C-4.

The error in buoy fixes was used to estimate errors in velocity calculated from successive buoy fixes. When the velocity was calculated from two fixes 108 minutes apart, a 1.5 km position error was found to lead to a 23 cm/sec velocity error. For the case of relatively high velocity (100 cm/sec) a 1.5 km fix error gives a bearing error of 13°. During the normal data editing process, in order to reduce the velocity errors, two fixes per day a half-day apart were retained. The expected speed error of these is 3.5 cm/sec. For a slow moving buoy (10 cm/sec) the expected bearing error is 19°, a faster buoy (100 cm/sec) has an expected bearing error of 2°.

DISCUSSION

The relationship between the EI and the error is not a very clear one. The sparse information given by NASA on the EI implies that the EI provides a measurement of the accuracy of a fix on a scale ranging from 0 to 100. The EI's in this study all fell within a range from 25 to 67, 85% fell between 45 and 55. Once the EI's below 45 were dis-

-155-

•	7	
4	Ċ	
	P	
	ġ	
6	H	

Subdivision of Fixes into Quality Classes

									and the second se
Classification of fixes	% of Total Fixes	Errors of the Mean (km)	fixes (a) Median (km)	68th percentile (km)	Qu one or two pass fixes	ality paran EI	beters from F Value	NASA (see te Number of messages	ixt) GCA
Excellent	25	1.34 ±.08(d)	11.1	1.66	2	-45	None	99 I ^ I	23.2 (c)
Good &	62	1.45 ±.08	1.41	1.67	1	245	90	all	23.2
Excellent					2	-45	None	- 9	-3.2
Acceptable	75	1.59 ±.08	1.56	1.71	1	245	90	all	21.7 (c)
marginal + good + excellent					2	0 7 ~	None	all	21.7
Rejected	25	190(b)± 50	7.50	33.15	1	<45	or<90	all	or<1.7
			0		2	07>	None	a11	orcl.7
All data	100	49(b)± 19	1.66	2.34	all	a11	all	all	all
Good	36	1.52 ±.08	1.42	1.68	-	-45 -45	06 ₹	all	23.2
Marginal	13	2.27 ±.10	1.94	2.59	1	245	290	all	21.7
					2	<45,240	None	all	>1.7
						or>40	None	<0 - 6	\$3:3
(a) These value	es refer	to the distance	of the fix	tes from the	known pos	ition of th	le buoys.		

- These values include two fixes with errors greater than 4000 km. With these two eliminated the mean error is 25±5 km for all the data and 93±15 km for the rejected data. ٩
 - Great circle angles $\stackrel{2}{-}$ 3.2° and $\stackrel{2}{-}$ 1.7° correspond to elevation angles $\stackrel{2}{-}$ 69° and $\stackrel{2}{-}$ 79° respectively. (c)

¢

(d) The standard deviation of excellent fixes was 1.37 km.

-156-

carded, there seemed to be no relationship between EI and error. This is probably because most of the fixes (88%) with EI's greater than 55 have fewer than 8 messages. Thus, it is likely that these high EI's mean that it is easier to get a good fit between a theoretical doppler curve and the satellite data when there are few data points.

In the EI range from 35-45 there seems to be a continuous relationship between the EI and the error. Fixes with EI's of 35 seem to have errors large enough to be unacceptable (greater than 6-7 km) while EI's of 45 seem to indicate good to excellent fixes. Although there seems to be a continuous improvement in accuracy as the EI increases from 35 to 45, there are too few data in this range to describe the relationship accurately.

The EI also appears to be related to the number of passes in the fix. The two-pass fixes have lower EI's than one-pass fixes of about the same quality although the difference is rather slight; this relationship is only noticeable for low EI's (35-45). One-pass fixes with EI's between 40 and 45 have a mean error of 5.2 km while the two-pass fixes with EI's between 40 and 45 have a mean error of 1.6 km. This discrepancy can probably be explained by noting that it is easier to fit a theoretical doppler curve to a set of data with a few data points (a one-pass fix) than one with more data points (a two-pass fix).

The effect of the number of messages on the error requires elaboration. Other investigators (Martin and Gillespie, 1978; Greene, 1977) have used the number of messages as an important part of their editing procedure. However, the number of messages was not found to be very important in predicting errors in this study. There seemed to be little difference between one-pass fixes with 4 or 5 messages and one-pass fixes with more than 5 messages once the fixes with bad EI's, F values and GCA's had been thrown out. Nevertheless, one-pass fixes with 4 or 5 messages do tend to have higher errors than the others. They also tend to have lower F values. Thus, it seems that the F values have been very effective in eliminating bad fixes with few messages. We have observed that although two-pass fixes are generally better than one-pass fixes, two-pass fixes with 4 or 5 messages are considerably worse than one-pass fixes. Two-pass fixes with 4 or 5 messages have a mean error of 2.2 km, while one-pass fixes with 4 or 5 messages have a mean error of 1.5 km, and two-pass fixes with 6 or more messages have a mean error of 1.3 km. (These values do not include rejected or poor data.)

Some fixes with elevation angles less than 15°, corresponding to great circle angles greater than about 20°, were found to have large errors (Fig. C-2). However, all these poor fixes were rejected because of low EI's or low F values. Thus, it was not necessary to reject the data on the basis of their large GCA's.

A significant part of the error in fixes could be due to an error in the satellite position. Martin and Gillespie (1978) note that when the errors along the satellite track of the platform are subtracted from drifting buoy fixes, the accuracy of the fixes is significantly improved. Unfortunately, information on the satellite track is only available on the magnetic tape (and possibly card) output from NASA but not on the computer printouts most users receive.

CONCLUSION

The basic purpose of this analysis was to develop a "hands-off" method by which bad fixes could be removed from the drifting buoy data in order that the accuracy of the remaining data would remain within known standards. In order to eliminate low quality fixes, a simple editing system was developed that retains 60-75% of the data and maintains an accuracy (mean error) of 1.3-1.6 km. The 1.3 km and 60% values correspond to the good and excellent data (one-pass fixes with EI \geq 45, messages \geq 6 and GCA \geq 3.2°) while the 1.6 km and 75% values correspond to all the acceptable data, the excellent, good and marginal data (onepass fixes with EI \geq 45, F value \geq 90 and GCA \geq 1.7°, two-pass fixes with EI \geq 40 and GCA \geq 1.7°). The quality control parameters on which the editing procedure is based are available from the NASA printout used by most Nimbus-6 users; therefore, all users of Nimbus-6 data could easily employ the proposed editing system.

-159-

MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, AND FINAL REPORTS PUBLISHED BY OCEANOGRAPHIC CONTRACTORS OF THE OCEAN SCIENCE AND TECHNOLOGY DIVISION OF THE OFFICE OF NAVAL RESEARCH

(REVISED NOVEMBER 1978)

 Deputy Under Secretary of Defense (Research and Advanced Technology) Military Assistant for Environmental Science Room 3D129 Washington, D.C. 20301

Office of Naval Research 800 North Quincy Street Arlington, VA 22217 ATTN: Code 483 ATTN: Code 460 ATTN: 102B

3

1

2

6

۱

1 CDR J. C. Harlett, (USN) ONR Representative Woods Hole Oceanographic Inst. Woods Hole, MA 02543

> Commanding Officer Naval Research Laboratory Washington, D.C. 20375 ATTN: Library, Code 2627

12 Defense Documentation Center Cameron Station Alexandria, VA 22314 ATTN: DCA

> Commander Naval Oceanographic Office NSTL Station Bay St. Louis, MS 39522 ATTN: Code 8100 ATTN: Code 6000 ATTN: Code 3300

1

1

1

NODC/NOAA Code D781 Wisconsin Avenue, N.W. Washington, D.C. 20235

2. Trajectories at buoys 2. Trajectories at buoys This card is UNCLASSIFIED This card is UNCLASSIFIED 3. Gulf Stream System 3. Gulf Stream System 1. Satellite tracked I. Richardson, P. L. I. Richardson, P. L. TV. N00014-74-C-02621 NR 083-004 Satellite tracked TV. M00014-74-C-02621 MR 083-004 II. West, J. J. V. 002 75-08765 Mast, J. J. 002 75-08765 III. Bennett, D. OCE 77-08045 OCE 77-08045 Bennett, D. i H . 5 The main results consist of a series of 19 bury trajectories is trypt from which the mount of trajes is infered and a strates of 50 bury trajectories in the Guif Erream. Anyoi frequently conlessed with the Guif Stream and some modified inpast. Use trajectories of burys in the Stream continued to move antifere durates are from any infineted by reportantic factures and an essential and the vicinity of the Stream continued to move earther durations the the vicinity of the Grand Banks (50⁴) where they repidif famoed out, the vicinity of the Grand Banks (50⁴) where they repidif famoed out, the vicinity of the Grand Banks (50⁴) where they repidif famoed out, the vicinity of the Grand Banks (50⁴) where they repidif famoed out, the vicinity of the Grand Banks (50⁴) where they repidif famoed out, the vicinity of the Grand Banks (50⁴) where they repidif famoed out, the vicinity of the Grand Banks (50⁴) where they repidif famoed out, the vicinity of the Grand Banks (50⁴) where they repidif famoed out, the vicinity of the Grand Banks (50⁴) where they repidif famoed out, the vicinity of the Grand Banks (50⁴) where they repidif famoed out, the vicinity of the Grand Banks (50⁴) where they repidif famoed out, the vicinity of the Grand Banks (50⁴) where they repidif famoed out, the vicinity of the Grand Banks (50⁴) where they repidif famoed out, the vicinity of the Grand Banks (50⁴) where they repide the famoed out, the vicinity of the Grand Banks (50⁴) where the famoed out, the vicinity of the Grand Banks (50⁴) where the famoed out, the vicinity of the Grand Banks (50⁴) where the vicinity famoed out, the vicinity of the Grand Banks (50⁴)</sup> where the vicinity famoed out, the vicinity (50⁴)</sup> the famoed out was the famoed out, the vicinity (50⁴)</sup> the famoed out the famoed out the famoed out, the famoed out the famo The main results consist of a series of 19 bury trajectories is they free which the moust of first ai intered and a series of 20 bury trajectories in the Gulf Stream. Huge frequently coalseced with the Gulf Stream and one stormed as modified intege. It has trajectories of burys in the Stream reveal that at times surface currents are strongly influenced by ropergaphic factures are surface for burys in the Stream continued to move astreamed until they resched the vicinity of the Stream continued to move astreamed out, the surface outbream and one burne they reguldy faund out-ties souther and watered. From 1975-1978, thirty-one satalite-tradeed free-drifting authore boys were launched in the Oulf Stream system. Bost of these boys were launched in greionic rings, as part of an inter-disciplinary Oulf Stream ring againsmit. Other boys were launched in articiyclonic rings and the Oulf Stream itempt were burnched launched in a cyclonic Rurenhio ring. The basic data set consists of boy trajectories and as surface temperature and walocity mesure-ments along trajectories. From 1975-1978, thirty-one satallite-tracked free-drifting surface buys were launched in Four Ouif Stream pyream. Near of these Duys were launched in Gridonic rings, as part of an inter-disciplinary Ouil Stream fing and the Ouif Stream Leanth one buy was launched in a cyclonic Rureship ring. The basic data set consists of buy trajectorie and as surface temperature and wholely measure-ments Along trajectorie and FREF-DUIFING HOW TRANECTOMIES IN THE GUES STREAM STREAM STREAM (1973-1978) A DUAR XEONEY DR. P. M. MCALEMORA, J. M. MARLE and D. BENNELL, 158 pages. January 1970. Frequend for the OFFIce of Nevel Desarch under Contract MOOD14-74-C-0362; MR 043-004 and for The National Science Foundation under Grants OCT 35-09765 and OCT 77-09045. FREFORTING NOT TAATCTORIES IN THE CULD STREAM STREAM STREAM STREAM STREAM STREAM STATE STREAM STREAM STATE STREAM ST STREAM STRE Woods Nole Oceanographic Institution Woods Hole Oceanographic Institution 1 I Trajectories at buoys Trajectories at buoys This card is UNCLASSIFIED This card is UNCLASSIFIED 3. Gulf Stream System Gulf Stream System Satellite tracked Satellite tracked I. Richardson, P. L. TV. N00014-74-C-02621 NR 083-004 I. Richardson, P. L. IV. N00014-74-C-0262, NR 083-004 OCE 75-08765 Wheat, J. J. J. OCE 75-08765 Wheat, J. J. OCE 77-08045 OCE 77-08045 III. Bennett, D. III. Bennett, D. Aono > > . 5 5 The main results consist of a series of 19 busy trajectories in tings from which he movement of rings is inferted and a series of 20 busy trajectories in the Gaif Stream. Hungs frequently consistend with the Gaif Stream and some reformed as modified rings. The trajectories of bungs in the Stream reveal that at times surface currents are strongly influenced by toporphic features surface currents are the which is a Stream continued to move saturated will hery resched the wichtly of the Stream continued to move saturated will they resched the wichtly of the Grand Banks (20%) where they resched the wichtly of the Grand Banks (20%) where they resched the wichtly of the Grand Banks (20%) where they resched the wichtly of the Grand Banks (20%). The main remults consist of a series of 19 bury trajectories in the main remults consist of a series of 10 bury trajectories of 00 bury trajectories in the Guif Stream. Rhops frequently conlesced with the Guif Stream and one amodified injos. It trajectories of burys in the Stream several that at times surface currents are strongly influenced by tropergaphic factures and next the Next Doys in the Stream continued to now eastward with they reached the vicinity of the Grand Banks (50⁰), where they repidity famed out, the vicinity of the Grand Banks (50⁰), where they repidity famed out, the vicinity of the Grand Banks (50⁰), where they repidity famed out, the vicinity of the Grand Banks (50⁰), where they repidity famed out, the vicinity of the Grand Banks (50⁰), where they repidity famed out, the vicinity of the Grand Banks (50⁰), where they repidity famed out, the vicinity of the Grand Banks (50⁰), where they repidity famed out, From 1975-1978, thirty-one satallita-tracked free-drifting artfeon burys ware launched in the Guif Stream system. Nost of these burys ware launched in Grifonic rings, as part of an inter-disciplinary Guif Stream ring experiment. Other burys ware launched in anticyclonic rings and the Guif Stream itenity one bury was launched in a cyclonic Kuronhio ring. The basic data set consists and subgrifts and as aurface temperature and wlocity masure-ments along trajectories and as aurface temperature and wlocity masure-ments along trajectories and From 1975-1978, thirty-one satallite-tracked free-drifting surface buys were launched in the Guif Stream system. Nost of these Duys were launched in Griftonic rings, as part of an inter-disciplinary Guif Stream ring experiment. Other buys were launched in anticyclonic rings and the Guif Stream itself, one buys was launched in a cyclonic Kurenhio ring. The basic data set consists and buy trajectories and as surface texperature and velocity measure-ments along trajectories. FREE-DALFING MONY TRANECTORIES IN THE GULF STREAM SYSTEM (1975-1974) A DATA TROUT by F. L. MCADAGAN, J. J. Wheat and D. Bhonett. 159 pages. January 1979. Prepared for the Office of Maval Research under Contract NO0014-74-C-0362; NR 083-004 and for The Maximum Science Foundation under Grants Oct 75-08765 and Oct 77-08065. PRE-DAIFING DOOF FAALFCFORIES IN THE GULF STREAM SYSTEM (1975-1974) A DATA REPORT by L. McAntedon, J. J. Anhatt and D. Bannatt. 158 pages. January 1979. Prepared for the office of Baval Baserch under Contract NOO214-74-C-0261, NR 093-004 and for the National Science Foundation under Grants OCT 75-09765 and OCT 77-08065. Woods Hole Oceanographic Institution MOL-79-4 Woods Mole Oceanographic Institution MMOI-79-4 1 1