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ABSTRACT

This paper presents a variant of the dual simplex method for the

capacitated pure network problem and a computational analysis of this algo-

rithm. This work includes the considerations of different list structures

to store the original problem data and the basis and the testing of various

procedures to select the leaving basic variable. This study also examines

the sensitivity of the implementation to changes in problem parameters. The

results show that the algorithm which is presented here is superior to earlier

dual implementations.

ii; 
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1!!
Implementation and Analysis of. a Variant of the

Dual Method for the Capacitated Transshipment Problem

This paper describes the development of a variant of the dual

simplex algorithm for the capacitated pure network problem and presents

the results of an extensive, computational analysis of this algorlthm.

Comparisons of the dual method with primal and out-of-kilter codes In

the early 1970’s indicated that the dual method was slower by approxi-

mately an order of magnitude in solving capacitated network problems

[3~ 121. Therefore, most of the network research over the last ten

years has been focused only on special purpose primal simplex and

out-of-kilter algorithms and codes. We were able to locate only tht’ee

dual transshipment codes, CNET (12], DNET— I [15], and (16].

For highly capacitated transshipment problems, the Imple-

mentation of the variant of the dual simplex method which is presented

here is superior to the earlier dual codes. However, even for these

problems, the special purpose primal simplex method is superior both

In terms of sol ution time and central memory requi rements.

Three aspects of the dual simplex algorithm were examined

and modified in order to improve Its efficiency. First, a nunter of list

structures for storing the original problem data and the basis (Section 4)

were considered. Next, we sought to Implement, in the capacitated pure

transshipment setting, a modi fication of the dual method whi ch Incor-

procedures for the selection of the arc to leave the basis (Section 5.2)
~~~~~ porates a multiple pivot strategy (Section 2.1). FInally, di fferent

H.~j  
. ,

~~~~
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were tested.

The list structures tested and evaluated for the new dual

code were chosen with two objectives in mind. They had to facilitate E

efficient performance of the steps of the algorithm and they had to

obviate the processing of non-relevant data. We first tested several

of the recently developed, highly efficient linked list structures

which optimize the implementation of the primal simplex network

algorithm. These sophisti cated structures were not avai lable when UNET

was originally developed.

We tested other list structures which woul d allow one to

identi fy and thus avoid nonbasic variables which are ineligible to enter

the basis during an iteration of the dual simplex method. This process

is equivalent to performing a partial rather than a complete IP tableau

row scan to determine the incoming variable for each dual pivot in the

general linear programing setting.
Since even a partial scan for each dual pivot is quite time

consuming, we modified the dual method by incorporating a particular

multiple pivot stra tegy for each partial scan. This strategy generalizes
a technique used by Barrodale and Roberts to solve norm probl~ us (4).

(Multiple pivot approaches have also been considered by Balas [1] and

Wltzgall [20] to solve linear programs).

The final aspect of this work was to analyze the sensitivity of

the resultant dual code to variations In problem parameter values and to

_____ 

compare Its performance to that of a state-of-the-art primal capacitated

pure transshipment code over a set of problems especially well suited to

the dual code. The results of all our computational testing are reported

and explained in Section 6 of this paper.

—~ ~~~~~~~~~~~~~~~~~~~~~ - . ~~a~~..1flW’ - - —



-——~~

1.1 PROBLEM STATEMENT

The c,apcitated traneehipnent ( CT) problem, may be defined as
follows:

Primal

Mi nimi ze ~~ (1)

subject to

A x = b  (2)

O < x < u  (3)

Dual

Max imize wTb - vTu (4)

subject to

wTA _ v ~~ cT (5)

w unrestricted (6)

v > O

where u is an nxl positive vector and A is an mxn matrix whose columns

each contain exactly two nonzero coefficients, -1 and 1. Note that the

primal problem Is equivalent, by a simple translation of variables, to
the seemingly more general problem In which the lower bound on x is

different from zero.

2.0 ThE DUAL METHOD

In this section. the steps of the dual method in a general

(bounded variable) minimi zation linear programing setting are presented

[11. 19]. In Section 2.1, the modification of the dual method to in-
corporate a multiple pivot strategy is indicated. The remainder of the

_ i. -
~  -—-- -~~~~~~~~~ .“~~~~~~~~~~~ - -
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paper then Investigates the specialization of the multiple pivot

strategy to solve CT problems.

Lemke ’s dual method may be succinctly described as follows:

1. Begin with a dual feasible basis B and the vector of

cost coefficients Determine the in i tial primal

a solu tion , x8.
2. Select a basic variable (call it x~) whose value

violates either its upper bound or lower bound of

zero. If no such variable exists, the current basic

solution is optimal and the procedure terminates.

3. Determine the updated linear equation expressing x
~

as a linear continatlon of the current nonbasic

variables; i.e., x~ = + z A~(-x~) , where NB
k~NB

denotes the index set for the current nonbasic variables.

4. Let x~= —A ~ for kENB if X k is set equal to its lower

bound and x violates its lower bound, or if x is setk
equal to its upper bound and x

~ 
violates its upper

bound. For the remaining kcNB , let A~ Ak~ 
and form

NB~ = {kcNBIA ~ > O}. If NB~ = 4, then the problem is
primal infeasible and the procedure terminates.

5. Express the updated equation of the objective function

variable to be minimi zed (call it x0) in terms of the

current nonbasic variables ; i.e., x = + E lrk(-x ),
-1 k cNB k

where ‘1k 
= c8B Ak ~

ck 
= wAk - Ck. and Ak denotes the

kth co l umn of the original coefficient matrix A.

_ _ _ _ _ _ _ _
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6. Identify a nonbasic variable x~, scNB
’, such that

~n Ix = mm { Iw k /X k I}.S ~ k€NB ’
1

7. Determine a new current dual feasible basic solution

by removing s and adding & to NB (making x
5 
basic

and x~ nonbasic), and assigning x the value of the

a bound it previously violated while holding the other

nonbasic variables constant (identifying the values

thus assigned to the new set of current basic variables).

Then return to Step 2.

The linear equation of Step 3 for the leaving variable may be obtained

by using the poly-w technique of Charnes and Cooper [5]. According to

this technique, the coefficients of the equation defining x
~ 

in Step 3

correspond to ~~~ the pth row of the updated coefficient matrix A*,

where A* B~
1 A. One may generate ~A* by first premultiplying B~

1 by

a vector C8 where c
~ 

= 1 and 0, for k ~ t; one then post multiplies

the resulting vector by the original coefficient matrix A. B 1 will

be referred to as the vector of “pseudo—dual” variable values and denoted

The Ak
’s of Step 3 may be defined as Ak ~

Ak 
- 

~k• 
Hence, the ir

k
’s

and Ak
’5 are expressable in a similar form.

Since most linear programs have many more columns than rows,

INBI, the cardinality of NB, is rather large. Therefore, the selection

of the entering variable at each iteration is a time consuming process.

Furthe r, it is an inherently wasteful process since at each iteration
+ +NB must be formed In order to select the entering variable. NB Is

then discarded.
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2.1 MULTIPLE PIVOT STRATEGY

Several researchers have tried to improve the effi ciency of

the bounded variable dual method by utilizing a “multiple pivot” strategy

(Balas [1] and Witzgall [20]). Specifi cally, if x5, the variable

selected to enter the basis, will do so at a primal infeasible level ,

then one should not pivot x~ Into the basis. Rather the val ue of x5

should be changed from Its current bound to the other bound. Furthermore,

I, which denotes the inf eaaibi lity of the vari able x
~ 

which has been

selected to leave the basis, should be decreased by 1A 5u51. The values

of the other variables are not changed. Next, one mus t delete s from

NB~ and repeat S~ep 6. One continues in this fashion unti l N8~ — 4 or

unti l the variable selected to enter the basis , x~ (where r > 1), wi ll
r

do so at a feasible level. If NB~ = 4, then the problem is primal
infeasible. On the other hand , if x

~ 
will enter the basis at a primal

r
feas ible level , then one should permit it to do so and perform Step 7.

The following theorem shows that the resulting solution is dual feasible.

Theorem 1: Let the indi ces S=51, 
~2’ ~~~~~ 

Sr be determined as

previously described. The sequence of operations defined by the modified

dual algorithm will provide a dual feasible basis after the completi on

of Step 7.

Proof. It follows from the formula for updating the irk ’s that

(1) the sign of Irk will not change for k ~ NB~ or for k c NB~ wi th

Irk/Ak! > 1w 5 /A 5 I , (2) the sign of irk will change for kcNB
1 
with

Irk/A k! Iitsr
/A sr

I
~ 

and (3) the irk 
will become zero for kcNB4 with

I ’k 1’ k I = IW sr
/A sr

I• 

-- .-- ~~~~~ --. --~~~ .~
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The only nonbasic variables to change values during an

Iteration are x , x , ..., x~ and they will switch In value fromS j S2 r—1
one bound to the other. However, by construction

k~./A 5 ~ 
< In~ /A~ 

, I = 1, ..., r — 1.
1 1 r r

Therefore, the sign of ir5 chan ges , or iv~ goes to zero, for
I I

I = 1, ..., r - 1, duri ng the update. The sign must change in order to

preserve dual feasibility. Since all other nonbasic Xk satisfy kiNB~
or Irk/A k 1 ~ k~ 

/A 5 
, the solution will be dual feasible after the

r r
completion of step 7.

Note that NB+ need be computed only once during an iteration.

NB+ may be sorted to identify 
~i’ 

..., s . Then x5 , •.. ,  x~ arer 1 r-1
set to their other bound , and x enters the basis. Finally , if r = 1,Sr
the multi ple pivot is merely a single pivot ; in this case the modified

dual algori thm coi nci des with the standard dual method.

3.0 GRAPHICAL APPROACH

The most eff~cient procedures for solving capacitated transship-

ment problems (10, 12, 14] are based on viewing the problem in a graphical

context. The modified dual algorithm Is integrated with these procedures,

which are adaptations of the simplex algori thm [5, 6, 10] in which the

A matrix and the basis matrix are stored as graphs using computer list
structures. The use of such structures reduces both the amount of work

needed to perform the simplex operations and the amount of computer

memory required to store essential problem data. In addition, the graphs 

-~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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contain only the nonzero matrix components which allow special graph

label ing procedures [7, 10, 131. This eliminates checking and unnecessary

ari thmetic operations on zero elements . Further, the graphical repre—

sentation allows one to characterize fully the nonzero elements of the

representation of any nonbasic ~actor and the signs of these elements.

Finally, this representation allows one to characterize explicitly which

dual values change and how these values are al tered after performing a

basis exchange step.

The essential concepts and definitions of elementary graph

theory which are used in our development are outlined and related to the

capacitated transshipment problem in the next section.

3.1 GRAPHICAL INTERPRETATION OF THE CT PROBLEM

A directed graph G(N, E) is a finite set of nodes N and arCs E

connecting the nodes. Each arc is represented by an ordered pair (i ~i) ~
which defi nes the arc from node I to node j . It is not necessary for all

pairs of nodes to be joined and there may be multi ple arcs between the

same two nodes .

The capacitated transshipment problem defines a di rected graph

as fol lows. Each row of A corresponds to a node and each column

corresponds to an arc of the graph. Associated wi th each arc I s  a

variable, an. upper bound and an objective func tion coeffi cient. The

value of the variable (i.e., the componen t of x) associated wi th the

arc Is called the flow on the arc. The row positions 0f the nonzero

entries (+1 and -1) in the column which corresponds to the arc Identify

--—~.-_~ — .—~~ 
- 

~~~~~~~ 
_ -~ —
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the nodes on which the arc is incident. It will be assumed, henceforth,

that the arc is di rected from the node associated with the -1 term to

the node associate d wi th the +1 term. Addi tionally, an arc directed

from node I to node j will be denoted arc (i ,j) and x~3~ c1,  and Ujj

denote arc (i,j) ’ s flow value , cost, and upper bound, respecti vely.

Since the index ij natural ly refers to arc (i,j), double

subscripti ng will be henceforth employed to improve readibility of the

subsequent discussion. In particular A~3 . A 1~~ A
13
, ,r~ and ‘ii wi ll

be employed rather than Ak, Ak~ 
Ak~ ~k’ 

and 1k• Further, the index ij

rather than k will denote an element of NB or NB~. Technical ly a third

index should be used, since there may be more than one arc from I to j.

However , for notational convenience , the third subscri pt will be omitted.

The method s ubsequently descri bed provides an organization by which

multiple arcs with unique costs and upper bounds are readi ly acconinodated.

The right hand side vector b for the capacitated transshipment

prob lem associ ates a node requi rement bk (the kth component of b) wi th

node k of the graph . (Each unit of flow on an arc (i,j) therefore

“contributes” -1 and 1, respect ively, to the node requ i rements b1 and

b
3
.) Note that a negati ve ( positive ) node requirement then corresponds

to a supply (demand) requirement at the node.

The w vector of Step 5 (Section 2.0) is referred to as a

vector of dual variables. Gi ven a current basis B, the val ues of the

indi vidual components of w which satisfy complementary slackness may be

determined algebraically in the following manner.

J For each bas ic arc (1 ,j),

wA1~ 
- c1j 

= —w 1 + W
j  

_C
jj 

= 0,

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 

- 

~~~~~~~~~
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where w 1 and W
j 
are termed the node potent iale for node i and node j,

respecti vely . Since B contains INI-1 arcs and IN! nodes , I t  I s

necessary to solve a homogenous system of JN I- 1 equations in JN J

variables in order to determine the value of w. This system may be

solved by first arbitrarily assigning any value to one of the variables

and then solving the resulting system. This procedure also may be used

to generate ~ In order to obtain the Ak ’5 of Step 3 (Section 2.0). The

resulting value, 
~k’ 

associated with node k is called node k’s

p eeudo—node potential. Although w and ~ may be generated by using

this same method, in actuality only ?~ is generated anew each Iteration.

Normally, the node potentials are computed at the beginning and then

merely updated from one iteration to the next .

3,2 BASES AND SPANNING TREES

In the standard bounded variable simplex algori thm, a basis B

for the CT problem is a matrix which consists of a linearly independent

set of column vectors of A and which has one less than full row rank.

The variables associated with the columns of B are considered to be

basic variables and all others are nonbasic vari ables . Collecti vely,

the vector of basic variables is denoted by x8 while that of the nonbasic

variables is denoted by A basic solution Is obtained by assigning

each nonbasic variable a value equal either to its upper bound or to

zero (Its lower bound). Hence, a unique value may be found for each

basic variable which satisfies equation (2) of Lemke’s dual method.

A basis for the CT problem may be viewed and stored as a graph

j which contains only the nonzero components of the matrix B (6. 12, 14, 16].

IL _ 

_  

~~~~~~~~~~~
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This basis graph contains all IN I nodes and exactly IN I- 1 arcs of

the original problem graph. Since these arcs correspond to coluims

of B , they are linearly independent and the basis graph Is thus a

spanning tree. Henceforth, the terms basis gzv4h and spanning tr.e

will be used interchangeably. The node which is designated the root

node will be viewed as t~~ highest node in the spanning tree. (See

Figure 2 for an example).

The next section brIefly discusses the computer storage of

the spanning tree corresponding to B and the original problem graph

corresponding to A.

4.0 COMPUTER DATA STRUCTURES AND LABELING TECHNIQUES

4.1 STORING THE ORIGINAL PROBLEM GRAPH

Three different schemes for storing the original problem

graph were implemented and evaluated to determine which scheme performs

best.

The first scheme uses a popular linked structure (7,8] to

store the original problem data as contained in the matrix A. In this

method, all of the arcs which begin at the same node are stored together

and each is represented by recording its ending node, costs , and upper

bound. A pointer is then kept for each node; the pointer indicates

the block of computer memory locations for the arcs beginning at this

node. The set of arcs emanating f rom node u is called the f orward star

of node u and denoted by FS(u), i.e., FS(u) — {(u,j)eE). If the nodes

are nuntered sequentially from 1 to ~NI and the arcs are stored con-
secutively in memory in such a way that the arcs In the forward star

_ _  — -—-- --
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of node I appear Ininediately after the arcs in the forward star of

node i-i, this method, called the forward star form, requires IN ! + 3~E~

units of memory to store the original problem arc data (8]. These four

arrays are referred to as the FROM POINTER, TO NODE, COST, and CAP arrays

respectively. To complete the storage of the original problem data,

one additional node length array, the NR array, is required; it stores

the original node requi rements for each node. Figure 1A illustrates

a sample problem and Figure lB shows its associate d arrays .

The sto rage of the original problem data in consecutive

memory l ocations using the forwar d star form implicitly associates a

unique arc number with each arc. For each arc, this number identi fies

the position of the original problem data of that arc relative to the

position of the original problem data of the first arc in the forward

star of node 1 stored in memory . The uniqueness of this arc number

readi ly allows the acconinodation of multi ple arcs between the same two

nodes.

The other two schemes for storing the original problem data

utilize the forward star form in conjunction wi th additional arrays

which are designed to improve al gori thmi c performance. These approaches

seek to lower problem solution time at the expense of extra storage

requirements.

length arrays and one node length array in order to identify eas ily all

arcs entering the s ame node. One of the arc length arrays, the FROM NODE

array, contains beginning node numbers which are blocked to indicate arcs

~~~ The second scheme utilizes the creation of two more arc
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NR FROM TO FROM TO
POINTER NODE COST CAP T RAC E NODE POINTER

E~1 ~jJ-. — 2 1 7 6 3 — —4 iJ
L~i L~

} —‘ 3 1 4 1 1 —

L~1 L~iE!II f
~~~~~~~j L  ~ 4 2 1 LI!IJ

F~Ti~1 s 6 4 4 2 EI~I1
E~J 1 1 9 16 8 EI~J

[ii] 2 4 7 8 3

E~1 1~1 4 1 11 5 
~I~J

E~1 1I~1 6
7 1 10 17 8 r L~1

I 4 0 6 19 9 I

I 6 1 3 5 2
I 4 3 3 9 3

6 2 5 12 5 I
I 9 2 2 14 7

3 1 2 10 4

i 4 3 1 21 10 I
I 9 6 2 3 1 l

1 4 8 1 22 10
I 10 1 1 15 7 p
L 7 4 2 18 8 I

8 1 1 20 9 -~

FIGURE lB
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having the same ending node. The node length array, the TO POINTER

array, Is used as an ending node index into this blocked set. Thus,

this pointer system is a mirror image of the forward star form described

above and shall be referred to as a reverse star form. The second arc

length array, the TRACE array, allows convenient retrieval of the

original cost and capacity data. These additional arrays are shown for

the sample problem In Figure lB.

The third scheme utilizes two extra (21N1 + IEI ) length arrays.

The first (2~Nj + IE I ) length array links together in two separate

group ’s the nonbasic arcs at their upper bound and the nonbasis arcs at

their lower bound of zero for each node. These pointer lists require

an arc length array of storage. The additional node length arrays con-

tain the arc number for the first element of each of these lists and are

used to access these lists . The second (21N1 + El ) length array reverses

the pointers of each list of the first array in order to facilitate

pointer update.

4.2 STORING THE BASIS GRAPH

In order to represent a tree in a computer, one node, is

designated as the root node, r. P1~, for i $ j, is then defined to be

the unique path from node I to node j. If node j lies on P1k,, with
j $ 1, then j Is termed a pr edecessor of i and I is called a successor

of j. Ininedlate predecessors and successors are endpoints of a conunon

arc. The tree, therefore, may be represented by keeping a pointer list

which contains the imediate predecessor of node i on 
~ir  for each node

I $ r In the tree. For convenience, the predecessor of the root node is

~ 
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set equal to zero. Figure 2 illustrates a tree ( for the network In

Figure 1) rooted at node 1 and indicates the predecessors of the nodes

as well as other functions which w i l l  be used in the computer imple-

mentation procedures to be discussed later in this paper. The pre-

decessor of a node Is Identified in the P array. For example, the

predecessor of node 8 is node 3.

The thread f wzetion [14], denoted 1(1), is the first of these

additional functions and is shown in Figure 2. It is used to facilitate

the forward traversal of the spanning tree, an operation which is per-

formed many times in the solution of CT problems by simplex based net-

work codes. This function is a downward pointer through the tree and

is illustrated in Figure 2 by the dotted line. Function T may be viewed

as a connecting link (thread) which passes through each node exactly

once in a top to bottom, left to right sequence, starting from the root

node. For example, in Fi gure 2, T(l) = 2, T(4) = 5, 1(10) = 1, etc.

The function I satisfies the followi ng Inducti ve characteristics :

(1) The set {r, 1(r) , 12(r), ..., T~
’1(r) } is precisely the set

of nodes of the rooted tree, where by convention T2(r) = T(T(r)), T3(r)— T(T2(r)),

etc. The nodes r, T(r), ... , T~~
1(r) are called the antecedents of node

Tk(r ).

(2) For each node I other than node T~~
1 (r ) , T( i ) is one of the

nodes such that P(T(i)) — 1, if such nodes exist. Otherwise, w will denote

the first node which, in the predecessor path of I to the root, has an

Imeedi ate successor y and for which y is not an antecedent of node i. In

this case, 1(1) y.

- -
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’i \ Predecessor P(i )

Thr.ad( T R.v.r~. Thread RT( i )
I \ Depth DH(i)

\ Card inal ity C( i)
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5 6 9 10

NODE P T RT DH C LINK
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(3) TN(r) = r; that is , the “las t node” of the tree threads

back to the root node.

The reveree thread function, RT(i), is simply a pointer which

points in the reverse order of the thread. That is, if 1(1) = y, then

RT(y) = 1. Figure 2 contaIns the reverse thread function val ues.

It is important to understand that the predecessor function

only indicates the node pairs of current basis arcs; it does not speci fy

the direction of these arcs. For example , if P(I) = j , then there exists

a basic arc between node I and node j; however , the predecessor function

does not indicate whether this arc is arc (i ,j) or arc (j,i ) .  A linking

f unction3 LINK (1), is used to determine the arc direction as well as

the cost or upper bound values of each basic arc by specifying the

network arc number of the basic arc connecting nodes P(i) and I. If

this arc ’s orientation in the basis tree agrees with its actual direction

in the network (I.e., if the arc is actually arc (PCI), I ) ) , then the arc

is sai d to be conformably ori ented or~~ust conformable. - Otherwise It is

said to be nonconformably oriented or s i mp ly  nonconfor mab le.

A f inal function is used in our implementation to facilitate

the tree traversals, the effi cient updating of the P T, and RI functions,

and the st reamlining of the update of primal and dual solution data. Two

functions (depth and cardinality) were considered for these purposes.

The dep th f unction3 DH(i), indicates the number of nodes in

the predecessor path of node I to the root, disregarding the root node

Itself. If one Imagines the nodes In the tree to be arranged in levels

with  the root at leve l zero, and all nodes “one node away from” the root

at level one, etc., then the depth function simply indicates the level of

a node In the tree. (See Figure 2.)

_ _  -
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The cardinality functio n, C(i), specifies the number of nodes

conta ined in the subtree associated with node I in the tree. By the
nodes in the subtree associated with node I, we mean the set of all

nodes j e N such that the predecessor path from j to the root contains
1. (See Figure 2.)

For reasons which shall be explained in the following sections,

the cardinal-i ty function is wel l suited to the implementations of the
modified dual algorithm utilized In this study. Therefore, all codes

discussed and tested in this paper utilize the cardinality rather than

the depth function. For the sake Of completeness, however, early testing

compared the effect on solution time of the depth function versus the

cardinality function. Codes di ffering solely in the implementations of

these functions were run on the same p rob 1 ens. Un I formly those codes em-

ploying cardinality had lower total solutions times. For the sake of brevity,

these results are not presented here but may be obtained from the authors.

Three addi tional node length arrays are used to store Infor-
mation pertaining to the basis. The first, the NP array, stores the
current node potentials for the current basis. The second is a working

array which alternately stores the basic arc flow values and pseudo— node

potentials.

The third array, the NR array , was introduced in the discussion

of the original problem data (Section 4.1). Initially, it is employed

to store b, the original node requirements vector. In the context of a

particular basis, the entries in the NR array are updated so that

~ b + N (-x,d); the node requirements vector, now “updated” with respect
to the current basis; is stored. The term “updated” refers to the

L
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modi fications in the original node requi rements ( the original supply

and demand requi rements at each node) necessitated by the addition of

N(_x.N
), which is precisely the negative sum of the arc flow on the non-

basic arcs at thei r upper bounds. More precisely, if the flow on the

nonbasic arc (l ,j) is at its upper bound for the initial dual feasible

basis, then NR(i) is increased by u~ and NR(j) is decreased by

Whenever the f low on any nonbasic arc is changed via a multiple pivot

operation, then the NR array must be updated.

The next section describes the specialization of the modified

dual algori thm to the CT problem. The data structures used to represent

the original problem data and the labeling functions used to represent

the basis graph exert a powerful influence on the computational efficiency

of the algorithm. A primary focus of this paper is to demonstrate the

Importance of the parti cular storage scheme used for the tree and net-

work In executing the steps of the algori thm.

5.0 IMPLEMENTATION OF THE MODIFIED DUAL ALGORIThM IN NETWORKS

Section 5 synthesizes the ideas of the last two secti ons. In

particular, it shows how the data structures and labeling techniques

presented in the last section may be utilized to implement efficiently

the modified dual algorithm for CT problems. The exposition follows

the organization of the algorithm as presented In Section 2.

If an initial dual feasible basis B is known and is stored

as a spanning tree using the predecessor, thread, reverse thread, and
- -4 cardlnality functions, and if the node potentialS have been computed

and stored In the NP array, then the initial primal solution x now

—
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may be determined in order to complete the first step of the algori thm.

5.1 C0t4’UTATION OF BASIC ARC FLOWS

The computation of XB requi res solving the system Bx8 = b.

Since B is represented by a spanning tree, and hence BxB = Is a

triangular system of equations , the system can be solved by back -

substitution. That is, it is necessary only to identify a row of

B in which there is a single nonzero entry corresponding to a variable

whose val ue has not yet been determi ned.

This solution mechanism is simple to implement using the RI,

LINK, and P functions. The reverse thread of the root is a node I

which has only one inci dent arc which connects nodes P(i) and i. The

direction of this arc may be determined from the LINK array. Finally,

the NR array may be used to assign the required flow on this arc in order

to satisfy the updated node requirement for node i. By actually

traversing the tree via the reverse thread, each node successively

reached will have exactly one incident arc with a flow value to be de-

termined. Thus , when the root node is reached, the soluti on x8 is known.

It is important to note that the basic flows can be recomputed

at any iteration by using the above procedure. When a single rather

than a mul tiple pivot strategy is employed, it is more efficient to

update the basic flows by finding the unique loop created in the basic

tree when the entering arc is augmented to the tree. The flows on the

basic arcs in this loop are then changed appropriately (See (10]).

However, when the multiple pivot approach is employed, the flow values

on several nonbasic arcs may change (from one bound to the opposite 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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bound for each arc) . Accordingly , updating the basic flows necessItates

finding and changing the flow on each of the basic arcs in the loop

created by each nonbasic arc which changes its bound status as well

as finding and changing the flow on basic arcs in the loop created by

the entering arc. Hence we chose to update the NR array rather than

a basic arc flow array and then recompute the values of the basic arcs

as needed from one iteration to the next.

5.2 SELECTION OF THE LEAVING ARC

The second step of the dual method is to select a primal

Infeasible arc to leave the basis. (If all basic arcs are primal

feasible, then the current soluti on is optimal and the procedure

terminates.) Since any such arc may be chosen as the leaving arc,

we tested four heuristic selection rules.

The first strategy selects the arc having the maximum flow

In feasibility. The aim of this strategy is to find a “good” leaving

arc so as to min imize, hopefully, the number of dual basis exchanges.

However, to find the arc wi th the maximum flow Infeasibility, all basis

flow values must be computed and examined.

Since the basic arc flows are not updated from iteration to

iteration but rather are recomputed at each Iteration, It may be ad-

vantageous to devise pi vot strategies wh ich may not requi ~e al l  basic

flows to be computed. Consequently, the second strategy selects the

first primal Infeasible arc encountered In the basic flows computation.

While this strategy may result in more dual basis exchanges, all of the
- - - 

basic flows are rarely computed at each iteration.

• 
— 

——-—- -.--~~~— - .- _
~ - ~H~~a - ~-’2~S - —- — -



- - -

-23-

The remaining two strategi es are hybrids of the first two

approaches. Strategies 3 and 4 recompute the basic flows until d

(a positive integer) infeasible arc flows are encountered or all

flows have been recomputed. Strategy 3 then selects as the leaving

arc the one from this set of d arcs which has the most Infeasible

flow. Strategy 4 not only chooses the leaving arc In this manner

but also resets the value of d to be e if e < d infeasible arcs were

encountered.

The difference between Strategies 3 and 4 becomes pronounced

if the number of infeasible basic arcs in the network decreases as a

problem is solved. In such a case, strategy 3 approaches the most

infeasible flow strategy while strategy 4 becomes the first infeasible

flow strategy. Further, note that Strategies 3 and 4 with d = 1 are

the same as the first infeasible flow stra tegy. (In the case of 4,

if no infeasible arcs are encountered, the current solution is optimal;

hence, the val ue of d Is not reset.) Finally, Strategy 3 with d equal

to the number of nodes is the same as the most infeasible flow strategy.

5.3 DETERMINATION OF THE ELEMENTS OF NB~

Once arc (s ,t) has been selected to leave the basis, the next

step Is to determine the elements of NB+ via a three part procedure.

Fi rst the pseudo—node potential values are calculated. Then A ik~ 
the

reduced pseudo cost value for each nonbasic are (i ,k), is computed.

Finally, NB~ is formed by evaluating A ik for each nonbasic arc (i ,k).

____________ _____ :~~~~~~~~~~~~~~~~~~~~~~~~ -—- ~~~~
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5.3. 1 CALCULATION OF THE PSEUDO-NODE POTENTIALS

Calculating the pseudo—node pr~tent ials invol ves sol ving

the system = ~~, where , as noted in section 3.1, one pseudo-node

potential may be arbitrari ly specified. The root node is customarily

selected for this purpose and assigned a pseudo-node potential value of

zero. In a naive implementation the pseudo-node potential values of the

other nodes may then be determined in a cascading fashion. To do so , one

moves down the tree via the thread function and distinguishes the

pseudo-node potential value for each node I from that of its predecessor

node j by using the equation _

~~~~ 

+ = for each basic arc, where

~st = 1 and 
~i j  = 0 for arc (i,j)cE-{arc (s,t)}.

To improve the computational efficiency of the algorithm, this

procedure should be streamlined In the following way. Arc (s,t) is re-

moved from the tree. The subtree containing the root node is called the

“main tree” and the other subtree is referred to as the “subordinate

tree.” Note that -

~~~~ 
+ = = 0 for each arc ( i ,j) wi thin each

subtree. So = and all nodes within the same subtree have the

same pseudo-node potential value. Since = 0, this imparts a zero

pseudo- nooe potential val ue to ‘every node in the main tree. The pseudo-node

potential values of the nodes in the subordinate tree consequently depend

on the direction of the leaving arc; that is, if arc (s,t) Is conf o rmable

(nonconformable), then = (~~ = 0) and —

~~~~~ 

+ = 

~st 
= 1 reduces

to = +1 (
~ = -1). Consequently, all of the pseudo-node potentials

H in the subordinate tree have a value of +1 if arc (s,t) is conformable . 
-

and -1, otherwIse. Hence , after the direction of the leaving arc has

____________ —‘-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - -— - .- - -_ -
~~~~~-



been ascertained, all of the pseudo-node potential val ues may be set

by traversing the two subtrees .

5.3.2 CALCULATION OF THE PSEUDO-REDUCED cosTs

The next step is to compute the -pseudo—reduced cost, A ik, f o r  each

nonbasic arc (i,k). From S:ction 2.0,

A ik  
= wAik  .c lk  = -wi + wk -c ik.

If i and k are in the same subtree, A ik  = 0, since = and 
~ik 

= 0.

If i and k are nodes in diffe rent subtrees , then either or 
~k equals

zero. Since cik = ~J, the computation of A ik for this case simplifies to

the following : If arc (i,k )  is directed from the main tree to the

subordinate tree (f rom the subordinate tree to the main tree) , the value

of Aik is the same as (the negative of) the value of the pseudo-node

potential of any node in the subo~’dinate tree. Since the values of the

pseudo-node potentials depend only on the direction the leaving arc, the

computation of the nonzero pseudo-reduced cost becomes solely a graphical

consideration as shown in Table I.

- -
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TABLE I

DirectIon of leaving Nonbasic arcs
arc with respect to Pseudo— reduced

• predecessor orientation cost value From To

+1 subordinate main
tree tree

Nonconformable
-1 main subordinate

tree tree

+1 main subordinate
tree tree

Conformable
-1 subordinate main

tree tree

Hence, the three pseudo-reduced cost values of 0 and ± 1 simply

serve to partition the set of nonbasic arcs into three distinct sets.

These three sets consist of nonbasic arcs between nodes in the same

subtree, from nodes In the main tree to nodes in the subordinate tree,

and from nodes in the subordinate tree to nodes in the main tree. -

1

5.3. 3 CALCULATION OF THE A ik ’S

I

For each nonbasi c arc (i ,k) in each of these sets , may now be

computed. This step completes the determination of NB~ since

NB~ = {(i,k)IA ~
’
k > 0 and (i ,k)cNB }.

1 - -

N__1____ —- -- - — — 

~
_E--;

~
-_

~
__• 

— --— - —~~~~~-- - -———---- - - - - - - - - --.-‘ — -



— -- ---- -—-- - I

- -

-27-

From Step 4 of Section 2.0,

‘1k if x~~ < 0  and X lk  W j k ( 1 )

or ~~ > ~~ and Xik = 0 (2)

ik  -x lk i f x St < O a n d xlk = O  (
~

)

or xst > u5~ and Xj k = w
ik 

(4)

So, A
~k 

= ± Aik dependi ng on the values of the arc flow on arc (i,k)

and on arc (s,t). Note that the nonbasic arcs between two nodes I and k

In the same subtree are not eligible to enter the basis since A ik = A ik = 0.

Further some nonbasic arcs in each of the other two sets may be eligible

to enter the basis while other nonbaslc arcs may not be. The only non-.

basic arcs eligible to enter the basis are those arcs out of one subtree

having a pseudo-reduced cost value of +1 and satisfying condition (1) or

(2) and those arcs out of the second subtree which have a pseudo-reduced

cost value of -1 and which satisfy condition (3) or (4).

A convenient way to establish the arcs to be incl uded in

NB~ is to determine initially the flow status and arc direction of the

leaving arc. After the arc direction is known, the pseudo-reduced cos t

values of the nonbasic arcs out of each subtree may be obtained from

Table I. The flow status of arc (s,t) determines whether the nonbasic

arcs indi cated by equation 5.3’s conditions (1) and (3) or (2) and (4)

,~jJ 
are then to be included In NB~.

9 

- _

_ _ _ _ _ _ _ _  ~~~~~~~- --~~~
- - - - -

~~~~~
--



-

-28~

For example, if ~~ > u5~ and arc (s,t) is nonconforinable,

then the nonbasic arcs from the subordinate tree to the main tree have

a pseudo-reduced cost value of 1 (See Table I). Since xst > u5t.
Condition (2) indicates that of these nonbasic arcs only those at a

zero flow level are eligible to enter the basis. Similarly , the non-

basic arcs from the main tree to the subordinate tree have a pseudo-

reduced cost value of -1 and, of these arcs , Condition (4) dictates

that only those arcs at their upper boun ds are eligible to enter the

basis. This case and the other three cases are l isted in the follow ing

table.
TABLE II

Leaving Arc (s,t) To Determine NB~I ncl ude Ea ch
Nonbasic Arc ( i ,k) out of

Flow Status Arc Di rection Main Tree Subordinate Tree

> u5~ Nonconformable At Upper Bound At Zero Flow

X5t < 0 Conformable At Uppe r Bound At Zero Flow

~~ > u5~ Conformable At Zero Flow At Upper Bound

x
~t 

< 0 Nonconformable At Zero Flow At Uppe r Bound

Neither the values of the pseudo-node potentials nor those of the

pseudo reduced costs appear in Table II. Therefore, it is not necessary

to compute them in order to determine the elements of NB+. The pro-
cedure used to identify the element~ included in NB’ is as follows.

Fi rst, the arc direction and flow status of the leaving arc are recorded.

Secondly, the nodes of the subordinate tree are Identified by flagging

-i 
_ _  _ _  
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thei r associated entries in the PNP array. Then appropriate nonbasic

arcs are considered. In doing so, one must check whether or not the

nodes I and k are in different subtrees and one must note the value of

Xi k~
An ideal implementation would exami ne only the arcs between

the two subtrees as presented in Table II. While this is not practical,

alternati ve data s tructures may be designed to store the original pro-

blem data to reduce the number of arcs examined. Without these alterna-

ti ve structures, it is necessary to exami ne every arc, basic and non-

basic, in order to determine NB+.

To serve as a basis for comparison, ONETA, the first code

presented in Sect ion 6.0, considers every arc in the forward star of each

node. The second code, DNETD, implements the reverse star form in

addition to the forward star form. After the cardinality function is

used to determine the smaller subtree, each of the arcs into and each

of the arcs out of the nodes of that subtree are checked to determine

if they are basis eligible. Hence, fewer arcs are checked by DNETD than

by DNETA. However, DNETD does consider nonbasis eligible arcs into and

out of the smaller subtree a well as arcs between nodes within that

subtree.

DNETL , the third code, uses the forward star form and partitions

the nonbasic arcs out of each node Into two doubly linked lists. The

first list links together for each node the outgoing arcs at their upper

bounds. In a similar fashion, the second list links together for each

node the outgoing arcs at their lower bounds of zero. Consequently for

4 - - —~~~~~~~~~~~~~~~~~~~~~ - - — —  ~~~~~- - --— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~
-
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each subtree only the arcs out of each .node at the flow val ues as

specified by Table II are considered. However, arcs between nodes

within the same subtree for both subtrees are examined.

It is impossible to predict a priori whether the second

or third codes considers fewer arcs . Both methods consider some arcs

which are nonbasis eligible and do not examine others. CNETD does

not exami ne the basic arcs of the larger subtree while DNETL does not

examine any basic arcs . Hence, DNETL has a “better” worst case bound.

However, DNETD only processes the arcs in the forward and reverse stars

of  the nodes in the smaller subtree, while (*IETL considers the forward

star of every node in the tree. Considering the examination of each

arc In the forward and the reverse stars of one node as two “node scans ”,

DNETD, on the average, scans fewer nodes . But, since It is theoretically

impossible to predict whether DNETD or DNETL is more effi cient , both

codes were tested in conjunction wi th DNETA . DNETD proved superior to

both DNETL and DNETA; the results appear in Section 6. 3.

The exami nation of the nonbasic arcs is the only diffe rence In

the three codes. All three imp lementations actually store the necessary

nonbasic arcs required to perform the multiple pivot in the same manner.

Obviously, the parti cular storage scheme used (to be discussed In the

next section) affects the ease of the calculation of the entering arc,

which is the next step of the modi fied dual method.

5.4 SELECTION OF THE ENTERING ARC

To determine the entering arc, it Is necessary to compute

In ii / A ij I f o r  each (1 ,j)eNB’. Since ‘A ij i = 1 for all (i ,j)eNB ”, there

?
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is no ratio to compute and this calculation reduces to 
-— -

~~~

I’~ij~ ij I = IlIjj I = lw i  + w~ — c1~I

This is straight forward once NB~ has been determined.

For the purpose of exposition , suppose that all Jir~~~’5 with (f ,j)cNB’~
have been sorted in ascending order. Let the r-th position in this l ist

be such that the sunination of the u~~’s associated wi th the fi rst r-1 entries

is less than ‘St and the sunmtation of the u1~ ’s associated with the first r

entries is greater than or equal to 1st • Let Jw~~J be this r-th entry;
then arc (p,q) is identified to enter the basis. By theorem 1, the
solution remains dua l feasible after the basis exchange takes place.

The modified dual algorithm can be implemented using the complete

sort as described above. However, to perform a modified dual pivot one

need know only which arc (p,q) will enter the basis and which arcs (Li )

correspond to the first r-1 entries described above in the complete sort.

A more efficient partial sort may be implemented by defining NB* to be

the subset of NB~ associated with these r entri es . In i t ia l l y defi ne

arc (p,q) to be an arti ficial basic eligible arc wi th a large positive

reduced cost and upper bound. NB* is built and (p,q) updated by comparing

l -ir~j~, (i,j)cNB’, against l 1~q I and either discarding it if I 1f.jjl .~~. 
Itpq l i

or redetermining (p,q) and NB* if kij i < In pq l . Computatlonally, NB’

and the partially sorted list are computed simultaneously by making one

pass through the appropriate subset of the nonbasic arcs.

Three “sort” arrays store the elements of NB* by recording the arc

nu mber, the FROM node, and the absol ute value of the reduced cos t (ratio

ii 
value) of each arc corresponding to an index contained In NB*. The length

of these arrays must be j E l-~NI + 1 in order to implement the modified dual

-H_- _ _  - - -  - -
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algori thm. The length of these arrays in DNETA, DNETD, and DNETL were

accordingly set to this size.

If the length of these arrays is reduced to some number K < ~E(-~N~+ 1,

then at most the K smallest minimum ratios will be retained. What emerges

is a hybrid approach utilizing a combination of a single and multiple pivot

strategy. If K is less than the cardinality of NB , a nonbasic variable

corresponding to the largest (in absolute value) ratio in the sort list

ente rs the basis at a primal infeasible level. Since DNETD proved to

be the computationally superior code, it was modified to incorporate

this hybrid approach and tested in concert with DtIETD. The resul ts

appear in Secti on 6.5.

5.5 PERFORMING THE BASIS EXCHANGE

The last step of the modified dual algori thm is th~ basis exchange.

The leaving vector becomes nonbasic at the bound it previously violated,

the entering arc becomes basic, and the flow values of the nonbasic arcs

correspondi ng to the other indi ces in NB* ( if any ) switch from the i r

current bounds to thei r other bounds .

The update is perfo rmed in the following manner. First, the thread
*function which was cut in order to determine the elemen ts of NB , I s

res tored to its previous state . Then the basis exchange is performed

and the thread is updated as discussed in [ 14 ]. Simultaneously the

node potentials and the functi ons used to define the spanning tree are

updated. Finally, the NR array is updated: if the flow on the nonbasic

arc ( i ,j ) is to be increased (decreased) to its other flow bound, then

NR(i) is Increased (decreased) by u~ and NR(j) Is decreased (increased)

by u11.

~~1 
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With the updated NR array and the updated basis, the basic

arc flows are recomputed as required by the pivot selection procedure

used. The procedure then returns to Step 2.

5.6 AN EXAM’LE OF A MODIFIED DUAL PIVOT

A dual feasible solution for the network of Figure 1 is given

in Figure 3. The dotted lines denote the nonbasic arcs at their upper

bounds . The updated NR array and the subsequently computed basic flows

are recorded In their respecti ve arrays. Since X 3 ,k < 0, arc (3,4) may

be chosen as the leaving arc. The subordinate tree then consists of

the subtree rooted at node 5. The PNP array flags the nodes contai ned

in the subordinate tree in the following manner:

~ 0 if node i is contained in the main tree
PNP ( i ) =~~

1 if node i Is contained In the subordinate tree

Hence , nodes 4, 5, 6 and 7 are flagged.

Since x3,~ < 0 and arc (3,4) is oriented away from the root,

it is only necessary to consider nonbasic arcs out of the main (subordinate)

tree at the upper bound (zero flow level). Hence, only the absolute values

of the reduced costs of arcs (3,5), (8,4), and (10,7), which are out of

the main tree at their upper bounds, and that of arc (7 ,9), which is the

only nonbasic arc out of the subordinate tree into the main tree at a

zero flow level , are considered. Now , using the NP array together with

the relevant arc costs ,

I a 4~ Iir e,i.I = 2 , 1w 1 0 7 1 = 
~~ k7,91 = 2 and 

3,1 
a 5~

S 
_ _ _ _ _  
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Nod. R•qu ir.m.nt NR C s )
F low FLOW C i )

2 Ps.udo Nod. Pont.nt ial P N P ( i )
I Nod. Pot.ntia l N P ( i )
1

3

/
/
/

• ( 4 ——
~~~~~~~~

— 8

5 7 6  9 10
S.. ,

— —
NODE NR FLOW PNP N P

1 -6 — 0 0
2 6 6 0  1
3 5 0 0  2
4 -6 -5 1 6
5 - 5 5  1 6
6 0 0 1 3
7 6 6 1 7
8 -1 0 0 1
9 2 2 0  7
10 -1 1 

~~GURE 3

I- ~ 
~~~~~~~~~~~~~~~~~~~~~~~~ - -



-35-

Since u 1,u =2, and u = 2 ,u + u  + u  = 1
8 ,4  7,9  10,7  8, ’. 7 ,9 1 0’7  3” .

* *So, NB = (8,4; 7,9; 10,7} Note that 3,5~NB - Arc ( 3,4) leaves the basis,

arc (10,7) enters the basis, and the flow on arcs (8,4) and (7 ,9) switches

from the current bound values to the opposite bound val ues . The updated NR

array, flow values, and tree function values are shown in Figure 4.

6.0 COMPUTATIONAL TESTING

In developing an efficient implementation of the multiple pivot

algorithm, we first devised and tested three different codes based on

three methods of stori ng the origInal problem data as presented in

Section 4.1. We fine tuned the fastest implementati on by evaluating

a set of pivot selection strategies and examining the effect of restricting

the size of the sort arrays. The resultant code is called DNET2. The

final aspect of this study was to analyze the sensitivity of DNET2 to

problem parameters and to compare its performance to that of PNET— I,

a state—of-the-art primal simplex code, [12 , 14] over a set of problems

especially well suited to this dual code.

6. 1 CODE DEVELOPMENT

All of the codes, primal and dual , used in this study are

in-core codes; that is , the program and all of the problem data

simultaneously reside in fast—access memory.. They are all coded in

FORTRAN and none of them has been designed for a particular compiler.

Al l of the problems were solved on the CDC 6600 at the University of

Texas at Austin Computational Center using the P?4F compi ler. The

________________ ___________________ 1-
_ 
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computer jobs were executed during periods when the machine load was

approximately the same, and all solution times are exclusive of input

and output; that is, the total time spent solving the problem was

recorded by calling a Real Time Clock upon starting on the problem

solution and again when the solution was obtained.

All of the dual codes used in this study employed the same

starting procedure, the Advanced Dual Start [15] , and uti lized the

partially sorted list of Section 5.4 in conjunction wi th the multiple

pivot strategy.

6.2 PROBLEM SET DESCRIPTION

Before conducting the computational testing phase of this

project, we postulated that the dual codes would perform well on

tightly capacitated networks in which the ratio of arcs to nodes is

high and the flows on a substantial number of the nonbasic arcs (20%

or more) would be at their upper bounds at optimality. We theorized

that for such networks with large node requi rements and tight arc flow

capacities the average number of elements in the sort lists per itera-

tion would be large and that therefore, on the average , the flow on

j many nonbasic arcs woul d swing from one bound to the other during an

iteration. Hence, such networks would make full use of the multiple

pivot strategy.

A problem set of 22 test problems was selected to test this

hypothesis. Generated by the NETGEN network generator [18] , this

problem set consists of 10 transportation and 12 transshipment networks.

— - ~~~~~~~~~~~~~~~~~~~~~~~ ——
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[The number of nodes considered varies from 100 to 400 per network and

the number of arcs varies from - 274 to 5000.] All of the 22 networks have

cost ranges of from 1 to 100, and each network has a total supply equal

to 100 times the number of nodes in the network. Table III describes

the 22 test problems. For some of these problems , certain parameters

were modified so that sensitivity analysis could be performed. These

parameters include number of arcs , cost range, total supply, and upper

bound values. This second set encompasses 15 additional problems and

is descrIbed in Table IV.

6.3 STORAGE OF THE ORIGINAL PROBLEM DATA

The first phase of testi ng eval uated the di fferent methods of

storing the original problem data. A separate code was written for each

scheme; they are called ONETA , DIIETL , and DNETD. ONETA requi res 9

node length arrays ( FROM, P, T, RI, LINK, C, NP , NR, and one worki ng

array), 3 arc length arrays (TO, COST, and CAP arrays ) and 3 arrays which

are used to store the data required to perform the partial sort to obtain

NB *. These sort arrays record the arc number, the FROM node, and the

absolute val ue of the reduced cost of each arc corresponding to an index

contained in NB*. The dimension of each sort array is IE I - IN I + 1.

DN ETL uses the structures of ONETA in conjunction with a doubly-linked

l ist  which , for each node, ties together the nonbasic arcs out of that

node at the same boun d, either the upper or zero bound. In addition to

the structures of ONETA, DNETD uses the reverse star structures which

link together the arcs entering each node. The number and types of

arrays required for each code are indi cated In Table V.

L ~~~~~~~~~~~~~~~~~~~~~ - --— - -—-— - -- - - - -  - -
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TABLE III

TRANSPORTATION

PROBLEM TOTAL IOIBER NUMBER NUMBER COST TOTAL HI UPPER BOUND
NUMBER NUMBER OF OF OF OF RANGE SUPPLY COST CAP MIN MAX SEED

NODES SOURCES SINKS ARCS

1 100 5 95 250 1-100 10,000 80 100 5 10 12345678

2 100 10 90 300 1-100 10.000 80 100 5 10 12345678

3 100 10 90 1000 1-100 10,000 80 100 5 10 12345678

4 100 25 75 2000 1-100 10.000 80 100 5 10 12345678

5 100 50 50 2500 1-100 10,000 80 ~u0 5 10 12345678
— 

6 200 20 180 1200 1-100 20.000 80 100 5 10 12345618

1 200 20 180 2200 1-100 20.000 80 100 5 10 12345678

8 200 50 150 5000 1-100 20,000 80 100 5 10 12345678

9 300 10 290 1000 1-100 30.000 80 100 5 10 12345678

10 400 40 360 5000 1-100 40,000 80 100 5 10 12345678

TRANSSH IPMENT

PROBLEM TOTAL NUMBER NUMBER NUMBER COST TOTAL HI UPPER BOUND TRANSSHIPMENT
NUMBER NUMBER OF OF OF OF RANGE SUPPLY COST CAP MIN MAX SEED 0 S SINKSNODES SOURCES SINKS ARCS

11 100 7 50 1600 1-100 10,000 80 100 5 10 12345678 - -

h A  100 7 50 2000 1-100 10,000 80 100 5 10 12345678 - -

12 200 7 170 1600 1-100 20.000 80 100 5 10 12345678 - -

1ZA 200 7 170 2000 1-100 20,000 80 100 5 10 12345678 - -
13 400 7 370 2000 1-100 40,000 80 100 5 10 12345678 - -
13A 400 7 370 2500 1-100 40,000 80 100 5 10 12345678 - —
14 400 10 360 2000 1-100 40,000 80 100 5 10 12345678 - -

L4A 400 10 360 3000 1-100 40,000 80 100 5 10 12345678 -

15 400 10 350 3000 1-100 40,000 80 100 5 10 12345678 -

16 400 200 350 2000 1-100 40.000 80 100 5 10 12345678 -

16A 400 20 350 3000 1-100 40,000 80 100 S 10 12345678 - -
17 400 10 360 4000 1-100 40,000 80 100 5 10 12345678 - -

~~~— ~~~— ~~- —. -S -
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TABLE IV

SENSITIVITY ANALYSIS TESTING

TOTAL NUMBER I I I ARC COST TOTAL HI UPPER BOUND TRANSSHIPMENT
OF NOOES SOURCES SINKS ARCS DENSITY RANGE SUPPLY COST CAP MIN MAX SEED SOURCES SINKS

4 100 25 75 2000 1-100 10.000 80 100 5 10 12345678 - -
4E 100 25 75 2000 1-1000 10.000 80 100 5 10 12345678 - -

9 300 10 290 1000 1-100 30,000 80 100 5 10 12345678 - -
9E 300 10 290 1000 1-1000 30.000 80 100 5 10 12345678 — -

11 100 7 50 1600 1-100 10,000 80 10 5 10 12345678 - -
h1.A 100 7 50 2000 1-100 10,000 80 100 5 10 12345678 - -
11B 100 7 50 1600 1-100 1.000 80 100 5 10 12345678 - -

11C 100 7 50 1600 1-100 10,000 80 100 50 100 12345678 — -

110 100 7 50 1600 1-100 1,000 80 100 50 100 12345678 - -
liE 100 7 50 1600 1-1000 10,000 80 100 5 10 12345678 - -

12 200 7 170 1600 1-100 20.000 80 100 5 10 12345678 - -
12A 200 7 170 2000 1-100 20,000 80 100 5 10 12345678 — -
128 200 7 170 1600 1-100 2,000 80 100 5 10 12345678 — -

12C 200 7 170 1600 1-100 2,000 80 100 50 100 12345678 -

13 400 7 370 2000 1-100 40.000 80 100 5 10 12345678 - -
134 400 7 370 2500 1-100 40,000 80 100 5 10 12345678 - -

138 400 1 370 2000 1-100 4.000 80 100 5 10 12345678 - -
13C 400 7 370 2000 1-100 4,000 80 100 50 100 12345678 - -

13E 400 7 370 2000 1-1000 40,000 80 100 5 10 12345678 - -

14 400 10 360 2000 1-100 40,000 80 100 5 10 12345678 - -

148 400 10 360 2000 1-100 4,000 80 100 5 10 12345678 - -
14C 400 10 360 2000 1-100 4,000 80 100 50 100 12345678 - -

14* 400 10 360 3000 1-100 40,000 80 100 5 10 12345678 - -
14A.i 400 10 360 3000 1-100 4,000 80 100 5 10 12345618 - -
14A. 2 400 10 360 3000 1-100 4,000 80 100 50 100 12345678 - -

_ _ _  _ _  . — _ - - - 
_
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TABLE V

ARRAY REQUIREMENTS EXT RA ARRAY S TOTAL ARRAY
CODE REQUIRED TO PERFORM RE QUIRE D FOR RE QUIRE MENTS

• THE ALGORITH M ADVANCED DUAL START 
___________

ONETA 91N1+ 31E1+ 31V 1 21N 1+ 1IE I 11INI+ 41E1+ 31V 1
DNETL 131NI+ 51E1+ 31V 1 NONE 13JNJ+ 51E1+ 3JV J

DNETD 1OINI + 51-EI+ 31V 1 1IN I 11INI+ 51E1+ 3 f V ~

where IN I = number of nodes

IE I = number of arcs

IV I IE I— IN I + 1

The three codes were compared by solving each of the 22 original

test problems twice, using a different pi vot change criterion each time.

The first negati ve cri terion computes the flow on each basic arc until

a bas ic arc is encountered which violates either its zero or lower

bound. That arc is then selected to leave the basis. The most negative

criterion computes the flow on each basic arc and pi cks to leave the

basis that arc which violates either its upper or lower bound by the

largest amount. The first negative criterion was determined to be

superior in an earlier study [151 in which the test problems were

considerably different. The networks of that problem set had fewer

arcs, the capacities on the arcs were considerably higher, and the

node requirements were smaller. Consequently, in order to evaluate

thoroughly the storage schemes, the most infeasible criterion was also used.

~ . L • With out exception, for either pivot selection criterion employed,

the results in Tables VI and VII indicate DNETD runs faster than DNETL,

which runs faster than ONETA.

- 

ii  
_ _  _  

_ _ _
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TABLE VI

FIRS T NEGATIVE PIVOT SELECTION CRiTERION

CP TIME IN SECON DS ON CDC 6600

TOTAL SOLUTION TIME NUMBER OF PIVOTS

PROBLEM DNETA DNETL DNETD DNETA DNE~L DNETD

1 .968 .746 .568 92 96 91

2 1.154 .848 .637 114 114 110

3 6.679 4.029 2.517 433 395 360

4 17.842 11.243 4.986 686 690 682

5 20.779 11.353 7.610 690 638 999

6 10.818 7.277 4.413 431 423 433

7 20.285 11.913 6.703 546 464 476

8 58.333 38.421 14.422 889 932 990

9 9.835 7.136 5.122 321 317 322

10 93.582 60.759 36.486 1222 1262 1932

11 20.970 13.954 6.205 866 904 847

h A  32.45 7 21.546 8.531 1137 1176 1222

12 20.613 13.399 10.621 720 690 886

12A 28.369 17.575 12.767 838 799 894

13 53.893 36.191 23.943 1345 1404 1435

13A 71.214 43.382 33.955 1638 1534 1957

14 42.966 30.099 15.957 897 961 988

14A 60.879 41.914 22.590 1027 1042 1215

15 39.478 26.379
-S 
15.848 874 873 932

16 30.365 21.275 15.419 697 721 894

16A 56.077 40.004 20.412 1022 1078 1166

17 85.682 59.541 25.471 1216 1317 1190

;
_ -
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TABLE V I I

MOST NEGATIVE PIVOT SELECTION CRITERION

CP TIME IN SECONDS ON CDC 6600

_________ 

TOTAL SOLUTION TIME NUMBER OF ITERATIONS

PROBLEM DNETA DNETL DNETD 
- 

DNETA DNETL DNETD

1 1.117 .869 .808 91 91 91

2 1.416 1.127 1.023 105 109 104

3 3.476 2.835 2.343 128 147 139

4 8.868 5.871 5.219 203 190 198 -

5 14.006 11.677 9.106 291 331 311

6 10.104 7.351 6.415 279 273 271

7 16.785 12.150 10.432 298 296 316

8 58.313 41.786 32.442 617 594 589

9 12.573 9.439 8.604 328 340 343

10 87.814 65.309 52.604 783 825 808

11 8.259 5.475 5.139 184 160 170

h A  8.564 7.085 5.390 188 189 183

12 11.003 7.940 7.131 244 241 247

12A 13.144 9.572 7.932 259 252 
— 

253

13 29.036 21.330 18.008 481 481 456

13A 33.818 28.118 20.906 468 548 472

14 33.015 24.810 20.010 500 508 477

14A 49.751 33.540 27.017 707 515 513

15 32.210 23.932 21.301 500 489 512

16 32.851 23.975 
- 

20.204 521 525 542

16A 49.674 37.099 28.850 619 628 613

17 58.529 44.534 34.813 556 576 574

- -.~~~~~~.-
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The codes differ only in their implementation of the “arc

scan ”, the order in which nonbasic arcs are exami ned to determine the

arc to enter the basis. Dt4ETA examines every nonbasic arc to determine

NB*. For each arc, i t  must be determined if its two nodes are In

different subtrees , and , if so, whether the flow on the arc Is directed

toward or away from the root, and whether the flow on the arc Is at the

upper or lower bound. If the arc then is determined to be eligible to

enter the basis, its reduced cost is computed. If the absolute value

of the reduced cost is less than that of the largest element currently

In NB* , this arc is placed in NB*. The time consumi ng character of

these operations is indicated by the lengthy sol ution times . ONETL

eliminates by way of the data structure the arc capacity check and the

processing of the current basic arcs; as Tables VI and VII show, the

total sol ution times all decrease. DNETD reduces the amount of work in

a different manner. It processes only the arcs in and out of the smaller

subtree. The same number of operations per arc are performed as in

ONETA but the forward and reverse stars of fewer nodes are examined.

This approach can dramatically reduce the number of arcs processed;

the extent of this reduction is indicated by the clear dominance of

DNETD on every problem.

6.4 EVALUATION OF PIVOT SELECTION RULES

Neither DNETD/MN (DNETD with the most negative criterion) nor

DNETD/FN (DNETD with the first negative criterion) was clearly superior

over the enti re problem set. DNETD/ FN ran faster on 9 of the 10 trans-

portation problems and on 6 of the 12 transshIpment problems. Further,

- ~~ ,.~~ e.M _S~~~~~~~ _St~~*..,_5 5 S
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the solution times for several of the problems indicate a strong de.

pendence upon the pivot selection rule used. For example, DNETD/IItI re-

quired 32.442 seconds to solve problem 8 whIle ONETD/FN required only

14.422 seconds . On the other hand, DNETD/I41 sol ved problem 13A in

20.906 seconds while I]NETD/FN needed 33.955 seconds to reach optimality.

In addi ti on to these two pivot cri teria , we Investigated

al ternative pivot criteri a and compared the performance of DNETD wi th

each pivot selection criterion. The alternative criteria examined are

based on Strategies 3 and 4 of Section 5.2. These strategies choose

as the entering arc the most infeasible of the first d infeasible basic

arcs encountered in the basic flow update. In preliminary testing, the

reset strategy, strategy 4, proved to be uniformly better and, thus,

strategy 3 was subsequently dropped.

In implementing strategy 4, two rules were used in determining

value for d. First, d was set to be constant for all problem sizes.

The values chosen were 10 and 40. (The versions of DNETD employing

these criteria are referred to as DNETD/10 and DNETD/40 , respectively.)

Secondly, d was set to be a percentage of the number of nodes. The values

examined were 5%, 10%, 20%, and 100%. (The versions of DNETD employing

these rules are referred to as DNETD/5%, DNETD/ 1O%, and DNETD/20%, and

ONETD/100%.) Thus six versions of DNETD employing strategy 4 were

eva % uated In conjunction wi th DNETD/ FM and ()NETD/ PI4.

Problem Set 2, the problem set employed for this testing, in-
cludes 7 of the orIginal 22 problems and 1 additional transshipment

problem ( taken from the 15 addi tional problems shown in Table IV) with

smaller node requirements . Two of the eight problems are transportation

I. . ----- -~~~~-- - . --—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



problems. Eac h “unique’1 version of DNETD solved these eight problems

twice. First, the problems were sol ved in order to compare total solu-

tion times and number of pivots . These statisti cs appear in Table VIII.

Then counters were inserted in each version. For each pivot two counts

were made, one of the number of nodes In the smaller subtree and the

other of the number of basic arcs whose flows were recomputed in order

to find the leaving arc. Both counts were accumulated and are also

shown in Table VIII . Note that the number of nodes in the smaller sub-

tree is the number of nodes whose forward and reverse stars must be

scanned in order to determine NB*.

Viewing the data of this table, one can see that in general

a code implementi ng a strategy whi ch scans the forward and reverse

stars of fewer nodes will tend to solve problems faster. However,

that same code may process more arcs, may require many more pivots , or

may require that the flow on more basic arcs be computed in order to

determine NB*. Problem 4 serves as a good example. DNETD/MN scans

fewer forward and reverse stars than does DNETD/ 10%. However, DNETD/I’t4

must compute more basic flows .

‘For certain problem sizes two versions of DNETD are identical .
For example, for 400 node networks , DNET[4’lO% and DNETD/ 40 are the
sane. Consequently, for such situations only one run was performed
for both versions and the same information was recorded for both versions.

•

1

V 

-
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TABLE VIII

LEAVING ARC SELECTION STRATEGIES

CP TIPL IN SECONDS ON CX 6600

STRATEGY 4 9 h A  12 14 14A 14A. 1 17

TOTAL SOLUTION TIlE

ONETD/P~ 5.219 8.604 5.390 7.131 20.010 31.107 
J 

27.017 34.401

ONETD/FN 4.916 5. 141 8.469 10.596 15.930 22. 722 22.584 25.401

ONETO/ lO 5.043 5.096 7.36 3 7.934 15.487 21.506 23.456 24.803

ONETD/40 5.683 5.487 7.747 7.734 14. 320 21. 168 20.946 24. 797

ONETD/ 100% 4. 731 8.904 5.852 6.953 20.961 31.812 28. 142 35.354

DNETD/ 5% 5.357 5.661 8.576 7.939 14.795 21.220 22.752 26.225

ONETD/ 10% 5.043 6. 151 7.363 8.149 14.320 21.168 20.946 24.797

IONETD/ 20% 5.280 7.388 7.631 7.734 15.028 25.682 1 20.143 25.215

NLIIER OF PIVOTS
1- — - 5

l~4ET0/MN 198 343 183 247 477 719 513 574

I~4ETD/FN 682 323 1222 866 988 1374 •1215 1190

ONETD/ 1O 404 296 395 461 751 940 924 848

DNETD/40 232 288 250 322 573 682 696 632

ONETD/ 100S 115 351 193 236 492 143 537 574

ONETD/5% 516 309 757 461 671 782 823 745

ONETD/10% 404 317 395 428 573 682 696 632

ONETD/20% 315 343 291 322 , 504 
- 

721 563 546

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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TABLE VIII

CONTINUED

STRATEGY 4 9 11* 12 14 14A 144.! 17

TOTAL NUlEER OF MODES IN SI~4LLER SU8TREE

- 
IJ4ETD/PI4 2417 13467 2629 

1 
8184 27736 41641 31285 347F ?

ONETD/FN 
— 

3352 2973 4512 9280 17317 30948 23950 13787

~ ETD/1O 2913 2991 3445 7077 19002 23006 23106 13808
ONETD/40 3032 3176 

- 
3455 8338 11193 20469 19393 16913

* ONErD/ 100% 1903 13722 2990 7266 30185 45813 31966 34787

ONETD/5% 3189 3881 4985 7077 13001 22196 22250 18643

ONETO/ lOS 2913 5075 3445 8060 11193 20469 19393 16913

3367 7151 3506 j 8338 12641 31215 15417 17023

TOTAL NUlEER OF BASIC ARCS WHOSE FLOWS

WERE COl~’UTE O IN ORDER TO FIND THE LEAVING ARC

ONETD/ 1q4 19101 102856 18216 49352 190722 287280 ? 205086 229425

ONETD/FN 12184 9173 20890 43487 69150 98468 92529 67345_-
ONETD/1O 18003 19336 13134 32765 80508 116803 113829 85644
ONETD/ 40 17383 36776 19525 37930 89609 j 136596 114655 108763

ONEID/lOOS 16990 104882 18139 46902 196498 279393 214385 228381

( ONETD/5% 16360 28082 22759 32765 84096 123584~ 118865 103185
ONETD/10% 18003 41661 13134 141021 89609 136596 114655 -_108763

j ONETD/20% 18922 59818 ~~ 25O [31930 113938 _ -_
190471 125284 134979

- 1
~___
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Looking at the solution times of Table VIII , no version clearly

emerges as superior. On the 400 node problems, DNETD/40, which coincides

with ONETD/10% for these problems, ran cons istently faster than the other

versions. On problems with a smaller number of nodes, DNETD/10% per-

formed somewhat better than did DNETD/40. Overal l , DNETD/1O% solved prob-

lems more quickly than did the versions of DNETD employing the other per-

centage rules, losing only to DNETD/100% on problem 4 and to all of the

other three on problem 12. In addition to outperforming DNETO/r’t4 and

DNETD/FN on the 400 node transshipment problems , DNETD/ 10% assumed a

mi ddle ground wi th respect to these two versions on the other problems.

In short, the 10% rule emerges as a good consistent rule. For the

remainder of the computational test ing , the 10% rule was employed as the

pi vot selection criterion.

6.5 LIMITING THE LENGTH OF THE SORT LISTS

DNETD/ 10% requires 8 arc length and 7 node length arrays of

storage. Since the three sort arrays are allocated IE ! - IN I + 1 words

of memory, we investigated the effect on total solution time of reducing

the size of these arrays.

In solving the networks of Problem Set II, two other statistics

(in addition to those previously mentioned) were compi led: the maximum

and the average (per iteration) by each of the sort lists . TABLE IX con-

tains these statistics obtained by using DNETD/10%:
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TABLE IX

MAXIMUM AV ERAGE
PROBLEM SORT LISTS SORT LISTS

LENGTH LENGTH (PER ITERATION)

4 111 7.4

9 23 2.0

h A  117 15.4

12 50 6.3

14 64 4.2

14A 54 3.6

14A. 1 56 5.4

17 127 8.1

While the maximum sizes of these sort lists are rather large, the average

sizes are quite small. In fact for these problems , the largest average sort

l ist size was 15.4. We therefore restricted the maximum-size of the lists to be a

somewhat larger number, 25, and resolved the networks of Problem Set II. The

solution times for the two versions of DNETD/10% are shown in TABLE X.

:

-~~~~~~ 
5 - - .  
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TABLE X

SOLVING PROBLEM SET II WITH DNETD/1O%

TOTAL SOLUTION TIME NUMBER OF
IN CP SECONDS ITERATIONS

R MAXIMUM SORT ARRAYS SIZE IAXIMUM SORTP OBLEMS 
~RRAY S SIZEEl- N +1 5 
~E I-IN I+1 - 25

4 5.043 5.826 404 462

9 6.151 5.922 317 317

h A  7.363 7.751 395 522

12 8.149 7.546 428 399

* 

14 14.320 18.112 573 733

14A 21.168 19.175 682 642

h4A.h 20.946 23.117 696 737

17 24.797 25.~~ 3 632 740

The results indicate that while a reduction in the size of the

sort lis ts does not critically affect algori thmic performance, it

drastically reduces storage requirements. In fact, on 3 of the 8

probl ems, the code employing the abbreviated sort lists actually solved

the problems faster. This version of CNETD employing the abbreviated

sort lists and the 10% pi vot selection criterion will be called DNET2.

6.6 EVALUATION OF DNET2

To evaluate DNET2, we compared its performance on the 22

original problems with that of ONETD/FN, [*lETD/~I1, and the primal sImplex
transshipment code, PNET-I. (12, 141 (Since the problem networks

-- -- - - -— - - --~~~~~~~~~~~~ - -—- - - — -—~~~~~ —- 
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have many arcs out of the pure source nodes and few arcs into each node,

the arc directi ons for every arc in each network were reversed during

problem input for PNET-I so as to efficiently implement the pivot

selection criterion (the most negative arc out of a node) used in

PNET-I.) The results are shown in Table XI.

Note that DNET2 performed rather well in relation to DNETD/~tl

and CNETD/FN. Among these three versions , DNET2 ran fastest on eight

problems and slowest on only one. On thirteen of the problems, its

times fell between the times of the other two versions. These results

indi cate that, while DNET2 may not oe the best dual code on a particular

* problem , its overall performance is quite consistent.

Comparing DNET2 to PNET-I, howeve r , the primal code is uniformly

superior although for 14 of the 22 problems, the primal code was less

than 3 times faster and for 20 of the 22 problems , the primal code was

less than 5 times faster.

In earlier testing in which the problem set consisted of sparse

networks, PNET-I was consistently 6-12 times faster than the dual codes

DNET and DNET-I (12, l5~. The sparsity of the networks was actually

responsible for these dual codes performing as well as they did since

both codes employ a full arc scan in order to determine the entering arc.

The poor performance of DNETA in sol ving the current problem set ’ s

F networks which feature a much higher arc to node ratio points out the

computational expense of the full arc scan. Further, the more eff ici ent

functions and techniques presented in the previous secti ons indicate the

superiority of DNET2 over the two earlier codes for the class of problems

cons idered in this study.
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TABLE XI

COMPARISONS OF DUA L AND PRIMAL GO DES

CP TIME IN SECONDS ON CDC 6600

TOTAL SOLUTION TIME NUMBER OF PIVOTS

PROBLEM NET~
)/t4~ ~ONETD/FN DNET2 PNET-I DNETD/W1 ONETD/FN ONET2 PNET-I

1 .808 .568 .648 .141 91 91 88 105

2 1.023 .637 .662 .260 105 110 94 176

3 2.343 2.517 2.248 .798 128 360 208 487

4 5.219 4.986 5.826 2.234 203 682 462 988

5 9.106 7.610 5.154 4.493 291 999 329 1407

* 
6 6.415 4.413 

- 

4.326 2.035 279 433 264 1084

7 10.432 6.703 6.565 3.518 298 476 291 1628

8 32.442 14.422 16.284 9.625 617 990 595 3438

9 8.604 5.122 5.934 .662 328 322 317 269

10 52.604 36.486 28.315 9.709 783 1932 
— 

690 3622

11 5.139 6.205 5.874 3.162 184 847 408 2323

h A  5.390 8.531 7.748 4.094 188 1222 522 2584

12 7.131 10.621 7.553 2.931 244 886 399 
- 

1787

12A 7.932 12.767 9.685 3.677 259 894 474 2217

13 18.008 23.943 19.992 3.708 481 1435 771 2095

13A 20.906 33.955 26.668 
- 

6.344 468 1946 1053 2903

14 20.010 15.957 18.249 3.956 500 988 733 2254

14A 27.017 22.590 19.213 6.116 707 
- 

1215 642 3047

15 21.301 15.848 14.769 3.721 500 932 535 2092

..j 16 20.204 15.419 15.098 3.469 521 894 614 2019

16A 28.850 20.412
__- 

20.132 7.845 619 1166 645 3815

17 34.813 25.471 26.051 9.942 556 1190 740 4199 
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In order to measure the effect of problem variation on code

performance, we then compared the performance of DNET2 to that of PNET-I

when the following problem parameters were varied: total supply, upper

bound values , cost ranges , and the n a ~ter of arcs in the network.

When the original problem set was constructed, the supply , and

upper bound val ues were set so that the flow on many nonbasic arcs would

be at their upper bounds at optimality . The results in Table XII indi cate

that this indeed occurred; for the 22 problems the percentage of nonbasic

arcs at their upper bounds ranged from 28% to 59%.

We first considered the effect of reducing the total supply

and constructed five new transshipment problems. The specifications of

these problems are Identical to those of problems 11, 12, 13, 14, and

h4A except that total supply is reduced by a factor of 10. The com-

putational results appear in Table XIII.

For the modified problems the percentage of nonbasic arcs

having flow values equal to their upper bounds diminished by 300% to

400%. While the solution times for DNET2 tended to decrease, those

for Pt4ET-I decreased somewhat more.

We felt that simply increasing arc upper bound values by an

order of magnitude from 5 - 10 to 50 - 100 woul d have the same effect

as reducing total supply. We thus decide d to test the effect of

~~~~ decreasing total supply while also Increasing upper bound values .

Accordingly, the modified problems used in the total supply testing

were further changed so that the upper bound val ues now ranged from

50 - 100. Table XIII contains the results of this testing.

~~~~ 
— - - 

-



_____ - . -

-55-
TABLE X II

CHARACTERISTICS OF SOLUTIONS
OBTAINED WITH DNET2

CP TIME IN SECONDS ON CDC 6600

PROBLEM TOTAL START START NUMBER OF PERCENTAG E OF
SOLUTION TIME TIME AS NONBASIC ARCS NONBASIC ARCS

TIME PERCENTAGE AT UPPER AT UPPER
OF TOTA L BOUND AT BOUND AT
SOLUTION OPTIMALITY OPT IMALITY

TIME

1 .648 .353 .54 54 .31
2 .662 .403 .61 131 .55
3 2.248 .873 .39 

— 

314 .40
4 5.826 

- 
1.649 .28 595 .34

* 5 5.154 2.131 .41 821 .35
6 4.326 2.421 .56 438 .42
7 6.565 3.921 .60 785 .39

— 
8 16.284 8.199 .50 1365 .28
9 5.934 3.582 .60 486 .59

10 28.315 16.845 .59 
- 

1617 .35
11 5.874 1.477 .25 654 .44
h A  7.748 1.778 .23 682 .36
12 7.553 2.991 .40 545 .39

~2A 9.685 3.673 .38 805 .45
13. - - 19.992 7.979 .40 561 .33
13A 26.668 9.728 .36 844 .39
14 18.249 8.328 .46 598 .35
14A 19.213 11.144 .58 1019 .38
15 14.769 8.237 .56 558 .33
16 15.098 8.126 .54 749 .45
16A 20.132 10.946 .54 1141 .44
17 26.051 13.827 .53 1385 .38

~~—1

~1 
- 

—-
~~~~~~~~
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TABLE XII I

SENSITIVITY ANALYSIS OF PRIMAL AND DUAL CODES
CP TIME IN SECONDS ON CX 6600

VARYING TOTAL SUPPLY

PROBLEMS: 11 11B 12 12B 13 13B 14 14B 14A 14A.h

TOTAL SOL UTION TIME

DNET2 : 5.874 4.851 7.553 7.691 19.992 18.648 18.249 15.778 19.213 23.117
PNET-I : 3.162 1.672 2.931 2. 132 3.708 5.118 3.956 3.602 6.116 5.646

NU IF ER OF PIVOT S

DNET2 : 408 453 399 524 771 716 733 578 642 737
PNET- I : 2323 1036 1787 1225 2095 1999 2254 1689 3047 2029

VARYING UPPER BOUN DS

PROBLEMS: J iB 11C 12B h2C 13B 13C 148 14C 14A.h 14A.2

TOTAL SOLUT I ON TIME

DNET2 : 4.851 2.423 7.691 6.893 18.648 20.817 15.778 18.235 23. 117 24. 110
Pt4ET-I : 1.672 .611 2.132 1.474 5.118 2.800 3.602 3.770 5.646 3.396

NUI~FER OF PIVOTS

DNET2 : 453 110 524 275 716 573 578 477 737 515
PtIET—I : 1036 315 1225 766 1999 1177 1689 1650 2029 1209

VARYING COST RAN GES

PROBLEMS : 4 4E 9 9E 11 liE 13 13E
F TOTAL SOLUTION TIME —- -

Dt4ET2 : 5.826 4.328 5.934 6.097 5.874 5.688 19.992 20.155
Pt4ET-I : 2.234 1.976 .662 1.029 3.162 2.775 3.708 4.357

NUI’FER OF PIVOTS -

DNET2 : 462 333 317 324 408 361 771 741
PNET— I : 988 829 269 431 2323 2035 2095 2067

VARYING ARC DENSITY

PROBLEMS: 11 h A  12 12A 13 13A 14 14A 17

TOTAL SOLUTION TIME a

ONET2 : 5.917 7.751 7.546 9.685 19.957 26.411 18.112 19.175 25.998
PNET-I : 3.162 4.094 2.931 3.671 3.708 6.344 3.956 6.116 9.942

NUMBER OF PIVOTS

ONET2 : 408 411 399 474 771 1053 733 642 740
PNET-I : 2323 2584 1787 2217 2095 2903 2254 3047 4199

-- ---—— - - .~~.-- - --~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
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The optimal sol utions to these networks have very few nonbasic

arcs at their upper bounds, approximately 1%. Concurrent with this drop,

the maximum sort array size dropped for four of the fi ve networks to

under 25. Hence, no large multiple pi vots were performed for these

networks . For this testing the times for DNET2 tended to Increase

slightly while those for PNET-I decreased.

The net effect of increasing the upper bound values and de-
creasing the total supply upon the dual times was nearly negligible.

Howe ver, the primal times dropped by nearly 100% so that on these less

restri cted networks the primal was approximately 6 times faster than the

dual . For the five problems of the original 22 problems, the primal was

less than four times faster.

The effect of varying cost ranges was considered next. For

four of the original problems , the arc cost ranges were increased from

1 - 100 to 1 - 1000. The results shown in Table XV II were inclusive for

both PNET-I and DNET2. Both codes performed better on two problems with

the larger cost range and worse on the other two problems. In general ,

however, the degree of difference was slight for both codes , indicat ing

that both codes are relatively insensiti ve to cost ranges.

The sensiti vity of the two codes to the nunter of arcs in a

network was then considered. Of the original 22 problems, 5 have, wIth

the exception of the nunter of arcs desired, the same specifications of

some other problem in the set. Problems h A  and h2A have the same

a speci fi cati ons as 11 and 12 except that the l atter have 1600 arcs whi le

the former have 2000 arcs . P roblem 13 has 2000 arcs while 13A has 2500.

- _______________________________________ - -
- _ -- .~~~~~ - -‘
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Problem 14 has 2000 arcs, 14A has 3000, and 17 has 4000 arcs . The

solution statistics for these problems are presented in Table XIII.

The times for both PNET-I and DNET2 Increase with arc density.

Howeve r, PNET-I was more sensiti ve to large increases in the nunter of

arcs . The times for DNET2 increased by only 44% when the nunter of arcs

were doubled from Problem 14 to Problem 17, while the times for PNET-I

increased by 150%. This sensiti vity of the primal is due to the pivot

selection rule employed and the fact that PNET-I is designed for sparse

networks .

7.0 CONCLUDING REMARKS

In this paper we have presented an effi cient implementation

of the modi fied dual simplex algori thm for capacitated transshipment

problems. Compared to prior dual simplex transshipment codes, this

new implementation features improved list structures to represent the

basis and to store the original problem data. These list structures

access desired data so that the processing of superfluous data is

minimized. Further, the dual simplex method was modi fied to conblne,

under certain conditions, several iterations into one. We formulated

and tested th ree implementations, each of wh i ch sotres the ori gi nal

problem data somewhat differently, and found one approach to be superior.

Using this approach, we then proceeded to eval uate various pi vot selection

cri teria and test modifications of the multiple pivot strategy. The re-

sultant code, which we deemed to be the “best” implementation of the dual

method, Is called ONET2 .

The literature has Indicated the superiority, both in terms of

-- -— —— .- -- —.~~~~~~~ 5- -5-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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storage and time, of special purpose primal based simplex approaches

over dual and out— of-kilter methods [2 , 3, 12]. Our testing, which

compared the performance of (Jt’IET2 to that of a state-of-the-art primal

code, PNET-I, has not suggested otherwise. However, we were able to

isolate a problem topology for which the times of DtIET2 only are 2 to 3

times slower than those of PNET-I. This topology features very dense

networks having few sources , many sinks , large total supply requi rements,

and smal l arc flow ranges; for such a topology earlier testing [21 in-

dicated the unsui tability of SUPERK , a state-of-the-art out-of—kilter

code. Consequently we did not use SUPERK in the comparative study.

Analyzing the perfo rmance of DNET2 further, as Table XI I indi-

cates , a conside rable percentage of the total solution time is spent in

finding an initial dual feasible solution. While further research may

be undertaken to find improved starting techniques for the dual method,

it does not appear possible to make the dual superior to the primal for

solving transshipment problems which do not have a good dual feasible

sol ution readily available. Often branch-and-bound or post-optimality

procedures requi re the altering of parameter values and then the re-

sol ving of the model. The previous optimal basis may still yield a dual

feasible sol ution with respect to the new parameters. For these situations ,

this dual code may be particularly effective.

~LL I 

- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ —-s - - -———--5-. ________



-5---- —-5- -5 -5 —5-- — --5 —-5 -.~~--.— —--5 
~~ 5— ——-5-—~

_

~

—

~

_--—-S ——- ——5-- - -

-60-

RE FE RENCES

1. Balas, E.and Zemel, E., “Sol ving Large Zero-One Knapsack Problems,”
Management Sciences Report No. 408, Graduate School of IndustrIal
Administration, Carnegie-Mellon University, Pittsburgh, June 1976,
Reused July 1977.

2. Barr, R. S., Elam , J., Glover , F., and Klingma n , D., “A Network
Augmenting Path Basis Al gorithm for Transshipment Problems .”

3. Barr, R. S., Glove r, F., and Klingman, D., “An Improved Ve rsion
of the Out-of-Kilter Method and a Comparati ve Study of Computer
Codes ,“ Mathematical Programing 7, (1974), 60-86.

4. Barrodale, I. and Roberts, F. D. K., “An Improved Algori thm for
Disc rete L~ Linear  Approximation ,” SIAM Journal of Numerical Analysis,
10 (Octobe?, 1973) , 839-848

5. Charnes, A. and Cooper, W. W., Management Models and Industrial
Applications of Linear Programming, 2 vols.,l4iley, New York , 1961.

6. Dantzlg, G. Linear Programing and Extensions, Princeton University
Press, Princeton , N.J., 1963.

7. Dial , R., Glover, F., Karney, 0., and Kl -Ingman , D., “A Computational
Analysis of Alternati ve Algori thms and Labeling Techniques for finding
Shortest Path Trees ,“ Research Report CCS291, Center for Cybernetic
Studies, The University of Texas at Austin, 1977. To appear in Networks.

8. Gilsinn, J. and WItzgall, C., “A Performance Comparison of Labeling
Algorithms for Calculating Shortest Path Trees,” NBS Techni cal Note
772, U.S. Department of Coimierce , 1973.

9. Glover, F., Hultz , J., Klingman, 0., “Generalized Networks : A -

Fundamental Computer—Based Planning Tool, ” Management Science, 24-,
12 (1978) , 1209- 1220.

10. Glover, F., Karney, D., and Kl ingman , D. “The Augmented Predecessor
Index Method for Locati ng Stepping Stones Paths and Assigning Dual
PrIces In Distribution Problems,” Transportation Science, 6(1),
1972 , pp 171— 180.

11. Glover, F., Karn ey, D. , and Kllngman , D., “Double-Pricing Dual and
Feasible Start Algorithms for the Capaci tated Transportation
(Distribution) Problem,” Research Report CCS1O5, Center for Cybernetic
Studies, University of Texas at Austin, 1973.

12. Glover, F., Karney , D., and Kli ngman, D., “ImplementatIon and
Computational Comparisons of Primal , Dual , and Primal-Dual Computer
Codes for Minimum Cost Network Flow Problems,” Networks 4, 3( 1914) ,
191-212.



— 
—--5- —----5—- -5--5-. - .55 -5 -5-55 5— -- -  - ~s v s ~~~ ‘-

- - .. — -5 - - 5 - —.

-61-

13. Glover, F., Karney, 0., and Klingman, D., and Napier , A., “A
Computational Study on Start Procedures, Basis Change Cri teri a,
and Solution Algorithms for Transportation Problems ,” Management
Science 20,5 (1974), 793—813.

14. Glover, F., Klingman, D., and Stutz , J., “Augmented Threaded
Index Method for Network Optimi zation,” INFOR 12,, 3 (1974),
293-298.

15. Hultz , J., Klingman , D., and Russell, R., “A n Advanced Dual Basic
Feasible Sol ution For a Class of Capacitated Generalized Networks,”
~perat1ons Research 24, 2, (March-Apri l, 1976) , 301-313.

16. Jacobsen, S. K., “On the Use of Tree Indexing Methods in Trans-
portation Algorithms,” European Journal of Operati onal Research
2, 1(Jan., 1978) , 54-65.

17. Johnson, E., “Networks and Basic Solutions ,” Opera tions Research
14(1966), 619-623.

18. Klingman, 0., Napier, A., and Stutz , J., “NETGEN- A Program for
Generating Large Scale (Un) Capacitated Assignment, Transportation ,
and Minimum Cost Flow Network Problems,” Management Science 20 ,5
(Jan., 1974), 814-821.

19. Wagner , H. “The Dual Simplex A lgori thm for Bounded Variables ,”
Naval Research Logistics Quarterly 5, 3, (1958), 257-261.

20. Witzgall, C., “On One-Row Linear Programs,” International Symposium
or Extremal Methods and Systems Analysis on the Occasion of
Professor A. Charnes’ 60th Bi rthday, University of Texas at Austin,
1977.

~~~~~~~~~

-*—-

~~~~~ - - _ _ _ _ _~~~~~
,
~~~~~~~~~~~~~~~~~~~~~~~~~ _

I_

~~~~~~~~_  _ _  _ _  :1111



“~ 5 - T~

Unclassified
— S..u f l t v CIjs~ s1ir,III~ n

DOCUMENT CONTROL DATA . R & D
S.,.,riIy .I. ~ .• I.. i.t.on of I, lb . hod)’ o I ..h,-fto, I ..•oS u,d, ..., .rnnuls Uo., ,... .1 I.e ~g,I,’rud wI,eu It,., vc,.jIS reporf f .  ch..sift.,S)

I O NIG I NA t I N G A C T I V I T Y  (Culpura il. i.othot) 2.. R E P ORT  S EC U R I T Y  CLA I* I~~ IC A y , O N

Cente r for Cybernetic Studies ‘ Unclassified
The University of Texas at Austin Zb GROUP

2 NL~~ONT t I T L E  
-

Implementation and Analysis of a Variant of the Dual Method for the Capacitated
Transshipment Problem

& D E S C R I P T I V E  NOTES (n’p. ot ? p o f l  ain.(ãs,cS,,a~ vc dat..)

S Au THOR(S) (Ffr II A.. .. maddi. fflãli.I, Ia.i n.m.)

Ronald D. Armstrong
Darwin D. Klingman
David_H._Whitman ______________________________________

6- REPORT O A T C  7a. T O T A L  NO. OF P A G E S  7b. NO. OF RCFS

Cctober 1978 61 20
Sm. CON I MAC i ON GHA N T NO Sm. ORIGIN A TOR S REPeNT NUMBLAIS)

N0014-78-C-0222(NSF MCS77-OO100 Center for Cybernetic Studies
b. PRO J ECT NO Research Report CCS 324

NR047 172 _________________________________________
c 6b. OTHER R E P O R T  NO(5I (Any oth.r numb~ ra that m.y b, ...S ~~i.dthi. raporl)

.1.

10 DISTRISU? I ON ST A T EM E NT

This document has been approved for public release and sale; its dis~ribution
is unlimited

I I -  SU PPL E M E N T ARY  NOTES IS.  SPONSORING M I L I T A R Y  A C T I V IT Y

Office of Naval Research (Code 434)

\ Washington, D. C.
Ii. A• S~~~~A C T

This pape r presents a variant of the dual simplex method for the capacitated

pure network problem and a computaticrial analysis of this algorithm. This work

includes the considerations of different list s-tructures to store the original

proble m data and the basis and the testing of various procedures to select the

leaving basic variable . This study also examines the sensitivUy of the irnple-

rnentation to changes in problem parameters. The results show that the

algorithm which is presented here is superior to earlier dual implementations.

-~~ --  .

r~n PO 1M 1A ’7~~ (PAG E I )
~~~~~~ , r~o~ s s i  . Unclassified
S/N oio i ~~eo 7-~ e i i  Siciu 4ty CIusi~,cat ~on

H 1 . - 5 __
-
_ _ _ 5 _ _ _ 1~ - -5-



- . - --~ 
. “— -5~- --5---’5----5-- -

- - - — .--, —~ -•5-~~ - - 5 - - .

Unclassified
S.. 11111 % I. I.t ’. .,t i. .111’’,,

L I N K  A L I N K  A L I NK  C
K f Y  W O N U S ______ ______ ______ ______ ______ _____

HO L E  W V  HO L E  W Y  HO L E  A T

Networks

Dual Method

Linked Lists

Transshipment Probleths

Linear Programming

S

DD ‘°‘ 1473 ( UA ( k ) Unclassified
SFR • Io ,.o ,a.Isuo — Se -ur ,ty CI.ulfFcsttosi

- ---—— -5---- — --——--- -—-— - ---—---- -- - - - -  — r  ~~~~~~~~~~~~~~~ - - ____________ 

-—- 5— -- — -5 - - -5 — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~ _ 5 _ 55-_ 

•
_i~~

_ _
~
:_____ 5 ______


