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ABSTRACT

This paper presents a variant of the dual simplex method for the

capacitated pure network problem and a computational analysis of this algo-

rithm. This work includes the considerations of different list structures

to store the original problem data and the basis and the testing of various

procedures to select the leaving basic variable. This study also examines

the sensitivity of the implementation to changes in problem parameters. The

results show that the algorithm which is presented here is superior to earlier
dual implementations.
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Implementation and Analysis of a Variant of the
Dual Method for the Capacitated Transshipment Problem

This paper describes the development of a variant of :the dual
simplex algorithm for the capacitated pure network problem and presents
the results of an extensive computational analysis of this-algorithm.
Comparisons of the dual method with primal and out-of-kilter codes in
the early 1970's indicated that the dual method was slower by approxi-
mately an order of magnitude in solving capacitated network problems
{3, 12]. Therefore, most of the network research over the last ten
years has been focused only on special purpose primal simplex and
out-of-kilter algorithms and codes. We were able to locate only three
dual transshipment codes, DNET [12], DNET-I [15], and [16].

For highly capacitated transshipment problems, the imple-
mentation of the variant of the dual simplex method which is presented
here is superior to the earlier dual codes. However, even for these
problems, the special purpose primal simplex method is superior both
in terms of solution time and central memory requirements.

Three aspects of the dual simplex algorithm were examined
and modified in order to improve its efficiency. First, a number of list
structures for storing the original problem data and the basis (Section 4)
were considered. Next, we sought to implement, in the capacitated pure
transshipment setting, a modification of the dual method which incor-
porates a multiple pivot strategy (Section 2.1). Finally, different

procedures for the selection of the arc to leave the basis (Section 5.2)




were tested.

The list structures tested and evaluated for the new dual
code were chosen with two objectives in mind. They had to facilitate
efficient performance of the steps of the algorithm and they had to
obviate the processing of non-relevant data. We first tested several
of the recently developed, highly efficient linked 1list structures
which optimize the implementation of the primal simplex network
algorithm. These sophisticated structures were not available when DNET
was originally developed.

We tested other Tist structures which would allow one to
identify and thus avoid nonbasic variables which are ineligible to enter
the basis during an iteration of the dual simplex method. This process
is equivalent to performing a partial rather than a complete LP tableau
row scan to determine the incoming variable for each dual pivot in the
general linear programming setting.

Since even a partial scan for each dual pivot is quite time
consuming, we modified the dual method by incorporating a particular

multiple pivot strategy for each partial scan. This strategy generalizes

a technique used by Barrodale and Roberts to solve L1 norm problems (4].
(Multiple pivot approaches have also been considered by Balas [1) and
Witzgall [20] to solve linear programs).

The final aspect of this work was to analyze the sensitivity of
the resultant dual code to variations in problem parameter vaiues and to
compare its performance to that of a state-of-the-art primal capacitated
pure transshipment code over a set of problems especially well suited to

the dual code. The results of all our computational testing are reported

and explained in Section 6 of this paper.
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1.1 PROBLEM STATEMENT

The capcitated transshipment (CT) problem, may be defined as

follows:
Primal
Minimize c'x (1)
subject to
Ax = b (2)
0<x<u (3)
Dual
Maximize w'b - v'u (4)
subject to
: wiA - v <l (5)
w unrestricted (6)
v>0

where u is an nx1 positive vector and A is an mxn matrix whose columns
each contain exactly two nonzero coefficients, -1 and 1. Note that the
primal problem is equivalent, by a simple translation of variables, to
the seemingly more general problem in which the lower bound on x is

different from zero.

2.0 THE DUAL METHOD

In this section, the steps of the dual method in a general
(bounded variable) minimization 1inear programming setting are presented
11, 19]. In Section 2.1, the modification of the dual method to in-
corporate a multiple pivot strategy is indicated. The remainder of the




paper then investigates the specialization of the multiple pivot

strategy to solve CT problems.

Lemke's dual method may be succinctly described as follows:

1.

Begin with a dual feasible basis B and the vector of
cost coefficients Cg- Determine the initial primal
solution, Xg-
Select a basic variable (call it xz) whose value
violates either its upper bound or lower bound of
zero. If no such variable exists, the current basic
solution is optimal and the procedure terminates.
Determine the updated linear equation expressing X,
as a linear combination of the current nonbasic

variables; i.e., LR Ak(-xk), where NB

0
keNB
denotes the index set for the current nonbasic variables.
Let A:= -Ak for keNB if Xy is set equal to its lower

bound and xz violates its lower bound, or if Xy is set

equal to its upper bound and X, violates its upper

bound. For the remaining keNB, let Ai = Ak. and form

NB* = (keNB|A, > 0}. If NB' = ¢, then the problem is
primal infeasible and the procedure terminates.
Express the updated equation of the objective function
variable to be minimized (call it xo) in terms of the

current nonbasic variables; i.e., x. = n. + I nk(-xk),
€

1 0 0 keNB
where " " CBB Ak = wAk = Cpo and Ak denotes the

kth column of the original coefficient matrix A.

L
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6. Identify a nonbasic variable X seNB*, such that

|w /a_|= min = {|m /A, |},
$TUs' geNgt | KK

7. Determine a new current dual feasible basic solution
by removing s and adding & to NB (making X, basic
and X, nonbasic), and assigning xl the value of the
bound it previously violated while holding the other
nonbasic variables constant (identifying the values
thus assigned to the new set of current basic variables).

Then return to Step 2.

The linear equation of Step 3 for the leaving variable may be obtained
by using the poly-w technique of Charmes and Cooper [5]. According to
this technique, the coefficients of the equation defining X, in Step 3

correspond to A*, the pth row of the updated coefficient matrix A%,

where A* = B’lpA. One may generate A* by first premultiplying ™! by
a vector Eh where 31 =1 and gk = 0, for k # 2; one then post multiplies
the resulting vector by the original coefficient matrix A. EBB'I will
be referred to as the vector of "pseudo-dual" variable values and denoted
3. The Ak's of Step 3 may be defined as Ag = QAk - Ek. Hence, the wk's
and Ak‘s are expressable in a similar form.

Since most linear programs have many more columns than rows,
INB|, the cardinality of NB, is rather large. Therefore, the selection
of the entering variable at each iteration is a time consuming process.
Further, it is an inherently wasteful process since at each iteration
NB+ must be formed in order to select the entering variable. ne* s

then discarded.
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2.1 MULTIPLE PIVOT STRATEGY

Several researchers have tried to improve the efficiency of
the bounded variable dual method by utilizing a "multiple pivot" strategy
(Balas [1) and Witzgall [20]). Specifically, if Xg s the variable
selected to enter the basis, will do so at a primal infeasible level,
then one should not pivot X into the basis. Rather the value of Xg
should be changed from its current bound to the other bound. Furthermore,
Iz' which denotes the infeasibility of the variable X, which has been

selected to leave the basis, should be decreased by lxsu The values

il
of the other variables are not changed. Next, one must delete s from
NB* and repeat Svep 6. One continues in this fashion until NB+ = ¢ or
until the variable selected to enter the basis, xg (where r > 1), will
do so at a feasible level. [f NB® = ¢, then the p:oblem is primal
infeasible. On the other hand, if x; will enter the basis at a primal
feasible level, then one should permi€ it to do so and perform Step 7.
The following theorem shows that the resulting solution is dual feasible.
Theorem 1: Let the indices $251s Sps +ees S, be determined as
previously described. The sequence of operations defined by the modified
dual algorithm will provide a dual feasible basis after the completion

of Step 7.

Proof. It follows from the formula for updating the nk's that
(1) the sign of =, will not change for k £ N8 or for k e NBY with
Ime/ Al > Img /2 |+ (2) the sign of =, will change for keNB' with
r °r

|nklxk| < |mg /ag | and (3) the L8 will become zero for keNB* with
r-y

m/ A | =|me /A, |-
lk kl lsr sr

PSS S
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The only nonbasic variables to change values during an

iteration are Xg 0 X 5 eees Xg and they will switch in value from
1 2 r-1
one bound to the other. However, by construction

s Bl els s lofe b isstel
Si’ %y S Sp p

Therefore, the sign of L changes, or mg
i i
i=1, ..., r=-1, during the update. The sign must change in order to

goes to zero, for

preserve dual feasibility. Since all other nonbasic Xy satisfy ktNB+
or |m /x| 3_|nsrlxsr|, the solution will be dual feasible after the
completion of step 7.

Note that NB+ need be computed only once during an iteration.
NB* may be sorted to identify Sys +ees S ThER X ;5 ..., Xg AR

" o r-1

set to their other bound, and X enters the basis. Finally, if r =1,
r

the multiple pivot is merely a single pivot; in this case the modified

dual algorithm coincides with the standard dual method.

3.0 GRAPHICAL APPROACH

The most efficient procedures for solving capacitated transship-
ment problems (10, 12, 14] are based on viewing the problem in a graphical
context. The modified dual algorithm is integrated with these procedures,
which are adaptations of the simplex algorithm [5, 6, 10] in which the
A matrix and the basis matrix are stored as graphs using computer list
structures. The use of such structures reduces both the amount of work
needed to perform the simplex operations and the amount of computer

memory required to store essential problem data. In addition, the graphs

s . —— i e i
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contain only the nonzero matrix components which allow special graph
labeling procedures [7, 10, 13]. This eliminates checking and unnecessary
arithmetic operations on zero elements. Further, the graphical repre-
sentation allows one to characterize fully the nonzero elements of the
representation of any nonbasic vactor and the signs of these elements.
Finally, this representation aliows one to characterize explicitly which
dual values change and how these values are altered after performing a
basis exchange step.

The essential concepts and definitions of elementary graph
theory which are used in our development are outlined and related to the

capacitated transshipment problem in the next section.

3.1 GRAPHICAL INTERPRETATION OF THE CT PROBLEM

A directed graph G(N,E) is a finite set of nodes N and ares E
connecting the nodes. Each arc is represented by an ordered pair (i,j),
which defines the arc from node i to node j. It is not necessary for all
pairs of nodes to be joined and there may be multiple arcs between the
same two nodes.

The capacitated transshipment problem defines a directed graph
as follows. Each row of A corresponds to a node and each column
corresponds to an arc of the graph. Associated with each arc is a
variable, an. upper bound and an objective function coefficient. The
value of the variable (i.e., the component of x) associated with the
arc is called the flow on the arc. The row positions of the nonzero

entries (+1 and -1) in the colum which corresponds to the arc identify




the nodes on which the arc is incident. It will be assumed, henceforth,
that the arc is directed from the node associated with the -1 term to
the node associated with the +1 term. Additionally, an arc directed
from node i to node j will be denoted arc (i,j) and Xij» Ci5° and Uy
denote arc (i,j)'s flow value, cost, and upper bound, respectively.
Since the index ij naturally refers to arc (i,j), double
subscripting will be henceforth employed to improve readibility of the
subsequent discussion. In particular Aij’ A5 A:j, uij and Iij will

J
1
be employed rather than Ak’ Aer Aes s and I,. Further, the index ij

rather than k will denote an element of NB or NB*. Technically a third
index should be used, since there may be more than one arc from i to j.
However, for notational convenience, the third subscript will be omitted.
The method subsequently described provides an organization by which
multiple arcs with unique costs and upper bounds are readily accommodated.
The right hand side vector b for the capacitated transshipment
problem associates a node requirement bk (the kth component of b) with
node k of the graph. (Each unit of flow on an arc (i,j) therefore
"contributes" -1 and 1, respectively, to the node requirements bi and |
bj.) Note that a negative (positive) node requirement then corresponds
to a supply (demand) requirement at the node. :
The w vector of Step 5 (Section 2.0) is referred to as a
vector of dual variables. Given a current basis B, the values of the
individual components of w which satisfy complementary slackness may be ﬁ

determined algebraically in the following manner.

For each basic arc (i,j),

WAij 1 cij e -Wi + WJ "cij - 0’
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where w; and wj are termed the node potentials for node i and node j,
respectively. Since B contains |N|-1 arcs and |N| nodes, it is
necessary to solve a homogenous system of |N|-1 equations in |N|
variables in order to determine the value of w. This system may be
solved by first arbitrarily assigning any value to one of the variables
and then solving the resulting system. This procedure also may be used
to generate W in order to obtain the A 's of Step 3 (Section 2.0). The
resulting value, ﬁk, associated with node k is called node k's
pseudo-node potential. Although w and w may be generated by using

this same method, in actuality only W is generated anew each iteration.
Normally, the node potentials are computed at the beginning and then

merely updated from one iteration to the next.

3.2 BASES AND SPANNING TREES

In the standard bounded variable simplex algorithm, a basis B
for the CT problem is a matrix which consists of a linearly independent
set of column vectors of A and which has one less than full row rank.

The variables associated with the colums of B are considered to be
basic variables and all others are nonbasic variables. Collectively,

the vector of basic variables is denoted by Xg while that of the nonbasic
variables is denoted by xN. A basic solution is obtained by assigning
each nonbasic variable a value equal either to its upper bound or to

zero (its lower bound). Hence, a unique value may be found for each
basic variable which satisfies equation (2) of Lemke's dual method.

A basis for the CT problem may be viewed and stored as a graph

which contains only the nonzero components of the matrix B [6, 12, 14, 16].

P TS




This basis graph contains all |[N| nodes and exactly [N|- 1 arcs of

the original problem graph. Since these arcs correspond to columns

of B, they are linearly independent and the basis graph is thus a
spanning tree. Henceforth, the terms basis graph and spanning tree
will be used interchangeably. The node which is designated the root
node will be viewed as tl:2 highest node in the spanning tree. (See
Figure 2 for an example).

The next section briefly discusses the computer storage of
the spanning tree corresponding to B and the original problem graph

corresponding to A.

4.0 COMPUTER DATA STRUCTURES AND LABELING TECHNIQUES
4.1 STORING THE ORIGINAL PROBLEM GRAPH

Three different schemes for storing the original problem
graph were implemented and evaluated to determine which scheme performs
best.

The first scheme uses a popular linked structure [7,8] to
store the original problem data as contained in the matrix A. In this
method, all of the arcs which begin at the same node are stored together
and each is represented by recording its ending node, costs, and upper
bound. A pointer is then kept for each node; the pointer indicates
the block of computer memory locations for the arcs beginning at this
node. The set of arcs emanating from node u is called the forward star
of node u and denoted by FS(u), i.e., FS(u) = {(u,j)eE}. If the nodes
are numbered sequentially from 1 to |N| and the arcs are stored con-

secutively in memory in such a way that the arcs in the forward star
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of node i appear immediately after the arcs in the forward star of
node i-1, this method, called the forward star form, requires |N| + 3|E|
units of memory to store the original problem arc data {8]. These four
arrays are referred to as the FROM POINTER, TO NODE, COST, and CAP arrays
respectively. To complete the storage of the original problem data,
one additional node length array, the NR array, is required; it stores
the original node requirements for each node. Figure 1A illustrates
a sample problem and Figure 1B shows its associated arrays.

The storage of the original problem data in consecutive
memory locations using the forward star form implicitly associates a
unique arc number with each arc. For each arc, this number identifies
the position of the original problem data of that arc relative to the
position of the original problem data of the first arc in the forward
star of node 1 stored in memory. The uniqueness of this arc number
readily allows the accommodation of multiple arcs between the same two

nodes.

The other two schemes for storing the original problem data
utilize the forward star form in conjunction with additional arrays !
which are designed to improve algorithmic performance. These approaches
seek to lower problem solution time at the expense of extra storage
requirements.
The second scheme utilizes the creation of two more arc
length arrays and one node length array in order to identify easily all
arcs entering the same node. One of the arc length arrays, the FROM NODE

array, contains beginning node numbers which are blocked to indicate arcs
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having the same ending node. The node length array, the 70 POINTER
array, is used as an ending node index into this blocked set. Thus,
this pointer system is a mirror image of the forward star form described
above and shall be referred to as a reverse star form. The second arc
length array, the TRACE array, allows convenient retrieval of the
original cost and capacity data. These additional arrays are shown for
the sample problem in Figure 1B.

The third scheme utilizes two extra (2|N| + |E|) length arrays.
The first (2[N| + |E|) length array links together in two separate
group's the nonbasic arcs at their upper bound and the nonbasis arcs at
their lower bound of zero for each node. These pointer lists require
an arc length array of storage. The additional node length arrays con-
tain the arc number for the first element of each of these lists and are
used to access these lists. The second (2|N| + |E|) length array reverses
the pointers of each list of the first array in order to facilitate

pointer update.

4.2 STORING THE BASIS GRAPH

In order to represent a tree in a computer, one node, is
designated as the root node, r. P‘J, for i # j, is then defined to be
the unique path from node i to node j. If node j lies on Pir' with
J # i, then j is termed a predecessor of i and i is called a successor
of j. Immediate predecessors and successors are endpoints of a common
arc. The tree, therefore, may be represented by keeping a pointer list
which contains the immediate predecessor of node i on Pir for each node

i # r in the tree. For convenience, the predecessor of the root node is




r - o

o e

-16-

set equal to zero. Figure 2 illustrates a tree (for the network in
Figure 1) rooted at node 1 and indicates the predecessors of the nodes
as well as other functions which will be used in the computer imple-
mentation procedures to be discussed later in this paper. The pre-
decessor of a node is identified in the P array. For example, the
predecessor of node 8 is node 3.

The thread function [14], denoted T(i), is the first of these
additional functions and is shown in Figure 2. It is used to facilitate
the forward traversal of the spanning tree, an operation which is per-
formed many times in the solution of CT problems by simplex based net-
work codes. This function is a downward pointer through the tree and
is illustrated in Figure 2 by the dotted 1ine. Function T may be viewed
as a connecting link (thread) which passes through each node exactly
once in a top to bottom, left to right sequence, starting from the root
node. For example, in Figure 2, T(1) = 2, T(4) =5, T(10) = 1, etc.

The function T satisfies the following inductive characteristics:

(1) The set {r, T(r), 2(r), ..., TN'I(r)} is precisely the set
of nodes of the rooted tree, where by convention T2(r) = T(T(r)), T3(r)= T(Tz(r)),
etc. The nodes r, T(r), ..., Tk'l(r) are called the antecedents of node
™(r).

(2) For each node i other than node TV-1(r), T(i) is one of the
nodes such that P(T(i)) = i, if such nodes exist. Otherwise, w will denote
the first node which, in the predecessor path of i to the root, has an
immediate successor y and for which y is not an antecedent of node i. In

this case, T(i) = y.
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(3) TN(r) = r; that is, the "last node" of the tree threads
back to the root node.

The reverse thread function, RT(i), is simply a pointer which
points in the reverse order of the thread. That is, if T(i) = y, then
RT(y) = i. Figure 2 contains the reverse thread function values.

It is important to understand that the predecessor function
only indicates the node pairs of current basis arcs; it does not specify
the direction of these arcs. For example, if P(i) = j, then there exists
a basic arc between node i and node j; however, the predecessor function
does not indicate whether this arc is arc (i,j) or arc (j,i). A linking
funetion, LINK (i), is used to determine the arc direction as well as
the cost or upper bound values of each basic arc by specifying the
network arc number of the basic arc connecting nodes P(i) and i. If
this arc’'s orientation in the basis tree agrees with its actual direction
in the network (i.e., if the arc is actually arc (P(i), i)), then the arc
is said to be conformably oriented or just conformable. . Otherwise it is

said to be nonconformably oriented or simply nonconformable.

A final function is used in our implementation to facilitate
the tree traversals, the efficient updating of the P, T, and RT functions,
and the streamlining of the update of primal and dual solution data. Two
functions (depth and cardinality) were considered for these purposes.

The depth function, DH(i), indicates the number of nodes in
the predecessor path of node i to the root, disregarding the root node
itself. If one imagines the nodes in the tree to be arranged in levels
with the root at level zero, and all nodes "one node away from" the root
at level one, etc., then the depth function simply indicates the level of
a node in the tree. (See Figure 2.)

)

e i B
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The cardinality function, C(i), specifies the number of nodes
contained in the subtree associated with node i in the tree. By the
nodes in the subtree associated with node i, we mean the set of all
nodes j € N such that the predecessor path from j to the root contains
i. (See Figure 2.)

For reasons which shall be explained in the following sections,
the cardinality function is well suited to the implementations of the
modified dual algorithm utilized in this study. Therefore, all codes
discussed and tested in this paper utilize the cardinality rather than
the depth function. For the sake of completeness, however, aarly testing
compared the effect on solution time of the depth function versus the
cardinality function. Codes differing solely in the implementations of
these functions were run on the same problems. Uniformly those codes em-
Ploying cardinality had lower total solutions times. For the sake of brevity,
these results are not presented here but may be obtained from the authors.

Three additional node length arrays are used to store infor-
mation pertaining to the basis. The first, the NP array, stores the
current node potentials for the current basis. The second is a working
array which alternately stores the basic arc flow values and pseudo-node
potentials.

The third array, the NR array, was introduced in the discussion
of the original problem data (Section 4.1). Initially, it is employed
to store b, the original node requirements vector. In the context of a
particular basis, the entries in the NR array are updated so that
E =b+N (-xN); the node requirements vector, now "updated" with respect
to the current basis, is stored. The term "updated" refers to the

™
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modifications in the original node requirements (the original supply
and demand requirements at each node) necessitated by the addition of
N(-xN), which is precisely the negative sum of the arc flow on the non-
basic arcs at their upper bounds. More precisely, if the flow on the
nonbasic arc (i,j) is at its upper bound for the initial dual feasible
basis, then NR(i) is increased by Ui; and NR(j) is decreased by uj 5+
Whenever the flow on any nonbasic arc is changed via a multiple pivot
operation, then the NR array must be updated.

The next section describes the specialization of the modified
dual algorithm to the CT problem. The data structures used to represent
the original problem data and the labeling functions used to represent
the basis graph exert a powerful influence on the computational efficiency
of the algorithm. A primary focus of this paper is to demonstrate the
importance of the particular storage scheme used for the tree and net-

work in executing the steps of the algorithm.

5.0 IMPLEMENTATION OF THE MODIFIED DUAL ALGORITHM IN NETWORKS

Section 5 synthesizes the ideas of the last two sections. In
particular, it shows how the data structures and labeling techniques
presented in the last section may be utilized to implement efficiently
the modified dual algorithm for CT problems. The exposition follows
the organization of the algorithm as presented in Section 2.

If an initial dual feasible basis B is known and is stored
as a spanning tree using the predecessor, thread, reverse thread, and
cardinality functions, and if the node potentials have been computed

and stored in the NP array, then the initial primal solution x, now

B
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may be determined in order to complete the first step of the algorithm.

5.1 COMPUTATION OF BASIC ARC FLOWS

8 requires solving the system BxB = B.

Since B is represented by a spanning tree, and hence BxB = K is a

The computation of x

triangular system of equations, the system can be solved by back .
substitution. That is, it is necessary only to identify a row of
B in which there is a single nonzero entry corresponding to a variable
whose value has not yet been determined.

This solution mechanism is simple to implement using the RT,
LINK, and P functions. The reverse thread of the root is a node i
which has only one incident arc which connects nodes P(i) and i. The
direction of this arc may be determined from the LINK array. Finally,
the NR array may be used to assign the required flow on this arc in order
to satisfy the updated node requirement for node i. By actually
traversing the tree via the reverse thread, each node successively
reached will have exactly one incident arc with a flow value to be de-
termined. Thus, when the root node is reached, the solution Xg is known.

It is important to note that the basic flows can be recomputed
at any iteration by using the above procedure. When a single rather
than a multiple pivot strategy is employed, it is more efficient to
update the basic flows by finding the unique loop created in the basic
tree when the entering arc is augmented to the tree. The flows on the
basic arcs in this loop are then changed appropriately (See [10]).
However, when the multiple pivot approach is employed, the flow values

on several nonbasic arcs may change (from one bound to the opposite
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bound for each arc). Accordingly, updating the basic flows necessitates
finding and changing the flow on each of the basic arcs in the loop
created by each nonbasic arc which changes its bound status as well

as finding and changing the flow on basic arcs in the loop created by
the entering arc. Hence we chose to update the NR array rather than

a basic arc flow array and then recompute the values of the basic arcs

as needed from one iteration to the next.

5.2 SELECTION OF THE LEAVING ARC

The second step of the dual method is to select a primal
infeasible arc to leave the bacis. (If all basic arcs are primal
feasible, then the current solution is optimal and the procedure
terminates.) Since any such arc may be chosen as the leaving arc,
we tested four heuristic selection rules.

The first strategy selects the arc having the maximum flow
infeasibility. The aim of this strategy is to find a "good" leaving
arc so as to minimize, hopefully, the number of dual basis exchanges.
However, to find the arc with the maximum flow infeasibility, all basis
flow values must be computed and examined.

Since the basic arc flows are not updated from iteration to
iteration but rather are recomputed at each iteration, it may be ad-
vantageous to devise pivot strategies which may not requi e all basic
flows to be computed. Consequently, the second strategy selects the
first primal infeasible arc encountered in the basic flows computation.
While this strategy may result in more dual basis exchanges, all of the

basic flows are rarely computed at each iteration.
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The remaining two strategies are hybrids of the first two
approaches. Strategies 3 and 4 recompute the basic flows until d
(a positive integer) infeasible arc flows are encountered or all
flows have been recomputed. Strategy 3 then selects as the leaving
arc the one from this set of d arcs which has the most infeasible
flow. Strategy 4 not only chooses the leaving arc in this manner
but also resets the value of d to be e if e < d infeasible arcs were
encountered.

The difference between Strategies 3 and 4 becomes pronounced
if the number of infeasible basic arcs in the network decreases as a
problem is solved. In such a case, strategy 3 approaches the most
infeasible flow strategy while strategy 4 becomes the first infeasible
flow strategy. Further, note that Strategies 3 and 4 with d = 1 are
the same as the first infeasible flow strategy. (In the case of 4,
if no infeasible arcs are encountered, the current solution is optimal;

hence, the value of d is not reset.) Finally, Strategy 3 with d equal

to the number of nodes is the same as the most infeasible flow strategy.

5.3 DETERMINATION OF THE ELEMENTS OF NB*

Once arc (s,t) has been selected to leave the basis, the next
step is to determine the elements of NB* via a three part procedure.
First the pseudo-node potential values are calculated. Then Aik’ the
reduced pseudo cost value for each nonbasic are (i,k), is computed.

1
Finally, NB* is formed by evaluating Aik for each nonbasic arc (i,k).
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5.3.1 CALCULATION OF THE PSEUDO-NODE POTENTIALS

Calculating the pseudo-node petentials involves solving
the system 38 = ZB’ where, as noted in section 3.1, one pseudo-node
potential may be arbitrarily specified. The root node is customarily
selected for this purpose and assigned a pseudo-node potential value of
zevo. In a naive implementation the pseudo-node potential values of the
other nodes may then be determined in a cascading fashion. To do so, one
moves down the tree via the thread function and distinguishes the
pseudo-node potential value for each node i from that of its predecessor

node j by using the equation -w; + Wj = %ij for each basic arc, where

1

%st = 1 and Eij = 0 for arc (i,j)eE-{arc (s,t)}.

To improve the computational efficiency of the algorithm, this
procedure should be streamlined in the following way. Arc (s,t) is re-
moved from the tree. The subtree containing the root node is called the
"main tree" and the other subtree is referred to as the "subordinate
tree." Note that -Wi + Wj = zij = 0 for each arc (i,j) within each
subtree. So W, = Wj and all nodes within the same subtree have the
same pseudo-node potential value. Since Wr = 0, this imparts a zero
pseudo-node potential value to every node in the main tree. The pseudo-node
potential values of the nodes in the subordinate tree consequently depend
on the direction of the leaving arc; that is, if arc (s,t) is conformable
(nonconformable), then Qs =0 (;t = 0) and -35 + xt = EQt = 1 reduces
to wt = +1 (35 = -1). Consequently, all of the(pseudo-node potentials
in the subordinate tree have a value of +1 if arc (s,t) is conformable

and <1, otherwise. Hence, after the direction of the leaving arc has
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been ascertained, all of the pseudo-node potential values may be set

by traversing the two subtrees.

5.3.2 CALCULATION OF THE PSEUDO-REDUCED COSTS

The next step is to compute the pseudo-reduced cost, Ajke for each
nonbasic arc (i,k). From Section 2.0,

_'\o _’\: n N
Aik = "Aik “Cik = -W; + W “Cik*

If i and k are in the same subtree, A;, = 0, since 31 = zk and Eik = 0.
If i and k are nodes in different subtrees, then either Wi or “k equals
zero. Since Cik = 0, the computation of Ajk for this case simplifies to
the following: If arc (i,k) is directed from the main tree to the
subordinate tree (from the subordinate tree to the main tree), the value

of A is the same as (the negative of) the value of the pseudo-node

k
potential of any node in the subordinate tree. Since the values of the

pseudo-node potentials depend only on the direction the leaving arc, the
computation of the nonzero pseudo-reduced cost becomes solely a graphical

consideration as shown in Table I.




Direction of leaving
arc with respect to
predecessor orientation

Nonconformable

Conformable
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TABLE I

Pseudo-reduced
cost value

+1

-1

+1

Nonbasic arcs

From To
subordinate main
tree tree
main subordinate
tree tree
main subordinate
tree tree

subordinate main
tree tree

Hence, the three pseudo-reduced cost values of 0 and * 1 simply

serve to partition the set of nonbasic arcs into three distinct sets.

These three sets consist of nonbasic arcs between nodes in the same

subtree, from nodes in the main tree to nodes in the subordinate tree,

and from nodes in the subordinate tree to nodes in the main tree.

1
5.3.3 CALCULATION OF THE Aik's

1
For each nonbasic arc (i,k) in each of these sets, Aj Mmay now be

computed. This step completes the determination of NB* since

1
Nt = ((1,k) [, > 0 and (i,k)eNBY.
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From Step 4 of Section 2.0,
M if ki< 0 and Xik = Wik (1)
OF Xy > Uy and x;, = 0 (2)

1
Nk

Ak Tf xg, < 0 and x5 = 0 (3)
Or Xgp > Ugy and Xy, = W, (4)

So, x;k R T depending on the values of the arc flow on arc (i,k)

and on arc (s,t). Note that the nonbasic arcs between two nodes i and k

in the same subtree are not eligible to enter the basis since 1, = A:k = 0.
E Further some nonbasic arcs in each of the other two sets may be eligible
to enter the basis while other nonbasic arcs may not be. The only non-
basic arcs eligible to enter the basis are those arcs out of one subtree
having a pseudo-reduced cost value of +1 and satisfying condition (1) or
(2) and those arcs out of the second subtree which have a pseudo-reduced
cost value of -1 and which satisfy condition (3) or (4).

A convenient way to establish the arcs to be included in’

NB* is to determine initially the flow status and arc direction of the
leaving arc. After the arc direction is known, the pseudo-reduced cost
values of the nonbasic arcs out of each subtree may be obtained from

Table I. The flow status of arc (s,t) determines whether the nonbasic

arcs indicated by equation 5.3's conditions (1) and (3) or (2) and (4)
are then to be included in NB*.

T




For example, if Xgp > Uy and arc (s,t) is nonconformable,
then the nonbasic arcs from the subordinate tree to the main tree have
a pseudo-reduced cost value of 1 (See Table I). Since Xst > Ugys
Condition (2) indicates that of these nonbasic arcs only those at a
zero flow level are eligible to enter the basis. Similarly, the non-
basic arcs from the main tree to the subordinate tree have a pseudo-
reduced cost value of -1 and, of these arcs, Condition (4) dictates
that only those arcs at their upper bounds are eligible to enter the
basis. This case and the other three cases are listed in the following

table.

TABLE II
Leaving Arc (s,t) E To Determine NB*
' Include Each
{ Nonbasic Arc (i,k) out of
:‘
Flow Status Arc Direction | Main Tree Subordinate Tree
{
Xgt > Ugy Nonconformable | At Upper Bound At Zero Flow
!
Xgp < 0 Conformable | At Upper Bound At Zero Flow
Xs¢ > Ust Conformable | At Zero Flow At Upper Bound
[}
Xyt < 0 Nonconformable | At Zero Flow At Upper Bound

Neither the values of the pseudo-node potentials nor those of the
pseudo reduced costs appear in Table II. Therefore, it is not necessary
to compute them in order to determine the elements of Ne*. The pro-
cedure used to identify the elements included in NB* is as follows.

First, the arc direction and flow status of the leaving arc.are recorded.
Secondly, the nodes of the subordinate tree are identified by flagging
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their associated entries in the PNP array. Then appropriate nonbasic
arcs are considered. In doing so, one must check whether or not the
nodes i and k are in different subtrees and one must note the value of
Xjk*

An ideal implementation would examine only the arcs between
the two subtrees as presented in Table II. While this is not practical,
alternative data structures may be designed to store the original pro-
blem data to reduce the number of arcs examined. Without these alterna-
tive structures, it is necessary to examine every arc, basic and non-
basic, in order to determine ne*.

To serve as a basis for comparison, DNETA, the first code
presented in Section 6.0, considers every arc in the forward star of each
node. The second code, DNETD, implements the reverse star form in
addition to the forward star form. After the cardinality function is
used to determine the smaller subtree, each of the arcs into and each
of the arcs out of the nodes of that subtree are checked to determine
if they are basis eligible. Hence, fewer arcs are checked by DNETD than
by DNETA. However, DNETD does consider nonbasis eligible arcs into and
out of the smaller subtree a well as arcs between nodes within that
subtree.

DNETL, the third code, uses the forward star form and partitions
the nonbasic arcs out of each node into two doubly linked lists. The
first list links together for each node the outgoing arcs at their upper
bounds. In a similar fashion, the second 1ist links together for each

node the outgoing arcs at their lower bounds of zero. Consequently for
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each subtree only the arcs out of each node at the flow values as
specified by Table II are considered. However, arcs between nodes
within the same subtree for both subtrees are examined.

It is impossible to predict a priori whether the second
or third codes considers fewer arcs. Both methods consider some arcs
which are nonbasis eligible and do not examine others. DNETD does
not examine the basic arcs of the larger subtree while DNETL does not
examine any basic arcs. Hence, DNETL has a "better" worst case bound.
However, DNETD only processes the arcs in the forward and reverse stars
of the nodes in the smaller subtree, while DNETL considers the forward
star of every node in the tree. Considering the examination of each
arc in the forward and the reverse stars of one node as two "node scans",
DNETD, on the average, scans fewer nodes. But, since it is theoretically
impossible to predict whether DNETD or DNETL is more efficient, both
codes were tested in conjunction with DNETA. DNETD proved superior to
both DNETL and DNETA; the results appear in Section 6.3.

The examination of the nonbasic arcs is the only difference in

the three codes. All three implementations actually store the necessary
nonbasic arcs required to perform the multiple pivot in the same manner.
Obviously, the particular storage scheme used (to be discussed in the
next section) affects the ease of the calculation of the entering arc,

which is the next step of the modified dual method.

5.4 SELECTION OF THE ENTERING ARC

To determine the entering arc, it is necessary to compute

|1r”/)\U| for each (i,j)eN8*. Since [2j5] = 1 for a1l (i,j)eNB*, there
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is no ratio to compute and this calculation reduces to

l'n‘-ij/)uijl A l"ijl * l-w-i + Wy = c‘ijl

This is straight forward once NB* has been determined.

For the purpose of exposition, suppose that all ]nijl's with (i,j)eNB+
have been sorted in ascending order. Let the r-th position in this list
be such that the summation of the “ij's associated with the first r-1 entries
is less than Is¢ and the summation of the uij's associated with the first r
entries is greater than or equal to Ist' Let l"pql be this r-th entry;
then arc (p,q) is identified to enter the basis. By theorem 1, the
solution remains dual feasible after the basis exchange takes place.

The modified dual algorithm can be implemented using the complete
sort as described above. However, to perform a modified dual pivot one
need know only which arc (p,q) will enter the basis and which arcs (i,J)
correspond to the first r-1 entries described above in the complete sort.

A more efficient partial sort may be implemented by defining NB* to be

the subset of NBY associated with these r entries. Initially define

arc (p,q) to be an artificial basic eligible arc with a large positive
reduced cost and upper bound. NB* is built and (p,q) updated by comparing
50 (i,3)eNB*, against |7pq| and either discarding it if |nj;] > |yl

or redetermining (p,q) and NB* if '"ijl < |n Computationally, NB*

qu'
and the partially sorted list are computed simultaneously by making one
pass through the appropriate subset of the nonbasic arcs.

Three "sort" arrays store the elements of NB* by recording the arc
number, the FROM node, and the absolute value of the reduced cost (ratio
value) of each arc corresponding to an index contained in N8*. The length

of these arrays must be |E[-|N| + 1 in order to implement the modified dual
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algorithm. The length of these arrays in DNETA, DNETD, and DNETL were

accordingly set to this size.

If the length of these arrays is reduced to some number K < |E|-|N|+ 1,
then at most the K smallest minimum ratios will be retained. What emerges
is a hybrid approach utilizing a combination of a single and multiple pivot
strategy. If K is less than the cardinality of NB*, a nonbasic variable
corresponding to the largest (in absolute value) ratio in the sort list
enters the basis at a primal infeasible level. Since DNETD proved to
be the computationally superior code, it was modified to incorporate
this hybrid approach and tested in concert with DNETD. The results

appear in Section 6.5.

5.5 PERFORMING THE BASIS EXCHANGE

The last step of the modified dual algorithm is the basis exchange.
The leaving vector becomes nonbasic at the bound it previously violated,
the entering arc becomes basic, and the flow values of the nonbasic arcs
corresponding to the other indices in NB* (if any) switch from their
current bounds to their other bounds.

The update is performed in the following manner. First, the thread
function which was cut in order to determine the elements of NB*, is

restored to its previous state. Then the basis exchange is performed

and the thread is updated as discussed in [ 14 ]. Simultaneously the
node potentials and the functions used to define the spanning tree are
updated. Finally, the NR array is updated: if the flow on the nonbasic
arc (i,j) is to be increased (decreased) to its other flow bound, then

NR(1) is increased (decreased) by Ui 5 and NR(j) is decreased (increased)
by "1j'
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With the updated NR array and the updated basis, the basic
arc flows are recomputed as required by the pivot selection procedure

used. The procedure then returns to Step 2.

5.6 AN EXAMPLE OF A MODIFIED DUAL PIVOT

A dual feasible solution for the network of Figure 1 is given
in Figure 3. The dotted lines denote the nonbasic arcs at their upper
bounds. The updated NR array and the subsequently computed basic flows
are recorded in their respective arrays. Since x, , < 0, arc (3,4) may
be chosen as the leaving arc. The subordinate tree then consists of
the subtree rooted at node 5. The PNP array flags the nodes contained

in the subordinate tree in the following manner:

0 if node i is contained in the main tree
PNP (i) ={

1 if node i is contained in the subordinate tree

Hence, nodes 4, 5, 6 and 7 are flagged.

Since X34 < 0 and arc (3,4) is oriented away from the root,
it is only necessary to consider nonbasic arcs out of the main (subordinate)
tree at the upper bound (zero flow level). Hence, only the absolute values
of the reduced costs of arcs (3,5), (8,4), and (10,7), which are out of
the main tree at their upper bounds, and that of arc (7,9), which is the
only nonbasic arc out of the subordinate tree into the main tree at a
zero flow level, are considered. Now, using the NP array together with

the relevant arc costs,

|"3’5| =4, I"e’ul =2, |"10,7, =3, l"7,9' =2 and Iau. T

RSHEN—
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I,
Node Requirement NR (i)
Flow FLOW (i)
Pseudo Node Pontential PNP (i)

Node Potential NP (i)

\\\~ ’,’/

NODE | NR [FLOW|PNP| NP
1 |-6/ — (0] O
2 . 6| 0 1 {
3 5/ 0|0 2
4 [-6]~51]1119@6
SUI<5"S| V11 6 |
6 (0] 0|1 ]| 3 |
7 | 6| 6|1 | 7 |
8 [-1| 0|0 |1
g 2t 210 ?

100 |-1f 1]o0]oO
FIGURE 3
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Since u =1, u =2, and u =2, U +u +u s et
8yl 759 1057 854 7,9 1057 3y

*
So, NB* = (8,4; 7,9; 10,7} Note that 3,5¢NB . Arc (3,4) leaves the basis,
arc (10,7) enters the basis, and the flow on arcs (8,4) and (7,9) switches
from the current bound values to the opposite bound values. The updated NR

array, flow values, and tree function values are shown in Figure 4.

6.0 COMPUTATIONAL TESTING

In developing an efficient implementation of the multiple pivot
algorithm, we first devised and tested three different codes based on
three methods of storing the original problem data as presented in
Section 4.1. We fine tuned the fastest implementation by evaluating
a set of pivot selection strategies and examining the effect of restricting
the size of the sort arrays. The resultant code is called DNET2. The
final aspect of this study was to analyze the sensitivity of DNET2 to
problem parameters and to compare its performance to that of PNET-I,
a state-of-the-art primal simplex code, [12, 14] over a set of problems

especially well suited to this dual code.

6.1 CODE DEVELOPMENT

A1l of the codes, primal and dual, used in this study are
in-core codes; that is, the program and all of the problem data
simultaneously reside in fast-access memory. They are all coded in
FORTRAN and none of them has been designed for a particular compiler.
A11 of the problems were solved on the CDC 6600 at the University of
Texas at Austin Computational Center using the MNF compiler. The
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computer jobs were executed during periods when the machine load was
approximately the same, and all solution times are exclusive of input
and output; that is, the total time spent solving the problem was
recorded by calling a Real Time Clock upon starting on the problem
solution and again when the solution was obtained.

A1l of the dual codes used in this study employed the same
starting procedure, the Advanced Dual Start [15], and utilized the
partially sorted 1list of Section 5.4 in conjunction with the multiple

pivot strategy.

6.2 PROBLEM SET DESCRIPTION

Before conducting the computational testing phase of this
project, we postulated that the dual codes would perform well on
tightly capacitated networks in which the ratio of arcs to nodes is
high and the flows on a substantial number of the nonbasic arcs (20%
or more) would be at their upper bounds at optimality. We theorized
that for such networks with large node requirements and tight arc flow
capacities the average number of elements in the sort lists per itera-
tion would be large and that therefore, on the average, the flow on
many nonbasic arcs would swing from one bound to the other during an
iteration. Hence, such networks would make full use of the multiple
pivot strategy.

A problem set of 22 test problems was selected to test this
hypothesis. Generated by the NETGEN network generator [18], this

problem set consists of 10 transportation and 12 transshipment networks.
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[The number of nodes considered varies from 100 to 400 per network and
the number of arcs varies from 274 to 5000.] A1l of the 22 networks have
cost ranges of from 1 to 100, and each network has a total supply equal
to 100 times the number of nodes in the network. Table III describes

the 22 test problems. For some of these problems, certain parameters

were modified so that sensitivity analysis could be performed. These

parameters include number of arcs, cost range, total supply, and upper
bound values. This second set encompasses 15 additional problems and

is described in Table IV.

6.3 STORAGE OF THE ORIGINAL PROBLEM DATA

The first phase of testing evaluated the different methods of
storing the original problem data. A separate code was written for each

scheme; they are called DNETA, DNETL, and DNETD. DNETA requires 9

node length arrays (FROM, P, T, RT, LINK, C, NP, NR, and one working
array), 3 arc length arrays (T0, COST, and CAP arrays) and 3 arrays which
are used to store the data requirved to perform the partial sort to obtain
NB*. These sort arrays record the arc number, the FROM node, and the
absolute value of the reduced cost of each arc corresponding to an index
contained in NB*. The dimension of each sort array is |E] = IN| + 1.
DNETL uses the structures of DNETA in conjunction with a doubly-1inked

list which, for each node, ties together the nonbasic arcs out of that

node at the same bound, either the upper or zero bound. In addition to
the structures of DNETA, DNETD uses the reverse star structures which
link together the arcs entering each node. The number and types of

arrays required for each code are indicated in Table V.
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TABLE III
TRANSPORTATION
PROBLEM TOTAL NUMBER NUMBER NUMBER COST TOTAL  HI UPPER__BOUND
NUMBER P&:giogsw . OUEIFCi s ok P;K,Sﬁ ‘ggs RANGE SUPPLY COST CAP MIN  MAX SEED
1 100 5 95 250 1-100 10,000 80 100 5 10 12345678
2 100 10 90 300 1-100 10,000 80 100 5 10 12345678
3 100 10 90 1000 1-100 10,000 80 100 5 10 12345678
4 100 28 75 2000 1-100 10,000 80 100 5 10 12345678
5 100 50 50 2500 1-100 10,000 80 iu0 5 10 12345678
6 200 20 180 1200 1-100 20,000 80 100 5 10 123.4;6_78
‘ 7 200 20 180 2200 1-100 20,000 80 100 5 10 12345678
8 200 50 150 5000 1-100 20,000 80 100 5 10 12345678
9 300 10 290 1000 1-100 30,000 80 100 5 10 12345678
10 400 40 360 5000 1-100 40,000 80 100 5 10 12345678
TRANSSHIPMENT
PROBLEM TOTAL  NUMBER NUMBER NUMBER COST TOTAL HI UPPER BOUND TRANSSHIPMENT
NUMBER NUMBER OF  OF OF OF  RANGE SUPPLY COST CAP MIN MAX  SEED SOURCES SINKS
NODES  SOURCES SINKS ARCS
11 100 7 50 1600 1-100 10,000 80 100 5 10 12345678 -
11A 100 7 50 2000 1-100 10,000 80 100 5 10 12345678 =
12 200 7 170 1600 1-100 20,000 80 100 5 10 12345678 -
12A 200 7 170 2000 1-100 20,000 80 100 5 10 12345678 -
13 400 7 370 2000 1-100 40,000 80 100 5 10 12345678 -
13A 400 7 370 2500 1-100 40,000 80 100 S 10 12345678 -
14 400 10 360 2000 1-100 40,000 80 100 S 10 12345678 -
14A 400 10 360 3000 1-100 40,000 80 100 S 10 12345678 -
R 15 400 10 350 3000 1-100 40,000 80 100 S 10 12345678 -
! 16 400 200 350 2000 1-100 40,000 80 100 5 10 12345678 -
. 16A 400 20 350 3000 1-100 40,000 80 100 & 10 12345678 -
| 17 400 10 360 4000 1-100 40,000 80 100 5 10 12345678 -
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TABLE 1V
SENSITIVITY ANALYSIS TESTING

TOTAL NUMBER  # i ARC  COST TOTAL HI UPPER BOUND TRANSSHIPMENT
OF NODES  SOURCES SINKS ARCS DENSITY RANGE SUPPLY COST CAP MIN _MAX _ SEED  SOURCES SINKS
4 100 25 75 2000 1-100 10,000 80 100 5 10 12345678 - -
& 100 25 75 2000 1-1000 10,000 80 100 5 10 12345678 - -
9 300 10 290 1000 1-100 30,000 80 100 5 10 12345678 - -
9% 300 10 290 1000 1-1000 30,000 80 100 5 10 12345678 - -
11 100 7 5o 1600 1-100 10,000 80 10 5 10 12345678 - -

: 1A 100 7 50 2000 1-100 10,000 80 100 5 10 12345678 - -
18 100 7 50 1600 1-100 1,000 80 100 5 10 12345678 - -
11C 100 7 50 1600 1-100 10,000 80 100 50 100 12345678 - -
1D 100 7 S50 1600 1-100 1,000 80 100 S50 100 12345678 - -
1HE 100 7 S50 1600 1-1000 10,000 80 100 5 10 12345678 - -
12 20 7 170 1600 1-100 20,000 80 100 5 10 12345678 - -
124 200 7 170 2000 1-100 20,000 80 100 5 10 12345678 - -
1261 200 7 170 1600 1-100 2,000 80 100 5 10 12345678 - -
12 200 7 170 1600 1-100 2,000 80 100 50 100 12345678 - -
13 400 7 370 2000 1-100 40,000 80 100 5 10 12345678 - .
134 40 7 370 2500 1-100 40,000 80 100 5 10 12345678 - -
133 400 7 370 2000 1-100 4,000 80 100 5 10 12345678 - -
13 400 7 370 2000 1-100 4,000 80 100 50 100 12345678 - -
13 400 7 370 2000 1-1000 40,000 80 100 5 10 12345678 - -
14 40 10 360 2000 1-100 40,000 80 100 5 10 12345678 - -
148 400 10 360 2000 1-100 4,000 80 100 5 10 12345678 - -
14C 400 10 360 2000 1-100 4,000 80 100 50 100 12345678 - -
1A 400 10 360 3000 1-100 40,000 80 100 5 10 12345678 - -
14A.1 400 10 360 3000 1-100 4,000 80 100 5 10 12345678 - -
14A.2 400 10 360 3000 1-100 4,000 80 100 50 100 12345678 - -

. " > % " . :
Seiadioi ot 5 ke e M i
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TABLE V
ARRAY REQUIREMENTS EXTRA ARRAYS TOTAL ARRAY
CODE REQUIRED TO PERFORM REQUIRED FOR REQUIREMENTS
THE_ALGORITHM ADVANCED DUAL START
DNETA 9[N|+ 3|E|+ 3|V]| 2|N|+ 1]E| 11|N|+ 4|E|+ 3|V|
DNETL 13|N]+ 5|E|+ 3]V| NONE 13|N|+ S|E|+ 3|V]
DNETD  10|N|+ 5|E|+ 3|V| 1|N| 11|N|+ 5|E[+ 3|V|
where [N] = number of nodes
|E] = number of arcs
[V] = |E|-IN|+ 1

The three codes were compared by solving each of the 22 original
test problems twice, using a different pivot change criterion each time.
The first negative criterion computes the flow on each basic arc until
a basic arc is encountered which violates either its zero or lower
bound. That arc is then selected to leave the basis. The most negative
criterion computes the flow on each basic arc and picks to leave the
basis that arc which violates either its upper or lower bound by the
largest amount. The first negative criterion was determined to be
superior in an earlier study [15] in which the test problems were
considerably different. The networks of that problem set had fewer
arcs, the capacities on the arcs were considerably higher, and the
node requirements were smaller. Consequently, in order to evaluate
thoroughly the storage schemes, the most infeasible criterion was also used.

Without exception, for either pivot selection criterion employed,
the results in Tables VI and VII indicate DNETD runs faster than DNETL,
which runs faster than DNETA.
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TABLE VI
FIRST NEGATIVE PIVOT SELECTION CRITERION
CP TIME IN SECONDS ON CDC 6600
TOTAL SOLUTION TIME NUMBER OF PIVOTS

PROBLEM | DNETA |DNETL |ONETD | oNeTA | oNeiL | oneto
1 .968 | .746 | .568 92 96 91
2 1.154 | .848 | .637 14 | 14 | 110
3 6.679 | 4.029 | 2.517 | 433 | 395 | 360
4 17.842 |11.243 | 4.986 | 686 | 690 | 682
5 20.779 [11.353 | 7.610 690 | 638 | 999
6 10.818 | 7.277 | 4.413 431 | 423 | 433
7 20.285 [11.913 | 6.703 546 | 464 | 476
8 58.333 [38.421 [14.422 || 889 | 932 | 990
9 9.835 | 7.136 | 5.122 321 | o7 | a2
10 I 93.582 [60.759 [36.486 || 1222 | 1262 | 1932
11 ﬂ» 20.970 [13.954 | 6.205 866 | 904 | 847
11A || 32.457 |21.546 | 8.531 || 1137 | 1176 | 1222
12 1{20.513 13.399 | 10.621 720 | 690 | 886
127 || 28.369 [17.575 |12.767 838 | 799 | 804
13 53.893 [36.191 | 23.943 || 1345 | 1404 | 1435
137 | 71.214 [43.382 | 33.955 || 1638 | 1534 | 1957
14 42.966 |30.099 | 15.957 897 | 961 | 988
14A | 60.879 [41.914 |22.500 || 1027 | 1082 | 1215
15 39.478 |26.379 | 15.848 g7 | 873 | 932
16 30.365 (21.275 [ 15.419 697 | 721 | 894
16A [ 56.077 (40.004 [20.412 || 1022 | 1078 | 1166
17 85.682 [59.541 [25.471 || 1216 [ 1317 | 1190
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TABLE VII
MOST NEGATIVE PIVOT SELECTION CRITERION

TOTAL SOLUTION TIME

CP TIME IN SECONDS ON CDC 6600

NUMBER OF ITERATIONS

PROBLEM |DNETA | DNETL | DNETD | DNETA | DNETL | DNETD
1 1.237 .869 .808 91 91 91
2 1.416| 1.127| 1.023 105 109 104

Q‘S 3.476 | 2.835] 2.343 128 147 139
4 8.868| 5.8711 5.219 203 190 198
5 14.006 | 11.677 | 9.106 291 331 311
6 10.104| 7.351| 6.415 279 273 271
7 16.785] 12.150| 10.432 298 296 316
8 58.313| 41.786 | 32.442 617 594 589
9 12.573| 9.439| 8.604 328 340 343

10 87.814 | 65.309] 52.604 783 825 808
11 8.259| 5.475| 5.139 184 160 170}
11A 8.564| 7.085] 5.390 188 189 183
12 11.003] 7.940| 7.131 244 241 247
12A 13.144 | 9.572| 7.932 259 252 253
13 29.036| 21.330| 18.008 481 481 456
13A 33.818 | 28.118] 20.906 468 548 472
14 33.015| 24.810| 20.010 500 508 477
14A 49.751 | 33.540| 27.017 707 515 513
15 32.210 23.932] 21.301 500 489 512
16 32.8511 23.975] 20.204 521 525 542
16A 49.674 | 37.099| 28.850 619 628 613
17 58.529 | 44.534| 34.813 556 576 574
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The codes differ only in their implementation of the "arc
scan", the order in which nonbasic arcs are examined to determine the
arc to enter the basis. DNETA examines every nonbasic arc to determine
NB*. For each arc, it must be determined if its two nodes are in
different subtrees, and, if so, whether the flow on the arc is directed
toward or away from the root, and whether the flow on the arc is at the
upper or lower bound. If the arc then is determined to be eligible to
enter the basis, its reduced cost is computed. If the absolute value
of the reduced cost is less than that of the largest element currently
in NB*, this arc is placed in NB*. The time consuming character of
these operations is indicated by the lengthy solution times. DNETL
eliminates by way of the data structure the arc capacity check and the
processing of the current basic arcs; as Tables VI and VII show, the
total solution times all decrease. DNETD reduces the amount of work in
a different manner. It processes only the arcs in and out of the smaller
subtree. The same number of operations per arc are performed as in
DNETA but the forward and reverse stars of fewer nodes are examined.
This approach can dramatically reduce the number of arcs processed;
the extent of this reduction is indicated by the clear dominance of

DNETD on every problem.

6.4 EVALUATION OF PIVOT SELECTION RULES

Neither DNETD/MN (DNETD with the most negative criterion) nor
DNETD/FN (DNETD with the first negative criterion) was clearly superior
over the entire problem set. DNETD/FN ran faster on 9 of the 10 trans-

portation problems and on 6 of the 12 transshipment problems. Further,
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the solution times for several of the problems indicate a strong de-
pendence upon the pivot selection rule used. For example, DNETD/MN re-
quired 32.442 seconds to solve problem 8 while DNETD/FN required only
14.422 seconds. On the other hand, DNETD/MN solved problem 13A in
20.906 seconds while DNETD/FN needed 33.955 seconds to reach optimality.

In addition to these two pivot criteria, we investigated
alternative pivot criteria and compared the performance of DNETD with
each pivot selection criterion. The alternative criteria examined are
based on Strategies 3 and 4 of Section 5.2. These strategies choose
as the entering arc the most infeasible of the first d infeasible basic
arcs encountered in the basic flow update. In preliminary testing, the
reset strategy, strategy 4, proved to be uniformly better and, thus,
strategy 3 was subsequently dropped.

In implementing strategy 4, two rules were used in determining
value for d. First, d was set to be constant for all problem sizes.
The values chosen were 10 and 40. (The versions of DNETD employing
these criteria are referred to as DNETD/10 and DNETD/40, respectively.)
Secondly, d was set to be a percentage of the number of nodes. The values
examined were 5%, 10%, 20%, and 100%. (The versions of DNETD employing
these rules are referred to as DNETD/5%, DNETD/10%, and DNETD/20%, and
DNETD/100%.) Thus six versions of DNETD employing strategy 4 were
evaluated in conjunction with DNETD/FN and DNETD/MN.

Problem Set 2, the problem set employed for this testing, in-
cludes 7 of the original 22 problems and 1 additional transshipment
problem (taken from the 15 additional problems shown in Table IV) with

smaller node requirements. Two of the eight problems are transportation

L
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"1 version of DNETD solved these eight problems

problems. Each "unique
twice. First, the problems were solved in order to compare total solu-
tion times and number of pivots. These statistics appear in Table VIII.
Then counters were inserted in each version. For each pivot two counts
were made, one of the number of nodes in the smaller subtree and the
other of the number of basic arcs whose flows were recomputed in order
to find the leaving arc. Both counts were accumulated and are also
shown in Table VIII. Note that the number of nodes in the smaller sub-
tree is the number of nodes whose forward and reverse stars must be
scanned in order to determine NB*.

Viewing the data of this table, one can see that in general
a code implementing a strategy which scans the forward and reverse
stars of fewer nodes will tend to solve problems faster. However,
that same code may process more arcs, may require many more pivots, or
may require that the flow on more basic arcs be computed in order to
determine NB*. Problem 4 serves as a good example. DNETD/MN scans

fewer forward and reverse stars than does DNETD/10%. However, DNETD/MN

must compute more basic flows.

1For certain problem sizes two versions of DNETD are identical.

For example, for 400 node networks, DNETD/10% and DNETD/40 are the

same. Consequently, for such situations only one run was performed

for both versions and the same information was recorded for both versions.
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TABLE VIII
LEAVING ARC SELECTION STRATEGIES
p"‘% CP TIME IN SECONDS ON CDC 6600
%)
STRATEGY 4 9 11A 12 14 14A 14A.1 17
TOTAL SOLUTION TIME

ONETD/MN 5.219 8.604 | 5.390 | 7.131 | 20.010 ' 31.107 | 27.017 | 34.401

ONETD/FN 4.916 5.141 | 8.469 | 10.596 15.9302 22.722 | 22.584 | 25.401

ONETD/10 5.043 5.096 | 7.363 | 7.934 | 15.487 | 21.506 | 23.456 | 24.803

ONETD/40 5.683 5.487 | 7.747 | 7.734 | 14.320 | 21.168 | 20.946 | 24.797

DNETD/100% 4.731 8.904 | 5.852 | 6.953 |20.961 | 31.812 | 28.142 [ 35.354

{ ONETD/ 5% 5.357 5.661 | 8.576 | 7.939 |14.795 | 21.220 { 22.752 | 26.225

| ONETD/10% 5.043 6.151 | 7.363 | 8.149 |14.320 | 21.168 | 20.946 | 24.797

i ONETD/20% 5.280 7.388 | 7.631 | 7.734 |15.028 | 25.682 | 20.143 | 25.215

: NUMBER OF PIVOTS .

DNETD/MN 198 33 183 | 247 | a77 719 513 | s78

i ONETO/FN 682 323 | 1222 | 86 | 988 [1374 ‘1215 1190

 ONETD/10 404 296 95 | 461 | 751 940 924 848

| NETD/40 232 288 250 | 322 | s73 682 | 696 632

f DNETD/ 100% 175 351 193 | 236 | 492 743 537 574

i DNETD/5% 516 309 157 | 461 | en 782 823 745

' DNETD/10% 404 317 395 | 428 | s73 682 696 632

Em/zoz 315 343 21 | 322 | s04 3 563 546
—— bt cnsichiinings — ——
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TABLE VIII
& CONTINUED
l&&
STRATEGY 4 9 11A 12 14 14A 14A.1 17
TOTAL NUMBER OF NODES IN SMALLER SUBTREE
. DNETD/MN 2417 ] 13467 2629 8184 27736 41641 31285 34'1'?"_1
ONETD/FN 3382 | 2973 4512 | 9280 | 17317 | 30948 | 23950 13787
ONETD/10 2913 2991 3445 7077 19002 23006 23106 13808
DNETD/40 3032 3176 3455 | 8338 | 11193 | 20469 | 19393 16913
) ONETD/100% 1903 13722 | 2990 | 7266 | 30185 | 45813 | 31966 34787
DNETD/S% 3189 3881 4985 | 7077 | 13001 | 22196 | 22250 18643
ONETD/10% 2913 5075 3445 8060 11193 20469 19393 16913
ONETD/20% 3367 7151 3506 | 8338 | 12641 | 31215 | 15417 17023
TOTAL NUMBER OF BASIC ARCS WHOSE FLOWS
WERE COMPUTED IN ORDER TO FIND THE LEAVING ARC
DNETD/MN 19701 102856 : 18216 | 49352 | 190722 { 287280 ' 205086 | 229425
DNETD/FN i 12184 9173 20890 | 43487 | 69150 | 98468 : 92529 67345
:L ONETD/10 -} 18003 19336 | 13134 | 32765 | 80508 | 116803 | 113829 | 85644
DNETD/ 40 {17383 36776 | 19525 | 37930 | 89609 | 136596 | 114655 | 108763 |
ONETD/100% 16990 104882 ; 18139 | 46902 | 196498 | 279393 | 214385 | 228381
DNETOD/5% 16360 28082 | 22759 132765 | 84096 | 123584 | 118865 | 103185
DNETD/10% 18003 41661 | 1313¢ {41021 {89609 | 136596 | 114655 | 108763
i ONETD/20% 18922 59818 | 16250 37930 | 113938 | 190477 | 125284 | 134979 ,
- v
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Looking at the solution times of Table VIII, no version clearly
emerges as superior. On the 400 node problems, DNETD/40, which coincides
with DNETD/10% for these problems, ran consistently faster than the other
versions. On problems with a smaller number of nodes, DNETD/10% per-
formed somewhat better than did DNETD/40. Overall, DNETD/10% solved prob-
lems more quickly than did the versions of DNETD employing the other per-
centage rules, losing only to DNETD/100% on problem 4 and to all of the
other three on problem 12. In addition to outperforming DNETD/MN and
DNETD/FN on the 400 node transshipment problems, DNETD/10% assumed a
middle ground with respect to these two versions on the other problems.
In short, the 10% rule emerges as a good consistent rule. For the
remainder of the computational testing, the 10% rule was employed as the

pivot selection criterion.

6.5 LIMITING THE LENGTH OF THE SORT LISTS

DNETD/10% requires 8 arc length and 7 node length arrays of
storage. Since the three sort arrays are allocated |E| - [N] + 1 words
of memory, we investigated the effect on total solution time of reducing
the size of these arrays.

In solving the networks of Problem Set II, two other statistics
(in addition to those previously mentioned) were compiled: the maximum
and the average (per iteration) by each of the sort lists. TABLE IX con-
tains these statistics obtained by using DNETD/10%:
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TABLE IX
MAX IMUM AVERAGE
PROBLEM SORT LISTS SORT LISTS
LENGTH LENGTH (PER ITERATION) . =
4 111 7.4
9 23 2.0 i
11A 117 15.4 %
12 50 6.3 |
| 14 64 4.2
| 14A 54 3.6
§ 14A.1 56 5.4
‘ 17 127 8.1
e

i While the maximum sizes of these sort lists are rather large, the average
sizes are quite small. In fact for these problems, the largest average sort
list size was 15.4. We therefore restricted the maximum-size of ‘the lists to be a i

somewhat larger number, 25, and resolved the networks of Problem Set II. The

solution times for the two versions of DNETD/10% are shown in TABLE X.
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TABLE X

SOLVING PROBLEM SET II WITH DNETD/10%

TOTAL SOLUTION TIME NUMBER OF
IN CP SECONDS ITERATIONS
p;OBLEMS MAXIMUM SORT ARRAYS SIZE Qé;chsiggT
[E]-IN|+1 25 El-[N[+1 25 |

4 5.043 5.826 404 462
g 6.151 5.922 317 317
11A 7.363 7.751 395 522
12 8.149 7.546 428 399
14 14.320 18.112 573 733
14A 21.168 19.175 682 642
14A.1 20.946 23.117 696 737
17 24.797 25.093 632 740

The results indicate that while a reduction in the size of the
sort lists does not critically affect algorithmic performance, it
drastically reduces storage requirements. In fact, on 3 of the 8
problems, the code employing the abbreviated sort lists actually solved
the problems faster. This version of DNETD employing the abbreviated

sort lists and the 10% pivot selection criterion will be called DNET2.

6.6 EVALUATION OF DNET2

To evaluate DNET2, we compared its performance on the 22

original problems with that of DNETD/FN, DNETD/MN, and the primal simplex
transshipment code, PNET-I. [12, 14] (Since the problem networks
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have many arcs out of the pure source nodes and few arcs into each node,
the arc directions for every arc in each network were reversed during * J
problem input for PNET-I so as to efficiently implement the pivot
selection criterion (the most negative arc out of a node) used in
E PNET-I.) The results are shown in Table XI.
| Note that DNET2 performed rather well in relation to DNETD/MN
and DNETD/FN. Among these three versions, DNET2 ran fastest on eight
problems and slowest on only one. On thirteen of the problems, its
times fell between the times of the other two versions. These results
indicate that, while DNET2 may not be the best dual code on a particular
problem, its overall performance is quite consistent.

Comparing DNET2 to PNET-I, however, the primal code is uniformly
superior although for 14 of the 22 problems, the primal code was less
than 3 times faster and for 20 of the 22 problems, the primal code was
less than 5 times faster.

In earlier testing in which the problem set consisted of sparse
networks, PNET-I was consistently 6-12 times faster than the dual codes
DNET and DNET-I [12, 15j. The sparsity of the networks was actually

responsible for these dual codes performing as well as they did since

both codes employ a full arc scan in order to determine the entering arc.
The poor performance of DNETA in solving the current problem set's
networks which feature a much higher arc to node ratio points out the
computational expense of the full arc scan. Further, the more efficient
functions and techniques presented in the previous sections indicate the
superiority of DNET2 over the two earlier codes for the class of problems "

considered in this study.
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TABLE XI

COMPARISONS OF DUAL AND PRIMAL CODES
CP TIME IN SECONDS ON CDC 6600

TOTAL SOLUTION TIME

NUMBER OF PIVOTS

DNETO/MN JONETO/FN | ONET2 | pNeT-1) oveTosmn | oveTozen | oneT2 | PNeT-1
.808 .568 648 | .14 91 91 88 105
1.023 .637 .662 .260{ 105 110 94 176
2.303 | 2.517 | 2.248 | .798] 128 360 208 487
5.219 | 4.986 | 5.826 | 2.234] 203 682 462 988
9.106 | 7.610 | 5.154 | 4.493] 291 999 329 | 1407
6.415 | 4.413 | 4.326 | 2.035] 279 433 264 | 1084
10.432 | 6.703 | 6.565 | 3.518] 298 476 291 | 1628
32.442 | 18.422 | 16.288 | 9.625] 617 990 595 | 3438
8.604 { 5.122 | 5.934 .662] 328 322 317 269
52.604 | 36.485 | 28.315 | 9.709] 783 1932 690 | 3622
5.139 | 6.205 | 5.874 | 3.162] 184 8a7 | 408 | 2323
5.3900 | 8.531 | 7.748 | 4.094] 188 1222 | 522 | 2584
7.131 | 10.621 | 7.553 | 2.931f 244 886 | 399 | 1787
7.932 | 12.767 | 9.685 | 3.677] 259 goa | 474 | 2217
18.008 | 23.943 | 19.992 | 3.708] 481 1435 | 771 | 2095
20.906 | 33.955 | 26.668 | 6.344 468 | 1946 | 1053 | 2903
20.010 | 15.957 | 18.249 | 3.956] 500 988 | 733 | 2254
27.017 | 22.590 | 19.213 | 6.116] 707 1215 | 642 | 3047
21.301 | 15.888 | 14.769 | 3.721] 500 932 | 535 | 2092
20.204 | 15.419 | 15.098 | 3.469] 521 894 | 614 | 2019
28.850 | 20.412 | 20.132 | 7.8a5] 619 1166 | 645 | 3815
34.813 | 25.471 | 26.051 | 9.942] 556 1190 | 740 | 4199
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In order to measure the effect of problem variation on code
performance, we then compared the performance of DNET2 to that of PNET-I
when the following problem parameters were varied: total supply, upper
bound values, cost ranges, and the number of arcs in the network.

When the original problem set was constructed, the supply, and
upper bound values were set so that the flow on many nonbasic arcs would
be at their upper bounds at optimality. The results in Table XII indicate
that this indeed occurred; for the 22 problems the percentage of nonbasic
arcs at their upper bounds ranged from 28% to 59%.

We first considered the effect of reducing the total supply
and constructed five new transshipment problems. The specifications of
these problems are identical to those of problems 11, 12, 13, 14, and
14A except that total supply is reduced by a factor of 10. The com-
putational results appear in Table XIII.

For the modified problems the percentage of nonbasic arcs
having flow values equal to their upper bounds diminished by 300% to
400%. While the solution times for DNET2 tended to decrease, those

for PNET-1 decreased somewhat more.

We felt that simply increasing arc upper bound values by an

order of magnitude from 5 - 10 to 50 - 100 would have the same effect

as reducing total supply. We thus decided to test the effect of
decreasing total supply while also increasing upper bound values.
Accordingly, the modified problems used in the total supply testing
were further changed so that the upper bound values now ranged from

50 - 100. Table XIII contains the results of this testing.
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TABLE XII
CHARACTERISTICS OF SOLUTIONS
OBTAINED WITH DNET2
: CP TIME IN SECONDS ON CBC 6600
PROBLEM TOTAL START START NUMBER OF PERCENTAGE OF
SOLUTION TIME TIME AS NONBASIC ARCS NONBASIC ARCS
TIME PERCENTAGE AT UPPER AT UPPER
OF TOTAL BOUND AT BOUND AT
SOLUTION OPTIMALITY OPTIMALITY
TIME
1 .648 .353 .54 54 .31
2 .662 .403 .61 131 .55
3 2.248 .873 .39 314 .40
4 5.826 1.649 .28 595 .34
5 5.154 2.131 .41 821 .35
6 4.326 2.421 .56 438 .42
7 6.565 3.921 .60 785 .39
8 16.284 8.199 .50 1365 .28
9 5.934 3.582 .60 486 .59
10 28.315 16.845 .59 : 1617 .35
11 5.874 1.477 .25 654 .44
11A 7.748 1.778 .23 682 .36
12 7.553 2.991 .40 545 .39
Y2A 9.685 3.673 .38 805 .45
13. .| 19.992 7.979 .40 561 .33
13A 26.668 9.728 .36 844 .39
14 18.249 8.328 .46 598 .35
14A 19.213 11.144 .58 1019 .38
15 14.769 8.237 .56 558 .33
16 15.098 8.126 .54 749 .45
16A 20.132 10.946 .54 1141 .44
: 17 26.051 13.827 .53 1385 .38




-56-
TABLE XIII

SENSITIVITY ANALYSIS OF PRIMAL AND DUAL CODES
CP TIME IN SECONDS ON CDC 6600

VARYING TOTAL SUPPLY

PROBLEMS: 11 118 12 128 13 138 14 148 14A 14A.1
TOTAL SOLUTION TIME

DNET2 : 5.874 4.851 7.553 7.691 19.992 18.648 18.249 15.778 19.213 23.117
PNET-I : 3.162 1.672 2.931 2.132 3.708 5.118 3.956 3,602 6.116 5.646

NUMBER OF PIVOTS

DNET2 : 408 453 399 524 771 716 733 578 642 737
PNET-I : 2323 1036 1787 1225 2095 1999 2254 1689 3047 2029

VARYING UPPER BOUNDS

PROBLEMS: 11B 11C 128 12C 138 13C 148 14C 14A.1 14A.2
TOTAL SOLUTION TIME

DNET2 : 4.851 2.423 7.691 6.893 18.648 20.817 15.778 18.235 23.117 24.110
PNET-1 : 1.672 .611 2.132 1.474 5.118 2.800 3.602 3.770 5.646 3.396

NUMBER OF PIVOTS

DNETZ2 : 453 110 524 275 716 573 578 477 737 515
PNET-I : 1036 315 1225 766 1999 1177 1689 1650 2029 1209

VARYING COST RANGES

PROBLEMS: 4 4E 9 9E 11 11E 13 13
TOTAL SOLUTION TIME

DNET2 : 5.826 4.328 5.934 6.097 5.874 5.688 19.992 20.155
PNET-I : 2.234 1.976 .662 1.029 3.162 2.775 3.708 4.357

NUMBER OF PIVOTS

DNET2 : 462 333 317 324 408 361 771 741
PNET-1 : 988 829 269 431 2323 2035 2095 2067

VARYING ARC DENSITY
PROBLEMS: 11 11A 12 12A 13 13A 14 14A 17
TOTAL SOLUTION TIME

DNET2 : 5.917 7.751 7.546 9.685 19.957 26.411 18.112 19.175 25.998
PNET-I : 3.162 4.094 2.931 3.677 3.708 6.344 3.956 6.116 9.942

NUMBER OF PIVOTS

DNET2 : 408 411 399 474 771 1053 733 642 740
PNET-I : 2323 2584 1787 2217 2095 2903 2254 3047 4199

] oA s s+
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The optimal solutions to these networks have very few nonbasic
arcs at their upper bounds, approximately 1%. Concurrent with this drop,
the maximum sort array size dropped for four of the five networks to
under 25. Hence, no large multiple pivots were performed for these
networks. For this testing the times for DNET2 tended to increase
slightly while those for PNET-I decreased.

The net effect of increasing the upper bound values and de-
creasing the total supply upon the dual times was nearly negligible.
However, the primal times dropped by nearly 100% so that on these less
restricted networks the primal was approximately 6 times faster than the
dual. For the five problems of the original 22 problems, the primal was
less than four times faster.

The effect of varying cost ranges was considered next. For
four of the original problems, the arc cost ranges were increased from
1 - 100 to 1 - 1000. The results shown in Table XVII were inclusive for
both PNET-I and DNET2. Both codes performed better on two problems with
the larger cost range and worse on the other two problems. In general,
however, the degree of difference was slight for both codes, indicating
that both codes are relatively insensitive to cost ranges.

The sensitivity of the two codes to the number of arcs in a
network was then considered. Of the original 22 problems, 5 have, with
the exception of the number of arcs desired, the same specifications of
some other problem in the set. Problems 11A and 12A have the same
specifications as 11 and 12 except that the latter have 1600 arcs while
the former have 2000 arcs. Problem 13 has 2000 arcs while 13A has 2500.
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Problem 14 has 2000 arcs, 14A has 3000, and 17 has 4000 arcs. The
solution statistics for these problems are presented in Table XIII.

The times for both PNET-I and DNET2 increase with arc density.
However, PNET-1 was more sensitive to large increases in the number of
arcs. The times for DNET2 increased by only 44% when the number of arcs
were doubled from Problem 14 to Problem 17, while the times for PNET-I
increased by 150%. This sensitivity of the primal is due to the pivot
selection rule empioyed and the fact that PNET-I is designed for sparse
networks.

7.0 CONCLUDING REMARKS

In this paper we have presented an efficient implementation
of the modified dual simplex algorithm for capacitated transshipment
problems. Compared to prior dual simplex transshipment codes, this
new implementation features improved list structures to represent the
basis and to store the original problem data. These list structures
access desired data so that the processing of superfiuous data is
minimized. Further, the dual simplex method was modified to combine,
under certain conditions, several iterations into one. We formulated
and tested three implementations, each of which sotres the original
problem data somewhat differently, and found one approach to be superior.
Using this approach, we then proceeded to evaluate various pivot selection
criteria and test modifications of the multiple pivot strategy. The re-
sultant code, which we deemed to be the "best" implementation of the dual
method, is called DNET2.

The literature has indicated the superiority, both in terms of

.
ottt e s e R S
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storage and time, of special purpose primal based simplex approaches
over dual and out-of-kilter methods [2, 3, 12]. Our testing, which
compared the performance of DNET2 to that of a state-of-the-art primal
code, PNET-I, has not suggested otherwise. However, we were able to
isolate a problem topology for which the times of DNET2 only are 2 to 3
times slower than those of PNET-I. This topology features very dense
networks having few sources, many sinks, large total supply requirements,
and small arc flow ranges; for such a topology earlier testing [2] in-
dicated the unsuitability of SUPERK, a state-of-the-art out-of-kilter
code. Consequently we did not use SUPERK in the comparative study.
Analyzing the performance of DNET2 further, as Table XII indi-
cates, a considerable percentage of the total solution time is spent in
finding an initial dual feasible solution. While further research may
be undertaken to find improved starting techniques for the dual method,
it does not appear possible to make the dual superior to the primal for
solving transshipment problems which do not have a good dual feasible
solution readily available. Often branch-and-bound or post-optimality
procedures require the altering of parameter values and then the re-
solving of the model. The previous optimal basis may still yield a dual
feasible solution with respect to the new parameters. For these situations,

this dual code may be particularly effective.
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