
AD AO6S 087 HONEYWELL INFORMATION SYSTEMS INC MINNEAPOLIS MINN F~ G 9~2VIRTUAL MACHINE MONITOR PERFORMANCE ANALYSIS. (U)
DEC 78 S C VESTAL • T KROCAK , H S SCHWENK F30602—77—C—0097

UNCLASSIFIED RADC—TR—78—251 NL

~LIL__________

_ _

_U. U U
__— U ____

Ut

0~cD

-~~~~

C-,

— ~~~~~~~~~~~~~~~~~~~ •— —‘~~~~
~~~~~~~~~~ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

________________________________ __________________

~~ UNCLASSIFIED
$ECURp*Q~A$$Ir ICATI0N or THIS PAGE ~~~~~ Doll tnS~r~d)

(
~ J~1 ~

) REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
______________________________________________ BEFORE COMPLETING FORM 

CCEUION N J~~RECIPItN1”S CATALOG NUMSER 3RADcjrR-78-2~~1 / 12. 
GOVT A

4. TST(.E (aid
__________ 

SOPQNT S P I ~ 9,~ OVERcD

_ _ _ _ _ _ _  

_ _  

i f~~ R~UAL MACHINE 1~0NITOR PERFORMANCE ANALYSISJ Final ,~~chnica1 %eps.t .
Jup •~ , 7 — Se~.f 178 ~i. ps ~j u~~ . ~~~~~~N/A
S. C0NTRAçT 0R GAMI r UMStR(.)~~~~~~~~ 

__________________________________

S. C. Vesta]~ H S Schwenk 1 
~~ ~~~~~~77~~,~~97]T. KrocaI~1

. ~~~~~ Levy f
I. PERP0RMING ONGAN IZA1 ION NAME AND ADDRE~~ ID. PROGRAM ELEME T PROJECT , TASK

AREA A WORK

Minneapolis ?0I 55413 
~~ 

~~ J~O2962600 Ridgway Parkway
Honeywell Information Systeas ~

/‘

Ii. CONTROLLINQ orricE NAME AND ADDRESS 1~~~~~~ SflT S~~ IRome Air Development Center (ISlE) Dec ~~ U78 I (~~~j . iL 
~~~Criffies £73 NY 13441 ( 

~
ii. NUMSER or aGE1

~~~~~~~~~~ 179
II. MONITORING AGENCY NAME I ADDREU(U ditt.,ai f fri., Co,,froSItnd Out..) II. SECURITY CLASS. (of 11,1. ripen)

Same UNCLASSIFIED.; 3
IS.. DECLASSI rICATIONIDOWNORAOING

L bI$TRISUTI0N STATEM ENT (of thu. Ripen)

Approved for public release; distribution unlimited

3
17. DISTRISUTION STATEMENT (of Ui~ aS.t,.ct aiuotid Sn Stock 30. Sf dttf.rint f cc. R.pon)

Same

15. SUPPLEMENTARY NOTES

RADC Project Engineer: Raymond A. Liuzzi (ISlE)

IS. ~Ey WORDS (C.uw*iv. a, i•c.i .5* SI nsoooc.~
. aid S*nSSb’ ky Mock nc.bsr)

Virtual Machines Performance Modeling MULTICS
Cc.puter . GCOS
Operating Systams 36180/6000
Softvar e Enginesring Tools

IS. A

~~~~~~~

, (~~~ffi’s~ .,,o,., •5* If nic~•i~~ aid t4inhS5~ Sv Stock m aer)
a report describes the 36180 Virtual Machits Monitor Performance

Analysis. Included as part of this report is a description of the Virtual
Macbins Monitor . Thu report also includes an qproa ch for enhancing the base-
line V~ 4 functionality by use of a service machine to control periphera l
sharin g.

The actual experi mentation performed in this effort identifies the feast —
bility of a VNM in a Progr eaming Environmen t and . the performance tra deoffs re-

quired for its optimized utilization . ç

~~~ 1473 EDI TION OP I NOV11 IS 05$OLETE UNCLASSIFIED
SECURITY GLAUI~ (CATIoN or iHIS PAGE (~~..Doli mwu,.~

1Oy 3~/ ~’ . t O 02 2~
~1..

__.L_. ~~~~~~~~~~~~~~~~~~ ~.-— -----—~ —~~~ — — . — — ~~~~~~~~~ ~~oa___ . ._ ..___ _.._ ~~~~ — —  -— ——.-—- — --—— —~



-
: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-—--~~~~ -.~~~~~~ - .—

CONTENTS

Section Page

INTRODUCTION 1

Goals and History 1

Sunnn ary of Results 3

Personnel 4

PERFORMANCE ANALYSIS TECHNIQUES 6

Configuration 6

Hardware Modifications for VMM 7
CPU Modifications 7
1CM and Datanet 355 Modifications 13

GCOS Monitoring Tools 14

GCOS Work Load 16

Multics Monitoring Tools 17

Multics Work Load 18
Absentee ProcessIng 18
Job Sequence 19

III ANALYSIS RESULTS 22

Benchmark Analysis 22

GCOS-VMM Overhead Regression Analysis 29

BEST! 1~~~-OCOS Analysis 34

I

iii

---

~ 

-~~~~~~~~~~~~~~~~~~~~
-— ---

~~~~~~~
—

~~ ~~~
-
~~~~~~~~~~~~~~~ — -  - - --~~~~~~~~~~~~~ —~~~



.—~-~--,.-- ..-—~~~~~ 
-.. -—-,. ‘

CONTENTS (continued)

Section Page

III Multics Benchmarks and Overhead Analysts 44

BEST! l~~~-Multtcs Analysts 47

Summary of Results 48

IV EVOLUTION OF THE VMM 54

VMM Applications 54
Virtual Microcomputers and Minicomputers 54
Networking 55
Program DebuggIng 55
Input/Output Applications 56

Software Extensions: The Service Machine 59

Hardware Extensions 63

Evolution .of Honeywell Computer Products 65
External Influences 65
Internal Influences 66
The Role of the VMM 67

V RECOMMENDATIONS 69

Future VMM Research 69
Distributed Systems of Virtual Machines 69
Specialized Virtual MachInes 69
Incremental System Extension and Integration 70

Conclusions 71

iv 

- -~~~~~~ _



-----•—
~~~~

—-—-
~~
—-

~~~~~~~~ ~~~~~~~~~~ 
- - . ---..----- --- - —.--—.--

~ 
-.-- .-.. - -—-. ..- - . . - 

CONTENTS (concluded)

Section Page

BIBLIOGRAPHY 73

APPENDIX A. JOB SCRIPTS 75

APPENDIX B. MONITORING TOOLS 97

APPENDIX C. VIRTUAL MACHINE MONITOR
PERFORMANCE ANALYSIS:
DESIGN PLAN 111

I

ACCESSION for

NTIS V ~
DDC • :n’.~•~~- 1 o
IN 0 

RY

NIT 6flhIIlv;4~iui~ ~~ES
D~t. , ‘AlL w4L r SPEC IM~

_ _  

A l  
—

~~~

- — -——--—--- - -—~~ —-—--~~ -~~~~—— - ~~ —------ -— .-. ~~~— - - -

~~

-

~~

--

~

----- - -

~

- .—.- — ---..--——-

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

~~~~~~~~~~~~~ 

.- —

~~~~~~~~~~~

LIST OF ILLUSTRATIONS

Figure Page

1 Configuration 6

2 Multics Job Flow 21

• 3 RADC Multics (VMM) Configuration 23

4 Sample BEST/ltm Internal Model and Principal
Results Report 35

5 Effect of VMM vs. Native GCOS on Response Time
as a Function of I/O Activity (I/O Contention) 36

6 Ratio of VMM: Native Response Time for GCOS as a
Function of i/O Activity (I/O Contention Included) 37

7 Effect of VMM vs. Native GCOS on Response Time
as a Function of I/O Activity (110 Contention Excluded) 38

8 Ratio of VMM: Native Response Times for GCOS as a
Function of I/O Activity (I/O Contention Excluded) 39

9 Effect of VMM vs. Native OCOS on Throughput as a
Function of I/O Activity (I/O Contention Included) 40

10 Ratio of VMM: Native Throughput for GCOS as a
Function of I/O Activity (I/O Contention Included) 41

11 Effect of VMM vs. Native GCOS on Throughput as a
Function of I/O Activity (I/O Contention Excluded) 42

12 Ratio of VMM: Native Throughput as a Function of
I/O Activity (I/O Contention Excluded) 43

13 Ratio of VMM: Native Response Time for Multics as
a Function of I/O Activity (I/O Contention Included) 49

vi 

--.-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


— • .--- .——-—— -- -- - -—-—- - —-— -- -- -.- —— .~ ~~~~~~~~~~~~~~~

LIST OF ILLUSTRATIONS (concluded)

Figure Page
14 Ratio of VMM: Native Response Time for Multics asa Function of I/O Activity (I/O Contention Excluded) 50
15 Ratio of VMM: Native Throughput for Multics as a

Function of I/O Activity (I/O Contention Included) 51
16 Ratio of VMM: Native Throughput for Multica as a

Function of I/O Activity (I/O Contention Excluded) 52
17 Service Machine Memory Layout 61

vii

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ • —~~~~~~•- •~ •_ _ _ _ _ _ _ _ _

LIST OF TABLES

Table Page

1 Processor and Channel Usages 26

2 Sirnimary of Results for Processor-Bound Work Load 27

• 3 Stnnmary of Reaults for Average Work Load 28

4 Simtmary of Results for Channel-Bound Work Load 29

5 VMM Overhead Regression Data 31

6 2~~tchmark Data ~from the PL/ 1 Load-Control Program 45

Estimated VMM Overhead Degradation as a Function
of Cache Contribution 46

via

• ~~~~~
.

_______ ~~~

r
EVALUATION

This work described in this report and performed during this
effort has established that virtual machines can be a significant
asset as a software engineering tool In a sophisticated programing
environment. This effort, performed on the H6180, has also
demonstrated that Vii’s in the RADC Programing Environment are
feasible with several performance tradeoff factors.

The results from this effort are extremely important in future
efforts involving distributed processing as outlined in RADC
Technology Plan (TPO V). In a system of logically distributed
processing, certain systems in the network will be performing
specialized functions on behalf of the other member systems. The
role of virtual machines in isolating these functions will be
critical to insure optimal performance. As these functions are
integrated, virtual machines can again provide tne control techniques
required to insure compatibility among all systems.

This effort has also demonstrated the role required by virtual
machines in hardware/software tradeoffs. Decreasing hardware costs[will Induce efforts to perform many current software functions in

~ hardware. Virtual machines will play an important role in this
tran tion which can lead to a reduction in software costs.

~~

l

i

•

I

-

•

ix

-

- - - -—- -~ -,- -- -

SECTION I

INTRODUCTION

GOALS AND HISTORY

This document describes The Virtual Machine Monitor Performance
Analysis. A Virtual Machine Monitor (VMM) is an operating system which
executes on the native hardware and allows other (standard) operating
systems to execute in an environment much like the environment an
operating system provides for user programs. These sub-operating
systems are called virtual machines, or VMs. A VM looks to its con-
tained operating system much like the actual machine looks to the VMM .

While the VMM is aware of the actual hardware complement available, a
VM is aware of only the hardware (or simulated hardware in the case of
some peripherals) provided to it by the VMM . By providing these virtual
environments, a single hardware base can be used by a number of differ-
ent standard and nonstandard operating systems.

The values of such an arrangement are many, particularly in an environ-
ment which engages in research on operating systems. A standard
production service can be provided concurrently with an experimental
or low-use service. Thus, the need for off-hour scheduling of machine

• tune and Interrupted service for boot and re-boot can be reduced.

I.~~~~~~~~~~ , L.11 11

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~ •~~~~~~~~~~~~~~~
_ _ _



r

VMM research in Honeywell and the industry (particularly by IBM: VM/370)
has a long history. The Honeywell activity began in the early 1970’s as a —

strategy for product line unification and to provide more flexible internal
use of computer equipment.

Interest at Rome Air Development Center (RADC) began in approximately

1974 with an intense look at the security aspe ’ts of providing isolated

environments for operating systems separated from each other by hardware
enforced boundaries. This led to a study of the GCOS Environment
Simulator or GCOS encapsulation on Multics. This tool, though not as
powerful conceptually as the VMM 1 is currently in use at RADC.

Business decisions made by Honeywell mandated that the VMM remain In

the experimental stages, but low level research continued. In 1976, RADC

entered into negotiations with Honeywell’s Federal Systems Operations to
procure a VMM for further study at RADC. This led to the installation of

the VMM at RADC in 1977 and subsequently to the effort described in this

document.

Honeywell’s Systems and Research Center analyzed the performance of
this hardware/ software package for RADC to locate the system bottlenecks
known to exist and to help RADC plan a strategy for the evolution of VMM
research. The findings of that task constitute a detailed analysis of the
performance of the Honeywell VMM, some suggestions for improvement
should RADC desire to continue the experiment, the results of a model of
performance constructed by BGS Systems, Inc., and recommendations

• for future research.

2

~ -1__ •- l _ ~~~~~~



F I - 
- .--- .

The remainder of this section contains background and summary inform-
ation. Section II contains a detailed description of the means used to
collect performance data and an analysis of that data. Section III contains
plans for the evolution of the VMM and a projection of the role of VMM
research in future computer products. The final section details recom-
mendations for extending the VMM capability and continuing research in
this area. Appendixes contain the computer llsting~ of the job scripts and
monitoring tools used to meter performance, as well as the text of the
interim report.

SUMMARY OF RESULTS

Results based on live data experiments and the BEST! ‘tm analysis show
the following:

• VMM overhead has Its greatest effect on work loads exhibiting
an intermediate amount of I/O activity (15 to 35 connects per
second of processor busy time).

• For work loads with a small amount of I/O activity, VMM has
only a minor effect on performance. With large amounts of
I/O, contention at the I/O devices is the limiting factor.

• In GCOS, the VMM overhead was determined to be in the range
of 15 to 28 percent depending upon the I/O mix. This results in
an overhead of 3. 5 percent of processor busy time and 4.5 msec
of overhead per connect.

• In Multics, the VMM overhead was determined to be between 13
and 60 percent. These higher figures are due to the increased
dependence of Multics on I/O activity to process page faults.

3

• —-- . 

- . .-

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~. • -


- -5--- —-------5-———. ., --~~ .- ’ - .— -—~~~~—-— —.-,--5-- - — — •- - ---.----.- - - -- - - -~~-S - 5 - 5 ••

Based on these figures and the insufficiency of data (particularly in the

Multics case), it can be observed that VMM overhead is directly related

to I/O activity. Thus, any further work on the performance of this VMM

should concentrat e on I/O monitoring and speedup.

PERSONNEL

The people Involved in this effort were:

• Mr. Ray Liuzzi- -contract monitor for this project. He played
a valuable role by providing technical direction and leadership

In virtual machine research. His interest was instrumental in

promoting the potentials of VMMs for Air Force applications.

• Stanley C. Vestal- -formerly of the Systems and Research Center,

now a scientist with the Corporate Computer Sciences Center.
• Mr. Vestal served as Principal Investigator for the contract.

• Dr. Harold Schwenk- -formerly with Honeywell Information

Systems and now the President of BGS Systems, Inc., a sub-

contractor on. this effort. Dr. Schwenk was a co-designer of

the VMM.

• Tom Krocak- -Honeywell Computer Network Operations. He was

responsible for ‘the analysis of GCOS performance.

Additional consulting was obtained from:

• Russ McGee- -Honeywell Information Systems. He was the princi-

pal designer of the VMM and leader of the VMM program In

Honeywell.

IL__ _
-

‘ -. --•-• —---.- •—------ - • - .~— -——.-—-‘~~~~~—

-~~~ —-5---’.-- - - — -— ~~--5- -5 - - -- - —— - , - - -• -- - . - - - 5 5 -~~~~~~~

• Dr. Robert Goldberg- -formerly of Honeywell Information Systems
and now with BGS Systems, Inc. Dr. Goldberg is a noted authority
in virtual machine concepts . and participated in the design of the
VMM.

• Larry Shannon - -Honeywell Information Systems. Mr. Shannon
is an implementor of the VMM.

• Allan Levy- -a scientist for BGS SysteEr~s, Inc. He was responsible
for the BEST / 1 modeling and analysis appearing in this document.

• Dr. Jeffrey Buzen - -BGS Systems, Inc. Dr. Buzen is an Industry
leader in techniques of performance analysis and modeling.

• W. Earl Boebert - -Systems and Research Center. He assisted
with the management of the project for a three-month period.

• Mr. Donald Elefante- ‘-RADC. He provided the baseline work
load software for Multics.

--5—

5

_ _ _ _ _ _ _ -.- -~~~~~ _ _ _ _ _


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECTION II

PERFORMANCE ANALYSIS TECHNIQUES

CONFIGURATION

The RADC Virtual Machine Monitor consists of a modified 6180 processor,
IOM, and Datanet 355. The experiments were conducted using a memory
configuration of 512 K words and a single processor (Figure 1). When
executing a native mode experiment, an operating system was allowed to
use 256 K words of memory. During VMM execution analysis, the VMM
occupied 256 K and the virtual machine used the second 256 K. In this way
the memory utilization for a given operating system was held constant for
comparison between native and virtual mode.

NATIVE MOD E VMM MODE

6180 6180
Cpu CPU

I I

_ _ _ _ _  

~~
‘IN1S

~ D’J 

_ _ _ _ _  _ _ _ _ _

Figure 1. Configuration

8

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

- 5, - -- ~ • - -- 5-~• -~ .• - -—.-—-- ,---“---—‘-.-
n • —5-- ~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~ “

_ - ~~
_
~~~~~~ ‘

Dual operating system performance (GCOS/GCOS, Multics/GCOS, and
Multj ca/Multj cg) under the VMM was not monitored due to the time con-
straints of the project.

HARDWARE MODIFICATIONS FOR VMM

The hardware support for VMM exists in the 68/80 CPUs, the IOM direct
channels connected to Datanet 355s, and, to a minor extent, in the Datanet
355g. The CPU and Datanet-related changes are described below.

CPU Modifications

The CPU modifications are described under two categories, which is the
sequence in which they were implemented.

‘5’Category 1 Changes--

Mode Switch Position- -The processor mode switch shall have a position
added to it. Its positions shall be 6000/6 100/VMM (or, if you wish, GCOS/
Multics/VMM). The changes described in the following paragraphs shall
be active only if the manual mode switch is in the VMM position unless
otherwise stated.

Real/Virtual Modes and Indicator- -A bit shall be added to the Indicator
Register (IR) whose state shall indicate that the processor is in “real” or
“virtual” mode. This shall occupy bit 32 of the IR and shall = 1 when in
real mode and 0 when in virtual mode. “Real” mode will always be entered
upon the execution of a transfer of control instruction while servicing an

I

Il
_ _ _ _-- ‘ . — - - - - --‘- -- _________



- ! _ _ _ _

Interrupt or fault. This will be the only means of entering “real” mode.
Once in “real” mode, the execution of an RCU instruction with indicator
bit 32 = 0 will be the only instruction which can be used to return to “virtual”

mode. Thus this Indicator shall not be affected by either the LDI or RET
Instructions. The state of-this indicator will only be storable by the SCU
instruction.

Fault on Certain Instructions--Attempted execution of the following
instructions in virtual mode shall cause an IPR fault with an illegal in-slave
Indicator set in the SCU fault conditions:

RSW SMCM LCPR DIS

SSCR RMCM SCPR
RSCR SMIC CIOC

An IPR fault Instead of a command fault will occur when any of the above
Instructions are executed In a GCOS III virtual machine In slave mode.

Category 2 Changes- -

VMBAR/VMBND - -An additional base/bound register shall be added.

The base shall be added to the currently computed final address when
executIng in virtual mode and the bound shall be used to bound the resultthg
sum. The register and adder shall be wide enough to apply relocation and
addressing of up to 16 million words. The granularity of the VMBAR base

and bound shall be 32 K (or preferably less).

LVMBAR/ SVMBAR Instructions - -These instructions must be added to
load and store the VMBAR while In real mode. Their execution in virtual
mode shall result in an IPR fault with the Illegal In-slave indicator set in
the SCU fault conditions 

8

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



The LJVMBAi~ wIll have an op code of 210 and will load the VMBAR from
bits 0 through 17 of C(Y). The SVMBAR with an op code of 510 will store
the VMBAR in bits 0 through 17 of C(Y) and bits 18 through 35 of C(Y) will
be unchanged.

VM Out-of-Bounds Fault- -If a virtual machine attempts to address
beyond the bound specified by the VMBAR, a store fault with the out-of-
bounds Indicator set in the SCU fault conditions shall result.

6000/6100 Indicator--Bit 33 of the indicators shall place the processor
in either 6000 or 6100 mode. This indicator will be meaningful only when
the processor is In VMM or 6100 manual switch position. (The use of this
indicator In 6100 switch position is required for the encapsulation of an
entire GCOS system under Multics. ) The indicator shall = 0 when in 6100

mode and ~ 1 when in 6000 mode. It will always be stored by the SCU
Instruction. The SCU instruction is the only instruction which will store
the state of this Indicator. The indicator shall be loadable only by the
RCU instruction, a fault , an interrupt, and the TSS instruction. This
indicator shall affect the operation of the processor in the f~flOwing manner:

• 6100 Mode--Th e processor shall execute as a standard 68/80
- - IXcept as modified’aé described in this dckument. This includes

the use of indicator bit 28 to Indicate the use of the ~ üe Address
Register for address development. It shall be the software ’s
responsibility to ensure that this indicator is properly set. -

,

• 6000 Mode- -When in absolute mode, the processor shall operate
- as a 8000 processor except as modified for the vtvlM a~ riàted in
the previous subsection. Thus, the processor shall perform -

1
— —  -5-- , .~~~~ —.- -5 .‘——- ——— —.—~--5— —_-.—--‘—-— —--. 5 - — — - -  - --5 , -‘-- --5-— --— -5--- 5— — . —-5- —



- 7 -  ~~~~~~~~~~~~~~ ~~~~~~~~

—-——_ _ _

addressing relative to the real memory origin or the VMBAR as
indicated by the state of the reallvirtual Indicator.

In append mode the processor shall only be capable of executing
valid 6000 instructIons. The processor shall perform address
development relative to the origin of the segment indicated by the
PSR including page relocation if the segment is paged. Addresses
shall be further relocated by the base contained in the VMBAR if
the processor is in virtual mode..

In addit ion, the processor shall operate in the following 6000-like
manner in spite of other modes and conditions of the processor
and specIfications in SDWs:

- -Instruction bit 29 = 1 shall evoke only the offset part (address
register) of pointer registers.

- - TRO faults shall occur in slave mode, not in master mode (even
if a slave is executing in a privileged segment or a master mode
program is executing In an unprivileged segment).

- -Instruction bit 28 = 1 shall cause interrupt Inhibition (even if
executing in an unprivileged segment).

- -The BAR shall be loadable in master mode and shall oftaet
effective addresses in slave mode.

Faults and Interrupts--

VMM Switch Position- -When a fault or interrupt occurs, the processor
will automatically enter Absolute, Real, .6 100, or Master Mode during the
execution of the vector pair .

L 

5- 

_ _  _ _



- 5-

However, the corresponding indicators will not be affected unless a transfer
of control is executed in the vector pair. If a transfer is executed, the
indicators wIll be modified as described above and as affected by the trans -
fer Instruction.

6100 Switch Position- -A fault or interrupt when in 6100 position will
have the same effect as In VMM position with the exception of the real
Indicator. This indicator does not exist in this position.

T55- -The TSS instruction shall set the 6000/6 100 indicator to 6000
and the master/slave indicator to slave when it is executed in either VMM
or Multics manual switch position.

ABSA Instruction- -The processor shall execute the ABSA instruction when 
- -

running in the VMM switch position as follows:

• Add the contents of the VMBAR to the memory address when
accessing memory for indirect words, indirect pairs, SDWs, or
PTWs. The VMBAR shall be added regardless of the virtual/real
indicator state.

• Perform address development according to the settings of the
Master/Slave, Absolute/Append, and 6000 / 6100 Indicators when
the real/ virtual indicator specifies virtual mode.

• Use the Zero, Overflow, and Exponent Underflow indicators to
simulate the Master/Slave, Absolute/Append, and 6000/6100
indicators, respectively, when the real/virtual indicator specifies
real mode.

_ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _



—5 _

~~~~~~~~~~~~~

‘ _ _ _ _

~~~~~~~

_

~~~~

_ _ ‘ _ , _ _ _ — - - -5 —

• The VMBAR will not be added in the final address development
In either virtual or real mode. Thus the address returned by
the ABSA shall always be relative to the VMBAR.

• When the real/virtual Indicator denotes real mode, the negative

indicator will be used to specify the type of address returned by

the ABSA instruction. When the negative indicator is off (* 0),

the 24-bit absolute operand address will replace the most signif-
icant 24 bits of the accumulator, as Is normally the case with the
ABSA instruction. However, when the negative indicator is set
(= 1) , an 18-bit effective address will be stored in bits 6 through
23 of the accumulator while zeroes will be placed in the remaining

13 bits. This 18-bit address shall be developed by performing
all address development normally associated with the ABSA
instruction with the exception of the final append cycle.

During execution of the ABSA instruction, the current state of the proces-
sor registers will be- used for address developmtnt. It Is a software
responsibility that these be properly loaded before ABSA execution. This
implies that the ABSA instruction must be executed in Absolute! Real mode
when simulating VM address development within the VMM.

Transfer and Set Virtual Instruction- -This instruction when executed in
real mode will transfer according to the operand address and enter virtual
mode (I. e., bit 32 of the IR shall be reset to 0). When executed In virtual
master mode, the instruction will perfor~m as a TRA Instruction. Execu-
tion of the Instruction In virtual slave mode will result In an IPR fault with
the Illegal tn-slave indicator set in the SCU fault conditions. This new

-
- - 5 - -

12

- ~~~
- ‘_____________________

Instruction shall have an op code of 715 with bit 27 equal to 1. Currently,
the use of this instruction within the VMM Is not anticipated; however, It
will be used by off-line T&D for the VMM hardware.

IOM and Datanet 355 Modifications

Hardware support is needed to allow a VMM to provide communication
support to a virtual machine in such a way that neither the operating system
In the virtual machine nor the 355 software need be changed. In addition,
thig support should prevent ,the 355 from accessing 6100 memory beyond
the bounds of a “window” which is set by the VMM .

The hardware required shall consist of additions to the direct channel
which shall modify its operation roughly as follows:

1. When a connect with a mask PCW is delivered to the direct channel
from the 6100, it shall retrieve a base and bound from the 6100
memory and then process the mask PCW.

2. Whenever the 355 requests an access to 6100 memory, the direct
channel shall relocate and~boun d check the address to be accessed.

Thig change accomplishes the desired result for 355s dedicated to virtual
machines. The 355, its software, and the operating system continue to
operate as before without visibility of the direct channel relocation and
bounding. The relocation/bound value is set by the VMM and is unchange-
able by either the 355 or the virtual machine it Is serving.

_

-

- -

________________________ -~~~~~ - --—~~~~- --- - -
5,’

Each IOM direct channel which interfaces to a Datanet 355 is modified to

store the base and bound addresses of a virtual machine and to assure that
all data transfers on behalf of a virtual machine remain within these
address limits. In addition, an interface is added between t.~he direct
channel and each Datanet 355 which allows the former to deliver an “out -
of-bounds” fault to the latter.-

GCOS MONITORING TOOLS

Early in the project, it had been assumed that standard Gc~OS measuring

tools could be used to measure the performance of GCOS under VMM. In

surveying available tools, one called Peripheral Resource Monitor (PRM)

was thought to be the best of those available, particularly In regard to

graphical displays. The key measurements centered around processor

time both for GCOS and VMM. After some investigation, the “virtual time

slippage” problem was investigated in some detail. The essence of the

problem is as follows. In GCOS all time is derived from the processor

interval timers. These are saved and restored by VMM each time control

of the processor is taken from and returned to GCOS. As a result, GCOS

maintains accurate virtual processor time, but its real wall clock time will
become Inaccurate when running under VMM. The effect of “virtual time
slippage” on a program like PRM (which measures processor idle directly
and processor busy by subtracting idle from elapsed wall time) is that the

processor is measured under VMM to be 100 percent busy whether it is
10 percent busy or 100 percent busy.

14

---5---- --- —------5----- - - - - - - - - - - —5-----

In an effort to correctly capture GCOS virtual processor time and also
provide such VMM data as VMM processor and Idle time, a special monitor
program was written called VMMON. The key design feature of the program
was that VMMON read the system controller clock which is accurate inde-
pendent of software. This real elapsed time was compared with GCOS
time every 15 seconds which under VMM showed a distinct and increasing
discrepancy as time continued. This discrepancy was the “virtual time
slippage” which is time when GCOS Is not in execution, time due to VMM
overhead, and/or time when other virtual operating systems are executing.
Using this technique, VMMON can accurately measure virtual GCOS pro-
cessor and idle time and, also, VMM processor overhead in an environ-
ment which is relatively processor bound with only one GCOS under VMM.
The various tests have proved out this technique for the environment as
described.

In an attempt to measure processor utilization for an environment of VMM,
GCOS, and Multics, the following steps were taken. Changes to VMM
were designed which would record in GCOS memory: VMM processor time,
real system idle time, and Multics processor time. VMMON was designed
to read this data from GCOS memory and display how this data changed at
each sample period. Unfortunately, the required patches to VMM were
not able to be debugged given the time constraints of the project.

A copy of the VMMON program is included In Appendix B.

15

- -

5 - - ~~~~-~~~~-
- 5 - 5

GCOS WORK LOAD

Two fabricated work loads were generated for the GCOS VMM benchmark

tests and were designed to produce an average-type load and an I/O bound
load. These loads tested the VMM performance under a range of work load

types which represent those typical of a data processing site.

In general under . GCOS, the amount of system processor overhead (which
is not charged to a user program) increases as the level of I/O activity
increases. Since VMM intercepts each I/O request and performs some
processing for it , the VMM system processor overhead would also increase

as the level of I/O activity increases. The fabricated work loads were also

designed to be a measurement of this relationship.

The average-typ e load was composed of four GCOS job s. All jobs had the

same structure with different I/O and processor parameters. Each job

was composed of three activities: activity 1 was a compilation of the
Fortran driver program with the parameters; activity 2 was an assembly
language (GMAP) compilation of a subroutine called by the Fortran driver

program which was capable of performing I/O accesses at a maximum rate;

activity 3 was the execution of the programs described in activities 1 and 2
which actually produced the desired work load. The I/O to processor rat-los

produced by the four jobs (by varying the parameters) were as follows:

job AVOO1 = 0.25:1; job AVOO2 = 0.50:1; job AVOO3 = 1:1; job AVOO4 = 2:1.
The overall I/O-processor ratio for the average load was 0. 9:1.

16

5- - - ~~

- - ~~~,—.
~~~~~~~~ 

-
~~~~~~~~~~~~~~~~~

--
~~~~~~~~~~~~~~~~~~~~~~~

— —
~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The I/O or channel bound load was also composed of four GCOS job s. All
jobs were identical except for the job control language which varied the
disk device to which the I/O acceo~es were directed. This was an attempt
to maximize I/O accesses while minimizing device contention. The
structure of the job was identical to that of the average-type load. The
parameters in the Fortran driver program produced an I/O-to-processor
ratio of 12:1 (which is very I/O bound). The four job names were CHO11,
CHO12, CHO2I , CH022.

A copy of the fabricated programs described above is Included In Appendix
A.

MULTICS MONITORING TOOLS

The principal tool used to monitor the performance of Multica was the
PL/ 1 program termination overseer. Other monitoring commands such
as total_time_meters and page_multilevel_meters were used briefly.
These last two system commands substantiated the increase in page fault
time as shown in the BEST/i analysis but proved to be inconclusive in the
absolute cases.

The termination overseer program uses the real time consumed by the
executlun of the job scripts to compute a number called throughput .
Throughput is deZined as the number of iterations of a given job divided
by total time consumed for the job. These numbers for each job scrIpt
are then averaged to give the total experiment throughput under varying
loads.

17 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~— — ~ — - --— - —— ~~ 


MULTICS WORK LOAD

The means by which the Multics operating system i~ driven in order to
collect performance data is somewhat different than that of GCOS. Since
Multics is primarily an Interactive system, a simulation of Interactive
work loads was used in con)unction with the absentee facility of Multice.

The programs used to cz eate the load and in .some cases to collect the data
were produced by RADC for monitoring the performance of new software
releases. However, they have been modified in several cases to fit the
needs of the VMM performance analysis.

Absentee Processing

The absentee facility of Multics is a means by which jobs can be scheduled
for deferred processing without the need for Interaction on the part of the
submitter. These jobs retrieve their needed parameters and responses
from a file which has been constructed prior to the execution of the job.
By judiciou s anticipation of the execution of a program, responses can be
stored in Multics segm ents which cause a program to behave In the desired
manner. The full complement of Multics commands is available to an
absentee process. There are no distinctions between Interactive processes
and these batch-like absentee processes except that input is from segments
rather than from a terminal. In fact, absentee processes may be consid-
ered to be Interactive processes which are not attached to a terminal.

-~~~~~
7 18

L , - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

. 5 - -

Job Sequence

The programs described here can be found in the appendixes: Job Scripts
and Monitoring Tools.

An exeç_com or command line file (ec) called “setup” is first executed to
determine the desired load factors which control the experiment. Scheduling
parameters at this phase Include the start time of the experiment, the
number of processes, and the number of interactions desired for each
process which will be scheduled. Once this has been determined, the
requested number of processes are entered into the absentee queue and
scheduled for execution at the desired time. The final function of setup
is to call into execution a monitoring program called termination_overseer.
This monitor will be explained in the section on Multics Monitoring Tools.

The job which has been scheduled for execution Is named load_overseer_n
where n is an integer tag indicating the number of the particular process.
For example, if three processes are desired to be executed simultaneously,
then these absentee jobs queued are named load_overseer_i, load_overseer_2,
and load_overseer_3, respectively. The load_overseer prototype consists
of a second exec_com which establishes the proper working directory for
the experiment and executes a driver program to control the actual load
of a particular process.

The driver program is called load_control. This program creates and
Initializes the necessary files for collecting the data during a single exper-

• Iment. The clock is read before and after each iteration of an Internal
loop and the real time used is accumulated in a data segment. The Internal

19

l b

-“--5--—.—— __~_._•__;___ •. _____ ,a_ -_ ---—-- -.- ~~~~~~~ — _ — . -~~- . — ._4_ __Y ’
_ _” __ _

- 5-~~~~~~~~~~~~ 5- ---—--5—----5 _—

loop is controlled by the iteration count specified as an argument to the
setup procedure. At each pass through the loop, a program to exercise
the system is called. This exerQieer program is called load. Load uses
a standard Multics performance monitoring device called flush. Flush
modifies each of 256 pages in the user’s process space and then compares
the results. In this way, at least 256 page faults occur, Additionally, load
executes a sequence of processor instructions designed ~LO cause processor-
bound activity a variable number of times (set to 100 for these experIments).

When load terminates after causing the paging and processor activity,
return is made to the load_control iteration loop. This process is continued
until the desired iteration count for this particular absentee job has been
exhausted. Load_control then accumulates and computes the throughput
fact~r for this job and terminates. This concludes the life of a single
process.

Once all processes have terminated, the termination_overseer computes
the total throughput for all absentee jobs and terminates. Figure 2 describes
the basic flow through the load experiment.

-5 - 5 - - - --_ -• -— - 5 - — -5 — — - _ - - _ — - - • - - - —-“--‘~ ---- - - _ ~~~~~------— —— —5--.~~ — - - - .- - - - -5——--- - - -- -—---—~~~~- - --4

—
~~~~~~~~~ 

__
~~~~~~~~~~~~ ~~~~~~~~~~~~ ‘~~~

—-5-- __________

C START)
—

[

~~~! c~ ii~~~

— SCHEDULE
JOBS

J r  
- —

- CREATE
~- SYSTEM
- 

LOAD

— 
LOAD-OVERSEER

LOAD
FLUSH

TE~ lINATION- ‘I
OVERSE ER STORE

COMPUTE DATA
TOTAL JOB

PER FOJ~4ANCE

U

Figure 2. Multice Job Flow
-- -~~~~~~~

21 

~~~~. - -~~~~~ -~~~--  _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _


- - -

I

SECTION III

ANALYSIS RESULTS

There are demonstrable penalties In running a job stream in a virtual
machine rather than in a -real machine environment. Such penalties include
the consumption of extra system resources (e, g., processor cycles) as
well as potential degradation to various measures of overall performance
(e. g., response time and throughput). In this section the performance
impact of running the GCOS and Multics operating systems under the
Virtual Machine Monitor (VMM) versus under the native machine environ-
ment is examined.

This section of the report is divided into two parts: the analysis of GCOS
and the analysis of Multics. In each part , the benchmark experiments run
by Honeywell are discussed first. Next, the analysis of the benchmark
data to develop an analytical performance model Is described. Finally,
the results of evaluating the performance model are presented.

BENCHMARK ANALYSIS

Honeywell performed a variety of benchmark experiments in both a native
GCOS environment (I. e., in a non-virtual machine mode) and in a VMM/
GCOS environment (I. e., under VMM control) . These experiments were
performed In a completely isolated environment; no system activity other
than that defined in the benchmark was present. The hardware configuration
on which the benchmarks were run is presented in Figure 3.

_ ~~~~~~~~~~~~~~~~~~~~~~~
_

-5— ~~ -5-5~-5 -5_-5~-5•-5-5__--5••~~-5-5
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

fl -

E~~
•1 L~~ J

I~~
’I{! J [SCU J._1256K1 j StU J_-J 2 5 6 x J

_NJ

~~~

1 i

~~~ 

3SS~~~~~~~~ 
T1Y E~ I

ci~~~~J J ’

_ _ _  LI C P I

-

~~~~~~~~~~~~NSU 451 4.7 TMCK 4— 9 iPACK
NTH SO4 MTN SOS

OIL Y A S1951.C Pt~~ ESSO1 WAS USED JRII,~ THE 1C10P441K .

Figure 3. RADC Multics (VMM) Configuration

Three test series were run on both native GCOS (on a Multics system with
VMM pro cessor) and CCOS under VMM. The test series spanned the
spectrum of proce ssor bound to channel boun d, thus reflectin g how VMM
perform s under a var iety of loads. The thre e separate benchmark s con-
sisted of:

1. Compute-Bound Activity- -heavily CPU demanding tasks.

2. Channel-Bound Activity--heavily I/O demanding tasks.

3. Average-Load Activity- -average CPU and I/O demanding tasks.

Two software monitors were used during each benchmark experiment. The
System Resource Monitor (SRM) , an updated version of a previous monitor
(CSMON), was available from Honeywell Information Systems. The

III
Iti

_ _ ~~::~~i:

- -5 - - - - -

2

Virtual Machine Monitor (VMMON) was developed specifically for the
benchmark analysis effort.

In the native GCOS environment , both monitors provided substantially the
same results. Under the VMM environment, however, SRM was completely
inadequate. This was largely due to virtual time slippage. Basically,
virtual time slippage refers to the difference in time kept by GCOS and the
actual or real time. The GCOS clock, being an internal software clock,

• is updated by hardware timer interrupts when GCOS is active. In the
virtual machine environment, during periods when the VMM is active and
GCOS is idle, timer interrupts intended to update the GCOS clock are lost
since they are not enabled. This causes a discrepancy between the actual
time and the time perceived by GCOS. The SRM, In its attempts to obtain
timIng information in the virtual machine environment, unknowingly accesses
GCOS’s software clock. VMMON on the other hand compensates for the
situation by accessing the system controller clock, a microsecond clock
which remains accurate under both the native! GCOS and the VMM/GCOS
environments. In addition, VMMON reports both the value of the GCOS

time and the actual time, thereby permitting the virtual time slippage to
be deduced.

In the VMM/GCOS environment, the virtual time slippage is caused only
by VMM overhead activity and system idle activity. The virtual time
slippage, therefore, provides a convenient mechanism for establishing
overhead attributable to the VMM. One need only concentrate on periods

~~~~ in the native system where the processor is known to be 100 percent busy.
Virtual time slippage will, in this case, accurately represent VMM over-
head only.

24 

- - - - -5 -• -5 - - -



- - -

Two of the benchmark test series run in the native/ GCOS environment--the
processor bound and the average load activities- -managed to consume 100
percent of the processor. In the channel bound tests, however, the native /
GCOS was approximately 66 percent idle and so the VMM overhead could
not be deduced without additional data. Attempts to obtain this data through
applications of various patches to the VMM were not successful.

The actual monitor reported data for all benchmark experiments is provided
in Tables 1 through 4. This data has been reduced for use in the perfor-
mance analysis presented below. Table 1 presents a summary of processor
and channel usage data. Tables 2 through 4 present dat a extracted from
VMMON for six time Intervals Ti through T6 In both the native/ GCOS and
VMM/ GCOS environments. The following summarizes the information
present ed:

GCOS Time: time interval captured by GCOS

Real Time: time int erval captured by the system controller clock

GCOS Ovhd: percentage of GCOS overhead time

VMM Ovhd: percentage of VMM overhead time

Idle: percentage of processor idle time

Connects: number of connects per second of GCOS time

- _
25

_ _ _ _ _ _ _  — - - — ~~~—~~~~~~~~~——--— -5



- .

— -4 -4

m ,~ 
ri~ — it)

U) C.) ~~ 
4) • • a.) . .

a • • cj ~~‘ co - -4 1.
1.i C~)  ~~I Q 

~~~ 
0

~~~
‘.1 ).4

04 04

4.4 
— — —  4.)

.~~z .c *
*Z — 

t- 0 
— 

C’1 C~) C) C~) 0

a.) ~~ C- C.) C’~ — ‘-4 —
r~ — 0 ~ .-4 — 0 0 4)

— . . S S • •
~~~ 

0 0 ~~~ 0 0 0 0 ‘0

C.) 0 0
44*:

‘4 1. 14 *I~’1 a o a * ‘0
* ~~~ 0 * ~ cc a u~ &•- co 4,

~ C- (Y) —. C- it) 0 ~~
~~~L. C~l C”) 4) 1. ~~‘ it) 4, 14 c’~ csi
C) ~~~~ 0 0 C) -~ — .-4 C) ~~ — —C) 0 

2 2o 1’ 0 0  0 0 0 0
04 04 04

4)
14

14 4.)
— 4, 4, 41 4.)

. E ~~~~~~~~~~~
4) .— ~~ S CO . .  — CO • .. C) C-

Cl) -~~~~~~~~~~‘d’ ~..I 1 4  i4 — ~~ ~~4 i4
14 C- t- ~7j 4.) ~~ — 4.4 0)

.*• — —~ . — ~~ . — 4~ .4..b

~ ~~- o o  c o  0 0

— 
0

Q t f l
• ‘-4 0 9

‘ii 

,

~~~~~
>

4, 4, 4) 1 44)
1, ~

‘
~~ C)

.~~ 2

C.) Z~~~ 04 *

26

- — -- - - - —-~~~~~~~~~ -— --5— -
.-5__-__i_ ._ __,...._ _ ___ _•._~4

____ ._ _
~- ----._._——-_~ -“ -

P_

~

iuI_I_Uu
IT!

- —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
- - -

TAB LE 2. SUMMARY OF RESULTS FOR PROCESSOR-BOUND
%% ORK LOAD

N ative GCOS Environment

Ti T2 T3 T4 T5 T6
Statistic 

_____ _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _  _ _ _ _ _ _

GCOS Time (sec) 94. 4 223. 2 349. 5 128. 8 220. 7 443.0
Real Time (sec) 94. 4 223. 2 349. 4 128. 8 220. 7 442. 9
% GCOS Ovhd 2.4 1.8 1.7 1.4 1,6  1.7
% VMM Ovhd 0.0 0.0 0. 0 0.0 0.0 0.0
% Idle 0.0 0.0 0. 0 0. 0 0.0 0 , 0
Number of
Connects/sec 5.3 2. 9 2. 5 1.1 2.0 2 .4

VMM/ GCOS Environment
I

~~~~~~~~~~~~~~al Ti T2 T3 T4 T5 T6
Statistic ~~~~~~~

-

GCOS Time (sec) 124. 9 190. 5 286. 0 287. 5 415. 9 479. 0
Real Time (sec) 140. 4 208. 8 306. 5 295. 4 427. 2 501. 9
% GCOS Ovhd 3 .2 2.7 2. 1 0. 9 0.9 1.2
% VMM Ovhd 12. 4 9. 6 7. 2 2. 7 2. 7 4. 8
%Idle 0.0 0. 0 0.0 0.0 0.0 0.0
Number of
Connects/sec 8.3 6. 9 4 .8 1.2 1. 1 2 .1

27

-5

-------— -— -- - - - ------—-~~---

TABLE 3. SUMMARY OF RESULTS FOR AVERAGE WORK LOAD

Native GCOS Environment

Ti T2 T3 T4 T5 T6
Statistic ~~~~ _______ _______ _______ _______ _______ _______

GCOS Time (sec) 124. 2 216.5 339.6 274.5 216.1 340.1
Real Time (sec) 124. 1 216.4 339.4 274.3 216.0 339.9

%GCOSOvhd 10.2 10.0 10.0 9.5 8.7 9.8
% VMM Ovhd 0.0 0.0 0 .0 0.0 0. 0 0 .0
% Idle 0. 16 0. 14 0.09 0. 09 0.12 0.0
Number of
Connects/sec 38. 3 38, 0 38.0 35.9 32.3 37.4

VMM/GC OS Environment

Ti T2 T3 T4 T5 T6
Statistic

GCOS Time (sec) 154.1 278.4 461.0 186.1 306.9 400.2
Real Time (sec) 184. 8 334. 1 548. 9 223. 3 364. 1 479. 8

% GCOS Ovhd 9. 9 9. 9 9. 3 9. 9 9. 1 9. 1

% VMM Ovhd 19. 9 20. 0 19. 1 20.0 18. 6 19. 9
% Idle 0 .0 0. 0 0.0 0. 0 0. 0 0 .0
Number of
Connects/sec 36.7 36.8 34.7 36.9 33.7 36.6

I.

-
-

28

— - --

-

_ _ _ _ _ _ _ _ _ _ _ _ _ . - - ~~~

_________________ _ _ _ _ _ _ _ _ _ ___ - - -

TABLE 4. SUMMARY OF RESULTS FOR CHANNEL-BOUND
WORK LOAD’~

Native/ GCOS Environment
Interval

Statistic Ti T2 T3 T4 T5 T6

GCOS Time (sec) 142.9 264 .0 324. 0 181.0 271 .2 479. 2
Real Time (sec) 142.8 263. 9 323. 9 181.0 271 .2 479. 2
4% GCOS Ovhd 17.4 17.6 17.6 17.7 17.6 17 .6
4% VMM Ovhd 0.0 0.0 0 ,0 0.0 0 , 0 0.0
‘% Idle 65.8 65 .8 65. 9 65. 9 66. 1 66.2
Number of
Connects/sec 64. 0 64. 9 64. 9 65.5 65.2 65.0

*Since native GCOS idle is significantly greater than zero (approximately
66 percent), VMM overhead for the channel-bound work load cannot be
deduced. Attempts to patch VMMO N to present the data on the VMM/
GCOS environment were unsuccessful.

GCOS-VMM OVERHEAD REGRESSION ANALYSIS

The quantity of Interest for the analyses that follow is the VMM overhead.
This quantity represents the processor time consumed by th e VMM In
servicing users’ requests for system resources. The approach to be
used to compute VMM overhead is described below. -

The various time periods for which measurements are available are de-
noted by T~ (I = 1, 2,. . . ,n). The measured VMM overhead time (i. e.,
the virtual time slippage in the 1th time period) is denoted by t~. Suppose

29

-- - - - —---~

---5 - - - —-----— --—-— - —-- - ---—-~~
_

~~

___---

~~~,

there are M different types of requests which the VMM must service. If
n1 (j- 1, . . .m) is the measured quantity of requests of type j during the
Interval and 8 . is the VMM overhead incurred in servicing the type j
request, then the total VMM overhead time spent in the i time interval
may be approximated by:

in

= 8. N .. (1)
1 3 13

j =i

The coefficients e 1, 
~2’ . , em can be determined by the method of least

squares so as to minimize the sum of the squares of the residuals, I. e.,
n

• V~ 2mm S(81, 82 , . . . , e = L.. r .
1=1

where residual r is defined as
m

= t . - V’ ~. N ..
1 1 L..... 3 1]

- j = i

If the r~ turn out to be relatively small, th en Equation (1) is considered to
yield a suitable fit to the data. The goodness of fit criteria incorporated
below is the multiple correlation coefficient obtained by comparing the
sum of the residual squares to the sum of the squares of the deviation of
the measurements from their mean value (t ) , i. e.,

R 2 
= 1 - ~~~r~,,/

’

~~~(t i
_ b 2

~~— _•___ _.i
i=1~ 1=1

30

-5 -
~~~~

--- - - - -----

_ _  _ _



— - - 5 —  - - - - - -~~~~ -------—---5- - -5—----—- -- 5 —- -~~~~~~- --- - -

Based upon the information obtained from the benchmark analyses, two
resource quant ities were selected as being major contributions to VMM

.thoverhead. For the 1 time mterval, T~. these were

• n~1--th e CPU busy time during T1

• n .2 - -the number of channel connects requested during T.

Equation ( 1) in this case reduces to

= e 1 nil + e2 ‘~2 
(2)

Using the benchmark experiment data in Tables 1 through 4 (excluding the
channel-bound work load for reasons previously explained) , the method of

least squares was applied to the equations represented in Table 5.

TABLE 5. VMM OVERHEAD REGRESSION DATA

\ \ t ~.t O~ ei’head GCOS Busy
- . - Total Number ofWork Load T~ Time (t

1
) in T1 Time ~1j~ ) 

Connects (n. ) in T .(sec) in T . (sec) i2 i

1 15 .5 124. 0 1042. 0

2 18.3 100. 5 1316.4

Processor 3 20 .5  286 0 1381 .4
Bound 4 7 .0  287.5  345.0

5 11 .3 415. 0 474. 1

6 22 .0 479.0  1005. 0

1 30 .7 154. 1 5661.6

2 55 .7 278.4 10242.3

3 87 . 9 4 6 1 . 0  1 6 0 1 0. 5Average
Load 4 37 .2 186. 1 6876. 4

5 57 .2 306.0 10351 .7

6 79 . 6  4 0 0 . 2  1 4 6 4 7 . 3

31

____________________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



The results of the regression analysis of the data in Table 5 yielded the

following:

— 

82 R2

0. 0351 0.0045 0. 98

These results indicate that the processor overhead inôurred through usage

of the VMM is approximately 0. 0045 seconds overhead for each channel

connect and an additional 3.5 percent of non-idle pro ’~~sof time. The

extremely high correlation coefficient indicates that these result s £ epi-c.-

sented a suitable fit to the data.

It should be pointed out that , although an extremely high correlation coeffic-

ient has been achieved, the results may not be statistically precise. The

method on which the coefficient values are based depends on the assumption

that the coefficients are conatant--not variable. This assumption is not

valid for the data in Table 5. Clearly different user requeats place signif-

icantly diff erent demands on the system, for example. The true accuracy

of these coefficients, therefore, has not been established. It is possible,

however, with additional measurements, to construct more statistically

accurate results. This remains a source for future investigations.

Another point Is also of Interest at this time. Much care was taken in

obtaining representative time intervals including the effect of transitory

periods of system activity rather than just intervals of pure work load

activity. This was done to include the effects of transitory system activity

_____ 
in the analyses of subsequent sections. With careful selection of periods

32 

-~~~~ ~~

~~



__________________________________ —----- --------- - -
-
-

C

of measurement, It Is possible to distinguish between periods of pure work
load activity and periods of combined work load and transitory system
activity. It may be of interest to determine the coefficients e~ and e~ in
this case. The values of would more accurat ely isolate the contributions
‘~~ and n12 to the VMM overhead.

For this purpose the following intervals were chosen as representative of
pure work load activity (i. e., little or no system transitory effects were
included):

VMM Overhead GCOS Busy Number of
Work Load (t

1
) (see) Time (n11) Connects

(see) (nil)

Processor 6.8 287. 3 132. 9Boun d
Average 55. 7 278. 4 10242. 3

Repeating the previously described regression analysis determines:

= 0.0215

82
1 = 0.0048

Application of these new coefficients to intervals which include transitory
effects yields a significant difference between the observed and predicted
VMM overhead. This effect is due to overhead resulting from factors other
than the GCOS busy time (ni1

) and the number of connects (n12
), that is,

33

_ _ _ _ _ _ _ _ _ _ _ _ _ _  -
• —-5 — -- - —-5--—- , — - —

~~
- --—- - —------ -- -.-- - - - -------- -— ----_--- - - - - -  — - - --5— - - - - -



- ~~~~~~~~~~~~~~~~~~~~~~ - — -- ~~~~~~~~~~~~
-- -— _ _

~~~
_
~~~~~

_ _
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

n~3, n14,... which have not been identified. To determine such factors
would require substantial additional data and analyses.

BEST! i
~ 

-GCOS ANALYSIS

Based on the values of e1 and derived in the p~evious section, it was
possible to hypothesize several configuration and work load alternatives
and determine their respective performance degradation when executing
GCOS in a virtual machine rather than In ‘a native machine environment.
This was done with the help of BGS Systems’ proprietary modeling package

BEST/ 1tm’ First, the performance of each of the hypothesized alterna-
tives running in a native! GCOS environment was analyzed using BEST! 1tm
Next the previously determined coefficients, 

~1 and 
~2’ were used to

determine the VMM overhead degradation of the hypothesized work loads
in the VMM/GCOS environment. Finally, BEST/ltm was again used to

determine the performance impact of executing that same configuration 
-5

and work load, under GCOS, in the virtual machine environment.

The configuration and work load models constructed for the BEST! 1tm
analysis consisted of a canonical job stream executing on a single proces-
sor system, in one case including and in one case excluding the effects
of I/O device contention. Individual tasks in the job stream were assumed
to consume approximately 1 second of CPU time and to perform a varying
number of I/O operations (0 to 50) at approximately 35 ~sec per connect.
The analyses were performed for the job stream under several distinct
levels of system load, ranging from . a single thread environment to a level
of threading equal to 15.

34 



_________ _____ __________ - - -5-

r r~~~~~

The models chosen and analyzed via BEST/ltm were directed toward deter-
mining the VMM overhead Impact on two important measures of system
performance: response time and system throughput. Sample BEST!
modeling details and the results of the analyses are presented in Figures 4
through 12.

p 

4uU?K.UAf ~ ~~~~~~~~~~~~~~~ 

..at r3r~.. ~~~~~~~~~~~~~~~~~~~
dP K.. (JAL ~ T1P.~

0. l~ AT~ &iftr L~ ~4P.. 

W U ( ~ )AP 2—-— -t ~~~Ci~jPTO?~ 

A iSa . AVa!PA ~~—..)A0
âP iOh’~~OAt~ ~~YI’I~

’

0. 15 ATTA 1i~~1’ 11P. 

~~~~~~~~~ ~--— -~~~~Ci~IPT3P~, 

~Abi~ Ci~Ati~1p .. -bUUNL’
~~ ~0P Oa~0 ~~~~1.5 0 AT~Aiin~L~ ilP’~

WiL I W~L 2 ~~~1 C~L’ 1000.0 1000.0 1000.c;
2 t\[)K2 9~ .5 0.0 0 .0
3 0 . C 12 d1. C (. 7
44

~.C• ~
‘ .0 2211 .5

~i)

~“ ?l~i4~Cj t ~k.. ~~~ J’~’~~
aèâ

L)v1.5t~ Tj.4i~’ T~~~)tIJ~3PLIT b (~ ‘LI

I Ci~~SUJ’—b0L 1Nf ’ 1.~~3 SP~C 1~)9. P~~’ HOLIP 3J .3 ~2 AV rPA — ..tJAC’ ~ . 14(~J~C 1(~1. I~~P ri’JQ~ 21.b ~~ nAWNi~..~~i~ULINP ~~~~~~~~~ S~~~C 10~~~ ,j . P~~’P Hu Ug~ ~~~~ ~
~\Yr A~ CP~’ JT 1~ . 1Z A ~~~ j ON : 33.~ ~

Figure 4. Sample BEST/ 1tm Internal Model and Principal

~ ~~~~~

-

.

~~ Results Report

i
_ _—.-.----- ~~ --. --- -

-5 -- --5 -5- ~~- --5.— ~~~~~~~~~~~~~~~~ —--- ‘— -5
- - - - ---5— — - --—----~~- --- —. —-—— - - — — ~--- -.- - -—

- -- — “~~~ ‘~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——----- -—- —
—

.
‘ ‘ I L _ ~,,. ,.__,_ ._ -~ L~:

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

/

/ 

1 HEAVY LOAD
i (MPL = 15)

25 —

VMM/GCOS
20 —

— 
NAT IVE/GC~~~~~~~~} 

MEDIUM LOAD

io -
~~~~~~~~~~~~~ :~~~~~~~~~~~~

ATIvE/GCoS

VMM/G CO S

—

0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

S G ~~ THREAD

2 10 25 30 35 40 50

NUIBER OF CONNECTS/SECOND OF PROCESSOR BUSY

Figure 5. Effect of VMM vs. Nat ive GCOS on Response Time
as a Function of I/O Activity (I/O Contention)

- - - -

~~~~~~

--— T

36

a. ~~~~~~~~~~~~~~~~
--

___________-- _

-5
.

— - —--
~~~

——- — —-5 --5— -— -—-- —--5 . —‘-,——

~

--.—-5 —-5—--- — - - - - - -5- -  ~___4 ~.~~ _._ _____________ ——-5—



‘~
‘7’ ‘

~~~~~~~~~~ 

- - - —-- - - -— — — - --

~

--5- ----- ‘ ‘

~~~~~~~~~~~~~~

1.27 —

1.23 —

1.19 —

1.15 -

I 

~~~~~~ l~O~~~~~~~~~~~~~5 5 ~

NUMBER OF CONNECTS/SECOND OF PROCESSOR BUSY

: Figure 6. Ratio of VMM: Native Response Time for GCOS as a Function

I

of I/O Activity (I/O Co:tention Included)

_ -5

I. i - - - — - - - — -- -5— —-—--~ -5—— - -------—- - ----——-5—~~ -— -5 -5 —-—- - - ’~--.- —-5- --- ——‘-5——-—- . -5- ’—-—

26 —

24 —

22

— VMM/GCOS

Y L O

~~~ 14 NATIVE/GCOS
— 

VMM/GCOS:: 
, ,~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
}

MEDIUM LOAD

8 NAIl VE/GCOS

6 —

V*1/GCOS VMM/GCOS NAT ! VE/GCOS

NUMBER OF CONNECTS/SECOND OF PROCESSOR BUSY

Figure 7. Effect of VMM vs. Native GCOS on Response Time as a
Function of I/O Activity (I/O Contention Excluded)

4

38

— —-5— - - - --5 - ~- .~~~~~~~~•j —~,_
~- ~~~—-‘ -

______ _~~~~~~~~~~~~_~~~ - - — --~~~- --- - - - - —a”’ - — - - — —-- ---- - - - ——-

—-5~~•-~-5-5—-5-5-5-5’-5-5’-5-5~~~ -5~~-5 -

1.27 —

MPL = 9
1.23 —

MPL = 15

1.19 —
-

- MPL=3
1.15 —

1.11 -

2 MPL — 1
~ 1.07 —

‘U
z -

‘U
I,,
z -

‘U
—

-91 —

87 —

83 —

79 —
-

I I
2 10 25 50

NUMBER OF CONNECTS/SECOND OF PROCESSOR BUSY

Figure 8. Ratio of VMM: Native Response Times for GCOS as a
Function of I/O Aotivity (I/O Contention Excluded)

-39

t-~~
. —-5- - - 5 - - ——_______

L - -- —---------— - — - — - --~‘~~~--‘~~~~~~ ‘ ‘ ~~~~‘ ‘~~~‘ ~~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - -  - - - — -- - -

3600 - 
_____

3400 VMM/GCOS -
~~~~~~~ NATIVE/GCOS

MPL = 15) (MPL = 15)
3200 —

NAT! VE/GCOS
(MPL=9)

3000 —

____ VMM/GCOS
(MPL .9)

2800
NAT! VE/GCOS

_ 2600 (MPL=3)

2400 —

~~~ 2200 — VP~I/GCOS
(MPL~~ 3)

2000 —

1800 —

1600 — NATIVE/GCOS
(MPL=1 )

1400 - V1II/GCOS
(MPI. 1)

1200 -

_I I
0 2 10 25

NUMBER OF CONNECTS/SECOND OF PROCESSOR BUSY

Figure 9. Effect of VMM vs. Native GCOS on Throughput as a
Function of I/O Activity (I/O Contention Included)~

-5—

40 

-~~~~-~~~~~~~ - - - -  -5— --~~- - -~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  - - - - - -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ‘- - - - —.‘-— ---- -- - - - --- - - - - - . -- - - - - - ——---5- ,——---— -‘

-

-

- —— -- - - - -

1

.101~~~

‘

~

NUMBER OF CONNECTS/SECOND OF PROCESSOR BUSY
-

Figure 10. Ratio of VMM: Native Throughput for GCOS as a
Function of I/O Activity (I/O Contention Included) I

41

h__ H
i

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _• ~~~~~~~~- ‘ -- - - ---- --- .-- - - --5— —--- —- - 5 — -—--— —-5— ~~~~-‘~~-•-- - -5 - -

-
— _ -1 — - - -—- -5— ‘ _ _ _ ‘ _ _ _ _ _ - - - - - — _ _-- —- _ — — — --5— ---— -—• - ---—.- — —— - _______

—---‘-:-•---5--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -- ---—— - ----—-—--— -5----—---

:

3
::::

0 .~~~~~~~~~~~~~~~~~~~~~

ATIV
M
E/

P
G
L

CO
.

S
3)

(M
NA

.

P
T
L
I
=
VE/

0
G
.
C
1
1
5

~~~

\ \ VMM/GCOS
P1 = 9,15)

__ \ VMM/GCOS
(M P L = 3)

~~~ 2500 -

2000 -

NAT IV E/GCOS
1500 - 

(MPL 1)

VMM/GCOS
(MPL 1)

I I I

0 2  10 25 50

NUMBER OF CONNECTS/SECOND OF PROCESSING BUSY

Figure 11. Effect of VMM vs. Native GCOS on Throughput as a
Function of I/O Activity (I/O Contention Excluded)

42

_ _ _ _  
---5--



-----~ -— -— - — -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - •— - - - --

E~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
P 1 = 3

.77 -. MPL = 15
I I

0 2 10 25 50

NUMBER OF CONNECTS/SECOND OF PROCESSOR BUSY

Figure 12. Ratio of VMM: Native Throughput as a Function of
_____  

I/O Activity (I/O Cont ention Excluded )

43
~~~- --—- - - - - - 5

— - — — - 5 ~~~~~~~~~
‘ ‘

- ‘-
~~~~

‘
~~~~~~ ~~~~~~~~~~~~~~ - ~~~~ , - - -


‘~~~ ‘- ‘ — ‘ — ‘ -~~~~~~~~~~~~~~~~ -— —- -~~ —-~~~

MULTICS BENCHMARKS AND OVERH EAD ANA LYSIS

The benchmark experiments run by Honeywell for Multics differ signifi-
cantly from their GCOS counterparts. Rather than defining several distinct
work load types and performing a series of benchmarks for each, as was
done with GCOS, only a single work load type was defined for the Multics
case. This work load consisted of a single PL/ 1 program which itself
issued primarily processor consuming requests through a large iterative
loop (the effect of flush was also considered)1 The work load was run in
both the native/Multics and VMM/Multlcs environments with three distinct
levels of threading (multiprogramming levels 1, 15, and 20).

Statistics were gathered for this benchmark series through the use of the
Multics System Metering tools. This tool, however, was not applied
solely to the intervals of interest (I. e., the intervals in which the PL/ I
work load was active). Therefore, the data that was collected and reported
turned out to be insignificant.

Fortunately, another source of information was available: a PL/ 1 source
program referred to as LOAD-CONTROL. This program was used to
monitor the work load and report the number of iterations per minute that
It achieved. This provided a single data point in each environment (Table 6)

which was somewhat useful in determining the VMM overhead degradation.

There are several factors which affected the usefulness of the LOAD-
CONTRO L data. Foremost was the fact that configurations for the native!
Multics and VMMI Multics were not Identical. The PL/ 1 work load was
run under native/Multics without the use of a high-speed cache memory

44

- - - 5 - - - - - -5~~~~~ _ _ - 5 - 5 - 5~~~~~~~~~~ - -

~ _ _ _ _ _

and under VMM/Multics with use of the cache. Since the cache memory
has a significant effect on such factors as instruction fetch rates, perfor-
mance ana]yses using this data would clearly be affected.

TABLE 6. BENCHMARK DATA FROM THE PL/ 1
LOAD-CONTROL PROGRAM /

Native / Multics** VMM/ Multics*
Number of
Iteratlons/min 3.58 3. 15

Single Thread

*Wlth high-speed memory cache.
**Without high-speed memory cache.

-

Even so, a first-order analysis of the data was attempted. Based on the
above data, it was deduced that under the native/Multlcs environment 16. 76
seconds were required per iteration while under VMM/ Multics this number
increased to 19. 05 seconds per Iteration; this implied an observed VMM
overhead degradation of 13.7 percent .*

*Thig represents an increase factor of 4 over the degradation for the proces-
sor busy contribution In the GCOS use. These numbers are not intended to
be compared, however, Paging activity, for example, which is not present
in the GCOS environment, causes a significant performance impact In the
Multics environment . The effect of Multics paging activity has in effect been
aggregated into the Multics processor busy contribution. Explicitly deter-

mining the degradation contributed by paging would require additional bench-
mark experiments and substantial further investigation.

45

- - 5 ..

[
-5

- — - - - 5 — - - 5 -——--—

Since in the benchmark experiment for the VMMfMultics case the cache
memory was Incorporated, this figure represents a lower bound on the
VMM overhead degradation.

The actual degradation would clearly be more significant for larger effective
iteration speedups contributed by use of the cache. Since typical speedup
factors introduced by the use of a high-speed cache may range from 5 to 30
percent for processor bound work loads, this leads to the ranges of VMM
overhead degradation depicted in Table 7.

TABLE 7. ESTIMATED VMM OVERHEAD DEGRADATION
AS A FUNCTION OF CACHE CONTRIBUTION

Effective Cache Estimated VMM/ Multics Percent Degradation
Contribution (%) (Second/iteration without cache) VMM: Native

0 19.05 13.7
5 20.05 19.6

10 21.17 26.3
15 2 2. 41 33. 7
20 23.81 42. 1
25 25. 4 51.6
30 27 .2 62. 3

—

46

-5-- —

r

-; -- - -

~~~~~~~ 
_ _ _ _  - -

BEST/i -MULTICS ANALYSIStm

Even with the minimal amount of data provided by the benchmark experi-
ments in the Multics case, examination of the performance Impact of the
VMM degradation for a variety of hypothesized configuration and work load
alternatives was attempted. This was done with the aid of BGS Systemst

proprietary modeling package BEST/ 1tm~

For purposes of this analysis, the 82 factor in the VMM / Multics case was
assumed to be the same as that In the VMM/GCOS case (0. 0045 seconds/
connect). The 81 factor was varied over the end points of the range of
effective cache contributions described previously. The performance of
the hypothesized systems in the native machine mode under Multics was
analyzed using BEST/l tm • Next the coefficients 81 and 82 were used to
determine the VMM overhead degradation of the hypothesized systems
under Multics in the virtual machine mode. BEST/i was then usedtm
again to determine the performance impact of executing the hypothesized
systems under VMM/Multics .

As in the BESTI ltm~
GCOS analysis, the configuration and work load

models consisted of a canonical job stream executing on a single processor
system. Two hardware configurations were modeled: one including the
effects of I/O device contention, and one excluding these effects. Individual
tasks in the job stream were assumed to consume approximately 1 second
of processor time and to perform a varying number of I/O operations (0 to 50)
consuming approxImately 35 msec per connect. The analyses were performed
for the job stream under several distinct levels of system load, ranging from
a single load to a load level of 15.

_  

~~~~~~
H-.

- -- ~~~~~~— -- —I

The models chosen and analyzed via BEST/i were directed toward deter-tm
mining the VMM overhead impact on two important measures of system
performance: response time and system throughput. The results of the
analysis are presented in Figures 13 through 16.

SUMMARY OF RESULTS

Initial benchmark experiments and measurement data, obtained for the
Honeywell 6180 configuration at RADC, have provided an indication of the
performance of executing job streams under the GCOS and Multics oper-
ating systems in both native and virtual machine environments. Analysis
of this data through multiple linear regression and queing network tech-
niques provided insight into the performance degradation of running work
loads under GCOS and Multics in both the native and virtual machine modes.
The following was observed:

• For both GCOS and Multics, both measures of system performance- -

response time and throughput- -showed that VMM overhead had its
greatest effect on work loads exhibiting an intermediate amount of
I/O activity (15 to 35 connects per second of processor busy time).

• In case of GCOS, the performance impact of the VMM overhead
increases with the load for processor bounded work loads and
decreases with the load for I/O bounded work loads. For work
loads exhibiting a small amount of I/O activity, VMM overhead
has only a minor effect on performance. For work loads exhibiting
a large amount of I/O activity, contention at the I/O devices be-
comes the limiting factor and again the VMM overhead contributes
only a minor effect. If contention at the I/O devices could be

-

48

~~~~~ 

_  _ _ _ _  
-5 .-

L - - -



~~~~~ 

,

1

1.8 -
102

= 62 .3~

1.7 —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~

1.6

2 1 5 - MPL = \\
1.4 — M P L = l

~ 1.3 _ 
_ _ _ _ _ _ _  MPL = 3
Ie1 = 13.7

~~ t’~~~ 
1

1.2 —

MPL = ~ MPL - 15 

I I I
2 10 25 30 35 40 50 - -

NUMBER OF CONNECTS/SECOND OF PROCESSOR BUSY

Figure 13. Ratto of VMM: Native Response Time for Multics as

— 

a Function of I/O Activity (I/O Contention Included)

49 

, — ~~. ~~~~~~~~~~~~~~~~~ ~~~~~~~. — - -—--~~- - —  — - - — - — -- —~~— - — ----------



---- -5 - - - - —
- - - - - 5 — . - --- —,--—-- 5—.-~~~~-—~~~~~—~~~—- ---—--- - --5,

1.8 MP~~~~9,i~~~

~~ ~~~~: :

_ _ _ _ _ _

= 13.7% (
-‘ MPL a 3

1.2 — 

-

- 
M P L = 1

1.1 —

1.0 —

I I I I I I I
2 10 25 30 35 40 50

NUMBER OF CONNECTS/SECOND OF PROCESSOR BUSY

L 

Figure 14. Ratio of VMM: Native Response Time for Multics as
a Function of I/O Activity (I/O Contention Excluded) 

_._
~~~~~~~_I _,_ 

- - - 5

1.00 —

J ~~~i
u l3s7% 1 . - -

-

MPL = 15
MPL = 9

M P L = 3 -

P1 = 1
0 - -— .80

I.-
-

MPL = l

.70
MPI = 3

MPL 9
.60 —

L = l 5

.50 —

I I I I I I I
2 10 25 30 35 40 45 50

NUMBER OF CONNECTS/SECOND OF PROCESSOR BUSY

t
I Figure 15. Ratio of VMM: Native Throughput for Multice as a

-

1 Function of I/O Activity (I/O Contention Included)

L 51

4 .

I
____ _ _ _ _ _ _ _ _-

:
- - —_— - - ---- --5 - - .- —

L, J
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _ _ _ _



1.00 —

= 13.7% - MPL = 1

MPL = 3

2 .80 
MPL 9,15

MPL • I

~ .70 — 02 62*3%

.60 —

0 2 10 25 30 35 40 45 50

NUMBER OF CONNECTS/SECOND OF PROCESSOR BUSY

Figure 16. Ratio of VMM: Native Throughput for Multics as a
- - 

Function of I/O Activity (I/O Contention Excluded)

52

Pt — ~~~~~~~~~~1=
-5 - -_ _ _  _ _ _ _

—- - -—--- _ --- --—-- -5—~~~~ —----- ----5- .- .-- .--_- -— — --—- ----~.----~~-— ---—.--- - --.- . - - —-- —----- —-- --—---- - — - - - 5 -



-5

eliminated In the latter case, however, the VMM overhead would
again become a major source of performance degradation. Similar
statements, although probably applicable to Multics, are not con-
clusive because of Insufficient benchmark data in the Multics case,

• In GOO S the VMM overhead was determined to be in the range of
15 to 28 percent depending upon the degree to which the job mix
was I/O dominated. The refinement of these factors in terms of
processor busy time and the I/O activity is 3.5 percent and 4. 5
msec of overhead per connect, respectively.

• In Multics a substantiafly higher value of VMM overhead was
determined. The range of this value was estimated to be very
wide, 13 to 60 percent, because of the insufficient number of
benchmark experiments. Overhead of greater than 30 percent
is likely.

• The relatively higher values for the Multics/VMM degradation vs.
GCOS/VMM degradation are attributed to the higher VMM over-
head required to process page faults and associated I/O withIn
the M~1tics virtual machine.

• R eference to the (A = 2.2 percent ) and (B = 4 8  maec/con)
values for the “pure” work loads reflects minimum VMM overhead
when GCOS is not issuing master mode instructions.

~~I _ 
53

__________ —-- - -5 - 
____________-—-

-- --— ---— 

--- -5-——- - 5 - -  - -5--- - -5
--5— ,. --5— --5--



----- —----- -~~~ 

SECTION IV

EVOLUTION OF THE VMM

VMM APPLICATIONS

Early experience with the VMM has shown that the concept has a major
Impact on the development of operating system software. More recently,
potential assistance to the application programmer has come to light as a

result of VMM research. The Honeywell VMM provides a minimum set
of capabilities which allow RADC to evaluate this concept in a limited

environment. Some discussion of the major applications will, help focus

this evaluation.

Virtual Microcomputers and Minicomputers

It is convenient to describe the many levels of processing (mini, micro,
macro, etc. ) and the units which they use as a computational theater.

Such a theater is a formally described processing system including a basic
idea of computation which is independent of level. It Is possible for a VMM

to provide a theater which can produce multiple copies of itself. Within
each theater, then, a particular instance of a processing unit could be

created.

Since VMMs provide complete hardware/software Interfaces, multiple

simultaneous users, and fictitious I/O devices, the advantages of large
machines can be extended downward for small machines. A large number

.. - ---5-- - - -. -~~ - . — - - -- - ---- -- --~~~- _~~~-5- - ----——- __ 
~~~~ -.~~~~

__

of mini or microcomputers could be encapsulated on a single large system
executing a VMM. This would allow extension of the capabilities of small
machines for software development, multiprogramming, and computer
systems research.

Networking

Given a situation where the software for a geographically distributed system
needs to be developed but only a single hardware system is available, a
VMM can provide the needed test bed. By establishing multiple VMs within
the VMM, each virtual machine can communicate with the outside world and
other machines on the pseudo-network without actual communication lines.
The Information can move from one VM to another VM by passing through
the VMM or by going outside the machine to a wrap-around communications
device.

Program Debugging

One possible way to use the VMM approach for debugging software is to
allow a virtual machine to be “smart” about its environment, that is, allow
a VM to understand its interface with the VMM and to know that other VMs
exist on the same host hardware. In this way a “spy” program can be
executed on VM1 which views the execution of VM2, traps data about that
execution, and provides a debug interface to a user of VM1. The spy
concept was implemented at the IBM Grenoble Scientific Center on a modi-
fied CP-67.

-

~

- - -5 -5 -~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Other softwar e debugging aids using VMM concepts are extended console
functions and recursion. With a virtual operator ’s console sim ulated on a
user’s terminal, many system commands can be extended out to the user.
Examination and modification of absolute addresses and dynamic modifica-
tion of system scheduling parameters are two of these. The aspect of
recursion can be called nested VMMs. In this use of a VMM, a specialized
debug-oriented VMM is executed under the bare machine monitor. Thus a
VMM becomes a VM. Obviously, efficiency considerations may limit the
depth to which recursion is feasible.

Input/Output Applications -

Two major applications of VMM are I/O program analysis (virtual I/O)
and new peripheral support. The first of these was discussed in the interim
report and will not be elaborated upon here. The extension of the virtual
I/O concept allows us to visualize three scenarios in which a VMM is used
to aid the introduction of a new peripheral.

Scenario 1. A New Peripheral Device is Being Proposed or Developed for
an Existing Product Line- -By providing a software replica of a device
which does not currently exist, virtual machine systems can be of signif-
icant value In performance evaluation studies and in software development
work. Since the VMM can guarantee good program performance, it is
possible using VM techniquas to run highly complex test or benchmark
programs to determine the quality of the software support. Since virtual
machine systems usually provide good tools for evaluating performance
of software running on VMs, it is easy to perform these evaluations. It
also becomes easier to test new error handling routines while running on

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -5 

*

__ ----5--- - - - - _ --- - ------ - - ----~ ~~~~~~~—-_ —~~~ -~~~~~~~-—~~~~~~_ _ -- 



— —-5 —- -----5—

a VM since the VMM may simulate errors on the device. If the develop--
ment of new peripherals is a frequent activity of an organization, it may
be possible to use a higher level language to describe the device and com-
pile the VMM virtual I/O device support directly from this description,
The VMM support for the new device might be mapped, partitioned, or
simulated depending upon the device’s degree of departure from existing
designs.

Scenario 2. A New Peripheral is Introduced into a Computer System and
There is No Software Support for It in the Commonly Used Operat ing System- -
Virtual machines permit the introduction of a new peripheral device into
a system in which the operating systems do not support the device. Thus,
VMMa allow an installation to take advantage of new peripheral technology
without rewriting the operating system’s device support package. The
VMM continues to provide the illusion of some device which the operating
system already supports while in reality it uses the new device instead.
Depending upon the similarities between devices, the support might be
mapped, partitioned, or simulated. Since today’s modern operating
systems are enormously complex, it is often preferable to introduce (the
actual) support for the new device in the VMM which is smaller, simpler,
and easier to debug.

The technique has been used successfully in the CP-67 system. IBM 2314
disk units were first introduced into the system at the VMM level while the
operating system (i. , CMS) continued to manipulate IBM 2311s as virtual

~~~~ I/O devices. The “mini-disks” were supported as partitioned mapped
devices.

-

~

57

- _ _ _ _ _ _ _

- —-5—-

Scenario 3. A New Peripheral is Being Introduced into a Computer System
and There is No Software Support for It in the Commonly Used Operating
system; However, There Exists Some Specialized Stand-alone Software
Which Does Support the Device- -Suppose it is necessary to support a new
device which neither the predominate operating system nor the VMM is
able to support. Suppose further that some other special purpose operating
system is able to support that device. If standard techniques exist for
communicating information between two virtual machines running under
the same VMM, it is possible for the predominant operating system to
use the device by sending access requests to the special purpose operating
system via the VMM’s communication mechanism. Thus no changes have
to be made to any of the systems. Furthermore, the process of debugging
the device handling routines in the special operat ing system can only
affect that system and cannot cause the predominant operating system to
crash. These techniques were used very effectively by MIT Lincoln

Laboratory in debugging and introducing support for the ARPANET in the
CP-67 system.

A similar scenario arises when it is necessary to run test and diagnostic 3

software for a new device before that software has been Integrated Into
the commonly used operating systems. In this case the standard operating
system runs on one virtual machine while the Test and Diagnostic Monitor
runs on another. There is no need to communicate between virtual machines
In this example since the (stand-alone) Test and Diagnostic Monitor is
controlled through the virtual operator ’s console of the VM it is running
on.

58

I
- -5-

— - - 5 - - - - - - - -5 -- -~~~~~~ ~~~

__ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SOFTWARE EXTENSIONS: THE SERVICE MACHINE

The VMM under evaluation in this effort represents an implemer~
- 4ion of

functionality which was known to be a partial fulfillment of the g~ is of a
long-term project. Therefore, there are several areas of functional exten-
sion which are known to be desirable from several points of view. Among
these are extensions for sharing peripheral equipment, Including front end
processors, enhanced system console functionality to permit dynamic
changes in virtual machines being run and their real resource assignments,
an ability to dynamically swap virtual machines so that several can be
multiplexed, Improvements to the treatment of timer and clock information
so that each virtual machine can have a correct time-of-day, and imple-
mentation of the service machine concept as a vehicle to greatly enhance
the VMM functionality for those services which can tolerate the internal
delays associated with dispatching a virtual machine (i. e., the service
machine).

The main recommendations of software issues which result from this
analysis are that:

• Performance degradation due to input/output operations is sub-
stantial as discussed above and needs careful analysis in the
design of this or any other VMM.

• The areas of missing functionality identified above are important
in order for a VMM to be of practical value for most areas of
application.

—-

59

-5 --5— -


~~~ i~~~~
’-
~~~~~~~ 

- - -

In this section we present an implementation approach for the virtual
machine monitor. The approach derives from desires to keep the perma-
nently resident VMM code as small as possible - and to make use of already
existing software. In particular, much of the functionality required within
the VMM can be found In either the Multics or GCOS operating system.
Two Important examples of this necessary functionality are an interactive
user interface and a named information storage system.

Figure 17 is one example of a VMM implemented using Multics to provide
support for the resident part of the VMM. This figure shows a stylized
view of a computer system memory. There is a permanently resident area
which is part of the VMM. The Multics operating system is running in one
virtual machine, and two different GCOS operating systems are operating
Independently in two additional virtual machines.

Within the Multics virtual machine there are many processes running
which,. In this example, fall into two categories: service machine processes
(SMP) and user processes. The SMPs comprise the rest of the VMM be-
yond the resident part of the VMM (RVMM). In general there is one SMP
per active virtual machine whether or not that VM Is physically resident
In primary memory. Further, there are additional SMPs working on
behalf of the RVMM to perform overall functions for the VMM (e. g., VMM
operator console, I/O spoo11n~ activities, etc.).

Within the Multics virtual machine are also shown user processes. These
are shown only to suggest that the Multics system could be used to support
normal Multics service for a user community in addition to the SMPs.

60

L t ~~ - - ---5 —-5

USER
PROCESS

I

-USER
— PROCE SS1

SERVICE MACHINE
_____________PROCESS1,

VIRTUAL I
MACHINES :

SERVICE MACHINE
PROCESS2 ..
SERVICE MACHINE
PROCES S1

S • • S S • S S S S S ~~~~S * S S S S S

MULTICS GCOS1 GCOS2

RESIDENT VMM
PART) (RESIDENT)
OF VMM

Figure 17. Service Machine Memory Layout j

61

t- - —--5—
*

- -5-5 —--——- —.- - - -~-- . —- -S~-5 -5 — .- --’.—-—- ,--5 - - - -5- - ---- -.~---— ------—

However, some system usage environments might choose to run two
Multics VMs because of the system isolation which that approach would
achieve.

The virtual machine which is running the operating system supporting the
resident part of the VMM is called the service virtual machine or service
machine (SM) for short. This virtual machine has some constraints placed
upon it by RVMM due to the special nature of the SM. For example, RVMM

knows how to bootstrap the SM Into operation at system initialization and
will not allow the SM to be halted.

The division of function between RVMM and SM is based primarily on the
points raised at the beginning of this section. In particular, functionality
is In general provided by an SMP if at all possible since doing so allows
development of software which can make use of the rich support environ-
ment of an operating system. Only functions which have great performance
Importance or logical necessity are included in the RVMM. For example,
I/O support would be included in RVMM but VM start/stop support and
other “console functions” would be provided through 5MPg.

The Interface between the service machine and the RVMM is provided as
a virtual device. In particular, choosing a communications device as the
vehicle for messages between RVMM and SM has the benefit of allowing
complete physical decoupling of the SM and RVMM so that the SM might
be supported on a remote computer.

- - - -5—

62

1~~~ - 5 - —-— - - — —~~~~~~~~~ —~~~~~
-— - ~~ - - -5— -- -—-

RVMM sends messages to SM by simulating an interrupt to the virtual
machine running SM for the appropriate communications line and device.
Likewise, SM sends messages to RVMM using the normal operating system
I/O code for the communications device and line which is appropriate. The
RVMM recognizes this I/O request and directly consumes the message.

HABDWARE EXTENSIONS

The main hardware issues in the design of any VMM relate to the question
of how much of the system’s overall resources are used in supporting

virtual machines. Each real resource of a computer system (processor,
memory, devices, channels, switches) needs to be replicated for each
virtual machine. To do this, the hardware must either directly perform
the mapping between virtual and real resources, or it must have some
mechanism of intercepting references to virtual resources, capturing the
complete state of the virtual machine, and passing control to some other
agent (e. g,, a software or firmware VMM). This agent then simulates
the correct behavior of the virtual resource and returns control to the
virtual machine for further execut ion under direct hardware control. The
agent consumes real resources in performing this simulation and this
effect can be substantiated.

In the VMM under study it was shown that the amount of real system re-
sources consumed by the VMM Sn processing input/output operations is a
significant level for normal computer system work loads. The percent of
the central processor needed for this purpose ranged from 10 to 30 for
normal GCOS work loads and somewhat hither for Multics.

- - —_--I

63

- -

7

_ ” _ _ _ _ -5____ _
~ ••_

Direct hardware support for input/output operations is the single most
Important potential for decreased VMM overhead. Such support would not
be required for all I/O devices. A study of the device usage shows that
disk and tape units have the most potential for reducing VMM overhead since
I/O operations occur moat frequently on these units.

Direct support of unit record equipment is not needed especially since it
is desirable for this equipment to be shared by all virtual machines via
direct VMM control of the device and spooling of the records.

Further investigation into the architectural approaches to communications
front end processor support is necessary before the question of appropriate
hardware support for virtualization can be answered. The importance of
such support is, of course, dependent on the types of work loads that might

be processed.

Another area in which hardware support is of great importance is that of
main memory mapping. The present VMM statically allocates the full
real memory required by a virtual machine. For several classes of use
of virtual machines, it would be desirable to have more dynamic control
of the mapping between virtual and real memory resources. In particular,
a block assignment or paging mechanism could be investigated for its effect
on VMM overhead for different classes of work loads.

-- -a---

64

I

-

1~ - - --5 -- - -

_ _ _ _ _ _ _ _ _ _ _ _ - - -

EVOLUTION OF HONEYWELL COMPUTER PRODUCTS

The future development of Honeywell computer equipment depends upon
the direction Imposed by industry plus the technology available from the
research and development groups both within Honeywell and in the academic
community. Honeywell has a history of capitalizing on advanced develop-
ment which is a result of their position as a leader in digital technology.

External Influences

The major influences on the future products come from two sources:
industry direction and architectural influences. The industry needs for
distributed computing power at the point of need, working on common
centralized data bases, are reflected by the Distributed Systems Environ-
ment announced recently by Honeywell. This environment allows many of
Honeywell’s computer product s to cooperate In new ways to achieve the
desired goal. The Level 6 minicomputer can be used as a local batch
processor, a remote job entry device, or a message coordinator in a
larger network. When combined with the Level 66 GCO$ machines and
the Level 68 Multics system, a network of considerable flexibility can be
constructed.

The architectural influences come from our understanding that computer
architecture comprises the rules, standards, protocols, and guidelines
that govern the design and development process. Also included is the user
Interface to such systems. Influence~ of technology evolution and app]!-

— cation evolution point to a comprehensive architecture for the 80’s whose
characteristics must be:

65

— - — - -5- ----.- -

• Very high performance, cost effectiveness

• Larger capacity, faster peripheral storage devices

• Utility grade availability

• Support for large distributed data bases

• High performance transaction processing

• Easy to use development and inquiry systems

• Standard communication links

• Aids for predicting and evaluating system performance

Increasingly we will see the use of minis as support to large systems,
message switches, communication processors, and terminal controllers.
Many of our large systems provide the needed characteristics. What is
needed for the 80’s is a means to interconnect them and to provide cross
compatibility for user programs. This requires common and consistent
interfaces.

Internal Influences

Honeywell has recognized the need of providing a continued flow of advanced
concepts into the production divisions and has stimulated such research in

—

- several ways.

First, each computer division in the U .S. and Europe maintains an
advanced development group in hardware and software, These groups are
intimately familiar with current products and constantly seek new ways to

- -

use them and modIfIcatIons which can Improve performance and reliability.

66

r~~ ~~

I

Typical of the work of these advanced development groups Is the VMM now
at RADC. This software coupled with slightly modified hardware opened
up a new avenue of applications for the Multics and GCOS systems. The
VMM, though not available as a standard product, has proven influential
in new products as will be shown later.

Secondly, the Systems and Research Center of the Aerospace and Defense
Group has carried on an active program in distributed computing research.
Their efforts have been aimed directly at the government market place
for applications such as flight and weapon control systems, command and
control systems, and certifiably secure computer programs, In fact , it
is SRC that continued the VMM work represented in this document .

Third, it Is recognized that computer architectures of the 1985 to 1990
time frame will require significant research and development prior to
production. As a general response to that need, Honeywell formed the
Corporate Computer Sciences Center in Minneapolis and directed that a
program to address the architecture needs of the late 8O~~ be started. This
architecture work is responsible for interfacing with the research cornmuni-
ty, identifying promising ideas, and feeding these ideas into the planning
and advanced development groups. The VMM is being considered in the
course of that study.

The Role of the VMM

The virtual machine monitor was an early attempt at extending the power of
the hardware/software base. Its minimal fun ctionality is limiting In signifi-
cant ways, yet the concept points to an important fact: if VMM performance
is unproved, the power gained shoul: be exploited

—-

I

.
:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - - - -
~~~~~

--
~~
--- -

The advanced development processors currently on the drawing boards

Include a concept referred to as the hypervisor. The hypervisor is a VMM

In hardware/firmware with some modifications. Honeywell has recognized
that the two personalities of Level 66 and Level 68 could be put to produc-
tive use if a dual personality machine could be designed. Some general

benefits, of such a multicomputer or hypervisor approach are:

• Ease of moving users between systems

• Coexistence of different systems

• Expanded development and testing capabilities

• Increased capabilities with multiple copies of a limited system

• Increased availability with multiple copies

• Common Interfaces

• Better test and development facilities

These benefits are directly in line with what has been learned about the
existing VMM. It Is conceivable that the hypervisor approach may be
reflected in future Honeywell large scale processors, though changing
market demands could cause this strategy to change.

1 

68 

—-5—

—--- --5— ~~~~~ — -5— --- --5 1_~~
__ __ _._____ __-5 _ — -5-—’- ~~~~~~~—‘ - -----5-- —



SECTION V

RECOMMENDATIONS

FUTU RE VMM R ESEAR CH

Distributed Systems of Virtual Machines

The feasibility of the virtual machine concept has been proven. Further-
more, the usefulness of supporting communication among clusters of
virtual machines has been described by S. E. Madnlck,1 However, tech-
niques and interfacing standards still need to be determined for inter-
virtual machine communication and synchronization especially when the

-5 ”VMs are supported by physically distributed hardware systems.

Specialized Virtual Machines

In a system of logically distributed processing, it might be expected that
certain systems in the network will be performing specialized functions
on behalf of the other member systems. An example of this is the system
which controls a data base to be shared among all member systems. The
Issue to be Investigated is the nature of the interface between such a

1S.E . Madnick and C. Lam, “Composite Information Systems--A New
Concept in Information Systems,” Report No. 35, Center for Information
Sy~~erns Researc~~ 

I55II5It

1III

~

, T~I_



—-5- 

~~~~~~~~~~~~~~~~~~ 
— — --

~~~~~~

- —-- - — - -  --- -

~~~~~~~

--—--—-—— - - - - — - -5 -

specialized virtual machine and a VMM. For example, the VMM might

support high level data base access primitives which completely Isolate
the specialized virtual machine from physical device characteristics.

Incremental System Extension and Integration

The virtual machine interface to other virtual machines In a distributed
system of virtual machines is well defined and enforced by the VMM. This
well defined interface might be used as the point for formal definition of
a particular virtual machine function. Changes in binding between a
virtual machine and the physical hardware used to support it could be
made without requiring revision of the software within a virtual machine.
Likewise, a cluster of virtual machines supported by one fast processor
could be moved to a hardware support base of several (slower) processors
without software revision.

An additional topic for investigation under this subject is the feasibility of
replacing the formal interface between two particular virtual machines
with a new formal interface. As a large system evolved, some virtual

machines might be replaced with newer ones designed to a different formal
interface. It might be useful in such situations to provide formal interface
translator virtual machines which could translate between different versions

of a formal interface.

- _ _ _


~~~~~~~~~~~~—~~~~~~~~~~~~~~~~~~~~ --~~ - - - -5-- -

CONCLUSIONS

The work performed during this effort has been valuable in that it demon-
strated feasibility of a VMM in the RADC environment and identified the
performance tradeoffs which must be made. The future support of this
VMM by Honeywell is uncertain; however, the concept and many of the
design features have been integrated into existing and planned products.

RADC has played a useful role in supporting the benefits of the virtual
machine approach for certain types of problems and this work might well
continue. The most fr uitful area for further research appears to be in
the design of a VMM which is more tolerant of I/O activity. It is doubtful
that the existing prototype VMM could be improved sufficiently to a]low it
to function effectively in a production environment. The prototype has
served its purpose of demonstrating functionality and feasibility.

71 / 12

— ——-5 — —--- — --5- -.-— —-5 —-5— —~ —.-5~~—- ~~~ — - ---------~~ —



_______ - -  
T 

- - - -

BIBLIOGRAPHY

This is a partial list of references on virtual machine technology. Each
of the listed references contains a bibliography which can be consulted for
more detailed Information.

Buzen, J.P., Chen, P.P ,, and Goldberg, R. P., “Virtual Machine
Techniques for Improving Software Reliability,” Proceedings IEEE
Symposium on Computer Software Reliability, New York, 1973.

GaIley, S.W., “PDP-lO Virtual Machines,” Proceedings ACM
SIGAR CH-SIGOPS Workshop on Virtual Computer Systems, Cambridge,
MA, 1973. -

Galley, S • W., and Goldberg, R • P., “Software Debugging: The Virtual
Machine Approach, ” Proceedings ACM Annual Conference, San Diego,
CA, November 1974.

Goldberg, R. P., Architectural Principles for Virtual Computer
Systems, PhD Thesis, Divisions of Engineering and Applied Physics,
Harvard University, Cambridge, MA, 1972.

Goldberg, R. P., “Architecture of Virtual Machines,” AFIPS Confer-
ence Proceedings, 1973 NççJ, AFIPS Press, Montvale, NJ.

Goldberg, R. P. (ed. ), Pro ceedings ACM SIGARCH-SIGOPS Workshop
on Virtual Computer Systems, Cambridge, MA, 1973.

Goldberg, R. P., “Survey of Virtual Machine Research,” Computer,
June 1974.

Goldberg, R. P . and Schwenk, H.S., “Benefits of Virtual Machine
Techniques for Input/Output, ” Infotech State of the Art Report 22--
Input/Output, Maidenhead, England, September 1974.

Goldberg, J. (ed. ), Proceedings of a Symposium on “High Cost of
Software,” Stanford Research Institute, Menlo Park, CA, September

— 17—19, 1973.

73 

- -5- -- -  — - -~~~~— — -5--- -~~~~- -5 -~~~~~~~~~ — - ~~~~- —- -5—-.- -—- - - - 5 ------- ---4



_________________________ 
- _ _ _ _  _ _ _ _ __ _ _ _

IBM Virtual Machine Facility! 370: Introduction, Release 3, IBM Corp.
Publication No. GC 20-1800-5, 1976.

‘Liuzzi , R., “L68/VMM,” presentation at Forum XXII, Honeywell Large
Systems Users Association (HLSUA), Toronto, Canada, May 1976.

Madnick, S.E. and Donovan, J.J., “The Virtual Machine Approach to
Information Systems Security,” IBM Systems Journa.,~ 14, 2, May 1975.

Popek, G. J. . and Kline, C., “Verifiable Secure Operating Systems
Software ,” AFIPS Conference Proceedings, 1974 NCC, AFIPS Press,
Montvale, NJ. -

Schwenk, H. S., “Virtual Micromachines,” Proceedings ACM SIGARCH-
SIGOPS Workshop on Virtual Computer Systems, Cambridge, MA, 1973.

System ‘V’etering Program Logic Manual, AN52, Revision 0, Honeywell -5

Information Systems Inc. , Phoenix, AZ, February 1975.

Winett, J. M , “Virtual Machines for Developing Systems Software ,”
Proceedings IEEE International Computer Society Conference, Boston,
MA, 1971.

74

4



— - 5 —  - - -5 - - —— - - - - -5.’

APPENDIX A

JOB SCRIPTS

- -5——

75 / 76 

-5- - - - -- --- --  

- - - -. --5— --- --- - — -- ’ - - ’ - -- -- ~~~~--~~---- -~~~~~~-~-- - - —----- - --- --- --—---- —— ---5 - - - — —— — — - —  _ _ _



_ _ _  — - - - -5 - 5
- - - - -

GCOS JOB SCRIPTS

— 

— 

77 

-- -

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—_- - - -- - —~~~~~~~~~ ——--— -—~~~~~~



~~~~~~~~
--

: ,~~~~

~SIST 01 OS-Oi lS 12.3$5 STAR C (IC) FILE EDITOR NAP - NEW .C FILE CONTENTS PAGE 2

~.T e  C O N T E N T S  O F  T H E  C H A N G E S  O N  T H E  N E W  S T A R  C F I L E  740704

I $ $M3 
~k~~fl2 $ b ENT ~~!~AT0*$.U T I L I TV  •85SIO21SRADC3 S OPTION FORTRANa p . t v

S CHARACTER FC
• DIMENSION ISTAT (2). ISUFF (120). ISTAT2(2)
7 IOCNT.10000

• FC’SNOOOOAA
10 C
it C FILES I ZE • 200L
I. ~ •9I .W

1$ LSTSU(’(I?IL$Z’ia - 1)15
4 C

t O  DO TO I.1 .IOCNT/2
1t
17 IUCTI.LSTBU (
5 CALL ORINO$(FC .I$ECT, I SUFF ,I WOS , ISTAT)

ii CALL ORINOSCFC, SECTS. IBUFF , IW OS. ISTAT2)
pp. j afl

Ii 10 CONTINUE
U C
23 CALL ORSORTpt_a 

—
IS END
U S ORAP NQCCI(
27 SYMOEF OR I NOS • ORROAD, ORSORT

•v__r p. Ire

23 ORINDS MULL
30 51)10 SVXO
31 LAXO L I .  ADOR . OF FILE CODE WORD
4• pt ~~f l __ p

33 LAXO 3 • . ADOR - or SECTOR NL#SER
34 51*0 $4(DCW
IS EAXO 4 , 1. ADOR. OF SUFFER

-5 — -

37 L.~LO I.?. NO. OF WORDS
U ANKO .0007777. OU SET OCW TYPE
U ULO WROCW
Ak VAIfl P I. a. PTLTLIA L~~~~~ I

di 51*0 pSqE.S
- - 41 ~~E lOll O(INO$

43 lOlA
_._g* ,~~_a p. 

-
45 WOI C
4$ ZERO 0.WROCW
47 ZERO “ 0
4k hM~ft P APP —.

IS IRA 0. 1
U SS(DCW 1010 .., l
SI WROCW IOTD ~~~~

-.-

78

----- - — — - - .-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
rn ~~~~~~~ — ~~~~~~~~~ --5-.-- —-~~- - _. — - ‘ - -‘-—.-



£~Z IS B~~T QUAIaU! ~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~

SlOT 01 05-05-75 12.U5 STAR C (IC) FILE EDITOR MAP NEW ‘C FILE CONTENTS PAGE 3

~ T S C O N T E N T S O F T H E C H A N G E S O N T H E N E W S T A R C F I L E 740104

52 SRROAO NULL
53 ISlE OEROAO
54 IRA 0.1
Sn any

~ LI_L
55 .00 •3H00K .O$..
57 ISlE GEBORT
5$ II..

SO BUSY NULL
St I

52 . BUSY WILL USE PROCESSOR TIME FOR THE N ..eER OF MILLISECONDS
a. p lI ~~~~ f l tCfl iN 7 PAt *rfl pn.es,

Sd .

55 L*L3 2, 1. ‘lET A ROUIIENT - • OF MS OF BUSY TIME
S. a
p7 j~~~ 1111 1

55 EAX 2 100 LOOP VALUE FOP CACHE HIOSO
85 I EAX 2 77 VALUE IF NOT CACHE 118060
70 a
7) 1W 11111 1

72 LDO ONE
73 DIV ONE
74 ARL I
75 SnPT t IP]

75 TPL LOOP
77 38*3 I.DU
15 TeL MSLP

TP& p i

SO OWE flEC 1
SI END
52 $ EXECUTE
1k 5 I S I T S IP Sn

54 5 FILE AA .STI ,200R
$5 $ ENOJOS
58 S . SN IJS ~~~~~
*7 P I flP ll T ~~TSE?a lITI I I TV - RIP I fl~ I Sninr
SI I OPTION FORTRAN
55 1 FORTY
30 CHARACTER FC

itISnSni_a I t ? P T f 2 1 IkI~~ f IpT n~ I) 1 . 1 & T~~I2 I
32 IOCNT.~ 0C0O
$3 lWOSa32O
$4 FC.SH0000AA

U C FILESIZE • 200L
37 IFILSZ.200
U L$TSL*.(IFIL$2.I2 - Ill5
— - I.

tOO 00 IO I.I ,1OCNT/2
lot I$ECT.O
10l ISECT2aLSTSLK

_ _ _

H
_

L

- —-- - -~~~~~— - — ---- - -5 _ _ _

-- 5 - -- —--—-~~~~~~~~~~~~~~~~~~~~~~~~~
---,-.

-

~~I3 ~~~~ IS ~~~? QU*IIIT~ nAcTILC&~~~~

SlOT 01 05-05-75 12.358 STAR C (IC) FILE EDITOR MAP - MEW ‘C FILE CONTENTS PAGE 4

IT S C O N T E N T S O F T H E C H A N G E S O N T H E N E W S T A R C F I L E 740704

103 CALL ORINOS (FC. ISECT , BUFF , I WOS, ISTAT)
104 CALL ORINOS (FC, I SECT2. IBUFF,IWDS, ISTATI)
105 CALL ORROAD

In ~~~~~ Y I Ia

10’? C
lOS CALL ORBORT
101 STOP
it o
lii $ OMAP NDECI(
h i SYMOEF ORINOS ,ORROAD.OR$ORT
ItS 3YMDEF BUSY
p _a ni~~a — S I

115 STXO SVXO
118 EAXO 2.1$ ADOW. OF PILE CODE WORD
1 1 7 STXO P*IE.2
1 1$ tajçfl 3 sin awl ... a.

STX O SXDCW
120 EAXO 4 , 11 ADOR. OF BUFFER
121 STXO • WROCW

—.11. yj’t ~
Sn — ~~~~PP -__

123 AN*O .0007777,00 SET OCW TYPE
124 SXLO WRDCW
128 EAXO 5, II *004 - OI~ STATUS WORD
is. aew n
127 ISlE ISlE GEt NOS
125 SDIA
12$ ZERO I’ , $KDCW

131 ZERO 0.WRDCW
132 ZERO .~~, O
133 SVXO 1AX0
ala l.a
138 SKDCW 10T0 I I I
135 WRDCW IOTO •‘ , O
137 ORROAD NULL
a 4* ~~~~ Sn~~~iPfl

13$ IRA 0,1
140 048041 NULL
111 (.00 .3H0~~(.DL

& I Ak —
113 S I a m
144 I
148 BUSY NULL

147 I BUSY WILL USE PROCESSOR TIME FOR THE NUMBER OF MILLISECONDS
145 S INDICATED IN THE PASSED ARGUMENT
11$ I
15(1 1$. 4 • IS SIC? 4 0 1 tST a P At Sn a. •IttV TI

151 I
152 MSLP NULL
153 £A*2 100 LOOP VA’.UE FOR CACHE 116050

iij 80

_ - _---_-- -_----~~~~ ----5- - — - - .--.------_ --• ———,--
~

— - -5-— —— - - - ------5 -5—-- -5-

-5,- --- ~~~~~~~ —-~~~~~~~—-~~~~~~- -
—- — — - — -5 -—-—--5---

r~r~
- -

-

3557 01 05-05-75 12.355 STAR C (‘0) FILE EDITOR MAP - NEW ‘C FILE CONTENTS PAGE 5
I TS C O N T E N T S O P T H E C H A N G E S O N T H E N E W S - T A R C P I L E 140704

154 I EAXS 77 VALUE IF NOT CACHE HS05O
155 I
18$ LOOP MULL

I IP~ a
155 DIV ONE
155 ARL 1
160 35X2 1,00
1St Ta. 1W

162 $BXS 1 .00
153 TPL MSLP
1S4 IRA 0,1 RETURNan Iwi I

ISS END
167 5 EXECUTE
155 I LIMITS 10 ,0K
1*P P t I l t *A _ 1IC4~~PPa —170 $ ENDJOO
•‘lli 3 SMIXe ~~~~~~175 1 IDENT OPtRATORS.UTILITY .58SIO2ISRADC

...__l 73... 5 n?,n ,ny.ap
114 $ FORTY
178 CHARACTER FC
176 DIMENSION ISTAT(2) , IBUFF(320) , ISTATS(2)

~~177 t~~llIT. I ~WVI

176 IWO$.320
175 FCaSH0000AA
iSO C

l ru tai~~ t .

152 LFILSZ.200
153 LSTBLKI(IFILSZI12 - 1) I8

• 154 C
tan I~~ in u al I ~~~ PT .5 -
135 ISECT.0

-

157 t$ECT2.L$TBLK
161 CALL GRINOS(FC.ISECT .IBUFF.IW O$.ISTAT)

iSA I I SnttWP’ I IMFTP 1.11CC I WitS I

150 CALL GRROAO
-

151 10 CONTINUE
162 C1a7 eq. I an?
134 STOP
135 END
156 I OMAP NOECK

• ‘ur rI~~~
a

-
S n a f l ST

135 5YMOE F BUSY
1*5 ORINOI MULL
100 S1’*O SV*0

rsvp sa a. ru t aw~~ an202 ST*O 1311+2
$03 EAXO 3, II ADOR. OF SECTOR NUMBER
204 57*0 $KDCW

_ —

_ _ _ ~~~~~~~~~~

- — - -~~~~~~~~~~~~~~~~~~~~~~~- ---.------ -. - - - - - -- --- —---5—,---5 -

~~IS Pi~~ 1$ 1~~? QUAI l?! P C?I~A~ .1

I-

3057 SI 05-05-75 2.105 STAR C (IC) FILE EDITOR MAP • NEW ‘C FILE CONTENTS PAGE 6

C O f l t (N T $ O P T H E C H A N S I S SN T H E N E W S T A R C F I L E 740704

205 1*310 4,1. *004. OF SUPPER
(06 17*0 1 08W
107 LXI0 S, la NO- OF WORDS
501 - •l4~~S 5fl SIll $fl Sal ——

—-5- —
SOS S*L0 WROCW
110 1*310 S t . *004. OF STATUS WORD
III 57*0 511.S
III lOll Itll 1 1
(II lOlA
214 ZERO aa ,SKDCW
115 W O IC
Its Wit 9.WflIt ~217 ZERO 55 .0
ill SVXO 1*310 II
215 IRA 0.1

IW$~ 673 .
211 WROCW 1070 11,0
228 54*5*0 MULL
(23 ISlE SEROAD

—21~ ~~~ p.~~(25 5*5047 NULL
(26 LOG aSHO3K,OL
(21 1311 SESORT
an -

it. S
*30 SUSY lOLL
*31 I
4 a a.ICP ~~ I I I I~~~~ .wwpss. T La. ts. Ta. .P~~~~ I. a. Nil I I SnS~~~~~ I*

(33 I I MDI CATER IN THE PASSED ARGUMENT
(34 I -
133 LXII 2 1 $ GET ARGUMENT I S OF MS OF BUSY TIME
Ps. a -

(37 454.? NULL
131 (AU 100 LOOP VALUE FOR CACHE HSOSO
235 I (*311 77 VALUE IF NOT CACHE 116010
San .

141 LOOP NULL
(4* LOG ONE
543 • DIV ONE

• 5_A Sal I

245 15*2 1 ,00
24$ IPt. LOOP
*47 58*3 1 ,00

Ta. ~~~ I P

(45 TRA 0, I RETURN
$00 ~~~ 0CC I
251 END
Wi 3 ~ J~~~ J (__
155 5 LIMITS 10, 3K
204 I PILE AA ,STI ,200R
355 5 CNDJOS

I

t 82

“-5.-Ia--

- -

- — - -5 -- - - - - — - _ — - - -5—~~—--- -- --- ---~~~~ - - - - —- - - - - - - - -- .~~ -— ----- ~----- - -~~ - -~~~ —- - - - - -— -—-— ----—--5 -

--

ThOM OO~X 1J~ LSH~~ T~

1358T 01 06-0e-7S 12.365 STAR C (a C) FILE EDITOR MAP - NEW IC FILE CONTENTS PAGE 7

1.7 0 C O N T E N T S O F T H E C H A N G E S O N T H E N E W S T A R C F I L E 740704

~~25$ $ SNIJlO ç~ 02~.*57 $ (DENT OPERWVORS ,U T I L I T Y ,S5S1O2IORADC
255 $ OPTION FORTRAN
2*Q P cs.1Y
260 CHARACTER PC
261 DIMENS ION ISTAT(2) , IBUFF(320) • 1S A T2 (2)
262 IOCNTI10000
an i w~~~~n~n
264 FCI6H0000AA

• 265 C
266 C F I L E S I Z E - 200L
2*7 - 1r1IP2.Pfln
265 LSTBLKI(IFILSZII2 - 1)58
260 C
270 00 10 1a1 ,IOCNT/2
271
212 LS ECT2ILSTBLK
273 CALL GRINOS(FC , ISECT , IBUFF . IW OS. I8TAT)
274 CALL ORINOS(PC, ISFCT2.) BUFF , t WOS , ISTA T2)
275
276 tO cONTINUE
217 C
275 CALL 045047
27* — ___

250 END
(SI S OMAP NDECI(
252 SYMOEF ORINOS ,ORROAD ,GPBORT

•VIC1CC SilSy

214 ORINOS NULL
255 STIIO SVXO
25$ EA)(0 2,11 AOOR. OF FILE CODE WORD
pa? $Iv..I ~~~~~ s5

US EAX O 3, 11 ADOR. OF SECTOR NUMBER
250 37310 54(00W
200 EAXO 4 , 11 ADOR . OF BUFFER
PSI *?~~fl Ia.1~~ I1

232 LX LO 5, Is NO - OF WORDS
233 ANX O I0007777 0U SET OCW TYPE
234 SALO WRDCW

yaw n A l a AFN~~~ a. ATATLIS ws.~235 STXO P0(1.5
251 ISlE ISlE GEINOS
2$S SOIA

—Wi lts. a, awI~~~S
300 W OIC
301 ZERO O. WRDCW
301 ZERO •• ,0

304 IRA 0,1
305 SKDCW (OTO III
306 W*DCW 1070 ‘ .0

83

- -- ----5-- -5 -__--

- - ---~~~- ,~~~~~ — ~~~~~~ --- , -~~~~ a~~~~----5-~~ -

—--~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

. -

~~I ?A~I IS I~~? QUALI?! PMeTZC$*1
-

~~~~~~~~~~~~~~~~~~~~~~~~ ~~ I_~_
_

~

3557 Dl 01-05-75 12.965 STAR C (IC) PILE EDITOR MAP - NEW ~C FILE CONTENTS PAGE 5

ILl S C O N T E N T S  O F  T H E  C H A N G E S  O N  T H E  N E W  S T A R  C P I L E  740704

307 GRROAO NULL
305 ISlE GERO*O
30I IRA 0,1
319 150i I~~~~ I

311 LOG I54400K I DL
312 ISlE 9(3047
313 s a a •
PtA

315 BUSY NULL
315 5
SI? I BUSY WILL USE PROCESSOR TI ME FOR THE NUMBER OF MI lL  I SECONDS
‘t IP — 1 1rS?tfl IN Ta. PSttCfl 5Sfl1 1T

3tS I
320 I..XL3 2,1. GET ARGUMENT a I OF P13 0? BUSY TIME
321 5 -

Ste fli P all I

323 (*312 100 LOOP VALUE FOR CACHE HSOS0
314 a £*X2 77 VALUE If NOT CACHE P16050
315 a

.32*  I W sail i

327 LOG ONE
325 D I V  ONE
325 ARL 1
san anwe I

331 TPL LOOP
332 35313 1 ,bU
333 TPI. MSLP

ISA fl t CTLalS

335 ONE DCC I
33$ END
337 $ EXECUTE
255 5 I u N I TS  IA~~~~~
336 I PILE AA ,DP2. 200R

,,340 I ENOJOR
341 I SNI.OS 5~~~~j ,Sat t IIalN? 2*fSAypa~~~iii’li IT.  ~~RS I fl2 IPP5I~~~
343 S OPTION FORTRAN
344 6 FORTY
345 CRA*AC1TR PC
S_P flLa.Ma 1 IP Y S T I S I  - ISaSfPRfli - I STSTPI*1

~34? CCC
346 C
34S C NOTE • IOCNT ,IWDS CAN BE MODIFIED

Il — lfl S 1511 0 ~~~~ l t I W f l  It I 5Th. V I S  s . f l I t l tf l

351 C - IFILSZ CAN BE MODIFIED IF THE FILE SIZE IN JCL IS MODIFIED
351 C
353 Ccc

I~~~~~~y_ I aP5~
355 WD$.310
SM IWD$2a320
557 FC.SH0000AA

- 

84 

- _ _ _

.- a ~-5— -- - --5—-- S~.• ~~~~~~~~~~~~~~~~~~~~ -5-5-5 — --- St~ .-5 _~SL~ t.. s—s ~~~~~~~~~~~~~~~~~~~~~~~ - _ — .4



~
-‘--

~
-- --~- —~— ~~~~~~~~~~~~~~ .~~~~~~~~~~ — -—- --5- •~~~•••~ _ -

-5-5 -5 -5-5-~~~ -5-5-5-5-5•-5~-54S-5l*-5~_ ~~~~~~~~~~~~~~~~~~~~~~ — ••• . - - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

S31T 01 05-05-75 12.555 STAR C (IC) FILE EDITOR MAP - HEW SC FILE CONTENTS PAGE 8

LII C O N T E N T S  O F  T H E  C H A N G E S  O N  T H E  N E W  S T A R  C . F I L E  740704

355 - IFILSZ.200
355 C FILE. SIZE IS IN 1.1)5(5
360 LSTBLK.(IFIL$Za12 -1)15
2*1 i~
35* C WO16( LOOP
363 C FOR EACH PASS - PROCESSOR TIME • SUM OF BUSY MS • 21(5/10
364 C - CHANNEL TIME • 20N5/IO(APPROXIPIATELY )

• an 0

355 DO 100 I • I, IOCNT/ 2
36? C
365 C 307$ ISECT AND ISECT2 MUST BE WITHIN 00 LOOP
spa II ia. tl 2*IIT I a. P*P, 2*5 ~~~~ LI t ItS ya.’tr I nra Ti

370 C
371 CSECT’O
372 ISECT2aLSTBt.K
3-,s C
374 CALL BUSY ( S0)
375 CALL GRINOS(FC,I SECT ,ISUF ,IWOS,I$TAT)
376 C

—37’ ‘‘L P’~V”~~~”375 C THIs 10 SHOULD CAUSE 01541 HEAD NOVENENT
37$ CALL GRINOS(FC. ISECT2 , ISUP , IWDS2 ,ISTAT2)
SSO C
aPt * IT  I W I I  IS aS VMS? •511 attlSt err-I kIln I
552 CALL G040AD S
553 100 CONTINUE
364 CAL.). SRGORT
$65 -

556 END
557 $ SMAP NOECK
355 SYPISEF GRINOS.ORROAO,0RSORTspa avant a m y
310 1011(05 NULL
331 STXO $VXO
352 1*310 2,11 ADOR. OF FILE CODE WORD
an STIn ~~~~~ .t -

334 ‘CAXO 3. 15 ACOR . OF SECTOR NLS- ER
335 3TX O
356 1*310 4 , 15 ADOR. OF BUFFER
2*7 P?~~~ a.u~~~
35$ LXLO 5, 1’ NO. OF WORDS
353 ANNO .0007777 ,00 SET DCV TYPE
400 SXLO WROCW

_~~~~J , ykyn P 1 AI~~al fIt •Taymm* 2*Rfl

40* STXO ISIE+5
403 ISlE ISlE SCINOS
404 501*
As. If 2* a, tV IMSl

406 WOIC -
40? ZERO O,WROCW
405 ZERO 11,0

— --- -1 
H

85

I
-.- ~~~~~

-— --~~~~ - 5—.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-5- - -—-—— -5 . - ---- - - -5— --------5—--.--.--—~~
- --—-------- - -.--- .——--——----- — - - -

--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~‘~~ 
-

~~I$ ?AGZ IS B~~? QUALI TY P1~IGfl(~’~~~
‘

-

3S$T 01 05-05-75 12.965 STAR C (SC) FILE EDITOR MAP - NEW IC FILE CONTENTS PAGE 10

L I t  C O N T E N T S  O F  T H E  C H A N G E S  O N  T H E  N E W  S T A R  C F I L E  740704

409 SVXO EAXO II ‘

4)0 IRA 0.1
4 1 1  34(00W IOTD 11 , 1
— 1$ IJOfltU I fITfl S S -
413 GRROAD NULL
4 14 ISlE GEROAD
415 IRA 0 , )
£13 O2*AST lu ll I

417 LOG •3HOOK . DL
4)5  PIlE GEBORT
41B CIII

asn a
421 BUSY NULL
422 I
423 • BUSY W I L L  USE PROCESSOR TIME FOR TIlE NUMBER OF MI LL I SECONDS
Ara . 12*1 ~ ATffl IN a. Di55~~fl SRnLPllrNT
425 I
426 LXL3 2 , 11 GET ARGUMENT • * OF MS OF BUSY TIME
427 I

_ _ 4~~P M5I * lull I

429 EAXZ t OO LOOP VALUE FOR CACHE H6060
430 I 1*312 71 VALUE IF NOT CACHE P16060
431 a
d.12 1 ~~~P Nil_ i —
43$ 1.00 ONE
434 D I V  ONE
435 AOL I
As. 2252 1 LIII
437 TPL LOOP
43S 35313 l O U
43$ TPL N$LP

IRA fl I RF TURN
44) ONE DEC I
442 END
443 S EXECUTE
AAA 4’ l IMI TS Ifl~~~~~ —~~~~~
445 $ FILE AA .STI .2000
446 1 ENOJOB
447 $ SNL*~~ A~ O02

& AAA 4’ !a.N? ~~2ITI’RDS II? I I  I a-v sCS I npi apanr

443 $ OPT I O N  FORTRAN
450 I FORTY
461 CHARACTER FC

__ asa nIflIZS i~~~~ I t tST ( ’ t t  L R A W I A S f lS IS T A T S i P S

453 CCC
454 C
455 C NOTE - I OCNT ,IWDS CAN BE MOD I F I F D
~~~-$ 4’ — uns. eq a_c .s’i pi t It f l  It I I T J  V It 2*1S t len

457 C - IFILSZ CAN SE MODIFIED IF THE FILE SIZE IN JCL IS MO DI F~IED45.S C
451 CCC

—
-5

88

15~ - - - - - - -
—

~~~~~~~~

-

H



~~-~~~~~~~~~~~~~~~
— -‘ -- _ 

~~~~— 
~~~~~~~~~~~~~~~~~~~~ 

-‘
I’

— ----5------ — —-5— --5 -

-5 -
- - -5-

-
- ~~~~~~~~~~~ -

~~IS FtC?! IS ~~~? QW~1?! PZAI~~Z~A~~~PROM COPY 7A~USl~~ TO DDQ ~~~~~~~~~—

‘3567 01 08-06-76 12 .355 STAR C (‘C) FILE EDITOR MAP - NEW IC FILE CONTENTS PAlE II

L T •  C O N T E N T S  O F  I N C  C H A N G E S  O N  T H E  N E W  S T A R  C F I L E  740734

460 COCNT.3750
451 IWD5 .320
462 1WDS2a320
453
454 !FILSZ.200
465 C FILE SIZE IS IN LINES
465 LSTBLK,(IFILSZII2 -1)15
—‘ C
465 C WOISI LOOP
45• C FOR EACH PASS - PROCESSOR TIME a SUM OF BUSY MS • 2116/10
470 C - CHANNEL TIME I 20M$/IO(APPROXIMATELY )
471 C
472 00 100 I.l ,IOCNT/2
473 C
474 C BOTH I SECT AND I SECTI MUST BE W I T H I N  00 LOOP
476 ~ 

VhS 31 paj? 545 aPP_I lISISICI SC ?ISaI I SOS? I

476 C
477 1$ECT.O
47S ISLCT2.LSTBLI(

—475---— C
410 CALL SUSY ( 20)
4$) CALL SRINOS(FC.ISECT ,ISUF.IWO$,I5TAT)
451 C
-‘1 0*I I

414 C tHIS 40 SHOULD CAUSE DISK (11*0 NOV21IENT
455 CALL ORIN0S(FC , I SCCT2 , ISUF. IWOS2 . I$TAT2 )
411 C
flI 5 f l I T  Iat? II 5 aS VMS? Call Sal I tSr? *2* I ne Wt
455 CALL SRROAO
456 100 CONTINUE s.
490 CALL SMACOT
Apt a_Tn -

452 END
463 3 SNAP MCCCII
454 SYMOEF ORIN OS ,GRROAD ,GROCRT
spa avant assay
455 ORI NOS NULL
457 11310 SVXO
455 1*310 2,11 *000. 04’ FILE CODE WORD

SIlO

500 1*310 3, II A000. OF SECTOR NUMBER
101 STXO IKDCW
502 EAXO 4, I S A000 . OF BUFFER

ann LSJ
504 L.XLO 5 , 11 NO. OF WORDS
606 ANXO .0007777 ,0(1 SET DCV TYPE -

SOS 5311.0 WRDCW
(ft)%5 5 ~~a aVa tIp

SOS 51310 ISlEtS
SOS ISlE ISlE SE ( P105
Ste IOtA

----4

87

--

-5 - - -_ -  _ _ _ _ _ _ _

--

~

_“

~

- ---- --- -~



- - ---~~~~~ -~~~-- - - -~~~~~~~~~~~ -~~~~~~~

~~I$ PAGZ IS B~~T ~W4I~’T PSL~~~~~~$- - 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~

lIST St 06-05-71 2.556 STAR C (IC) FILE EDITOR NAP • NEW SO FILE CONTENTS PARC It

4 . T S C I N T E N TS O F T H E C H A N S E I O N T I l E N E W S T A R C F I L E 740704

III ~~~5 “.91(00W
Ill NOIC
511 ~~~~ 0,WNDOW
a_CA P

113 - SV)I0 • 1*310 SI

III 75* 0, 1
517 11(50W (lTD I I I
asp — lays — . p

515 5550*0 NULL
-

315 PIll 515040
111 - TRA 0, 1

T luSt

115 LOG .114551.01.
524 ISlE SISORT
us
— S

UI? BUSY ISLLus
I BUSY WILl. USC PROCESSOR T I M E FOR THE NLISER OF MILLISECONDS
— 12*1 OSYSIS IN .~~ aAP It P~~~~~~~NT

III I

— LXL$ 5,)’ SET ARS(.I11NT - S OF MS OP BUSY TIME
305 I

~~~~ ~~~~
p saS~I~

315 EARl - tOO LOOP VALUE POP CACHE NOOSO
555 I EAX2 77 VALUE IF  lIST CACHE 115050
S.? I

Ian
556 1.00 ONE
140 DIV ONE
541 *51. I

~~~~
_p I

54$ TM. LOOP
544 96313 1,0(1
346 IPt. MSLP

P 1 If Tl~~~~~
547 ONE DEC 1
545 END
945 I 14(10(171

P 1 I I NI It I P

Ill I FILE U; BT1 , 200R
352 S EIISJOS
US$ S 5*115 A~~~~___•554 p I SaSS? ~~~~~~~XT

-
11111 I IV

—
SSPI I PS~~~

565 I OPTION FORTRAN
III S FORTY
557 - CHARACTER PC -
55P S I S I IatayIat _ ISI I flI _ IPWAVJ II ISI

355 CCCus
551 C NOTE • ISCNI,1WOS CAN U MODiFIED

88

- - 5- - - - -

AD AO6S 087 HONEYWELL INFORMATION SYSTEMS INC MINNEAPOLIS MINN F/s 9/2
VIRTUAL MACHINE MONITOR PERFORMANCE ANALYSIS .(U)
DEC 78 $ C VESTAL • T KROCAK • H S SCHWENK F30602—77—C—O097

UNCLASSIFIED RADC—T R—78—251 NL

_
_ _

. 1

fl it________

—_ r

I4GI IS b~~? QUAD!Ty p c ~ j*~~,a* bQn 1~~IIs1!~~ ~o i~o _____

~3StT 01 0S-0 -TS li StS STAN C .CI PILE COtTO N NAP - NEW .C FILE CONTENTS PACE 13

IT S C O N T E N TS O F T H E C H A N S E S O N T H E N E W S T A N C F I L E 740704

USI C - Well CAN SE NOBIFIED IF LSTII.X Is PmOIFIED
113 C - 1,11.12 CAN St NDDIPIED IF THE FILE SIZE IN JC1. IS MODIFIED
U14 C

511 I0C*$t.S000
IS? •IWDS.S40
S.. tWeU.3l0
fl~~~~ f l S s
570 IFII$Z.100
171 C FILE SIZE IS IN 1.111(5
571 L*TIU(~ (IFILSZIlt -l).5
11~t V
174 C W011(LOOP
57$ C FON EACH PASS - P~OCZUON TI NC • $131 OF BUSY MS • SKI/IC
57$ C - CHANNEL TIlE • ICMS/IO(APPNO3IINATELY)
—ii

171 00 100 I.1,IOCNT/l
575 C
ISO C 10TH SECT AND ISECTZ MUST BE WITHIN 00 LOOP
SI p , a. n, 1 a iri p ian I f l A Y I

551 C
115 ISECT.0
114 IIEC?l.L$TlU (p
III CALl. luSYlIl~IS? CALL SNINOSIFC. ISECT, ISU,. t WOS, 15Th?)
SIS C

•_SI I ~~~tp~~~~ I

550 C THIS IS S$$1L0 CAUSE DISK HEAO NOWENT
111 CALL SNINOS(FC. IILCTI. ISUF. WOlf, ISTATI)

C
~~ M~~l? •~~~Y I I •P I~~~~~~ ~~~~ YMO Y g~AN . I~~~f I~~IIT £~~~~ I~~r~ Y.

554 CALL 551040
PSI P00 COBTIM*
PSI CALl. 551CR?

Ill END
~~ S SNAP NOECK

100 IYMOIF III NOB. 551040, IMPORT
~~I~~~v

SRt~ISS MILL
- - STICO Svx0
504 EAXO S I . *00*. OF FILE COOt WORD

•?Th ~~~~~~~~~
LANe s, ii *00* . SF SECTOR NI3SER

507 STile SKDCW
LANe 4. 1 *00*. OP SUFFER

ItO 1.10.0 S I . NO. SF WORDS ’
S~ I *11(0 •00077fl ,Du UT OCW TYPE
Ill 5*1.0 WROCW

89

r~ r -

~~I$?&QI.IS B~~T QUAI~11’~ P M z~*’~~I
~~?I i~~~~ th •~ C

‘I •
~~

•;

3SST 01 01-01-73 12.015 STAR C (S C) F I L E EDITOR MAP - NEW ‘C FILE CONTENTS eASE 14

L I I C O N T E N T S O F T H E C H A N G E S O N T H E N E W S T A R C F I L E 7407c4

313 EAXO I l l ADOR . OF STATUS WORD
014 $TX0 I~~IE45
6)5 II~E ~~lE GEINOS
•t. ants
617 ZERO S’ ,$I(DCW
818 W O I C
I I I ZERO 0, WRDCW

IW~~~~
521 svxo cAxo is
522 IRA 0.)
823 GEDCW IO TO 5 5 1

. — i~~?n as ft
025 SRROAD NULL
III lIlt SEROAD
S27 lIlA 0. 1
Pap ? ~~~1I ~
523 LOS •3HO~~(, OL
S30 PIlE SCIORT
83) 5 5 5 5

I
833 BUSY MA.L
S34 S
S35 S BUSY WILL USE PROCESSOR TINE FOR THE NUROEN OF MILLISECONDS
P~~ I tI~~ ICATEfl IN TNE PADPFO £01LI~~NT
837 5

801 tilLS 2 . 11 SET AIlS*J~ENT . I OF P13 Or BUSY TIME
131 5
MD PaLl
Sd) WI 100 LOOP VALUE FOP CACHE 116080
84* I tAxi 77 VALUE I F NOT CACHE HS080
643 5

I ~~~IL

145 LOS ONE
848 D I V aNt
847 Am. 1

Pava I ~~i
343 lIt LOOP
3S0 ISAS I~~0lJ
SO) let. MSI.P

IPA ft I

ISO ONE DEC I
084 (NO
III S EXECUTE

__._ p I I~~ I~~P I —
017 S FILE AA .$tI .200R
585 I (NO.101
585 S $13013 ~~~~~~P I~~~~ ? Z~W til l I I rv WI Pat
SI) S OPTI ON FOR TRAN
552 3 P6R1Y
Iii CWA*ACTCR Fc

F I ~
‘-..—..- .—. -— —, .w.—,

‘l ~~ _ —
~
_- ~

- — - -~ -1~~~~~—--——-
_

~~iS PAI* th&E?Q cfl1~
LRT.

~
JEOM 001! Y~~~IS1IW ro D~Q

~~~~~~~~~~~
.-

tSIST 01 05-01-73 12.305 sTAR C ( I C )  FILE EDIT OR NAP - NEW ‘C FILE CONTENTS PASt II
1 .75  C O N T E N T S  O F  T H E  C H A N S ( $  O N  T H E  N E W  S T A R  C P I L E  740784

534 DIMENS I ON I $ TA T(I) II UF (SSO ) , I $TATI (2)
- ccc

USS C
~~ — I W I S tAM P. Si hi PS

113 C - I WOSI CAN II MODIFIED IF LSTILK IS N SDIFIED
ISO C • I F I L SZ  CAll BE MODIFIE D IF  Tilt FILE SIZE I N  .161. IS MODIFI ED .
570 C
*71 CO~
57* IOcNTS10000
S73
574 I WOSI.320

pS~~SWAp

575 I P I L SZ’tOO
•77 C F I L E  SIZE Is IN LINES
ITS L *T 5LKs (IFILS ZII2 -11.5
I,, ‘~
ISO C HONE LOOP
SI) C FOR EACH PASS - PROCESSOR Yl ilt • 51*1 OP BUSY NI • ORB/I S
ISS C - CKANNEI. TINE • SOMS/ 101 APRRS*INITELY )

ft
504 00 100 I ’t .IOCNT/*
588 C
588 C BOTH SECT AND I $ICTS MUST SE W I T H I N  00 LOOP

7 ft l.a 1S 1 t  .a. i i~~~P SIP ISP lI ~~~ I PaST IS

SOS C
553 I *ECT.0
ISO ($(CTI.L*TBLX
Pat ft

53* CALl. BUSY(S)
55$ CAL). OPINOS(FC. I SECT . IS)JP . tWOS . I STAT )
534 C

tal l •l ~~ wflni

558 C THIS IS SHOULD CAUSE DISK P1340 MORV13NT
557 CALL SRINSS(FC. ISECTL 15W. I WOSI. ISYAT2)
S.. C

ft ~ P I? 1 l  I t  IA ~~~~~~~ Pa YMA? tAM PaiPa IPaft? L.a I Paft?P

700 CAL). SRROAO
701 100 OSNT I NUE
70* CALL IROORT

704 VS
708 S SNAP 161(0K
70S SYNSEF SRI MIS. IRROAO . IROORT

705 SIl I NOS *11.1 .
703 57*0 WINO
7)0  (MO I I .  00CR . OP PI LE COOS WOOD
It I •TIO_ _ ~~
7)2  (MO S.)’ 00CR . OP SECTOP 61.81353
713 57*0 IKO CW
714 (0*0 4. ). 00CR . OP SUPPER

1~~

91

__ _ _ _ __ _ _  A



~is ra.~ IS ~E? QUAZiIT! p!1LCflCA3L*
~B0~ oa~rz ii~ izs~~ ro

51ST SI 05-05-75 I2.SSS STAR C (IC) PILE EDITOR HAP - NEW IC FILE CONTENTS CASE IS

I T S  C O N T E N T S  O F  T H E  C H A N S E S  O N  T H E  N E W  S T A R  C F I L E  740704

7)5 SYNC 1130611
7?S 1.1(1.0 5,1. NO. OP WORDS
7)7 MIle ‘0007777 . OU SIT DCII TYPE

PM) A

713 (MD I l l  00CR. OF STATUS WORD
720 STXO ISIESS
1*) ISlE VS
7PM PaIL

725 •I ,SKDCW
754 WOIC
755 lENS 0. bIRDC W
1PM 5. _ S
727 SVXO (MO ‘I
725 iRA 0.)
755 UKDSN tOTS ss.I
7PM tSTh •..fl
7$) OPROAD *1).).
755 VS SER000
715 IRA 0.1_,

~~~~ ~~~~~~~T -~~~
715 LOS ‘SHONE , CL
715 VS SENOR?
737 •p5~
7PM a
755 S)*1Y SRI).).
740 I
74) 5 BUSY WILL USE PROCESSOR TINE FOR THE PR113(R OF MILLISECONDS
MD I IPMI SAISS IN l.a PAPPaS ASS N?

745 I -
744 1.1(1.3 1.15 53? ARS)J61NT a S OF MS OF BUSY TINE
745 S
MD A I
747 EMS ISO LOOP VALUE FOR CACHE $1010
745 S tAXI 77 VALUE IF NOT CACHE P61050
745 S
W 5 —5 I

71) LOS VS
D IV ONE

155 Am. I
PaMP I 1

755 17). LW
155 11*1 1 ,511
717 171. NSLP

__..•~~~~~ A I
155 lIlt DES I
155 VS
15) S ENSOUl!
S P LINIYA IA

155 S PILL U.OPL ISCR
154 I 6110.115
155 ((((44 1310 Or FILE ON OUTPUT (O T) . ‘,~~~~~~,

92

— -

I._ .~~ ~~~~~~~~~ ~~~ — —.-. -.

I
-

MULTICS JOB SCRIPTS

93

:‘ . ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
- _

~
- . _

~~~~~~~~~~~~~~~~~~~ — .—- -—

.
. 

‘ r~iS p*~~I6
rao~ 0~’VI%~~LSH~ TO DDO

s.tup .ec 08/28/78 0935.5 edt Mon

&~oto £.c_nan.
Limb.! setup

***Setup ***
£co .ad._lin. off
answer yes —bf dl absout **
delet. termination_f la g
£!f  (no t (exists se~osnt ipis....stetus. seqi)  &then create ipin_stetus ._ se~Miss truncate ipm....s tatus_seq
•c .nt.t...aii_abs., .req (date_time 2 minutes) trssponse ~# of processes?8) Ire
%cs. ~I of load it.rations?aJ
Iquit
a .— 
Liabel inter_all_abs_req
\c *** .V) tsr_a I l_abs...req***
sd 500
ear absin ioad_overse.r_(Lindex _sst £23 ) —hf —te ~ & I M  —of absoIIt loed_overs
~c((lnds x. s.t £23) —eq (( index _set £ 2 3)  ~3
sd
t.rmination_overseer £2 £3
£qu it

r 935 0.235 05462 21

load_ov.rseer._prototype.ebsin 08/2Rf78 0937.1 edt Mon

_ _~~~ ~~ ddI5350C I eo4~v.stel ~ Itload_control a P £2
Iqut t

r 937 0.104 0.42 0 20

I-

1 .
-

94

___________ 61 - -  _
~~~~~

— ——-—.
~.

Li. ~~~~~~~~~~~~~ ~~~~~~

- ~~
.

-

~~~~~ - - .  
~~~~ ‘ •~~~~ ...~~~~~ 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~ ~—~~~~~-__,

load.piI 08/28/78 0930.7 edt Mon

loads prod

dci a(1024) fixed bln (35);
dcl (j, k, sum) f ixed bln(35);
dcl flush entry ;

call flush;
do j — I to 00;

d o k — I  to 1024;
a(k) — 2345;
sum sum 4 a ( k) I
end;

end;

-and;

load_control.pII 08/28/78 0930.7 edt Mon

load_controls proc I
dcl ap ptrS
dcl ascii_load_id char (2 )  based(ap) I
dcl asc.11_it.ratlon_cutoff cptar (4) based(ep);
dc clock.. entry returns (fixed b i n ( 7 t ) ) S
dc cods fixed bin(35);
dc cu_$arq..ptr entry (fixed bin, ptr, fixed bin, fixed bin(35));
dcl flnilpLtlme fixed bin (7I)p
dcl fixed builtins
dcl float bui lt in;
dcl qet_wdlr _ entry returns (cher (168))s
dcl hcs_$inltiate entry (char (*), ch.r(*) , char ( *) , f i xed h i n ( I ) , fi xed bin
%c ptr , fiXed b in(35));
dcl tlds_ $mske_seg entry (cher(*) , char (*), cher (*), fixed hin (5), ptr , fixe
\cn(35));
dcl ioa_ entry options(varlable) s
dcl ioa_ $ra entry optlons(varimble);
dcl 1pm float bin;
dcl ip m...status_seq(32) . char (A) based(stetus_pt r ) ;
dcl iteration_coun t float bin ;
dcl iteration .cutoff float bins
dcl len fixed bin( 17) ;
dcl load entry;
dcl load_id fixed bin (35)s
dcl null built in;
dcl stirt_tim. fixed btn (71);
dcl status..ptr ptr ;
dcl substr bui l t in ;
dcl terminat ion_ f lag,.ptr ptr i
dcl total_minutes float bin;
dcl total_ time f ixed bln (7U;

• call cu $ar~_ ,ptr (I, ap, len, Code? ;if code~~— 0 th.n do s
call toe... (0Pro blem wi th ar~~iment l . Abort ,8); - 

.1:
call hcs_$make_ s.g ((qet_ wdir _~~~), 0term 1nat 1on_ f l a~ 8, ,

MN , 10 , te
_ _ _ _ _ _ _ _  

\cation_ flag..ptr , code);-
~~ 

—

~~~~~~~~ returns
ends

95

~~I3 FAGI IS ~~~T-

Th0~~~ OOfl ii~~ii..~~~~ TO ~~~~~ O ~~~~~~~~~~~~~

load...id — fixed(substr (ascii_ load_id , I , len) . 35);

cell cu_$arg..ptr (2, ap, Len, code);
if code ~~— 0 then do;

call ioa_ (aProblem wi th ar gLal ent 2. Abort .);
call hcs_$meke_ seq ((g.t_wdir..C)), mterminetion_tlequ, ~~~~~, 10, te

\cetion_fl ag. ,ptr, code); -

rsturn 5
end;

iteration _cutoff — t loat (sub str (asc li _i ter at ion_ cutoff , I , len) , 27);

total_ t ime ~ Ostotal _minutes — 0.;
ststu s_ptr • nulls

call hcs...$in i tiat e C Cq e t_wdlr ...U) , i piui_status_seq M , -
~~~~~~, 0, 0, status _

%c code);
if status. ptr — null then do;

call toe.. ( No lp ._st a tus_seq. Abort.8)#
return;
end;

call load;

do iteration_ coun t — P.O to iteration_cutof f by .0;
Start_time — clock_C);
call load;
finish_time — clock_C);
total_time — total_time • (finish_t im e — start_time);
ends

ipe....status_ seq( load_ Id) — ‘ti nlsPie& ;
terminatlon_ fiag._ptr • null;

do while (termination_f laq_ptr — null);
call load;
call hcs_$initiate ((get_wdlr_C)), atermlnatlon_ f laqs, ~~~~~ , 0. 0,

\clnation_flag..ptr, code);
end;

total_minutes • float (total_tlme . 27)/60000000.;
1pm • iteration_cutoff/total_m inutes;
call, ioa_$rs(~~7.4f”. ipin_status_seq(load_id), len, 1pm);call ioa_ (alterations/mi nute for load ~2d — ~~~~~~ load_id. 1pm);

end load_control;

p__ --

—

~~~~~~~~~ 

-

96

- - ~~~~~~~~~~~~~~~~~ ~~

T ~~
— --—-— -.•— - — — -- — —•--

-.‘--~-••---.- •-—- -•-— ---— — — —
~~~~— ~~~~~ .—,~-—----•. -~~~~- - - -- --.-—--—-- —•- -.

I 
-

~~~~~ 

- -- - — __-

APPENDIX B

MONITORING TOOLS

97 /98

11 - -

- --

~~~~

*_

- - •--•-~~~~~L____ •._ _ —~ -—. —‘ — .~~ - ~~~~~~~~~~~~~~~ ~~~~~~ - .. _-- 



I

GCOS TOOLS- -VMMON

\

_ I - ’

I
—Ag~. .~~~~~~ -—- ---i, - — - -•—- - —.-- -.----— - - -

‘~~~ -~— .— — 



____

• 

~ I;s ~~~~
IPOiM ooP~ ft _Isl~~ 1~0 DDC .._.. ..

NIPS • 27771 - ACTIVITY * • 01 , REPORT CODE • Oe , RECORO COUNT • 00402

I DINT Z00232-VPI’I, CNO-TOFE 00000010
~~ TI~~~ F~~ T A N  00000020
L~ .JL0A0 00000030
FORTY 0000004 0

000000 80
~~~SS.1dIC&TI~~15 RE~~ I~~ N 18 REAO PER I OO I CALLY 00000000

CELLS READ ARE(IN OCTAL) 00000070
200 • • CRT I N • TOYM. I NTERRUPT$ • COUP C I) 000000 10
207 • • CRTCN • TOTAL CO*4ECTS • COUP (2) 00000090
III . .C VH • OVERhEAD TI ME - COUP(S) QQQOOIOO
201 ~ • CR1 DT • I OLE TINE • COUF (25) 00000110
241 • .CR I OT+I CURREHT SC CLOCK VALUE FROM VMM. COUF (20)00000120
247 • . CRTWT ‘~ S OF TIMES I DLE • CBUF(34) 00000130
ISO - .c~ TQ5 .. T0T~L 0P~ PATCKES • COUP(3~) - 00000140
1044 • .OM $E+O.8t6S VP TIME P RON VI4Mu COUP(4 15 oooooiso
1045 • .CRUSE+I .VMN PROC . TIME FROM VNM • COUF(415) 00000100
1041 • .CRU*E+1-VNM VOL E TIME FROM VPVI • COUF(417) 00000170
1047 • .CRUSE•3.MULTIC$ VP TIME FROM V1*I • CO UF (4 10) OQ000100

00000190
00000200

CHARACTER DATE 00000210
I 1111118 TOOP$JL 00000220
I 11111111 Abb~*,’ea00/ , COUP C500 , OOUNT/0150/ I STAT 00000230
DATA PUU S/230400000. I, P5L$EC/14000./ 0000024 0
REAL NI CHN$/3100000000 .1 , MI CSEC/ 1000000 . / 00000250

REAL ITINE , I OVN , I POT , IR ~HRS, ISCSP, IVPIIP, IVMM IDL., IMTXP
REAL L.TIME, LOVM, LIOT , LRTHRS, LOCSP, LVMMP, LVMM I DL, LIITXP 000002*0
NEAL CT I NEI COVH , CI DT I CRTHRS , COCSP, CVPV4P, CVMM I DL, CNTXP 00000290
I NTEDIR CTIR.CTCN CTWT.CTDI 00000300
INTESER CRTINT 00000305

00000310
INTERER P1 ,P2,P3,P4,P5.P$,P7,Pa 00000320
I NTESER TCH. T IA. TOO. 1W? . 00000330

00000340
00000380
00000360
00000370

CALL $LEEPX (30) 00000300
000003*0

INITIAL IZE ALL. COUNTERS 00000400
00000410

CALL TINEX (OATL TODPUL) 60000420
CALL. HCHOV(A00A$ I COUP, COUNT, STAT) 00000430
IFC$TAT.NE.0201’O 200 00000440

_ _ _ _ _ •51.. i.j~~ ..ltEL . . 5zA~~~~~. 00000450
- 00000410

ITC N CSUP (2) • 00000470
IOVN-PLOAT(CSUP(•))/PLL$(C 00000460
II 0T ?LQAT(ç l~~(IS))/PULS(C 00000490
IRTINY.CIW f *0) - • 00000500
IF (IR T *NT .NI.0)IIYO 10 00000510
CALL. ROCLCK (11 , I I) 00000520
I I T I N T l2 00000530

10 COMt ~Ie.* 0000054 0
CALL. AOJ000(IRtINT) 00000580
I RTHR$•FLOATC IRTI NT)/NI CNNS 00000500
I ~~~~~ 00000570
I t0S.~~tW(IS) 000005 00

100

~ -.--—~ — -- ---- —

WIS ?.AGZ IS 8~ST QUMiIT! pl%LCfl~A3Ia1
• •

~~
.
•
‘

~~~ o~~~oo~i’~ r.~~~usi~~~~ 
TO

I OCSF .OAT (CBUF (41 5) )/MI CSEC 000005*0
I VMMP ’FLOAT(CBUF (416) )/MICSEC 00000600
I VMM I DL~ FL 0AT(CBUF (417))/MICSEC 00000610
IMTXP =FLOAT CSUF(41 8) )/MI CSEC 00000620

00000630
WR I TE (06,1 000)DATE 00000640
W R I T F (OR,1 O I O H T IM E I I OT . I O V H . I TCN .ITIR .ITD S .ITW T 0000005 0

00000680
WR ITE(07 , 1100)DATE 00000670
WR I TE(07, 11 10) 1 TIME , I RTHRS , I VMM I DL , I VMMP , I OCSP , IMTXP 00000680

00000650
RESET COUNTERS FOR LOOP CALCULATIONS 

- 
00000700
00000710

LT I ME• I T IME 00000720
LTIR .E TIR 00000 750
LTCN~~I TCN 00000740
LOVH . I OVH 00000750
LIDT •IID T 00000700
LRT I NT.IRTINT 00000770
LTWT •I TW T 00000780
LTDS .ITDS 00000790
LOCSP’ I OCSP 00000800
LVI*tPs I VMMP 00000010
LVMM IDL ’I VMM I DL 00000820
LM TXPU I MTXP 00000830

00000840
— WR ITE (42 .1200)DATE 00000850

WRITE (39~, 1300)DATE 00000860
00000870

~CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCcCCCCCCC 00000680 
00000890
00000900

CONTINUOUS LOOP TO SAMPLE H~N CELLS 00000910
00000920
00000930

100 CONTI NUE 00000940
CALL SLEEPX(15) 00000950
CALL TIMEX(DATE ,TODPUL ) 00000960
CALL HCMOVCADDR5.cBUF~COUNT .3TAT) - 00000970
IF(STAT.NE .0)OOTO 210 00000980

00000990
CTIMEzFLOAT( TOOPUL)/PULHRS 0000 1000
CTIR.cBUF (1) 00001010
CTCN•CBUF(2) 00001020
COV*IzFLOAT (cOUF (9) )/PULSEC 00001030
CI D T~FLOAT (C8UF (25) )/PULSEC 30001040
CRT I NT .CBUF(26) . 00001050
IF(CRTINT .NE .OGOTO 110 00001060
CALL RDCLCIUI1 , I2) 00001070
CRT I NT .I2 00001080

110 CONTINUE 00001090
CALL AOJSCC (CRTINT ) 00001100
CRThRS~ FLOAT(CRTINT)/M ICHR3 00001110
CTWT •CBUF (34) 00001120
CTOSzCBUF(35) 00001130
COCSP-FLOAT(COUF(415))/MICSEC 00001140
CVNMP-FLOAT (CSUF(418) )/M ICSEC 00001150
CVNMIDL .FLOAT (CBUF(417) )/MICSEC 00001160

• CP%T)~P-FLOAT(CBUF(4I6))/MICSEC • 00001170
00001180

CALCULATE VALUES SINCE INITIALIZATION 00001190
0000 1200

- T1u(((CI MC-(TIME)83600. • .049) 09901210
11.11 *10. 60061220

- -~~~~~~~ I

101

—



T13IS’PLGI,~~ )~~~~~~Lt1’T PMC?LCA~ J
~~ Mb bPY~~~~~Sth ro D~O ~~~~~~~~ .

-

T2.(F T (CRTINT-IRTINT )/MICSEC ) + .049 00001230
12.12 *10. 00001240
T3.CIDT-IIDT • .049 00001250
13.13*10. - 

00001260
P1.(T3/T1 • .0049)1100. 00001270
P2.(T3/12 + .0049)1100. 00001280
T~. ~~~V H-I~~VI.4 + . 042 0000 1 220
I4sT4*10. 00001300
P3•CT4/T1 + .0049)’lOO. 00001310
P4 .(T4/T2 • .0049)1100. 00001320

00001330
CALCULATE VALUES SINCE LAST SAMPLE 00001340

00001350
T 5 • C ( C T I M E - L T I M E ) *3 6 0 0 . ,  + .049 00001360
I5.TB*10 . 00001370
T6.(FLOAT (CRTINT-LRTINT)/MICSEC) + . 049 00001380
I6 .T6 *10.  00001390
17. C I DT -LI DT + . 049 00001400
17.17*10. 00001410
P5•CT7/T5 + .0049)*100. 00001420
P6.C 17/T6 + . 0049)1 100.  00001430
T8.COVH-LOVH + .049 00001440
16.16*10. • 00001450
P7.(T8/T5 + . 0049)1100 . 00001460
P8.(T8/T6 + .0040)’lOO . 00001470

00001480
- - 00001450
TCN*CTCN-LTCN 00001500
TIR.CTIR-LTIR 00001510
TDS•CTDS-LTDS 00001520
TWT.CTWT-LTWT  00001530

00001540
WNITE (06, 101 0)CTIME,C ID T .COVH,CTCN ,C TI R ,CTOS,CTWT 00001550
WRITE(421 1210)CTLME 1 I1 ,12,13.P1 ,P2,14,P3,P4, 00001560

* I5.18.I7.P5.P6.I$ P7~P6.TCN.TIR.TDS~TWT 00001570
0000 1580

PROCESS DATA WRITTEN FROM VMM TO OCOS - 00001590
00001600

RTIIIE.CTINE • (12-11)/3600. • 00001610
B1.T2 00001620
I1•B1s10. 00001630
O2~ CVMMIDL-IVMMIDL + .049 00001640
I2•02*10. 00001650
P1.(B2/B1 + .0049)*100. 00001660
53.c~pI~p-IVpI~p .0.049- 00001670
3.53*10. 00001680

— P2•(B3/B1 + .00.49)*100. • ooooie~B4•COCSP-IOCSP + .049 00001700
I4•54m10. 00001710
P3•(54/B1 + .0049)1100. 00001720
65.CMTXP-IMTXP • .049 00001730
1 5.65110. 00001740
P4.C55/51 + .0049)1100. 00001750

00001760
CALCULATE V~~ OATA SI NCE LAST SAMPLE 00001770 -

- - - 00001780
50.16 00001790
1 8.51*10. 00001800
67.CVPOIIDL-LVIVIIOL +0.045 - 00001810
1 7.57110. 00001820
P5.(57/66 + . 0049)*100 . 00001830
B8aCVMNP-LVMMP • .049 00001640
18.56*10. 00001650
P6.CB8/06 • .0049)*100. 00001860

-~~~~ - _ --. _±‘:_ ~~~~~~~~~~~
__I 



- - ~~ISPAa~E ISB~~T QUALI1’!flACrWL~~1‘
~~~~ $aC~~ oaP~ z~~~~zsa~~~ ro~~~ q

B9.cG ‘-LOCSP + . 049 0000 1870
9.59*10. 00001880

P7~
(B9/O6 + .0049 *100. 00001890

O10.CHTXP-LMTXP + .049 00001900
I10.O10s10, - 00001910
P6.(6T0/56 + . 0049)a tOO . 00001920

00001930
WRI TE(07,1110)RTIME ,CRTHRS,CVMM I OL ,CVMMP ,COCSP ,CMTXP 00001940
WRITE C3 9~ 13 10) RT IM E , I 1 , I2 , P1 , I3 , P2 , I4 , P3, I5, P4 , 00001950

* IS , I7,P5, I8, P6 , 19 ,P7 , I10 ,P8 00001960
00001970

RESET COUNTERS FOR NEXT LOOP 00001980
00001900

L.YIME.CTIME 00002000
LTIR.CTIRI 00002010
LTCN.CTCN 00002020
LOVH.COVH 00002030
LR1 I NT .CRTI NT 00002040
LIOT.CIOT 00002050
LTWT.CTWT 00002060
LTDS.CTOS 00002070
LVMM I OL.CVPIM CDL 00002080
LV!*IPaCVPSIP 00002090
LGCSP.COCSP 00002100
LMTXP.CMTXP 00002110

00002120
— 6010 100 00002130

00002140
~CC 00002150

00002100
CORE MOVES ERRORS 00002170

00002180
200 WRIT E (0 6 , 1500)STA T 00002190

STOP 200 00002200
210 WRITE (06.1 800)STAT 00002210

STOP 210 00002220
00002230
00002240

1000 FORh AT(III1.” ACTUAL DATA FROM 0005 HCM FOR “.A6.//, 00002250
* “ TIME IDLE-SEC OVERHD-SEC CONNECTS , 00002200
* “INTERRUPTS DISPATCHES *TIMES-IOLE , I / I) 00002270

1010 PORMAT (1X ,F6.3,F9.I ,3X,F9.1 ,IX ,I9,3X ,l9,3X,IS ,4X,I9) 00002280
000022 90

1100 FORh’IAT(lHI,” ACTUAL DATA FROM VMM FOR “ ,A6. / / , 00002300
* “ RTIME SC-HOURS VNM-IDLE-SE C VMM-PROC-SEC” , 00002310
* “ GCS-PROC-SEC MT)(-PROC-SEC”,// /) . 00002320

1110 FORh4ATCIX.F6.3.23tFlO.4.43X FIO.3fl . 00002330
00002340

1 200 PORMAT (1H1 ,” 0~OS DATA VALUES FOR DELTA TIME I NTERVAL FOR “ , 00002360
• AS,/1 5X,”(LAPS,ID4..E.OVH ARE IN 1/10 SECOND UNITS) ,// , 00002350
~ IX.” TIME “.IO (”a’).”QATA SIROE START ” . 10~ ”*).3X . 00002~70
* 20(’-”) “DATA SINCE LAST SAMPLE ,20(”-),/, 000026*0
• IX ,SX ,” GLAPS RLAPS I DLE 20 ZN OVHD 20 ZR “ , 00002300
* Q~~p RLAP I DLE 20 ZR OVND 20 ZN” , 00002400
*

0 CONNTI_ INTRPT DISPAT *Ib~ E5” ./1/) 00002410
1210 PORhIAT(1X,PS.3,218,2(I8,2I3) 3M,215,2(15,2I3),418) - - 00002420

00002430
1300 FORNAT (1HI ,” VIOl DATA VALUES FOR DELTA TIME I NTERVALS FOR “ , 00002440

• AS./.BX.”(VIDLE.VOV1IO.SCSVP MTXVP ~~~ IN 1/10 $E99ND UNI1$)’.//. QQQQ(4 5Q
* 1X , ” RTIME , 13(” s”) , ”DATA &INCE STA~T*,14(0s) ,6k. OO66~406• 7(..) , ‘DATA SINCE LAST SAMPLE ,7 (-) / , 00002470
* IX ,SX ,” RLAP$ VIDLE $ VOVHO 2 SC$VP I MTXVP 5 00002480
* “ RL.AP V I O L S VO~H 5 SCIP $ PITXP 5” j I l)

-
000024 *0

1310 FORMAT(1X ,FS.3,IS ,4(IS ,tI) ,5)C,~~4,4(IB,1$)) 66662500

103

-

- - - -~~~~~~~~~~~~~ - - - ---~~~~~~ - ~---- —~~~~~~ - - -- ---- - -

- • ! ~~~~~~~~ B~~T QU*1~fty PZ*cw!i2~~Th~~ OQPT 7~~ Izsi~~~ ro~~~~ _ _ _

C 00002510
1 500 FORMAIC” CORE MOVE ERROR - STATUS • “ ,14) 00002520

END 00002630
I OMAP NOECK 00002540

IlL HCMOV - HARD CARD MOVE SUBROUTINE\770210 00002550
TTLOAT 00002560
FDITP SN 00002570
SYMOEF HCMOV 00002580
SYMDEF SLEEPX ,TIMEX 00002590
SYMDEF RDCLCK ,ADJSCC 00002600

00002510
CALL HCMOV(FROM,TO,COUNT,STAT) 00002620

I 00002630
CALLING ARGUMENTS . 00002640

I FROM • ADDRESS SF WORD WHICH CONTAINS 00002650
• ABSOLUTE STARTING ADDRESS IN 18-35 00002660

TO • ADDRESS OP RECEIVING BUFFER 00002670
* COUNT • ADDRESS OF WORD WHICH CONTAINS 00002680
* NUI~~ER OF WORDS TO MOVE I N t8±-35 - . 00002690
I . 00002700

STATUS RETURNS 00002710
STAT • 0 - ALL OK 00002720

I STAT • 1 - COUNT GREATER THAN 512 00002730
I OR ZERO OR NEGAT I VE 00002740

STAT • 2 - T0+COUNT PAST USER S CORE 00002750
• - STAT • 3 - TO IS BELOW USER S CORE 00002760

-
- L...... STA T • 4 - FROM IS NOT IN 11CM (<64K) 00002770

I - 00002780
10MeV SAVE 0,2, 3,4,5,6,7 ENTRY-SAVE X0 ,X2 ,X3,X4 ,X5,X6,X7 00002790

STA AR SAVE A REGISTER 00002600
EAXO 5.1* _ GET ADDRESS OF “STAT” 00002810
STXO STAT SAVE IT 00002820
STZ STAT ,I SET ‘ STAT” TO ZERO 00002830
EAXO 2,1 * GET ADDRESS OF “FROM” 00002840 ¼

LXLO 0.0 GET “FROM” - MUST BE ABSOLUTE ALREADY 00002850
- CMPXO .O200000 .DU IS FROM < 64K (IN HCM) 00002860

TRC ER4 NO - ERROR 4 00002670
STXO FROM SAVE “FROM ” 00002880
EAX O 3.1* GET ADDRESS -OF “TO” 00002890
TMI ER3 MINUS - ERROR 3 00002900
STXO TO SAVE IT 00002910

- EAXO 4 , 1* GET ADDRESS OF “COUNT” 00002020
LXLO 0.0 GET ‘ COUNT” 00002930
TNOZ ER1 MINUS OR ZERO - ERROR 1 00002940
CMPXO .O1001 ,OU CHECK “COUNT ” 00002950
TRC ER1 TOO LARGE - ERROR 1 00002960
STXO COUNT SAVE “COI$LT” . 00002970

- LDX2 FROM GET ~FROMb. AGAIN 00002980
SOAR BAR SAVE OUR BASE ADDRESS REGISTER 00002990.
1N HIB ON DON’T GET I NTERUPTED DURING MOVE 00003000

- MME .EMM IIIENTER MASTER MODE *1* 00003010
ASX5 10,9 FROM ABSOLUTE “TO ” BY AD6ING LAL 00003626

IAN LDA •* ,DU GET BAR 00003030
APIA .0777 , DU GET S OF 512 BLOCKS 00003040
ALS 9 MOVE I I OVER 90003050
STX6 1 , IC SAVE LAL - - - 00003060
EAX 3 ** . AU FORM UPPER L IMIT 00003070
SBX3 1 ,DU SUBTRACT ONE 00003080
LDX4 TQ~~ 05T “TO ” - - 90003090
ADX4 C~UNT ,*’ ADO IN “ COUNT” 66003100• STX3 1 , IC SAVE UPPER LIMIT 00003110
CMPX4 lI DU PAST OUR CORE LIMITS 00003120
TRC ER2.$ YES - ERI~Q~ 5 999Q~ 130
LDX3 T O e NO - GET ABSOLUTE “TO” 00063140

-_

104

~

-- - - --—-—-.~~ - -~-— - --- --- _~~rn- -- _ - -~~~~~~—~~~- - - _ _ ~~~~~~~ - - - - - • - -_ ~~ -- - -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ --~~~~~~

~~1$L_j_ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -

~~~~~~~~S piar IS B~~T QUALIt’r P~I~~~ *BL*
- • -

• -
rao~ op?~ ~ i~ xsi~~ so

LDX4 COUNT S GET “COUNT” 00003150
.OOP LDA 0,2 GET DATA 00003150

STA 0,3 SAVE IT 00003170
ADLX2 1 , OU BUMP “FROM” 00003180
ADLX3 1 ,DU BUMP “TO” 00003150
30X4 I ,00 DECREMENT “ COUNT” • 00003200

- TPNZ LOSP I CSNTIJ~UE UNTIL ZERO 00005210
EX IT TSS *+1 RETURN TO SLAVE MODE 00003210

INHIB OFF 00003230
LDA AR RESTORE A REG ISTER 00003240
RETURN I4~~~~V RETURN TO CALLER - 00O052~~

I 00003250
~R4 AOS STAT. I BUMP “STAT” 00003170
~R3 AOS STAT , I BUMP “STAT ” 00003280
~R2 ASS . STAT . PUMP “STAT ” 00005290

ER 1 AOS STAT ,1 BUMP “STAT” 00003300
TRA EXIT 00003310

• 000033 10
655 0000S3~0

ITAT 055 1 0006*340
~0UNT OSS 1 00003350
ro BSS 1 00003350

S~~,~t1~I47S

00003380
I 00003950
I 00003400
ILUPX NULL

LOG 2,1* GET NUMBER OF SECONDS TO SLEEP
MPY 84000. DL CONVERT TO PULSES 00003430
POlE GEWAKE GO TO SLEEP 00003440
TRA 0. 1 _RETURN —

I 00003470
I 00003480
IMEX NULL 0

MPIE GETIME
STA 2,1* STORE DATE 00003510
STO 3,1* STORE TIME IN PULSES 00003020
TRA 0, 1 - RETURN -

I 00003550
I 00003550
1DCLCK NULL

MME EMIl -

RSCR 32 000035S0
TSS ‘+1 00003500
STA 2 1 *
510 3 1 *
MME GESNAP 00003130
VFD 1 S/0,2/2,1/0,15/0 00003840

1 TRA 0.1

I 00003570
I ADJUST SYSTEM CONTROLLER CLOCK VALUE RETURNED 0000IS$0

-FOR MEGATI VE VALUES
-FOR ROLLOVER AFFECT -

I -USE ONLY RIGHT MOST 34 BIT8.S500 SECONDS 00008710
I -141010 HAS MI CR0 SECOND CLOCK 00008710

~bJSCC NULL
-

IDA 1, 1* - 00008750
AMA .0177777777777 USE ONLY RIGHT MOST 34 BITS 00008750
ITA T5~lP flflfl05
AMA •0I00000 DU CHECK IF MOST SIGNIF1CANT BIT • I • uuuuw

-

105

--
H

L

—~~~~~~--~ -— --~~~—- —~~-- - ---- --— ~~~
-.-

~
----•

~~~~~• ~~.



-~ - -

~~~ 
-I’

TZE POS$CC NO, BRANCH 00003790
LDA 1 ,OL YES, SET FLAG 00003500
STA FLAG 00003810
IRA $CCEXT DONE 00003820

‘038CC UN FLAG IF B I T • 0, CHECK IF PREV I OUSLY WAS 1 00003830
SCCEX T NO, BRANCH 00003840

• I F PREV I OUSLY 1. HAD A CI 00K ROLLOVER 00003850
AlA ADDER ADJUS T CLOCK VALUE 00003860
$12 FLAG RESET F LAG 00003870

ICC(XT LDA - TEMP USE ADJUSTED VALUE 00003850
A~~ A ~ 00003890
$TA 2, 1* 00003900
IRA 0, 1 00003910

~~~P OCT 0 00003915
LAS OCT 00003920
DOER OCT 0 00003930

00003940
END 00003950

I EXECUTE 00003960
PRIVIlY 00003970
LIMITS ,1OK 00003980
$YSOUT 07. ORG 00003990
SYROUT 39 . 080 00004000

—

106

$ I_•—__— —

I’_ I - - .  



- - ~ - - - - - - - -- --~-~ -~-~~~~~~ -~~ -- -- - --~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~ - —-—~~~~~-~ 
—

~~-----

— — — -

I-

MULTICS TOOLS- -termination_overseer

107

-~~~ -~~~~~ ----~~~~~--- - -~~~~~~--- —-~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-- ~~~ -•-~~~~~~~~~~~~~ -~~-- -~~~~



• - •
• - •;

terminatlon_ov*rseer.plI 0R/2R/7R O93O.~ edt Ur,n

termination_overseer’ proc(ascli_n_loads, ascii_n_IteratIon,);

dcl ascii_n..,loads char(*)5
dcl escl i_n._iteratlons cher(*)I
dcl charac ter_value char(7);
dcl cods fixed bin(35);
dcl cv_dsc_check_ entry (cher(*), fixed hin(35)) returns (fixed hin (35))
dcl cv_floet_ entry (char(*), fixed bln(35), float bln (2’l));
dcl fpsum float bln (27)S
dcl fpval float bin (27);
dcl gst_wdir_ entry returns (char(I68) aligned);
dcl hcs_$trtt ttate entry (char(*), char(*), char(*), fixed bin (I), fixed bin
\c ptr, fixed bin(35))5
dcl hcs_$make_seg entry (char(*), char(*), char(*), fixed bin (S), ptr , fix.
\cn(35)H
dcl I fixed bins
dcl ioa_ entry options (variable);
dcl ipuLstatus_seq(32) char(8) based (status....ptr);
dcl n_loads fixed bin (35);
dcl n_iterations fixed bin (35);
dcl null builtin ;
dcl status_ptr ptrs
dcl substr builtin ;
dcl termination_tlag_ptr ptr ;
dcl tlmer_manager_$sleep entry (fixed bln (71), bit (2));

n_ loads * cv_dec_check _ (ascii _n_ loads , code);
If code ~a 0 then dos

cell loe_ (-
~Bad argument 1 Input to termInation_overseer. Ahort.

ca ll hcs_$make_seq ((qe t_wdl r_O), “termination_flag”, “s’, 10, t.
\cation_flag_ptr, code);

returns
end;

n_iterations — cv_dec_check_ (ascii_n _iterations, code);
if coda ~~ 0 then do;

call toe,., (
~ Sad argument 2 input to termination_overseer. Abort.

call hcs_ $meke_s.g ((qe t_wd~r_ O) ,  1te rminatj on_ f lag”, li ii, 10 , te
\cation_flag_ptr, code);

return;
ends

status_ptr — nu l l ;
call • hcs_$initiata ((get_ wdir_ O) .  ‘“lpm_st atus_ seq”, ““ , 0, 0, stati,s _

\c code) ;
if status...ptr a nul l then ~~s

call ioa_ (Unable to Initiate ipm_status_seg. Abort.”);
call hcs_Smake_seg ((get_wd ir_()), “terminatjon_ f l a q”, -““ , 10 , t° —

\cation_flag..ptr, code);
returns
end;

- 1T  

___  

108 



— ,- _
~

_ _ _  -

- 

1~IS P1* IS B~~T QUAXafl’~ 7!~&Cfl~AJ’~ThOM O0iP~ T~JØIS1~~ so WQ ~~~~~~~ -

do I — I to n_lo~ds5
ipm_status_Seg(i) — “ZZZZZZZZM I
ends

do I • I to n_loads;
do whi le (tpie_sta tus_seq(t) — ZZZZZZZZ”)5.

call t im r _manaqe r_$sleep (3O, ~IPb)
end;

ends

t.rm1nation_flag...~tr — nulls
call hcs_$make_ss~ ((qet_wdir_O), ~ termInat 1on_flaQ . ““, 10 , termina

\c_flag_ptr . code ) ;

call tim.r,..,manag,r_ $sleep(30, “Il”b);

do I — I to n_loadss
do whi le (ipie_status...Seg(i) a Mfinisheci” )

call timer_manaq*r_$sleeP(30,”I Pb);
end;

end;
fpsum — 0.5

do I — I to n_loads s
character_Value — substr(ipnLStatuS_ 5eg(I) , . 7);
call cv_float_ (character_ Value, code, fpval)
fpsum — fpsum + fpvall
ends

ca l l  ioa_ (~~A3/***** Thruput for ~d loads and ~d i terat ions is ~ .4f  It
\cions per minute *****~3/”, n_ load s, n_ iterations, fpsum)s

end terminatlon_OVerseefl

r 930 1.627 1.654 44

109 /110

--____________________ -• - — _ — -p st ~~ _~~,aa.tg.S - - -— 



_ _  
_ _ _ _ _ _ _ _  - -

APPENDIX C

“VIRTUAL MACHINE MONiTOR PERFOR MANCE ANALYSIS:
DESIGN PLAN”

Interim Report

November 17, 1977

----- -
~~~~-- 

~~
_ _~~~_ —

-
~~~-~ — ,~~ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 

~~~~~~~ 

- - - -• .“~~~~~‘ ‘~~~~‘
- ~~~~‘

________________________ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

PRE FACE

This document is intended to fulfill the requirements of line item A002,

Design Plan, for contract number F30602-77-C-0097, Virtual Machine
Monitor (VMM) Performance Analysis. Honeywell Systems and Research

Center working with BGS Systems Incorporated have produced this document
based on the result of investigations performed for the above -mentioned

contract, and on research in virtual machine technology done outside the

contract scope.

The principal authors were S.C. Vestal, Honeywell; H. Schwenk and

R. Goldberg of BGS Systems, Inc. The authors also wish to acknowledge

the assistance, both written and oral, of Mr. Russell McGee and
Mr. Larry Shannon of Honeywell Information Systems.

A-i/ti___________________
_ _ _ _ _

-~
-- ---- ——- - - - — -_— _- -- -— -.--_— -- -_ —•---— -_---,-~-- — -- •--

~~
- ---- -_- - --- - --~---~~~~~~

.-

- -

- — —

CONTENTS

Section Page

INTRODUCTION A-i

Organization of this Report A-i

2 VMM DESCRIPTION A-2

Functional Description of VMM A-2
Usage Information for VMM A-3
Resource Objectives of VMM A-4
Design Overview of VMM A-5
Test Specifications for VMM A-8
Known Limitations of VMM A-8

Functional Description of Except -proc A-9
Design Overview of Except-proc 1-9
Functional Description of I-proc A-23
Functional Description of f-proc A-32
Functional Description of vp/ipr A-34
Functional Description of vp/acv A-34
Functional Description of absa/routlne A-36

Functional Description of Dispatch A-38
Design Overview of dispatch A-39
Functional Description of vp/m t 1-40
Functional Description of vector/simulation A-41.
Functional Description of vm/’int/te.t A-43

A—itt

_______________ ~~ — ----~~~~~ -—-~~~----~—-—---- ~~

- - ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---- - - --~~~~~~~~~~~~~~~~~~~~~~~ -— -- -~~~~~~ - --- —
~~

- - ----- - -

CONTENTS (Concluded)

Section Page

3 DESIGN APPROACH FOR VMM EXTENSION A-45

General Areas of Functional Need to be Examined A-46

General I/O Considerations for Virtual Machines A—47

I/O Device Specification A—47
I/O Program A nalysis A—48

I/O Summary A-49

Virtual Device Support A-50

Dedicated Support A-SO
Partitioned Support A-SO
Mapped Support A 5 2

Simulated Support A-52
VMM Involvement A-53

Special Considerations for Front End Processor A-53
Functional Extensions

Special Considerations for System Consoles A-55

I

A-iv

~~~-_-- - - - - - •- _--- - -- _--~---
- 

-~~~- - - - - -- -



r 

~~~~~~~~~~~~~~~~~

LIST OF ILLUSTRA TIONS

Figure Page

-1 Modes of Virtual Device Support A-51

—-—~~~~ -~~~~~ -•-

SECTION 1

INTRODUCTION

ORGA NIZATION OF THIS REPORT

Since this document was produced at approximately the midpoint of the
contract term, final conclusions concerning the Virtual Machine Monitor
(VMM) performance cannot be drawn. Experiments are still underway at
the time of this writing. This report is an attempt, therefore, to document

the functional characteristics of the VMM in a way that closely parallel& its

observed performance.

Section 2 describes the VMM down to the module. level of detail. Much of
this information has been taken from the documentation produced with the
VMM implementation. The reader will notice therefore that it closely
follows the WELLMADE methodology documentation structure- in use at the
time the design was done.

Section 3 describes the design approach for evolution of the VMM. In

particular virtual device support is treated in detail for shared fr ont-end
network processors and shared operator consoles.

I Additional material like that in Section 3 will be supplied at the termination
of the contract, following more extensive analysis of the VMM performance
in live tests.

—- -— -
~~~~~

A-i 

~~-~~~~~~~~~~~ -, • - - -  



- -

SECTION 2

VMM DESCRIPTION

FUNCTIONAL DESCR IPTION OF VMM

The VMM provides two environments within a single 6180 system. These
are indistinguishable from the normal 6000 program environment and the

6180 program environment. They are referred to as virtual machines.
These evnironments are established by interfaces fabricated of software
and hardware. When these are viewed from an operating system, they are

indistinguishable from the real hardware interfaces assumed by the

operating system when executing on a real machine.

The VMM under consideration supports multiple virtual 6000 machines and
one virtual 6180 machine. Therefore it is possible for a single 6180 system

to concurrently support multiple GCOS systems and one MULTICS. Hence

we have a situation in which a VMM supports multiple operating systems in
much the same way that a multi -programmed operating system would support

two (or more) user jobs.

The hardware interface part of the virtual environment consists of several
hardware changes to the basic 6180 CPU, a change to the IOM Direct Channel
and a change to the 355 DIA Control Board. The software interfaces are
supplied by the VMM and are the subject of this and related documentation .

-

~~~~~~~~~~~~~~~~~ A-2 

I

L

IL ~~~~ - _ _ _ _ _ ~~~

r~r~~ ~~~~
-

-

The responsibilities of the VMM are as follows:

• Rartition the available real machine resources in n pieces.

One set is reserved for the use of the VMM. The remaining
resources are divided to provide one set each for n — 2 virtual
6000 and one for the virtual 6180. -

• Protect each operating system, its environment and the VMM
from reference by the other operating system ox’ any of its
users.

• Provide for the allocation of the real machine processing and
peripheral resources to satisfy the resource needs of the
virtual machine (VM) .

• Provide for the orderly start-up of the VMM , the GCOS and
MULTICS.

I’ should be noted that the partitioning of resources must apply not only to
main memory but to secondary storage and peripheral devices as well. It
must not be possible for any user of any operating system to reference a
virtual machine other than the one it is allocated to serve. (An anomaly
exists in this respect with regard to 355s in version 1. 1. See Known
Limitations below.)

Usage Information for VMM

To initiate VMM operation, a bootload procedure will be started by depress-
ing the “ boot ” button on the master console. This will cause the VMM to
be loaded fr om cards. The system configuration will be specified by tables
internal to the start -up deck. Once the VMM has been started up, either
or both of the virtual machines may be- started from a console.

A— 3

—~~~~
— .

~~~~~
_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~- - _— ~~~~~~ _ - _ - —~~~~ —- ~~~~
- _

~~~~~~~
_ 



— — ‘---—-v-.---—-- — ---- — —-- — .—~ ________________________

In this version of VMM (only) it is the user’s responsibility to establish the

configuration decks of the GCOS and MULTICS to be executed in such a way

that they use a complementary set of the real peripheral resources of the

system. Each operating system must have its own console and unit record

peripherals. It must also have its own FNP if one is used and its own

magnetic tape handlers and disk spindles. However disk and tape control -

lers and IOM may be shared. Furthermore, the addresses of the peripheral

devices used must be their real device addresses.

After an operating system has been started from a console, it will be used

exclusively by that operating system. Communication with the VMM will

not be possible again unless or until the VMM detects that the operating

system has ceased operation. At this time , the operating system may again

be started according to the initial start-up procedure.

Once a virtual machine has been started, its interfaces to its operator and

its users will be identical to those provided when it is in -execution on a real

machine. These are described elsewhere in appropriate manuals.

Resource Objectives of VMM

Version 1. 1 of VMM shall operate on 6180 systems with memories greater

than or equal to 384K words in size, It requires use of processor and

direct channel modifications mentioned above. It shall be capable of

supporting one or two real processors. (The VMM is fundamentally capable

- of supporting up to four real processors, but only a single processor has

been tested thu, far ,)

A-4



I

As a development target, the VMM shall reduce combined system throughput
by less than 20 percent.

Design Overview of VMM

The VMM at its most gross design level consists of two parts: start-up and
the VMM body.

Start -up is executed at bootload time for the purpose of loading and
initializing the VMM. Once it has been executed, it is partially overlaid
and not used again until the next VMM bootload process is initiated.

The VMM body consists of two ma3or parts: exception processing and
dispatching. Exception processing fields all faults and interrupts (referred - -

to generically as exceptions) and initiates appr opriate responses to them.
Exceptions may cause different types of actions to take place depending
upon the exception which occurred and the environment in which it occurred.

In general, exceptions provide the method used by VMM to maintain the
required degree of control over the system. The exact way in which this
is done is described in lower level documentation.

After exception processing is complete, the dispatcher is invoked. The
dispatcher gives control to virtual machines at the appropriate times to

~~~~~ maintain the proper operation of the virtual machines in the proper
scheduling sequence. The dispatcher contains the scheduling policy of the
VMM and will give control to virtual machines in accordance with this
policy.

- -

A— S


~~~~~~ - . -~~~- . --.-- -- -- - -~~~

‘
~ r - - 

-

vfrtual machines (U at all), the dispatcher will return control in different
- ways. It may simply return to the last point of execution or it may do so by

-
- 

- - 
-
. 

- 
sim ulating a fault or interrupt.

The operating systems are considered to be subroutines of the dispatcher
in this design ~ rerview. The dispatcher wW give control to one or the

- 
~i~~~~~ - : - : other of its virtual machines at appr opriate times. Once it has given

contr ol to an operating system , the dispatcher will have finished its task
and will not again be invoked for execution until another fault or interrupt
has been processed by exception processing. The fundamental notion of
the VMM is that, aside from the detailed instructions of the system, the
only interfaces that exist between the hardware and the operating system
are the I/O mailboxes and the fault and interrupt vectors. In most
instances, the operating system can be allowed to execute its instructions
and those of its users at full speed and without VMM intervention so long as
their addresses are constrained to lie exclusively within the domain of the
operating system . Only in those cases where fault and interrupt vector s or
I/o mailboxes are involved is it necessary for the VMM to gain control and
perform functions which will prevent operating systems from interfering
with each other or with the VMM. Because of this localization of control,
the VMM can control its guests with relative efficiency and the VMM itself
can be kept to a fairly modest size and complexity.

The CPU modifications used in support of VMM allow the VMM to relocate
the address space in which each operating system executes so that each one
has the illusion that its addresses start at absolute mem ory address zero
and proceed upward to its configured maximum. Given this illusion, each
operating system also has the belief that it owns and controls the real ault

A’6 

.. - - —.- “-..- —- -- ,-- 



--- ----~~~--- ---- —- -- - - - - -  -

and interrupt vectors of the system. This, of course, is not true. The
real fault and interrupt vectors of the system are owned and controlled by
the VMM.

To maintain the degree of control which is needed and to allow the operating
systems to be able to operate upon their vectors in the intended manner , the
VMM gains control on every fault and interrupt. This gives the VMM the
opportunity to keep track of the status of all system devices-which it must
control on behalf of its guest operating systems. At the same time, it gives
the VMM the opportunity to exercise dispatching control over its guests.
If one opera ting system has used a processor for its fair share of time, the
VMM may not return the processor to it in the event of a fault or interrupt.
It may dispatch the processor to another operating system instead. Since
the VMM intercepts all faults and interrupts and controls the dispatching of
the processors among the virtual machines, it is necessary for the VMM to
be capable of queueing faults and interrupts and to be able to simulate these
in a virtual machine at the time a processor is dispatched to it.

In addition to gaining control on every fault and interrupt, the VMM must
gain control at certain other key times. Chief among these is when I/o
is about to be initiated (other instances are elucidated in lower level
documentation). This is essential to permit the VMM to perform address

— 
translation in the channel programs corresponding to the relocation of the
virtual machine within the real address space, in some instances to perform
device and channel address translation and, in future versions, to permit
substitution of virtual for real devices.

U

-- 

-- 

A-?

_ _



— - —~~~~~~~~~~~—- -~—--~- ~~—- - - -— - ----

At the general conceptual level, the controls described above constitute the
heart of the VMM. More complete and detailed descriptions are contained
in lower level documentation.

Test Specifications for VMM

The VMM is targeted to operate with an overhead of less than 20 percent.
This measure shall be determined by executing a certain set of GCOS jobs
and a MULTICS script as separate tasks on a freestanding 6180 system and
comparing their combined execution time with the same work executing
under VMM. In performing the freestanding measurements, the same
system resources shall be used as are used when executing under
the VMM .

Note that other variations on the method of measuring performance can be
used and are perhaps preferable.

Known L4mitaticns of VMM

The dn355 shares mass storage with the operating system which it is
serving. There is no way implemented in Version 1. 1 which will prevent
the 355 from accessing or writing on mass storage which is outside of its
intended area of use. This anomaly will be repaired in future versions of
VMM.

A-8

___________________________________ —4



-~ -

~~~ 

FUNCTIONAL DESCRIPTION OF EXCEPT-PROC

The exception processor , except-proc. responds to all faults and interrupts,
safestores the processor conditions at the time of the exception, and calls
either a fault or an interrupt handler to take appr opriate action. Except -
proc will be executed by any processor which is interruptable at the time an
interrupt occurs. It will be executed by the processor which detects a fault
if one occurs.

The exception processor is a key element of VMM because it gains control
of the system at those points and times when it is essential for VMM to gain
control (for example, prior to the execution of a cioc instruction in a guest
operating system). Of course, it also gains control in some instances
which are of no interest to the VMM, such as when a user executes a MME.
In the latter instances, the VMM merely returns control to the virtual
machine after the fault is processed.

Design Overview of Except-proc

All processors share a single fault vector and a single interrupt vector.
The vectors contain the instruction pair, scu/tra. In order for the results

of the scus to be associated with the proper processor in the event more
than one processor is in a single vector in a short time interval, ad modifica -
tion is used on both instructions of the vector pair. This causes the results
of each safestore to be placed in a separate eight-word area and each transfer
to occur to a separate location. The processor number of each processor
is set in itø switches and this value is stored with the ‘Cu information so
that the scu results can be correlated with the stored values after the

- -

vector pair has been executed.

A-9

i i

_ _ _ _

-

~~~~~~~~~~~~~~~



~~~~~~~~~~- - ---- -_ _ _  -- —--— -- --- - - -  - - - - - - - — ---- - - -
~~ --

A scu/tra queue is used to allow each processor to safely store scu and

register conditions.

A trouble fa ult and an execute fault cause the system to abort; all other

f/je~ store the scu conditions in a scu block in the scu/tra queue and then

transfer to one of the tra blocks. Six lines of code are executed that

store 26 words (pregs (16), regs (8), and dsbr (2)) in that same tra block, and
load x4 with the address of the tra block. The last instruction in every
ira block is a transfer indirect through an its pair to the fault-interrupt-

intercept-module (film).

Film is “ pure” code. In this code we search “ back” through the queue

to find the scu conditions stored by this processor . If we have had a fault

in the film we may find more than one scu block; we continue searching

until we have found the earliest, or the one that originally brought us to

film.

From the scu and tra blocks we can find the conditions to be stored in a

machine conditions block for use by f-proc or i-proc. We store these

machine condition blocks in the !p~b for faults or interrupts in a vm, in the
rpdb for faults In the non-film VMM (e. g. absa), and we do not store

conditions for interrupts in the VMM.

After storing the conditions we update the queue to show that these

conditions have been picked up and stored. We also verify that the queue

is not in an illegal position.

When the conditions have been stored and the queue has bee n updated, the

processor transfers to f-proc or i-proc to finish processing the fault or

interrupt.
A-b

- - - - - -~~~~ - -- - --~~~~~~~ - --~~~~~~~~~~~~ - -~~~ —~~ ------
— _

_ _ _ _ _ _ - -

-

- Exception processing consists of three main parts: the vectors, the scu/tra
queue and film . These three are described below In greater detail.

Fault! Interrupt Vector Pairs - -When a fault or interrupt occurs the
processor enters real, absolute, master, 6100 mode and transfers to an
entry in the fault/Interrupt vector.

The vector pairs are set up by VMM startup. AU vector pairs except for
the pair corresponding to the trouble and execute faults are set up with the
same two instructions:

scu scu/tal, ad

tra tra/tal, ad

Scu/tal. and tra/tal are two tally words in low core that reference a location
to store scu conditions and a location to transfer to, respectively. The
trouble fault causes the system to abort. Its vector pair i~ loaded with
these two instructions: —

scu trb/flt/scu

tra trb/flt/tra

At trb/flt/tra is a transfer to the system abort routine. A similar pair of
instructions is found in the execute fault vector pair.

The tra tra/tal, ad causes us to transfer to a set of code (six Instructions)
in the scu/tra queue.

A—il

_ _

Scu/tra Queue- -The scu/fra queue is composed of alternating scu and tra
blocks , The scu blocks are eight words long and are used for storing the
scu conditions; the tra blocks are 32 words long and are used to store the
registers, pointer registers, and dsbr. There are two different types of
ira blocks, since some of the storage locations in the tra blocks must be cii
mod .16 boundaries and 40 is not a 0 mod 16 number.

Type ‘1 has the storage area for pregs, regs, dsbr, and
six words of code

Type 2 has the storage area for regs, pregs, dsbr, and
six words of code

The six lines of code for type 1 (2) are

sreg -10(26), ic
spri -27(19), ic
eax4 -28, Ic
sdbr - 5, ic
idbr vmm/dbr
tra fitm/its/ptr,*

The transfer to film/its/ptr, * is a transfer to the film. When the film is
entered the scu and register conditions have either been stored in a valid
location or they have not and the film will detect this.

• If the stored conditions have been overwritten, we abort.

•- If we have overwritten the end of the queue, we abort.

• If we have written into the “danger zone” of the queue, we
reset the tallies.

A42

I - -~~~~~~~ — — — - — —- —— — - — - -~~~~~~~ — ~~~~~~ —— --~~~~ ~~-- - - - - — - ~~~~~~~~ — — —


~~~_ -  —- - -—~~~-- -~~~~~ 

The scu/tra/queue management is explained as follows: To avoid writing
over conditions in the queue , there is a variable scu/checks for each real
processor that holds the address of the scu block from which conditions were
last stored for this processor . Lub/addr (upper) is the smallest of these
addresses and we try to never write past it; we consider the information
ahead of this address no lo~iger important. The only way there can be more
than one scu/tra block pair per processor is if the tra instruction fa ults
after the scu instruction is executed , or if there is a fault(s) in the film.
The queue is set up with the following pointers, as shown below:

start/q, b/trsh, q/trsh, end/q, lub/addr

Every time the scu/tal is incremented, the tra/tal is also incremented. If
we fault during the scu instruction, we get a system trouble fault and abort
the system; so we do not have to worry about unmatched scu/tra blocks
and we know that the information stored in the tra block is always stored
after (i. e., more recently) than in the scu block.

If we did not have to worry ab out updating the tally words, the tra/tal would
always point to the tra block immediately following the scu block that scu/
tal pointed to. However , since other processors can be using the tally words
while one processor is updating them in the fiim, we might encounter the
situation of having a processor do an scu scu/tal, ad just before the updating
of the scu and tra/tals (which are updated simultaneously), so that the tra
tra/tal, ad instruction executed by the processor causes a transfer to the
top of the queue while its scu conditions have been stored at the bottom of the
queue. However, the tra/tal address is still circularly greater than that
of the scu/tal so we use the address in tra/tal to check if we have over -

- _____ 

written any important information.

A- 13  

-- --~~~~ - - - -  - . -



We define the lub to be the lowest (number) of the addresses in the scu/checks
and as the tallies are updated to the top of the queue and then incremented, we

want to stop before this address in the lub. To help insure that we do not
store past this address, we define b/trsh to be b/trsh/upd words before
(circularly) the lub and try to stop at this address. We use the address
In tra/tal to check for b/trsh.

If we find that the tra/tal address is within b/trsh/upd words of the lub , we

abort. In the same manner, we attempt to avoid writing past the end of the
queue by defining a q/trsh to be a fixed distance before the end of the queue
and we update the tallies whenever the address in tra/tal is greater than
this value in q/trsh .

Below are the six possible arrangements of the lub, b/tr sh, and tra/tal:

lub lub b/trsh
b/ trsh tra lub
tra b/trsh tra

1 2 3

b/trsh tra tra
tra b/trsh lub
lub lub b/trsh

4 5 6

Conditions 1, 4 and 6 should cause an abort.

A- 14

_



-- ___

t I

Film- -The last instruction is the tra block, a transfer indirect through an

its pair,. causes us to enter append mode. As its name implies, film is

pure, i. e., it can be executed simultaneously by several processors. The

outline below describes the operation of film.

•••
A. INITIALIZE

1. The first ten instructions in fiim are inhibited. As soon as

film is entered pr. rsdb and pr. lcdb are set to correctly

reference the- real system data base (rsdb) and low core data

base (lcdb) respectively.

2, Then rsdb(inhib/scu/ mask is used to set the memory controller

mask (smcm) in the scu with lower order memory. Once this

is done it is no longer necessary for the instructions to be

inhibited.

3. Next , the processor switches are read to determine which real

processor is executing the film . With this information we can

load br. rpdb with a sdw number that corresponds to an unique

segment for each real processor known as th’~ real processor

data base (rpdb). While executing the code that accomplishes

this we set x7 to the processor number. There is an array,

temp. with a word for every real processor. Thus we can

use “ temp, 7” as a temporary storage location and the code

is still pure.

A- 15

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -

4. As soon as the rpdb has been determined the clock of scuO is

read and the value stored in rpdb vmrn entry time.

5. Next x5 is loaded with lcdb l scu/tal. The conditions for the

real processor were stored at least 40 words befor e this

value, depending on how many processors have since executed

a fault/interrupt vector pair.

B. FIND A VALID scu BLOCK FOR THIS PROCESSOR

In most cases there will only be one set (value s stored in the scu
and tra blocks together) of conditions stored for the real proc essor

executin g fffm (see the above discussion of how the scu/tra queue
works) . However, there may be two or more sets of conditions

stored, and we want to find the first, or earliest , stored set in
order to save the conditions with which film was entered, Since
x4 contains the address of the tra block, we are searching only for
the e~rliest (oldest) scu block for this processor. - - -

To best utilize the queue we want scu/ checks for this processor to be
set with the address of the most recent scu block found for this
processor, so we use rpdb/first-time m d  as a flag; when it is

nonzero we have not yet found a valid scu block for this processor ;
when it equals zero we have found a valid scu block and we have
saved its address in rpdbl saved/tally/addr .

A-16

_ _ _ _ _ _ _  

— _— - - - - -__ --__ -- ----- --_ - -- —_--- - - -——- _l______ ____.__ .___ 
~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ - _ _  -_ —_- .- ——-—_ --- ---- —--_~- - _ —


IT

Find an scu Block for this Processor

As stated above, x5 is set equal to lcdb scu/tal so x5 either
equals a valid scu block address or it is > q/trsh.

We search backwards through the queue looking for a s ’i
block stored by this processor. Word 3 of the scu data contains
the pr ocessor number in bits 28-29. If this is equal to x7 we
check to see if we have reached the address of the scu block
used for this processor the last time it was in fiim . This
address is kept in rsdb lscu/ checks, 6. If we have not
reached it yet we continue backing up the queue; if we reach
rsdb Iscu/checks, 7 we decide that there wa~ no block of
conditions stored for this processor and we abort , abort/6.

2. See if Address for this scu Block is Valid

x5 is the address of a scu block stored by this processor. We
check bit 18 or the third scu word to see if the conditions have
already been stored. Unless we are in the “ possible garbage
area ” (x5 > q/trsh) we abort if the conditions are already
stored, abort/8. This bit (18) is set near the end of the film
and is reset when new scu-condi tions are stored in this block
via the scu instruction in the fault/interrupt vector pair.

— - - ar

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



If the conditions have not yet been picked up and stored , we
proceed under the assumption that either (i) the scu conditions
are valid, (ii) they were stored as a result of a fault in the
film and we will continue looking for the earliest block for this
processor , or , (iii) something is wrong with the queue and after
discovering this later in the film we will abort.

As may-be-valid-conditions we set up pr. vmdb and pr. vpdb to
reference the virtual machine data base (vmdb) and virtual

processor data base (vpdb ) respectively. Then we store the

second word of the scu conditions into rpdb/scu/fault/word
so that we can pick it up before leaving film. We cannot wait

until then to look for this second word because x5 will no
longer reference the scu block and pr5 will not be valid pointer
to stored conditions in the case of an interrupt in the VMM.

C. STORE CONDITION S

1. Determine Type of Conditions - -Fault or Interrupt

From word 2 or the scu block, lcdb/scu/fault/data/wor d, 5, we

can check bit 35 to see if we had an interrupt or a fault; then
from the real/virtual indicator , bit 32 of the fifth word of the
scu conditions , we can discover if this fault/interrupt occurred

- 
in the VMM or the VM.

If there was a fault in the fiim .we return to look/for/scu to find
another scu block for this processor.

A-18 

-— --- - __-_ _- ---~ --— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~ _ --- -------~~ -- -_ —--~~----- 
-.-~--—- - --

If there was a fault in a VM we set bit 0 of rpdbl m d/word to show
that film was entered from a VM by a fault.

U there was an interrt~p~ we set bit 6 in rpdb l m d i word.

If the interrupt was in the VM we zero bit 0 of rpdb~ m d/word
to show that film was entered fr om a VM by an interrupt.

2. Set up pr 5

We pick up conditions from lcdb/O, 5, where x5 is the address
of an scu block, and store them in 5/0, where pointer register
5 -pr5- has been set up to reference the first word of a 48 word
block of machine conditions, pr5 is set as follows:

Fault / Interrupt in the VMM--For a fault in non-film VMM,
—

pr5 points to rpdb l vmm/cond/start , 3. vmm/cond/start is
the first address of a list of machine conditions blocks, and x3
determines which block we will store into.

For an interrupt in the dispatch segment, no conditions are
stored and pr5 has no meaning in this instance.

Fault/Interrupt in the VM- -For a fault or an interrupt, pr5
references vpdb vp/ rnach/ conditions.

j
_

A-19

- - - - - - - -- --— - -_-- -

3 • Store the Conditions

Pointer and lengths are stored at all times.

For the nilr instructions we have to make sure that we work
with character addresses; in the case of desc9a these character
addresses are four times the word addresses. We store the

scu conditions and the value of the clock that we read on
entering film and then saved in rpdb~ vmm/entry/time.

From x4, the word address of the tra block, we can determine
if we stored conditions in a type 1 of a type 2 block. From each
block we pick up and store the pregs , regs, and the dsbr .

A ‘scpr’ with a tag of 01 stores the fault register in 5/rnc/
fault / reg.

4. After all conditions have been stored, the stored bit is set in
the scu conditions in the queue.

D. QUEUE UPDATE

In the queue updating code we update scu/ checks , the lub, b/trsh,
etc. if necessary while checking for possible error conditions.

On reaching queue-update we check the stored bit of the lub. If
it is one we proceed, but if it 0 the l~ab has been overwritten and we
abort since’-we can no longer be confident that the conditions we picked

— up from the scu/tra queue are valid. (abort/18)

A—20

_ _ _ _ _ _ _ _ _ _ _

While updating the queue we lock the code with rsdb~fi1in/q/lock ,

1. ~pdate scu/ checks

We stor e the address of the most recent scu block found for
this processor (this address has been saved in rpdb/saved/
tally/addr) in scu/checks . 7.

2. Update lub, b/trsh, etc. if necessary

If this processor owns the lub we have to search all the scu/
checks of the active processors to find the lowest address.
We put this address into the lub, i. e., into rsdb lub/addr
(upper half) and calculate a new r sdbfb/trsh by circularly
subtracting rsdbjb/trsh/upd words. If the lub is less than
b/trsh/upd words from the start of the queue (rsdb/start/q)
we wrap around to the bottom of the valid queue, above rsdb
q/trsh , and continue moving backwards until we have gone
b/trsh/upd words,

3. Check Queue Position

There are six possible queue positions with respect to the lub,
tra / tal, and b/trsh. We check for the three acceptable positions
and abort for the other three, wait/ab ort, See the information
on the scu/tra queue above for a discussion of which positions
should cause aborts .

—

A-21

_ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ — -~~~ ----- -,~~~

E. TRACE

If rsdb trace/flag 0 we do not perform a trace. If it is not

equal to 0 we enter trace by one of two entries:

Entry point 1 (trace/i) is used when we wish to save the trace code,

words 2, 5, and 7 of vp/mach/conditions, rpdb l vm/vp/no, m d/w ord,

vpdb t vp/state, an~ the real proc . number.

Entry point 2 (trace/ 2) is used when we wish to save the eight

words we have stored into rpdbjtrace/conditions.

Trace/ i and trace! 2 are both entered with a tsx6 , x5, x7, and pr6

are changed for both entry points; rpdb~trace/conditions are changed

U we enter at trace/i,

F. LEAVE film

The Q register is loaded with the fault/interrupt number, right

justified.

Rpdb/interrupt!flag is used to tell whether it was an interrupt or

a fault that brought us to film. If interrupt/flag ~ 0 it was a

fault and we transfer to f-proc through an its pair. If interrupt/flag

does not equal zero we transfer to i-proc through an its pair to

handle the interrupt. In both instances we enter the second word

of the particular segment since the first word is an error tz ap.

—-

A—2 2

L
—i—--—

_ _ _ _ _ _ _ _- . —~~~~ ——— --- _ -~~ --- - - _ - —-- ._ —---a— S ~~~a-- — - -

— --- _
— - - -

T

- . —— ---- - - -- -

~~~~~

- - -

~~

- - -

~~~~ 

—-_---

~~

- .- .- -

~~~~~

- -- — -—-

~~~

-

~~

--
-‘

Functional Description of I-proc

I-proc is the VMM module which handles the processing of all VMM and VM
interrupts. I-proc is invoked by the fault / interrupt interceptor module
after the occurrence of an interrupt. Upon entry to this module the state
of the processor has been saved for those interrupts which occurred while
the processor was in virtual mode-, If the interrupt happened in real mode
U. e ,, while in the VMM) then the state of the processor will not have been
saved, The reason the processor state is not preserved is that while in
real mode the processor is inhibited from receiving interrupts except
during one instance while in the VMM dispatching module. If an interrupt
occurs at this point, it is not necessary to save the processor state.
Interrupts cannot occur at any other instance because the processor is
inhibited through the use of the inhibit bit and the SCU masks,

The processing performed by I -proc and its related routines entails a
simulation of the functions performed by the I/O multiplexor (iom) and the
system controller (scu), For this simulation I-proc must appropriately
update the virtual address space corresponding to the virtual machine
associated with the interrupt being processed. This updating consists of
modifying the virtual mailboxes, interrupt multiplex words, and status

• words.

Usage Information for I-proc- -This module relies completely on the data-
bases constructed for the real and virtual environments. When the interrupt
processor is invoked by film, it is expected that the interrupt type (m t-
level) will be contained in the lower portion of the Q register, Upon exit
from I-proc, the appropriate virtual addresses and VMM data bases will

• have been updated to reflect the completion of the interrupt processing.

A-23

— _____ ____ __________________

- - - _

Resource Objectives of I-proc--The objective of the interrupt handler is to

efficiently simulate for a virtual machine the operation of the peripheral
subsystems in regard to the termination operations performed in processing
on I/O request.

Design Overview of I-proc --At this level of the interrupt processor the
current time of day is read from the scu with memory address 0. This is
used to meter the time spent processing interrupts. Then according to the
type of interrupt being processed as determined by the interrupt level
number, the module corresponding to I/O system first initiating the
interrupt will be invoked. All processing of the interrupt will be performed
at these lower levels with the aid of a set of common subroutines.

Functional Description of iom/mnt- - -The processing of all interrupts from an
iom are handled by iom/int. The amount or extent to which the interrupt
is processed and simulated for the corresponding virtual machine is

dependent upon the interrupt type.

At this level, the interrupt multiplex word, imw, corresponding to the
interrupt received is examined to determine which if any channels require
interrupt processing. Each channel interrupt is processed independently.
If the interrupt is from the overhead channel six then processing will be
performed by the psia -proc module, All other interrupts from overhead
channels will cause a VMM abort.

The processing of payload channel interrupts is handled separately. Non -

terminate interrupts will be handled by the module non/term/m t. If

the payload interrupt is the result of an interrupt from a 355, then the

A-24

-- —- ---~~~~ -~~~ - —~~ --~~ -- •- --- - - -~~~~ -~~~~~~~~~~ ~~—• •--~~~ -- - - -~~ _ _ _

~

-- - -

~~~



- - - — - -

module DN3 55 will be invoked, The only interrupt not covered by the above
two cases is the terminate interrupt . The terminate interrupt processing
consists of determining the real-to-virtual map, updating the virtual mail-
box entries , adjusting and storing the associated status word, and setting
the proper virtualimw bit. After this processing has been perf ormed the
data storage for this request is released and the processing of the next I/O
request for the real channel or any of its crossbars is Initiated by lom -proc.

Usage Information for iom/int- -This submodule is called fr om within
the interrupt processor, I-proc, to process any iom related interrupts.
Upon entry the number of the real iom causing the interrupt is known and
the type of interrupt is provided by the imw level. The contents of the 1mw
services to drive this module such that all channel interrupts are processed.
Upon termination of this routine the interrupt has been simulated in virtual
space and the appropriate interrupt cell in the virtual ~~~~~~~~ scu data -
base has been set. Also, a connect has been performed for the next queued
1K) entry for each channel processed.

Functional Description of non/term/int- -This routine is used to process
interrupts which are not expected by the VMM Ci. e., non-terminate interrupts)
with the exception of channel six interrupts, Since they are not expected,
the virtual mappings are not determined as in the terminate case. Instead,
the mapping is calculated from a set of mapping constructed at VM start-
up time. Once the virtual map is determined, the VM’s corresponding irn w
and SCW interrupt cells are set to complete the processing of this interrupt.

_ __ ___ 

A-~25 

I
_____ - - - - -



• -

Known Limitations of non/term/int- -This module assumes only dedicated
peripherals are configured to a VM. In addition, only special interrupts
and interrupts from a 355 will be processed. If a marker or initiate
interrupt is received it will result in a VMM abort.

Functional Description of real/virtual/map- -This module transforms the
mapping of the real device currently being processed into a mapping of the
associated virtual device. The virtual machine, iom, channel, and device
numbers are determined as well as descriptor s describing the VM’s data

base within rsdb and the VM’s address space.

Usage Information for real/virtual/map- -The input variable yr -map
(qu) is used to create the variables vir-iom(xi), vir-ch(x3), vmpr(pr6) and
vrndbtr(pr7). After the module is finished executing, control will be

returned to the x6 within the current segment.

Functional Description of update/virtual! scw- -This module is responsible
for updating the virtual status contr ol word(scw) corresponding to the virtual
channel whose interrupt is currently being processed. This updating shall

be identical to that performed by the iom -B on a status service. The iom -B
allows three types of status queues - a list, a circular queue with four
entries and a circular queue with 16 entries. The type of queue as well as
the next entry in the queue is specified by the scw. A tally field is also
provided to determine the length of a status list when the list option is
employed.

Usage Information for update/virtüal/scw- -In order to process the
virtual scw, this module must be called with the following variables:

- -- 

• 

A—26 

~~~~~~~~~~~~~ -



~~~~~~ - • . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — ~~~~
- - -  - 

~~~~~~~ 1~~ 

1~~

• •

i_

~

_

~

_ _ • _ • _ •_

1) vir/iom

2) vir/ch

3) rpdb

4) vmpr

5) vmdbtr

The above variables will be preserved during the module’s execution. In
addition, the virtual scw corresponding to the interrupt to be processed
will be updated and vir!scw/address will be the virtual address used to
store the status.

Design Overview of update/virtual/scw- -The function of update-virtual-
scw is to perform the same type of servicing for the virtual scw as perform-
ed by the j om for a real scw, This includes updating the sew pointer and
decrementing the scw tally, The exact procedure for this scw modifica-
tion is presented in detail in the iom EPS-1.

In addition to the update function, the routine also tests the store address
for the next status pair to insure that the status will be stored within the
proper virtual machine’s address space, This address is used by update !
virtual/status to store the virtual status,

Functional Description of update/virtual/ status--The function of update!
virtual/ status is to perform the updating of the virtual mailbox lpw and Ipwe
and the virtual status pair. The virtual mailbox scw is updated by the module
update/virtual/sew.

I ~ ~ •±1II±1 t

___________________________ - -

Both the lpw and lpwe are modified by the iom in the process of executing
a channel program. When an interrupt is received from this channel, the

state of these two mailbox words may reflect the presence of the VMM.
Therefore, the address fieldd and lpw state bits (AE, relative, restricted)
must be virtualized,

The status pair is similar to the lpw and lpwe in that it must also be
vfrtualized. The first word of the status pair contains an address extension
field which must be corrected to reflect the virtual address extension. The
dew residue word (the second word of the status pair) must also be
virtualized to reflect a possible VM address space offset from a 256K
memory boundary.

Usage Information for update/virtual/status--The following variables
must be provided to update/virtual/sew upon entry:

1) lcdb 6) vir/ch

2) rpdb 7) vmpr

3) real/iom 8) vmdbtr

4) real/ chan 9) vir/scw/addr

5) yr/mom

These variables will not be modified during the execution of this module.
However, this module does update the virtual channel’s lpw, lpwe and
status pair within the VM’s address space.

:-:-

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Resource Objectives of update/virtual/status- -The updating of the lpw,
ipwe, and status pair adds greatly to the overhead involved with processing
an Interrupt. This is especially true when the virtual machine ignores the
virtualization in most cases,

Known Limitations of update/virtual/status - -In order to keep VMM over-
head at a minimum, a complete virtualization of the VM~~ channel mailbox
is not always performed, Only in the event of status pair with non-zero
major or minor status fields will the VM’s lpw and Ipwe be updated. It is
assumed that the lpw and lpwe will not be examined when the major/ minor
status fields are zero.

Functional Descriptior of set/vir/ixn w- -One of the function s of set/vlr/irnw
is to simulate the scu in setting its interrupt cells, Within the system
control unit (scu) there exist 32 interrupt cells. Each of these cells
corresponds to one of the 32 interrupt types. The proper cell is set when
the scu receives a set interrupt cell command from one of the subsystems
configured to the SCU S These cells together with the scu ’s interrupt can be
delivered to a configured processor . This same function is simulated by
set/vir/imw by setting the corresponding bit in the virtual machine’s data
base word representing the scu interrupt cell.

Another of the functions perform ed by set/vir/imw is to set the proper 1mw
word in the virtual machine’s address space. When the lom sends the scu
a set interrupt cell command, it also requests the scu to set a bit in the
imw word correspond~~~ to the interrupt cell just set. The bit set within
the imw word represents the channel on the iom which initiated the interrupt,
This iom/scu function is simulated by setting the proper bit in the virtual
machine’s imw,

4 
A—2 9



7

- - . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- ‘.-- - •--——_ •

~~~~~~~

_--— -• 

~~

----

~~~~~

•- •--•_ -

~~~

- •- - - - • - _ •  - •

The final task performed by the set/vir/imw is to construct a trace entry.

When the VMM system trace indicator is true, a trace entry consisting of
the real status pair, -the real channel index, and the interrupt type ib built

and the system trace module is called.

Usage Information for set/vir/imw- -This module requires the variables

vmpr (pr6) and vmdbtr (pr7) be specified in the described hardware ~

- 
-

registers.

Functional Description of dn3 55/int- -The purpose of this module is to

process interrupts from 355s which are connected through the modified

DIA to the iom. For VMM step 1. 1 development only, dedicated 355s will

be allowed. A dedicated 355 is one which is only configured virtually to

one virtual machine,

Under the dedicated 355, the 355 mailbox directly will be accessible to

the 355 and may be directly updated without VMM intervention. Therefore,

355 interrupt processing will not require a simulate of the operations

performed by the 355. However, the scu functions must still be - simulated

for the corresponding virtual machine. This involves the setting of the

appropriate interrupt cell in the VM’s virtual scu’s data base and the up-

dating of the corresponding virtual imw within the VM’s address space.

Usage Information for dn355/int- -This module is called from the iom

Interrupt handler ‘when an Interrupt fr om a 355 is detected. When called

the Interrupt is processed as explained earlier. Upon entry to the module the
355 channel index is known (x5) as well as the address of the channel’s

device descriptor table (al) , Most of the processing of the 355 interrupt is

performed by the two modules: real/ virtual/map and set/vir/imw.

A-30

-~~

- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -S---- ~-• -- --- ~~~~~~~~~~~~~~~~~~~~~~~~



_____________________

Design Overview of dn335/int- -The functionality of this module is
simplified by the use of the two modules: real/virtual/ map anä set/vlr / ixnw,
Upon entry to dn355!int, the real to virtual map for the dedicated 355 is
thtained from the first entry in the channel’s device descriptor table. The
real/virtual/map routine is then called to determine the virtual machine
number, virtual iom number , and the virtual channel Index, This later
module also sets up the pointer registers for the VM’s data base and virtual
address space. Upon return the module set /vlr/imw i~ called to set the
YM’s correspondIng 1mw and to set the proper interrupt cell In the virtual
scu data base within the VMM. At this point the processing of the 355
interrupt is complete and control is returned to iorn/int to process the
next channel Interrupt.

Functional Description of vmm/int- -This routine processes the VMM soft-
ware Interrupts. The four VMM software interrupts, one for each of
four possible real processors on a VMM system , are assigned to Interrupt
cells 3, 8, 9, and 10 respectively. These software Interrupts are set by a
smic instruction in dispatch when there exists an outstanding connect fault
or interrupt for the vm/vp currently executing in that real processor. The
use of these interrupts allow the virtual processor to be interrupted when
the vp reaches an interruptable state.

Design Overview of vmm/int- -The processing of a VMM software
interrupt simply involves the resetting of the flag: proc/spec/m t/flag.

j  
This is used to indicate that the VMM software interrupt cell for this real

L processor is not set.

-ì
A-31 



- ——--—— -— -~~~~~~ --~~~~~~~ - - - -  - - --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Functional Description of f-proc

The purpose of the fault processor is to determine the reason for a hardware

fault and process it accordingly. For metering purposes, the fault
processor will keep statistics concerning the time taken to process faults.
There are two major categories of faults distinguished by the fault processor :

1) VMM faults - -These are faults that occur within the VMM and are,
therefore, up to the VMM to process for itself.

2) VM faults - -These are faults that occur while a virtual

processor “ has control” of a real processor . These faults

range in processing by the VMM fr om completely to not at all.

There are 36 different “hardware’s faults for each of the above mentioned

categories, making a total of 72 Individual fault processors. These

individual processors are described in lower levels of documentation.

Resourge Objective of f-proc- -The fault processor should be time optimized
as much as possible to the more common functions, The least common
functions need not be so optimized.

Design Overview of f-proc- -The tim e the fault processor was entered shall -

be saved for metering purposes. Metering shall be accomplished at the

end of fault processing and is dependent of the metering routine defined in

a lower level of documentation. The input parameter, the fault number
causing fault processor entry, together with the variable holding the count

of VMM faults not yet processed determines the fault processing to be

H.; 
~~~~~~~~~~~ 

T _ ~~
_
~~

_
~

_

attempted. If there is a VMM fault outstanding, then the input parameter
will be assumed to give the number of the last fault (not yet processed) that

I
occurred within the VMM. The fault processor will always handle faults
occurring within the VMM before it handles those occurring within a VM.

Once the fault processor determines where the fault occurred, it determines
what fault handler- to select (depending on the input parameter). The -

appropriate fault handler is then invoked. Metering is done on return from
the particular fault handler,

Temporarily all faults occurring within the VMM will ca use the system to
abort.

Variables for f-proc- -All variables are defined in their respective include
files, AU variables referenced at this level of abstraction are in the rpdb
include file,

Known Limitations of f-proc- -No provision for the handling of faults
occurring within the VMM has yet been made, except that the system will
abort. Metering measurements are slightly biased toward the low side due
to the time of execution of the metering instructions themselves, Also, when
getting to processing VMM faults, the entry time to the fault processor may

I be overwritten before a measurement is actually made (thus biasing to the
low side).

A—33

_
_ _ _ _

it 1

Functional Description of vp/ipr -

If the illegal slave bit in the scu condition s is not on, then the fault is
returned as is. The virtual fault register is updated appropriately.

If the illegal -slave bit is on, then the modes are checked to see whether the
instruction was executed in:

1) 6100, absolute, master modes

2) 6100, append , master and privileged (PPR. ~ 1)

3) 6000 and master modes

If the instruction fault was executed in 6000 and slave modes, then a table

lookup on the faulting op code is performed. If the op code is in the table,

then x3 will contain the address plus one of the locations associated with

the “ faulted on” op code. The VMM special command processor

(VMM/cwd/pr oc) will handle the next step in instruction simulation. If the

op code is not in the table or the instruction was not attempted in any of the

above mentioned modes, then an illegal-in-slave fault must be returned.

For MULTICS, illegal-in-slave processing requires only tha t the virtual

fault register be updated. For GCOS, illegal-in-slave processing requires

that the fault number be changed to a command fault (in the sw conditions)

as well as that the virtual fault register be updated.

Functional Description of vp/acv

The access-violation fault is one of the 6100 faults that may. need to be

returned to a 6000 virtual pr ocessor (under a different fault name, of

course). The only access violation type that will be returned to a 6000 vp is

A- 34

.~~~~ —~
_-‘-—

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -~~~~~~~ -~~~~~~~~~~~~ -- - - - - - ~~~~~~~- --~~

the out-of-segment-bounds fa ult , This fault will occur (on a 6000 vp) only
if memory is mapped via a segment descriptor word. If an out-of-segment-
bounds fa ult is detected for 6000 vp, then a store fault (non -existent-address)
is simulated for the vp. An access violation occurring within a 6100 vp will
be given back to the vp as is.

Design Overview of vp/acv- -If the access violation occurs while a 6100 vp has
control of the processor (vmdls/vm/type/0), then.th-e fault will be returned
to the vp as is. If the access violation (acv) occurs while a 6000 vp is
in control, then two cases are relevant:

1. If the acv is an out-of-segment-bounds , then the 6000’s
memory is assumed to be bounded by a segment descriptor
word. A store fault (non-existent address is returned).

2. If the acv is not an out-of-segment -bounds, then the VMM is
expected to have set up the decor incorrectly and the VM is
aborted,

if a store fa ult is to be returned:

1. The out-of-segment-bounds bit in the scu conditions is
zeroed out.

2. The non-existent address bit in the scu condition is set on.

3. The fault field (containing access violation number) is replaced
by the store fault number,

A-35

a - - ~~~~~~~~~~~~~~~~~ --

~
--- ~~~

-

4. The virtual fault register’s non-existent address bit is set on.

Known Limitations of vp/acv- -If GCOS is guaranteed to no longer run with

memory bounded by an sdw, then the stor e fault simulation can be eliminated

(11 instructions).

Functional Description of absa/routi !~~

The absa routine is an address development package used in coordination

with the various instruction simulation m odules within the VMM. It

develops an 18 bit effe ctive address or 24 bit virtual final address according

to the instruction being simulated and the mode under which the instruction

would have been executed.

\

Usage Information for absa/routine- -This address development routine is

invoked via a call to one of the three entry points as follows:

tra lcdb vm/addr/ 1/entry

tra lcdb vm/addr/ 2/entry

tra lcdb vm/addr/ea/entry

A 24 bit final virtual address is constructed via a call to vrn/addr/ 1/entry

with no index register arguments. The entry point vm/addr/ 2/entry is used

to develop a 24 bit final virtual address and it must be called with absa/inst

and absa/ic/ir in the A and Q registers respectively. The final entry

point vrn/addr/ea/entry develops an 18 bit virtual effective address and

requires no index register arguments.

A- 36

‘-V
- - - - --------- — - - —

Upon return to the calling module the appropriate address will be right
justified in the upper 24 bits of the 4 register. The contents of all other

index register may have been destroyed,

Resource Objectives of absa/routine- -Execution efficiency should be the
primary objective while memory usage shall be secondary.

Design Overview of absa/routine- -The purpose of absa is to simulate the
address development for a virtual ~~~~~~~~~~~~~~~~~ operand. This simulation

-

is performed by creating the exact environment under which the instruction -

would have been executed in virtual mode. This includes restoring all
virtual index registers, pointer registers, dsbr, ic and the pertinent
control unit information. The processor mode is described by the state

of the following indicators as follows:

• Zero: master/slave. 1 ~ master

• Overflow: absolute/append . 1 4~ absolute

• Exponent underfiow: 6000/6100, 1 ~ 6000

• Negative: 18 bit effective/ 24 bit final, 1 ~ 18 bit effective
address

Once the virtual state has been restored as described above, the virtual
instruction is executed with the instruction’s op/code replaced by the absa

op/code. This absa instruction performs the appropriate address develop-
Iment under the control of the aforesaid indicators, After the construction

of the virtual address, control is returned to the caller,

-- __

A-37
—

- —- ----—- --- --—~~- — - - ~——.------ ----- -.- --- - — —-~~

The packaging of the absa routine is unlike most VMM routines. Initially,

the routine is entered-in append mode in segment lcdb, In lcdb the index
registers and indicators are set up and then control is passed to the rpdb in
absolute mode. At this point the virtual dsbr and pointer registers are
restored and then a restore contr ci unit is performed to reconstruct the
remaining virtual conditions such as psr/ppr , and ic. The restoring of the
control unit results in the execution of an xed pair containing the modified

absa instruction and a tra. The absa develops the virtual address while

the tra causes a return to the VMM in rpdb. The VMM’s registers are then

restored before returning to calling module .

FUNCTIONAL DESCRIPTION OF DISPATCH

The composite of modules comprising dispatch is responsible for the
allocation of a real processor to a specified virtual processor/virtual

machine. The control routine for the dispatching process is Invoked after
the VMM has completed the processing of the exception (interrupt/fault)
which engaged the VMM. At this point of entry, the virtual processor which

was in execution at the time of the exception is now ready to be assigned a
real processor,

However, before this processor or any p~ocessor is dispatched, the VMM
will accept any outstanding interrupts (the interrupt set directly by the VMM

is the only exception). The dispatch control routine is the only instance

within the VMM where an interrupt is permitted. If an interrupt is present,

control will be passed to the fault/interrupt intercept module via the
corresponding interrupt vector and the interrupt will eventually be processed

by I-proc. In the event that no Interrupt is outstanding, the VMM will again
be lphthited from receiving interrupts until a virtual processor is placed in
execution.

I A-38

- î
_ _
a -

_ _ _ _ ___________________________ ~~~

3
After permitting all interrupts to be processed, the dispatch control
routine will determine the dispatch state of the virtual machine/virtual
processor receiving the initial exception. If this virtual processor’s
execution can be suspended, the dispatch module NEED will be invoked to
determine the next virtual machine/virtual processor to be dispatched. The
conditions upon which a virtual proc~~sor’s execution may be suspended are:

I

1, The virtual processor is currently executing a “ dis”
instruction.

2. The virtual processor Was interrupted and

a) the yirtual processor is a control processor
(i. e., the virtual processor can receive interrupts)
and its interrupt masks are set to allow interrupts,
or

b) the virtual processor is a non-control processor and it
was executing in slave mode when the interr~~t occurred.

Design Overview of dispatch

Of the two functions performed by dispatcher/interrupt recognition and

dispatching/interrupt recognition is handled first and dispatching is perform-
ed later by subroutines of dispatcher. Entry to dispatch occurs after the
processing of a fault/interrupt by F-proc/i-proc. Upon entry, the scu
masks are set to allow ahy outstanding interrupts. The occurrence of an
interrupt results in control being delivered to film via the interrupt vectors.
After the processing of the interrupt , control is eventually passed to
dispatch where a test for additional interrupts will be made, If no interrupts

A- 39

~~‘ —--~~~~r”~~~~ - ---—--- - --
r~T~

-

are awaiting processing, dispatcher determines to which eligible virtual
processor it will place in execution. The criteria for dispatching is as
follows:

A. If the VMM was entered via a valid VM fault Ci. e,, not a
fault occurring as a result of the execution of a privileged VMM
ln~truction) , the real processor will continue to execute on the
current virtual processor.

B. If entry to the VMM resulted from the attempted execution of
a privileged VMM instruction, then the processor will be
dispatched to the same vp. This is accomplished by the VMM

routine vm/ spec/fault.

The dis instruction is an exception to the above dispatching criterion and
control is not returned to the same vp. Instead the module NEED is
called to find an eligible vp for dispatching.

Functional Description of vp/m t

This module will cause the return of a vp via a simulated external
Interrupt if there exists a pending external interrupt - -any interrupt of a
connect fault. If no external interrupt is pending, then the virtual
processor will resume execution at the point where it was initially inter-
rupted.

Usage Information for vp/int- -When control is given to this module, x4 must
contain dispatch entry. Upon exit from this module the vp will be placed
in execution.

A-40

. ~~~~~ . ~~~~~~~~
-- - - - -

~~~~~~~~~
-

~~~~~~~ -- -~~~~~ - ---- -~~~~~~~~~~~~
--- -

~~~
--



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -- 

I

Design Overview of vp/int- -This module al ong with its submodules is used ~o
return to a virtual processor whose execution has halted as a result of an
interrupt. As such this module will place the processor in virtual mode
via a simulated connect fault, simulated - interrupt, or return to the next
instruction following the real int~rrupt. The exact method of return is
dependent upon the existence of a connect fault or interrupt which should be
delivered to this virtual processor. If either condition exists, then return
would be via the appropriate vector. In the event that both exist, the
connect fault will have higher priority. 

I 
-

If there still exists pending interrupts after determinin g the method of
return, these will be queued. In order to deliver these interrupts, the
processor’s VMM interrupt call will be set in the system control unit.
This forces the virtual processor to be again interrupted when it enters
non-inhibited code,

Functional Description of vector/simulation

Vector/simulation, as its name implies, simulates the instri ctions in an
interrupt or fault vector pair . When control is to be returned to a vp by
means of a fault or interrupt this routine is Invoked , For non-transfer
type instructions in the vector pair, an actual simulation of the Instruction
will be performed, whereas a transfer instruction will actually be executed
In the return to the vp.

Usage Information for vector/simulation- -In. addition to the normal
register connections, vector/simulation must be called with the address

- 

-.- of the vector pair relative to the vm base in x3 (vector-base).

A-41



-~~~~~~~~~-~~~~~~~~~~ - - -. . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -

~~~~~~~~~~~~~~ 
-- - - - - ~~~~- _ --

Resource Objective of vector/simulation- -It is not the intent of this module

to simulate the operation of every 6100 instruction. This in itself would be

a major undertaking and although it is necessary for the operation of a
functional VMM, it is not practical. Therefore, only the instructions
currently used by MULTICS and GCOS in their vectors will be simulated.
At present this set of instructions includes tsxn, tra, rcu , stcl, ida, ldxn,
slxn and nop. The addition of other instructions would be no more complex
than the instruction’s simulation.

Design Overview of vector/simulation- -Vector/simulation is used to simulate
the pair of instructions found in a vp’s Interrupt or fault vector. As
mentioned in the resource objectives, only specific instructions are
expected in these pair and only these will be simulated. A linear table
search is used to determine if the instructions in the current search is used
to determine if the instructions in the current vector pair are one of these
specific instructions, At the same time, the corresponding simulation
routine will be located.

If the instruction to be simulated is a transfer type instruction, the instruc -

tion is implanted into the even instruction portion of the vp’s control unit
block, The appropriate mode indicators are then set to simulate the state

of a processor while executing a vector pair. These two operations will
result in the proper execution of the transfer when the control unit is

restored upon the vp ’s dispatch .

For the non-transfer Instructions, the final address of the Instruction’s
operand is developed. For MULTICS this entails invoking the absa routine,
while a OCOS vp requires a simple sImulat~~a for most instruction tags.

A-42

-- -

- - -
_ - -~~~~-~---—- -~~ -—-- - - -

_ _ - _ _ ---

r~~r~~ ~~~~~~~~~~~~~~~~~~~~~
- - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 4

After the final address is developed, the instruction itself is simulated.
After this simulation control is returned to dispatch.

Known Limitations of vector! simulation- -Faults within a multi-word
instruction in a vp without a transfer in the corresponding vector will result
in a VM abort , The same is true for an interrupt within MULTICS.

Functional Description of vm/int/test

Vm/int/test is involved during the VMM’s dispatching algorithm to determine
if there exists an outstanding virtual interrupt which the vp to be dispatched
can process.

Usage Information for vm/ int/test- -Entry to vrn/int/test is via a TSX6
vrn/int/test and upon return m t/type will describe the interrupt type via
which the dispatch to the vp will be made.

Resource Objectives of vm/int !test- -Under current VMM development, it is
envisioned that a vp will not be receiving interrupts from more than one scu.
This is true of the current releases of both MUL TICS and GCOS. As such
the VMM will only check the control scu for outstanding interrupts.

Design Overview of vm/int/test- -In testing for outstanding virtual interrupts,
vm/int/test compares the virtual interrupt mask with the Interrupt cells for -

the vp’s virtual control scu. If no match is found between corresponding -:
bits of the mask and interrupt cells then control is returned to the calling
module, However, if a match is found and the vp cannot currently receive

-

A—43

L 

~~~~~~~~~~~~~~~~~~ . ~~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~—~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

an Interrupt, then the interrupt cell corresponding to the current real
processor is set in the scu with the memory bank containing real address
zero, This will cause this and only this real prc~cessor to be interrupted in
virtual mode as soon as non -inhibited code is executed,

In the event of a match and the vp can be dispatched wit~ a interrupt then
the entry for the first such match will be removed fr om the virtual scu’s
interrupt cell. If more than one match exists, the interrupt cell correspond-
ing to this real processor would be set in the scu with memory address zero.
Control will fina lly be returned to the caller with the type of interrupt that
the vp will be dispatched with.

Known Limitations of vm/int/test - -Entry and exit to vm/int/test should be
gated.

A-44

_____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



-

~~

I

SECTION 3

DESIGN APPROACH FOR VMM EXTENSiON

The various functions performed by VMMe can be segregated Into two broad
categories: those which are freque~~.y used and those which are infrequently
used. Some examples of these, as a function of their frequen cy, are the
followIng:

• Frequently used functions

- -Real I/o initiation
- -Fault and interrupt processing
- -Dispatching of processors
- -Simulation of faults/interrupts in virtual machines

• Infrequently used functions

- -Virtual machine definition
- -Virtual machine start-up
- -Receipt and response to virtual machine operator commands

All of these functions are the same or similar to functions which are normally
performed by an operating system. This suggests that the functions with
low use frequency needed in a VMM might be supplied by an operating
system executing in one of the virtual machines, the Service Machine (SM),
being supported by the VMM. The primary advantage of this approach is
that the code to support such functi ons need not be redundan tly created and
maintained within the VMM . If, in addition, the functions supported by the

- 

- .  
operating system in the SM exist in the form of user (slave) programs, som e
important secondary advantages acc rue:

A—45

_  

_ _  _
- 

~~~~~~~~ - - . ~~~~~~~- -  - -~~~~~ 



~~~~~~~~~~~~~~ - - - -~~~~~~~
--.-

~~
-- ---

~~~~
-
~~~~-~~~~~~ 

— - - —---—-----—---
~~ ~~~~~~~~~~~~~~~~~~~ 

- - - -
~~~

- -
~~~~~

• The overall VMM functionality is (at a point in time) richer
because of the relative ease of creating user programs.

• The incremental resources committed exclusively to VMM are

relatively small because the operating system in the SM
executes ordinary slave programs on behalf of c* her users in
addition to providing service to the VMM.

• The currentness of the VMM with respect to new devices is
maintained with relative ease by simply using correspondingly
new versions for the operating system in the SM.

The service machine concept could be used in providing enhanced functionality
in the VMM. In fact, the design effort on the extended functionality has
proceeded sufficiently far to confirm the feasibility of the service machine
approach.

GENERAL AREAS OF FUNCTIONAL NEED TO BE EXA MINED

We wisri to examine techniques for extending the VMM functionality to
include support for:

• Shared or dedicated unit record peripherals

• Shared front end processors

• Simulated system consoles

• General user interfaces

p.-

A-46

IA

- - - ____ ~~~~ ____ ____



T~~~~~ 4~~~~ T~~~~~

The service machine concept can be applied effectively when the overhead
incurred with this approach is not significantly detrimental to system
performance. Each of the above designated functional areas has some
aspects which are invoked relatively rarely (e. g. • definitional) and others
which are Invoked frequently (operational). Thus, we would expect a -

design for these functions to support some aspects via the service machine
technique and nth~rs via direct extension to the base VMM and hardware.

All of these functional areas relate to the handling of I/o for virtual
machines,

GENERAL I/O CONSIDERATIONS FOR VIR TUAL MACHINES

We shall examine the handling of I/o by the VMM and address the subject
of the treatment of shared and unit record peripherals in this section.
These considerations apply to all the functional areas listed above.

I/o Device Specification

The reference to a device in virtual machine I/O needs to be mapped. The
VMM has for each virtual machine a table of resources that can be consulted
to determine the actual support being used for the virtual machine devices. 

-
~

Distinct forms that this support might assume are discussed in detail
below in the section on virtual device support,

In the simplest form of device support, the VMM maps each virtual machine
device into some real device of the same type. The VMM then merely
substitutes references to the real device for references to the virtual

- 
- device in the I/O operations.

A-47

- 

I
_ _  _ _ _ _ _  

_ _ _ _ _  

I-

~ 

--___ -- --------  -

____________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I/O Program Analysis

The approach to mapping memory addresses- and device references is
actually more complex than described above, First , the mapped form of
the I/o program, with the virtual addresses replaced by real addresses ,
cannot appear in the addressable memory of the virtual machine. If it did,
other elements of the VM, such as the virtual processor, could reference
the I/O program and read or alter absolute addresses. Theref ore, the
VMM must analyze the virtual machine I/o program and construct a trans -
lated I/o program in a work area private to the VMM.

Second, the translated I/O program may not be the same size as the
virtual I/O program. For example, in a machine using a paging mechanism
for memory mapping, a contiguous region of virtual memory need not map
a contiguous region of real memory. Thus, I/o commands that involve
data transfers crossing page boundaries might have to be split into multiple
commands in a real I/o program. Again, the VMM must construct the
real I/O program in a private work area.

A third complication arises in dynamically modifiable I/o programs. The
central processor, the I/o program itself, or even some other simultaneously
operating i/O program may attempt to alter the virtual machine I/O program
c~wing its operation, To reflect this functionality of a real machine fully
would require a complex and large addition to the VMM and would introduce
significant overhead processing when invoked, Third-generation VMMs in
general reflect the conclusion that providing the full functionality is not
required in a practical sense.

A-48



— - - - -  — - -_ _ — - - - - 
- - -- - - - -

~~~~~~~

- _ -

~~~

_ — —  — -‘I’

I

Any dynamic modification to an I/O program must be checked by the VMM to
verify that the new form of the program will reference only resources
assigned to the virtual machine. By not supporting dynamic modification
of virtual machine I/O programs, it is considerably easier to ensure the
integrity of the VMM and all virtual machines. Since a real I/O program
is constructed in a work area private to the VMM, it cannot be modified by
the virtual machine’s processor or by any other I/O program of the
virtual machine.

Caution must be observed when moving operating system software from a
virtual machine to a real machine. Since dynamically modified I/O
programs may behave differently on virtual and real machines, it is possible
to develop software that operates correctly on a virtual machine but fails
on a real system.

I/O Summary

In summary, basic third-generation virtual machine I/O operations are
handled in the following sequence. The processor attempts execution of

the instruction (cioc) to start an I/O processor executing an I/O program.
This causes a trap to the VMM, which analyses the I/O program, maps -

memory addresses and device references, and creates a real I/O program
in a work area private to the VMM. The VMM then queues the real I/o
program for execution by the real I/O processor. When execution of the
I/O program is completed, an interrupt to the central processor occurs,

This causes control to return to the VMM, which analyses the case of the
interrupt. If the interrupt signified I/O completion for some particular
virtual machine, the VMM simulates the occurrence of an interrupt for

£-49

_ _ _



I
-

the virtual machine by manipulating the saved state Inf ormation of the
virtual machine, The VMM then makes a dispatching decision taking into
consideration the interrupt event. Thus, the software on a virtual machine
receives notification of I~ program completion precisely as it would on

a real machine.

VIRTUAL DEVICE SUPPORT

Many applications for VMs depend on the ability of the VMM to provide an
appropriate type of virtual device support. Figure 1 illustrates four
different categories of support: dedicated, partitioned, mapped, and
simulated. The mapping of device names and device data addresses, that
is, addresses of data objects on devices, is discussed below for each of
these support categories.

Dedicated Support

In the dedicated mode of support, the VMM maps a device of the virtual
machine into an identical device of the real machine. No other virtual

machines are allowed any form of access to the real resource. An example
would be a disk drive assigned to a particular virtual machine. The
particular device name may be different in virtual and real machines and is
mapped by the VMM.

Partitioned Support

In partitioned support, the data addresses on the virtual device correspond
directly to those on the assigned real device; unlike dedicated support,

A-SO

F ~

-
_ _ _ _  

~~

--

~~~~~~ 

- _ _-- -

-

~

- -—

~

I

~

~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~

1
SUPPORT VIRTUAL DEVICE REAL DEVICE

-

DEDI CATED

1

~~~~~~~~~~~~~~~~ 

___________

PARTITIONED ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

NAPPED

~~~~~~
Lu

~~~~~ \~~~~ rrrTTT1~~~

SIMU LATED

Figure 1. Modes of Virtual Device Support

A-Si

______  - - _ -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - - ________



_ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _  -~~~-----~~~ - - -_ - - - - _ -~~~~~~~—---.---.-- ---. -_ —---- -- -

however, the real device need not be identical to the virtual device. For
example, as shown in Figure 1, a larger real disk can be used to support a

smaller virtual disk.

Mapped Support

Most VM devices are supported in the mapped mode. This means that data
addresses are mapped via some simple transformation into real addresses.
The mapping is typically a base-bounds form although a multi-area form , as
shown In Figure 1, might be used.

Simulated Support

In simulated support the VMM software plays an important role in creating
the functionality visible to the virtual machine. This mode can be applied
to any type of resource and is used for many reasons:

• The resource does not exist in reality and hence must be
Bliflulated ;

• Unit record devices must be spooled using disk or tape;

• A virtual machine does not need the full capacity of its virtual

devices and so the VMM compacts many such devices onto
some other kind of device; and

• A virtual machine needs to address more of a resource than

actually exists and the VMM simulates the resource using other
- resources.

A- 52

- - - _ - _ ~~~ -~~---~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ -~~~ - - - - -_ - ~~~~~ _ _ _ _ _ _



--_— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-._ —--—-  

VMM Involvement

For each of the modes of support for IA) equipment, the VMM has a
different degree of involvement. However, the basic idea of having control
pass to the VMM at the start of an lit) operation and the eventual interrupt
reflection by the VMM back to the virtual machine remains unchanged in all
modes of support in third-generation VMMs . The VMM support required

when simulating a resource is greater than for other modes, and can be
arbitrarily complex depending on the definition of the functionality of the
resource,

SPECIAL CONSIDERATIONS FOR FRONT END PROCESSOR FUNCTIONAL
EXTENSIONS

The support of the front-end processor (DN) could be accomplished in
several ways some of which require hardware modification to the equipment
(DN355, etc.).

The DNs internally use a line numbering scheme by which they identify the
source or destination of messages. Clearly, these line numbers need to be
related to the line identification used within an operating system in a VM.

The relationship between DN line numbers and operating system line numbers

could be maintained within the VMM. In this situation a fairly heavy burden
of processing would fall on the VMM for a highly interactive or transaction
processing environment since eath transmission, in or out would require
software 1k) interpretation of line addresses. An alternate approach is to

Incorporate modifications to the DN hardware and software which make the

A— 53

- .

____________________ ____________________________ _____________________________



- - ~~~~~~~~~ - -~~~~ - -~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DN aware of the VMM. In this case, the DN can be used to manipulate the
line addresses. This approach is in effect placing part of the VMM in the
DN for mapping real to virtual resources. The DN needs to be aware of
the identification of the VM for which it is performing service. This can
be accomplished by a mechanism for the VMM in the main machine to talk
to its counterpart in the DN. In effect, the two VMM parts would identify
to each other, for each transmission, which VM was Involved.

The issue of secondary storage also needs to be addressed in the context of
front end processors. The DN and the main machine can share secondary

storage equipment and exchange information via records stored on the

equipment. Certainly, for VM integrity considerations, the DN must not
be permitted global access to the shared secondary storage. Even if
access were permitted to that part of the secondary storage corresponding
to a particular virtual machine, j, the DN software would have to be designed
to use the appropriate line identifications to avoid confusing the VM

operating system.

The only currently known technique for supporting shared secondary storage
between DN and associated VM is to incorporate a VMM internal to the DN
hardware so that the DN software for a particular VM uses the same line
number identification as the VM. Although we have been discussing only
line number identification information, other characteristics of communica-
tions hardware also need proper virtualization. For example, different
types of real terminals might be used instead of the type supported within
the VM. In this case, the VMM within the DN hardware could simulate the
device,

A-54

4 — *

_ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
—



I 
- 

- -  

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __

SPECIAL CONSIDERATIONS FOR SYSTEM CONSOLES

It would be possible to use any terminAl equipment as a system console with
proper VMM and Service Machine support; in particular, using terminalA
supported under TSS in a SM using GCOS.

The system console is conceptually all the buttons, switches, lights, and
keyboard available to the operator of a real system. To that extent, - all
operator functions need to be supported via the virtual machine’s operator
console.

One approach to supporting the console is to define modes of terminal usage.
One mode is that in which the terminal behaves like the keyboard and printer
of a real console. The second mode is that in which the terminal emulates
the lights, buttons, and switches, There is also a third mode of interest.
This is a mode to support functions not available on a real computer system.
An example of this third mode is the function of interactively defjnlng a
new virtual machine configuration to be catalogued in a library of VM
definitions,

The - main technical issue to support these modes is that there needs to be
a mechanism to easily shift among modes, such as typing special
characters.

An additional special consideration for consoles is that messages from the
operating system in the virtual machine will use the virtual device
designators. The mapping between virtual and real could be done by special
recognition processing for that operating system and run in the service

A—55

_ -

- -

~~~

ma~hIne so that when messages appeared on the terminal, they would con-
tain real device designators. Alternatively,, the operator could use special
cor’tm~nds to map between virtual and real designators.

The support of system consoles is a slow speed activity compared to other
device Il) and therefore fits well into the service machine approach, Also,
the third mode of use for system consoles fits well with the service
mat~hine concept since that mode needs several operating system services
such as the memory capability of the file system for storing virtual machine
definitions.

1 :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —---,---~~-— - —-~~--- —-—- —~—— i—-, — ~~~~~~ ‘-~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —,-—~ --. ~~~~~~~~~~~~


‘
.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-‘ - -‘-
~

- 
~~~

—
-

~~~~~~ ~~~~~~~~~~~ -~~

* ~~~~~~~~~~~. : - . 
~~~~~~~~

-
_ _ _ _ _

_ —I

- , 1

