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EVALUATION

This work described in this report and performed during this
effort has established that virtual machines can be a significant
asset as a software engineering tool in a sophisticated programming
environment. This effort, performed on the H6180, has also
demonstrated that VMM's in the RADC Programming Environment are
feasible with several performance tradeoff factors.

The results from this effort are extremely important in future
efforts involving distributed processing as outlined in RADC
Technology Plan (TPO V). In a system of logically distributed
processing, certain systems in the network will be performing
specialized functions on behalf of the other member systems. The
role of virtual machines in isolating these functions will be
critical to insure optimal performance. As these functions are
integrated, virtual machines can again provide tne control techniques
required to insure compatibility among all systems.

This effort has also demonstrated the role required by virtual
machines in hardware/software tradeoffs. Decreasing hardware costs
: will induce efforts to perform many current software functions in
§ hardware. Virtual machines will play an important role in this
' transition which can lead to a reduction in software costs.

i ,' MJW/ / "'7 ,

¢ MOND A. LIUZZI
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SECTION I

INTRODUCTION

GOALS AND HISTORY

This document describes The Virtual Machine Monitor Performance
Analysis. A Virtual Machine Monitor (VMM) is an operating system which
executes on the native hardware and allows other (standard) operating
systems to execute in an environment much like the environment an
operating system provides for user programs. These sub-operating
systems are called virtual machines, or VMs, A VM looks to its con-

tained operating system much like the actual machine looks to the VMM,

While the VMM is aware of the actual hardware complement available, a
VM is aware of only the hardware (or simulated hardware in the case of

some peripherals) provided to it by the VMM, By providing these virtual
environments, a single hardware base can be used by a number of differ-

ent standard and nonstandard operating systems.

The values of such an arrangement are many, particularly in an environ-
ment which engages in research on operating systems. A standard
production service can be provided concurrently with an experimental

or low-use service. Thus, the need for off-hour scheduling of machine
time and interrupted service for boot and re-boot can be reduced.




VMM research in Honeywell and the industry (particularly by IBM: VM/370)
has a long history. The Honeywell activity began in the early 1970's as a
strategy for product line unification and to provide more flexible internal

use of computer equipment,

Interest at Rome Air Development Center (RADC) began in approximately
1974 with an intense look at the security aspects of providing isolated
environments for operating systems separated from each other by hardware
enforced boundaries. This led to a study of the GCOS Environment
Simulator or GCOS encapsulation on Multics. This tool, though not as

powerful conceptually as the VMM, is currently in use at RADC.

Business decisions made by Honeywell mandated that the VMM remain in
the experimental stages, but low level research continued. In 1976, RADC
entered into negotiations with Honeywell's Federal Systems Operations to
procure a VMM for further study at RADC. This led to the installation of
the VMM at RADC in 1977 and subsequently to the effort described in this

document.

Honeywell's Systems and Research Center analyzed the performance of
this hardware/software package for RADC to locate the system bottlenecks
known to exist and to help RADC plan a strategy for the evolution of VMM
research. The findings of that task constitute a detailed analysis of the
performance of the Honeywell VMM, some suggestions for improvement
should RADC desire to continue the experiment, the results of a model of

performance constructed by BGS Systems, Inc., and recommendations

for future research.
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The remainder of this section contains background and summary inform-
ation. Section II contains a detailed description of the means used to
collect performance data and an analysis of that data. Section III contains
plans for the evolution of the VMM and a projection of the role of VMM
research in future computer products. The final section details recom-
mendations for extending the VMM capability and continuing research in
this area. A'ppendixes contain the computer listings of the job scripts and
monitoring tools used to meter performance, as well as the text of the

interim report.
SUMMARY OF RESULTS

Results based on live data experiments and the BEST/ 1tm analysis show
the following:

® VMM overhead has its greatest effect on work loads exhibiting
an intermediate amount of I/O activity (15 to 35 connects per

second of processor busy time).

® For work loads with a small amount of I/O activity, VMM has
only a minor effect on performance. With large amounts of

I/O, contention at the I/O devices is the limiting factor.

® In GCOS, the VMM overhead was determined to be in the range
of 15 to 28 percent depending upon the I/O mix. This results in

I
4

an overhead of 3.5 percent of processor busy time and 4.5 msec

of overhead per connect.

e In Multics, the VMM overhead was determined to be between 13
and 60 percent. These higher figures are due to the increased

dependence of Multica on I/O activity to process page faults.




Based on these figures and the insufficiency of data (particularly in the
Multics case), it can be observed that VMM overhead is directly related
to I/O activity. Thus, any further work on the performance of this VMM

should concentrate on 1/O monitoring and speedup.
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SECTION II

PERFORMANCE ANALYSIS TECHNIQUES

CONFIGURATION

The RADC Virtual Machine Monitor consists of a modified 6180 processor,
IOM, and Datanet 355. The experiments were conducted using a memory
configuration of 512 K words and a single processor (Figure 1). When
executing a native mode experiment, an operating system was allowed to
use 256 K words of memory. During VMM execution analysis, the VMM
occupied 256 K and the virtual machine used the second 256 K. In this way
the memory utilization for a given operating system was held constant for

comparison between native and virtual mode,

NATIVE MODE VMM _MODE
6180 6180
CPU CPU
| i
el el 8] P
GCOS OR R
MULTICS UNUSED MULTICS
UNUSED
Y.

Figure 1. Configuration




Dual operating system performance (GCOS/GCOS, Multics/ GCOS, and
Multics/Multics) under the VMM was not monitored due to the time con-
straints of the project.

HARDWARE MODIFICATIONS FOR VMM

The hardware support for VMM exists in the 68/80 CPUs, the IOM direct
channels connected to Datanet 355s, and, to a minor extent, in the Datanet
355s. The CPU and Datanet-related changes are described below.

CPU Modifications

The CPU modifications are described under two categories, which is the
sequence in which they were implemented.

Category 1 Changes--

Mode Switch Positjon--The processor mode switch shall have a position
added to it. Its positions shall be 6000/6100/VMM (or, if you wish, GCOS/
Multics/VMM). The changes described in the following paragraphs shall
be active only if the manual mode switch is in the VMM position unless
otherwise stated.

Real/ Virtual Modes and Indicator--A bit shall be added to the Indicator
Register (IR) whose state shall indicate that the processor is in ''real" or
"virtual"' mode. This shall occupy bit 32 of the IR and shall = 1 when in
real mode and 0 when in virtual mode. '"Real" mode will always be entered

upon the execution of a transfer of control instruction while servicing an

SRR~ 7
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interrupt or fault. This will be the only means of entering ''real" mode.
Once in "real" mode, the execution of an RCU instruction with indicator

bit 32 = 0 will be the only instruction which can be used to return to "virtual"
mode. Thus this indicator shall not be affected by either the LDI or RET
instructions. The state of this indicator will only be storable by the SCU

instruction.

Fault on Certain Instructions--Attempted-execution of the following

instructions in virtual mode shall cause an IPR fault with an illegal in-slave
indicator set in the SCU fault conditions:

RSW SMCM LCPR DIS
SSCR RMCM SCPR
RSCR SMIC CIOC

An IPR fault instead of a command fault will occur when any of the above

instructions are executed in a GCOS III virtual machine in slave mode.

Category 2 Changes--

VMBAR/VMBND--An additional base/bound register shall be added.
The base shall be added to the currently computed final address when
executing in virtual mode and the bound shall be used to bound the resulting
sum, The register and adder shall be wide enough to apply relocation and
addressing of up to 16 million words. The granularity of the VMBAR base
and bound shall be 32 K (or preferably less).

LVMBAR/SVMBAR Instructions--These instructions must be added to
load and store the VMBAR while in real mode. Their execution in virtual
mode shall result in an IPR fault with the illegal in-slave indicator set in
the SCU fault conditions.
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The LVMBAR will have an op code of 210 and will load the VMBAR from
bits 0 through 17 of C(Y). The SVMBAR with an op code of 510 will store
the VMBAR in bits 0 through 17 of C(Y) and bits 18 through 35 of C(Y) will
be unchanged. |

VM Out-of-Bounds Fault--If a virtual machine attempts to address
beyond the bound specified by the VMBAR, a store fault with the out-of-
bounds indicator set in the SCU fault conditions shall result.

6000/6100 Indicator--Bit 33 of the indicators shall place the processor
in either 6000 or 6100 mode. This indicator will be meaningful only when
the processor is in VMM or 6100 manual switch position. (The use of this

indicator in 6100 switch position is required for the encapsulation of an
entire GCOS system under Multics.) The indicator shall = 0 when in 6100
mode and = 1 when in 6000 mode. It will always be stored by the SCU
instruction. The SCU instruction is the only instruction which will store
the state of this indicator. The indicator shall be loadable only by the

RCU instruction, a fault, an interrupt, and the TSS instruction, This
indicator shall affect the operation of the processor in the following manner:

e 6100 Mode--The processbr shall execute as a standai-d 68/80
* ‘except as modified'as described in this document. This includes
the use of indicator bit 28 to indicate the use of the Base Address

Register for address development. It shall be the software's

responsibility to ensure that this indicator is proper'lly"gse"t‘,i LU

e 6000 Mode--When in absolute mode, the processor sha‘ll‘éb’erate
‘a8 & 6000 processor except as modified for the VMM as noted in "
the previous subsection. Thus, the processor shall perform :




addressing relative to the real memory origin or the VMBAR as
indicated by the state of the real/virtual indicator.

In append mode the processor shall only be capable of executing
valid 6000 instructions. The processor shall perform address
development relative to the origin of the segment indicated by the
PSR including page relocation if the segment is paged. Addresses
shall be further relocated by the base contajned in the VMBAR if

the processor is in virtual mode..

In addition, the processor shall operate in the following 6000-1ike
manner in spite of other modes and conditions of the processor
and specifications in SDWs:

--Instruction bit 29 = 1 shall evoke only the offset part (address
register) of pointer registers.

-=TRO faults shall occur in slave mode, not in master mode (even
if a slave is executing in a privileged segment or a master mode
program is executing in an unprivileged segment).

--Instruction bit 28 = 1 shall cause interrupt inhibition (even if
executing in an unprivileged segment).

--The BAR shall be loadable in master mode and shall offset.

effective addresses in slave mode.

Faults and Interrupts--~

VMM Switch Position--When a fault or interrupt occurs, the processor
will automatically enter Absolute, Rehl, 8100, or Master Mode during the

execution of the vector pair.

10




However, the corresponding indicators will not be affected unless a transfer
of control is executed in the vector pair. If a transfer is executed, the
indicators will be modified as described above and as affected by the trans-

fer instruction.

6100 Switch Position--A fault or interrupt when in 6100 position will
have the same effect as in VMM position with the exception of the real
indicator. This indicator does not exist in this position.

TSS~--The TSS instruction shall set the 6000/6100 indicator to 6000
and the master/slave indicator to slave when it is executed in either VMM
or Multics manual switch position.

ABSA Instruction--The processor shall execute the ABSA instruction when
running in the VMM switch position as follows:

®  Add the contents of the VMBAR to the memory address when
accessing memory for indirect words, indirect pairs, SDWs, or
PTWs. The VMBAR shall be added regardless of the virtual/real
indicator state.

e Perform address development according to the settings of the
Master/Slave, Absolute/Append, and 6000/6100 indicators when
the real/ virtual indicator specifies virtual mode.

® Use the Zero, Overflow, and Exponent Underflow indicators to
simulate the Master/Slave, Absolute/ Append, and 6000/6100
indicators, respectively, when the real/virtual indicator specifies
real mode.

11




e The VMBAR will not be added in the final address development
in either virtual or real mode. Thus the address returned by
the ABSA shall always be relative to the VMBAR.

e When the real/virtual indicator denotes real mode, the negative
indicator will be used to specify the type of address returned by
the ABSA instruction. When the negative indicator is off (= 0),
the 24-bit absolute operand address will replacé the most signif-
icant 24 bits of the accumulator, as is normally the case with the
ABSA instruction. However, when the negative indicator is set
(= 1), an 18-bit effective address will be stored in bits 6 through
23 of the accumulator while zeroes wiil be placed in the remaining
13 bits. This 18-bit address shall be developed by performing
all address development normally associated with the ABSA
instruction with the exception of the final append cycle.

During execution of the ABSA instruction, the current state of the proces-
sor registers will be used for address development, It is a software
responsibility that these be properly loaded before ABSA execution. This
implies that the ABSA instruction must be executed in Absolute/Real mode
when simulating VM address development within the VMM,

Transfer and Set Virtual Instruction--This instruction when executed in

real mode will transfer according to the operand address and enter virtual
mode (i.e., bit 32 of the IR shall be reset to 0). When executed in virtual
master mode, the instruction will perform as a TRA instruction. Execu-
tion of the instruction in virtual slave mode will result in an IPR fault with
the illegal in-gslave indicator set in the SCU fault conditions, This new

12

i i s Lee ol S bl |

b R s,




instruction shall have an op code of 715 with bit 27 equal to 1, Currently,
the use of this instruction within the VMM is not anticipated; however, it
will be used by off-line T&D for the VMM hardware.

IOM and Datanet 355 Modifications

Hardware support is needed to allow a VMM to provide communication
support to a virtual machine in such a way that neither the operating system
in the virtual machine nor the 355 software need be changed. In addition,
this support should prevent the 355 from accessing 6100 memory beyond
the bounds of a "window' which is set by the VMM.

The hardware required shall consist of additions to the direct channel

which shall modify its operation roughly as follows:

1. When a connect with a mask PCW is delivered to the direct channel
from the 6100, it shall retrieve a base and bound from the 6100
memory and then process the mask PCW,

2, Whenever the 355 requests an access to §100 memory, the direct

channel shall relocate and bound check the address to be accessed.

This change accomplishes the desired result for 355s dedicated to virtual
machines, The 355, its software, and the operating system continue to
operate as before without visibility of the direct channel relocation and
bounding. The relocation/bound value is set by the VMM and is unchange-
able by either the 355 or the virtual machine it is serving,

13

e




Each IOM direct channel which interfaces to a Datanet 355 is modified to
store the base and bound addresses of a virtual machine and to assure that
all data transfers on behalf of a virtual machine remain within these
address limits. In addition, an interface is added between the direct
channel and each Datanet 355 which allows the former to deliver an "out-

of-bounds'' fault to the latter.-

GCOS MONITORING TOOLS

Early in the project, it had been assumed that standard GCOS measuring
tools could be used to measure the performance of GCOS under VMM, In
surveying available tools, one called Peripheral Resource Monitor (PRM)
was thought to be the best of those available, particularly in regard to
graphical displays. The key measurements centered around processor
time both for GCOS and VMM. After some investigation, the 'virtual time
slippage'' problem was investigated in some detail. The essence of the
problem is as follows. In GCOS all time is derived from the processor
interval timers. These are saved and restored by VMM each time control
of the processor is taken from and returned to GCOS. As a result, GCOS
maintains accurate virtual processor time, but its real wall clock time will

become inaccurate when running under VMM, The effect of 'virtual time

slippage'' on a program like PRM (which measures processor idle directly
and processor busy by subtracting idle from elapsed wall time) is that the
processor is measured under VMM to be 100 percent busy whether it is

10 percent busy or 100 percent busy.

14
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In an effort to correctly capture GCOS virtual processor time and also
provide such VMM data as VMM processor and idle time, a special monitor
program was written called VMMON, The key design feature of the program
r was that VMMON read the system controller clock which is accurate inde-

| pendent of software. This real elapsed time was compared with GCOS

time every 15 seconds which under VMM showed a distinct and increasing

‘ discrepancy as time continued. This discrepancy was the "virtual time
slippage'' which is time when GCOS is not in execution, time due to VMM
overhead, and/or time when other virtual operating systems are executing,
Using this technique, VMMON can accurately measure virtual GCOS pro-
cessor and idle time and, also, VMM processor overhead in an environ-
ment which is relatively processor bound with only one GCOS under VMM.
The various tests have proved out this technique for the environment as

described.

In an attempt to measure processor utilization for an environment of VMM,

GCOS, and Multics, the following steps were taken, Changes to VMM

were designed which would record in GCOS memory: VMM processor time,
real system idle time, and Multics processor time. VMMON was designed
to read this data from GCOS memory and display how this data changed at
each sample period. Unfortunately, the required patches to VMM were

not able to be debugged given the time constraints of the project.

A copy of the VMMON program is included in Appendix B.

15




GCOS WORK LOAD

Two fabricated work loads were generated for the GCOS VMM benchmark
tests and were designed to produce an average-type load and an I/O bound
load. These loads tested the VMM performance under a range of work load

types which represent those typical of a data processing site.

In general under GCOS, the amount of system processor overhead (which

is not charged to a user program) increases as the level of I/O activity
increases. Since VMM intercepts each I/O request and performs some
processing for it, the VMM system processor overhead would also increase
as the level of I/O activity increases. The fabricated work loads were also

designed to be a measurement of this relationship.

The average-type load was composed of four GCOS jobs. All jobs had the
same structure with different I/O and processor parameters. Each job

was composed of three activities: activity 1 was a compilation of the
Fortran driver program with the parameters; activity 2 was an assembly
language (GMAP) compilation of a subroutine called by the Fortran driver
program which was capable of performing I/O accesses at a maximum rate;
activity 3 was the execution of the programs described in activities 1 and 2
which actually produced the desired work load. The I/O to processor ratios
produced by the four jobs (by varying the parameters) were as follows:

job AV001 = 0.25:1; job AV002 = 0,50:1; job AV003 = 1:1; job AV004 = 2:1,

The overall I/O-processor ratio for the average load was 0, 9:1,
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The I/O or channel bound load was also composed of four GCOS jobs., All
jobs were identical except for the job control language which varied the
disk device to which the I/O accesses were directed. This was an attempt
to maximize 1/O accesses while minimizing device contention. The
structure of the job was identical to that of the average-type load. The
parameters in the Fortran driver program produced an I/ O-to-processor
ratio of 12:1 (which is very I/O bound). The four job names were CHO11,
CHO12, CHO02i, CHO022.

A copy of the fabricated programs described above is included in Appendix
A,

MULTICS MONITORING TOOLS

The principal tool used to monitor the performance of Multics was the
PL/1 program termination_overseer. Other monitoring commands such
as total time meters and page_multilevel_meters were used briefly.
These last two system commands substantiated the increase in page fault
time as shown in the BEST/1 analysis but proved to be inconclusive in the
absolute cases.

The termination overseer program uses the real time consumed by the
execution of the job scripts to compute a number called throughput.
Throughput is delined as the number of iterations of a given job divided
by total time consumed for the job. These numbers for each job script
are then averaged to give the total experiment throughput under varying
loads.

17




MULTICS WORK LOAD

The means by which the Multics operating system is driven in order to
collect performance data is somewhat different than that of GCOS, Since
Multics is primarily an interactive system, a simulation of interactive
work loads was used in conjunction with the absentee facility of Multics.

The programs used to create the load and in.some cases to collect the data
were produced by RADC for monitoring the performance of new software
releases. However, they have been modified in several cases to fit the

needs of the VMM performance analysis.

Absentee Processing

The absentee facility of Multics is a means by which jobs can be scheduled
for deferred processing without the need for interaction on the part of the
submitter. These jobs retrieve their needed parameters and responses
from a file which has been constructed prior to the execution of the job.

By judicious anticipation of the execution of a program, responses can be
stored in Multics segments which cause a program to behave in the desired
manner. The full complement of Multics commands is available to an
absentee process. There are no distinctions between interactive processes
and these batch-like absentee processes except that input is from segments
rather than from a terminal. In fact, absentee processes may be consid-

ered to be interactive processes which are not attached to a terminal.
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Job Sequence

The programs described here can be found in the appendixes: Job Scripts
and Monitoring Tools.

An exec_com or command line file (ec) called "setup" is first executed to
determine the desired load factors which control the experiment. Scheduling
parameters at this phase include the start time of the experiment, the
number of processes, and the number of interactions desired for each
process which will be scheduled. Once this has been determined, the
requested number of processes are entered into the absentee queue and
scheduled for execution at the desired time, The final function of setup

is to call into execution a monitoring program called termination_overseer.
This monitor will be explained in the section on Multics Monitoring Tools.

The job which has been scheduled for execution is named load_overseer_n
where n is an integer tag indicating the number of the particular process.

For example, if three processes are desired to be executed simultaneously,
then these absentee jobs queued are named load_overseer_1, load_overseer_2,
and load_overseer_S, respectively. The load_overseer prototype consists

of a second exec_com which establishes the proper working directory for

the experiment and executes a driver program to control the actual load

of a particular process.

The driver program is called load_control. This program creates and
initializes the necessary files for collecting the data during a single exper-
iment. The clock is read before and after each iteration of an internal
loop and the real time used is accumulated in a data segment, The internal
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loop is controlled by the iteration count specified as an argument to the
setup procedure. At each pass through the loop, a program to exercise

the system is called. This exerciser program is called load. Load uses

a standard Multics performance monitoring device called flush. Flush
modifies each of 256 pages in the user's process space and then compares
the results, In this way, at least 256 page faults occur, Additionally, load
executes a sequence of processor instructions designed .o cause processor-
bound activity a variable number of times (set to 100 for these experiments).

When load terminates after causing the paging and processor activity,
return is made to the load_control iteration loop. This process is continued
until the desired iteration count for this particular absentee job has been
exhausted. Load_control then accumulates and computes the throughput
factor for this job and terminates. This concludes the life of a single

process.

Once all processes have terminated, the termination_overseer computes
the total throughput for all absentee jobs and terminates. Figure 2 describes
the basic flow through the load experiment.

20




e ]

START

SETup | ABSENTEE FACILITY
SCHEDULE
J0BS
—Joand -
CREATE
SYSTEM
LOAD
LOAD-OVERSEER
LOAD
FLUSH
) Y
i TERMINAT ION-
OVERSEER STORE
DATA
COMPUTE
: TOTAL J08
; PERFORMANCE
%

Figure 2, Multics Job Flow

21




Macane abiass ot as RS

e - s ET————

SECTION III

ANALYSIS RESULTS

There are demonstrable penalties in running a job stream in a virtual
machine rather than in a real machine environment. Such penalties include
the consumption of extra system resources (e.g., processor cycles) as
well as potential degradation to various measures of overall performance
(e.g., response time and throughput). In this section the performance
impact of running the GCOS and Multics operating systems under the
Virtual Machine Monitor (VMM) versus under the native machine environ-

ment is examined,

This section of the report is divided into two parts: the analysis of GCOS
and the analysis of Multics. In each part, the benchmark experiments run
by Honeywell are discussed first. Next, the analysis of the benchmark
data to develop an analytical performance model is describea. Finally,

the results of evaluating the performance model are presented.
BENCHMARK ANALYSIS

Honeywell performed a variety of benchmark experiments in both a native
GCOS environment (i.e., in a non-virtual machine mode) and in a VMM/
GCOS environment (i. e., under VMM control). These experiments were
performed in a completely isolated environment; no system activity other
than that defined in the benchmark was present. The hardware configuration
on which the benchmarks were run is presented in Figure 3.
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ONLY A SINGLE PROCESSOR WAS USED DURING THE BENCHMARK.

Figure 3. RADC Multics (VMM) Configuration

Three test series were run on both native GCOS (on a Multics system with
VMM processor) and GCOS under VMM, The test series spanned the
spectrum of processor bound to channel bound, thus reflecting how VMM
performs under a variety of loads. The three separate benchmarks con-
sisted of:

1. Compute-Bound Activity--heavily CPU demanding tasks,
2. Channel-Bound Activity--heavily I/O demanding tasks.

3. Average-Load Activity--average CPU and I/O demanding tasks.

Two software monitors were used during each benchmark experiment. The
System Resource Monitor (SRM), an updated version of a previous monitor
(CSMON), was available from Honeywell Information Systems. The
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Virtual Machine Monitor (VMMON) was developed specifically for the

benchmark analysis effort,

In the native GCOS environment, both monitors provided substantially the
same results. Under the VMM environment, however, SRM was completely

inadequate. This was largely due to virtual time slippage. Basically,

virtual time slippage refers to the difference in time kept by GCOS and the
actual or real time. The GCOS clock, being an internal software clock,

is updated by hardware timer interrupts when GCOS is active. In the
virtual machine environment, during periods when the VMM is active and
GCOS is idle, timer interrupts intended to update the GCOS clock are lost
since they are not enabled. This causes a discrepancy between the actual
time and the time perceived by GCOS, The SRM, in its attempts to obtain
timing information in the virtual machine environment, unknowingly accesses
GCOS's software clock. VMMON on the other hand compensates for the
situation by accessing the system controller clock, a microsecond clock
which remains accurate under both the native/ GCOS and the VMM/GCOS
environments. In addition, VMMON reports both the value of the GCOS
time and the actual time, thereby permitting the virtual time slippage to
be deduced.

In the VMM/GCOS environment, the virtual time slippage is caused only
by VMM overhead activity and system idle activity., The virtual time

slippage, therefore, provides a convenient mechanism for establishing |
overhead attributable to the VMM, One need only concentrate on periods

in the native system where the processor is known to be 100 percent busy.

Virtual time slippage will, in this case, accurately represent VMM over-

head only. E
24
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Two of the benchmark test series run in the native/ GCOS environment--the
processor bound and the average load activities--managed to consume 100
percent of the processor. In the channel bound tests, however, the native/
GCOS was approximately 66 percent idle and so the VMM overhead could
not be deduced without additional data, Attempts to obtain this data through

applications of various patches to the VMM were not successful.

The actual monitor reported data for all benchmark experiments is provided
in Tables 1 through 4. This data has been reduced for use in the perfor-
mance analysis presented below. Table 1 presents a summary of processor
and channel usage data. Tables 2 through 4 present data extracted from
VMMON for six time intervals T1 through T6 in both the native/GCOS and
VMM/GCOS environments. The following summarizes the information

presented:
GCOS Time: time interval captured by GCOS
Real Time: time interval captured by the system controller clock
GCOS Ovhd: percentage of GCOS overhead time

VMM Ovhd: percentage of VMM overhead time

Idle: percentage of processor idle time
Connects: number of connects per second of GCOS time -
25
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TABLE 2, SUMMARY OF RESULTS FOR PROCESSOR-BOUND

WORK LOAD

Native GCOS Environment

Interval T1 T2 T3 T4 T5 T6
Statistic
GCOS Time (sec) 94.4 | 223.2 | 349.5 | 128.8 | 220.7 | 443.0
Real Time (sec) 94,4 | 223.2 | 349.4 | 128.8 | 220.7 | 442.9
% GCOS Ovhd 2.4 1.8 1.7 1.4 1.6 1.9
% VMM Ovhd 0.0 0.0 0.0 0.0 0.0 0.0
% Idle 0.0 0.0 0.0 0.0 0.0 0.0
Number of
Connects/sec 5.3 2.9 2.5 1.1 2.0 2.4
VMM/GCOS Environment
Interval T1 T2 T3 T4 TS T6
Statistic
GCOS Time (sec) | 124.9 | 190.5 | 286.0 | 287.5 | 415.9 | 479.0
Real Time (sec) 140.4 | 208.8 | 306.5 | 295.4 | 427.2 | 501.9
% GCOS Ovhd 3.2 2.7 2.1 0.9 0.9 1.2
% VMM Ovhd 12.4 9.6 7.2 2.7 2.7 4,8
% Idle 0.0 0.0 0.0 0.0 0.0 0.0
Number of
Connects/sec 8.3 6.9 4,8 1.2 1.1 2.1
27
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TABLE 3. SUMMARY OF RESULTS FOR AVERAGE WORK LOAD

Native GCOS Environment

Interval

T1 T2 T3 T4 T5 T6
Statistic
GCOS Time (se(:) 124,2 216.5 | 339.6 274.,5 216.1 340.1
Real Time (sec) 124,1 216.4 | 339.4 274,3 216.0 339.9
% GCOS Ovhd 10,2 10.0 10.0 9.5 8.7 9.8
% VMM Ovhd 0.0 0.0 0.0 0.0 0.0 0.0
% Idle 0.16 0.14 0.09 0.09 0.12 0.0
Number of
Connects/sec 38.3 38.0 38.0 35.9 32.3 37.4
VMM/GCOS Environment
Interval T1 T2 T3 T4 TS5 T6
Statistic
GCOS Time (sec) 154.1 278.4 | 461.0 186.1 306. 9 400, 2
Real Time (sec) 184.8 334.1 | 548.9 223.3 364.1 479.8
% GCOS Ovhd 9.9 9.9 9.3 9.9 9.1 9.1
% VMM Ovhd 19.9 20.0 19,1 20.0 18.6 19.9
% Idle 0.0 0.0 0.0 0.0 0.0 0.0
Number of
Connects/sec 36.7 36.8 34.7 36.9 33.17 36.6
28
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Native/ GCOS Environment

TABLE 4. SUMMARY OF RESULTS FOR CHANNEL-BOUND
WORK LOAD*

Interval

btatts T1 T2 TS T4 T5 T6
GCOS Time (sec) | 142.9 | 264.0 | 324,0 | 181.0 | 271.2 | 479.2
Real Time (sec) | 142.8 | 263.9 | 323.9 [ 181.0 | 271.2 [ 479.2
% GCOS Ovhd 17.4 17.6 17.6 17.7 17.6 17.6
% VMM Ovhd 0.0 0.0 0.0 0.0 0.0 0.0
% Idle 65.8 65.8 65.9 65.9 66.1 66.2
Number of

Connects/sec 64.0 64.9 64.9 65.5 65. 2 65.0
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GCOS-VMM OVERHEAD REGRESSION ANALYSIS

servicing users' requests for system resources.

used to compute VMM overhead is described below.

the virtual time slippage in the ith time period) is denoted by t

io

*Since native GCOS idle is significantly greater than zero (approximately
66 percent), VMM overhead for the channel-bound work load cannot be
deduced. Attempts to patch VMMON to present the data on the VMM/
GCOS environment were unsuccessful.

The quantity of interest for the analyses that follow is the VMM overhead.
This quantity represents the processor time consumed by the VMM in

The approach to be

The various time periods for which measurements are available are de-

noted by Ti (i=1,2,...,n). The measured VMM overhead time (i.e.,
Suppose

St S ANAR

s




there are M different types of requests which the VMM must service, If
nij (j-1,...m) is the measured quantity of requests of type j during the ith
interval and ej is the VMM overhead incurred in servicing the type j
request, then the total VMM overhead time spent in the ith time interval

may be approximated by:
m
Y 0, Ny, (1)

The coefficients 61,92, wleta ,Gm can be determined by the method of least

squares so as to minimize the sum of the squares of the residuals, i,e.,

n

. » 2
min S(Sl,ez,...,em) = Z r,
i=1

where residual r is defined as

If the r; turn out to be relatively small, then Equation (1) is considered to
yield a suitable fit to the data. The goodness of fit criteria incorporated
below is the multiple correlation coefficient obtained by comparing the
sum of the residual squares to the sum of the squares of the deviation of

the measurements from their mean value (;). i.e.,

n n
2 ¥ 2 Z "
R™ =1 Zri (ti t)
i=L i=1
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Based upon the information obtained from the benchmark analyses, two
resource quantities were selected as being major contributions to VMM

overhead. For the ith time interval, T,, these were

il
. nil--the CPU busy time during '1‘i

° niz--the number of channel connects requested during Ti
Equation (1) in this case reduces to

ti = 61 . + 62 n, (2)

Using the benchmark experiment data in Tables 1 through 4 (excluding the
channel-bound work load for reasons previously explained), the method of

least squares was applied to the equations represented in Table 5.

TABLE 5. VMM OVERHEAD REGRESSION DATA

Work l.oad | T, \T;\r:\“e]' ?)e::cTad GT?SE E:?)y o g s
i (selc) i i Ti (866) Connects (niZ) in 'I'i
1 15.5 124.9 1042.9
2 18. 3 190. 5 1316, 4
Processor 3 20,5 286.0 1381.4
HOu 4 7.9 287.5 345.0
5 11,3 415.9 474.1
6 22,9 479.0 1005, 9
1 30,7 154, 1 5661.6
2 55,7 278.4 10242, 3
Wieries 3 87.9 461.0 16010, 5 :
Load 4 37,2 186. 1 6876. 4 :
5 57.2 306.9 10351, 7
6 79.6 400, 2 14647.3
31
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The results of the regression analysis of the data in Table 5 yielded the

following:
—
o 6, R?
0.0351 0.0045 0.98

These results indicate that the processor overhead inéurred through usage
of the VMM is approximately 0,0045 seconds overhead for each channel
connect and an additional 3.5 percent of non-idle procsssor time. The
extremely high correlation coefficient indicates that these results reprc-

sented a suitable fit to the data.

It should be pointed out that, although an extremely high correlation coeffic-
ient has been achieved, the results may not be statistically precise. The
method on which the coefficient values are based depends on the assumption
that the coefficients are constant-~not variable. This assumption is not
valid for the data in Table 5. Clearly different user requests place signif-
icantly different demands on the system, for example. The true accuracy
of these coefficients, therefore, has not been established. It is possible,
however, with additional measurements, to construct more statistically

accurate results, This remains a source for future investigations.

Another point is also of interest at this time. Much care was taken in
obtaining representative time intervals including the effect of transitory
periods of system activity rather than just intervals of pure work load
activity. This was done to include the effects of transitory system activity

in the analyses of subsequent sections, With careful selection of periods
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of measurement, it is possible to distinguish between periods of pure work
load activity and periods of combined work load and transitory system
activity, It may be of interest to determine the coefficients 61' and 62' in
this case. The values of ei would more accurately isolate the contributions

of n., and 1'1i to the VMM overhead.

i1 2

For this purpose the following intervals were chosen as representative of

pure work load activity (i.e., little or no system transitory effects were
included):

VMM Overhead | GCOS Busy Number of
Work Load (t;) (sec) Time (nj;) Connects
(sec) (nj1)
SEvaaskar 6.8 287.3 132, 9
Bound
Average
Liag 55,7 278.4 10242, 3

Repeating the previously described regression analysis determines:

1
91 0.0215

1
e2

0.0048

Application of these new coefficients to intervals which include transitory
effects yields a significant difference between the observed and predicted
VMM overhead. This effect is due to overhead resulting from factors other

than the GCOS busy time (nn) and the number of connects (niz), that is,

33
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NigsDigoeee which have not been identified. To determine such factors

would require substantial additional data and analyses.
BEST/1 tm-GCOS ANALYSIS

Based on the values of 6, and 6, derived in the previous section, it was

possible to hypothesize :everaiz configuration and work load alternatives
and determine their respective performance degradation when executing
GCOS in a virtual machine rather than in a hative machine environment.
This was done with the help of BGS Systems' proprietary modeling package
BEST/1 tm* First, the performance of each of the hypothesized alterna-
tives running in a native/ GCOS environment was analyzed using BEST/ ltm'
Next the previously determined coefficients, 61 and 92, were used to
determine the VMM overhead degradation of the hypothesized work loads
in the VMM/GCOS environment. Finally, BEST/1 tm Was again used to
determine the performance impact of executing that same configuration

and work load, under GCOS, in the virtual machine environment,

The configuration and work load models constructed for the BEST/1 o
analysis consisted of a canonical job stream executing on a single proces-
sor system, in one case including and in one case excluding the effects

of I/O device contention. Individual tasks in the job stream were assumed
to consume approximately 1 second of CPU time and to perform a varying
number of I/O operations (0 to 50) at approximately 35 usec per connect.
The analyses were performed for the job stream under several distinct
levels of system load, ranging from.a single thread environment to a level

of threading equal to 15,
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The models chosen and analyzed via BEST/1 tm Were directed teward deter-

mining the VMM overhead impact on two important measures of system
performance: response time and system throughput., Sample BEST/1 s
modeling details and the results of the analyses are presented in Figures 4
through 12, {
eE3 /1>
ST
----- WOPKLUAD  1=eenDASCRIPTOR S om
“Aory  PROCESSUR-BOUND
3P WORKLUAD TYPR
0.75  ATTALNED 4P,
----- WOPKLOAD  2-==aDI3CRLPTORS-=oum
YABFL  AVEPAGR-L0AD
BP  WOFKLOAD TYpr
0.75  ATTALWFD 4P
----- WOPKLOAD  3===aDESCRIPTORS==nnn {
|
“ABFL  CHANNFE.L<BUUND
BP  WORKLUAD TYPF
150 ATTALWED WPl }
|
SERVER Wl 1 WKL 2 WKL 3 g
1 cpu 1000.0 1000.0  10660.C !
2 DI3K2 4.5 0.6 ¢ !
3 DLsK 0.C 1281.0 €. é
4 PL3KY A 0.0 2271.5 !
i
!
BEST/ 1> i
30
i 444 PALNCLPAL PESULTS @44
¢ |
j wOPK UAD PESPONSE TLAF THPOUSHPUT 6 CPU 3
1 PPUCESSUP-BOUND 1.y3 SEC 1399, PRP HOUP  34.3 |
2 AVEPAGF-LUAD 3,40 SFC T{3. PEP HOUR  21.5 4 |
5 CHANNFL =BOUND 5.35 SFC 1603, PRP HOUP  28.C |
TOTAL CPU JTILIZATION = 33.5 |

Figure 4. Sample BEST/ 1y, Internal Model and Principal
Results Report
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MULTICS BENCHMARKS AND OVERHEAD ANALYSIS

The benchmark experiments run by Honeywell for Multics differ signifi-
cantly from their GCOS counterparts. Rather than defining several distinct
work load types and performing a series of benchmarks for each, as was
done with GCOS, only a single work load type was defined for the Multics
case. This work load consisted of a single PL/1 program which itself
issued primarily processor consuming requests through a large iterative
loop (the effect of flush was also considered). The work load was run in
both the native/Multics and VMM/Multics environments with three distinct
levels of threading (multiprogramming levels 1, 15, and 20).

Statistics were gathered for this benchmark series through the use of the
Multics System Metering tools. This tool, however, was not applied
solely to the intervals of interest (i.e., the intervals in which the PL/1
work load was active). Therefore, the data that was collected and reported

turned out to be insignificant,

Fortunately, another source of information was available: a PL/1 source
program referred to as LOAD-CONTROL, This program was used to
monitor the work load and report the number of iterations per minute that

it achieved. This provided a single data point in each environment (Table 6)
which was somewhat useful in determining the VMM overhead degradation.

There are several factors which affected the usefulness of the LOAD-
CONTROL data. Foremost was the fact that configurations for the native/
Multics and VMM/ Multics were not identical. The PL/1 work load was
run under native/Multics without the use of a high-speed cache memory
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and under VMM/Multics with use of the cache. Since the cache memory
has a significant effect on such factors as instruction fetch rates, perfor-

mance analyses using this data would clearly be affected.

TABLE 6. BENCHMARK DATA FROM THE PL/1

LOAD-CONTROL PROGRAM

Native/Multics¥*

VMM/Multics*

Number of
Iterations/min 3.58

Single Thread

3.15

*With high-speed memory cache.
**Without high-speed memory cache.

Even so, a first-order analysis of the data was attempted. Based on the
above data, it was deduced that under the native/Multics environment 16, 76
seconds were required per iteration while under VMM/Multics this number

increased to 19,05 seconds per iteration; this implied an observed VMM

overhead degradation of 13,7 percent, *

*This represents an increase factor of 4 over the degradation for the proces-
sor busy contribution in the GCOS use. These numbers are not intended to
be compared, however, Paging activity, for example, which is not present
in the GCOS environment, causes a significant performance impact in the
Multics environment. The effect of Multics paging activity has in effect been
aggregated into the Multics processor busy contribution,
mining the degradation contributed by paging would require additional bench-

mark experiments and substantial further investigation.
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Since in the benchmark experiment for the VMM/Multics case the cache
memory was incorporated, this figure represents a lower bound on the
VMM overhead degradation.

The actual degradation would clearly be more significant for larger effective

iteration speedups contributed by use of the cache. Since typical speedup
factors introduced by the use of a high-speed cache may range from 5 to 30 |
percent for processor bound work loads, this leads to the ranges of VMM @
overhead degradation depicted in Table 7.

TABLE 7, ESTIMATED VMM OVERHEAD DEGRADATION
AS A FUNCTION OF CACHE CONTRIBUTION

Effective Cache Estimated VMM/Multics Percent Degradation
Contribution (%) | (Second/iteration without cache) VMM: Native
0 19,05 13.7
5 20.05 19,6
10 21,17 26.3
15 22,41 33.7
20 23.81 42,1
25 25.4 51.6
30 27.2 62.3
{
|
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BEST/1 tm-MULTICS ANALYSIS

Even with the minimal amount of data provided by the benchmark experi-
ments in the Multics case, examination of the performance impact of the
VMM degradation for a variety of hypothesized configuration and work load
alternatives was attempted. This was done with the aid of BGS Systems'
proprietary modeling package BEST/1 o

For purposes of this analysis, the 62 factor in the VMM/Multics case was
assumed to be the same as that in the VMM/GCOS case (0.0045 seconds/
connect). The 91 factor was varied over the end points of the range of

effective cache contributions described previously. The performance of

the hypothesized systems in the native machine mode under Multics was

analyzed using BEST/1 tm° Next the coefficients 61 and 62 were used to

determine the VMM overhead degradation of the hypothesized systems !
under Multics in the virtual machine mode. BEST/1 tm Was then used

again to determine the performance impact of executing the hypothesized

systems under VMM/Multics.

As in the BEST/1 ty " GCOS analysis, the configuration and work load

models consisted of a canonical job stream executing on a single processor
system, Two hardware configurations were modeled: one including the

effects of I/O device contention, and one excluding these effects. Individual
tasks in the job stream were assumed to consume approximately 1 second

of processor time and to perform a varying number of I/O operations (0 to 50)
consuming approximately 35 msec per connect, The analyses were performed
for the job stream under several distinct levels of system load, ranging from

a single load to a load level of 15, ,
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The models chosen and analyzed via BEST/1 tm Were directed toward deter-
mining the VMM overhead impact on two important measures of system
i performance: response time and system throughput, The results of the

analysis are presented in Figures 13 through 16.
' SUMMARY OF RESULTS

Initial benchmark experiments and measurement data, obtained for the
Honeywell 6180 configuration at RADC, have provided an indication of the
performance of executing job streams under the GCOS and Multics oper-
ating systems in both native and virtual machine environments. Analysis
of this data through multiple linear regression and queing network tech-
niques provided insight into the performance degradation of running work
loads under GCOS and Multics in both the native and virtual machine modes.

The following was observed:

e For both GCOS and Multics, both measures of system performance--
response time and throughput--showed that VMM overhead had its
greatest effect on work loads exhibiting an intermediate amount of

1/0 activity (15 to 35 connects per second of processor busy time).

® In case of GCOS, the performance impact of the VMM overhead
increases with the load for processor bounded work loads and
decreases with the load for I/O bounded work loads. For work
loads exhibiting a small amount of I/O activity, VMM overhead

has only a minor effect on performance. For work loads exhibiting

a large amount of I/O activity, contention at the I/O devices be-
comes the limiting factor and again the VMM overhead contributes
only a minor effect. If contention at the I/O devices could be
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Figure 13. Ratio of VMM: Native Response Time for Multics as
a Function of I/O Activity (I/O Contention Included)
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THROUGHPUT RATIO

Figure 15,
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Ratio of VMM: Native Throughput for Multics as a
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eliminated in the latter case, however, the VMM overhead would
again become a major source of performance degradation, Similar
statements, although probably applicable to Multics, are not con-
clusive because of insufficient benchmark data in the Multics case,

In GCOS the VMM overhead was determined to be in the range of
15 to 28 percent depending upon the degree to which the job mix
was I/O dominated. The refinement of these factors in terms of
processor busy time and the I/O activity is 3.5 percent and 4. 5

msec of overhead per connect, respectively.

In Multics a substantially higher value of VMM overhead was
determined. The range of this value was estimated to be very
wide, 13 to 60 percent, because of the insufficient number of
benchmark experiments, Overhead of greater than 30 percent
is likely.

The relatively higher values for the Multics/ VMM degradation vs.
GCOS/VMM degradation are attributed to the higher VMM over-
head required to process page faults and associated I/O within
the Multics virtual machine,

Reference to the 61 (A = 2,2 percent) and 92 (B = 4, 8 msec/con)
values for the "pure' work loads reflects minimum VMM overhead
when GCOS is not issuing master mode instructions,
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SECTION IV

EVOLUTION OF THE VMM

VMM APPLICATIONS

Early experience with the VMM has shown that the concept has a major
impact on the development of operating system software. More recently,
potential assistance to the application programmer has come to light as a
result of VMM research. The Honeywell VMM provides a minimum set
of capabilities which allow ﬁADC to evaluate this concept in a limited
environment, Some discussion of the major applications will help focus
this evaluation,

Virtual Microcomputers and Minicomputers

It is convenient to describe the many levels of processing (mini, micro,
macro, etc.) and the units which they use as a computational theater.

Such a theater is a formally described processing system including a basic
idea of computation which is independent of level. It is possible for a VMM
to provide a theater which can produce multiple copies of itself. Within
each theater, then, a particular instance of a processing unit could be

created.

Since VMMs provide complete hardware/software interfaces, multiple
simultaneous users, and fictitious I/O devices, the advantages of large

machines can be extended downward for small machines, A large number
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of mini or microcomputers could be encapsulated on a single large system
executing a VMM, This would allow extension of the capabilities of small

machines for software development, multiprogramming, and computer

systems research.,

Networking

- Given a situation where the software for a geographically distributed system
needs to be developed but only a single hardware system is available, a
VMM can provide the needed test bed. By establishing multiple VMs within
the VMM, each virtual machine can communicate with the outside world and
other machines on the pseudo-network without actual communication lines.

] The information can move from one VM to another VM by passing through
the VMM or by going outside the machine to a wrap-around communications
device,

Program Debugging

One possible way to use the VMM approach for debugging software is to 4

allow a virtual machine to be "smart' about its environment, that is, allow ., '
a VM to understand its interface with the VMM and to know that other VMs ﬂ
exist on the same host hardware. In this way a "spy'' program can be | 1
executed on VM1 which views the execution of VM2, traps data about that | 4
execution, and provides a debug interface to a user of VM1, The spy ,
concept was implemented at the IBM Grenoble Scientific Center on a modi- J
fied CP-617.

g i <
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Other software debugging aids using VMM concepts are extended console
functions and recursion. With a virtual operator's console simulated on a
user's terminal, many system commands can be extended out to the user.
Examination and modification of absolute addresses and dynamic modifica-
tion of system scheduling parameters are two of these, The aspect of
recursion can be called nested VMMs, In this use of a VMM, a specialized
debug-oriented VMM is executed under the bare machine monitor, Thus a
VMM becomes a VM, Obviously, efficiency considerations may limit the
depth to which recursion is feasible,

Input/Output Applications-

Two major applications of VMM are I/O program analysis (virtual I/O)

and new peripheral support. The first of these was discussed in the interim
report and will not be elaborated upon here., The extension of the virtual
I/O concept allows us to visualize three scenarios in which a VMM is used

to aid the introduction of a new peripheral.

Scenario 1, A New Peripheral Device is Being Proposed or Developed for 1
an Existing Product Line--By providing a software replica of a device j

which does not currently exist, virtual machine systems can be of signif-
icant value in performance evaluation studies and in software development
work, Since the VMM can guarantee good program performance, it is
possible using VM techniques to run highly complex test or benchmark
programs to determine the quality of the software support. Since virtual
machine systems usually provide good tools for evaluating performance
of software running on VMs, it is easy to perform these evaluations, It

also becomes easier to test new error handling routines while running on




a VM since the VMM may simulate errors on the device. If the develop-
ment of new peripherals is a frequent activity of an organization, it may
be possible to use a higher level language to describe the device and com-
pile the VMM virtual 1/O device support directly from this description,
The VMM support for the new device might be mapped, partitioned, or
simulated depending upon the device's degree of departure from existing
designs.

Scenax_‘io 2. A New Peripheral is Introduced into a Computer System and

There is No Software Support for It in the Commonly Used Operating System--
Virtual machines permit the introduction of a new peripheral device into

a system in which the operating systems do not support the device. Thus,
VMMs allow an installation to take advantage of new peripheral technology
without rewriting the operating system's device support package. The
VMM continues to provide the illusion of some device which the operating
system already supports while in reality it uses the new device instead.
Depending upon the similarities between devices, the support might be
mapped, partitioned, or simulated. Since today's modern operating
systems are enormously complex, it is often preferable to introduce (the
actual) support for the new device in the VMM which is smaller, simpler,
and easier to debug.

The technique has been used successfully in the CP-67 system, IBM 2314
disk units were first introduced into the system at the VMM level while the
operating system (i.e., CMS) continued to manipulate IBM 2311s as virtual
I/O devices. The "mini-disks" were supported as partitioned mapped
devices,
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Scenario 3. A New Peripheral is Being Introduced into a Computer System

and There is No Software Support for It in the Commonly Used Operating

System; However, There Exists Some Specialized Stand-alone Software

Which Does Support the Device--Suppose it is necessary to support a new

device which neither the predominate operating system nor the VMM is
able to support. Suppose further that some other special purpose operating
system is able to support that device. If standard techniques exist for
communicating information between two virtual machines running under
the same VMM, it is possible for the predominant operating system to

use the device by sending access requests to the special purpose operating
system via the VMM's comimunication mechanism, Thus no changes have
to be made to any of the systems. Furthermore, the process of debugging
the device handling routines in the special operating system can only
affect that system and cannot cause the predominant operating system to
crash., These techniques were used very effectively by MIT Lincoln
Laboratory in debugging and introducing support for the ARPANET in the
CP-67 system,

A similar scenario arises when it is necessary to run test and diagnostic
software for a new device before that software has been integrated into

the commonly used operating systems. In this case the standard operating
system runs on one virtual machine while the Test and Diagnostic Monitor
runs on another. There is no need to communicate between virtual machines
in this example since the (stand-alone) Test and Diagnostic Monitor is
controlled through the virtual operator's console of the VM it is running

on,
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SOFTWARE EXTENSIONS: THE SERVICE MACHINE

The VMM under evaluation in this effort represents an implement=tion of
functionality which was known to be a partial fulfillment of the gozls of a
long-term project. Therefore, there are several areas of functional exten-
sion which are known to be desirable from several points of view. Among
these are extensions for sharing peripheral equipment, including front end
processors, enhanced system console functionality to permit dynamic
changes in virtual machines being run and their real resource assignments,
an ability to dynamically swap virtual machines so that several can be
multiplexed, improvements to the treatment of timer and clock information
so that each virtual machine can have a correct time-of-day, and imple-
mentation of the service machine concept as a vehicle to greatly enhance
the VMM functionality for those services which can tolerate the internal
delays associated with dispatching a virtual machine (i.e,, the service
machine).

The main recommendations of software issues which result from this

analysis are that:

e Performance degradation due to input/output operations is sub-
stantial as discussed above and needs careful analysis in the

design of this or any other VMM,

® The areas of missing functionality identified above are important
in order for a VMM to be of practical value for most areas of

application.
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In this section we present an implementation approach for the virtual
machine monitor, The approach derives from desires to keep the perma-
nently resident VMM code as small as possible and to make use of already
existing software, In particular, much of the functionality required within
the VMM can be found in either the Multics or GCOS operating system.,
TWO'nnportant examples of this necessary functionality are an interactive

user interface and a named information storage system,

Figure 17 is one example of a VMM implemented using Multics to provide
support for the resident part of the VMM, This figure shows a stylized
view of a computer system memory. There is a permanently resident area
which is part of the VMM, The Multics operating system is running in one

virtual machine, and two different GCOS operating systems are operating
independently in two additional virtual machines.

Within the Multics virtual machine there are many processes running
which,, in this example, fall into two categories: service machine processes
(SMP) and user processes. The SMPs comprise the rest of the VMM be-
yond the resident part of the VMM (RVMM). In general there is one SMP
per active virtual machine whether or not that VM is physically resident

! in primary memory. Further, there are additional SMPs working on

behalf of the RVMM to perform overall functions for the VMM (e.g., VMM

operator console, I/O spooling activities, etc.).

Within the Multics virtual machine are also shown user processes. These
are shown only to suggest that the Multics system could be used to support

e ——

normal Multics service for a user community in addition to the SMPs,
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However, some system usage environments might choose to run two
Multics VMs because of the system isolation which that approach would

achieve,

The virtual machine which is running the operating system supporting the
resident part of the VMM is called the service virtual machine or service
machine (SM) for short, This virtual machine has some constraints placed
upon it by RVMM due to the special nature of the SM, For example, RVMM
knows how to bootstrap the SM into operation at system initialization and
will not allow the SM to be halted.

The division of function between RVMM and SM is based primarily on the
points raised at the beginning of this section, In particular, functionality
is in general provided by an SMP if at all possible since doing so allows
development of software which can make use of the rich support environ-
ment of an operating system. Only functions which have great performance
importance or logical necessity are included in the RVMM, For example,
1/O support would be included in RVMM but VM start/stop support and
other '"console functions' would be provided through SMPs,

The interface between the service machine and the RVMM is provided as
a virtual device. In particular, choosing a communications device as the
vehicle for messages between RVMM and SM has the benefit of allowing
complete physical decoupling of the SM and RVMM so that the SM might
be supported on a remote computer,




i
!

RVMM sends messages to SM by simulating an interrupt to the virtual
machine running SM for the appropriate communications line and device.

Likewise, SM sends messages to RVMM using the normal operating system
1/O code for the communications device and line which is appropriate. The

RVMM recognizes this I/O request and directly consumes the message.

HARDWARE EXTENSIONS

The main hardware issues in the design of any VMM relate to the question
of how much of the system's overall resources are used in supporting
virtual machines. Each real resource of a computer system (processor,
memory, devices, channels, switches) needs to be replicated for each
virtual machine. To do this, the hardware must either directly perform
the mapping between virtual and real resources, or it must have some
mechanism of intercepting references to virtual resources, capturing the
complete state of the virtual machine, and passing control to some other
agent (e.g,, a software or firmware VMM). This agent then simulates
the correct behavior of the virtual resource and returns control to the
virtual machine for further execution under direct hardware control, The
agent consumes real resources in performing this simulation and this

effect can be substantiated.

In the VMM under study it was shown that the amount of real system re-
sources consumed by the VMM in processing input/output operations is a
significant level for normal computer system work loads. The percent of
the central processor needed for this purpose ranged from 10 to 30 for
normal GCOS woi-k loads and somewhat higher for Multics.
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Direct hardware support for input/output operations is the single most
important potential for decreased VMM overhead. Such support would not
be required for all I/O devices. A study of the device usage shows that

disk and tape units have the most potential for reducing VMM overhead since

I/O operations occur most frequently on these units,

Direct support of unit record equipment is not needed especially since it
is desirable for this equipment to be shared by all virtual machines via
direct VMM control of the device and spooling of the records.

Further investigation into the architectural approaches to communications
front end processor support is necessary before the question of appropriate
hardware support for virtualization can be answered. The importance of
such support is, of course, dependent on the types of work loads that might

be processed.

Another area in which hardware support is of great importance is that of
main memory mapping. The present VMM statically allocates the full

real memory required by a virtual machine. For several classes of use

of virtual machines, it would be desirable to have more dynamic control

of the mapping between virtual and real memory resources. In particular,
a block assignment or paging mechanism could be investigated for its effect
on VMM overhead for different classes of work loads.
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EVOLUTION OF HONEYWELL COMPUTER PRODUCTS

The future development of Honeywell computer equipment depends upon

the direction imposed by industry plus the technology available from the
research and development groups both within Honeywell and in the academic
community. Honeywell has a history of capitalizing on advanced develop-
ment which is a result of their position as a leader in digital technology.

External Influences

The major influences on the future products come from two sources:
industry direction and architectural influences. The industry needs for
distributed computing power at the point of need, working on common
centralized data bases, are reflected by the Distributed Systems Environ-
ment announced recently by Honeywell. This environment allows many of
Honeywell's computer products to cooperate in new ways to achieve the
desired goal, The Level 6 minicomputer can be used as a local batch
processor, a remote job entry device, or a message cqordinator in a
larger network. When combined with the Level 66 GCOS machines and
the Level 68 Multics system, a network of considerable flexibility can be

constructed.

The architectural influences come from our understanding that computer
architecture comprises the ruleg, standards, protocols, and guidelines
that govern the design and development process. Also included is the user
interface to such systems. Influences of technology evolution and appli-
cation evolution point to a comprehensive architecture for the 80's whose

characteristics must be:
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® Very high performance, cost effectiveness

® Larger capacity, faster peripheral storage devices
e Utility grade availability

e Support for large distributed data bases

e High performance transaction processing

e Easy to use development and inquiry systems

) Standard communication links

® Aids for predicting and evaluating system performance

Increasingly we will see the use of minis as support to large systems,
message switches, communication processors, and terminal controllers,
Many of our large systems provide the needed characteristics. What is
needed for the 80's is a means to interconnect them and to provide cross
] compatibility for user programs. This requires common and consistent

interfaces.

Internal Influences

Honeywell has recognized the need of providing a continued flow of advanced
concepts into the production divisions and has stimulated such research in

several ways.

First, each computer division in the U,S. and Europe maintains an
advanced development group in hardware and software. These groups are
intimately familiar with current products and constantly seek new ways to

use them and modifications which can improve performance and reliability.
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Typical of the work of these advanced development groups is the VMM now

at RADC. This software coupled with slightly modified hardware opened
up a new avenue of applications for the Multics and GCOS systems, The ’
VMM, though not available as a standard product, has proven influential :

in new products as will be shown later.

Secondly, the Systems and Research Center of the Aerospace and Defense
Group has carried on an active program in distributed computing research.
Their efforts have been aimed directly at the government market place

for applications such as flight and weapon control systems, command and
control systems, and certifiably secure computer programs., In fact, it

is SRC that continued the VMM work represented in this document,

Third, it is recognized that computer architectures of the 1985 to 1990
time frame will require significant research and development prior to
production. As a general response to that need, Honeywell formed the

Corporate Computer Sciences Center in Minneapolis and directed that a

program to address the architecture needs of the late 80's be started. This
architecture work is responsible for interfacing with the research communi-
ty, identifying promising ideas, and feeding these ideas into the planning
and advanced development groups, The VMM is being considered in the

course of that study,

The Role of the VMM

The virtual machine monitor was an early attempt at extending the power of

the hardware/software base. Its minimal functionality is limiting in signifi-
cant ways, yet the concept points to an important fact: if VMM performance |
is improved, the power gained should be exploited,
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The advanced development processors currently on the drawing boards
include a concept referred to as the hypervisor, The hypervisor is a VMM
in hardware/firmware with some modifications. Honeywell has recognized
that the two personalities of Level 66 and Level 68 could be put to produc-
tive use if a dual personality machine could be designed. Some general :

benefits of such a multicomputer or hypervisor approach are:
e Ease of moving users between systems :
e Coexistence of different systems |
e Expanded development and testing capabilities
e Increased capabilities with multiple copies of a limited system

® Increased availability with multiple copies :

® Common interfaces

® Better test and development facilities

These benefits are directly in line with what has been learned about the
existing VMM, It is conceivable that the hypervisor approach may be
reflected in future Honeywell large scale processors, though changing

market demands could cause this strategy to change.
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SECTION V

RECOMMENDATIONS

FUTURE VMM RESEARCH

Distributed Systems of Virtual Machines

The feasibility of the virtual machine concept has been proven. Further-
more, the usefulness of supporting communication among clusters of
virtual machines has been described by S.E, Madniq::k.1 However, tech-
niques and interfacing standards still need to be determined for inter-
virtual machine communication and synchronization especially when the

VMs are supported by physically distributed hardware systems,

Specialized Virtual Machines

In a system of logically distributed processing, it might be expected that
certain systems in the network will be performing specialized functions
on behalf of the other member systems. An example of this is the system
which controls a data base to be shared among all member systems. The

issue to be investigated is the nature of the interface between such a

1s.E. Madnick and C. Lam, "Composite Information Systems--A New
Concept in Information Systems, " Report No. 35, Center for Information
Systems Research, Massachusetts Institute of Technology, 1978,
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specialized virtual machine and a VMM, For example, the VMM might
support high level data base access primitives which completely isolate
the specialized virtual machine from physical device characteristics.

Incremental System Extension and Integration

The virtual machine interface to other virtual machines in a distributed .
system of virtual machines is well defined and enforced by the VMM. This
well defined interface might be used as the point for formal definition of

a particular virtual machine function, Changes in binding between a
virtual machine and the physical hardware used to support it could be
made without requiring revision of the software within a virtual machine.
Likewise, a cluster of virtual machines supported by one fast processor
could be moved to a hardware support base of several (slower) processors

without software revision,

An additional topic for investigation under this subject is the feasibility of
replacing the formal interface between two particular virtual machines

with a new formal interface. As a large system evolved, some virtual
machines might be replaced with newer ones designed to a different formal
interface. It might be useful in such situations to provide formal interface
translator virtual machines which could translate between different versions

of a formal interface.
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CONCLUSIONS

The work performed during this effort has been valuable in that it demon-
strated feasibility of a VMM in the RADC environment and identified the
performance tradeoffs which must be made. The future support of this
VMM by Honeywell is uncertain; however, the concept and many of the

design features have been integrated into existing and planned products.,

RADC has played a useful role in supporting the benefits of the virtual
machine approach for certain types of problems and this work might well
continue. The most fruitful area for further research appears to be in
the design of a VMM which is more tolerant of I/O activity. It is doubtful
that the existing prototype VMM could be improved sufficiently to allow it
to function effectively in a production environment. The prototype has

served its purpose of demonstrating functionality and feasibility.
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22 c
23 CALL GRBORT
24 SIOR
28 END
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27 SYMDEF  GRINGS, GRROAD, GRBORT
29 ORINGS NULL
30 S$TXO  SVX0
3 EAXO 2,1 ADDR. OF FILE CODE WGRD
AU S 17— IV -
EAXO  3,1s ADDR. OF SECTOR NUMBER
STXO  SKDCW
EAXO 4,1 ADDR. OF BUFFER

5,11 NO. OF WORDS
=0007777,0V SET DCW TYPE
WRDCW

s, 1a ____ADDR OF STATUS wARD

MME+S
OEINCS

0, WROCW
5,0
AR

0,1
.,
s2,0

78
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366T 01 08-08-78 12.968 STAR C (2C) FILE EDITOR MAP - NEW sC FILE CONTENTS PAGE 3
Te CONTENTS OF THE CHANOGES ON THE NEW STAR C FILE 740704
s2 GRROAD NULL
83 ME GEROAD
84 TRA 0,1
88 omsomT MuLL
se Lbo =3HOOK , DL
87 MME GEBORT
S8 ssan
-
60 BUSY  NULL
[ ] L]
62 . BUSY WILL USE PROCESSOR TIME FOR THE NUMBER OF MILL!SECONDS

LXL3 2,1 BET ARGUMENT : ® OF MS OF BUSY TIME

UL
EAX2 100 LOOP VALUE FOR CACHE H8080
EAX2 77 VALUE IF NOT CACHE H6080
ML L
LDa ONE
Div ONE
ARL 1
_SAX2 10U
™ LooP
$8x3 1,0V
™ MSLP
Q.1 RETURN
nEC 1
END
EXECUTE
FILE  AA,ST1,200R
ENDJOB
SNUMB
OPTION FORTRAN
FORTY
CHARACTER FC
ol ILSIAT2(2)
IOCNT= 10000
IWDS=320
FCe6HOO00AA
FILESIZE = 200L
IFILS22200
LSTBLKs(IFILS2Z512 - 1)s8
0O 10 I=1,10CNT/2
ISECT=0
ISECT2sLSTBLK




THIS PAGE IS BEST QUALITY PRACTICASLE
FE08 COFY RENLSHED 20 000 e

88T 01 08-08-78 12.968 STAR C (=C) FILE EDITOR MAP - NEW sC FILE CONTENTS PAGE 4
Te CONTENTS OF THE CHANOGES ON THE NEW STAR C FILE 740704
103 CALL GRINOS(FC, ISECT, IBUFF, IWDS, ISTAT)
104 CALL GRINOS(FC, ISECT2, IBUFF, 1WDS, ISTAT2)
108 CALL GRROAD
107 c
108 CALL GRBORT
109 sTOP
310 £ND.
m ] GMAP NDECK
12 SYMOEF GRINOS,GRROAD, GRBORT
13 SYMDEF BUSY
b 3ld QRINOS MULL
118 STXO sSvxo
116 EAXC 2,1s ADDR. OF FILE CODE WORD
1?7 STXO MME+2
118 EAXO 3,1 ADCR.— 86 -SELTOR MMELE.
19 STXO SKDCW
120 EAXO 4,1= ADDR. OF BUFFER
21 S$TXO0 . WRDCW
| 123 LA S B,ls MO 0K WORDS.
123 ANXO =0007777,0V SET OCw TYPE
124 SXLO WRDCW
128 EAXO 6,1 ADDR. OF STATUS WORD
—126 SIx0Q ME 2
127 MME MME GE!NOS
128 SDIA
129 ZERO s, SKDCW
3130 MDIL
RE 2] ZERO 0, WRDCW
132 ZERO =, 0
133 Svxo EAXO xx
134 IRA a1
138 SKDCW [OTD LL R}
136 WRDCW [OTD *x,0
137 GRROAD NULL
(s)

0,1

EAX2 100

LOOP VA'.UE FOR CACHE M6

080

L.0Q =3HOOK , DL
MME_____QEBORY
sEEn
L
BuUSY NULL
-
. BUSY WILL USE PROCESSOR TIME FOR THE NUMBER OF MILLISECONDS
. INDICATED (N THE PASSED ARGUMENT
-
X3 2.1e QET ARGUMENT x 8 OF MS OF AUSY TIME
-
MSLP  NULL

aliQ

80

el B
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3887 01 08-08-78 12.965 STAR C (2C) FILE EDITOR MAP - NEW =C FILE CONTENTS PAGE s
Te CONTENTS OF THE CHANOGES ON THE NEW STAR C FILE 740704
184 s EAX2 ?? VALUE |F NOT CACHE HE080
188 =
186 LOOP  NULL

182 LDQ. ONE..
188 oiv ONE
189 ARL \
160 sBx2 1,0V
181 o
162 Bx3 1,0V
163 T™L MSLP ]
184 TRA 0,1 RETURN

—188 _____ _ONE - DEC 1
168 ENO
167 [ ] EXECUTE
168 8 LIMITS 10,9K

188 L ELLE
170 s ENDJOB 3
b 41 ] SNUMB  CHO21
172 ) [DENT  OPERATORS,UTILITY ,855810218RADC

123
174 [ FORTY
178 CHARACTER FC
17: DIMENSION ISTAT(2), IBUFF(320), ISTAT2(2)
12 —1OCNTA10000. .
178 1WDS#320 |
179 FC=6HOO00AA
180 c \
182 [F1L$2=200
183 LSTBLK=(IFILSZ®12 - 1)s8
184 c
108 ISECT=0
187 [SECT2eLSTBLK
108 CALL GRINOS(FC, ISECT, IBUFF, IWDS, ISTAT)

18TAY2)

-ADDR._OF FIIE _CODE WORD
EAXO 3,1 ADDR. OF SECTOR NUMBER

et

81 f
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Te CONTENTS OF THE CHANOES ON THE NEW STAR C FILE 740704
208 EAXO 4,18 ADOR. OF BUFFER
208 STXO  WRDCW
207 LXLO 8,1 NO. OF WORDS
200 0  WROCW
210 EAXO @,1s ADOR. OF STATUS WORD
211 STXC  MME+8
—OEiNSe.
213 SO1A
214 ZERO s, SKOCW 1
218 woic _
n? 26RO *s,0 3
210 SVXO EAXO  us
219 TRA 0,1
<k
22! WROCW (OTD 3,0
222 GRROAD NULL
223 e
234 — 3MA— 0,1 ]
228 ORBORT NULL
228 Loa *3HOOK , DL
227 e T
238 sans
229 o
230 BUSY  NULL
23 s
233 . INDICATED IN THE PASSED ARGUMENT ‘ ]
L 5
238 L3 2,1 GET ARGUMENT = @ OF MS OF BUSY TIME |
238 s ‘ ;
297 HSLP  NULL
238 EAXZ2 100 LOOP VALUE FOR CACHE HE080
239 . EAX2 77 VALUE IF NOT CACHE HE080
| 240 a
241 LOOP  NULL 1
24 LDa
3 2e . DIV onE i
1,0V i ]
Loor i
1,0V !
0.1 RETURN |
|
' LIMITS 10, 8K
264 ® FILE  AA,ST),200R
288 s ENnCJOB
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386T 01 08-08-78 12.965 STAR C (2C) FILE EDITOR MAP - NEW *C FILE CONTENTS PAGE 7
LT ® CONTENTS OF THE CHANGES ON THE NEW STAR C FILE 740704
256 s SNUMB
287 s IDENT m«:.unurv ,$5810218RADC
258 s OPTION FORTRAN
| 289 2 — EORTY.
| 260 CHARACTER FC
| 261 DIMENSION ISTAT(2), IBUFF(320), 1STAT2(2)
I 262 IOCNT=10000
283 INNS2320
‘ 264 FC=6HOO00AA
| 268 c
| 266 c FILESIZE = 200L
| |__282 I1F11 82
| 268 LSTBLK=(IFILSZx12 - 1)x8
i 269 c
| 270 DO 10 1s1,10CNT/2
221 1SECT=Q
| 272 [SECT2=LSTBLK
273 CALL GRINOS(FC, ISECT, IBUFF. IWDS, ISTAT)
| 274 CALL GRINGS(FC, ISECT2, IBUFF, IWDS, ISTAT2)
i 278 . CALL
276 10 CONT I NUE
277 c
278 CALL GRBORT
2729 STOP.
280 END
261 s GMAP NOECK
262 SYMDEF GRINGS, GRROAD, GRBORT
X
284 GRINGS NULL
288 STXO0 SVXo
2886 EAXO 2,1 ADOR. OF FILE CODE WORD
287 STXO MME+2 .
208 EAXO 3,12 ADDR. OF SECTOR NUMBER
289 STXO SKDCW
290 EAXO 4,1 ADDR. OF BUFFER
SIXO0
LXLO 8,1s . NO. OF WORDS
ANXO 20007777, 0V SET DCW TYPE
SXLO WROCW
EAXO 8 1x ADDR._OF STATUS WORD
STXO MME+S
MME MME GEINOS
SDIA
—_—  __2ERO a2 SKOCW
woiC
ZERO
ZERO
83

s
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388T 01 08-08-78 12.965 STAR C (2C) FILE EDITOR MAP - NEW *C FILE CONTENTS PAGE 8
Te CONTENTS OF THE CHANGES ON THE NEW STAR c FIoLE 740704
307 GRROAD NULL
308 MME GERCAD
309 TRA 0,1
S L
3n LDQ =3HOOK , DL
32 MME GEBORT
33 sses
214 .
318 susy NULL
e s
nz = BUSY WILL USE PROCESSOR TIME FO? THE NUMBER OF MILLISECONDS
e =
320 LXL3 2,1s GET ARGUMENT = & OF MS OF BUSY TIME
ko3l = g
—322  MslP MULL
323 EAX2 100 LOOP VALUE FOR CACHE H6080
324 = EAX2 77 VALUE IF NOT CACHE H6080
328 . :
D26 __LOOP  MULL
327 LoQ ONE
320 Div ONE
329 ARL 1
230 —SAX2 1.0
3N ™o LooP
332 BX3 1,bV
333 TPL MSLP
RETURN
338 ONE DEC 1
33¢ El
337 ] EXECUTE
339 ] FILE AA,DP2, 200R
340 ] END.
; s
] OPTION FORTRAN
s

FORTY
CRARACTER FC

J_1STATDL(2)

NOTE - IOCNT, IWDS CAN BE MODIFIED

2 IMOS2 CAM BE MOOIEIED IE LSTALK 1S MODIEIED
- IFILSZ CAN BE MODIFIED IF THE FILE SI2E IN JCL IS MODIFIED

388 : {WDS=320
i [WD822320
387 FCs8HO000AA




388T 01 08-08-78 12.968 STAR C (=C) FILE EDITOR MAP - NEW =C FILE CONTENTS PAGE 9

Te CONTENTS OF THE CHANGES ON THE NEW STAR CF L FCHE 740704

388 IFIL8Z=200

389 c FILE SIZE IS IN LINKS

380 LSTBLK=(IFILSZ®12 -1)=8
381 c

362 c WORK LOOP

383 c FOR EACH PASS - PROCESSOR TIME = SUM OF BUSY MS + 2MS/10

364 c = CHANNEL TIME = 20MS/10(APPROXIMATELY)
388 c

366 DO 100 I=1,10CNT/2

367 c

368 c BOTH ISECT AND [SECT2 MUST BE WITHIN DO LOOP

370 c

37 [SECT=0

372 ISECT2:=LSTBLK
333 L.

374 CALL BUSY(60)

378 CALL GRINOS(FC, I SECT, IBUF, IWDS, ISTAT)

376 c
_a L 100D

378 c THIS 10 SHOULD CAUSE DISK HEAD MOVEMENT

379 CALL GRINOS(FC, ISECT2, IBUF, IWDS2, ISTAT2)

380
—383—C——MALT _UNTIL JO-DONE-S0-_THAT-CAN-REUSE LSECT AND ISECT2

382 CALL GRROAD

383 CONT I NVE

384 CALL GRBORT
385 2108

388 END

387 ] OMAP NDECK

J80 SYMDEF ORI NOS, GRROAD, GRBORT

390 ORINGS NULL

mn S$TXO sSvXxo

92 EAXO 2,1 ADDR. OF FILE CODE WORD

m ADDR. OF SECTOR NUMBER

bl ol ADDR. OF BUFFER

398 NO. OF WORDS

399 =0007777,0V SET DCW TYPE

MME+S
GEINOCS

L

85
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'388T 01 08-08-78 12.96%8 STAR C (=C) FILE EDITOR MAP - NEW aC FILE CONTENTS PAGE 10
LT & CONTENTS OF THE CHANGES ON THE NEW STAR [+ FI1LE 740704
409 Svxo EAXO =
410 TRA 0,1
a0 SKDCW [OTD ==, 1 §
412 — WROCW LOTID A0 -
413 GRROAD NULL
414 MME GEROAD
418 TRA 0,1
416 GRBORT NULL
. a? LbG =3HOOK , DL
410 MME GEBORT
419 EEEE
A20 A
421 BUSY  NULL
422 =
423 L] BUSY WILL USE PROCESSOR TIME FOR THE NUMBER OF MILLISECONDS
423 .
426 LXL3 2,1x GET ARGUMENT = # OF MS OF BUSY TIME
427 B
|_ A28 _MSILP _ NULL
429 EAX2 100 LOOP VALUE FOR CACHE H6080
430 . EAX2 77 VALUE IF NOT CACHE H6080
431 =
432 lo0P  NULL
433 LoQ ONE
434 olv ONE
438 ARL 1 3
| 438 —SBXD 1.0U
437 TPL LooP
438 SBX3 1,0V
439 TPL MSLP N
440 IRA. Q.1 —RETURN
441 AGNE OEC 1
442 END
443 EXECUTE

AA,ST1,200R

OPTION FORTRAN
FORTY
CHARACTER FC

A 1STAID(2)

cce
: c
< NOTE - I1OCNT, IWDS CAN BE MODIFIFD
C = |MDS2 CAN BE MODLELEQ LF LSIBLK 1S MODIELED
J c = IFILSZ CAN BE MODIFIED IF THE FILE SIZ2E IN JCL IS MODIFIED
c
cce

|
|
|
i
|

86
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368T 01 08-08-78 12.965 STAR C (=C) FILE EDITOR MAP - NEW sC FILE CONTENTS PAGE 1"
Te CONTENTS OF THE CHANOGOES ON THE NEW STAR C FILE 740704
480 [OCNT=3780
461 IWDS=320
462 [WDS22320
483 £C.
464 1F1L825200
468 c FILE SIZE IS IN LINKS
486 LSTBLKA(IFILSZe12 -1)88
A2 L.
: Py c WORK LOOP
. 489 c FOR EACH PASS - PROCESSOR TIME = SUM OF BUSY MS + 2M8/10 }
470 c - CHANNEL TIME = 20M8/10(APPROXIMATELY) !
ALY L
472 DO 100 1s1,16CNT/2
473 c
474 c BOTH ISECT AND 1SECT2 MUST BE WITHIN DO LOOP
a7e c
477 ISECT=0
478 ISECT2sLSTBLK
‘l rJ
480 CALL BUSY(20)
48 CALL GRINOS(FC, ISECT, IBUF, IWDS, ISTAT)
a2 c
20)
484 c THIS 10 SHOULD CAUSE DISK HEAD MOVEMENT
408 CALL GRINGS(FC, |SECT2, IBUF, IWDS2, ISTAT2)
482 C  WALT UNTIL 10 DOME-SO TMAT-CAN REUSE ISECT AND LSECTS
CALL {
\
GRINGS, GRRGAD, GRBORT

ADDR. OF FILE CODE WORD
ADOR. OF SECTOR NUMBER
ADODR. OF BUFFER 1

NO. OF WORDS
SET DCW TYPR -

87
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T 01 00-08-70 12.988 STAR C (2C) FILE EOITOR MAP - NEW sC FILE CONTENTS PAGE 12
t Te CONTENTS or THE CHANOES ON THE NEW S TAR [+ FILE 740704 ‘
[ 33 ZENO s, SKDCW - |
s wolc
8193 ZENO 0, WROCW
| __s1a —3ER0___2a 0 ;
e *SVRO  EAXO s i
818 TRA o,!
[ 134 SKDCW [OTD ss, 1
A5 0 |
010 GRACAD MULL
e
[ 3] ml 0,1
889 LoG = 3HOOK , DL
[ e T
BEB sees
888 a2
3 susY NULL
]
e L] BUSY WILL USE PROCESSOR TIME FOR THE NUMBER OF MILLISECONDS
83 L]
832 LXL3 2,18 GET ARGUMENT = & OF MS OF BUSY TIME
833 s
ST T — btk o
638 EAXE 100 LOOP VALUE FOR CACHE NSOBO
838 L] EAXR 7”7 VALUE IF NOT CACHE HE080
897 -
B8 1000 MULL.
839 Lbo ONE
B840 oiv oNE
841 ARL 1
- E—— AAXD 10U
843 (2 Loor
844 ;X3 1,0V
848 e MeLP
—RETURN
AA,ST1, 200R
OPTION FORTRAN
GM_LSTATLS) ISUS(ESO0) LSTATRID) ]
NOTE - 10CNT, 1WDS CAN BE MODIFIED 1
i
|
|
1 ]
qi




AD=A065 087

UNCLASSIFIED

25

-
(4

—_
-

HONEYWELL INFORMATION SYSTEMS INC MINNEAPOLIS MINN

VIRTUAL MACHINE MONITOR PERFORMANCE ANALYSIS.(U)
DEC 78 S C VESTAL » T KROCAKr H S SCHWENK
RADC=TR=78=251

-- R e

:

F/6 9/2

F30602=77=C=0097
NL




-

$ "}AJ" £l e
——— msm&mmqmtnmmcm
| o COPY FURKISHED T0DDG _____ ‘
T 01 08-08-78 12.968 STAR C (sC) FILE EDITOR MAP - NEW =C FILE CONTENTS PAGE 13
Te CONTENTS OF THE CHANGES ON THE NEW STAR c FILE 740704 1
seg c = IWDS2 CAN BE MODIFIED IF LSTBLK 1S MODIFIED ‘
863 c = IFILSZ CAN BE MODIFIED IF THE FILE SI2E IN JCL IS MODIFIED {
o84 c {
|__ses. P S— |
888 [OCNT=8000 {
[ 34 'IW08 =840 {
888 {WO32=320

I

870 (FILSZ+200
[ 14) c FILE SI2E 18 IN LINKS
a7s LOTBLK=(1FIL82812 -1)28
|83 <
974 c WORK LOOP
7 c FOR EACH PASS - PROCESSOR TIME = SUM OF BUSY MS + 2MS/10
7e c = CHANNEL TIME = 20M8/10(APPROXIMATELY)
832 ¢
m a 00 100 I=1, IOCNT/2 ;
980 c BOTH ISECT AND ISECT2 MUST BE WITHIN DO LOOP 1
ses c |
.83 18ECT=0 |
-+ ISECT2eLTOLK ‘
S S |
288 CALL BUSY(10)
887 CALL ORINOS(FC, ISECT, IBUF, IWDS, ISTAT)
see
e c THIS 10 SHOULD CAUSE DISK HEAD MOVEMENT
& CALL GRINOCS(FC, ISECTR, IBUF, IWDS2, ISTAT2)

B84 @RR3AD
[ ] 100 CONT I NUE
[T CALL GRBORT ;
808
@99
€00 SYMOEF  ORINGS, GRRGAD, ORBORT
sof
603
€04 ADDR. OF FILE CODE WORD
28
008 ADDR. OF SECTOR NUMBER
I 007 SKDCW
| [ ] ADDR. OF BUFFER

8,1s *  NO. OF WORDS '
20007777, 00 SET DCW TYPE
WRDCW

|
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386T 01 08-08-78 12.968 STAR C (3C) FILE EDITOR MAP - NEW =C FILE CONTENTS PAGE 14
LT & CONTENTS OF THE CHANOGES ON THE NEW STAR e . FILE 740704

613 EAXO 6,1 ADDR. OF STATUS WORD g

614 $TXO MME+S

618 MME MME GEINCS

218 —SDLA. W

617 ZERO =z, SKDCW

818 wDicC

619 ZERC 0, WRDCW

2ERO 2.0

821 sVXo EAXO L&

22 TRA 0,1

23 SKDCW [OTD s,

28 ORROAD NULL

sa2e MME GERGAD

027 TRA 0,1
A28 GRAORT MINL

29 LDo =3JHOOK , DL

630 MME GEBORT

[ )] sses

2 A

833 BusYy NULL

834 L

638 L BUSY WILL USE PROCESSOR TIME FOR THE NUMBER OF MILLISECONDS

IM_THE _PASAED ARGUMENT

37 =

838 LXLS 2,1 GET ARGUMENT = & OF M8 OF BUSY TIME

[ 2 .

MALP ML e
84 EAX2 100 LOOP VALUE FOR CACHE H8080
642 L EAX2 7”7 VALUE [F NOT CACHE HE080

90

&

e
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THIS 10

SHOULD CAUSE DISK MEAD MOVEMENT
CALL ORINCS(FC, ISECTR, IBUF, IWDSR, 1STATS)

388T 01! 08-08-70 12.968 STAR C (3C) FILE EDITOR MAP - NEW =C FILE CONTENTS PASE 18
Te CONTENTS OF THE CHANOES ON THE NEW STAR C FILE 740704
884 DIMENSION ISTAT(2), I1BUF(630), ISTATR(2)
[ od ccc
i [ o] c
c - IWOS2 CAN BE MODIFIED IF LSTBLK IS MODIFIED
.;: c =~ IFILSZ CAN BE MODIFIED IF THE FILE SI12€ IN JCL IS MODIFIED -
o c
— 821 _ccc
72 1GCNT= 10000
73 (WD8=320
874 (WD82+320
[ 34 IF1L82=200
[ 144 c FILE SI2E 18 IN LINKS
78 LATBLK=(IFILEZe12 -1)e8
L.
5 oA
[ c FOGR EACH PASS - PROCESSOR TIME = SUM OF BUSY M8 + BM8/10
802 c = CHANNEL TIME = 20M8/10(APPROXIMATELY)
883 C "
[ 08 100 i=1,10CNT/2
[ od c
ess c BOTH ISECT AND ISECTR MUST BE WITHIN DO LOOP
[ o ¢
[l I8ECTe0
890 (SECTE=LSTBLK
881 C
[ CALL BUBY(S)
[ & CALL ORINGS(FC, ISECT, IBUF, 1WDS, ISTAT)
o L10)
[
097
698
700
701
708
704
708

2 SMAP  NOECK
SYMDEF  ORINGS, GRROAD, SRBORT
ORINGS NULL
STXO SVYR0
EAXO 2,1 ADOR, ©F FILE CODE WORD
__AINO _ MMEen :
TAXO 3,1 ADOR. OF SECTOR NUMBER

sTxO KDCW

EAxo 4,1 ADDR. OF BUFFER

[ S———

[ -

91
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T 01 08-08-78 12.068 STAR C (=C) FILE EDITOR MAP - NEW =C FILE CONTENTS PAOGE 18
Te CONTENTS OF THE CHANOES ON THE NEW S8STAR C FIl1LE 740704
718 8TXO0 WROCW
7t LXLO 8,1 NO. OF WORDS
;:: AMNXO =0007777, 00 SET DCW TYPE
719 EAXO 6,1 ADDR. OF STATUS WORD
780 aTXo MME 8
kel e [aad OEINCS
222 —ADIA —
729 &R0 =, SKDOW
784 woic
788 9, WROCW

k<4 SYX0  EAXO [
700 TRA 0,1
770 SKDCW [OTD ss,1
781 SRAGAD MULL
788 e GERCAD
799 TRA 0,1
0. ___ASRORT ML -
7% LDbQ =3HOOK , DL
7% e OEBORT
797 sess .
284 y 1
7’2 SUSY  MULL
.
741 ® BUSY WILL USE PROCESSOR TIME FOR THE NUMBER OF MILLISECONDS
[
xLs 1,1 OET ARBUMENT = @ OF MS OF BUSY TIME
.
T E——— VR TV
[ 737 ] 100 LOOP VALUE FOR CACHE WH8080
L] EAXS ” VALUE IF NOT CACHE HEO8O
]
Loo [
olv [, 3
ARL 1
- R 100
>L LooP
SBRS 1,0V
™o neLr
—teee 0L BCIURN
oNg ogc 1
[ ]
[ EXEcyTE
10,8
768 ] FiLE AA, DPR, 200R
704 ] ENDJEB
798 €ecccc END OF FILE ON OUTPUT (OT). >>>>>

-y o
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setup.ec 08/28/78 0935.5 edt Mon

to &ec_name
abel setup

\¢
&command_line off
answer yes —-bf dl absout>#w
delete termination_flag
&1f (not (exists segment ipm_status_seg)) &then create ipm_status_seq
Selse truncate ipm_status_seg
ec enter_all_abs_req (date_time 2 minutes) [response “# of processes?") [re
\:‘s::o of load {terations?*)

u

&mn enter_all_abs_req

scl 500
ear absin>load_overseer_((index_set 82])) =-hf -tm "R|* -of absout>load_overs

\cil index_set 82)) -ag ((index_set &2)) A3
sc

termination_overseer 482 &3

&quit

whkSetup s

seventer_all_abs_raqea

r 935 0.235 0.462 21
load_oversear_prototype.absin 08/28/78 0937.! edt Mon

cwd  >udd>5550c 1 804>Vestal>1t
load_control &) &2

&quit

r 937 0,104 0.420 20




oYL, ¢ . SHIS PAGE IS BEST QUALLTY PRACTICABLE

wwieeoeatt 00 KR0M OOPY FURRLSHED 0 DD o

load.pll 08/28/78 0930.7 edt Mon

load® procs

dcl a(1024) fixed bin(35)s
decl (), k, sum) fixed bin(35)¢
dcl flush entrys

call flushs
do ) = | to 1009
do k = | to 1024}
a(k) = |12345¢
sum = sum + a(k)s
end}l
ends

ond}

load_control.pll 08728778 0930.7 adt Mon

load_controls proct

dcl ap ptris

dcl ascii_load_id char(2) based(ap)i

dcl ascii_iteration_cutoff char(4) based(ap)s

dcl clock. entry returns (fixed bin(71))s

dcl code fixed bin(35)¢

dcl cu_sarg.ptr entry (fixed bin, ptr, fixed bin, fixed bin(35))s
dcl finish_time fixed bin(71)s

dcl fixed builting

dcl float builting

dcl get_wdir_ entry returns (char(168))s

dcl hes_sinitiate entry (char(®), char(#), char(«), fixed hin(1), fixed bin
\¢ ptr, fixed bin(35))

dcl ‘hcs_smake_seg entry (char(#), char(#), char(+), fixed bin(5), ptr, fixe
\en(35)) s

dcl ioa_ entry options(variable)s

dcl {oa_srs entry options(variable)s

dcl ipm float bing

dcl ipm_status_seg(32) char(8) basad(status_ptr)s

dcl iteration_count float bint

dcl {teration_cuteff float bint

dcl len fixed bin(i17)s

dcl load entrys

dcl load_id fixed bin(35)4

dcl null builting

dcl start_time fixed bin(1|)t

decl stutus_ptr ptry

dcl substr builting

dcl termination_flag ptr ptri

dcl total_minutes float bins

dcl total_time fixed bin(71)

call cu_sarg ptr (I, ap, lan, code)?}
if code “= 0 then doi
call {oa_ ("Problem with argqumeant 1. Abort.")s
call hcs_smake_seq ((get_wdir_()), "termination_flag®, "%, 10, te
\cation_flag_ptr, cndm)i
returns
andi
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" 7ROM OOPY FURMLSHED 10000 e

load_id = fixed(substr(ascii_load_id, |, len), 35)%

call cu_Sarqptr (2, ap, len, code)t
if code “= 0 then dot
call foa_ (#Problem with argument 2. Abort.")s
call hcs_smake_seqg ((get_wdir_()), *termination_flag®, "», {0, te
\cation_flag_ptr, code)s
returnt
ends

iteration_cutoff = float(sdbstr(ascll_ltoratlon_cutotf. 1, len), 27)s

total_time = Oy
total_minutes = 0.3
status_ptr = nulls

call hes_sinitiate ((get_wdir_()), *ipm_status_seq”, "*, 0, O, status_
\C code)t
if status_ptr = null then dos
call foa_ (®No ipm_status_seg. Abort.")i
returns
ends

call loads

do {teration_count = 1,0 to {teration_cutoff by 1,0%
start_time = clock_()¢
call loads
finish_time = clock_()%
total_time = total_time ¢+ (finish_time - start_time)s
aends

ipm_status_seqg(load_id) = “finished®;
termination_flag_ptr = nulls

do while (termination_flag_ptr = null)s
call loads
call hes_sinitiate ((get_wdir_()), #termination_flaqg®, **, 0, O,
\cination_flag_ptr, code)?i
ends

total_minutes = float(total_time, 27)/60000000.

ipm = jteration_cutoff/total_minutess

call foa_srs("7.4f%, ipm_status_seqg(load_id), len, ipm)s

call joa_ ("Iterations/minute for load “2d = *7,4f», load_id, ipm)3

end load_controls
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"

mxsmummwmmmwm
FROM COPY FURNISHED 10DDC

SNUMB = 2777T7,. ACTIVITY @ = 01, REPORT CODE = 08, RECORD COUNT = 00402

IDENT  200232-VMM, CNO-TOMK 00600010
00000030
00000040
00000080
) S
CELLS READ ARE(IN GCTAL) 00000070
206 = .CRTIR = TOTAL INTERRUPTS = CBUF(1) 00000080
207 = .CRTCN = TOTAL CONNECTS = CBUF(2) 00000090
L] -
296 = .ZRIDT = IDLE TIME = CBUF(28) 00110
241 = .CRIDT+3sCURRENT SC CLOCK VALUE FROM VMMs CBUF (28)00000120
247 = .SRTWT © @ OF TIMES IOLE = CBUF(34) 00000130
280 = .G - ~
1044 = » -
1048 = .CRUSE+1=VMM PROC. TIME FROM VMM = CBUF(416) 00000180
1046 = .CRUSE+2sVMM IDLE TIME FROM VMM = CBUF(417) 00000170
1047 = .CRUSE+JsMULTICS VP TIME FROM VIS = COUF(418) 00000180
> 00000200
00000210
oL , 00000220
DATA PULIIRS/230400000. /, PULSE/ 84000, / 00000240
REAL MICHRS/3800000000. 7, M1 CSEC/1000000. / 00000250
- 0260
REAL lnn,lm.nm.mm‘m—ml_——g%g_—.u L TViP, - 0270
REAL LTIME,LOVH,LIDT, LRTHRS, LOCSP, LVMMP, LVMMI DL , LMTXP 00000280
REAL CTINE, COVH, C1DT, CRTHRS, COCSP, CVHHP, CVII DL, CHTXP 00000290
NIE . N
INTEGER CRTINT 00000308
- 00000310
INTEGER P1,P2,P3,P4,PS,PS,P7,P0 00000320
NIEWEN ety . 8l 1
00000340
00000350
00000360
: CALL SLEEPX(30) 00000380
: 00000390
INITIALIZE ALL COUNTERS 00000400
: 10
SALC YTREXTBATE, TO0PU) 55000420 —
CALL HCMOV(ADORS, CBUF , COUNT, STAT) 00000430
: IF(STAT.NE.0)0OTE 200 00000440
: JyiEsrLgaT To0PAL ) /PULIRS 90000450
{ ]
3 | TCNsCBUF (2) 00000470
1OVHSPLOAT (CBUF (9) ) /PULSEC 00000480
: OT=FLOAT(COUF(28) ) /PULSEC 00000480
IFCIRTINT. NE. 0)08TO 10 00000810
CALL ROCLCK(I1,I12) 00000820
RTINTe 00000830
CALL ADJSCC(IRTINT) 00000880
IRTHRS=FLOAT C IRTINT) /M1 CHRS 00000860
TWT=COUF (34) 00000870

DS=CBU

100

it i i
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TTIT N FROM COPY FURSLSHED TODDC -
IGCSF _OAT(CBUF(415))/MICSEC 00000890
IVMMP=FLOAT (CBUF (416) ) /M1 CSEC 00000600
IVMMIDL=FLOAT(CBUF(417))/MICSEC 00000610
IMTXP=FLOAT(CBUF (418) ) /MICSEC 00000620
e 00000630
WRITE(06, 1000)DATE 00000640
00000660
WRITE(O7, 1100)DATE 00000670
WRITE(O7,1110) ITIME, IRTHRS, | VMMIDL, | VMMP, 1GCSP, IMTXP 00000680
RESET COUNTERS FOR LOGOP CALCULATIONS 00000700
00000710
LTIME=1TIME 00000720
| ITIRsITIR
LTCN=1TCN 00000740
LOVH= | OVH 00000780
LIDT=11DT 00000760
| LRTINT=IRTINT
LTWT=[TWT 00000780
LTDS=1TDS 00000790
LGCSP=1GCSP 00000800 ;
LVMMP = | VYMMP
LVMMIDL=1VMMIDL 00000820
L LMTXP= IMTXP 00000830
00000840
— WRITE(42,1200)DATE a.o.o.o.mg__
WRITE (39, 1300)DATE 0000086
00000870
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe 00000880
0
00000900
CONTINUOUS LOOP TO SAMPLE HCM CELLS 00000910
00000920 +
0
100 CONTINUE 00000940
CALL SLEEPX(13) 00000980
CALL TIMEX(DATE, TODPUL) 00000960
1)
IF(STAT.NE.0)GOTO 210 00000980
00000990
CTiME=FLOAT ( TODPUL ) /PULHRS 00001000
(1)
CTCN=CBUF (2) 00001020 i
COVH=FLOAT (CBUF (9) ) /PULSEC 00001030 :
: CIDT=FLOAT(CBUF(25))/PULSEC 00001040
Lt = ) 3 i
IF(CRTINT.NE.O)GOTO 110 00001080 i 1
CALL RDCLCK(11,12) 00001070 i 1
CRTINT=12 00001080 : 3
SONTINUE 00001090 =
CALL ADJSCC(CRTINT) 00001100 '
CRTHRS=FLOAT(CRTINT)/MICHRS 00001110 :
CTWT=CBUF (34) 00001120 1
= b - et g
COCSP=FLOAT(CBUF (418) ) /MICSEC ~ 00001140
CVMMPsFLOAT(CBUF(418))/MICSEC 00001180
CVMMIDL=FLOAT(CBUF(417))/MICSEC 00001180 %
- ¥ 1180 .
CALCULATE VALUES SINCE INITIALIZATION - 00001190
00001200
AME-ITIME)*3600,) ¢+ .049) 4488881‘%9--
11=TI=10, 1220
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T2s(F \T(CRTINT-IRTINT)/MICSEC) + .049 00001230
12sT2x10. 00001240
T3nCIDT-11DT + .049 00001250
132T3%10. A 00001260
P1=(T3/T1 + .0049)%100. 00001270
P2:(T3/T2 + .0049)%100. 00001280
| Tds COVH-1GVH + .049
14=T4x10. 00001300
P32 (T4/T1 + .0049)x100. 00001310
P4=(T4/T2 + .0049)%100. 00001320
CALCULATE VALUES SINCE LAST SAMPLE 00001340
E 00001350
TS=((CTIME-LTIME)*3600.) + .049 00001360
15=T8x10
T62 (FLOAT(CRTINT-LRTINT) /MICSEC) + .049 00001380
162T6x10. 00001390
T7=CIDT-LIDT + .049 00001400
17sT7x1Q.
P8=(T7/T8 + .0049)%100. 00001420
P6=(T7/T6 + .0049)x100. 00001430
T8=COVH-LOVH + .049 00001440
18=T8x10
P7=(T8/TS + .0049)%100. 00001460
P8=(T8/T6 + .0049)x100. 00001470
t 00001480
TCNsCTCN-LTCN 00001500
TIRSCTIR-LTIR 00001810
TDS=CTDS-LTDS 00001820
| TWT=CTWT-LTWT
00001840
T WR1TE(06, 1010)CTIME, CIDT, COVH, CTCN, CTIR, CTDS, CTWT 00001580
WRITE(42,1210)CTIME, 11,12,13,P1,P2,14,P3,P4, 00001360
x 1 00001
00001580
PROCESS DATA WRITTEN FROM VMM TO GCOS 00001590
00001600
| RTIME=CTIME ¢ (T2-T1)/3600, 00001610
B1=T2 00001620
11=B1210. 00001630
B2sCVMMIDL-1VMMIDL + .049 00001640
12582210, 00001650
P1=(B2/B1 + .0049)%100. 00001660
B3sCVMMP-IVMMP +0.049 . 00001670
13=B83%10. 00001680
. + )%100, 00016
! B4=COCSP-1GCSP + .049 00001700
14284210, 00001710
P3=(B4/B1 + .0049)%100. 00001720
L] - ¢ 1
18285210, 00001740
P4=(BS/B1 + .0049)%100. 00001750
00001760
SINCE LAST SAMPLE
00001780
Be=TE 00001790
16286210, 00001800
o - *
17sB87%10, 00001820
PS=(B7/86 + .0049)%100. 00001830
B8=CVMMP-LVMMP + .049 00001840
18=p8x10, 00001080
P6=(B8/B6 + .0049)%100. 00001860
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B89=C6G '-LOGCSP + .049 00001870
19=89=x10. 00001880
P7=(B9/B6 + .0049)x100, 00001890
B10=CMTXP-LMTXP + .049 00001900
110=B10x10. . 00001910
P8=(B10/86 + .0049)x100. 00001920
C
WRITE(O07,1110RTIME, CRTHRS, CVMMI DL , CVMMP, CGCSP, CMTXP 00001940
WRITE(39,1310)RTIME, 11,12,P1,13,P2,14,P3,18,P4, 00001950
= 16,17,P5,18,P8,19,P7,110,P8 00001960
RESET COUNTERS FOR NEXT LOOP 00001980
: 00001990
LTIME=CTIME 00002000
| LTIRsCTIR
LTCNsCTCN 00002020
LOVH=COVH 00002030
LRTINTsCRTINY 00002040
LI1DT=CI1DT
LTWT=CTWT 00002060
LTOS=CTDS 00002070
LVMMIDL=CVMMIDL 00002080
= O
LOGCSP=COCSP 00002100
LMTXPsCMTXP 00002110
00002120
—9070 100
00002140
{of o] ol ol o] o ol o] ol ol o] o o7 o] o o7 o] o of ol of o] o] o o1 o] o T o] of o] o] o o] o o o o o of o o] o o o of o o] o] o] o o o o o o o o o o] o] o o7 o] ] o] 00002180
00002160
17
00002180
200 WRITE(O6B, 1800)STAT 00002190
STOP 200 00002200
I
STOP 210 00002220
00002230
00002240
" " L/‘
= " TIME IDLE-SEC OVERHD-SEC CONNECTS ", 00002260
% "INTERRUPTS DISPATCHES ®TIMES-IDLE",///) 00002270
u:1°|° FORMAT(1X,F6.3,F9.1,3X,F9.1,1X,19,3%X,19,3X,19,4X,19) 00002280
1 1100 FORMAT(1H1," ACTUAL DATA FROM VMM FOR " ,A8,//, 00002300
i = " RTIME SC-HOURS VMM-IDLE-SEC VMM-PROC-SEC", 00002310
i = 2 “ GCS-PROC- SEC MTX - PRUC -8SEC",///) . 00002320
& e S ISTIA a a 3 )
;; j”%‘oo z:ui IoL'
1 1200 FORMAT(1H1,” GCOS DATA VALUES FOR DELTA TIME INTERVAL FOR “, 00002380
s AB,/,8X, '(LA'S IDLE, CVN ARE IN 1710 SEOOND UNITS)",//, 00002360
- 2 L .." (“.ll) ” m
s % 20("-"),"DATA SINCE LAST SAMPLE",20("-"),/, 00002380
¢ : s 1X,8X," OGLAPS RLAPS IDLE %G XR OVHD %0 %R bt 00002390
] 'GLA' RLAP IDL! %0 IR OVHD %G %R", 00002400
s -_comns DIAPAT _#IDuES:./i0) 90002410
1210 FUH"A?(’X FC 3 218,2(16,213),3%,218,2(18,213),418) 00002420
00002430
1300 FORMAT(1H1,"” VMM DATA VALUES FOR DELTA TIME |NT!RVAL3 FOR ", 00002440
' ®, >Ta hod -A "A .l ® \J L] -is A \J IV I? » .A'L-" -A.
] 1x," RT! ,13("a"), ”DATA SINCE ) 4('!“), ; 0002460
~ 2 (% -"), "DATA SINCE LA‘T SAMPLE", 7(' *¥. 7, 00002470
] 'X 8xX, . RLAP' VIODLE & VOVHD &% GC.VP ’ MTXVP R 00002480
: | QYN X MIX )
g 1310 FCR"AT(‘X 8.3,16,4¢( ,l , 8%, 14, 5,13))
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ons- .. TBISPAGE 1S BRST QUAL
mwﬂ; QUALITY PRACTICARLS

mm Bl
C 00002810
1500 FORMAT(" CORE MOVE ERROR - STATUS = "“,14) 00002820
ENOD 00002830
b GMAP NDECK 000028540
TTL HCMOVY - HARD CARD MOVE SUBROUTINE\770210 00002850
TTLDAT 00002860
| EDITP  oN _00002870
SYMDEF HCMOVY 00002580
SYMDEF SLEEPX, TIMEX 00002890
SYMDEF RDCLCK,ADJSCC 00002600
CALL HCMOV(FROM, TO, COUNT,STAT) 00002620
00002630
CALLING ARGUMENTS 00002640
2 ADNDRES L - LCON - Al
ABSOLUTE STARTING ADDRESS IN 18-3% 00002660
TO = ADDRESS OF RECEIVING BUFFER 00002670
COUNT = ADDRESS OF WORD WHICH CONTAINS 00002680
NUMBER OF WORDS TO MOVE IN 10-35
i 00002700
STATUS RETURNS 00002710
STAT = 0 - ALL OK 00002720
STAT = - COUNT GREATER THAN S12
OR ZERO OR NEGATIVE 00002740
STAT = 2 - TO+COUNT PAST USER'S CORE 00002750
STAT = 3 - TO IS BELOW USER'S CORE 00002760
= - < )
3 00002780
CMOV SAVE 0,2,3,4,8,6,7 ENTRY-SAVE X0, X2, X3, X4, X8, X6, X7 00002780
STA AR SAVE A REGISTER 00002800
rasd g EAXQ S.1x ~9ET _ADDRESS OF “"STAT"
TP ALV ; STXO STAT SAVE IT 00002820
I 8$TZ STAT, 1 SET "STAT" TO ZERO 00002830
EAXO 2,1x GET ADDRESS OF "“FROM" 00002840
: CMPXO 20200000, DU IS FROM < 64K (IN HCM) 00002860
TRC ER4 NO - ERROR 4 00002870
STXO FROM SAVE "FROM" 00002880
B EAXO 3,1x —QET_ADDRESS OF “TQ"
™I ER3 MINUS - ERROR 3 00002900
. 8$TXO 70 SAVE IT ’ 00002910
s EAXO 4, 1x GET ADDRESS OF "COUNT” 00002920
‘ LXLO 0.0 o "
TMOZ ER1 - MINUS OR ZERO - ERROR 1 00002940
=01001,0V CHECK "COUNT" 00002980
ER1 TOO LARGE - ERROR 1 00002960
by it e "
LDX2 FROM GET "FROM" AGAIN 00002980
SBAR BAR SAVE OUR BASE ADDRESS REGISTER 00002990
INHIB ON DON'T GET INTERUPTED DURING MOVE 00003000
MME . EMM LE2 LLL] 0000301
ASXS 70,8 FROM ABSOLUTE "TO Y 3
xx, DU GET BAR 00003030
=0777,0V GET # OF 8512 BLOCKS 00003040
=1 VE AT ~30053585—
1,1C “SAVE LAL ; ' '
=%, AU FORM UPPER LIMIT 00003070
1,0V SUBTRACT ONE 00003080
s ) "

goososg
ADX4 COUNT, $* A

1 i
STX3 1,1¢C SAVE UPPER LIMIT 00003110 !
CMPX4 xx, DV PAST OUR CORE LIMITS 00003120

LDX3 70,8 NO - T UTE "TO" 14
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LOX4 COUNT, 8 GET “COUNT" 00003180
boor DA 0,2 GET DATA 00003160
STA 0,3 SAVE IT 00003170
ADLX2 1,0V BUMP “FROM" 00003180
ADLX3 1,DU BUMP “TO" 00003180
sBx4 1,0V DECREMENT "COUNT" : 00003200 ;
____TPNZ2 loap.a  CONTINUE UNTIL 2ERO |
[xiT Tss 'TY) RETURN TO SLAVE MGDE 00003220 !
INHIB  OFF 00003230 ;
LDA AR RESTORE A REGISTER 00003240 !
00003260 i
R4 AcS STAT, | BUMP “STAT" 00003270 '
R3 ACS STAT, | BUMP “STAT" 000032060
ATAT. | BUMP_-STAT-
ERY ACS STAT, | BUMP “STAT" 00003300
i EXIT 00003310 ;
i 00003320 j !
. :
1 00003340
1 00003380
1 00003360
1
00003380
00003390 -
00003400 i
2,10 5ET‘ﬁUﬁEEi‘E?'3EEEiB3‘T5'5tEEF"“""""ggg%gaig"‘ |
64000, DL CONVERT TO PULSES 00003430
MME GEWAKE 00 TO SLEEP 00003440 -
B T —Soeste— | |
00003470 f
00003480 \
TIMEX  NULL 0
MME GETIME i
STA 2,1 STORE DATE 00003810 |
sTQ 3,1 STORE TIME IN PULSES 00003820 |
TRA 0,1 RETURN . ; |
4

00003880
00003860 |
00003890 |
00003600 |
sTa 3,1% mi%_ |
MME GESNAP 00003630
VFD 18/0,2/2,1/0,18/0 00003840
JIRA 0.1
00003870
; ADJUST SYSTEM CONTROLLER CLOCK VALUE RETURNED 00009880 |
: R ReLCovER e Soeeae— |
~FOR ROLLOVER AFFECT : ' 1
-USE ONLY RIGHT MOST 34 BITS=8600 SECONDS 00003710 .
-HB080 HAS MICRO SECOND CLOCK 00003720 ;
DJSCC NULL : |
2,1 00003780

sQ177777777777 USE ONLY RIGHT MOST 34 BITS mm

&
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TZE POSSCC
LDA 1,0L
STA FLAG
TRA SCCEXT

NO, BRANCH

YES, SET FLAG

IF BIT = O, CHECK IF PREVIOUSLY WAS 1

NO, BRANCH

ADJUST CLOCK VALUE
RESET FLAG
USE ADJUSTED VALUE

00003790
00003800
00003810
00003820
00003830
00003840

00003860
00003870
00003880

00003900
00003910
00003918

00003930
00003940
00003980

PRIVITY
LIMITS ,10K
8YSOUT 07,0R0

00003970
00003980
00003990
00004000

g"
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termination_overseer.pll 08/28/78 0930.8 edt Mon

termination_overseer:s proc(ascii_n_loads, ascii_n_iteratinns)s

dcl
dcl
dcl
dcl
dcl
dcl
dcl
dcl
dcl
dcl

ascii_n_loads char(w)s

ascii_n_iterations char(#)3

character_value char(7):

code fixed bin(35)%

cv_dec_check_ entry (char(+), fixed bin(35)) returns (fixed bin(35))3%
cv_float_ entry (char(#), fixed bin(35), float bin(27))}%

fpsum float bin(27):

fpval float bin(27):

get_wdir_ entry returns(char(168) aligned)

hes_Sinitiate entry (char(«), char(+), char(«), fixed bin(1), fixed bin

\¢c ptr, fixed bin(35))¢
dcl hcs_Smake_seg entry (char(*), char(#), char(x), fixed bin(5), ptr, fixe
\en(35))4

dcl
dcl
dcl
dcl
dcl
dcl
dcl
dcl
dcl
dcl

i fixed bint

ioa_ entry options(variable)s

ipm_status_seqg(32) char(8) based (status_ptr)s
n_loads fixed bin(35)1s

n_iterations fixed bin(35)%

null builting

status_ptr ptrs

substr builting

termination_flag_ptr ptri

timer_manager_S$sleep entry (fixed bin(71), bit(2))3

n_loads = cv_dec_check_ (ascii_n_loads, code)t
if code *= 0 then dog
call ioa_ (*Bad argument | input to termination_overseer. Abhort,
call hcs_$make_seqg ((qget_wdir_()), "termination_flag", "", 10, te

\cation_flag_ptr, code)s

returnt
end$

n_iterations = cv_dec_chack_ (ascii_n_iterations, code)}
1f code “= 0 then doi
call {oa_ ("Bad argument 2 input to termination_overseer, Abort.
call hcs_smake_seg ((get_wdir_()), “termination_flag®, ", 10, te

\cation_flag_ptr, code)}

returnt
end$

status_ptr = nulls
call hcs_Sinitiate ((get_wdir_()), "ipm_status_seqg", "*, O, O, status_

\¢ code)t

if status_ptr = null then dot
call foa_ ("Unable to initiate ipm_status_seq. Abort.")i
call hcs_sSmake_seg ((get_wdir_()), "termination_flag", "", 10, te

\cation_flag_ptr, code)}

returnt
ends
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ror v
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do { = | to n_loadst
1:=_atatus_309(l) = WZ227222227%%
ends

do{ = | to n_loadsi
do while (ipm_status_seqg(i) = %2727Z7777%)s
call timer_manager_ssleep(30, *11%b)$
ends
ends

termination_flag_ptr = nullj
call hcs_smake_sag ((get_wdir_()), *termination_flag*, "%, 10, termina
\c_flag_ptr, code)}

call timer_manager_Ssleep(30, "ii*b)}

do{ = | to n_loads}
do while (ipm_status_seg(i) = *finished")3
call timer_manager_ssleep(30,"11%b)¢
ends
ends
fpsum = 0,4

do { = | to n_loadst
character_value = substr(ipm_status_seq(i), i, 7%
call cv_float_ (character_value, code, fpval)#
fpsum = fpsum ¢ fpvall
end$

call ioa_ (" 3/#xwkx Thruput for =d loads and “d {terations is “.4f it
\cions per minute #**+x4"3/%, n_loads, n_iterations, fpsum) $

end termination_overseersi /

r 930 1.627 1.654 44
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PREFACE

This document is intended to fulfill the requirements of line item A002,
Design Plan, for contract number F30602-77-C-0097, Virtual Machine
Monitor (VMM) Performance Ahalysis. Honeywell Systems and Research
Center working with BGS Systems Incorporated have produced this document
based on the result of investigations performed for the above -mentioned
contract, and on research in virtual machine technology done outside the

contract scope.

The principal authors were S,C. Vestal, Honeywell; H, Schwenk and
R. Goldberg of BGS Systems, Inc. The authors also wish to acknowledge
the assistance, both written and oral, of Mr, Russell McGee and

Mr. Larry Shannon of Honeywell Information Systems.
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SECTION 1

INTRODUCTION

ORGANIZATION OF THIS REPORT

Since this document was produced at approximately the midpoint of the
contract term, final conclusions concerning the Virtual Machine Monitor
(VMM) performance cannot be drawn., Experiments are still underway at
the time of this writing. This report is an attempt, therefore, to document
the functional characteristics of the VMM in a way that closely parallela its

observed performance.

Section 2 describes the VMM down to the module level of detail. Much of
this information has been taken from the documentation produced with the
VMM implementation. The reader will notice therefore that it closely
follows the WELLMADE methodology documentation structure.in use at the

time the design was done.

Section 3 describes the design approach for evolution of the VMM. In
particular virtual device support is treated in detail for shared front-end

network processors and shared operator consoles,
Additional material like that in Section 3 will be supplied at the termination

of the contract, following more extensive analysis of the VMM performance

in live tests.
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SECTION 2

VMM DESCRIPTION

FUNCTIONAL DESCRIPTION OF VMM

The VMM provides two environments within a single 6180 system. These
are indistinguishable from the normal 6000 program environment and the
6180 program environment, They are referred to as virtual machines.
These evnironments are established by interfaces fabricated of software

3 and hardware., When these are viewed from an operating system, they are
indistinguishable from the real hardware interfaces assumed by the

operating system when executing on a real machine,

The VMM under consideration supports multiple virtual 6000 machines and
i one virtual 6180 machine. Therefore it is possible for a single 6180 system
to concurrently support multiple GCOS systems and one MULTICS. Hence
we have a situation in which a VMM supports multiple operating systems in

much the same way that a multi-programmed operating system would support

two (or more) user jobs.

The hardware interface part of the virtual environment consists of several
hardware changes to the basic 6180 CPU, a change to the IOM Direct Channel
and a change to the 355 DIA Control Board. The software interfaces are

supplied by the VMM and are the subject of this and related documentation.




The responsibilities of the VMM are as follows:

e Partition the available real machine resources in n pieces,
One set is reserved for the use of the VMM, The remaining
resources are divided to provide one set each for n-2 virtual
6000 and one for the virtual 6180,

® Protect each operating system, its environment and the VMM
irom reference by the other operating system or any of its

users.

e Provide for the allocation of the real machine processing and
peripheral resources to satisfy the resource needs of the
virtual machine (VM).

e Provide for the orderly start-up of the VMM, the GCOS and
MULTICS.

I“ should be noted that the partitioning of resources must apply not only to
main memory but to secondary storage and peripheral devices as well, It
must not be possible for any user of any operating system to reference a
virtual machine other than the one it is allocated to serve. (An anomaly
exists in this respect with regard to 355s in version 1.1. See Known
Limitations beslow, )

Usage Information for VMM

To initiate VMM operation, a bootload procedure will be started by depress-
ing the "boot'" button on the master console. This will cause the VMM to
be loaded from cards. The system configuration will be specified by tables
internal to the start-up deck. Once the VMM has been started up, either
or both of the virtual machines may be started from a console,
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In this version of VMM (only) it is the user's responsibility to establish the
configuration decks of the GCOS and MULTICS to be executed in such a way
that they use a complementary set of the real peripheral resources of the
system. Each operating system must have its own consoleand unit record
peripherals. It must also have its own FNP if one is used and its own
magnetic tape handlers and disk spindles. However, disk and tape control-
lers and IOM may be shared. Furthermore, the addresses of the peripheral

devices used must be their real device addresses.

After an operating system has been started from a console, it will be used
exclusively by that operating system. Communication with the VMM will
not be possible again unless or until the VMM detects that the operating
system has ceased operation. At this time, the operating system may again

be started according to the initial start-up procedure.
Once a virtual machine has been started, its interfaces to its operator and
its users will be identical to those provided when it is in execution on a real

machine. These are described elsewhere in appropriate manuals.

Resource Objectives of VMM

Version 1,1 of VMM shall operate on 6180 systems with memories greater
than or equal to 384K words in size. It requires use of processor and
direct channel modifications mentioned above. It shall be capable of
supporting one or two real processors. (The VMM is fundamentally capable
of supporting up to four real processors, but only a single processor has
been tested thus far,)
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As a development target, the VMM shall reduce combined system throughput
by less than 20 percent.

Design Overview of VMM

The VMM at its most gross design level consists of two parts: start-up and
the VMM body.

Start-up is executed at bootload time for the purpose of loading and
initializing the VMM. Once it has been executed, it is partially overlaid
and not used again until the next VMM bootload process is initiated.

The VMM body consists of two major parts: exception processing and
dispatching, Exception processing fields all faults and interrupts (referred
to generically as exceptions) and initiates appropriate responses to them,
Exceptions may cause different types of actions to take place depending

upon the exception which occurred and the environment in which it occurred.

In general, exceptions provide the method used by VMM to maintain the
required degree of control over the system. The exact way in which this

is done is described in lower level documentation,

After exception processing is complete, the dispatcher is invoked. The
dispatcher gives control to virtual machines at the appropriate times to
maintain the proper operation of the virtual machines in the proper
scheduling sequence. The dispatcher contains the scheduling policy of the
VMM and will give control to virtual machines in accordance with this
policy.
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" virtual machines (if at all), the dispatcher will return control in different

ways. It may simply return to the last point of execution or it may do so by

S simulating a fault or interrupt.

The operating systems are considered to be subroutines of the dispatcher

5 ln this design overview. The dispatcher will give control to one or the
T -other of its virtual machines at appropriate times. Once it has given

control to an operating system, the dispatcher will have finished its task
and will not again be invoked for execution until another fault or interrupt
has been processed by exception processing, The fundamental notion of
the VMM is that, aside from the detailed instructions of the system, the
only interfaces that exist between the hardware and the operating system
are the I/O mailboxes and the fault and interrupt vectors. In most
instances, the operating system can be allowed to execute its instructions
and those of its users at full speed and without VMM intervention so long as
their addresses are constrained to lie exclusively within the domain of the
operating system, Only in those cases where fault and interrupt vectors or
1/0 mailboxes are involved is it necessary for the VMM to gain control and
perform functions which will prevent operating systems from interfering
with each other or with the VMM. Because of this localization of control,
the VMM can control its guests with relative efficiency and the VMM itself
can be kept to a fairly modest size and complexity,

The CPU modifications used in support of VMM allow the VMM to relocate
the address space in which each operating system executes so that each one
has the illusion that its addresses start at absolute memory address zero
and proceed upward to its configured maximum. Given this illusion, each
operating system also has the belief that it 6wns and controls the real fault
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and interrupt vectors of the system. This, of course, is not true. The
real fault and interrupt vectors of the system are owned and controlled by
the VMM.

To maintain the degree of control which is needed and to allow the operating
systems to be able to operate upon their vectors in the intended manner, the
VMM gains control on every fault and interrupt. This gives the VMM the
opportunity to keep track of the status of all system devices which it must
control on behalf of its guest operating systems. At the same time, it gives
the VMM the opportunity to exercise dispatching control over its guests.

If one operating system has used a processor for its fair share of time, the
VMM may not return the processor to it in the event of a fault or interrupt,
It may dispatch the processor to another operating system instead, Since
the VMM intercepts all faults and interrupts and controls the dispatching of
the processors among the virtual machines, it is necessary for the VMM to
be capable of queueing faults and interrupts and to be able to simulate these
in a virtual machine at the time a processor is dispatched to it.

In addition to gaining control on every fault and interrupt, the VMM must
gain control at certain other key times. Chief among these is when I/O

is about to be initiated (other instances are elucidated in lower level
documentation). This is essential to permit the VMM to perform address
translation in the channel programs corresponding to the relocation of the
virtual machine within the real address space, in some instances to perform
device and channel address translation and, in future versions, to permit

substitution of virtual for real devices.
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At the general conceptual level, the controls described above constitute the

heart of the VMM. More complete and detailed descriptions are contained

in lower level documentation,

Test Specifications for VMM

The VMM is targeted to operate with an overhead of less than 20 percent,
This measure shall be determined by executing a certain set of GCOS jobs
and a MULTICS script as separate tasks on a freestanding 6180 system and
comparing their combined e.xecution time with the same work executing
under VMM, In performing the freestanding measurements, the same
system resources shall be used as are used when executing under

the VMM.

Note that other variations on the method of measuring performance can be

used and are perhaps preferable.

Known Limitations of VMM

The dn355 shares mass storage with the operating system which it is
serving. There is no way implemented in Version 1,1 which will prevent
the 355 from accessing or writing on mass storage which is outside of its
intended area of use, This anomaly will be repaired in future versions of
VMM.
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FUNCTIONAL DESCRIPTION OF EXCEPT-PROC

The exception processor, except-proc, responds to all faults and interrupts,
safestores the processor conditions at the time of the exception, and calls
either a fault or an interrupt handler to take appropriate action, Except-
proc will be executed by any processor which is interruptable at the time an
interrupt occurs, It will be executed by the processor which detects a fault

if one occurs.

The exception processor is a key element of VMM because it gains control
of the system at those points and times when it is essential for VMM to gain
control (for example, prior to the execution of a cioc instruction in a guest
operating system). Of course, it also gains control in some instances
which are of no interest to the VMM, such as when a user executes a MME,
In the latter instances, the VMM merely returns control to the virtual

machine after the fault is processed.

Design Overview of Except-proc

All processors share a single fault vector and a single interrupt vector.

The vectors contain the instruction pair, scu/tra. In order for the results
of the scus to be associated with the proper processor in the event more

than one processor is in a single vector in a short time interval, ad modifica -
tion is used on both instructions of the vector pair, This causes the results
of each safestore to be placed in a separate eight-word area and each transfer
to occur to a separate location, The processor number of each processor

is set in its switches and this value is stored with the scu information so

that the scu results can be correlated with the stored values after the

vector pair has been executed,
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A scu/tra queue is used to allow each processor to safely store scu and

register conditions.

A trouble fault and an execute fault cause the system to abort; all other

£/i's store the scu conditions in a scu block in the scu/tra queue and then
transfer to one of the tra blocks. Six lines of code are executed that

store 26 words (pregs (16), regs (8), and dsbr (2)) in that same tra block, and
load x4 with the address of the tra block, The last instruction in every

tra block is a transfer indirect through an its pair to the fault-interrupt-
intercept-module (fiim).

Fiim is "pure" code. In this code we search "back" through the queue
to find the scu conditions stored by this processor. If we have had a fault
in the fiim we may find more than one scu block; we continue searching
until we have found the earliest, or the one that originally brought us to
fiim,

From the scu and tra blocks we can find the conditions to be stored in a
machine conditions block for use by f-proc or i-proc. We store these
machine condition blocks in the vpdb for faults or interrupts in a vm, in the
rpdb for faults in the non-fiim VMM (e.g. absa), and we do not store
conditions for interrupts in the VMM,

After storing the conditions we update the queue to show that these
conditions have been'picked up and stored. We also verify that the queue
is not in an illegal position.

When the conditions have been stored and the queue has been updated, the
processor transfers to f-proc or i-proc to finish processing the fault or

interrupt.
A-10
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Exception processing consists of three main parts: the vectors, the scu/tra
queue and fiim, These three are described below in greater detail,

Fault/ Interrupt Vector Pairs--When a fault or interrupt occurs the

processor enters real, absolute, master, 6100 mode and transfers to an

entry in the fault/interrupt vector,

The vector pairs are set up by VMM startup. All vector pairs except for
the pair corresponding to the trouble and execute faults are set yp with the

same two instructions:
scu scu/tal, ad

tra tra/tal, ad

Scu/tal and tra/tal are two tally words in low core that reference a location \ g |
to store scu conditions and a location to transfer to, respectively. The
trouble fault causes the system to abort. Its vector pair is loaded with

these two instructions:
scu trb/flt/scu
tra trb/fit/tra

; At trb/flt/tra is a transfer to the system abort routine. A similar pair of
instructions is found in the execute fault vector pair,

The tra tra/tal, ad causes us to transfer to a set of code (six instructions)

in the scu/tra queue,




Scu/tra Queue--The scu/tra queue is composed of alternating scu and tra

blocks. The scu blocks are eight words long and are used for storing the
scu conditions; the tra blocks are 32 words long and are used to store the
registers, pointer registers, and dsbr. There are two different types of
tra blocks, since some of the storage locations in the tra blocks must be on
mod .16 boundaries and 40 is not a 0 mod 16 number.

Type 1 has the storage area for pregs, regs, dsbr, and
six words of code

Type 2 has the storage area for regs, pregs, dsbr, and
six words of code

The six lines of code for type 1 (2) are

sreg -10(26), ic
spri -27(19), ic
eax4 -28, ic

sdbr -5, ic

idbr vmm/ dbr

tra fiim/its/ptr, *

The transfer to fiim/its/ptr, * is a transfer to the fiilm. When the fiim is
entered the scu and register conditions have either been stored in a valid
location or they have not and the fiim will detect this.

e If the stored conditions have been overwritten, we abort.
e If we have overwritten the end of the queue, we abort,

e If we have written into the ''danger zone" of the queue, we
reset the tallies.
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The scu/tra/queue management is explained as follows: To avoid writing
over conditions in the queue, there is a variable scu/checks for each real
processor that holds the address of the scu block from which conditions were
last stored for this processor. Lub/addr (upper) is the smallest of these
addresses and we try to never write past it; we consider the information
ahead of this address no loager important. The only way there can be more
than one scu/tra block pair per processor is if the tra instruction faults
after the scu instruction is executed, or if there is a fault(s) in the fiim.

The queue is set up with the following pointers, as shown below:

start/q, b/trsh, q/trsh, end/q, lub/addr

Every time the scu/tal is incremented, the tra/tal is also incremented, If
we fault during the scu instruction, we get a system trouble fault and abort
the system; so we do not have to worry about unmatched scu/tra blocks
and we know that the information stored in the tra block is always stored

after (i.e., more recently) than in the scu block.

If we did not have to worry about updating the tally words, the tra/tal would
always point to the tra block immediately following the scu block that scu/

tal pointed to. However, since other processors can be using the tally words
while one processor is updating them in the fiim, we might encounter the
situation of having a processor do an scu scu/tal, ad just before the updating
of the scu and tra/tals (which are updated simultaneously), so that the tra
tra/tal, ad instruction executed by the processor causes a transfer to the

top of the queue while its scu conditions have been stored at the bottom of the
queue, However, the tra/tal address is still circularly greater than that

of the scu/tal so we use the address in tra/tal to check if we have over-

written any important information,
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We define the lub to be the lowest (number) of the addresses in the scu/checks
and as the tallies are updated to the top of the queue and then incremented, we
want to stop before this address in the lub, To help insure that we do not
store past this address, we define b/trsh to be b/trsh/upd words before
(circularly) the lub and try to stop at this address. We use the address

in tra/tal to check for b/trsh.

If we find that the tra/tal address is within b/trsh/upd words of the lub, we
abort. In the same manner, we attempt to avoid writing past the end of the
queue by defining a q/trsh to be a fixed distance before the end of the queue
and we update the tallies whenever the address in tra/tal is greater than

this value in q/trsh,

Below are the six possible arrangements of the lub, b/trsh, and tra/tal:

lub lub b/trsh
b/ trsh tra lub
tra b/trsh tra
1 2 3
b/trsh tra tra
tra b/trsh lub
lub lub b/trsh
4 5 6

Conditions 1, 4 and 6 should cause an abort.
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Fiim--The last instruction is the tra block, a transfer indirect through an

its pair, causes us to enter append mode., As its name implies, fiim is

pure, i.e., it can be executed simultaneously by several processors. The

outline below describes the operation of fiim,

A. INITIALIZE

1. The first ten instructions in fiim are inhibited, As soon as

fiim is entered pr.rsdb and pr.lcdb are set to correctly

reference the real system data base (rsdb) and low core data

base (lcdb) respectively.

2, Then rsdb|inhib/scu/mask is used to set the memory controller
mask (smcm) in the scu with lower order memory. Once this
is done it is no longer necessary for the instructions to be
inhibited.

3. Next, the processor switches are read to determine which real
processor is executing the fiim, With this information we can
load br. rpdb with a sdw number that corresponds to an unique
segment for each real processor known as the real processor
data base (rpdb). While executing the code that accomplishes
this we set x7 to the processor number, There is an array,
temp, with a word for every real processor. Thus we can
use "temp, 7" as a temporary storage location and the code

is still pure,
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4, As soon as the rpdb has been determined the clock of scu0 is

read and the value stored in rpdb vmm entry time.

5. Next x5 is loaded with lcdb|scu/tal. The conditions for the
real processor were stored at least 40 words before this
value, depending on how many processors have since executed

a fault/interrupt vector pair.

FIND A VALID scu BLOCK FOR THIS PROCESSOR

In most cases there will only be one set (values stored in the scu
and tra blocks together) of conditions stored for the real processor
executing fiim (see the above discussion of how the scu/tra queue
works), However, there may be two or more sets of conditions
stored, and we want to find the first, or earliest, stored set in
order to save the conditions with which fiim was entered, Since
x4 contains the address of the tra block, we are searching only for

the egrliest (oldest) scu block for this processor,

To best utilize the queue we want, scu/checks for this processor to be
set with the address of the most recent scu block found for this
processor, so we use rpdb/first-time ind as a flag; when it is
nonzero we have not yet found a valid scu block for this processor;
when it equals zero we have found a valid scu block and we have
saved its address in rpdb| saved/tally/addr.
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Find an scu Block for this Processor

As stated above, x5 is set equal to lcdb | scu/tal so x5 either
equals a valid scu block address or it is > q/trsh,

We search backwards through the queue looking for a s

block stored by this processor. Word 3 of the scu data contains
the processor number in bits 28-29, If this is equal to x7 we
check to see if we have reached the address of the scu block
used for this processor the last time it was in fiim. This
address is kept in rsdb |scu/checks, 6. If we have not

reached it yet we continue backing up the queue; if we reach
rsdb |scu/checks, 7 we decide thai there was no block of

conditions stored for this processor and we abort, abort/6.

See if Address for this scu Block is Valid

x5 is the address of a scu block stored by this processor. We
check bit 18 or the third scu word to see if the conditions have
already been stored. Unless we are in the " possible garbage
area' (x5 > g/trsh) we abort if the conditions are already
stored, abort/8. This bit (18) is set near the end of the fiim
and is reset when new scu-conditions are stored in this block

via the scu instruction in the fault/interrupt vector pair,
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If the conditions have not yet been picked up and stored, we
proceed under the assumption that either (i) the scu conditions
are valid, (ii) they were stored as a result of a fault in the

fiim and we will continue looking for the earliest block for this
processor, or, (iii) something is wrong with the queue and after

discovering this later in the fiim we will abort.

As may-be-valid-conditions we set up pr.vmdb and pr. vpdb to
reference the virtual machine data base (vmdb) and virtual
processor data base (vpdb) respectively. Then we store the
second word of the scu conditions into rpdb/scu/fault/word

so that we can pick it up before leaving fiim, We cannot wait
until then to look for this second word because x5 will no
longer reference the scu block and pr5 will not be valid pointer

to stored conditions in the case of an interrupt in the VMM,

C. STORE CONDITIONS

1.

Determine Type of Conditions--Fault or Interrupt

From word 2 or the scu block, ledb/scu/fault/data/word, 5, we
can check bit 35 to see if we had an interrupt or a fault; then
from the real/virtual indicator, bit 32 of the fifth word of the
scu conditions, we can discover if this fault/interrupt occurred
in the VMM or the VM.

If there was a fault in the fiim we return to look/for/scu to find

another scu block for this processor,
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If there was a fault in a VM we set bit 0 of rpdb|ind/word to show
that fiim was entered from a VM by a fault,

If there was an interrupt we set bit 6 in rpdb|ind| word.

If the interrupt was in the VM we zero bit 0 of rpdb|ind/word
to show that fiim was entered from a VM by an interrupt.

Set up prd

We pick up conditions from lcdb/0, 5, where x5 is the address
of an scu block, and store them in 5/0, where pointer register
5 -pr5- has been set up to reference the first word of a 48 word

block of machine conditions. pr5 is set as follows:

Fault/Interrupt in the VMM --For a fault in non-fiim VMM,

prs points to rpdb|vmm/cond/start,3, vmm/cond/start is

the first address of a list of machine conditions blocks, and x3

determines which block we will store into.

For an interrupt in the dispatch segment, no conditions are

stored and pr5 has no meaning in this instance.

Fault/Interrupt in the VM- -For a fault or an interrupt, prs

references vpdb|vp/mach/conditions.
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3. Store the Conditions

Pointer and lengths are stored at all times.

For the mlr instructions we have to make sure that we work
with character addresses; in the case of desc9a these character
addresses are four times the word addresses. We store the
scu conditions and the value of the clock that we read on

entering fiim and then saved in rpdb|vmm/entry/time.

From x4, the word address of the tra block, we can determine
if we stored conditions in a typel of a type2 block. From each
block we pick up and store the pregs, regs, and the dsbr,

A 'scpr' with a tag of 01 stores the fault register in 5/mc/
fault/reg.

4. After all conditions have been stored, the stored bit is set in

the scu conditions in the queue,
D. QUEUE UPDATE

In the queue updating code we update scu/checks, the lub, b/trsh,

etc, if necessary while checking for possible error conditions,

On reaching queue-update we check the stored bit of the lub, If
it is one we proceed, but if it 0 the lub has been overwritten and we
abort since-we can no longer be confident that the conditions we picked

up from the scu/tra queue are valid, (abort/18)
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While updating the queue we lock the code with rsdb|fiim/ q/lock,

1. Update scu/checks

We store the address of the most recent scu block found for
this processor (this address has been saved in rpdb/saved/
tally/addr) in scu/checks. 7.

2, Update lub, b/trsh, etc. if necessary

If this processor owns the lub we have to search all the scu/
checks of the active processors to find the lowest address.
We put this address into the lub, i.e., into rsdb|lub/addr
(upper half) and calculate a new rsdb|b/ trsh by circularly
subtracting rsdb|b/trsh/upd words, If the lub is less than
b/trsh/upd words from the start of the queue (rsdb/start/q)
we wrap around to the bottom of the valid queue, above rsdb|
q/trsh, and continue moving backwards until we have gone
b/trsh/upd words,

3. Check Queue Position

There are six possible queue positions with respect to the lub,
tra/tal, and b/trsh, We check for the three acceptable positions
and abort for the other three, wait/abort, See the information
on the scu/tra queue above for a discussion of which positions
should cause aborts.




E. TRACE

It rsdbltrace/ﬁag = 0 we do not perform a trace, If it is not

‘ equal to 0 we enter trace by one of two entries:
Entry point 1 (trace/1) is used when we wish to save the trace code,
words 2, 5, and 7 of vp/mach/conditions, rpdb|vm/vp/no, ind/word,

vpdb|vp/state, and the real proc, number.

Entry point 2 (trace/2) is used when we wish to save the eight

words we have stored into rpdb|trace/conditions.

Trace/1 and trace/2 are both entered with a tsx6, x5, x7, and pr6

are changed for both entry points; rpdb|trace/conditions are changed

if we enter at trace/1, \
F. LEAVE fiim

The Q register is loaded with the fault/interrupt number, right
justified.

Rpdb/interrupt/flag is used to tell whether it was an interrupt or

a fault that brought us to fiim, If interrupt/flag = 0 it was a

fault and we transfer to f-proc through an its pair. If interrupt/flag :
does not equal zero we transfer to i-proc through an its pair to 1
handle the interrupt. In both instances we enter the second word
i of the particular segment since the first word is an error trap.

| |

... 4
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Functional Description of I-proc

I-proc is the VMM module which handles the processing of all VMM and VM
interrupts, I-proc is invoked by the fault/ interrupt interceptor module
after the occurrence of an interrupt, Upon entry to this module the state
of the processor has been saved for those interrupts which occurred while
the processor was in virtual mode. If the interrupt happened in real mode
(i.e., while in the VMM) then the state of the processor will not have been
saved. The reason the processor state is not preserved is that while in
real mode the processor is inhibited from receiving interrupts except
during one instance while in the VMM dispatching module. If an interrupt
occurs at this point, it is not necessary to save the processor state,
Interrupts cannot occur at any other instance because the processor is
inhibited through the use of the inhibit bit and the SCU masks,

The processing performed by I-proc and its related routines entails a
simulation of the functions performed by the I/0 multiplexor (iom) and the
system controller (scu). For this simulation I-proc must appropriately
update the virtual address space corresponding to the virtual machine
associated with the interrupt being processed. This updating consists of
modifying the virtual mailboxes, mterrilpt multiplex words, and status

words.

Usage Information for I-proc--This module relies completely on the data-

bases constructed for the real and virtual environments. When the interrupt
processor is invoked by fiim, it is expected that the interrupt type (int-
level) will be contained in the lower portion of the Q register, Upon exit
from I-proc, the appropriate virtual addresses and VMM data bases will
have been updated to reflect the completion of the interrupt processing.
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Resource Objectives of I-proc--The objective of the interrupt handler is to
efficiently simulate for a virtual machine the operation of the peripheral
subsystems in regard to the termination operations performed in processing

on I/O request,

Design Overview of I-proc --At this level of the interrupt processor the

current time of day is read from the scu with memory address 0, This is
used to meter the time spent processing interrupts. Then according to the
type of interrupt being processed as determined by the interrupt level
number, the module corresponding to I/O system first initiating the
interrupt will be invoked. All processing of the interrupt will be performed

at these lower levels with the aid of a set of common subroutines,

Functional Description of iom/int.--The processing of all interrupts from an

iom are handled by iom/int. The amount or extent to which the interrupt
is processed and simulated for the corresponding virtual machine is
dependent upon the interrupt type.

At this level, the interrupt multiplex word, imw, corresponding to the
interrupt received is examined to determine which if any channels require
interrupt processing. Each channel interrupt is processed independently,
If the interrupt is from the overhead channel six then processing will be
performed by the psia-proc module, All other interrupts from overhead
channels will cause a VMM abort.

The processing of payload channel interrupts is handled separately., Non-

terminate interrupts will be handled by the module non/term/int, If
the payload interrupt is the result of an interrupt from a 355, then the
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module DN355 will be invoked. The only interrupt not covered by the above
two cases is the terminate interrupt. The terminate interrupt processing
consists of determining the real-to-virtual map, updating the virtual mail-
box entries, adjusting and storing the associated status word, and setting
the proper virtualimw bit. After this processing has been performed the
data storage for this request is released and the processing of the next 1/0

request for the real channel or any of its crossbars is initiated by iom-proc,

Usage Information for iom/int--This submodule is called from within

the interrupt processor, I-proc, to process any iom related interrupts,
Upon entry the number of the real iom causing the interrupt is known and
the type of interrupt is previded by the imw level. The contents of the imw
services to drive this module such that all channel interrupts are processed,
Upon termination of this routine the interrupt has been simulated in virtual
space and the appropriate interrupt cell in the virtual machine's scu data-
base has been set, Also, a connect has been performed for the next queued

1/O entry for each channel processed.

Functional Description of non/term/int--This routine is used to process

interrupts which are not expected by the VMM (i.e., non-terminate interrupts)
with the exception of channel six interrupts, Since they are not expected,
the virtual mappings are not determined as in the terminate case, Instead,
the mapping is calculated from a set of mapping constructed at VM start-
up time. Once the virtual map is determined, the VM's corresponding imw
and SCW interrupt cells are set to complete the processing of this interrupt,
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Known Limitations of non/term/int--This module assumes only dedicated

peripherals are configured to a VM, In addition, only special interrupts
and interrupts from a 355 will be processed, If a marker or initiate

interrupt is received it will result in a VMM abort,

Functional Description of real/virtual/map--This module transforms the

mapping of the real device currently being processed into a mapping of the
associated virtual device, The virtual machine, iom, channel, and device
numbers are determined as well as descriptors describing the VM's data

base within rsdb and the VM's address space,

Usage Information for real/virtual/map--The input variable vir-map
ge

(qu) is used to create the variables vir-iom(x1), vir-ch(x3), vmpr(pr6) and
vmdbtr(pr7), After the module is finished executing, control will be

returned to the x6 within the current segment,

Functional Description of update/virtual/scw--This module is responsible

for updafing the virtual status control word(scw) corresponding to the virtual
channel whose interrupt is currently being processed. This updating shall
be identical to that performed by the iom-B on a status service, The iom-B
anoﬁs three types of status queues - a list, a circular queue with four
entries and a circular queue with 16 entries, The type of queue as well as
the next entry in the queue is specified by the scw, A tally field is also
provided to determine the length of a status list when the list option is
employed.,

Usage Information for update/virtual/scw--In order to process the
virtual scw, this module must be called with the following variables:
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1) vir/iom
2) vir/ch
3) rpdb

4) vmpr

5) vmdbtr

The above variables will be preserved during the module's execution, In
addition, the virtual scw corresponding to the interrupt to be processed
will be updated and vir/scw/address will be the virtual address used to
store the status.

S
\\’\,‘

Design Overview of update/virtual/scw--The function of update-virtual-

scw is to perform the same type of servicing for the virtual scw as perform-
ed by the iom for a real scw, This includes updating the scw pointer and
decrementing the scw tally, The exact procedure for this scw modifica-
tion is presented in detail in the iom EPS-1.

In addition to the update function, the routine also tests the store address
for the next status pair to insure that the status will be stored within the
proper virtual machine's address space, This address is used by update/
virtual/status to store the virtual status,

Functional Description of update/virtual/status--The function of update/

virtual/status is to perform the updating of the virtual mailbox lpw and lpwe
and the virtual status pair. The virtual mailbox scw is updated by the module
update/virtual/scw,
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Both the lpw and lpwe are modified by the iom in the process of executing
a channel program, When an interrupt is received from this channel, the
state of these two mailbax words may reflect the presence of the VMM,
Therefore, the address fields and lpw state bits (AE, relative, restricted)
must be virtualized.

The status pair is similar to the lpw and lpwe in that it must also be
virtualized. The first word of the status pair contains an address extension
field which must be corrected to reflect the virtual address extension, The
dcw residue word (the second word of the status pair) must also be
virtualized to reflect a possible VM address space offset from a 256K
memory boundary.

Usage Information for update/virtual/status--The following variables

must be provided to update/virtual/scw upon entry:

1) lcdb 6) vir/ch
*2) rpdb ) vmpr

3) real/iom l‘ 8)  vmdbtr

4) real/chan 9) vir/scw/addr
5) vir/iom

These variables will not be modified during the execution of this module,
However, this module does update the virtual channel's lpw, lpwe and
status pair within the VM's address space,
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Resource Objectives of update/virtual/status--The updating of the lpw,
lpwe, and status pair adds greatly to the overhead involved with processing
an interrupt. This is especially true when the virtual machine ignores the
virtualization in most cases.

Known Limitations of update/virtual/ status--In order to keep VMM over-
head at a minimum, a complete virtualization of the VM's channel mailbox
is not always performed. Only in the event of status pair with non-zero
major or minor status fields will the VM's lpw and lpwe be updated, It is
assumed that the 1pw and lpwe will not be examined when the major/minor
status fields are zero,

Functional Description of set/vir/imw--One of the functions of set/vir/imw

is to simulate the scu in setting its interrupt cells, Within the system

control unit (scu) there exist 32 interrupt cells, Each of these cells
corresponds to one of the 32 interrupt types. The proper cell is set when
the scu receives a set interrupt cell command from one of the subsystems
configured to the scu, These cells together with the scu's interrupt can be
delivered to a configured processor. This same function is simulated by
set/vir/imw by setting the corresponding bit in the virtual machine's data
base word representing the scu interrupt cell,

Another of the functions performed by set/vir/imw is to set the proper imw
word in the virtual machine's address space, When the iom sends the scu
a set interrupt cell command, it also requests the scu to set a bit in the
imw word corresponding to the interrupt cell just set, The bit set within
the imw word represents the channel on the iom which initiated the interrupt

This iom/scu function is simulated by setting the proper bit in the virtual
machine's imw,
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appropriate interrupt cell in the VM's virtual scu's data base and the up-

The final task performed by the set/vir/imw is to construct a trace entry.

When the VMM system trace indicator is true, a trace entry consisting of
the real status pair, the real channel index, and the interrupt type is built

and the system trace module is called.

Usage Information for set/vir/imw--This module requires the variables

vmpr (pr6é) and vmdbtr (pr7) be specified in the described hardware 1

registers.

Functional Description of dn355/int--The purpose of this module is to

process interrupts from 355s which are connected through the modified ‘
DIA to the iom. For VMM step 1.1 development only, dedicated 355s will
be allowed., A dedicated 355 is one which is only configured virtually to

one virtual machine,

Under the dedicated 355, the 355 mailbox directly will be accessible to

the 355 and may be directly updated without VMM intervention. Therefore,
355 interrupt processing will not require a simulate of the operations
performed by the 355, However, the scu functions must still be simulated

for the corresponding virtual machine, This involves the setting of the
dating of the corresponding virtual imw within the VM's address space.

Usage Information for dn355/int--This module is called from the iom
interrupt handler when an interrupt from a 355 is detected., When called
the interrupt is processed as explained earlier, Upon entry to the module the
355 channel index is known (x5) as well as the address of the channel's
device descriptor table (al). Most of the processing of the 355 interrupt is
performed by the two modules: real/virtual/map and set/vir/imw,

A-30




b2
4

Design Overview of dn355/int--The functionality of this module is
simplified by the use of the two modules: real/virtual/map and set/vir/ imw,
Upon entry to dn355/int, the real to virtual map for the dedicated 355 is
obtained from the first entry in the channel's device descriptor table, The
real/virtual/map routine is then called to determine the virtual machine
number, virtual iom number, and the virtual channel index, This later
module also sets up the pointer registers for the VM's data base and virtual
address space. Upon return the module set/vir/imw ig called to set the

VM!'s corresponding imw and to set the proper: interrupt cell in the virtual
scu data base within the VMM, At this point the processing of the 355
interrupt is complete and control is returned to iom/int to process the
next channel interrupt.

Functional Description of vmm/int--This routine processes the VMM soft-

ware interrupts, The four VMM software interrupts, one for each of

four possible real processors on a VMM system, are assigned to interrupt
cells 3, 8, 9, and 10 respectively, These software interrupts are set by a
smic instruction in dispatch when there exists an outstanding connect fault
or interrupt for the vim/vp currently executing in that real processor., The
use of these interrupts allow the vixftual processor to be interrupted when

the vp reaches an interruptable state.

Design Overview of vmm/int--The processing of a VMM software

interrupt simply involves the resetting of the flag: proc/spec/int/flag.
This is used to indicate that the VMM seftware interrupt cell for this real
processor is not set,
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Functional Description of f-proc

The purpose of the fault processor is to determine the reason for a hardware
fault and process it accordingly. For metering purposes, the fault
processor will keep statistics concerning the time taken to process faults.

There are two major categories of faults distinguished by the fault processor:

1) VMM faults--These are faults that occur within the VMM and are,
therefore, up to the VMM to process for itself,

2) VM faults--These are faults that occur while a virtual
processor '"has control" of a real processor. These faults

range in processing by the VMM from completely to not at all.
There are 36 different '"hardware’’ faults for each of the above mentioned
categories, making a total of 72 individual fault processors. These

individual processors are described in lower levels of documentation. %

Resource Objective of f-proc--The fault processor should be time optimized

as much as possible to the more common functions, The least common
functions need not be so optimized.

Design Overview of f-proc--The time the fault processor was entered shall

be saved for metering purposes. Metering shall be accomplished at the
end of fault processing and is dependent of the metering routine defined in

a lower level of documentation. The input parameter, the fault number

causing fault processor entry, together with the variable holding the count
of VMM faults not yet processed determines the fault processing to be
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attempted, If there is a VMM fault outstanding, then the input parameter
will be assumed to give the number of the last fault (not yet processed) that
occurred within the VMM. The fault processor will always handle faults
occurring within the VMM before it handles those occurring within a VM,

Once the fault processor determines where the fault occurred, it determines
what fault handler to select (depending on the input parameter), The
appropriate fault handler is then invoked. Metering is done on return from
the particular fault handler.

Temporarily all faults occurring within the VMM will cause the system to
abort,

Variables for f-proc--All variables are defined in their respective include

files. All variables referenced at this level of abstraction are in the rpdb
include file,

Known Limitations of f-proc--No provision for the handling of faults
occurring within the VMM has yet been made, except that the system will

abort. Metering measurements are slightly biased toward the low side due
to the time of execution of the metering instructions themselves. Also, when
getting to processing VMM faults, the entry time to the fault processor may
be overwritten before a measurement is actually made (thus biasing to the
low side).
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Functional Description of vp/ipr

If the illegal slave bit in the scu conditions is not on, then the fault is

returned as is. The virtual fault register is updated appropriately.

If the illegal 'slave bit is on, then the modes are checked to see whether the

instruction was executed in:
1) 6100, absolute, master modes
2) 6100, append. master and privileged (PPR.P=1)

3) 6000 and master modes

If the instruction fault was executed in 6000 and slave modes, then a table

lookup on the faulting op code is performed. If the op code is in the table,

then x3 will contain the address plus one of the locations associated with
the "faulted on'" op code. The VMM special command processor
(VMM/cwd/proc) will handle the next step in instruction simulation. If the
op code is not in the table or the instruction was not attempted in any of the
above mentioned modes, then an illegal-in-slave fault must be returned.
For MULTICS, illegal-in-slave processing requires only that the virtual
fault register be updated. For GCOS, illegal-in-slave processing requires
that the fault number be changed to a command fault (in the sw conditions)

as well as that the virtual fault register be updated,

Functional Description of vp/acv

The access-violation fault is one of the 6100 faults that may need to be
returned to a 6000 virtual processor (under a different fault name, of

course), The only access violation type that will be returned to a 6000 vp is
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the out-of-segment-bounds fault, This fault will occur (on a 6000 vp) only
if memory is mapped via a segment descriptor word. If an out-of-segment -
bounds fault is detected for 6000 vp, then a store fault (non-existent-address)
is simulated for the vp. An access violation occurring within a 6100 vp will
be given back to the vp as is,

Design Overview of vp/acv--If the access violation occurs while a 6100 vp has
control of the processor (vmdls/vm/type/0), then.the fault will be returned

to the vp as is. If the access violation (acv) occurs while a 6000 vp is

in control, then two cases are relevant:

1. If the acv is an out-of-segment-bounds, then the 6000's
memory is assumed to be bounded by a segment descriptor
word, A store fault (non-existent address is returned),

2. If the acv is not an out-of-segment-bounds, then the VMM is
expected to have set up the decor incorrectly and the VM is
aborted.

If a store fault is to be returned:

1. The out-of-segment-bounds bit in the scu conditions is

zeroed out.
2. The non-existent address bit in the scu condition is set on.
3. The fault field (containing access violation number) is replaced

by the store fault number,
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4, The virtual fault register's non-existent address bit is set on.

Known Limitations of vp/acv--If GCOS is guaranteed to no longer run with

memory bounded by an sdw, then the store fault simulation can be eliminated
(11 instructions).

Functional Description of absa/routine

The absa routine is an address development package used in coordination
with the various instruction simulation modules within the VMM, It
develops an 18 bit effective address or 24 bit virtual final address according
to the instruction being simulated and the mode under which the instruction

would have been executed.

Usage Information for absa/routine--This address development routine is

invoked via a call to one of the three entry points as follows:

tra lcdb |  vm/addr/1/entry
tra lcdb |  vm/addr/2/entry
tra lcdb | vm/addr/ea/entry

A 24 bit final virtual address is constructed via a call to vm/addr/ 1/ entry
with no index register arguments. The entry point vm/addr/2/entry is used
to develop a 24 bit final virtual address and it must be called with absa/inst
and absa/ic/ir in the A and Q registers respectively. The final entry

point vm/addr/ea/entry develops an 18 bit virtual effective address and
requires no index register arguments,
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Upon return to the calling module the appropriate address will be right
justified in the upper 24 bits of the 4 register. The contents of all other
index register may have been destroyed.

Resource Objectives of absa/routine--Execution efficiency should be the

3 ! primary objective while memory usage shall be secondary.

Design Overview of absa/routine--The purpose of absa is to-simulate the

address development for a virtual instruction's operand, This simulation
is performed by creating the exact environment under which the instruction
would have been executed in virtual mode, This includes restoring all
virtual index registers, pointer registers, dsbr, ic and the pertinent
control unit information. The processor mode is described by the state
of the following indicators as follows:

e Zero: master/slave. 1 ® master
e Overflow: absolute/append. 1 3 absolute
e Exponent underflow: 6000/6100, 1 > 6000

e Negative: 18 bit effective/ 24 bit final, 1 » 18 bit effective

address

Once the virtual state has been restored as described above, the virtual
instruction is executed with the instruction's op/code replaced by the absa
op/code. This absa instruction performs the appropriate address develop-
ment under the control of the aforesaid indicators, After the construction
of the virtual address, control is returned to the caller,
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The packaging of the abs;i routine is unlike most VMM routines, Initially,
the routine is enteredin append mode in segment lcdb, In lcdb the index
registers and indicators are set up and then control is passed to the rpdb in
absolute mode. At this point the virtual dsbr and pointer registers are
restored and then a restore contral unit is performed to reconstruct the
remaining virtual conditions such as psr/ppr, and ic. The restoring of the
control unit results in the execution of an xed pair containing the modified
absa instruction and a tra. The absa develops the virtual address while

the tra causes a return to the VMM in rpdb. The VMM's registers are then
restored before returning to calling module,

FUNCTIONAL DESCRIPTION OF DISPATCH

The composite of modules comprising dispatch is responsible for the
allocation of a real processor to a specified virtual processor/virtual
machine. The control routine for the dispatching process is invoked after
the VMM has completed the processing of the exception (interrupt/fault)
which engaged the VMM, At this point of entry, the virtual processor which
was in execution at the time of the exception is now ready to be assigned a

real processor.

However, before this processor or any processor is dispatched, the VMM
will accept any outstanding interrupts (the interrupt set directly by.the VMM
is the only exception). The dispatch control routine is the only instance
within the VMM where an interrupt is permitted. If an interrupt is present,
control will be passed to the fault/interrupt intercept module via the
corresponding interrupt vector and the interrupt will eventually be processed
by I-proc. In the event that no interrupt is outstanding, the VMM will again
be inhibited from receiving interrupts until a virtual processor is placed in
execution,
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After permitting all interrupts to be processed, the dispatch control
routine will determine the dispatch state of the virtual machine/virtual
processor receiving the initial exception, If this virtual processor's
execution can be suspended, the dispatch module NEED will be invoked t‘o

determine the next virtual machine/virtual processor to be dispatched., The

conditions upon which a virtual processor's execution may be suspended are:

1. The virtual processor is currently executing a " dis"

instruction,

2. The virtual processor was interrupted and

a) the virtual processor is a control processor
(i.e., the virtual processor can receive interrupts)
and its interrupt masks are set to allow interrupts, b

or

b) the virtual processor is a non-control processor and it

was executing in slave mode when the interrupt occurred,

Design Overview of dispatch

Of the two functions performed by dispatcher/interrupt recognition and
dispatching/interrupt recognition is handled first and dispatching is perform-
ed later by subroutines of dispatcher, Entry to dispatch occurs after the
processing of a fault/interrupt by F-proc/i-proc, Upon entry, the scu
masks are set to allow ahy outstanding interrupts. The occurrence of an
interrupt results in control being delivered to fiim via the interrupt vectors,

After the processing of the interrupt, control is eventually passed to
dispatch where a test for additional interrupts will be made. If no interrupts
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are awaiting processing, dispatcher determines to which eligible virtual
processor it will place in execution. The criteria for dispatching is as
follows:

A, If the VMM was entered via a valid VM fault (i,e., not a
fault occurring as a result of the execution of a privileged VMM
instruction), the real processor will continue to execute on the

current virtual processor,

B. If entry to the VMM resulted from the attempted execution of
a privileged VMM instruction, then the processor will be
dispatched to the same vp, This is accomplished by the VMM

routine vi/spec/fault,

The dis instruction is an exception to the above dispatching criterion and
control is not returned to the same vp. Instead the module NEED is
called to find an eligible vp for dispatching.

Functional Description of vp/int

This module will cause the return of a vp via a simulated external
interrupt if there exists a pending external interrupt--any interrupt of a
connect fault, If no external interrupt is pending, then the virtual
processor will resume execution at the point where it was initially inter-

rupted.

Usage Information for vp/int--When control is given to this module, x4 must

contain dispatch entry, Upon exit from this module the vp will be placed
in execution,
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Design Overview of vp/int--This module along with its submodules is used o
return to a virtual processor whose execution has halted as a result of an
interrupt, As such this module will place the processor in virtual mode

via a simulated connect fault, simulated interrupt, or return to the next

instruction following the real intkrrupt, The exact method of return is
dependent upon the existence of a connect fault or interrupt which should be
delivered to this virtual processor, If either condition exists, then return
would be via the appropriate vector. In the event that both exist, the
connect fault will have higher priority.

If there still exists pending interrupts after determining the method of
return, these will be queued. In order to deliver these interrupts, the
processor's VMM interrupt call will be set in the system control unit,
This forces the virtual processor to be again interrupted when it enters
non-inhibited code.

Functional Description of vector/simulation

Vector/simulation, as its name implies, simulates the instructions in an
interrupt or fault vector pair. When control is to be returned to a vp by
means of a fault or interrupt this routine is invoked, For non-transfer
type instructions in the vector pair, an actual simulation of the instruction
will be performed, whereas a transfer instruction will actually be executed

in the return to the vp.

Usage Information for vector/simulation--In addition to the normal

register connections, vector/simulation must be called with the address
of the vector pair relative to the vin base in x3 (vector-base).
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Resource Objective of vector/simulation--It is not the intent of this module
to simulate the operation of every 6100 instruction, This in itself would be

a major undertaking and although it is necessary for the operation of a
functional VMM, it is not practical. Therefore, only the instructions
currently used by MULTICS and GCOS in their vectors will be simulated.
At present this set of instructions includes tsxn, tra, rcu, stcl, lda, ldxn,
slxn and nop. The addition of other instructions would be no more complex

than the instruction's simulation,

Design Overview of vector/simulation--Vector/simulation is used to simulate

the pair of instructions found in a vp's interrupt or fault vector. As
mentioned in the resource objectives, only specific instructions are
expected in these pair and only these will be simulated, A linear table
search is used to determine if the instructions in the current search is used
to determine if the instructions in the current vector pair are one of these
specific instructions, At the same time, the corresponding simulation
routine will be located.

If the instruction to be simulated is a transfer type instruction, the instruc-
tion is implanted into the even instruction portion of the vp's control unit
biock. The appropriate mode indicators are then set to simulate the state
of a processor while executing a vector pair. These two operations will
result in the proper execution of the transfer when the control unit is
restored upon the vp's dispatch,

For the non-transfer instructions, the final address of the instruction's

operand is developed. For MULTICS this entails invoking the absa routine,
while a GCOS vp requires a simple simulat.ca for most instruction tags.
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After the final address is developed, the instruction itself is simulated.
After this simulation control is returned to dispatch.

Known Limitations of vector/simulation--Faults within a multi-word

instruction in a vp without a transfer in the corresponding vector will result
ina VM abort. The same is true for an interrupt within MULTICS,

Functional Description of vim/int/test

Vm/int/test is involved during the VMM's dispatching algorithm to determine
if there exists an outstanding virtual interrupt which the vp to be dispatched

can process,

Usage Information for vm/int/test--Entry to vm/int/test is via a TSX6

vm/int/test and upon return int/type will describe the interrupt type via
which the dispatch to the vp will be made,

Resource Objectives of vin/int/test--Under current VMM development, it is

envisioned that a vp will not be receiving interrupts from more than one scu.
This is true of the current releases of both MULTICS and GCOS, As such
the VMM will only check the control scu for outstanding interrupts,

Design Overview of vm/int/test--In testing for outstanding virtual interrupts,
vm/int/test compares the virtual interrupt mask with the interrupt cells for

the vp's virtual control scu, If no match is found between corresponding
bits of the mask and interrupt cells then control is returned to the calling

module, However, if a match is found and the vp cannot currently receive
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an interrupt, then the interrupt cell corresponding to the current real
processor is set in the scu with the memory bank containing real address
zero, This will cause this and only this real processor to be interrupted in

virtual mode as soon as non-inhibited code is executed,

In the event of a match and the vp can be dispatched with =n interrupt then

the entry for the first such match will be removed from the virtual scu's
interrupt cell. If more than one match exists, the interrupt cell correspond-
ing to this real processor would be set in the scu with memory address zero.
Control will finally be returned to the caller with the type of interrupt that

the vp will be dispatched with,

Known Limitations of vm/int/test--Entry and exit to vm/int/test should be

gated,
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SECTION 3

DESIGN APPROACH FOR VMM EXTENSION

The various functions performed by VMMs can be segregated into two broad
categories: those which are freque..'ly used and those which are infrequently
used, Some examples of these, as a function of their frequency, are the
following:

e Frequently used functions

--Real I/O initiation

--Fault and interrupt processing

--Dispatching of processors

--Simulation of faults/interrupts in virtual machines

e Infrequently used functions

--Virtual machine definition
--Virtual machine start-up

--Receipt and response to virtual machine operator commands

All of these functions are the same or similar to functions which are normally
performed by an operating system., This suggests that the functions with

low use frequency needed in a VMM might be supplied by an operating

system executing in one of the virtual machines, the Service Machine (SM),
being supported by the VMM, The primary advantage of this approach is

that the code to support such functions need not be redundantly created and
maintained within the VMM, 1If, in addition, the functions supported by the
operating system in the SM exist in the form of user (slave) programs, some
important secondary advantages accrue:
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e The overall VMM functionality is (at a point in time) richer

because of the relative ease of creating user programs.

e The incremental resources committed exclusively to VMM are
relatively small because the operating system in the SM
executes ordinary slave programs on behalf of ot her users in
addition to providing service to the VMM,

e The currentness of the VMM with respect to new devices is
maintained with relative ease by simply using correspondingly
new versions for the operating system in the SM,

The service machine concept could be used in providing enhanced functionality
in the VMM. In fact, the design effort on the extended functionality has
proceeded sufficiently far to confirm the feasibility of the service machine

approach.
GENERAL AREAS OF FUNCTIONAL NEED TO BE EXAMINED

We wish to examine techniques for extending the VMM functionality to
include support for:

® Shared or dedicated unit record peripherals
@ Shared front end processors
® ‘Simulated system consoles

® General user interfaces
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The service machine concept can be applied effectively when the overhead
incurred with this approach is not significantly detrimental to system
performance, Each of the above designated functional areas has some
aspects which are invoked relatively rarely (e, g., definitional) and others
which are invoked frequently (operational). Thus, we would expect a
design for these functions to support some aspects via the service machine
technique and others via direct extension to the base VMM and hardware,

All of these functional areas relate to the handling of 1/O for virtual

machines,

GENERAL I/O CONSIDERATIONS FOR VIRTUAL MACHINES

We shall examine the handling of 1/O by the VMM and address the subject
of the treatment of shared and unit record peripherals in this section,
These considerations apply to all the functional areas listed above,

I/O Device Specification

The reference to a device in virtual machine I/O needs to be mapped, The
VMM has for each virtual machine a table of resources that can be consulted
to determine the actual support being used for the virtual machine devices,
Distinct forms that this support might assume are discussed in detail

below in the section on virtual device support,

In the simplest form of device support, the VMM maps each virtual machine
device into some real device of the same type, The VMM then merely
substitutes references to the real device for references to the virtual
device in the 1/O operations,
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1/O Program Analysis

The approach to mapping memory addresses. and device references is
actually more complex than described above, First, the mapped form of
the I/O program, with the virtual addresses replaced by real addresses,
cannot appear in the addressable memory of the virtual machine, If it did,
other elements of the VM, such as the virtual processor, could reference
the I/O program and read or alter absolute addresses. Therefore, the
VMM must analyze the virtual machine I/O program and construct a trans-
lated I/O program in a work area private to the VMM,

Second, the translated I/O program may not be the same size as the

virtual I/O program, For example, in a machine using a paging mechanism
for memory mapping, a contiguous region of virtual memory need not map

a contiguous region of real memory. Thus, I/O commands that involve
data transfers crossing page boundaries might have to be split into multiple
commands in a real I/O program, Again, the VMM must construct the

real I/O‘program in a private work area,

A third complication arises in dynamically modifiable I/O programs. The
central processor, the I/O program itself, or even some other simultaneously
operating I/O program may attempt to alter the virtual machine I/O program
during its operation, To reflect this functionality of a real machine fully
would require a complex and large addition to the VMM and would introduce
significant overhead processing when invoked. Third-generation VMMs in
general reflect the conclusion that providing the full functionality is not
required in a practical sense,
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Any dynamic modification to an I/O program must be checked by the VMM to
verify that the new form of the program will reference only resources
assigned to the virtual machine, By not supporting dynamic modification

of virtual machine I/O programs, it is considerably easier to ensure the
integrity of the VMM and all virtual machines, Since a real I/O program

is constructed in a work area private to the VMM, it cannot be modified by
the virtual machine's processor or by any other I/O program of the

virtual machine,

Caution must be observed when moving operating system software from a
virtual machine to a real machine, Since dynamically modified I/O
programs may behave differently on virtual and real machines, it is possible
to develop software that operates correctly on a virtual machine but fails

on a real system,

I1/O Summary

In summary, basic third-generation virtual machine 1/O operations are
handled in the following sequence, The processor attempts execution of
the instruction (cioc) to start an 1/O processor executing an I/O program,
This causes a trap to the VMM, which analyses the 1/O program, maps
memory addresses and device references, and creates a real I/O program
in a work area private to the VMM, The VMM then queues the real I/O
program for execution by the real I/O processor, When execution of the
1/0 program is completed, an interrupt to the central processor occurs,
This causes control to return to the VMM, which analyses the case of the
interrupt, If the interrupt signified I/O completion for some particular
virtual machine, the VMM simulates the occurrence of an interrupt for
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the virtual machine by manipulating the saved state information of the
virtual machine, The VMM then makes a dispatching decision taking into
consideration the interrﬁpt event, Thus, the software on a virtual machine
receives notification of IO program completion precisely as it would on

a real machine,
VIRTUAL DEVICE SUPPORT

Many applications for VMs depend on the ability of the VMM to provide an
appropriate type of virtual device support. Figure 1 illustrates four
different categories of support: dedicated, partitioned, mapped, and
simulated. The mapping of device names and device data addresses, that
is, addresses of data objects on devices, is discussed below for each of

these support categories,

Dedicated Support

In the dedicated mode of support, the VMM maps a device of the virtual
machine into an identical device of the real machine, No other virtual
machines are allowed any form of access to the real resource. An example
would be a disk drive assigned to a particular virtual machine, The
particular device name may be different in virtual and real machines and is
mapped by the VMM,

Partitioned Support

In partitioned support, the data addresses on the virtual device correspond
directly to those on the assigned real device; unlike dedicated support,
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Figure 1, Modes of Virtual Device Support
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however, the real device need not be identical to the virtual device, For
example, as shown in Figure 1, a larger real disk can be used to support a
smaller virtual disk,

Mapped Support

Most VM devices are supported in the mapped mode. This means that data
addresses are mapped via some simple transformation into real addresses.

The mapping is typically a base-bounds form although a multi-area form, as
shown in Figure 1, might be used.

Simulated Support

In simulated support the VMM software plays an important role in creating
the functionality visible to the virtual machine, This mode can be applied

to any type of resource and is used for many reasons:

e The resource does not exist in reality and hence must be
simulated;

® Unit record devices must be spooled using disk or tape;

® A virtual machine does not need the full capacity of its virtual
devices and so the VMM compacts many such devices onto

some other kind of device; and

® A virtual machine needs to address more of a resource than
actually exists and the VMM simulates the resource using other

resources,
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VMM Involvement

For each of the modes of support for I/0 equipment, the VMM has a
different degree of involvement. However, the basic idea of having control
pass to the VMM at the start of an I/O operation and the eventual interrupt
reflection by the VMM back to the virtual machine remains unchanged in all
modes of support in third-generation VMMs, The VMM support required
when simulating a resource is greater than for other modes, and can be
arbitrarily complex depending on the definition of the functionality of the

resource,

SPECIAL CONSIDERATIONS FOR FRONT END PROCESSOR FUNCTIONAL
EXTENSIONS

The support of the front-end processor (DN) could be accomplished in
several ways some of which require hardware modification to the equipment
(DN355, etc.).

The DNs internally use a line numbering scheme by which they identify the
source or destination of messages. Clearly, these line numbers need to be

related to the line identification used within an operating system in a VM,

The relationship between DN line numbers and operating system line numbers
could be maintained within the VMM, In this situation a fairly heavy burden
of processing would fall on the VMM for a highly interactive or transaction
processing environment since each transmission in or out would require
software 1/O interpretation of line addresses. An alternate approach is to
incorporate modifications to the DN hardware and software which make the
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DN aware of the VMM, In this case, the DN can be used to manipulate the
line addresses. This approach is in effect placing part of the VMM in the
DN for mapping real to virtual resources, The DN needs to be aware of
the identification of the VM for which it is performing service, This can
be accomplished by a mechanism for the VMM in the main machine to talk
to its counterpart in the DN, In effect, the two VMM parts would identify

to each other, for each transmission, which VM was involved.

The issue of secondary storage also needs to be addressed in the context of
front end processors. The DN and the main machine can share secondary
storage equipment and exchange information via records stored on the
equipment, Certainly, for VM integrity considerations, the DN must not

be permitted global access to the shared secondary storage. Even if

access were permitted to that part of the secondary storage corresponding

to a particular virtual machine, j, the DN software would have to be designed
to use the appropriate line identifications to avoid confusing the VM

operating system,

The only currently known technique for supporting shared secondary storage
between DN and associated VM is to incorporate a VMM internal to the DN
hardware so that the DN software for a particular VM uses the same line
number identification as the VM, Although we have been discussing only
line number identification information, other characteristics of communica-
tions hardware also need proper virtualization. For example, different
types of real terminals might be used instead of the type supported within
the VM. In this case, the VMM within the DN hardware could simulate the
device,
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SPECIAL CONSIDERATIONS FOR SYSTEM CONSOLES

It would be possible to use any terminal equipment as a system console with
proper VMM and Service Machine support; in particular, using terminals
supported under TSS in a SM using GCOS,

The system console is conceptually all the buttons, switches, lights, and
keyboard available to the operator of a real system. To that extent,.all

operator functions need to be supported via the virtual machine's operator
console,

One approach to supporting the console is to define modes of terminal usage,
One mode is that in which the terminal behaves like the keyboard and printer
of a real console, The second mode is that in which the terminal emulates
the lights, buttons, and switches. There is also a third mode of interest,
This is a mode to support functions not available on a real computer system,
An example of this third mode is the function of interactively defining a

new virtual machine configuration to be catalogued in a library of VM
definitions,

The main technical issue to support these modes is that there needs to be
a mechanism to easily shift among modes, such as typing special
characters,

An additional special consideration for consoles is that messages from the
operating system in the virtual machine will use the virtual device

designators. The mapping between virtual and real could be done by special
recognmon'proceuing for that operating system and run in the service
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machine so that when messages appeared on the terminal, they would con-
tain real device designators. Alternatively, the operator could use special
commands to map between virtual and real designators.

The support of system consoles is a slow speed activity compared to other
device 10 and therefore fits well into the service machine approach, Also,
the third mode of use for system consoles fits well with the service
machine concept since that mode needs several operating system services
such as the memory capability of the file system for storing virtual machine
definitions.
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