CHARACTERIZATION OF OXIDATION PRODUCT FILMS ON LEAD IN AQUEOUS MEDIA

BY IN SITU RAMAN SPECTROSCOPY

TECHNICAL REPORT NUMBER 6 CONTRACT NUMBER: N00014-76-c-0889

MA065070

IDC FILE COPY

SUBMITTED TO:

DEPARTMENT OF THE NAVY OFFICE OF NAVAL RESEARCH METALLURGY PROGRAM-CODE 471

DDC ഭരഭന്ദരം MAR 1979 1 B

PREPARED BY:

R. THIBEAU, C. BROWN AND R. HEIDERSBACH DEPARTMENT OF OCEAN ENGINEERING UNIVERSITY OF RHODE ISLAND XINGSTON, RHODE ISLAND 02881

> Approved for public felecase; Distribution Unimited

PEBRUARY 1979

79 02 26 v88

CHARACTERIZATION OF OXIDATION PRODUCT FILMS ON LEAD IN AQUEOUS MEDIA BY IN SITU RAMAN SPECTROSCOPY

> TECHNICAJ REPORT NUMBER 6 CONTRACT NUMBER: N00014-76-c-0889

> > SUBMITTED TO: DEPARTMENT OF THE NAVY OFFICE OF NAVAL RESEARCH METALLURGY PROGRAM-CODE 471

> > > PREPARED BY:

R. THIBEAU, C. BROWN AND R. HEIDEFSBACH DEPARTMENT OF OCEAN ENGINEERING UNIVERSITY OF RHODE ISLAND KINGSTON, RHODE ISLAND 02881

FEBRUARY 1979

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
T. NEPGAY NUMBER	BEFORE COMPLETING FORE
Technical Report Number 6	•
. TITLE (and Bubernie)	STPE OF REPORT & PERIOD COVER
Characterization of Oxidation Product Films (Wrashnical Kanad 1970
on Lead in Aqueous Media by In Situ Raman	recimical serve (1919
opectroscopy .	
A-AUTHOR(:)	E-CONTRACT OR BRANT HUMBERTO)
R. Thibeau, C. Brown R. Heidersbach	15 NØØY14-76-C-Ø889
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TAT
Department of Ocean Engineering University of Rhode Island Kingston, Rhode Island 02881	AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	18. REPORT DATE
Department of the Newy	Februar 1979 /
Arlington, Virginia 22217	153
14. MENY YORING ASENCY HARE & ADDRESSOIL allerent from Controlling Office)	18. SECURITY CLASS. (of this report)
(12)273p.	Unclassified
	ILA. DECLASSIVICATION/DOWNERADIN
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 29, 11 different in	use and sale; its distribu-
14. MUPPL ENERTIARY NOTES	use and sale; its distribu-
 14. DISTRIBUTION STATEMENT (of the Report) This document has been approved for public releation is unlimited. 17. DISTRIBUTION STATEMENT (of the electronic entered in Block 20, 11 different is 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on correct olde 11 netwoory and identify by block number Lead; lead oxide; Raman spectra; corrosion; corr-passivation; passive films; surface films	ese and sale; its distribu-
 If a super tion statement has been approved for public releation is unlimited. If a super tion statement (of the element entered in Block 20, 11 different is a super tementany notes If a super temperature of the super temperature of the super temperature temperature	ese and sale; its distribu-
 I. ANYTHACT (Continue on correct olds if necessary and identify by block number length of a logic films; surface films 12. ANYTHACT (Continue on correct olds if necessary and identify by block number length of a logic films; surface films 13. ANYTHACT (Continue on correct olds if necessary and identify by block number length of a logic films; surface films 14. ANYTHACT (Continue on correct olds if necessary and identify by block number length of a logic films; surface films 15. ANYTHACT (Continue on correct olds if necessary and identify by block number length of a logic films; surface films 16. ANYTHACT (Continue on correct olds if necessary and identify by block number length of a logic films; surface films 17. Anythact (Continue on correct olds if necessary and identify by block number length of a logic films). Spectra were recorded while the flat length of a logic films any changes which might be caused by remy ironment. 	osion products: oxidation; ssertation by R. Thibeau, f Rhode Island. composition of surface fil of several different composi i samples were completely ons were occurring, thus moval from the aqueous en- cont.
 I. DISTRIBUTION STATEMENT (of the descent) This document has been approved for public releation is unlimited. DISTRIBUTION STATEMENT (of the descent entered in Block 20, 11 different is I. DISTRIBUTION STATEMENT (of the descent entered in Block 20, 11 different is I. DISTRIBUTION STATEMENT (of the descent entered in Block 20, 11 different is I. DISTRIBUTION STATEMENT (of the descent entered in Block 20, 11 different is I. DISTRIBUTION STATEMENT (of the descent entered in Block 20, 11 different is I. DISTRIBUTION STATEMENT (of the descent entered in Block 20, 11 different is I. DISTRIBUTION STATEMENT (of the descent entered in Block 20, 11 different is I. DISTRIBUTION STATEMENT (of the descent entered in Block 20, 11 different is I. DISTRIBUTION STATEMENT (of the descent entered in Block 20, 11 different is I. DISTRIBUTION STATEMENT (of the descent entered in Block 20, 11 different is I. DISTRIBUTION STATEMENT (of the descent entered in Block 20, 11 different is I. AND THE STATEMENT (of the descent entered is in the descent entered is a solution; passive films; surface films I. AND THE STATEMENT (Contains the manuscript of a different entered on lead by expondent to aqueous nolutions of tions. Spectra were recorded while the flat lead in . Jing any changes which might be caused by remainment. I. D. Jone 20 1473 I. D. Jone 21 1473 	osion products: oxidation; sectorized sectorized sectorized sectorized sectorized sectorized f Rhode Island. composition of surface fill of several different compositions i samples were completely ons were occurring, thus noval from the aqueous en- cont. / R

20. ABSTRACT (cont.)

Controlled potential exposures of lead in phosphate, carbonate, chloride, and sulfate solutions were conducted under various conditions of potential and pH. The results of spectroscopic identification of the compounds present in insoluble surface films were compared to theoretical Pourbaix diagrams for lead in simple solutions of the appropriate ions and to potentiodynamic polarization curve: for the solutions used. Experimental results showed only partial agreement with theoretical predictions. The major reason for the lack of agreement seems to be the failure of calculations to include all of the species present in the solutions used.

Raman spectra of thin oxide films formed on Armco iron by high temperature oxidation were also obtained. For both iron and lead surface films, a minimum thickness of approximately 200 angstroms was found necessary to permit observation of a useable spectrum.

TABLE OF CONTENTS

19.10.175

Z. 1935. 611.

10.7

ALC: CAR

	List of tiblesiv
	List of figures
1.	Introduction1
	I.F. Pourbaix diagrams4
	I.B. Lead
11.	Experimental
	II.A. Raman spectrometer9
	II.B. Preparation of lead samples11
	II.C. Simple immersion exposures12
	II.D. Londitions for electrochemical exposures13
	II.E. Potentiostatic exposures14
	11.P. Iron exposures19
111.	Results and discussion
	III.A. Reference spectra
	III.B. Simple immersion oxidation
	III.C. Lead-water Pourbair diagram
	III.C.1. Immunity region43
	III C.2. PbO region
	III.C.3. Higher oxide region53
	III.D. Lead-water-chloride Pourbaix diagram54
	III.D.1. pH 1 exposures
	III.D.2. pH 7, 0.1 M chloride exposures60
	III.D.3. pH 10, 0.1 B chloride exposures63

and the second second

	III.E. I	Lead-	water	-sulfa	ate Po	ourbain	r diagr	an	• 66
	111.1	3.1.	рН 1,	0.1	i sulf	ate en	kposure	s	. 68
	III.1	€.2.	pH 6.	5, 0.1	l H st	lfate	exposu	res	.71
	111.1	3.3.	pH 11	, 0.1	M sul	fate e	exposur	es	.73
	III.P. I	film	thick	ness s	studie	s			. 76
	III.G.	Iron	expos	ures.					. 78
IV.	Conclusi	ions.		••••	• • • • •			• • • • • • •	138
	Beterend	ces	• • • • •	• • • • • •		•••••		• • • • • • •	140
	Appendi	(I	• • • • •	• • • • • •			•••••		146

•

iii.

AT IL DE LA DE

ť

LIST OF TABLES

Martin -

のないないである

5

NUMBER OF

£

Table	I	Conditions for Simple Immersion Exposures
Table	II	Solutions Used for Controlled Potential Exposures
Table	III	Results of Simple Immersion Exposures83
Table	IV	Pree Energy Data Used to Calculate the Lead - Water Pourbaix Diagram
Table	¥	Results of Potentiostatic Exposures in Nil Chloride Buffer Solutions
Tablė	VI	Pree Energy Data Used to Calculate the Lead - Water - Chloride Pourbair Diagram87
Table	11V	Results of Potentiostatic Exposures in 0.1 M Chloride Solutions
Table	VIII	Pree Energy Data Used to Calculate the Lead - Water - Sulfate Pourbaix-Diagram90
Table	1 X	<pre>aesults of Potentiostatic Exposures in 0.1 M Sulfate Solutions</pre>
Table	¥	Frequencies of Tron Oxide Raman Bands

And the Party of the Party of

iv.

LIST OF FIGURES

170

Figur€ 1	Pourbaix diagram of the lead-water system, M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACB, Houston (1974)8
Yiyure 2	Schematic drawing of a laser Raman spectrometer23
Pigure 3	Scanning electron micrograph of a lead surface exposed in pH 7, phosphate buffer at -0.11 V vs. SHE for 19 hours. Magnification 2000%. Black particle consists of SiG, white balls contain phosphate
Figure 4	Sample arrangement used for recording in situ Raman spectra of simple immersion sample surfaces25
Pigure 5	Block diagram of the equipment used to record polarization curves
Pigure 6	Drawing of the electrochemical cell used for in situ Raman spectroscopy
Pigure 7	Drawing of glass sample holder
Figure 8	Drawing of TEFLON sample holder
Pigure 9	Vapor deposited lead film on glass for film thickness measurements by a stylus instrument
Pigure 10	Raman spectrum of reagent grade lead chloride powder94
Figure 11	Raman spectra of orthorhombic PbO powder and of the same powder after being made into a KBr pellet, demonstrating that the pellet making process causes a transformation to tetragonal PbO
Figure 12	Raman spectrum of a KBr pellet of reagent grade basic lead carbonate
Pigure 13	Raman spectra of Pb3O4 in a KBr pellet using 438.0 and 514.5 nm. excitation lines97
Pigure 14	Raman spectrum of a lead dioxide, XBr pellet after exposure to the 514.5 nm. Laser line for one hour

1

٧.

Figure 15 Raman spectrum of lead chloride powder containing 0.95% orthorhombic PbO by weight.99

- Figure 16 Raman spectrum of orthorhombic PbO powder containing 16% lead chloride by weight.....100
- Figure 18 Raman spectra of the lead chloride film on a lead surface exposed to air saturated 0.1 M HC1 solution for 1, 2, and 7 days....102

- Figure 24 In situ Raman spectra of lead in pH 7 buffer at +1.08 V after 1.5 hours of exposure, and at +0.06 V after 2.5 hours....108
- Figure 26 Raman spectra of a lead surface in pH 7 solution at +0.06 V after 2.8 hours of exposure, and of the same sample after washing with distilled water and drying....110-

¥1.

の言語を見たなが、同じられたたちに、たれていてきた。「日本は「Philip Philip Phi

na the mainterners in a the budder of the second the fight of the start with the fight of the start of the second barr

- Figure 27 Current behavior of lead with a tetragonal 2b0 surface film when exposed to the 488.0 nm. laser line. The sample was exposed for 18 hours in pH 10 solution at +0.24 V and exposed to the laser beam for one hour....111
- Figure 29 Scanning electron micrograph of a lead sample which had been irradiated by the 488.0 nm. laser line during oxidation at +0.34 V in pH 10 solution. The darker area on the left is the irradiated portion. Magnification: 5000%. Spectra indicated that the surface film was tetragonal Pb0...113

sthered werdited interviewers the standard

а за области на полните на на на на на на правите стата и стата и стата на правите и полните и полните и полни и полни и полните и

- Figure 39 Raman spectra of the surface of lead after exposure in pH 10, 0.1 M chloride solution at +1.07 V for 18 hours, and of a KBr pellet of PB 0
- Pigure 41 Anodic polarization curves for lead in 0.1 M sulface solutions of pH 1, 6.5, and 11, scan rate 40 mV/min......125

- Figure 45 haman spectra of a) lead sulfate surface film on lead after 19 hours at -0.16 V in 0.1 M K SO , b) lead sulfate powder.....129
- Figure 46 Raman spectra of lead exposed to pH 11 sulfate solution for 18.5 hours at -0.34 V recorded with the sample in solution and, after wishing, in air; and the Raman spectrum of pH 11, 0.1 M sulfate solution..130

viii.

figure	48	Raman spectrum of a 2140 angstrom thick
		film of lead sulfate made from a vapor
		deposited lead sample132

The second second and second second

Children Ladi Wer Werkerfant Anthe Bearinger Bri

- Figure 49 Raman spectra of KBr pollets of two polymorphs of PeOOH. The feature marked with an asterisk is a grating gnost.....133
- Figure 50 Raman spectra of reagent grade PeO, PeO, and ∝-PeO in KBr pellets.....134 3 4 2 3
- Figure 51 Raman spectra of the surface of Armco iron oxidized in air at 250°C for 50, 217, and 380 hours. Full scale on the 50 and 217 hour spectra is 1000 counts/sec., for the 380 hour spectrum it is 3000 counts/sec135

- Figure 54 Vibrational energy levels of a diatomic molecule.....152
- Figure 55 Energy level diagram for a typical vibrational Raman transition and the Raman spectrum resulting from such a transition...153

国民国政府政府政策がないため、国家政府政府政府政策が行いていたので、新政策が成立した法律の政策が行いため、「法国政策の法法

I. INTRODUCTION

J n the first half of the nineteenth century, Paraday first used the term "passive metal" to describe a metal which was unreactive under conditions where, thermodynamically, it should oxidize (1). Observing that pure iron reacts 100,000 times more slowly with concentrated nitric acid than it does with dilute nitric acid, he proposed that some sort of invisible film protected, or passivated, the iron in the concentrated solution. The nature and composition of such a film were not known. Today, atter over 130 years of study, we know a great deal about the conditions which till cause or prevent corrosion; however, we are still assure about the nature and composition of thin passive files on metal surfaces exposed to water $\{2\}$.

whether exposed to water or air, all but the noble metals are almost invariably used under conditions where their oxides are thermodynamically stable relative to the metal and oxygen. It is the presence of thin surface films which slow or nearly stop the oxidation reactions and allow metal objects to exist without rapidly oxidizing to a useless state. A good definition for passivity is, therefore, "the loss of chemical reactivity under certain environmental conditions" (3).

Two major theories nave been proposed to explain the protection of the underlying metal: the adsorption theory, which states that passivity is achieved by the formation of

a thin layer of adsorbed oxygen (4,5); and the oxide-film theory, which states that a monolayer or thicker film of insoluble oxide provides protection (5,6). Regardless of which theory is closer to the truth, there are three aspects of aqueous passive films generally agreed upon:

1) A film can be extremely thin, maybe less than a monolayer (7,8), and still provide protection.

2) Films contain considerable amounts of water (3,9).

3) Films are extremely delicate and are subject to change when removed from the metal or from the corrosive environment (3).

Although there are several experimental techniques which are useful in determining the rate of corrosion of a metal sample, determining the composition of the oxidation products is a difficult problem. A non-destructive analytical method is needed to identify the compounds present in an extremely thin crystalline or amorphous film on a metal surface while it is immersed in an aqueous solution. Unfortunately, at present, no one technique meets all of these requirements. There are several surface analytical methods such as Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS), low energy electron diffraction (LEED), and electron spectroscopy for chemical analysis (ESCA) (10) which can examine films of aonolayer thickness. These extremely sensitive methods require ultra high vacuum, which introduces the possibility of altering a surface film by removal of water. At the same

2

time, those techniques such as ellipsometry (11) and the many electrochemical methods, which can be used in situ, while a metal surface is in the reactive solution, cannot give information to conclusively identify the compounds present.

The use of vibrational Raman spectroscopy to characerize surface films on metal in aqueous media offers a unique compromise. Although not as sensitive to extremely thin tilms as the high vacuum techniques, it gives more information than the other methods, and it can be used in situ. Unlike the other in situ techniques mentioned above, it can identify insoluble corrosion products. The reasons for using Raman spectroscopy in the study of corrosion may be summarized as follows:

 Because water is a weak Saman scatterer, spectra can be obtained from samples immersed in aqueous solutions (12). Aqueous surface films may be analyzed while avoiding any changes due to the drying required by most techniques.

2) Vibrational Raman spectroscopy can permit unambiguous identification of compounds present. It can differentiate between compounds and between polymorphs of the same compound (13,14).

3) Both crystalline and amorphous films will give Raman spectra. Passive films have been described as crystalline, amorphous (15), or a combination of crystalline and amorphous phases (16, 17).

3

4) Spectra can be obtained from films as thin as 50 angstroms on metal substrates (18,19).

5) Since only vibrations due to chemical bonds are obscrved, there is no interference by the underlying metal.

6) Using visible light, Raman spectroscopy is non-destructive to most substances.

In recent years, Raman spectroscopy has been used for the study of surface species, both at solid-gas (20,21) and solid-liquid interfaces (22-29), because of the unique properties listed above. The applicability of this technique to the study of aqueous corrosion has been demonstrated by identifying oxide and chloride surface layers on lead (12).

A brief review of the theory and use of vibrations: Anman spectroscopy for surface analysis is presented in Appendix I. More detailed discussions of surface film spectroscopy may be found in the papers by Greenler (18,19). Several books explain the theory and applications of Raman spectroscopy at length (30-34).

I.A. Pourbaix Diagrams

In the study of aqueous corrosion, the potential-pH, Pourbaix, diagram (35) is of considerable value. By calculating the relative stabilities of possible metal and solution species, the lowest energy species for any given

3

and an analysis of the state of the second of the second second second second second second second second second

conditions of potential and solution pH can be specified and displayed on a two-dimensional diagram, as shown in Figure 1. The diagram identifies thermodynamically stable compounds for any set of conditions.

Pourbaix diagrams have found wide application in corrosion research (36-38) because they predict whether immunity, passivation, or corrosion of a metal will occur under specific conditions, assuming that this behavior depends on the nature of a surface film. In the lead-water Pourbaix diagram of Pigure 1, lead is predicted to be immune to oxidation at low potentials (Pb is thermodynamically stable), corroding at potentials in the Pb*+, PbO, and Pb₃O₄ regions (because these forms have appreciable solubility), and passive in the PbO₂ region (because it is essentially insoluble).

The important, but unanswered, question is how accurate are calculations based on free energy relationships in describing the actual behavior of a metal in a solution. Experimental investigations of some Pourbaix diagrams conducted using electrochemical polarization techniques have shown some agreement and some disagreement with the theoretical predictions (36, 37, 39-42). Electrochemical techniques cannot determine the composition of a surface film as required to thoroughly investigate the relationship between the diagram and actual passive films. Baman spectroscopy is uniquely suited to identify the species present in an insoluble film in situ, under conditions where

5

A STATE A STATE AND A STATE

passivity is predicted by thermodynamics.

I.B. Lead

uni-anni 1700 a 24 Augusta anni 1800 anni

There are several reasons for choosing lead for an electrochemical and Raman investigation of the Pourbaix diagram:

Lead electrodes have been studied extensively
 (43-46) because of their use in storage batteries so
 their electrochemical reactions are generally
 understood.

2) Througnout history, lead has been used for construction and decorative coverings because of its resistance to corrosion. Today this property gives lead considerable use in the chemical industry (3,47). While it is well known that the corrosion resistance is due to thin surface films, these have only been examined in detail in sulfuric acid solutions (48-60) and, to a lesser extent, in hydrochloric acid (61-64).

3) The oxidation products of lead are generally good Haman scattering species because of the presence of lead atoms, the large number of electrons tending to give large polarizability.

4) Oxidation of lead in aqueous media-can make thick protective or non-protective surface films (35). Films of varying thicknesses are necessary because the thickness required to give a useful Raman spectrum is

not well defined.

5) Lead exhibits several oxidation states, and its oxides can exist as different polymorphs (35,65): thus, it is typical of the commonly used metals.

Previous research on the aqueous corrosion products of lead has involved calculation of the lead-water Pourbaix diagram (35), the lead-water-chloride diagram (66), and the lead-water-sulfate diagram (67,68). The theoretical predictions for the sulfate system have been investigated experimentally using electrochemical methods (56) and X-ray diffraction (49,69). The experimental findings showed that exposure in sulfuric acid solutions formed a multilayer surface tilm consisting of oxides and sulfates. The corrosion product layers consist of several different compounds, a condition that could not be predicted by the Pourbaix diagram. A recent brief analysis of the chloride diagram using daman spectroscopy (12) found that the compound 3PbO+PbC12, which was considered in calculating the diagram, probably exists as 3Pb(OH) • PbCl2, which was not The ability of Pourbaix diagrams to describe considered. the behavior of lead in aqueous media has, therefore, not been proven because of shortcomings in calculation of the diagrams.

7

II. EXPERIMENTAL

11.A. maman Spectrometer

Raman spectra were recorded with a Spex Industries Model 1401 double monochromator using a photon counting system. A simplified optical schematic of this type of spectrometer is shown in Figure 2. A Coherent Radiation Laboratories Model CR-3 argon ion laser is located beneath the monochromator, and the laser beam is directed by a mirror to the bottom of Both the 488.0 and 514.5 nm. the sample container. wavelength lines were used. With either line, the power at sample was approximately 500 mW. Some of the light th scattored by the sample is collected by the lens (L), positioned 90 degrees from the vertical laser beam, and is focused onto the entrance slits of the monochromator. Light entering the slits is collimated by a mirror and dispersed by the first grating. The light, now dispersed according to frequency, is directed by a second collimating mirror and a plane mirror to the intermediate slits. The narrow trequency band of light which has passed through the first monochromator then enters a second, identical monochromator where it is dispersed again to maximize rejection of stray light and narrow the frequency band. The light which leaves the exit slits is incident on the photocathode of a photomultiplier tube, the detector. Each photon reaching the photomultiplier is converted to an electrical pulse which is amplified and counted by an Elscint, Inc. counting The number of counts (number of photons) detected system.

「たっているのないには、「ないないない」のよれになるので、「ないない」であった。「ない」のないで、「ない」のないで、「ない」のないで、「ない」のないで、「ない」のないで、「ない」のないで、「ない」のない

per selected time interval is converted to an analog signal which drives the pen on a strip chart recorder. A frequency range is scanned by turning the two gratings in the monochromator simultaneously so that the frequency of light reaching the photomultiplier is changed. The Raman spectrum recorded is thus a plot of light intensity vs. frequency, where the frequency of interest is actually the difference from the excitation frequency.

For all Haman spectra, the metal sample was held at an angle of twenty degrees from vertical to optimize observation of gaman scattered light. As explained in detail by Greenler and Slager (18), the angle between the sample surface and the incident beam controls how strongly the electric vector of the incident light may interact with molecules in a surface film. The angle also affects the amount of stray light entering the monochromator. The sample must be positioned so that the specularly reflected exciting radiation is not collected by the focusing lens; only scattered light should reach the entrance slits (70). Por example, an incident angle of 45 degrees would direct the full intensity of the laser beam into the monochromator, making observation of the weak Raman lines nearly In consideration of both of these effects, the ispossible. 20 degree alignment shown in Pigure 4 gives the strongest The same angle was also found to give the kagan spectrum. * st spectra of pellets, so all pellet spectra were obtained with the surface of the pellet at a 20 degree angle from the

10

are a second a second second second and a stress of the initiation distribution and a second distribution of the

saturalitisukitus di nalahsi kumulukusuta sudikihisusaaaaaaaaaaaaa a

vertical laser beam.

Before using Raman spectra to identify compounds present in surface films, spectra of pure compounds were required for reference. Orthorhombic PbO, PbCl₂, and PbBr₂ were purchased from Alfa Products, Inc.; basic lead carbonate, (PbCO₃)₂*Pb(OH)₂, from Mallinckrodt Chemical Works, Inc.; Pb₃O₄ and PbO₂, from Mallinckrodt Chemical Works, Inc.; Pb₃O₄ and PbO₂, from Allied Chemical, Inc.; and PbSO₄, from J. T. Baker Chemical Company, Inc. Reagent grade samples of these compounds were placed in 1.5 mm. diameter glass cupillary tubes and their spectra recorded. Some lead species decomposed in the laser beam or gave weak spectra so these were pressed into pellets of the lead compound alone or of the compound mixed with potassium bromide. In all cases, pellets yielded stronger spectra than the powders.

II.B. Preparation Of Lead Samples

The lead used in aqueous exposures was supplied by Alfa Products, Inc., Danvers, Mass., as 1 mm. thick foil of two types: 99.9995% and greater than 99% purity. Both types were used interchangebly and soemed to give identical results. In order to clean the lead of its surface oxide layer prior to an aqueous exposure, one of three different methods was used:

1) immersion in dilute nitric acid solution for five minutes to dissolve the surface, giving soluble lead nitrate,

2) polishing with emery paper followed by immersion in warm, concentrated ammonium acetate solution for five minutes, or

3) immersion in warm, concentrated ammonium acetate solution for five minutes.

Polishing with abrasive silicon carbide paper was discontinued because electron micrographs such as that shown in Figure 3 revealed that SiC particles from the polishing remained embedded in the sample surface. Since the particles tend to disrupt the surface, the polishing was stopped and immersion in concentrated ammonium acetate solution alone was used for most exposures. All three sample preparation methods gave very similar lead surfaces; all gave the same shiny silver appearance and no differences in exposures or in resulting spectra were observed. After cleaning by one of these methods, the lead sample was washed with distilled water, dried and polished lightly with KLMWIPES, and immediately placed in the selected solution.

II.C. Simple Immersion Exposures

Some lead exposures were conducted by simply immersing lead samples, which had been cleaned by the methods detailed above, in reactive solutions and allowing them to react at whatever equilibrium potential they assume. No electrical connections were made and no attempt was made to control the potential. A lead strip, 5 X 1 cm., was clamped to the side

of a fyrex beaker of solution as shown in Figure 4. The solutions and conditions used for this type of exposed are ustailed in Table I. All solutions were made from reagent grade components and distilled water.

Simple immersion exposures were conducted with either air saturated or demerated solutions. For air saturated conditions, laboratory air was pumped into the solution through a fritted glass cylinder for thirty minutes before and throughout the period of exposure. To achieve demerated conditions, dry nitrogen was bubbled through the solution for thirty minutes before and during exposures. Samples remained in solution for periods of one or more days before builty analyzed in the Raman spectrometer.

II.D. Conditions For Electrochemical Exposures

The conditions for potentiostatic electrochemical exposures were chosen using two sources, calculated Pourbaix diagrams (71), and potentiodynamic polarization curves. The two sources were used together to provide both a theoretical, thermodynamic basis and an experimental basis tor choosing exposure conditions.

Solutions were selected to give pH's in as many different regions of the Pourbaix diagrams as possible. The compositions of the solutions used for controlled potential exposures are listed in Table II. Care was also taken to insure that potentials were chosen so that samples were

13

exposed in every region of the diagram calculated to be present at that pH.

Potentiodynamic polarization curves were recorded for each solution used to see if the behavior of lead in a solution corresponds to the Pourbaix diagram and to select exposure potentials where this experimental technique indicates the formation of different species. The current vs. potential curves were run between -0.76 V versus the standard hydrogen electrode, SHE, and +1.24 V.

A block diagram of the apparatus for measuring polarization curves is shown in Figure 5. An Elscint Model ABA-26 automatic baseline advance device drove the WL-1 potentiostat at a scan rate of 40mV/min. The outputs of the potentiostat, the potential and resulting current, were plotted on an MPE 815 Plotmatic X-Y recorder. Polarization curves were recorded with 2 reduction cycle first so the sample would have a clean, reduced surface when the oxidation cycle, of greater interest, was begun. In this way, no surface species which might alter the initial oxidation processes were thought to be present.

II.E. Fotentiostatic Exposures

Lead samples were exposed to aqueous solutions for periods warying from 6 minutes to 24 hours at controlled potentials. At or near the end of the exposure period a Raman spectrum of the metal surface was recorded. This was

14

dong in a manner very similar to that used for simple immension exposures, without removing the sample from the solution or disconnecting it from the potentiostat.

The electrochemical cell shown in Figure 6 was used, in the sample compartment of the spectrometer, to permit the recording of Raman spectra while the sample was undergoing oxidation in an aqueous solution. The cell is typical of electrochemical cells in most respects (72); the auxiliary electrode is platinum mesh and the potential is maintained (by a potentiostat) relative to a saturated calomel electrode which is connected to the solution by a glass Luggin capillary positioned 1-2 mm. from the working electrode surrace. The unusual aspect of this cell is the shape and position of the working electrode. It consists of a flat lead sample held close to the bottom and one side of the cylindrical glass cell at an angle of 20 degrees from vertical so that it is in an excellent position for

Two different types of sample holder were used during this research. The first and simplest, shown in Figure 7, consists of a hollow glass tube into the end of which was sealed a 1 X 5 cm. lead strip attached to a copper wire. The back and edges of the strip and the opening of the glass tube were coated with beeswax to allow only a measured area or the sample to come in contact with the solution. The connection between the copper wire and the lead was made inside the tube so no copper reached the solution. Sample

observation of Raman spectra.

strips for this type of holder were bent to give the proper 20 degree angle with the laser beam.

The alternate type of sample holder used was a larger device made of Taflon which holds a 2.8 X 5.7 cm. flat, rectangular sample. This size was chosen because, after in situ examination by Raman spectroscopy, the sample can be removed from the holder, dried, and it will fit the sample holder of a Wilks Scientific Corporation Model 9 multiple specular reflection attachment for infrared reflection-absorption analysis (71). The sample holder, shown in Figure 8, allows only one face of the sample to come in contact with the solution and holds it at the proper angle for saman examination.

Two potentiostats were used, a Wenking Model LT73 and the WL-1, a device constructed in our laboratory. Both are wery similar, consisting mainly of a voltage feedback circuit utilizing negative feedback. Both can supply potentials ranging from +2.0 V to -2.0 V relative to the reference electrode. The LT73 can supply a maximum of 1.0 amperes and the WL-1, 1.5 amperes. Currents of this magnitude were observed, under some conditions, due to the large samples used. Taking advantage of the current to voltage conversion circuitry present in the potentiostats, current was recorded versus time on a strip chart recorder throughout the potentiostatic exposures.

In preparation for a controlled potential exposure the electrochemical cell, Figure 6, was filled with one liter of

16

the appropriate solution and positioned in the sample compartment of the Raman spectrometer. Three of the cell's nCCRS were sealed with rubber stoppers, one held the thermometer, and the fifth neck contained the gas dispersion tube. For thirty minutes before introduction of the sample, the solution was stirred and purged of reactive dissolved gasses by bubbling nitrogen through it. The gas purge and stirring were continued throughout the controlled potential oxidation.

After thirty minutes of purging, the platinum mesh duxiliary electrode and the Luggin capillary were placed in the cell. The Luggin probe was connected to a beaker of the descrated solution containing the saturated calcmel ceterence electrode by Tygon tubing. The lead electrole, cleaned as described previously and mounted in the sample holder, was positioned in the cell. The three electrodes were then connected to the potentiostat terminals and the specified voltage was applied.

The exposures were conducted for various lengths of time, more time being required for some films to become thick shough to give a good fiaman spectrum than others. The cell was in a thermostatically controlled room so the solution temperature was maintained at 25±2 degrees.

After oxidation, without disturbing the electrochemical cell, an in situ Raman spectrum of the sample surface was recorded. This r-quired only turning on the Raman instrument and possibly adjusting the position of the cell

というがあることになった。「いうたき」とないないになるとなった。

17

to focus scattered light on the entrance to the monochromator. If the spectrum observed was weak or nonexistent, the potentiostatic exposure was continued so the surface film might become thicker and give more intense Raman scattering.

Once an in situ Raman spectrum of sufficient intensity to characterize the surface film had been recorded, the lead working electrode was disconnected from the potentiostat, removed from the solution, and thoroughly washed with distilled water. After drying at room temperature, the sample was returned to the spectrometer and a Raman spectrum of the dry surface was obtained. By examining the sample both in the solution and in the dry condition, any changes due to removal of water from the film should have been observed.

To confirm the Raman findings and to answer some questions about the surface films formed electrochemically, some samples were examined by X-ray diffraction. The diffraction patterns were recorded using a General Electric 11GJ1 X-ray unit with a copper target.

Some samples were examined by scanning electron microscopy on a Hitachi Scanscope SSN-2 with a Tektronix C-27 oscilloscope camera, Samples were cut into small pieces, about 6 X 5 mm., to fit into the SEM sample chamber and they were examined uncoated. Some samples were analyzed with an AMR 1000 SEM and an EDAX 707% X-ray energy dispersive analyzer.

18

WE ARREST OF A DESCRIPTION OF A

To measure the thickness of a corrosion product film on a lead surface, special samples were prepared. A thin layer qolu was vacuum deposited on a glass microscope slide 10 then a layer of lead was deposited on the gold using a Hitachi Model HUS-4GB vacuum evaporator. The gold allowed electrical contact to be made with the lead and provided a nonreactive reflecting surface when the lead was completely oxidized. During deposition, part of the gold was masked by another microscope slide so that a sharp step equal in height to the lead thickness was created, as shown in Figure The height of the step was measured before and after 9. potentiostatic oxidation by a Taylor-Hobson Taylstep-1, a stylus type profile instrument with vertical resolution better than 10 angstroms.

The vacuum deposited samples could not fit the sample holders used for in situ Raman spectroscopy so they were clamped in position during exposure and removed as soon as the oxidation period was completed. No in situ spectra were attempted due to the difficulty of positioning the samples, only spectra of the dried samples were measured.

II.F. Iron Exposures

の言語をなるというである。

Several oxides of iron are readily available as reagent grade powders. Perrous oxide, FeO, was purchased from Pfaltz and Bauer, Inc., $Pe_{2}O_{4}$, from Amend Drug and Chemical Company, and \ll -Pe₂O₃, from Alfa Products, Inc. Pure FeOOH

19

is not available so two polymorphs were synthesized.

Crystalline \propto -PeOOH was precipitated by hydrolysis of 0.1M ferric oxalate solution at the initial pH of 6.5 (adjusted by the addition of 1M NaHCO₃ solution) (73,74). The solution was held at 100°C for 45 minutes and allowed to cool. The resulting precipitate was washed with distilled water, separated from the solution by centrifugation, and dried at room temperature.

Hydrolysis of a ferrous chloride solution formed W-FeOOH. A solution of 20g. $PeCl_2 \cdot 4H_20$ in 500 ml. of water was added to 100 ml. of 2M hexamethylenetetramine solution, giving a blue-green $Fe(OH)_2$ precipitate. To this was added 100 ml. of 1M NaNO₂ solution and the mixture was held at 60° C for three hours (75,76). After cooling, the rust-colored precipitate was removed by filtration, washed with water, and dried at 100° C.

Raman spectra were recorded with the compounds in KBr pellets. The identity and purity of the synthesized compounds were confirmed by their infrared absorption spectra (71).

Armco iron samples were mechanically polished and washed with distilled water to give a clean surface. For high temperature exposures the samples were placed in a preheated laboratory tube furnace for specified time periods. Upon completion of an exposure, a sample was cooled to room temperature and a Raman spectrum of its surface was recorded in the manner used for dry lead samples.

TABLE I

.

Conditions for Simple Immersion Exposures

CONLITION	SOLUTION COMPOSITION	OXYGEN CONTENT
a	2M KC1	deaerated
b	0.1M HC1	deaerated
C	0.1H HC1	air saturated
đ	0.1M HBr	air saturated
6	2.3M HBr	deasrated
f	0.01H Nach	deaerated
g	0.01H NaOH	air saturated
h	0.5M Nadh	air saturated

ł

ş

21

n we a new a straight of the state of the second states and the states of the

TABLE II

Solutions Used for Controlled Potential Exposures

SOLUTION	PH	COMPOSITION	
1	7.0	0.063 M KH PO , 0.037 M WaOH	
2	10.0	0.041 M NaHCO, 0.018 M NaOH	
3	1.1	0.1 M HC1	
4	7.0	0.G63 M KH PO , 0.037 M NaOH, 2 4	
		0.1 M KC1	
5	10.0	0.041 H NaHCO , 0.018 H NaOH, 3	
		0.1 N KC1	
б	1.0	0.1 H SO	
7	6.5	0.1 H K SO	
8	11.0	0.1 H K SO , 0.004 H KOH	

ļ

22

Figure 3. Scanning electron micrograph of a lead surface exposed in pH 7, phosphate buffer at -0.11V vs. SHE for 19 hours. Magnification 2000X. Black particle consists of SiC, white balls contain phosphate.

Figure 5. Block diagram of the equipment used to record polarization curves.

シントリアンションシャント ションクライン たまたす

war a Bar she was stored alar As a taken at

27

「日本」「日本」、四次日本をある」」

Figure 8. Drawing of TEFLON sample holder.

State of the second

THE L

的现在分词是一些是一些人的意思。

Figure 9. Vapor deposited lead film on glass for film thickness measurements by a stylus instrument.

「ないない」の「東京法法

III. RESULTS AND DISCUSSION

III.A. Reference Spectra.

and a state of the second state of the second

In order to use Raman spectra to identify the compounds present in surface films on lead, spectra of possible lead compounds were needed for reference and comparison. Raman spectra of several compounds are available in the literature, but some other important species have not been previously examined. One of the reasons for using lead in this research was that, since it has a large polarizability (i.e., loosely held electrons), its compounds were expected to give strong Raman spectra. Because lead is a heavy element, most vibrations of its compounds are very low in frequency, but Raman instrumentation allows bands as close to the exciting line as 20 cn^{-1} to be observed without ditticulty. As demonstrated by the lead chloride spectrum of Figure 10, lead compound spectra were found to be typically strong and low in frequency.

Identification of lead halides using Raman spectroscopy is very easy and conclusive. Eight of the ten Raman bands observed in the spectrum of single crystal lead chloride (77) may be seen in the spectrum of the powder in a capillary tube. Since the crystal structures of lead chloride and lead bromide are identical, their Raman spectra are extraordinarily similar. Due to the presence of the heavier bromine atom, PbBp has the same bands as PbCl₂, but shifted to lower frequencies (78).

hasan spectra of the two polymorphic forms of PbO are

31

「日本はないない」のであるとないであるというないであるというないできょうできょうかんできょうできょうかいできょうないできょう

actions provide a fight a barress

available in the literature (13,14,79), and they demonstrate that the two forms are easily distinguishable. Spectra of sample: sold as litharge, or tetragonal PhO, and massicot, of orthorhombic PhO, were recorded. They indicated that both of the samples were actually orthorhombic PbO.

As shown in Pigure 11, spectra of PbO can be slightly different for different sample preparations. The spectrum of Pb0 powder in a capillary tube is not the same as that of the same compound in a pressed KBr pellet. Although both are primarily spectra of orthorhombic PbO, the pellet spectrum shows impurity bands at 84, 149, and 344 cm-1, i.e., the positions of the three strong bands of tetragonal Pb0. grinding required in the pellet making process The apparently transforms some of the orthorhombic oxide to the lower energy, tetragonal form. The crystal structures of the two oxides are very similar. The orthorhombic form is a slightly distorted version of the tetragonal, which is the thermodynamically stable form at temperatures below 488° C Orthorhombic PbO is stabilized by the presence of (80,81). small quantities of various impurity ions (81,82), allowing to remain indefinitely without reverting to the it. tetragonal form. It is likely that small amounts of impurities stabilize the reagent grade PbO so that it can remain in the orthorhombic form until intensive grinding brings about the transformation.

The Raman spectrum of the most common carbonate of lead, hydrocerrusite, $(PbCO_3)_2 \cdot Pb(OR)_2$, has not previously been

32

· 在12月1日的市场的方式,在19月1日的市场中的市场的市场的市场。

published. The spectrum, shown in Figure 12, quickly contirms the presence of carbonate with the very strong 1051 ca^{-1} band, the C-O symmetric stretch characteristic of carbonates. The other bands specify the type of carbonate, i.e., $(PbCO_5)_2 \cdot Pb(OH)_3$.

The mixed oxide $Pb_{3}O_{4}$, minium, decomposed in the laser beam and a spectrum could not be obtained. By making a KBr pellet containing approximately equal amounts of $Pb_{3}O_{4}$ and KBr, the excellent spectra shown in Figure 13 were recorded. This was the only lead compound to show marked differences when using different excitation frequencies. The two spectra of $Pb_{3}O_{4}$ in Figure 13 were recorded under identical conditions, but the bands in the spectrum recorded with the 514.5 hm. exciting line are two to three times as intense as those in the 488.0 nm. spectrum. The change in spectral intensity is an example of pre-resonance enhancement of the Raman transitions due to exciting the molecules with a frequency near an electronic absorption band (30-32,83,84).

The other oxide of lead, lead dioxide, presents a problem for wibrational spectroscopy. There are no infrared absorption bands at wavelengths above 240 cm⁻¹ (85), and no haman bands were observed using either powder or pellet saaples. When exposed to the laser, the black compound rapidly decomposed, the exposed portion becoming pale yellow in color. A spectrum of a PbO₂ pellet which had been exposed to the 514.5 nm. laser line for an hour is shown in Figure 14. The spectrum identifies the compound as

orthorhombic PhO. Clearly the intense laser beam transformed the PbO2 into orthorhombic PhO.

In the aqueous corrosion of a metal it is entirely possible that the insoluble oxide layer may consist primarily of one compound with one or more impurities present. In order to determine the minimum concentration of an impurity substance required for detection by Raman spectroscopy, spectra of mixtures of the lead compounds were recorded. The minimum detectable concentrations were found to vary widely. From the spectrum of lead chloride containing 0.95% (by weight) orthorhombic lead monoxide shown in Figure 15, it is clear that 1% or greater proportion of PbO in lead chloride should be easily visible. The strong PhO binds at 143 and 292 cm-1 which do not councid_ with chloride bands are easily seen. This spectrum shows that small amounts of oxide should be detectable in a lead chloride film. The opposite mixture, a small amount of mixed with a large amount of PbO, showed that the PbC1 Ruman spectrum of PbO is considerably stronger than that of lead caloride. No bands due to the chloride could be seen in mixtures containing up to 16% PbCl₂. As shown in Figure 10, these mixtures gave spectra of orthorhombic PbO alone, with no hint of the impurity. It is probable that the yellow PbO dominates the spectra of mixtures because its electronic absorption band, extending to approximately 450 nm. (86,87), is much closer to the excitation frequencies used than that of colorless lead chloride. Pre-resonance

34

Raman enhancement of the PbO spectrum can account for the intensity of the bands. Since there is considerable variation in spectral intensity from one compound to another, it has not been possible to specify any single concentration which is the minimum detectable concentration for which a useful Raman spectrum can be obtained. The minimum concentrations for the lead compounds examined varied from approximately 0.5 to 30 percent.

III.B. Simple Immersion Oxidation.

In order to develop the equipment and technique for recording in situ Raman spectra of lead surfaces oxidized in aqueous solutions, clean lead strips were simply immersed in reactive solutions and allowed to corrode freely. After exposure periods of from one to thirty-four days, spectra of the relatively thick surface films which had formed were recorded using the arrangement shown in Figure 3.

A lead strip was immersed in a deaerated 2.3 molar hydrobromic acid solution and allowed to react for eight days. At that time a thick gray film, crystalline in appearance, had formed on the surface. The in situ Raman spectrum of the surface, shown in Figure 17, clearly indicates that it consists of PbBr₂. The six strongest bands in the spectrum of pure lead bromide are present in the spectrum of the film. Furthermore, the band shapes and frequencies in spectra of the film and of the powder are

35

2. 本としたという、ションパント、た、、からなるため、からまだいいい、たいないの、たいないないないない、ためのにない、ためのにない、ためのであるのであい。

identical.

The sample was allowed to continue reacting undisturbed in the solution, and the crystalline surface film developed into white, needle-like crystals one to two centimeters in length. After a total immersion time of 34 days, the sample was removed and dried at room temperature. The white crystals were scraped off and ground into powder to simplify the measurement of a Raman spectrum. The spectrum was identical to that of the surface film. It is clear that the Raman spectrum of a thick film is identical to that of a bulk sample; Raman scattering from a powder is not significantly different from scattering from a tilm.

Lead samples were exposed to dilute hydrochloric acid solutions with the expectation that they would react more rapidly with chloride than with bromide ions. Although at least four days of immersion were required to form a lead bromide surface layer thick enough to give a good spectrum, lead in Hel solution formed a dark gray coating which was sufficiently thick to give a lead chloride spectrum after eighteen hours of exposure The in situ Raman spectra of sample surfaces which had been reacting in air saturated 0.1 molar hydrochloric acid for varying lengths of time are shown in Figure 18. While the thin film of the eighteen hour exposure is difficult to identify, as the films became thicker, the spectra became more and more like that of the powder shown in Figure 10. These exposures were conducted in derated solutions; however, samples exposed in

36

a statistick of the statistic statistic statistic statistic statistic statistic statistic statistic statistic s

urtual wirth the Schlein warm which and one

就能成成就是主义的的。这般的的是不是你的的人。

deoxygenated HCl solutions gave identical spectra. λs demonstrated by the spectra of Figure 19, the only effect of the presence or absence of oxygen is apparently in the rate of the reaction; a PbCl, film became thick enough to give a good spectrum much sooner when the solution contained The presence of dissolved orygen makes dissolved oxygen. the solution more corrosive to lead (88), increasing the amount of dissolved Pb++ ions present. Since the formation ot lead chloride probably depends only on its solubility product, increasing the amount of Pb++ present has the effect of increasing the amount of PhCl₂ which is precipitated. The same effect was noted in hydrobromic acid exposures, i.e., lead browide appears to form more rapidly under air saturated conditions.

Lead immersed in a basic solution (0.01 H MaOH) under deaerated conditions was oxidized to tetragonal PbO as the spectrum of Figure 20 indicates. The spectrum differs considerably from that of the orthorhombic form, and it agrees completely with single crystal spectra of the tetragonal form published previously (13); there is no difficulty in determining which polymorph of PbO is present.

In air saturated exposures to sodium chloride solutions, a different product formed. Instead of a dull, gray PbO coating, a thick, white substance appeared on both the sample and g. as container surfaces. The white precipitate was identified as basic lead carbonate by its spectrum; both the sample surface and the material scraped from the side of

37

the container gave identical spectra. Pigure 21 shows a spectrum of the dried sample surface and one of reagent grade basic lead carbonate, $(PbCO_2)_2 \cdot Pb(OH)_2$. No spectra were recorded in situ because the precipitate on the container prevented light from reaching the sample.

Since they were found only on the lead surface, the narure of the reactions forming the lead halides could not be determined from these experiments, although it is assumed that they are precipitated from dissolved ions. They could be formed by a solid state reaction at the lead surface. It is evident from the nature of the precipitate that the basic lead carbonate was formed from dissolved carbon dioxide/carbonate species reacting with lead ions in Lead and lead monoxide have appreciable solution. solubility in alkaline solutions (35,47), so the presence of dissolved carbonate controls which compound is form When little or no carbonate is present, as in a cherated solution, lead is oxidized to tetragonal PbO, but when dissolved carbon dioxide is present, as it is in air saturated exposures, it reacts with lead icns to form the insoluble carbonate.

It is not known if PbO formed in the aerated solution. No indication of PbO bands was seen in the Raman spectra of the surface, but the oxide may have been present under a layer of basic lead carbonate thick enough to prevent detection of the oxide. It has been estimated that light is scattered from a surface layer with a thickness on the order

38

of the wavelength of the light (89), in this case approximately 500 nm. Although accurate measurement of the thickness of the carbonate coatings could not be made, the layer was estimated to be nearly a millimeter thick, several orders of mognitude greater than the light causing Raman scattering could penetrate.

A summary of the spectral results of the simple immersion exposures is presented in Table III. In addition to identification of the compounds comprising the surface films, the immersed samples were used to develop the apparatus and technique used for the _lectrochemically oxidized lead sample analysis, the more important part of this research.

III.C. Load - Water Pourbair Diagram

As mentioned in the experimental section, both calculated Pourbaix diagrams and potentiodynamic polarization curves were used to determine the exposure conditions required to thoroughly investigate the behavior of lead in water. The simplified Pourbaix diagram available in the literature (35) is shown in Figure 1. It designates theoretical conditions of stability for Pb, Pb**, tetragonal Pb0, PbyO₄, and PbO₂. Because more recent and, presumably, more accurate thermodynamic date has become available in the years since the calculation of that diagram, it was desirable to recalculate the diagram using the recent data.

39

The slightly altered lead - water Pourbaix diagram resulting from applying new free energy values (90) to the same chemical reactions and equilibria used by Pourbaix (35) is shown in Figure 22. The revised values for free energy used are presented in Table IV. Although the values do not differ from previous ones by large amounts, they do cause considerable changes in the diagram since they affect the slopes of the equilibrium lines. The most obvious difference is the appearance of a region where Pb_2O_3 is predicted to be stable.

The Pourbaix diagram of Pigure 22 was used to select the pH values of interest. No acid solutions were chosen because they were predicted to form no insoluble species, only lead or plumbous ions appear in the acid region of the diagram. It was felt that any acid chosen to achieve a low ph would have a strong effect on the behavior of the lead. Dissolved 10** ions either remain in solution or precipitate as salts of the anions present in the acid. No meaningful lead - water reactions can be examined in the acid region with the presence of anions.

In neutral and basic solutions, insoluble lead oxides are predicted to be stable so solutions of pH 7 (phosphate) and ph 10 (bicarbonate) were selected for controlled potential exposures. These buffer solutions, the compositions of which are listed in Table II, were similar to those used in the past for electrochemical investigations of Pourbaix diagrams for other setals (42,91). It was heped

40

that the presence of dissclwed buffer species would not affect the equilibria of the diagram, that the surface films which formed would be results of lead - water reactions only, with no interference from the dissolved ions of the phosphate or carbonate species.

The potentials for potentiostatic exposures were chosen so that they were representative of the various regions of the Pourbaix diagram and, also, so that they represented each of the regions which appeared in potentiodynamic polarization curves. Polarization curves were recorded for lead in the solutions of interest between -0.76 V and +1.24 V vs. SHE. This potential range was chosen to examine the behavior of lead throughout the Pourbaix diagram. Since the purpose of the research was to study aqueous corrosion, potentials where water is stable were the only ones of interest. To permit the formation of relatively thick films which were expected to allow some comparison with potentiostatic exposures, the polarization curves were recorded during slow potential scans, 40 mV/minute.

Anodic polarization curves for lead in the pH 7 and pH 10 solutions are shown in Figure 23. From the Pourbaix diagram it is apparent that lead is thermodynamically stable within part of the region of water stability. The lowest oxidative wave of each curve seems to correspond, approximately, to the potential of the Pb/PbO transition. At lower potentials, net current flow was in the reducing direction, as is likely where lead is stable, and at higher

and a service and the presences in the service in the service and the service of the service of

potentials current flowed in the direction of oxidation, certainly indicating that an oxidation product was formed. The upper waves, at +1.05 V in pH 7 and at +0.88 V in pH 10, roughly correspond to the predicted $Pb_2 u_3 / Pb0_2$ transition potentials. It is in agreement with the Pourbaix diagram that the potentials of the transitions are higher in neutral than in basic solutions. In the pH 10 polarization curve, the oxidative wave going off scale at 1.20 V undoubtedly represents oxygen evolution, although the potential is considerably higher than the calculated oxygen evolution line, 'b' in Pigures 1 and 22. The other, smaller, waves seen in the polarization curves of both solutions are not immediately explained by the Pourbaix diagram. They could due to formation of the intermediate oxides $Pb_{3}O_4$ or $Pb_2 u_3$, lormation of some species which involve the buffer solution, or due to some kinetic effect. Positions of polarization curve waves depend on sweep rate and concentration of reactants as well as on sample material and solution composition (92). Clearly, the polarization curves and Fourbaix diagrams alone cannot adequately describe the oxidation of lead in the buffer solutions. To find whether the vaves of the polarization curves actually identify the same transitions predicted in the Pourbair diagram, the composition of the surface files sust be analyzed by Raman

spectroscopy.

42

III.C.I. fumunity Region.

Potentiostatic exposures of lead samples were conducted in each of the various potential regions identified by Pourbaix diagrams and polarization curves. At low potentials lead is calculated to be thermodynamically stible, or immune to oxidation. Electrochemical exposures confirmed the prediction.

In the pH 7, phosphate solution exposure at a potential of -0.62 (V vs. SHE) resulted in a very small reducing current, and the samples remained silver and shiny in appearance throughout the exposures. Raman spectra could not be observed from the surfaces either in solution or atter drying. From all indications, no surface film was formed.

Exposure at -0.16 V also gave no spectrum. In the Pourbaix diagram -0.16 V is in the immunity region, but it lies above the first oxidative wave of the polarization curve. Current remained extremely small for that exposure, 0.06 mA/cm², but it was in the oxidizing direction. Possibly lead is oxidized under these conditions, as the polarization curve indicates, but the film may be very protective. The -0.16 V exposure apparently did not exhibit the immunity predicted by the calculations of the Pourbaix diagram.

The results of exposures at low potentials in pN 10 solution were slightly different. At -0.80 V the sample remained shiny, net current flow was in the reducing

direction, and no spectrum could be observed, the same immunity results as in the phosphate buffer. At a potential of -0.42 V, nowever, while the sample remained relatively shiny, current flow was in the oxidizing direction and the surface gave a weak Raman band at 1050 cm⁻¹, indicating the presence of carbonate. Infrared reflection-absorption spectroscopy, which is more sensitive to carbonate films of this type, confirmed that the compound on the surface was basic leau carbonate (71). Prom the spectroscopic results it may be inferred that the oxidative wave at -0.36 V is not necessarily an indication of a Pb to PbO transition but it scems to be related to the appearance of the basic carbonate.

III.C.2. PbO Region.

いため、日本がないたかになる。この見たいとなって

According to the Pourbaix diagram of Pigure 22, the region of tetragonal PbO stability exists between -0.16 V and +0.62 V at pH 7 and between -0.34 V and +0.42 V in pH 10 solution. All potentiostatic exposures conducted in this region formed tetragonal PbO. They all formed relatively thick, non-protective surface films which were identified by their haman spectra. The physical appearances of the films varied over the range of potentials. At lower potentials the surfaces appeared gray, and oxidation currents were moderate, becoming constant at values near 0.05 mA/cm². At higher potentials the currents were higher and the color of

44

the surfaces became blacker. The black lead oxide is known to be a light colored lead monoxide layer with some elemental lead dispersed on the surface, the oxide/water interface (80). At the lower potentials where oxidation is slower, a smaller amount of elemental lead seemed to be present. As the potential was raised and the rate of oxidation increased, the color of the surfaces indicated that the films contained more lead. Although the films had different physical appearances, the Raman spectra of films formed throughout the PbO region were identical, as shown by the spectra of Figure 24.

Lead samples exposed throughout the PbO region also exhibited similar current behavior with time. A typical plot of current versus time during such an exposure is shown in Figure 25. All exposures which resulted in the formation of tetragonal PbO showed similar current behavior with only small differences in the magnitude of current. The current decreased rapidly for approximately thirty seconds, rose rapidly to a maximum after approximately one minute of exposure, and then it gradually decreased, reaching a relatively steady value after about ten minutes. The initial drop in current can be attributed to the rapid oxidation of the clean lead surface, forming an initial oxide layer. The cause of the current maximum after a minute of oxidation is not so certain. It may indicate the initiation of another process, perhaps the initial current decrease is due to the surface being covered by one species

States and Diff

which, after formation of a thin layer, is transformed to another spocies. The current behavior could also be explained by the simultaneous occurrence of two competing processes, such as a solid state reaction and a dissolution or precipitation process. If the rate of one process the concentration of dissolved lead or the depended on presence of an oxide film at the surface, it could have changed greatly in the tirst minute of oxidation, as lead was dissolved and an oxide film began to grow. Å significant change in the relative rates of two competing reactions could account for the temporarily high current obseved.

same current behavior was observed in both Since the phosphate. and bicarbonate buffer solutions, it is unlikely that dissolved anions cause it. Since spectra of the surface films indicated the presence of only tetragonal PbO, it may be assumed that only the reactions forming PbO or dissolved lead ions are involved. Spectra of lead surfaces were recorded only after the current maximum had been reached; therefore, information as to the state of the surface before the maximum was not obtained. The instrumentation used to record Raman spectra is not designed for rapid scanning of a spectrum. A minimum of three minutes is required to scan the spectral region of interest, so the one minute period between the initiation of a potentiostatic oxidation and the current maximum is not

enough to permit the recording of a spectrum, without even

considering the time needed to adjust the sample position and optics to direct light scattered from the sample into the monochromator. It should be pointed out that the purpose of this research was to identify the compounds comprising surface films under conditions of relatively long term oxidation, not to examine the initial phases of oxide film formation, which would require different instrumentation and experimental methods.

After in situ Raman spectra were recorded, each sample was thoroughly washed with distilled water and allowed to dry at room temperature. Raman spectra of the dried sample surface were then recorded to detect any possible change in the surface film which might have occurred due to drying and to make sure that the spectra of the surface species were due to insoluble compounds and not adsorbed or solution species which could be removed by washing. All samples that gave tetragonal PhO spectra in solution gave identical spectra when dry. The similarity between wet and dry sample spectra is shown in Piqure 26. In this investigation, in situ spectra were generally found to have approximately half the intensity of ary ones due to the difficulty of focusing light scattered in the large electrochemical cell onto the entrance slits of the monochromator, and because of losses due to reflection and scattering from the glass cell and the solution. The difference in spectral intensities was not enough to be significant, although it meant that thinner films could be identified from spectra of dry samples. The

「ためになくないない」

47

spectra of dried samples showed slightly better signal to noise ratios, but all Raman bands of dry samples were also detected from samples in solution. One drawback encountered when obtaining spectra of dried samples was the increased intensity of grating ghosts. Due to the greater amount of light directed into the monochromator by dry samples, more light was available to be diffracted improperly by the gratings.

In general, when any lead sample was exposed to the laser, the current increased very slightly, no more than one porcent, probably because the intense radiation disrupted the double layer at the point of incidence. However, it was found that the oxidation current of a lead sample covered with tetragonal PbO increased sharply when the laser beam was incident on the surface. When lead electrodes with a tetragonal PbO coating were exposed to laser radiation of wither 488.0 or 514.5 nm. wavelength, the oxidation current increased suddenly and markedly. An example of such behavior is shown in the current ws. time curve of figure 27. Similar current behavior has been observed when lead was oxidized in sulfuric acid solutions (54), because of the photoconductivity of tetragonal PbO on Pb/PbO electrodes.

When a lead sample being oxidized in the PbO region was exposed to the laser heam, three effects were observed: the current increased markedly, the spot of laser incidence became brownish in color, and bubbles appeared at that spot. The potential and thickness of the oxide layer affected the

48

Sant There she the second at the second of

occurrence of these effects. Each became more pronounced with higher potentials and thicker films. The formation of bubbles at the point of laser incidence caused considerable ditticulty in obtaining in situ spectra. λ bubble complicates the geometry of light scattering at the solution/sample interface. Bubbles scatter large amounts of light away from the direction desired for examination in the spectrometer, thus weakening the observed Raman spectrum greatly. An example of the degradation of a spectrum by bubble formation is shown in Figure 28. The bubbles disappeared when the potential was removed. The only difference in recording the spectra of Pigure 28 was in potential. Bubbles were generated by the laser when the potential was applied; when the potential was removed and the electrode could assume its rest potential, the bubbles were no longer present.

Laser incidence caused the oxide films to turn brown if the sample was irradiated while at a potential higher than the Pb/PbO transition. The scanning electron micrograph in Figure 29 shows the change in the surface due to the laser. After the applied potential was removed the lead electrode assumed a rest potential at the value of the lowest oxidative wave of the polarization curve, and no further color change was observed. The brown spot remained brown, but irradiation of any part of the remaining gray or black surface film caused no change in color, just as it caused no further bubble formation.

49

Linga of multiente La shall

Apparently the reactions due to the laser beam are potential dependent, indicating that the process is photochemical in nature, not thermal decomposition as is often seen with laser irradiation (83). It is verv difficult to envision any thermal process resulting in the decomposition of PbO which could be potential dependent. The photoelectrochemical process described by Pavlov, Zanova, and Papazov (54) in which PbO is transformed to brownish PbO2 with the formation of oxygen gas and a resulting high photocurrent stems to fit the observed behavior. Although the experimental setups were different, Pavlov, et. al., used a lead electrode covered with a transparent lead sulfate outer layer over tetragonal PbO exposed to a tungsten lamp, results of irradiated potentiostatic exposures are very similar. A summary of the process proposed by Pavlov follows.

というなどのない。 「おいた」のでは、「おいた」のでは、「おいた」のでは、「おいた」のでは、「おいた」のでは、「いた」のでは、「おいた」ので、」のでは、「おいた」のでは、「おいた」では、「おいた」ので、

and a second second

The basic process involves the reaction of PbO with light of wavelengths shorter than 650 nm. The energy of light at this wavelength corresponds to 1.9 eV, the bandgap energy for tetragonal PbO (93). Interaction with light can promote an electron into the conduction band of the oxide leaving the PbO layer with electron holes in the semiconductor lattice,

Pb0 + hv -+ Pb0h⁺ + e⁻ (1 Electron holes are represented by h⁺ in Equation (1. The holes move through the Pb0 due to the electric field imposed across it until they collect at structural defects, which

are plentiful in PbO. The holes interact with defects, represented by d, creating

h* + Pbod -* Pbod+ (2 charyed Phod* centers containing Pb3+ ions which are unstable. These quickly interact with another hole to form a more stable Pb*+ structure.

h* + PbOd* -* PbOd2* (3) There is very little difference between the tetragonal PbO lattice and that of PbO₂ (80,94), so the PbOd2* is essentially lead dioxide with an oxygen vacancy. Reaction with water can easily eliminate the vacancy to complete the process.

 $Pb0d^{2+} + H O -+ PbO + 2H^+$

sources are the constant of the second state of the second state of the second state of the second state of the

The reaction of the PbO species with OH^- ions from the solution has been proposed to explain the formation of oxygen (54) through a two step pathway,

 $PbOh^{\vee} + OH^{-} \rightarrow PbO + OH(ad)$ (5)

 $PbOd^{2+} + 2OH^{-} - + PbOd + 2OH (ad)$ (6

The first step is the formation of adsorbed OH radicals which may combine to liberate oxygen gas at the oxide/solution interface.

20H(ad) -+ 1/2 0 + H 0 (7)

The proposed mechanism agrees very well with the observed results. The formation of bubbles, the change to a brown color, characteristic of Pb^{44} , and the current behavior are all explained. The scanning electron micrograph of Figure 29 shows that the surface was radically

51

(4

changed by the laser. The surface of PbO which was not exposed to laser radiation was very rough, and it appeared black. The area irradiated by the 488.0 nm. line, however, was much smoother. The micrograph of that area, shown in Figure 30, shows a relatively smooth film with only a few of the flake-like features which completely covered the unexposed parts of the sample.

It must be pointed out that no differences in the oxide films due to laser irradiation were detected by Raman spectroscopy. In all cases strong tetragonal PbO spectra were recorded from all parts of each sample. As stated previously, no spectra of lead dioxide were obtained so the presence of Pb*+ species was undetectable. Apparently enough tetragonal PbO was present after irradiation, either mixed with lead dioxide or in another layer, to give the strong lead monoxide spectra observed.

The flake-like surface was not necessarily an indication of tetragonal PbO, since PbO spectra were recorded from areas without flakes. The flakes may consist of PbO or of elemental lead (80) and, due to the surface roughness, give the samples a black color. Whatever species or characteristic they represent 's destroyed by laser irradiation at potentials above the Pb/PbO transition. If they are due to tetragonal PbO their disappearance can be explained by the theory of Favlov (54) discussed above, but, if they are characteristic of elemental lead, then their disappearance must be explained by some other reaction

ner hier and a stand with the Standard State State

machanism which is not known.

III.C.3. Higher Oxide Region.

Potentiostatic exposures were conducted at potentials as high as +1.24 V giving no indication of the presence of higher oxides. Raman spectra and X-ray diffraction patterns tound that tetragonal PbO was the only compound present.

Potentiostatic exposures gave no correspondence with the polarization curves. Exposures at potentials above and below the oxidative waves observed at +1.05 V in pH 7 and $\div 0.88$ V in pH 10 all formed lead monoxide. No differences were observed. Sample surfaces rapidly blackened during exposure, and oxidation currents were similar to those found throughout the Pb0 region, 0.1 to 0.4 mA/cm².

A summary of the results of exponents in the pH 7 and pH 10 bufter solutions is presente. In Table V. The relationship of these experimental results to the calculated Pourbaix diagram is shown in Figure 31. There is excellent agreement with the Pourbaix diagram in all regions except those of the higher oxides.

The reasons for the lack of agreement at higher potentials is not known, but three possibilities should be considered: 1) There may be some kinetic effects in the formation of higher oxidation state lead compounds which cannot be accounted for in the equilibrium calculations of the diagram. 2) The oxygen which begins to evolve at the lead

surface at high potentials (the cause of high current in pH 10 exposures at +1.24 V) may complicate the reactions and make PbO the stable compound under the experimental conditions achieved. 3) The Raman technique examines the surface of the sample, in this case a PbO surface layer, not the surface of the lead metal. Conceivably a thin film of lead dioxide or some other compound could exist at the lead surrace, beneath a thick PbO film. This higher oxide might not be detected by X-rays is it were only a small fraction of the total oxide layer. The presence of a layer of PbO₂ is unlikely, however, because such a layer would be protective, thus restricting the flow of current through the sample electiode. Exposures in the PbO₂, Pb₃O₄, and Pb₂O₃ regions resulted in oxidation currents as high or higher than those at lower potentials which resulted in PbO.

III.D. Lead-Water-Chloride Pourbaix Diagram

The Pourbaix diagram for the lead-water-chloride system was calculated in the same manner as for the nil chloride system (71). The reactions considered for the potential region below +0.2 V (vs. SHE) were the same as those used by Appelt (66). Using the more recent thermodynamic data available for some species (90) and extending the diagram to higher potentials gives a more complete and probably more accurate picture of the behavior of lead in chloride solutions. The free energy values used which differ from

54

al ad added a the state. In the state of the states in the states in the states are a second access which a states are a second access and a second access and a second access and a second access a second access and a second access a second access and a second access a second access

those of Appelt's diagram are listed in Table VI.

The positions of equilibria between species on the diagram depend strongly on chloride concentration. A concentration of 0.1 molar was chosen as a reasonably high ionic level which would be likely to affect oxide film tormation, but which would not be so high that the sclutions would differ greatly from those used in the nil chloride exposures. The calculated lead-water-chloride Pourbaix diagram for a chloride ion activity of 0.1 is shown in Figure 32.

There are two somewhat confusing regions of the diagram, the $PbCl_2$ and the $3PbO \cdot PbCl_2$ regions. In acid solutions the plumbous ion, Ph**, is the stable species at potentials above -0.20 V. The concentration of Pb** in solution is limited by the solubility of lead chloride. The species Pb**, Cl-, and lead chloride all exist together, bound by the solubility relationship:

> $Pb^{++} + 2Cl^{-} \rightarrow PbCl$ (8 $K = [Pb^{++}] [Cl^{-}]^{2} = 10^{-4} \cdot 6$ (95) (9

In neutral and basic solutions, the insoluble phase 3Pb0 •PbCl₂ has been considered, but there is some doubt that such a compound exists. It may actually be 3Pb(OH)₂ •PbCl₂ (12).

Solutions were chosen which allowed electrochemical exposures under acidic, neutral, and basic conditions. The composition of each solution is detailed in Table II. The pH 7 and pH 10 solutions were identical to those used for

55

nil chloride oxidations except that enough potassium chloride was added to these buffer solutions to make them 0.1 molar in chloride. For an acid pH, no suitable buffer solution could be found, so 0.1 M hydrochloric acid solutions were used. It was found that the pH of acid solution changed by no more than 0.2 pH units during a twenty-tour hour exposure.

Potentiodynamic polarization curves were recorded for lead in the three chloride solutions selected for exposures. The curves, shown in Figure 33, seem to have a definite relation to the Pourbaix diagram of Figure 32. The lower oxidative wave occurs at the approximate potential of the predicted Pb/PbCl₂ or Pb/3Fb0•PbCl₂ transitions, and the wave at +0.96 V in pH 10 corresponds roughly to the 3Pb0*Pf:l₂/PbO₂ transition. The waves at +0.17 V in pH 7 or at -0.07 V in pH 10, however, cannot be explained by the Pourbaix diagram.

The difference between polarization curves of lead in solutions with and without chloride present is surprising. The pH 10 polarization curve of Pigure 33 is very similar in overall appearance to the nil chloride pH 10 curve shown in Figure 23. The presence of 0.1 M chloride seems to have little effect on the oxidation of lead in the bicarbonate butter solution; the strong waves are found at approximately the same potentials and are of roughly the same magnitudes in both solutions.

The polarization curve in pH 7 chloride solution is

markedly different from that of the nil chloride one. The polarization curves were recorded in precisely the same manner with and without chlorides. The presence of 0.1 M cl- was expected to increase the conductivity of the solution and the reactivity of the lead causing stronger oxidative waves than in the same solution without chlorides. As seen in the polarization curves, the opposite effect occurred. Current remained very low in the presence of chloride. Polarization curves gave indication that something different occurs in the phosphate buffer solution when chlorides are present, but they give no hint as to what The only conclusion which can be reached is that occurs. the lead was oxidized more slowly when 0.1 M Cl- was present in the pH 7 buffer than when it was not.

The exposure conditions selected using the Pourbaix diagram in Figure 32 and polarization curves in Figure 33, and the resulting surface film spectra are summarized in Table VII. The current values listed are those measured after current became relatively constant.

III.D. 1. pH 1 Pxposures.

i baadh ni fhilinn a' a san nich an bire a finelad in an tan in die bhire think tha sin an the sin the si

In dilute hydrochloric acid, lead is stable at low potentials while it is oxidized to lead chloride at higher potentials (12,62). The potential of the Pb to lead chloride transition is calculated to be -0.20 V, and it is indicated at -0.08 V on the polarization curve. The low

potential reductive feature of the curve is undoubtedly due to the evolution of hydrogen.

In the region where immunity is predicted (exposures at -0.30 V and lower), net current flow was in the reducing direction and samples remained clean in appearance. In situ Raman spectra gave no indication of film formation. Lead seems to be immune to corrosion in this potential region.

After washing and drying samples exposed in the immunity region of the Pourbaix diagram, both Raman and infrared reflection spectra (71) indicated the presence of orthorhombic PbO on the lead surface. It is unlikely that the oxide was formed by oxidation of the lead under the generally reducing conditions observed, but the PbO was probably the result of dissolved lead being redeposited on the sample surface.

It has been suggested (69) that orthorhombic PbO is formed from the plumbous ion by the reaction:

Pb++ + H O -+ PbO + 2H+ (10 Since lead is sorewhat soluble in 0.1 N HCl, sufficient quantities of Pb++ to form an orthorhombic PbO surface coating go into solution when lead is exposed for several hours at potentials near the upper limit of the immunity region.

No Raman bands of orthorhombic PbO were found in the in situ spectra, whereas dry samples gave rather strong spectra, as shown in Figure 34. Samples were clean and shiny guring controlled potential exposures, but acquired a

58

light gray, crystalline surface appearance upon drying. This may indicate that the oxide was formed during washing and drying of the sample surface, not during the potentiostatic exposure. Possibly Pb** ions were too low in concentration to form a surface film while the potential was held in the immunity region but, when the applied potential was removed so the sample could be washed and dried, the lead surface may have rapidly oxidized. The mechanism of oxidation could be that of reaction 10, or some other, similar mechanism.

The Raman spectra of lead oxidized at potentials of +0.14 V and higher indicated the presence of a PbCl₂ surface layer. A typical surface film spectrum from the chloride region is shown in Pigure 35. The spectrum is identical to that of pure lead chloride powder with bands at 62, 88, 126, 156, and 178 cm⁻¹ (77,78). Oxidation currents in the chloride region were extremely high, approximately 10 mA/Cm², and the samples quickly became covered with light gray, crystalline coatings.

In the potentiostatic exposures which formed lead chloride, a gray substance was deposited on the platinum mesh counter electrode (cathode). After removing the cathode from the solution it was allowed to dry at room temperature and the adherent gray material was scraped off of the platinum. Raman spectra of the dry material identified it as orthorhombic PbO, as shown in Pigure 36. The presence of the oxide on the cathode, far from the lead

electrode, is proof that it was formed by deposition of dissolved species (such as Pb** ions) in the solution. Since the formation of orthorhombic PbO seems to depend only on its solubility, not on any electrochemical reaction, it could be formed in other solutions. Due to the high rate of lead dissolution, as evidenced by the very high oxidation currents observed in the lead chloride region, a large amount of Pb** was present to permit formation of thick orthorhombic PbO deposits. It is likely that lead chloride was formed at the lead anode and PbO at the platinum cathode because of the relative solubilities of the two species.

III.D.2. pH 7, 0.1 M Chloride Exposures.

According to the Pourbaix diagram of Pigure 32, potentiostatic oxidation of lead in a pH 7, 0.1 M chloride solution should result in immunity at potentials below -0.26 V, formation of 3PbO+PbCl₂ between ~0.26 V and +0.75 V, and formation of lead dioxide at higher potentials. The predicted compounds were not found experimentally.

In the region where immunity is predicted, i.e., below -0.26 V,the Pourbaix diagram, polarization curve, and spectroscopic results were all in agreement. Potentiostatic exposure resulted in a reducing current, the samples remained shiny and silver in color, and no Raman bands were observed from wet or dry samples.

Above the potential where lead is the stable species,

60

ad never a destruction of the second state of the second state of the second states of the second second second
i.e., -0.34 V according to the polarization curve of Figure 33, current flow, although small, was in the oxidizing direction. The sample surfaces darkened quickly when electrochemical exposures were begun and became dark gray in color after a few hours. An insoluble oxidation product film was formed.

In situ Raman spectra of sample surfaces indicated that, at potentials between -0.11 V and +0.18 V, orthorhombic PbC was formed. At +0.18 V both orthorhombic and tetragonal PbO were observed and at higher potentials the films consisted of tetragonal PbO alone, as shown by the spectra of Figure 37.

No explanation has been found to explain why the two polymorphs of lead monoxide should be found at different potentials. The tetragonal form is thermodynamically tavored under all conditions at room temperature (80). It is likely that a weak wave at approximately +0.16 V on the polarization curve indicates a PbO (orthorhombic) to PbO (tetragonal) transition, but such a transition is not reflected in the Pourbaix diagram which is based solely on thermodynamic equilibria.

There were no differences observed, other than spectral ones, between the exposures which formed orthorhombic PbO and those which resulted in tetragonal PbO films. In both cases the visual appearances were similar and, although the oxidation currents for exposures which resulted in orthorhombic PbO were slightly higher than for the others,

61

the differences were not large.

The effect of chloride ion concentration was investigated by conducting exposures at -0.01 V in the pH 7 burfer solution with two different KCl concentrations: 0.01 M and 0.1 M. In 0.01 & chloride solution, the oxidation product was tetragonal PbO, i.e., the same compound observed in nil chloride exposures under similar conditions. In 0.1 M chloride, orthorhombic PbO was formed. These results indicate that the presence of chloride ions is the factor which allows the formation of the thermodynamically unstable orthorhombic PbO layer. The presence of small amounts of impurities can stabilize the orthorhombic structure (81,82) at temperatures far below the 488°C transition to the tetragonal form (80). Although the effect of chloride on PbO stability has not been studied, it is reasonable that small amounts on the order of parts per million (too little to be detected by Raman spectroscopy) could prevent the transition to the tetragonal structure.

At higher potentials no other insoluble species was observed, all exposures formed tetragonal PbO. The polarization curve, showing no transitions at potentials above +0.16 V, agrees with the Raman results. These disagree with the Pourbaix diagram which predicts the formation of lead dioxide at high potentials.

Throughout a wide range of potentials in pH 7 chloride solutions, Pb0 was observed. No exposures resulted in 3Pb0.PbCl₂ formation, the compound expected from Pourbaix

62

diagram cal ations. If such a compound had been formed, Raman spectra should have been able to identify it. Spectra of that compound, or the closely related species (PbOH) Cl n n and $[Pb_8(OH)_{12}]_n Cl_4n$ (12,96) are very different from the PbO spectra recorded in this research. If any chloride had been present in the surface layer, it should have been detectable by X-may energy dispersive analyzer. Examination of the exposed samples found only lead. This agrees with the formation of PbO because oxygen cannot be detected by the analyzer.

III.D.3. ph 10, 0.1 H Caloride Exposures.

According to the Pourbaix diagram, the results of potentiostatic exposures should be the same in pH 10 chloride solutions as in pH 7 but, experimentally, they are not. The polarization curves in the two solutions are quite different, and some significant differences were found by Raman spectroscopy. The differences are due, in part, to the composition of the pH 10 buffer used. They are also due to the nature of soluble lead species in basic solutions.

The pH 10 buffer gave slightly different results from those predicted in the immunity region. As seen in nil chloride exposures, lower potentials resulted in immunity while those in the region of lead stability in the Pourbaix diagram, but above -0.42 V, gave oxidizing currents and tormed a thin film of basic lead carbonate. The large

oxidative wave at -0.35 V on the pH 10 polarization curve in Figure 33 apparently corresponds to a transition from lead to basic lead carbonate stability. Raman spectra of films resulting from exposure in this region consisted only of a weak band at 1050 cm⁻¹ as shown in the poor quality spectrum of figure 38. Reflection-absorption infrared spectra were required to identity the compound which comprised the invisible surface film as basic lead carbonate (71).

The experimentally determined composition of films formed electrochemically at higher potentials had no correlation with the predictions of the Pourbaix diagram. The compounds $3Pb0 \cdot PbCl_2$ and PbO_2 were predicted but neither was found. Spectroscopic results did show excellent agreement with the polarization curves, however. At potentials between the waves at -0.07 V and +0.96 V tetragonal PbO was found. No trace of the predicted chloride or of orthorhombic PbO was detected.

There seems to be a simple explanation for the appearance of orthrhombic PbO in acid and neutral solutions but not in basic media. The orthorhombic PbO is formed by deposition from a solution containing plumbous ions by reaction 10. The plumbous ion is present only in solutions with pH'S of 9.34 or less. At that pH the dissolved lead species, Fb*+ and HFbO₂, are in equilibrium and, in more basic solutions, HPbO predominates (35). The Pb*+ ions required for formation of orthorhombic PbO are not present in pH 10 solutions. Tetragonal PbO, however, is probably

formed at the lead surface, using no dissolved lead species, by the reaction:

A SALE-ALLEXANT & GRAD

ussissin human and a survey of the

スロントはコンジョン

ing so a provinsi in a la supera da capar di su da da capara da capara da capara da capara da capara da capara

i

₽b + H O → PbO + 2H+ + 2e-

Although the transition to a higher oxidation state $pr \pm dicted$ by the Pourbaix diagram would occur at approximately ± 0.50 V and result in $2bO_2$ formation, the transition found occurred at the ± 0.96 V wave of the polarization curve and resulted in formation of a thick layer of minum, Pb_3O_4 . The Pb_3O_4 film appeared thick and flaky and it had a light brown color. The composition of the film was confirmed by comparison of its Raman spectrum with that of the pure compound as shown in Figure 39.

The discovery of a Pb_3O_4 film was rather surprising. It is a relatively unstable compound which has only been found in corrosion product films as an intermediate layer covered by a gray or black PbO_2 film (69). In the present investigation no PbO_2 was found. Since no Pb_3O_4 was found in nil chloride exposures, it appears that the presence of chloride ions permits the formation of Pb_3O_4 alone.

Several differences between 0.1 N chloride and nil chloride exposures were found. The most obvious differences were the formation of orthorhombic PbO and Pb₃O₄ films because of the presence of chloride ions. The other effect noted was the considerably lower current generally found during chloride exposures. The presence of a small amount of chloride seems to have the effect of making the solution less corrosive to lead. This finding agrees with others on the passivation of lead which found that increasing the concentration of dissolved chloride helped achieve

66

(11

passivation more easily (62).

Study of the potentiostatic oxidation of lead in chloride solutions showed that changes in surface film composition agree very well with potentiodynamic polarization curves. There was very little agreement with the calculated Pourbaix diagram. Every wave of the polarization curves corresponded to a change in the surface layer that was detectable by Raman spectroscopy, but the changes had little relation to the predictions of the Pourbaix diagram.

In calculating the diagram, the presence of dissolwed substances other than lead, oxide, or chloride species was not considered. The presence of buffer solution ions may account for the discrepancies between experimental results and those predicted by the Pourbaix diagram. In dilute nydrochloric acid, a relatively simple solution containing no unaccounted for ions, the Pourbaix diagram, polarization curve, and spectroscopic results were in agreement. The complexity of including all the species of buffer solutions makes calculation of the equilibria involved in a Pourbaix diagram an extremely complicated process but one which might give results more closely related to experimental findings.

III.E. Lead-Water-Sulfate Pourbaix Diagram

The behavior of lead in sulfuric acid solutions has been thoroughly studied because of the importance of lead-acid

67

a surrent on bound the consistent of the state of the sta

storage batteries. Much less research has been conducted on lead in Leutral and basic sulfate solutions. Pourbaix diagrams for lead in aqueous sulfate solutions have been calculated (56,67,68), and some efforts have been made to experimentally verify the theoretical predictions, although experimental sulfate exposures have been confined to the acid and neutral regions of the diagram (56,69).

The Pourbaix diagram for the lead-water-sulfate system was calculated using the relationships used by Ruetschi and Anystadt (56) but employing more recent free energy values (90). The different thermodynamic data, summarized in Table VIII, caused only small changes in the positions of the PuO-PbSO₄ equilibria lines. A sulfate ion activity of 0.1 was used for the calculations (71) resulting in the Pourbaix diagram shown in Figure 40.

Electrochemical exposures in sulfate solutions were not carried out in buffer solutions. The solutions chosen, the compositions of which are detailed in Table II, were simple solutions of the desired pH which were 0.1 molar in sulfate. Those used gave pH values of approximately 1, 6.5, and 11 to allow observation of the reactions of lead over a wide portion of the Pourbaix diagram. Measurement of solution pH before and after potentiostatic exposures showed that the pH of the unbuffered solutions remained fairly constant, not changing by more than 0.6 after as long as twenty-four hours.

The polarization curves recorded for lead in the sulfate

Contraction and the second s

60

「あいのないないない」というというないというないのできた。 ちょうちょう しゅうしょう ちょうちょうちょう

solutions of interest are shown in Figure 41. They are rather similar, each has a strong wave at approximately -0.25 V as its major point. These waves mark the transition from reduction to oxidation, the upper limit of potential of the immunity region. In accordance with the Pourbaix diagram, the potential of such a transition decreases as ρH increases. The oxidative wave was observed at -0.23 V in ρH 1, -0.27 V in ρH 6.5, and -0.30 V in ρH 11. The positions of these waves are in general agreement with the Pb to $\rho b so_4$ and Pb to $Fb0 \cdot \rho b So_4$ transitions of the Pourbaix diagram.

III.E.1. pE 1, 0.1 M Sulfate Exposures.

In the 0.1 M sulfuric acid solutions used to attain acidic conditions, lead is stable at low potentials while it is oxidized to lead sulf te at higher potentials (56-58). After formation of a sulface surface film thick enough to hinder reactions of lead with solution species, layers of PbO or basic lead sulfates develop under the sulfate film at potentials of ± 0.32 V and higher (52,56,57). While the formation of underlying layers was not considered in the calculation of the Pourbaix diagram (71), the very weak wave at ± 0.34 V on the polarization curve may indicate the start of formation of another compcund beneath the sulfate film.

Potentiostatic exposures of lead in 0.1 M sulfuric acid formed surface films whose compositions agreed well with X-ray diffraction work by Pavlov and Iordanov (52). Raman

spectroscopic results indicated three ranges of potential: immunity, lead sulfate, and a lead sulfate - lead monoxide region. A summary of the experimental results of exposure in sulfate solutions is presented in Table IX.

At potentials below -0.26 V lead appeared to be immune to oxidation. No insoluble surface layer was detected by in situ kaman spectroscopy, samples remained clean and shiny, and current flow was in the reducing direction. When samples exposed in this region were washed and allowed to dry a non-uniform, light gray surface coating appeared. Spectra of dry samples indicated that parts of their surfaces were covered with orthorhombic PbO and parts with Pbso, . The appearance of these compounds, just like the appearance of orthorhombic PbO in the immunity region exposures in 0.1 M hydrochloric acid, probably results from precipitation of *issolved* lead ions. In the reducing conditions of this region it is unlikely that any lead would be directly oxidized at the electrode surface during the The formation of PbO and lead potentiostatic exposure. sulfate is probably a result of the sample removal, washing, and drying process.

At potent'-ls higher than the -0.23 V wave of the polarization curve, net current flow was in the oxidizing direction and spectra showed that lead sulfate was formed. Oxidation at -0.26 V and -0.02 V resulted in PbSO₄ films.

Exposure at potentials higher than the wave at +0.34 V gave surface films identified as tetragonal PbO and PbSO₄,

70

in agreement with the findings of earlier research (51,52). A spectrum of the film in this potential region is compared with one of a purely PbSO₄ film and with the Raman spectrum of reagent grade PbSO₄ (97) powder in Figure 42. The spectra of sulfate compounds are dominated by the very strong sharp band at 979 cm^{-1} , the S-O symmetric stretch (98).

Although it was not possible to measure the relative amounts of PbO and lead sulfate in the surface films from Raman spectra, just as it was impossible to identify film thickness, observation of strong tetragonal PbO spectra gave an indication of the thickness of film analyzed by this technique. Ruetschi (57) developed a model for the Pbu/PbSO two phase film formed by oxidation of lead in sulturic acid solutions. He assumed that a surface film with a thickness on the order of a micron was needed before any underlying tetragonal PbO could form (56). Electrochemical measurements and calculations tysed on ion diffusivity in the films determined that a twenty-four hour exposure of lead in 4.2 N sulfuric acid in the range of +0.2 to +1.1 V would give a film consisting of one micron of lead sulfate covering the micron of tetragonal lead monoxide. The ability to record a strong spectrum of the underlying layer of 150 gives indication that Raman spectroscopy can examine the entirety of films with thicknesses on the order of a sicror.

のなどではないないないです。「たちのため」はなくなったいとうと

The ability of laser light to penetrate the surface

sultate film was also demonstrated by current vs. time plots such as that shown in Pigure 43. The increase in oxidation current due to laser radiation was identical to behavior observed for surface films which consisted solely of tetragonal PbO.

The commencement of PbO formation may be indicated by the current plateau of the i vs. t curve shown in Figure 44. Exposures which gave spectra of tetragonal PbO and PbSO together all had a current plateau or maximum after a period of exposure ranging from 0.5 to 1.5 hours. Observation of such current behavior was interpreted to indicate the beginning of a new electrochemical reaction, the formation Pbu, by Ruetschi and Angstadt (56). This interpretation of may be correct, but it was not confirmed by Raman spectra. At potentials above +0.34 V spectra indicated the prosence of both PbO and PbSO, on the lead surfaces. None of the exposures in that region gave any spectra of PbSO_A alone, even with spectra recorded after as little as twenty minutes of oxidat.", before the current plateau occurred. The Raman method was unable to find any film which consisted of lead sulfate alone, before formation of the oxide began.

III.E.2. pH 6.5, 0.1 H Sulfate Exposures.

The lead-water-sulfate Pourbaix diagram predicts that, in a pH 6.5, 0.1 M sulfate solution, lead should be stable at potentials below -0.3 V, PSO_2 should exist above +0.5 V,

and $PbSO_4$ should be found at potentials in between. The lower transition was observed in the polarization curve for load in the 0.1 M potassium sulfate used, but no transition to PbO_2 was observed. The polarization curve shows a weak wave at +0.06 V which does not correspond to any feature of the Pourbaix diagram.

As in other solutions, potentiostatic exposures resulted in films whose compositions were in better agreement with the polarization curve than with the Pourbaix diagram. Exposure at potentials below the -0.27 V wave resulted in immunity. Current flow was in the reducing direction, the surface remained clean and shiny, and no Raman spectrum was obtained in solution or in air. Higher potentials resulted in oxidation of the lead electrode and formation of insoluble surface films. Up to +0.24 V, films consisted of lead sulfate and, above that, tetragonal lead monoxide covered the sample surfaces.

The formation of lead sulfate way in agreement with the Pourbaix diagram, but the PbSO₄ gave slightly different spectra from the sulfates examined previously. As shown in Pigure 46, the sulfate film gave an exceptionally strong 451 cm^{-1} band, the band associated with the O-S-O bending vibration (98). Infrared reflection spectra of the films also showed a band at 451 cm^{-1} (71). Such a vibration is not infrared active in normal sulfate compounds. The unusual intensity of the 451 cm^{-1} band is assumed to be due to a distortion of the normal lead sulfate lattice.

The broad wave at +0.06 V is near the potential where film composition changed from lead sulfate to PbO, and it may be due to such a transition. Lead monoxide films produced were black in color and gave no evidence of the presence of sulfate. No waves were observed at higher potentials and Raman spectra indicated no change to the PbO₂ predicted by the Pourbaix diagram.

An exposure was conducted in the pH 7, phosphate, buffer solution to which was added enough potassium sulfate to make the solution 0.1 H in sulfate. Oxidation at +0.24 V formed a dark layer of tetragonal PbO. The composition was determined from the Raman spectrum. Another exposure at +0.24 V in 0.1 H potassium sulfate, but without the phosphate buffer. resulted in the formation of lead sulfate. As expected, the presence of buffer species can complicate the system and give different results from those of the simple systems considered in the thermodynamic calculations.

III.E.3. pH 11, 0.4 M Sulfate Exposures.

Oxidation of lead in 0.1 M sulfate solutions at a pH of 11 was predicted to form a basic lead sulfate, $Pb0 \cdot PbS0_4$, at potentials between -0.45 V and +0.50 V and lead dioxide at higher potentials. The solution used, 0.1 M potassium sulfate with enough KOH added to make the initial pH 11, resulted in a polarization curve with only one clear oxidation feature. The experimentally observed wave, or

74

group of waves, at approximately -0.30 V represents the transition from lead stability to the formation of an oxidized species. The oxidative change seen above +0.80 V in Figure 41 could represent a transition to a higher oxidation state, but it seems to be due to the decomposition of water to evolve oxygen.

Potentiostatic exposures were conducted throughout the potential range where water is stable. As expected, exposure at low potentials gave extremely low current flow in the reducing direction and no Raman bands were observed. Below the -0.30 V wave of the polarization curve lead is immune to oxidation.

All exposures at higher potentials resulted in the formation of tetragonal PbO surface films. An oxidation at -0.34 V, a potential higher than the first lobe of the oxidative wave, resulted in a film which gave a strong tetragonal PbO spectrum. Although the wave at -0.30 V seems to be made up of three seperate waves, all exposures at potentials above -0.45 V, where the current recorded in the polarization curve first became oxidative, formed tetragonal PbO.

Although the composition of the films was identified as PbU, spectra recorded in solution were somewhat misleading. In sith spectra, as shown in Pigure 46, contained the strong bands of tetragonal PbO but also the 980 cm⁻¹ band characteristic of the S - O symmetric stretch and a broad band in the 450 cm⁻¹ region. Except for the broadness of

the 450 cm⁻¹ band, these spectra look like a mixture of PbO and load sulfate. Upon washing the samples thoroughly, however, those bands characteristic of sulfate disappeared. Dry sample spectra indicated only tetragonal PbO. The sulfate bands, which can be distinguished from those of PbSO₄ by the broad 450 cm⁻¹ band (lead sulfate has two sharp bands in that region, 439 and 451 cm⁻¹), are due to the sulfate of the solution. The bulk sulfate solution gave the same sulfate spectrum. The change in the spectrum caused by washing the samples was evidence that spectra of both wet and dry samples were needed to distinguish solution or adsorbed species from those compounds which were actually part of an insoluble surface film.

The possibility that the surface layer might consist of PbO.PbSO4 as predicted by Pourbaix diagram calculations was investigated. Although spectra of the sample surfaces id=ntified tetragonal PbO, no Raman spectra of the basic sulfate ar= available. Infrared reflection spectra confirmed that tetragonal PbO was the compound present (71). Comparison with published infrared spectra of PbO.PbSO₄ (99) showed no trace of that compound.

The oxidation currents recorded during potentiostatic exposures and potentiodynamic polarization curve measurements confirmed that lead sulfate forms more protective surface films than does PbO. In 0.1 M sulfate solutions, all of which had approximately the same conductivity and ionic strength, conditions which caused the

formation of PbO resulted in net current flow 5 - 10 times greater than that observed when PbSO was formed. The smallest differences were noted in pH 6.5 exposures, a pH near the minimum of PbO solubility (35), but even in those conditions oxide films allowed measurably higher current flow than sulfate films. The ability of sulfates to form an insoluble, passivating film on lead is well known. Because of its behavior in sulfate-containing solutions, lead equipment is used extensively in the manufacture of sulfuric acid (47).

III.F. Film Thickness Studies

Potentiostatic exposures of vacuum deposited lead samples were conducted so that the thickness of the resultant films could be measured and their spectra recorded. While films of organic compounds on silver mirrors have shown that Raman spectra of films as thin as 50 angstroms can be recorded (18,19), no studies of the sensitivity of this technique for examining inorganic oxide films on a metal substrate have been conducted.

A vacuum deposited lead sample was exposed to a pH 7, phosphate, buffer solution at +0.20 V for 45 minutes. Stylus measurement found the oxide film thickness to be 1620:40 angstroms. The Raman spectrum of the PbO film is shown in Pigure 47. The spectrum identified the film composition as orthorhombic PbO.

Because lead sulfate films tended to be rough, consisting of fairly large crystals (50-53,71), accurate direct measurement of sulfate film thickness was difficult. The thickness of the lead sample was measured before oxidation, and the value found was multiplied by 4.12 to give an estimate of the thickness if all of the lead were oxidized to lead sulfate. The factor, 4.12, was an average ratio of PbSO₄ film to Pb thickness measured for several exposed samples.

A lead sulfate film, estimated to be 2140±60 angstroms thick, was formed by oxidation at +0.80 V in 0.1 M sulfuric acid for 15 minutas. The spectrum of Figure 48 shows that the strong sulfate bands are clearly visible, although grating ghosts are nearly as strong as the Raman bands. Exposure of solid lead electrodes under the same conditions⁴ formed a film consisting of both lead sulfate and tetragonal PbO, but the vacuum deposited sample showed no trace of PbO. Presumably the thin sulfate film was not thick enough to provide a diffusion barrier to allow the formation of an underlying PbO layer.

Both the 1620 angstrom PbO and the 2140 angstrom lead sultate films gave reasonably strong spectra, with bands much stronger than the background noise. It is estimated that a film approximately one tenth as thick would still give spectra with signal to noise ratios of two or more, the ratio considered necessary for observation of a band. Films of these compounds as thin as 200 angstroms should be

observable by the Raman technique. When considering minimum tilm thickness it must be remembered that Raman scattering intensities can vary greatly from one compound to another so the 200 angstrom value may not be useful for films of other compounds.

The station Real in the state

Single spectrometer scans were used to record all spectra. Greater sensitivity to very thin films could be attained by averaging the results of multiple scans. Signal averaging of more than one scan of the spectral region of interest should increase the signal to noise ratio observed and reduce the minimum detectable thicknesses (100).

III.G. Iron Exposures

Some research was conducted to investigate the feasibility of using Raman spectroscopy for the study of iron corrosion. The work was conducted in two phases. Since Raman spectra of very few oxides of iron are available in the literature, recording reference spectra of the compounds expected as corrosion products was the initial phase. After spectra of the important iron oxides were recorded, the second phase, using spectroscopy to identify the surface compounds formed by high temperature oxidation of iron was begun.

As demonstrated by spectra of PbO, in addition to identifying specific compounds, vibrational Raman spectra can easily identify different crystalline forms of the same

compound. This ability is a valuable asset in the study of iron oxidation because nearly all of the oxides of iron can exist as two or more polymorphs. The spectra of the two most common forms of PeOOH are shown in Figure 49. Although their chemical compositions are the same, different crystal structures and, therefore, different bonding and symmetry cause very different Raman spectra. The strong bands at 397 (alpha form) or 252 cm⁻¹ (gamma form) immediately identify the two oxyhydroxides; no other iron oxide has been found to have bands at these positions.

The Kaman bands observed from bulk samples of iron oxides are listed in Table X. The spectrum of alpha ferric oxide is identical to that of the single crystal, the only previously published iron oxide spectrum (101). As shown in Figure 50, the spectra recorded from FeO and Fe₃O₄ samples are the same. The samples consisted of two distinct compounds, as confirmed by their X-ray diffraction patterns, but the spectra are identical. It may be that the vibrations which cause Raman bands in Fe₃O₄ are due to Fe -O bonds which are nearly identical to those of FeO, but a more likely explanation is that the FeO, which is unstable at temperatures below 570°C (102), was decomposed by the laser.

The problem of sample decomposition is a common one when opaque samples are examined using relatively intense laser excitation. Visible light is strongly absorbed by black Feo, and heating due to the absorption of the excitation

80

tarentististenenim fortekonkesekskindene Lensterkonkorturiteren an ander ander ander ander ander ander ander an

beam may transform it into Pe_3O_4 and Pe_3 , the stable species at room temperature. Both Pe_3O_4 and PeO are black and presented problems with decomposition in the laser beam. After a period of exposure spectral intensity decreased and the surface of a pellet of either compound was visibly changed. The spot of laser incidence became much lighter in color.

Decomposition due to the excitation beam was a less serious problem with the red-brown compounds, α - and \tilde{v} -PeOOH and ferric oxide. The use of relatively low intensity excitation, either by lowering the power of the laser or by placing neutral optical density filters in the beam, allowed the recording of much higher quality spectra of these compounds than were obtained from the black species.

As an example of the ability of Raman spectroscopy to characterize corrosion product films on iron surfaces, polished Armco iron plates were oxidized in air in a laboratory oven and examined. Spectra resulting from oxidation at 250°C are shown in Figure 51. The Raman spectra identify the surface films as Pe_3O_4 and $\ll -Pe_2O_3$. The Pe_3O_4 bands at 616 and 663 cm⁻¹ can be seen in all three spectra, while at first only the strongest Fe_2O_3 bands cculd be seen. After 217 hours of exposure all seven bands of $\propto -Pe_2O_3$ were visible. Bands due to both compounds increased in intensity throughout the exposures, indicating that both the Fe_3O_4 and $\ll -Fe_2O_3$ layers were thickening.

After exidation of iron under conditions similar to

81

those reported here, Poling (103) found an oxide film thickness of approximately 500 anystroms for a 50 hour exposure at 250°C. If the 50 hour spectrum in Pigure 51 results from a 500 anystrom thick oxide film, an α -Pe₂ α_j tilm of 100 - 200 anystroms is probably the minimum necessary before spectra useful for identification could be observed with a single scan. For thinner films the bands would probably not be discernable above the noise.

An iron sample was oxidized in air at 700°C for twenty hours and quenched in water in an effort to retain the FeO, which should have formed, without allowing it to transform to a more stable compound as it does during slow cooling below the 570°C transition temperature (103). The Raman spectrum of the sample surface shown in Figure 52 identified only \propto -Fe₂O₃, with no indication of FeO or Fe₃O₄. It is well documented that exposure at 700°C forms FcO (104), so the spectrum of Figure 52 must be taken as evidence that FeO does not give a Raman spectrum.

Apparently the only Raman bands seen from PeO are from its decomposition product, Pe_3O_4 . In a KBr pellet, heat transfer away from the point of laser incidence is very poor, so absorption of laser light can heat the local area and decompose it to Pe_3O_4 and Pe. A thin film of FeO on an iron surface, however, has the iron to conduct heat away from the point of incidence. The FeO film need not be decomposed by the excitation necessary to record a Raman spectrum. Therefore, although present on the surface, no

FeO was detected in the spectrum of Figure 52.

A clean iron sample was suspended in boiling 0.01 M NaOH solution for 168 hours and then removed. It gave the spectrum shown in Figure 53. The spectrum confirmed that the thick black surface coating consisted of Pe_3O_4 , in agreement with work which used other analysis techniques (103). The relatively poor quality of the spectrum is due to the poor Raman scattering characteristics of Pe_3O_4 , not because of the nature of the film. After 168 hours of exposure, the black surface layer was very thick, probably hundreds of microns.

83

TABLE III

「大学学生」

たいできたなどないでは、たけにないですればない」とないないないです。そのとうとないできた。となっていたのかいできたが、たいできたが、たいできたないできた。たい

のなどのため、東京になったの言語

a tanit

Results of Simple Immersion Exposures

CONDITION	EXPOSURE PERIOD, DAYS	SPECTRUM OBSERVED
à	7	PbCl
b	12	PbCl
b	15	PbCl
b	19	PbC1
с	2	PbCl
С	3	PbC1
С	7	PbCl
С	9	PbC 1
d	14	PbBr
e	8	PbBr
£	34	PbBr
f	20	tetragonal PbO
t	26	tetragonal PbO
g	4	(PbCO) • Pb (UH)
č .	5	(PbCO) • Pb (OH) 3 2 2 2

		NBS (90)	Pourbaix (35)
	Ър + +	-5,830	-5,810
ь о	(orthorhombic)	-44,910	-45,050
8pn	(tetragonal)	-45,160	-45,250
	\$ ይ	-51,950	-52,340
	PbO	-143,700	-147,600

TABLE IV

SPECIES

Free Energy Data Used to Calculate the Lead - Water Pourbaix Diagram

. ...

(cal/mole)

STANDARD FREE EBERGY OF FORMATION

85

and the second state of the second second

TABLE V

100.010

Results of Potentiostatic Exposures in Nil Chloride Buffer Solutions

SOLUTION	VOLTS VS. SHE	EXPOSUBR PEBIOD, HRS.	CURRENT mà/cm² (a)	S PECTRUM OBS ZRVED
1	-0.62	17	0.002(b)	none
1	-0.62	19	0.001(b)	none
1	-0.16	20	0.006	none
1	-0.12	18	0.061	tetr. PbO
1	+0.06	2.8	0.112	tetr. PbO
1	+0.48	21		tetr. PbO
1	+0.58	3		tetr. PbO
1	+0.67	2	0.310	tetr. PbO
1	+0.74	23.5	0.397	tetr. PbO
1	+1.08	1.5	0.310	tetr. PbO
1	+1.08	18	0.294	tetr. PbO
2	-0.80	20.5	0.139(b)	none
2	-0.42	18	0.024	carbonate(c)
2	-0.28	4	tet	c. PbO and carbonate(c)
2	-0.26	21	0.014	tetr. PbO
2	-0.03	17	0.046	tetr. PbO
2	+0.02	23		tetr. PbO
2	+0.24	17	0,054	tetr. Pb0
2	+0.34	2	0,455	tetr, PbG
2	+0.46	2.5	0,210	tetr. Pb0

86

SOLUTION	VOLTS Vs. She	EXPOSURE PERIOD, HRS.	CURRENT mà/cm² (a)	S PECTRUM OBS ERV ED
2	+0.75	0.75		tetr. PbO
2	+0.75	18		tetr. PbO
2	+0.84	1.5	0.115	tetr. PbO
2	+0.94	0.1	0.175	tetr. Pb0
2	+0.94	17.5	0.091	tetr. PbO
2	+1.24	17	1.20	tetr. PbO

Notes

(a) Final or steady current

(b) Current flow in reducing direction

(c) Basic lead carbonate

r 2000 y de la d

TABLE VI

Free Energy Data Used to Calculate the Lead - Water - Chloride Pourbaix Diagram

SPECIES STANDARD PREE ENERGY OF FORMATION (cal/sole)

	NBS (90)	Appelt (66)	
0 II-	-37,594	-37,595	
c1-	- 31, 372	-31,350	
PhCl	-75,080	-75,040	
3690.050	-224,686	-225,000	

ドロネージングをデジョーになける

たけの意味がないとうないではないないないないである。

88

A CONTRACTOR OF THE OWNER O

TABLE VII

Results of Potentiostatic Exposures

in 0.1 M Chloride Solutions

SOLUTION	VOLTS Vs. She	EXPOSURE PERIOD, HRS.	CURRENT mA/cm² (a)	S PECT RUM OBS ERVED
3	-0.46	16.5	0.011(b)	nor.e (c)
3	-0.30	2.25	0.120(b)	none (c)
3	+0.14	3	7.30	PbC1
3	+0.69	2.5	6.80	PbCl
J	+1.09	17	10.0	PbCl
4	-0.62	3	(b)	none
4	-0.11	17	0.020	ortho. PbO
4	-0.01	2	0.022	ortho. PbO
4	+0.18	18	0.019 0	rtho. PbO and tetr. PbO
4	+0.49	17		tetr. PbO
4	+0.63	18	0.012	tetr. PbO
4	+0.99	18	0.022	tetr. PbO
4	+1.08	1.5	0.380	tetr. PbO
5 [.]	-0.42	17	(b)	none
5	-0.26	3.1	0.007	carbonate(d)
5	-0.01	2	0.014	tetr. PbO
5	+0.08	22	0.012	tetr. PbO
5	+0.49	17		tetr. PbO

SOLUTION	VOLTS	BXPOSURE	CURRENT	S PECT RUM
	vs. SHE	PERIOD, HRS.	mX/cm² (a)	OBSERVED
5	+0.74	17	0.034	tetr. PbO
5	+ 1.07	18	0.028	Pb 0 3 4

Notes

(a) Final or steady current

(b) Current flow in reducing direction

(c) Some orthorhombic PbO observed on dried sample surface

(d) Basic lead carbonate

90

1977 2 2 -

TABLE VIII

Free Energy Data Used to Calculate

the Lead - Water - Sulfate Pourbaix Diagram

SPECIES

STANDARD PREE ENERGY OF FORMATION

(cal/mole)

	¥BS (90)	Ruotschi and Angstadt (56)
SU 2-	-177,970	- 177, 340
• HSO -	-180,690	-179,940
• Pb 0	-143,700	-147,600
3 4 9b50	-194,360	- 193, 890
◆ Fb0• PbSU	-246,700	-243,200

TABLE IX

NAME AND ADDRESS OF ADDRESS ADDRESS OF ADDRE

Results of Potentiostatic Exposures

in 0.1 M Sulfate Solutions

SOLUTION	VOLTS VS. SHE	EXPOSURE PERIOD, HRS.	CURRENT A/cm² (a)	SPECTBUM OBSERVED
6	-0.46	19.5	73 (b)	none (c)
6	-0.26	18	19.7	2bS0
6	-0.02	4	13.3	Pbso
6	+0.48	17.5	15.7 te	tr. PbO and PbSO
b	+0.80	20	12.8 ter	tr. PbO and PbSO
6	+1.24	2.5	48.4 tet	r. PbO and PbSO
7	-0.46	21	9.4(b)	none
7	-0.16	19	1.7	PbSO (d)
7	+0.24	1.7	4.2	Pbso (đ)
7	+0.84	20	6.3	tetr. PbO
7	+0.94	3	19.6	tetr. PbO
ម	-0.51	18		none (e)
8	-0.34	18.5	24.2	tetr. PbO
8	-0.25	2.2	109	tetr. PbO
8	-0.08	3.5	121	tetr. PbO
8	+0.34	1.7	256	tetr. PbO
8	+0.74	2.5	125	tetr. PbO
9	+1.09	2	243	tetr. PbO

92

ARRIVER STATE

Notes

(a) Final or steady current

(b) Curtent flow in reducing direction

(c) Dr sam le spectrum indicated lead sulfate and orthor. ic b0

(d) Band 10 45: Cart reportall intense

(e) Dry sample s/ to gum indicated orthorhombic PbO

ないないというというないとないというというときないできたいというないです

TABLE X

Frequencies of Iron Oxide Raman Bands

COMPOUND

and the second second

and the second method of the

ł

() SPARTATION CONTRACTOR

BAND POSITIONS, CH-1

∝-Pe00H	goethite	298 397 414 474 550
¥-₽e00H	lepidocrocite	252 380
FeO	wustite	\$16 663
Pe O J A	magnetite	616 663
≪-Fe O	hematite	227 245 293 298 414 501 612

94

and the second state of th

and the second state of th

Ē. 4

the string of the string

· die zwane ald ·

Figure 11. Raman spectra of crthorhombic PbO powder and of the same powder after being made into a KBr pellet, demonstrating that the pellet making process causes a transformation to tetragonal PbO.

95

Contraction of the second s

, 100 L

and the second in a little is a second of the second second second second second second second second second se

100

den Pår 14 hr. de ander andere die et Statistisk institute statistisk fan Statistisk fan Statistisk fan Statistisk Statistisk Statistisk Interest and the set of the set o

States of the state of the state of the state of the states of the state

and the second states of the

Figure 17. Raman spectra of a) the surface of lead foil immersed in deaerated 2.3M HBr solution for 8 days, b) lead bromide powder from crystals formed on lead in 2.3M HBr after 34 days, c) reagent grade lead bromide powder.

三日の時間になるのであるとうないで、ちゃくのとうなんというとう

a read and the second state and a second state and the second second

102

FREQUENCY, CM-

Figure 18. Raman spectra of the lead chloride film on a lead surface exposed to air saturated 0.1M HCl solution for 1, 2, and 7 days.

Figure 19. Raman spectra of a) lead sample immersed in air saturated 0.1M HCl solution after 3 days of exposure, b) a lead sample exposed to air saturated 0.1M HCl solution for 3 days then dried in air.

103

1995日の中国の時には、1975年の東京の一王 白田 マンチガイ ちんご アメンチ

Figure 20. Raman spectrum of the PbO film on a lead surface in deaerated 0.01M NaOH solution for 26 days.

How HI WAS IN MARK

いていたちになってい

104

All Steven apply steries at A 112

Figure 21. Raman spectra of a) a lead sample which was immersed in air saturated 0.01M NaOH for 4 days, then dried, b) a KBr pellet of basic lead carbonate.

Ś

Figure 22. Pourbaix diagram of the lead-water system calculated with the most recent thermodynamic data (90).

106

Figure 24. In situ Raman spectra of lead in pH 7 buffer at +1.08V after 1.5 hours of exposure, and at +0.06V after 2.5 hours.

na stander Aber Anstaller Verationshovshov Atheration

108

Figure 25. Current-time behavior of lead in pH 10 buffer solution at +5.94V.

Figure 26. Raman spectra of a lead surface in pH 7 solution at +0.06V after 2.8 hours of exposure, and of the same sample after washing with distilled water and drying.

110

Ą,

111

Figure 28. Raman spectra of lead exposed to the pH 10 buffer solution at +0.34V for 3 hours a) potential applied, b) potential not controlled.

たのない

このないでも思いていたので、など、いた

A REAL PROPERTY OF

112

Figure 29. Scanning electron micrograph of a lead sample which had been irradiated by the 488.0 nm. laser line during oxidation at +0.34V in pH 10 solution. The darker area on the left is the irradiated portion. Magnification: 5000X. Spectra indicated that the surface film was tetragonal PbO.

CHARGE BRANCH

113

Lock of Party and a substrate of a stability of the second s

bhannaine in muunnan dharaidh an da ar 16 mar an 16 mar a' dhear a' dhear an an

Figure 30. Spot of a lead sample which was irradiated by the 488.0 nm. laser line during oxidation in pH 10 solution at +0.34V. Magnification: 5000X. **Variation and a second s**

Will the Laws

Figure 31. Pourbaix diagram for the lead-water system calculated with recent thermodynamic data (90) with experimental results. o = tetragonal PbO i = immunity c = basic lead carbonate

115

ためのないないない たいまたのかがい ひまんない しまたない しょうたい しょうちょう あいまん かいたい きょうしょ

Figure 32. Pourbaix diagram for the lead-water-chloride system (0.1M Cl⁻) calculated with recent thermodynamic data (90).

116

i.

a sheddredda Ar Asha Is Rhi A ard an ane

and all the second

.

Ī

「私田山田」

A STATE AND A STATE AND A STATE A STATE

A STATE AND A STAT

The state of the second

Figure 35. Raman spectrum of the lead chloride surface film on lead after 2.5 hours of exposure to 0.1M HCl at +0.69V.

i Sa

C.

「ないのはない」 きからうた ちょうちん ちょういしょう ちろ

· Standard

120

えいろんであるとなるいというないろうないのないのである

いたないというですは

A LEAST AND A LEAST

Figure 37. In situ Raman spectra of lead exposed to pH 7, 0.1M chloride solution for 18 hours at +0.68, +0.18, and -0.11V. The spectra indicate tetragonal, tetragonal plus orthorhombic, and orthorhombic PbO films respectively. The feature marked with an asterisk is a grating ghost.

121

and a second second

7

re 38. Raman spectrum of the carbonate film formed on lead after 18.5 hours at -0.26V in pH 10, 0.1M chloride solution.

Lun a

Figure 39. Raman spectra of the surface of lead after exposure in pH 10, 0.1M chloride solution at +1.07V for 18 hours, and of a KBr pellet of Pb_3O_4 .

123

March & Marsh

Printer and a particular and second second with a second

PARTY PARTY PARTY

Figure 40. Pourbaix diagram of the lead-water-sulfate system (0.1M sulfate) calculated with recent thermodynamic data (90).

124

alest in the ball of the second many stream of the start of the second second second second second second second

Ţ

Contractions and a service of the second second second

Figure 42. Raman spectra of a) lead in 0.1M sulfuric acid after 20 hours at +0.80V, b) lead in 0.1M sulfuric acid after 18 hours at -0.26V, c) lead sulfate powder.

በሚሆን በአስራ የሚያስት የሚያስት በማስተዋሪ በማስተዋሪ በሆነ በስጥል በሚያስት ሰጥል ነው በሚያስት በማስተዋሪ ሲ<u>ስት በመስተዋሪ በማስተዋሪ በማስተዋሪ በማስተዋ</u>ለ በመስተዋሪ በ

Figure 43. Current behavior of lead oxidized in 0.1M sulfuric acid at +1.24V for 2 hours when exposed to the 488.0 nm. laser line. The sample has a surface covering of tetragonal PbO and lead sulfate.

127

は高いないない。「ないたい」のないでは、これないないないないでは、ないないで、

Figure 44. Current vs. time behavior of lead exposed to 0.1M sulfuric acid at +0.48V.

128

us er der de service de la constant de la faltale en der de la fan fan de la fan de service de service de la fan de service de

Charles of the second second

Figure 46. Raman spectra of lead exposed to pH 11 sulfate solution for 18.5 hours at -0.34V recorded with the sample in solution and, after washing, in air; and the Raman spectrum of pH 11, 0.1M sulfate solution.

130

ないな思いにないのない。

の主要な事業に行い

131

FREQUENCY, CM-I

Figure 48. Raman spectrum of a 2140 angstrom thick film of lead sulfate made from a vapor deposited lead sample.

132

「「「「「「「「」」」」

のないのないので、「ないないないない」というないないで、

PERSONAL STATES OF ST

ŝ

to all states and the second

Figure 51. Raman spectra of the surface of Armco iron oxidized in air at 250C for 50, 217, and 380 hours. Full scale on the 50 and 217 hour spectra is 1000 counts/sec., for the 380 hour spectrum it is 3000 counts/sec.

FLE

ALC: NOT ONLY

中国時間が

いたいたいでないでは、「「「「」」

iron sample exposed to boiling 0.01M NaOH solution for 168 hours and of a pellet of Fe_3O_4 .

IV. CONCLUSIONS

Maman spectroscopy was demonstrated to be an effective method tor in situ analysis of the composition of thin, incoluble surface films formed on lead in aqueous solutions. Simple immersion and controlled potential exposures of clean lead samples formed several different oxidation products which were identified. Spectra of thin surface films (probably as thin as 260 angstroms) were found to be virtually identical to spectra of pure compounds in either loose powder or pellet form. Raman spectra of lead samples immersed in aqueous solutions were identical, although with slightly reduced intensity, to those of the samples when dry.

In situ Raman spectroscopy was used to identify the insoluble oxidation products formed during potentiostatic exposures throughout the different regions of the Pourbaix diagrams calculated for lead in water alone, water with chlorides, and water with sulfates present. The experimental results did not generally agree with thermouynamic predictions. At potentials where lead immunity was predicted experimental findings agreed, but, at higher potentials, where oxidation took place, the products formed showed numerous discrepancies from predictions. In all cases, spectroscopic results and potentiodynamic polarization curves, the two experimental techniques, agreed with each other, but garely did they agree with calculated

Pourbaix diagrams.

The reasons for differences between experimental and theoretical findings are varied. Effects of the presence of insoluble surface species were not considered in calculating the theoretical diagrams. Thus, the observation of a tetragonal PbO layer beneath a lead sulfate film in sulfuric acid solution could not have been predicted by the calculated diagram. The presence of all anions was not considered. In bicarbonate buffer solutions a carbonate film was detected in the region where immunity was predicted, but the predictions were the result of calculations which did not consider the carbonate ions.

Other shortcomings of the Pourbaix diagrams were pointed out by analyses in chloride solutions which identified orthorhombic PbO at low potentials and tetragonal PbO at higher ones. In potassium sulfate solutions, lead sulfate was observed at some potentials and PbO at others. In both cases no potential dependent reactions between these species were even considered in generating the diagrams.

In general, agreement between the Pourbaix diagrams and experimental results was best for lead exposures in simple solutions, consisting of a very small number of dissolved species. Simple solutions were the closest to the idealized systems used for the thermodynamic calculations. The more complex the solutions became, the loss agreement with Pourbaix diagrams was found.

REFERENCES

NAME OF THE OWNER OF

「日本のため」と見たのがないたという

•

1)	M. Faraday, Experimental Researches in Electricity, vol. II, University of London(1844).
2)	R. W. Stachle, Corrosion, 33, 382 (1977).
3)	H. G. Fontana and N. D. Greene, Corrosion Engineering, McGraw-Hill, New York (1967).
4)	H. H. Uhlig and P. F. King, J. Electrochem. Soc., 106, 1 (1959).
5)	V. Brusic, Oxides and Oxide Films, Vol. I, J. W. Diggle, ed., Marcel Dekker, New York (1972).
6)	T. P. Hoar, Corrosion Sci., 7, 341 (1967).
7)	U. Ebersbach, K. Schwabe, and K. Ritter, Electrochim. Acta, 12, 927 (1967).
8)	N. D. Tomashov and Z. P. Vershinina, Electrochim. Acta, 15, 501 (1970).
9)	N. Sato, T. Noda, and K. Kudo, Electrochim. Acta, 19, 471 (1974).
10)	Licny-Huang Lee, Characterization of Netal and Polymer Surfaces, Lieng-Huang Lee, ed., Academic Press, New York (1977), vol. L, p.1.
1 1)	Ellipsopetry in the Measurement of Surfaces and Thin Films, Symposium Proceedings, Washington, 1963, U.S. Department of Commerce, National Bureau of Standards, Misc. Pub. 256.
12)	E. S. Keid, R. P. Cooney, P. J. Hendra, and M. Pleischmann, J. Electroanal. Cnem., 80, 405 (1977).
13)	D. N. Adams and D. C. Stevens, J. Chem. Soc. Dalton Trans., 11, 1096 (1977).
14)	J. D. Donaldson, K. T. Donoghue, and S. D. Ross, Spectrochim Acta, 30A, 1967 (1974).
15)	T. Nisawa, K. Asami, K. Hashimoto, and S. Shimodaira, Corrosion Sci., 14, 279 (1974).
16)	C. L. McBee and J. Kruger, Electrochim. Acta, 17, 1337 (1972).

140

that & tobs comments are not be stored that the first the

Ì

THE WAY

17)	M. Pourba	aix	and	L.	R.	đe M	irac	ıda,	Pas	sivit	ty a	ind its
	Breakdown	on	Iron	and	Iron	Base	A11	loys,	U.	S. /	N	• Japan
	Seminar,	a	₩.	Sta	ehle	and	Н.	Öka	da,	eds	š.,	NACE,
	Houston,	197	6, p.1	47.								

- 18) R. G. Greenler and T. L. Slager, Spectrochim. Acta, 29%, 193 (1973).
- 19) M. L. Howe, K. L. Watters, and R. G. Greenler, J. Phys. Chem., 80, 382 (1976).
- 20) T. A. Egerton and A. H. Hardin, Catal. Rev. Sci. Eng., 11, 71 (1975).
- 21) R. F. Cooney, G. Curthoys, and Nguyen The Tam, Adv. Catal., 24, 293 (1975).
- 22) H. Fleischzann, P. J. Hendra, and A. J. McQuillan, Chea. Phys. Lett., 26, 163 (1974).
- 23) A. J. HCQuillan, P. J. Hendra, and H. Fleischmann, J. Electroanal. Chem., 65, 933 (1975).
- 24) P. L. Paul, A. J. McQuillan, F. J. Hendra, and H. Fleischwann, J. Electroanal. Cham., 66, 248 (1975).
- M. Pleischmann, P. J. Hendra, A. J. McQuillan, R. L. Paul, and E. S. Reid, J. Raman Spectrosc. ,4, 269 (1976).
- 26) R. P. Cooney, B. S. Reid, P. J. Hendra, and M. Fleischmann, J. Amer. Chem. Soc., 99, 2002 (1977).
- 27) R. F. Cooney, M. Pleischmann, and P. J. Hendra, J. C. S. Chem. Comm. (1977), 235.
- 28) N. G. Albrecht and J. A. Creighton, J. Amer. Chem. Soc., 99, 5215 (1977).
- 29) D. L. Jeanmaire and R. P. VanDuyne, J. Electroanal. Chew., 84, 1 (1977).
- 30) T. K. Gilson and P. J. Hendra, Laser Raman Spectroscopy, Wiley - Interscience, New York (1971).
- 31) M. Tobin, Laser Raman Spectroscopy, Wiley -Interscience, New York (1971).
- 32) J. A. Koningstein, Introduction to the Theory of the Raman Effect, Reidel, Dordrecht, Holland (1972).
- 33) A. Anderson, The Baman Effect, Marcel Dekker, New York (1973).

- 34) N. B. Colthup, L. H. Daly, and S. E. Wilberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York (1977).
- 35) M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, Houston (1974).
- 36) K. D. Efrid, Corrosion, 31, 77 (1975).

- 37) E. D. Verink and T. Lee, Proceedings of the Third International Conference on Marine Corrosion and Fouling, 1972, Gaithersburg, MD.
- 38) N. Pourbaix, Passivity and its Breakdown on Iron and Iron Base Alloys, U. S. A. - Japan Seminar, R. W. Stachle and H. Okada, eds., NACE, Houston (1976), p.27.
- 39) P. Parrish, M. S. Thesis, University of Plorida, 1970.
- 40) B. D. Verink and M. Pourbaix, Corrosion, 27, 12 (1971).
- 41) E. D. Verink and R. H. Heidersbach, Localized Corrosion
 Cause of Metal Pailure, ASTM STP 516, American Society for Testing and Materials (1972), pp.303-322.
- 42) R. Turcotte, A. S. Thesis, University of Rhode Island (1977).
- 43) J. J. Lander, Trans. Electrochem. Soc., 95, 174 (1949).
- 44) N. Fleischwann and H. R. Thirsk, Trans. Paraday Soc., 51, 71 (1955).
- 45) S. C. Barnes and R. T. Mathieson, Batteries 2, D. H. Collins, ed., Pergamon, New York (1965).
- (6) T. F. Sharpe, Encyclopedia of the Electrochemistry of the Elements, A. J. Bard, ed., Harcel Dekker, New York (1973).
- 47) Lead in Modern Industry, Lead Industries Association, New York (1952).
- 48) J. Burbank, J. Electrochem. Soc., 103, 87 (1956).
- 49) J. Burbank, J. Electroches. Soc., 104 , 693 (1957).
- 50) D. Pavlov, Electrochia, Acta, 13, 2051 (1968).
- 51) D. Paylov, C. N. Poulieff, E. Klaja, and N. Iordanov, J. Electrochem. Soc., 116, 316 (1969).

AND AND AND A

יייז בישריבי לי קילי אייניין אין אייאלאיראין אייאלאיר אייז אייראי אייעראיין אייראיין אייראיין אייראיין אייראיי

52)	D. Pavlov and N. Iordanov, J. Electrochem. Soc., 117, 1103 (1970).
53)	D. Pavlov and R. Popova, Electrochim. Acta, 15, 1483 (1970).
54)	D. Favlov, S. Zanova, and G. Papazov, J. Electrochem. Soc., 124, 1522 (1977).
55)	P. Reutschi and B. D. Cahan, J. Electrochem. Soc., 104, 406 (1957).
56)	P. Reutschi and R. T. Angstadt, J. Electrochem. Soc., 111, 1323 (1964).
57)	P. Reutschi, J. Electrochem. Soc., 120, 331 (1973).
58)	A. N. Fleming and J. A. Harrison, Electrochim. Acta, 21, 905 (1976).
59}	E. M. L. Valeriote and L. D. Gallop, J. Electrochem. Soc., 124, 370 (1977).
60)	E. M. L. Valeriote and L. D. Gallop, J. Electrochem. Soc., 124, 380 (1977).
51)	J. Ambrose, R. G. Barradas, K. Belinko, and D. W. Shoesmith, J. Colloid Interface Sci., 47, 441 (1974).
62)	R. G. Barradas, K. Belinko, and J. Ambrose, Can. J. Chem., 53, 389 (1975).
63)	R. G. Barradas, K. Belinko, and E. Ghibaudi, Can. J. Chem., 53 407 (1975).
ь4)	R. G. Barradas, K. Belinko, and D. W. Shoesmith, Electrochim. Acta, 21, 357 (1976).
¢5)	J. W. Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green, and Co., London (1937), vol. VII.
66)	K. Appelt, Electrochim. Acta, 13, 1521 (1968).
67)	P. Delahay, H. Pourbaix, and P. Van Rysselberghe, J. Electrochem. Soc., 98, 57 (1951).
68)	P. Bess, Electrochim. Acta, 12, 161 (1967).
69)	J. Burbank, J. Electrochem. Soc., 106, 369 (1959).
70)	W. Scheuermann and K. Nakamoto, Appl. Spectrosc., 32, 302 (1978).

QSI/stansell

¢

143

	144
7 1)	A. Z. Goldfarb, M. S. Thesis, University of Rhode Island (1978).
72)	N. D. Greene, Exparimental Electrods Kinetics, Rensselver Polytechnic Institute, Troy, N. Y. (1965).
73)	H. B. Weiser and W. O. Milligan, Chem. Rev., 25, 1 (1939).
74}	K. J. Gallagher and D. N. Phillips, Trans. Paraday Soc., 64, 785 (1968).
75)	T. Ishikawa and K. Inouye, Bull. Chem. Soc. Japan, 45, 2350 (1972).
76)	0. Baudisch and W. H. Albrecht, J. Amer. Chem. Soc., 54, 943 (1932).
77)	G. A. Ozin, Can. J. Chem., 48, 2931 (1970).
78)	L. A. Isupova and E. V. Sobolev, Zh. Struct. Khim., 9, 324 (1968).
79)	P. A. Chen, J. Amer. Ceram. Soc., 57, 275 (1975).
៩០)	E. W. Abel, Comprehensive Inorganic Chemistry, J. C. Baılar, H. J. Emeleus, R. Nyholm, and A. F. Trotman-Dickenson, eds., Pergamon Press, Oxford (1973), vol. 2, p.119.
81)	W. Kwestroo and A. Huizing, J. Inorg. Nucl. Chem., 27, 1951 (1965).
82)	W. Kwestroo, J. deJonge, and P. H. G. M. Vromans, J. Inorg. Nucl. Chem., 29, 39 (1967).
8 3)	H, Szymanski, ed., Raman Spectroscopy, Plenum Press, New York (1967).
84)	S. K. Freeman, Applications of Laser Raman Spectroscopy, Wiley - Interscience, New York (1974).
85)	N. T. McDevitt and N. L. Baun, Spectrochim. Acta, 20, 799 (1964).
86)	F. Lappe, J. Phys. Chem. Solids, 20, 173 (1961).
87)	A. E. Ennos, J. Opt. Soc. Amer., 52, 261 (1962).
88)	S. Nomura and N. Ito, Nippon Kinzoku Gakkaishi, 29, 985 (1965).

٢٠٠٠٠ مَعَدَّة مَعَدَّة عَدَّة عَدَّة مَعَدَّة عَدَّة عَنَّة عَنَّة عَدَّة عَدَّة عَدَّة عَدَّة عَدَّة عَدَّة ع مُعَدَّة عَدَيَة عَدَّة عَدَ

7: P.7:7.7.5

ar so server so representation and an server beneficiary and the server and the server of the server o

89)	P. A. Wilks, Laboratory Nethods in Infrared Spectroscopy, R. G. J. Miller and B. C. Stace, eds., Neyden and Son, London (1972), p.206.
90)	D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm, NBS Technical Note 270-3, U. S. Government Printing Office, 1975.
91)	R. L. Cusamano, M. S. Thesis, University of Plorida (1971).
92)	E. Gileadi, E. Kurowa-Bisner, and J. Penciner, Interfacial Electrochemistry, Addison - Wesley, Reading, Mass. (1975).
93)	V. A. Izvozchikov and G. A. Bordovski, Dokl. Akad. Nauk. SSSR, 145, 1253 (1962).
94)	H. Bode and E. Voss, Ber. Bunsenges. Phys. Chem., 60, 1053 (1953).
95)	G. Charlot and B. Tremillon, Chemical Reactions in Solvents and Melts, Pergamon Press, Oxford (1969), p.389.
96)	P. Isai and R. P. Cooney, J. Chem. Soc. Dalton Trans., 1976, 1631.
97)	P. Dawson, M. H. Hargreave, and G. R. Wilkinson, Spectrochim. Acta, 33A, 83 (1977).
98)	K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley - Interscience, New York (1970), p.111.
99)	H. W. Billhardt, J. Electrochem. Soc., 117, 690 (1970).
100)	C. H. Warren and L. Ramaley, Appl. Opt., 12, 1976 (1973).
101)	I. k. Beattie and T. R. Gilson, J. Chem. Soc. A, 1970, 980.
102)	J. W. Hellor, op. cit., vol. XIII, p.706.
10 3)	G. W. Poling, J. Electrochem. Soc., 116, 958 (1969).
104)	D. E. Davies, U. R. Evans, and J. N. Agar, Proc. Boy. Soc. (A), 225, 443 (1954).

· 2 42 3th Pr(2 +

4 --

;; ,

. . . .

· · · ·

4

-

· #

411.24

145

and the second second

•

and a support of the set and a set and a support of the set of the

APPENDIX I.

Description of Vibrational Raman Spectroscopy

Vibrational Raman spectroscopy involves transitions between vibrational levels of a molecule or a unit of a crystal lattice. The simplest system to use for a model is a diatomic molecule; only one chemical bond exists betwee. the two atoms, and the only vibration possible is stretching of that bond.

The two lowest vibrational energy levels, the ground state and the first excited state, are the levels of interest. A molecule must always vibrate. The ground state is the lowest energy level it may attain, and it is assigned a vibrational quantum number, V, of zero. The energy of a vibrational state is proportional to the frequency of vibration and related to the vibrational quantum number, i.e., $E = (V + 1/2) h \nu c$ where h is Planck's constant, c is the speed of light, and ν is the frequency characteristic of that particular vibration. It can be seen that even in the ground state, V=0, each molecule has some vibrational energy.

The two lowest vibraticnal energy levels, with V=0 and V=1, are shown in Pigure 54. Molecules can absorb light by going from the lower to the higher level, or they can emit light by going from the higher to the lower. The energy corresponding to the absorption of a quantum of light is

given by

 $\mathbf{E} = \mathbf{E}\mathbf{1} - \mathbf{E}\mathbf{0} = \mathbf{h} \boldsymbol{\nu} \mathbf{C}$

A typical transition for a diatomic molecule corresponds to approximately 2000 cm^{-1} and the absorption appears in the infrared region of the electromagnetic spectrum.

An intrared absorption spectrum is obtained by passing infrared radiation through a sample. If the sample molecules have dipole moments (a condition required by quantum mechanics for optical transitions from one vibrational level to another), some of the light will be absorbed at the resonance frequency of the molecule, i.e., the frequency corresponding to a transition between the V=0 and V=1 levels.

Although a diatomic molecule has only one possible vibrational mode, nonlinear polyatomic molecules have 3N-6(where N is the number of atoms in the molecule) excited levels with V=1. A molecule in the ground vibrational level may be excited to any of the higher levels, each of which corresponds to a different vibrational mode. Each vibration has its own characteristic frequency, ν_i , giving each a different energy, so the infrared absorption spectrum of a polyatomic molecule represents transitions to the V=1 levels of a large number of vibrations. An infrared spectrum may not contain 3N-6 absorption bands, however, since all of the excited states may not be accessible through absorption of infrared radiation.

The transitions responsible for Raman scattering are

147

日本がはたが、やんだが、読みたいにものないである

transitions between the same vibrational levels but the process is more complicated than simple absorption. A simple picture of some Raman transitions is presented in Figure 55. When the electric vector of an electropagnetic wave interacts with the electrons surrounding a molecule it distorts the electron cloud, causing temporary dipole moments. The sum of the dipole moments induced per unit volume is called the polarization, P, which is related to the electric field strength, E.

$\mathbf{p} = \mathbf{x} \mathbf{g}$

The polarizability, α , is related to the dielectric constant of the material. Incident radiation in the visible range, approximately 20,000 cm⁻¹, excites the molecule, inducing a temporary dipole. In a very short time (10⁻¹⁴ seconds) the molecule reemits a photon at the same frequency, ν_o , releasing the energy of excitation as Rayleigh scattering, to return to the ground vibrational level. Some photons are emitted at a lower frequency, returning the excited molecule not to the ground state but to the higher vibrational level, V=1. The energy of the photon emitted corresponds to the trequency $\nu_o - \nu_i$. This type of scattering is called Stokes Raman scattering.

There is a Boltzmann distribution of molecules at all possible vibrational levels. Thus, even at room temperature, there are always some molecules in the V=1 level. These can also be excited by the incident radiation and either return to the V=1 level by emitting a photon at

 ν_{i} or they may return to the V=0 level by emitting a photon at ν'_{i} + ν'_{i} . The latter transitions are referred to as anti-Stokes Haman scattering.

A typical Raman spectrum of a diatomic molecule is shown in the bottom of Figure 55. It is simply a plot of scattered light intensity versus frequency. The intensity of the anti-Stokes Raman bands depends on the magnitude of ν_i , i.e., the greater ν_i , the smaller the number of molecules in the V=1 level to begin with (Boltzmann distribution) and the smaller the intensity of the transition. Normally, because they are much stronger, only the Stokes transitions are used in Raman spectroscopy, i.e., only the left half of the spectrum is used. Furthermore, it is conventional to plot the frequency difference from the excitation frequency, $\nu_i = (\nu_i - \nu_i) = \nu_i$, the frequency corresponding to the energy differences between vibrational levels.

As in absorption spectroscopy, for polyatomic molecules transitions to some or all of the possible 3N-6 vibrational levels can take place. For a Raman transition to occur, the geometry of the molecule in the excited state must be such that a change in polarizability has taken place, i.e., the electron density about the molecule must be distorted by the transition. For an absorption of infrared radiation to occur, the geometry of the molecule in the excited state must be such that a change in the dipole moment has taken place. Thus, while both Raman and infrared absorption

data da aranda menunya a aa aanna era arana midi dalamda hada anda midi dadala da da ana da da da da da da da d

spectra provide information about vibrational transitions, the two processes are entirely different, and transitions which show up strongly with one are usually weak with the other. Typically strong infrared bands are due to vibrations of polar bonds such as those involving hydrogen, while strong Raman bands are usually due to species with large numbers of electrons, such as lead compounds.

Since vibrational frequencies are characteristic of the specific type of vibration (bending, stretching, etc.), the type of atoms involved in the bonds, the type of bond, and any other environmental influences on the electrons involved in bonding, spectra are unique to each compound or structure. Every molecule has its own characteristic Raman spectrum which can be used to identify the molecule, specifying not only which compound is present, but also which polymorph of that compound, and possibly identifying any distortion from the normal structure.

In this discussion of Raman spectroscopy a small molecule has been used as an example to make the explanation as simple as possible. For the solid species examined in this research, the spectra are somewhat more complex. In addition to the vibrations of the molecules or very small parts of a crystal, termed the internal vibrations, vibrations of entire molecules or larger units of a crystal, the external, or lattice vibrations, are also observed. Thus, although spectra of solids are more complicated than those of tree molecules, the example of a small molecule is

STUCKS WILL SING WILL FUTCH

150

aret is their to device the set of the set o

completely valid.

 $\mathcal{P}_{\mathcal{P}}$

\$

151

,

1

A STATE OF STATE OF STATE

11

1

;

í.

ALLES.

ないですというというというないです

URIT (SARUTAN

A CONTRACTOR

153

the second states with the second second states

The start week.

BASIC DISTRIBUTION LIST

Technical and Summary Reports April 1978

Organization	Copies	Organization	Copies
Defense Documentation Center		Naval Air Propulsion Test Center	r
Cameron Station		Trenton, NJ 08628	
Alexandria, VA 22314	12	ATTN: Library	1
Office of Naval Research		Naval Construction Batallion	
Department of the Navy		Civil Engineering Laboratory	
800 N. Quincy Street		Port Hueneme, CA 93043	
Arlington, VA 22217		ATTN: Materials Division	1
ATTN: Code 471	1	Naval Electronics Laboratory	
Code 102	٦	San Diego, CA 92152	
Code 470	1	ATTN: Electron Materials	
- · · · · · · · · · · · · · · · · · · ·		Sciences Division	1
Commanding Officer			
UTTICE OT Naval Research		Naval Missile Center	
Branch UTTICe		Materials Consultant	
Building 114, Section D		Code 3312-1	-
bob Summer Street	•	Point Mugu, CA 92041	1
Boston, MA UZZIU	1	Commondano ORGA	
Commanding Officer		Lonmanding Utticer	
Commanding Utticer		Naval Surrace Weapons Lenter	
Diffice of naval Research		White Uak Laboratory	
F26 South Clark Street		STIVER Spring, MU 20910	7
Se South Clark Street	٦	Alin: Library	!
Chicago, IL 60005	1	Doudd W. Toulow Nousl Chdo	
Office of Nevel Decemb		David W. layior naval Ship	_
San Example on Amon Office		Research and Development Center	-
760 Harbet Street Doom AA7		Anna colic MD 21602	1
San Evancieco CA QA102	٦	Anneputist nu 21402	I
San Trancisco, CA Stroc	·	Neval lindercos Conter	
Haval Research Laboratory		San Diego, CA 92132	
Washington, DC 20375		ATTN: Ithrary	1
			•
ATTN: Codes 6000	1	Naval Underwater System Center	
6100	1	Newport, RI 02840	
6300	1	ATTN: Library	1
6400	1	•	
2627	1	Naval Wzapons Center	
		China Lake, CA 93555	
Naval Air Development Center		ATTN: Library	3
Code 382			
Warminster, PA 18964	-	Naval Postgraduate School	
ATTN: Mr. F. S. Williams	1	Monterey, CA 93940	
		ATTN: Mechanical Engineering	
		Department	1

La Caracter and the State of S

r dali dan daraman na sera manan ketaran ketaran dalaman dan dan dan dalam dalam dalam ketaran masar 🗽 😵 dan ketaran dara da

and an and a second

-154-

Organization	<u>Coptes</u>	<u>Organization</u>	<u>Copies</u>
Naval Air Systems Command Washington, DC 20360		NASA Headquarters Washington, DC 20546	,
AIIN: LOGES 52031 52022	3	Alin: Lode: Krm	1
52032	ۆ	NACA	
Naval Sea System Command		lewis Research Center	
Washington, DC 20362		21000 Brookpark Road	
ATTN: Code 035	1	Cleveland, OH 44135	
		ATTN: Library	1
Naval Facilities Engineering			
Command		National Bureau of Standards	
Alexandria, VA 22331	•	Washington, DC 20234	•
Alin: Lode US	1	Alin: Metailurgy Division	1
Scientific Advisor		inorganic materials biv.	i i
Commandant of the Marine Corps		Director Applied Physics Laborat	orv
Washington, DC 20380		University of Washington	
ATTN: Code AX	1	1013 Northeast Forthigth Street	
		Seattle, WA 98105	1
Naval Ship Engineering Center			
Department of the Navy		Defense Metais and Ceramics	
Nashington, DC 20360	ę	Information Center	
Alin: Code Siul	1	Battelle Memorial Institute	
Avery Research Offica		SUD KINY AVENUE Folumbus OV 43901	٦
P.O. Roy 12213			•
Triangle Park, NC 27709		Metals and Ceramics Division	
ATTN: Metallurgy & Ceramics Program	1	Oak Ridge National Laboratory	
		P.O. Box X	
Army Materials and Mechanics		Oak Ridge, TN 37380	1
Research Center			
Natertown, MA U21/2	2	Los Alamos Scientific Laboratory	
ATTN: Research programs uttice	I	P.U. DOX 1003 Loc Alamor NG 97544	
Air Force Office of Scientific		ATTN: Report Ithraetan	1
Research			•
B1dg. 410		Argonne National Laboratory	
Bolling Air Force Base		Metallurgy Division	
Washington, DC 20332		P.O. Box 229	-
ATTN: Chemical Science Ulrectorate	1	Lemont, IL 60439	1
Electronics & Solid State	3	Dunakhawan Katianal Labouatowy	
うしょせいしてう ひょうないしいてもした	i	Technical Indianation Nutein	
Air Force Materials Laboratory		lipton, Long Island	
Wright-Patterson AFB		New York 11973	
Dayton, OH 45433	1	ATTN: Research Library	1
Library		Office of Naval Research	
BUTIGTING DU, NA 134		Branch Office	
LAWTCHUC MAUTALIUN LEDGRAUDTY Rembatany. Ca	1	IUJU LAST GREEN STREET Paradana CA GIJOG	1
UND REIGYS WI		capaucha, un 21100	Ŧ

-2-

C April 1978 おおいろう しいかいかい かいかい かいかい かいちょう シング うちょう いたい ちょうちょう かん しょうちょう ちょうちゅう ちょうちょう しょうちょう

化化化化化化化化化化化化化化化化 法法法律法 法法律法庭

SUPPLEMENTARY DISTRIBUTION LIST

Technical and Summary Reports

Dr. T. R. Beck Electrochemical Technology Corporation 10035 31st Avenue, NE Seattle, Washington 98125

Professor I. M. Bernstein Carnegie-Mellon University Schenley Park Pittsburgh, Pennsylvania 15213

Professor H. K. Birnbaum University of Illinois Department of Metallurgy Urbana, Illinois 61801

Dr. Otto Buck Rockwell International 1049 Camino Dos Rios P.O. Box 1085 Thousand Oaks, California 91360

Dr. David L. Davidson Southwest Research Institute 8500 Culebra Road P.O. Drawer 28510 San Antonio, Texas 78284

Dr. D. J. Duquette Department of Metallurgical Engineering Rensselaer Polytechnic Institute Troy, New York 12181

Professor R. T. Foley The American University Department of Chemistry Mashington, D.C. 20016

SURVEY STORY

Mr. G. A. Gehring Ocean City Research Corporation Tennesses Avenue & Beach Thorofare Ocean City, New Jersey 08226

Dr. J. A. S. Green Martin Marietta Corporation 1450 South Rolling Road Baltimore, Maryland 21227 Professor R. H. Heidersbach University of Rhode Island Department of Ocean Engineering Kingston, Rhode Island 02881

Professor H. Herman State University of New York Material Sciences Division Stony Brook, New York 11794

Professor J. P. Hirth Ohio State University Metallurgical Engineering Columbus, Ohio 43210

Dr. D. W. Hoeppner University of Missouri College of Engineering Columbia, Missouri 65201

Dr. E. W. Johnson Westinghouse Electric Corporation Research and Development Center 1310 Beulah Road Pittsburgh, Pennsylvania 15235

Professor R, M. Latanision Massachusetts Institute of Technology 77 Massachusetts Avenue Room E19-702 Cambridge, Massachusetts 02139

Dr. F. Mansfeld Rockwell International Science Center 1049 Camino Dos Rios P.O. Box 1085 Thousand Oaks, California 91360

Professor A, E. Miller University of Notre Dame College of Engineering Notre Dame, Indiana 46555

-156-

C April 1978

SUPPLEMENTARY DISTRIBUTION LIST (Continued)

Professor H. W. Pickering Pennsylvania State University Department of Material Sciences University Park, Pennsylvania 16802

Professor R. W. Staehle Ohio State University Department of Metallurgical Engineering Columbus, Ohio 43210

Dr. E. A. Starke, Jr. Georgia Institute of Technology School of Chemical Engineering Atlanta, Georgia 30332

Fin. Barry C. Synett Stanford Research Institute 333 Ravenswood Avenue Memlo Park, California 94025

Dr. R. P. Wei Lehigh University Institute for Fracture and Solid Mechanics Bethlehem, Pennsylvania 18015

Professor H. G. F. Wilsdorf University of Virginia Department of Materials Science Charlottesville, Virginia 22903

August 1978

SUPPLEMENTARY DISTRIBUTION JIST

Technical and Summary Reports

People and organizations who have requested copies of reports on this research.

Dr. F.P. Mertlas Department of Energy and Environment Building 815 Upton, NY 11973

Dr. B. Vyas Brookhaven National Laboratory Building 703 Upton, NY 11973

Dr. Henry White Physics Department University of Missouri -Columbia Columbia, MO 65211

Dr. M.J. Graham National Research Council of Canada Division of Chemistry Ottawa, Ontario Canada KIA OR9

Dr. B.J. Berkowitz Corporate Research Laboratories Exxon Research and Engineering Company P.O. Box 45 Linden, NJ 07036

Dr. S. Gottesfeld Bell Laboratories 600 Mountain Avenue Murray Hill, NJ 07974

Dr. Jeff Perkins Liason Scientist, Metallurgy Office of Naval Research Branch Office, London Box 39 FPO New York 09510 T.E. Evans Inco Europe, Ltd. European R & D Centre Wiggin Street, Birmingham B160AJ England

Dr. N. Sato Faculty of Engineering Hokkaido University Kita-Ku, Sapporo, 060 Japan

Dr. K. Sugimoto Department of Metallurgy Tohoku University Aoba, Aramaki, Sendai Miyagi, 980, Japan

towned the states a west and with 1 the states and

Distribution List - ONR

Martin W. Kendig Corrosion Science Group Department of Nuclear Energy Brookhaven National Laboratory Upton, NY 11973

A.S. (Bert) Krisher
Engineering Fellow
Materials Technology
Monsanto
Corporate Engineering Department
Monsanto Company
800 N. Lindbergh Boulevard
St. Louis, Missouri 63166

Tom E. Furtak Leader, Electrochemistry Group Solid State Physics Division Ames Laboratory U.S. Department of Energy Iowa State University Ames, Iowa 50011

Alan G. Miller, Ph.D. Analytical Specialist Engineer Boeing Materials Technology Boeing Commercial Airplane Co. P.O. Box 3707 MS 73-43 Seattle, WA 98124