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OBLIQUE WATER ENTRY AND EXIT OF A FULLY VENTILATED FOIL

by

D. P. Wang

Suite 54, 1121 A-lington Boulevard

Arlington, Virginia 22209

SUMMARY

' The oblique entry of a two-dimensional, fully ventilated foil

into a horizontal layer of water of arbitrary thickness is consid-

ered. When the thickness of the layer is finite, exit of the foil

from the layer is studied. The present work is an extension of a

previous one'1iiY-in which only vertical entry and exit of the

foil were considered. The consideration of oblique entry makes

the present solution useful in studying not only the advance

ratio effect on a partially submerged supercavitating propeller

but also many other problems, such as the high-speed water

entry and exit of a wing or a control surface, the operation of a

high-speed hydrofoil in a high sea state. The results obtained in

this work indicate that the force and moment coefficients of a

foil decrease as the advance ratio is reduced.
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1. INTRODUCTION

In a previous paper [I1, the present author used a linearized

flow model to study the flow characteristics around a partially

submerged supercavitating propeller operating in the vicinity of

an ocean surface. The model was fashioned after the blade element

theory for the conventional marine propeller. When the effects

of the neighboring blades and of gravity were ignored, the flow

resembled that of the entry into and exit from a horizontal layer

of water of finite thickness by a two-dimensional, fully venti-

lated foil in a gravity-free space. The circular-arc length tray-

eled in the ocean by the leading edge of t1pe blade element was

taken as the thickness of the layer. The upper and lower surfaces

of the layer, which represented the ocean surface, were assumed to

be exposed to atmospheric pressure. The foil, which represented

the blade element, entered vertically into the upper free surface

of the layer and exited from its lower free surface. When moving

in the water, the foil was allowed to have small, unsteady defor-

mations, so that the theory could be applied to hydroelastic

studies.

In studying the problem, the flow motion considered in [1) was

divided into three different phases: the initial entry, the com-

plete entry, and the exit. The flow motion is defined as being in

the initial entry phase when the foil is only partially submerged,

in the complete entry phase when the foil is completely submerged,
00

and in the exit phase when the leading edge of the foil pierces o

through the lower free surface of the layer. For the exit phase,

the pressure distribution on the foil was explicitly determined;
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for the other two phases, however, it was determined analytically

except for a function of the time factor. The determination of the

function depended on the solution of a system of integral equations.

The integral equations, which governed the flow speed on the cavity

walls, were produced as a consequence, when the role played by the

time factor in solving the flow velocity was reduced from an ex-

plicit variable to a parameter. For the special case when the

thickness of the layer became infinite and the flow was in its ini-

tial entry phase, solutions for arbitrary foil deformations were

obtained ir. "ies forms. For other cases, numerical methods were

devised to solve the integral equations. 'S

The results obtained in [1j show that the rate of increase in
FZ

the loading on the foil is most rapid during the initial entry and

that the loading almost reaches its maximum at the end of this

phase. During the same phase, the influence of the thickness of

the layer on the foil loading is small and may be neglected for

most cases. This finding may become very useful when the struc-

tural design of a propeller blade is considered.

The theory developed in (1), however, did not consider the

advance ratio effect, which is known to have some influence on the

thrust and torque coefficients of the partially submerged propel-

ler. To consider the advance ratio effect, the foil should enter

the horizontal layer of water obliquely, instead of vertically as

in (11. The main purpose of the present paper is to consider such

an effect: that is, to study the oblique entry and exit of a fully

ventilated foil from a layer of water of finite thickness. The

limiting case when the thickness of the layer becomes infinite is
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also considered.

Numerical results for a flat plate foil and for circular-arc.

foils are obtained. They indicate that, when the angle of attack

measured from the entering path of a foil remains constant, the

force and moment coefficients of the foil decrease as the advance

ratio is reduced.

2. DESCRIPTION OF THE PROBLEM

When the blade of a partially submerged supercavitating pro-

poller enters an ocean surface, the flow is expected to separate
,A

from the leading edge of the blade, forming on the suction side a

cavity that vents to the atmosphere. When the flow model described

ir, (11 is adopted and the advance ratio effect considered, the

corresponding flow becomes that of the oblique entry of a two-

dimensional, fully ventilated foil into a horizontal layer of water

of finite thickness, as shown in Fig. 1. The upper and lower sur-

faces of the layer are assumed to be exposed to the atmospheric

pressure pa. The foil enters the upper free surface and exits from

the lower one with a constant velocity U, which is assumed to be

[large enough to cause the flow around the foil to become separated

but not so large as to render the incompressible and inviscid

approximations invalid. In this work, the flow separation is

assumed to occur immediately after the entry of the leading edge,

and the pressure inside the cavity to be always equal to p

In Fig. 1, the leading edge of the foil is denoted by B, and

the trailing edge by T. The cavity walls are represented by the

curves BC and TA. C and A are the intersectional points where the

cavity walls and the upper free surface of the layer meet.

When the chord length of the foil, 1, is taken as the charac-

-3-
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teristic length, the non-dimensional thickness of the layer is

iI denoted by h. The entering speed U and time 9/U are taken as the

characteristic speed and time respectively. The non-dimensional

pressure ,) is defined by 2

(p-p) (1) §

where is the dimensional pressure and p the density of water.

Based on these characteristic quantities, physical parameters of

the present problem can be made into non-dimensional forms, which

are used in the following analysis.

For reference, a Cartesian coordinate system (x,y) is chosen;

the x-axis lies on the original undisturbed upper free surface of

the layer, and the y-axis points vertically upwards. At time t=O,

the leading edge of the foil is assumed to touch the upper free

surface at the origin of the x-y axes. The angle between the ve-

locity U and the x-axis is denoted by yff, as shown in Fig. 1.

Without loss of generality, it may be assumed that O< y< h. When

the advance ratio, A, of a blad element is defined as t'e ratio

of the propeller's advance speed to its circumferential speed at

the location where tle blade element is situated, A may be ex-

pressed as

S= an(!-y)w. (2)

Suppa during its motion in the water the foil is performing

small (say, of the order of e), unsteady motions about its entering

] path, and suppose the percentage change in the chord length of the

foil is less than the order of c. Then, to the first order in e,

the locations of points on the foil siirface at any t may be ee-

scribed by the equation

-4.



n =g(s,t) for t-1 < s < t. (3)

In (3), s is the distance measured from the origin of the x-y axes

along the entering path, n the distance measured normal to , as

indicated in Fig. 1, and g(s,t) is assumed tu be given. e is so

small that the conventional linearized approximation used in solving

an inviscid free surface flow problem foc small disturbances may

be used.

Since the flow is considered incompressible and inviscid, Z

a velocity potential O(x,y,t) may be used to describe the motion

of the water. Consequently, when the effect of gravity is ne-

glected, the linearized equation of motion becomes

ot + p/2 0. (4)

The constant pressure condition p=O on the free surface may

now be stated as

Ot 0.

Consistent with the adopted linearization process, this already

linearizcd boundary condition need not be applied to the actual

locations of the free surfaces. Instead, it may be applied to the

planes y=O and yz-h, and to the portions of the entering path that

correspond to the cavity walls as € + 0.

On the wetted side of the foil, the linearized boundary con-

dition is

On= gt(st), (6)

which is applied to the portion of the entering path corresponding

to the wetted side of the foil as e-10. At x=t-, which are denoted

by points D and E in Fig. 1, it is required that

SJ



* O -- y - 0 for t > 0. (7)

The boundaries to which the linear.zed boundary conditions are

applied define the linearized flow field. Since the layer of water

is assumed to be originally motionless, the initial condition may

be stated as

- 0 (8)

in the entire flow field.

As explained in [11, it is possible to express the boundary i

condition (5) as

X =0 (9)

on the free surfaces y=O and y=-h, and as

s = q(s) (10) ;

on the cavity walls where n=0. In (10), q(s), the speed function

on the cavity walls, is not yet known, but it will be determined

in the process oi solving the problem. The advantage of replacing

the free surfac boundary condition (5) by (9) and (10) is that

the variable t n, acts merely as a parameter in solving the flow

velocity.

3. SOLUTIONS

The boundary conditio s (6), (7), (9) and (10) form a typical

boundary-value problem, whose solution determines the velocity

field that includes the unknoun speed function q(s). To solve the

present problem, the same methcd of solution used in [11 is adopted

here. The flow mction is divided into three different phases: the

initial entry, the complete entry, and the exit. The solution to

each phase is sought separately.
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To find the solutions for the initial and the complete entry

phases, the linearized flow field is mapped onto the upper-half

of a parametric 4-plane for a given t, as shown in Fig. 2, where

the images of points A, B, C, D, E and T are labelled accordingly:

point A is mapped to the origin of the t-plane, B to (b,0), C to

(c,O), D to the point of infinity, E to (-1,0) and T to (T,O).

The mapping function may be expressed as
az - h -Y (C-b) (11) 1 -1  l )

where z=xfiy and t=+in. In (11), thc branch cut is chosen to lie

between t=0 and =c with 0 <Arg() < 27 and 0 <Arg(i-c) < 2. It

can be shown from (11) that

)~1----
c = (l+b) -I (12)

and that b as a function of t is governed by the equation,

wt/h = f luY(l-j)(c/b-p)Y'l(lfb+p) dii. (13)
0

The integral shown in (13) can be expressed in terms of a hyper-

geometric functiun of two variables; however, it is more convenient

for future applications to express the relationship between b and

t numerically. The results for several values of A are shown graph-

ically in Fig. 3. It should be noted that the correspondence of b-0

with t=0 and of b--o with t=hcscyi can each be shown analytically.

On the boundary 0< _c, the dependence of s on and t may

be expressed in an integral form as

irs/h f v (b-v)(c-v)-(1+v) 'dv. (14)
0

E Obviously, s has only c.-e extremum in the region 0< c. This

-74 k 
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occurs at =b, at which s=t. As $ increases from 0 to b, s in-

creases monotonically from 0 to t; as further increases from b

to c, s decreases monotonically from t to 0.

Initial Entry

This phase of motion occurs during the time interval O<t < 1,

in which the trailing edge of the foil has not yet become submerged.

Consequently, only one cavity wall is generated. This is located

on the suction side of the foil and is described in Fig. 1 as BC.

Suppose the unknown speed function q(s) on the cavity wall

BC is designated by ql(s). By solving the boundary-value problem

(cf. (11), the complex velocity w(z,t), which satisfies the finite

pressure condition at point A and C and the 4-root type of singu-

larity in pressure at point B, becones

= 1 C -c) l -  b c } -k..b d(
1~ (C b) 0 b (c-b'4 d

-T {~f gt~s,t)+$ qlCS )  ]d__ C5

where ql(s) is the solution of the integral equation

f [gt(s,t)+q1 (s) ) ds 0. (16)
0 Rt-bI

In the above expressions, ; is regarded as a function of z and t,

9 a function of s and t, and the function (c-b) is restricted to

the branch specified by 0 < Arg(C-b)< 2w. It should be noted that

c, the parameter used to indicate the smallness of the disturbances,

has been omitted from (15) and (16). The omission of c will con-

tinue from here onward.

When gt(s,t) is given, the integral equation (16) determines

ql(s) for O<s<t<1. However, for the limiting case as t 0,

i ---
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ql(O) can be explicitly determined, and the result is

q l (O) -Q 0 (y)gt(0'0)' (17)

where 1

Q0 (y) = f K(p)d K(p)dp, (18)
0 /1

and
K(pa) S YI-l(- ) •(9

Equ. (17) indicates that ql(0) is independent of h, the thickness

of the layer. The function Q0 (y) is plotted in Fig. 4, where the

ordinate is QO and the abscissa y, whose corresponding value of A

is also shown in the figure. With the aid of either (9) or (15),

it can be shown that the velocity at point C is always pointing

vertically upward, irrespective of the value of y so long as 0< y_

. The magnitude of this velocity is equal to Q0 (y)gt(O,0)cscyr.
Throughout the initial entry phase, A (i.e., point C=0) is

the point of contact between the foil and the upper free surface

of the layer. The asymptotic behavior of w in the neighborhood of

A can be studied from (15). For the case when 0 <y <h,

w 6 al(t)Y'h as o0, (20)

where

a,(t) C -Y e-e iY f gt(st)+f q(sY}9 YIg bIh(c-0 YdF (21)
wb0 b

When y=h, however,

w Igt(ot) lnC as c*0. (22)

The pressure distribution on the wetted side of the foil,

which lies on the segment O< 41b, can be derived from (IS). The

derivation involves the integration of w(z,t) with respect to z

.9



(which produces the complex velocity potential f(zt)) and the

differentiation of f(z,t) with respect to t. The final result

may be written as

2 c-b l-yp : -- a 2 (t) (F-4 )

+If gtt(s,t) in 'ds, (23)

where

b c
a2(t) = f gt(s,t)-f ql(s))C'_Yj-bj (c-&)1-ldt. (24)

0 b

The above results form the basis on which numerical calculations

for the solution of the initial entry can be made.

Complete Entry

This phase occurs during the time interval l< t< hcsci, in

which both the leading and trailing edges of the foil remain sub-

merged in the water. In this case, a second cavity wall, TA, is

generated in addition to the already established BC. The flow

configuration has been shown in Fig. 1. Suppose the unknown x

speed function on BC where s > I is again designated as ql(s) and __

that on TA as q2(s). Then, the solution for w(z,t) may be written

as (cf. l1) iA

w = - -- (I q2 (s)0
b C 1-

1f gt(s,t)+$ ql(S)}(-) - d , (25)
Tb

where T is the C-coordinate of the trailing edge T, whose s-coor-

dinate is (t-I), and the function (-) h is restricted to the

branch specified by 0<Arg(C-r)< 2w. The value of r can be

determined from (14) by iterations. The iteration process is a

-10-



straightforward one and can be made to converge for any s on the

foil or on the cavity walls. This is because s is a monotonically

increasing, or decreasing, function of & in those ranges.

The unknown speed functions ql(s) for I < s < hcscy r and q2(s) .
for 0 <s <hcscyir-1 are governed by the following two integral equ-

[ ations,

The q2(s)+ f gt(s,t)+f ql(s)} foIlth s n 2 )
0 tt1 0 -b)

Using the procedures described in the previous section, the

pressure p on the foil BT, which lies on the segment T < .<b, can

be obtained from (25), and the result may be expressed as

p 2 c-b 1-yp = T Tj a3 (t) (.

2 t 2
+ , t) ds, (27)" -t 1 (b-'T) I -

where
T b c 1-yC' d&

VIE a3t I f q,,(s)+f gt(s,t)-$ ql~s)}(c.&) .(28)

0 T b

rip When the shape function g(s,t) is given, (25), (26) and (27) can

be used to calculate the solution of the complete entry.

Special Case as h+w

As h- *, the problem becomes that of the oblique entry of a

fully ventilated foil into a deep ocean. The solutions for the

present case may be extracted from those obtained previously by -

re-scaling the parametric 4-plane in such a way that point H tends

to point D at the point of infinity. This can be achieved by

replacing ;, b, c and T in the previous solutions by 4/h, b/h, c/h

and T/h, respectively, and then letting h -. When such a process

no "or -,11-



.is carried out, (11) becomes

i r o ( = Y( -b)(4-c)y 'I , (29)

and (12) and (13) become, respectively,

c = b/(l-y) (30)

and

b - B(y)wt, (31)

where

B (y) = 1Y). (32)
Y

Similarly, (14) becomes

L - (b-v) (c-v)y 'Idv tS(p)v 3)
7T 0

where

S() B(y)p -() (34)

and
S= aIb. (35)

For both the initial and complete entries, the solutions

w(z,t), the integral equations which govern ql(s) and q2(s), and

the pressure distributions on the foil retain formally the same

expressions as those shown in the previous sections where the case

of finite h was studied, with the exception that the relations (11)

to (14) should be replaced by (29), (30), (31) and (33).

A special case for which a closed form solution can be ob-

tained during the initial entry is when gt(s,t) is given by

gt(st) t as, (36)

where 0 and a are arbitrary constants. To seek the closed form

-12
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solution, the integral equation (16) is transformed, by using (30),

(33) and (35), into

41
{f gt(s,t)+f q,(s)K(V)dp = 0, (37)
0 1

where K() is given by (19). The substitution of (33) into (36)

gives

gt(s,t) = t8+aSa( ) (38)

When (38) is substituted into (37), it becomes obvious that the

solution of the integral equation (37) is

ql(s) = -A (39)

Where A0o is a constant,

1 1

A = f S (p)K (1)dy S 0 ( ()K()dp. (40)
•0 Ulf

Note that A00=Q0 (y). When the motion of a foil can be expressed

as a lihear combination of terms of the type shown in (36), the

initial entry solution is readily obtainable by the aid of (39).

Examples have been given in [11, in which the heaving and pitching

motions of a vertically entering flat plate were studied.

After complete entry is achieved, the foil is assumed to

move indefinitely into the deep ocean without changing its phase

of motion. Eventually, as t+*w, the flow tends to the classical

cavity flow having a zero cavitation number, and no exit phase will

occur for this special case. For the case of finite h, the exit

phase is considered in the following section.
BEXIT
EI As the leading edge of the foil pierces through the lower free

- 13 -
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Now

surface, the layer of water is assumed to be separated into two

disconnected flow regions bounded by ATB'EA and DB"CD, respectively,

as shown in Fig. S. In the figure, B' indicates the point of con-

tact between the foil and the lower free surface, and B" the point

at which the cavity wall and the lower free surface intersect.

All other points in the figure have previously been defined.

To study the hydrodynamic forces acting on the foil during the

exit phase, which occurs when hcscyir<t < hcscyr+l, only the flow

region bounded by ATB'EA needs to be considered. It should be men-

tioned here that the entire flow motion from t=O to t=hcscyff+l is 4
continuous, since the flow condition at the end of each phase of

motion is used as the initial condition for the next phase of motion.

When the linearized approximation is taken, the linearized

flow field can be mapped onto the upper-half of a parametric -

plane, as shown in Fig. 6, with point A mapped to the origin of the

r-plane, point E to g=- and point B' to the point of infinity.

The mapping function can be extracted from (11) by letting b-l-,

and the result is

az h ei7'" I' 1 -
_- (41)

The boundary conditions for the present phase of motion may

be stated as follows:

0 on 11=O+ Of (42)

q(s) on n=O 0 < (43)

gt(s,t) 3Z on n-0, r< (44)

and

-14-



A

S0 at 4-1, (45)

where s as a function of g may be expressed as

h - 1;s = / (E+1)- d (46)

and T, again, is the E-coordinate of the trailing edge T. As men-

tioned before, the flow condition at the end of each phase of

motion should be used as the initial condition for the next phase.

This result is satisfied if q2 (s) in (43), when s< hcscyrr-1, is the

solution found at the end of the complete entry. t

The boundary-value problem specified by (42) to (45) can be

solved, and the solution which satisfies the finite pressure con-

dition at points A, T and B' is
%T

w e- ly~ ry ') i d& (47).-Y w = l -i~n r y(;.x 0 2 (s) +f gt (s' t) }-E' ;' "& -- d 47

0 T

subject to the condition that
t- 1 hcs cy r
t q(s)+ f gtCst)l)-xT;hds'= 0, (48)

0 t-1

where 0Arg( -T)< 27r has been chosen.

In (48), q2 (s) is considered as known when 0<s< hcscyir-1,

and therefore (48) is an integral equation for q2 (s) only when

hcscyT-l<s<hcsclr. When this part of q2(s) becomes known, w(z,t)

for the exit phase can be determined from (47). However, the as-

ymptotic behavior of w at point B', where Irj1=o* can be visualized

directly from (47) without solving (48); the result is that w at B'

is bounded if y < h and becomes logarithmically singular if y= .

An interesting aspect of flow behavior is revealed by studying

_ _ _ _ _ _ _ - _ _ _ _ __is_



P

the velocity potential f(z,t). When w(z,t) given in (47) is inte-

grated with respect to z, f(v,t) becomes

t-1 hcscyn -- - 2
f = fT {if q2 (s)+ f gt(st)}ln[  ds, (49)0 ~t-l . s 4)!

where f is the value of f(z,t) evaluated at the trailing edge T,

is regarded as a function of s and t, and 4 as a functir, of z

and t. The partial differentiation of f with respect to t by

holding z fixed yields

hcscy7r dTaf + t~ ~n s+[
=s i ds + -t-- gt(t 'l 't)]1 (50)

where is the stream function eveluated at T. From (50), it is

seen that Ot=0 identically if gtt=0. This happens, fo- example,

when the foil is a flat plate. In such a case, the potential *

becomes stationary, and therefore the pressure becomes zero through-

out the entire flow field. In other words, for'a foil whose gtt-0

during exit, the flow around the foil becomes conformed to the

motion of the foil so that no additional disturbance is generated.

To exit, the foil simply slides out of the already established flow

without encountering any resistance.

For a general case when gtt(s,t)'O, the pressure acting on

the wetted part of the foil, which is represented by TB' where

' , is

2 hcscyr [' -T+'- 2
P W = 1 .l gtt (s,t)ln I 1 ds. (Si)

The determination of p does not depend on the solution of the inte-

gral equation (48). To determine w(z,t), however, (48) has to be

solved.

- 16 -
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f 3. EXAMdPLES

Consider a circular-arc foil with a small arc angle 20 and a

small angle of attack a from the entering path. In this case,

g(s,t) = (a-e)(t-s)+8(t-s) (52)

This foil degenerates into a flat plate as 0-0. When (52) is

substituted into (16) and (26), the unknown speed functions ql(s)

and q2 (s) can be solved from the resulting integral equations.

The method of solution has been explained in detail in (1]; for

convenience, however, it is briefly described in the following. 4

Since ql(s) is expected to be bounded everywhere on the cavity

wall BC, it may be expanded into a regular series as

ql(s) = Z b (S-s )n (53)
:,n=O -lf

for s in the neighborhood of s=sm (m=O, 1, 2, ... ), which is a set

of fixed points on the cavity wall BC. The bmn are unknown con-

stants to be determined.

A regular expansion like (53), however, cannot be made for

q2 (s) because it is singular at s=O. But, when the singular part

is removed, the remainder may be expanded into a regular series.

Suppose the singular part of q,(s) is denoted by q*(s). Then, from

(20) and (14), q I's) may be exp-essed as

2/1
q*(s) -C(1)s(h ' ) / ( l -Y) when Y<h, (54)

where

C(t) = 1 h

b :c!i .f gt~s,t)+f ql(s)}&'h'Y[C-bjh(c-C) Y " dC, (5s)

0 b

-17-
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and as

1 s 2

q*(s) = Fgt(0,1) ln when Y=h. (56)

Equ. (56) is purposely constructed in such a way that q*(s) tends

to zero as S40. It can, therefore, be applied even to the

special case when h+oo. Because the trailing edge of the foil is

always one unit above the leading cI.e, [qZ(s)-q*(s)] may conven-

iently be expanded into

q2 (s)-q*(s) = C (ssm+1)n (57)2 .O Cmn ,
n= 0 g

where cmn are unknown constants.

To study the initial entry phase, (53) is truncated to a poly-

nomial of degree N and substituted in (16). The integral equa-

tion is now ready to be solved in steps. Suppose, when m=0, s 0 =t 0

=0 are chosen. Then, (16) contains bOn (n=O, 1, 2, ...,N) as un-

known constants. These unknowns can be determined by evaluating

(16) at N+1 points in t, starting from the first point at t=t 0 +6,

where 6 is a small number, and increasing consecutively to the

(N+I) point denoted by t=t1 , which is assumed to be less than 1.

At these points in t the integral equation is satisfied. The

resulting N+l algebraic equations determine the b0n, and therefore

ql(s) becomes known for 0<s<t I. Since ql(s) is now known when

0 <S <t, the portion of the integral equation associated with

it may be transfered to the right-hand side of th2 equation so that

the foregoing process may again be used to obtain the solution

q1 (s) when t 1 <s< 1 .

Calculations were carried out for a flat plate foil at an

angle of attack a and for a circular-arc foil with O-. The ad-

- 18 -
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vance ratios chosen were X=O, 0.5 and 1. In the calculations, the

relationship between b and t was determined ,'ro;i (13), which has

been shown graphically in Fig. 3. The dependence of s on and t

was determined directly from the integral (14). But, for the in-

vrsc case when s and t ; ere prescribed, the corresponding was

determined from (1i) by iterations. As exp!ained before, the iter-

ation process is a straightforward one and can be made to converge

for any s on the foil or on the cavity walls. For the initial

entry phase, the value of h need not be specified in the calcula-

tions, and it is considered a free parameter of the problem.

To study the complete entry, which occurs during the ti;ne

interval 1 < t < hcscyfr, the integral equations (26) -- instead of

(16) -- should be solved. During this phase of motion, q2 (s) is

an unknown function in addition to ql(s) when s > 1. When the

series expansion (57) for [q2 (s)-q*(s)) is truncated to a poly-

nomial of degree N, the foregoing method of solution may again be

used to determine ql(s) when 1< s< hcscy~r and to determine q2(s)

when 0 <s <hcscr-l. In the present case, h cannot be considered

a free parameter as it was during the initial entry because the

value of h is needed in the determination of T, the c-coordinate

of the trailing edge of the foil.

The pressure distributions on the foil during the initial and

complete entries can be determined from (23) and (27), respectively.

Their properties are similar to those shown in [ll, where the spe-

cial case of y-h was studied. For illustration, some of the pres-

sure distributions are shown in Fig. 10. The explanation of the

- 19 -
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figure will be given at a later stage in this work.

As explained previously, closed form solutions can be obtained

for the initial entry phase as h-®. When (52) is compared with

(36), the solution q,(s) can easily be obtained by the aid of (39).

The result is

ql(s) -(a-O)Qo(y)-2Q I (y)s, (58)

where QI(y)=AI 0 -A0 1 and A., is defined in (40). The pressure

distribution on the foil is

p = f(a-0)Po(Y)+OtP(Y) IfI/(I-1) I +OtG(ii) for O<_p<l. (59)

Where P is defined in (35),

_ 1 1

P O (Y) = 2'(1-y) +Q()f } dpi, (60)0 1

P1 (y) = 4yB(y){f0 [1-S(P)] +QI(Y)ITTS()} K( di (61)
r(l-y) 0il

and

G(p) = 4B(y) 1 f (l-1dv. (62)

The function G(V) is always positive when 0 < < 1 and vanishes

when U=0 or p=l. Since 0< S(i) < I when 0 <i < 1, it is not diffi-

cult to show that Po(y) and Pl(y) are positive when 04 y< _. This

implies that, if 0 < 0 < a, the pressure near the leading edge B of

the foil is always positive definite during the entire initial entry

phase, a condition that will prevent ventilation from developing

on the pressure side of the foil. For reference, the function

Ql(y), P0 (y) and Pl(y) are shown graphically in Fig. 7, where the

scale for Q, is shown on the left-hand side of the figure an- that

- 20 -

- ~ 2L



for P0 and P1 on the right-hand side.

When 0=0, the foregoing results correspond to those of a flat

plate foil. In this case, p shown in (59) is a function of V only,

i.e., a function of the combined variable s/t only. This means

that, as expected, a similarity solution exists for a flat plate

during the initial entry when h=.

For the complete entry, however, no cldsed form solution can

easily be obtained even for the case of h=oo. The numerical method

described previously was used to obtain the solution. j

For a finite h, exit occurs during the time interval hcscyir< g

t<hcscw+l. For this phase of motion, the pressure distribution-i

on the foil can be determined directly from (51). In the calcula-

tions, the functional relationship between s and E was obtained

from (46): s was calculated directly from (46) when t was given,

but was calculated by iterations when s was given. Some of the

pressure distributions during the exit phase are shown in Fig. 10.

The force and moment coefficients of the foil are obtained

by integrating p, which is defined in (1), over the wetted part of

the foil. Suppose the force coefficient in the n-direction, when

normalized by the chord length of the foil, is denoted by C n. Then,

C- -fpds. (63)

The moment coefficient about the leading edge of the foil, CM,

may be expressed as

CMB = f(t-s)pds, (64)

where CMB is positive when the moment is counterclockwise. For

the particular type of foils under consideration, the force coef-

- 21 -
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ficient in ti s-direction, C., is related to Cn and CMB by

Cs = (a-0)C -20C (65)
MB

Numerical results of Cn and CM for a flat plate foil at an
n M B

angle of attack a are shown in Fig. 8. Fig. 8(a) shows the results

of -Cn/ct versus t for various values of h. For each value of h,

a group of three curves is prcsented in Fig. 8(a); they correspond

to different values of A, as indicated in the figure. Generally

speaking, when other factors are equal, the loading is larger when

h is greater, and, within a group of constant h, the loading is

larger when A is larger. Fig. 8(b) shows the corresponding curves

for C. For comparison, the force and moment coefficients of the

corresponding supercavitating plate, at zero cavitation number,

are also shown in Fig. 8(a) and (b) at the location indicated by

t=-. They are the upper bounds of the respective coefficients in
the present study.

Since the force (or moment) coefficients for different values

of h and A are nearly equal during the initial entry (0< t< 1),

they cannot be distinguished clearly in Fig. 8(a) (or 8(b)). For

a clearer view, they are plotted in different scales in Fig. 8(c).

In reading Fig. 8(c), t should be considered less than, or equal

to, unity for any given set of values of h and A.

Similar results for a circular-arc foil with 0-a are shown in

Fig. 9.

Some representative pressure distributions on the foils are

shown in Fig. 10. Fig. 10(a) shows those on the flat plate foil,

Fig. 10(b) on the circular-arc foil, and Fig. 10(c) on the circu-

lar-arc foil during the exit phase..

-22-
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The four solid curves shown in Fig. 10(a) indicate the pres-

sure distributions for the case when h=- at various times and dif-

ferent values of A. When the time factor alone is considered,

these curves may be divided into two groups: one corresponds to

t=W, and the other to 0< t < 1, as indicated in the figure. The

latter group represents the pressure distributions on the flat

plate during the entire initial entry phase (0< t <1) for different

values of A as indicated. The loading is larger when A is larger.

The former group, which consists of a single solid curve, repre-

sents the pressure distribution on the plate at any A when t==.

This pressure distribution is actually the same as that on the

corresponding supercavitating plate at zero cavitation number.

These two groups of curves form the upper and lower bounds

for the pressure distributions on a flat plate foil entering a

infinitely deep ocean at one of the values of A considered. In

fact, the former group is the upper bound for all "ossible pres-

sure distributions obtainable in tl,.: present study. In conjunc-

tion with Fig. 8(a), these two gro.,.s are sufficient for visual-

izing the pressure distributions on . flat plate entering a layer

of water of finite thickness.

Suppose, for example, the case ,f h-2w is considered. During

the initial entry, the loading on the plate, as shown in Fig. 8(a),

is about the same as that for the case of h=-. This means that,

for those values of A considered, the pressure distributions on

the plate during the initial entry are about the same as those

shown in the group indicated by O< t< I in Fig. 10(a). During the

complete entry, the loading on the plate, as shown in Fig. 8(a),

" 23
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increases continuously from that at t=l until t=3.1, at which time

the maximum loading on the plate is about reached. This indicates

that during the time interval 1< t < 3.1 the pressure distributions

on the plate shift upward from one of the group indicated by 0 < t <

1 shown in Fig. 10(a) to the corresponding one in the group of

three broken curves, shown in the same figure, according to the

value of x considered. After t=3.1, the loading on the plate

starts to decrease. Therefore, the pressure distributions on the

plate start to shift downward from the group of three broken curves

shown in Fig. 10(a), and eventually they become identically zero

during exit.

For the case when h=O.Sw, the situation is slightly different.

From Fig. 8(a), it is seen that the loading on the plate has about

reached its maximum at the end of the initial entry phase (t-1). A
But this maximum load.ng is less than the loading for the case of

h=w at t=l. This means that for the case of h=0.Sr the pressure

distributions on the plate for the values of x considered never

exceed those shown in the group indicated by 0 <t <1 in Fig. 10(a).
I

When t is small, the pressure distributions are about the same as

those shown in the group. As t beco:nes larger, but still less than

unity, the pressure distributions over a major part of the plate

start to shift downward from those shown in the group except near

the trailing edge of the plate, where the pressures may actually

shift upward for a while, and eventually all the pressure distri-

butions become identically zero during exit.

For the circular-arc foil, similar situations occur, although

the pressure distributions during exit are not identically zero.

- 24 -
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Some typical pressure distributions are shown in Fig. 10(b) and

(c). Fig. 10(b) is equivalent to Fig. 10(a). Fig. 10(c) shows

the pressure distributions on the foil during exit for the case

of h-0.Sw. In the figure, Ze indicates the exit length; when

zewi0).01, for example, it indicates that the leading 1% of the foil

has exited from the layer of water. The effect of the thickness

of the layer on the pressure distribution during exit is very small.

For all three values of h considered (h/-=0.5, 1 and 2), the pres-

Isure distributions are very similar; when X is constant, their

differences do not exceed 1%. Furthermore, it should be noted that

those curves shown in Fig. 10(c) are also very similar if both the

ordinate and abscissa are normalized by (l-te). In this case,

only three curves, one for each value of X, are needed to describe

the pressure characteristics during exit of the circular-arc foil.

Such a similarity, however, may not exist for other foils whose g

is not constant.

4. CONCLUDING REMARKS

Using the method developed in [l, the problem of oblique

entry into and exit from a horizontal layer of water of arbitrary

thickness by a two-dimensional, fully ventilated foil has been

solved. The present solution contains that obtained in E1.

Therefore, the conclusions derived in [11 are equally valid for the

present case. The consideration of oblique entry makes the present

solution useful in studying not only the partially submerged

supercavitating propeller but also many other problems, such

as the high-speed water entry and exit of a wing or a control sur-

face, the operation of a high-speed hydrofoil in a high sea state.L A 25 -
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Some prominent features of the present solution are summarized

in the following.

When h is infinite and the flow is in the initial entry phase,

analytical solutions in series forms can be obtained for arbitrary

foil motions, such as heaving and pitching. In other situations,

numerical methods are more efficient to effect the solutions.

The velocity at point C (cf. Fig. 1), the intersectional point

of the upper free surface of the layer and the cavity wall on the Z

suction side of the foil, is always pointing vertically upward,

irrespective of the value of y so long as 0 <y<. The magnitude

of this velocity is equal to Qo(y)gt(OO)cscyn.

When gtt(s,t) of a foil is zero during the exit phasu, the

present linearized theory predicts that the hydrodynamic pressure

acting on the foil is zero throughout this phase. This implies

that the force characteristics of an exiting foil do not depend on

its angle of cttack but depend on its camber and its unsteady

motions.

From the numerical results obtained in this work, it may be con-

cluded that the effect of the thickness of a layer of water on the

force characteristics of a foil entering the layer is not important

during both the initial entry phase and the exit phase. However,

the thickness of the layer determines the magnitude of the maximum

loading on the foil as it goes through the layer. It may also be

concluded that, when the angle of attack of a foil measured from

the entering path remains constant, the force coefficient -Cn in-

creases as the advance ratio X increases. Nevertheless, it will

never exceed the force coefficient of a corresponding supercavita-

ting foil at zero cavitation number, even when Aew (that is,

-J-26-
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Figure 8(c). Force and moment coefficients versus irt/(hcscyi)
for 3 flat plate during the initial entry (0<tcl).
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In I

4

1w= wetted chord length
ij=t when 0< t< 1

I = when l< t

1~3 '

h=optw all X

P/ct

2 h=27r, t=3.1, A-1

A,=Os

L N
0

0.2 0.4 0.6 0.8 1.0

Distance' from the leading edge as a fraction ofI

Figure 10(a). Some typical pressure distributions
for a Olat plate foil.

.......t KM



44

1= wetted chord length
=t when 0O<t <1
=1 when I< t

3

h=-o, t=-o, all A

2

1 -~ h-27r, t=3.l, A=l
A=0.5
AMO

0
0.2 0.4 0.6 0.8 1.0

Distance from the leading edge as a fraction ofI
UW

FigurL. 10(b). Some typical pressure distributions
for a circular-arc foil with O-4.
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