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OBLIQUE WATER ENTRY AND EXIT OF A FULLY VENTILATED FOIL
by
D. P, Wang
Suite 54, 1121 A-lington Boulevard

Arlington, Virginia 22209

SUMMARY

\%The oblique entry of a two-dimensional, fully ventilated foil
into a horizontal layer of water of arbitrary thickness is consid-
ered. When the thickness of the layer is finite, exit of the foil
from the layer is studied. The present work is an extension of a
previous one/fI;??in which only vertical entry and exit of the
foil were considered. The consideration of oblique entry makes
the present solution useful in studying not only the advance
ratio effect on a partially submerged supercavitating propeller
but also many other problems, such as the high-speed water
entry and exit of a wing or a control surface, the operation of a
high-speed hydrofoil in a high sea state. The results obtained in
this work indicate that the force and moment coefficients of a

foil decrease as the advance ratio is reduced.'R

. .l

DDC
D
{ FEB 28 1819
lbL'ﬂEéUUE

PR




v
R TR T

IR et

1. INTRODUCTION
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.

In a previous paper (1], the present author used a linearized y 1

flow model to study the flow characteristics around a partially

submerged supercavitating propeller operating in the vicinity of ; {
an ocean surface. The model was fashioned after the blade element

theory for the conventional marine propeller. When the effects

of the neighboring blades and of gravity were ignored, the flow

resembled that of the entry into and exit from a horizontal layer

of water of finite thickness by a two-dimensional, fully venti-

lated foil in a gravity-free space. The circular-arc leangth trav-

ol b i

eled in the ocean by the leading edge of the blade element was

taken as the thickness of the layer. The upper and lower surfaces
of the layer, which represented the ocean surface, were assumed to
be exposed to atmospheric pressure. The foil, which represented

the blade element, cntered vertically into the upper free surface

of the layer and exited from its lower free surface. When moving
in the water, the foil was allowed to have small, unsteady defor-
mations, so that the theory could be applied to hydroelastic
studies.

In studying the problem, the flow motion considered in [1] was
divided into three different phases: the initial entry, the com-
plete entry, and the exit. The flow motion is defined as being in
the initial entry phase when the foil is only partially submerged,

in the complete entry phase when the foil is completely submerged, iim

o 0
and in the exit phase when the leading edge of the foil pierces o
through the lower free surface of the layer. For the exit phase,
the pressure distribution on the foil was explicitly determined; ﬂi;m 3
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for the other two phases, however, it was determined analytically
except for a function of the time factor. The determination of the
function depended on the solution of a system of integral equations.
The integral equations, which governed the flow speed on the cavity
walls, were produced as a consequence, when the role played by the
time factor in solving the flow velocity was reduced from an ex-
plicit variable to a parameter. For the special case when the
thickness of the layer became infinite and the flow was in its ini-
tial entry phase, solutions for arbitrary foil deformations were
obtained ir ‘ies forms. For other cases, numerical methods were
devised tc¢ solve the integral equations.

The results obtained in (1] show that the rate of increase in
the loading on the foil is most rapid during the initial entry and
that the loading almost reaches its maximum at the end of this
phase. During the same phase, the influence of the thickness of
the layer on the foil loading is small and may be neglected for
most cases. This finding may become very useful when the struc-
turél design of a propeller blade is considered.

The theory developed in (1], however, did not consider the
advance ratio effect, which is known to have some influence on the
thrust and torque coefficients of the partially submerged propel-
ler. To consider the advance ratio effect, the foil should enter
the horizontal layer of water obliquely, instead of vertically as
in {1). The main purpose of the present paper is to consider such
an effect: that is, to study the oblique entry and exit of a fully
ventilated foil from a layer of water of finite thickness. The

limiting case when the thickness of the layer becomes infinite is
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also considered.

Numerical results for a flat plate foil and for circular-arc
foils are obtained. They indicate that, when the angle of attack
measured from the entering path of a foil remains constant, the

force and moment coefficients of the foil decrcase as the advance

ratio is reduced.

2. DESCRIPTION OF THE PROBLEM

When the blade of a partially submerged supercavitating pro-
peller enters an ocean surface, the flow is expected to separate
from the leading edge of the blade, forming on the suction side a
cavity that vents to the atmosphere. When the flow model described
in (1] is adopted and the advance ratio effect considered, the
corresponding flow becomes that of the oblique entry of a two-

dimensional, fully ventilated foil into a horizontal layer of water

of finite thickness, as shown in Fig. 1. The upper and lower sur-

faces of the layer are assumed to be exposed to the atmospheric
pressure p,. The foil enters the upper free surface and exits from
the lower one with a constant velocity U, which is assumed to be
large enough to cause the flow around the foil to become separated
but not so large as to render the incompressible and inviscid
approximations invalid. In this work, the flow separation is
assumed to occur immediately after the entry of the leading edge,
and the pressure inside the cavity to be always equal to P,-

In Fig. 1, the leading edge of the foil is denoted by B, and
the trailing edge by T. The cavity walls are represented by the
curves BC and TA. C and A are the intersectional points where the
cavity walls and the upper free surface of the layer meet.

When the cherd length of the €nil, £,  is taken as the charac-
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teristic length, the non-dimensional thickness of the layer is
denoted by h. The entering speed U and time £/U are taken as the
characteristic specd and time respectively. The non-dimensional
pressure » is defined by

p = (§-p,)/ (:oU%), (1)

where p is the dimensional pressure and p the density of water.

W' Y,
X L e B NI S ad o) SR s 0 1 RN SR S SRR

Based on these characteristic quantities, physical parameters of

the present problem can be made into non-dimensional forms, which

are used in the following analysis.

0 Y bt R Y e

For reference, a Cartesian coordinate system (x,y) is chosen;

the x-axis lies on the original undisturbed upper free surface of
the layer, and the y-axis points vertically upwards. At time t=0,

the leading edge of the foil is assumed to touch the upper free

B T S i L e A

surface at the origin of the x-y axes. The angle between the ve-

,,.\
Lo R

locity U and the x-axis is denoted by yw, as shown in Fig. 1.
Without loss of gener_ality, it may be assumed that 0<y<¥. When
the advance ratio, A, of a blude element is defined as the ratio
of the propeller's advance speed to its circumferential speed at

the location where tiie blade element is situated, A may be ex-

pressed as

RS TR o T, Sy, A, T A g [ e Ll et

A = van(%-y)w. (2)
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Suppocs during its motion in the water the foil is performing

small (say, of thc order of ¢), unsteady motions about its entering

Bl

Lk

path, and suppose the percentage change in the chord length of the
foil is less than the order of ¢. Then, to the first order in ¢,
the locations of points on the foil surface at any t may be ce-

scribed Ly the equation
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n = eg(s,t) for t-1<s<t. (3)

In (3), s is the distance measured from the origin of the x-y axes

SRR BB o YT Aot ) b

along the entering path, n the distance mcasured normal to z, as

indicated in Fig. 1, and g(s,t) is assumed tu be given. ¢ is so

Sy

small that the conventional lincarized approximation used in solving

PR

an inviscid free surface flow problem fec¢ small disturbances may

be used.

PIY N T T

Since the flow is considered incompressible and inviscid,

a velocity potential ¢(x,y,t) may be used to describe the motion

of the water. Consequently, when the effect of gravity is ne-

R

glected, the linearized equation of motion becomes

"o
o WL S0 e

b
¥

¢t +p/2 =0, (4)

w
W

Vo

The constant pressure condition p=0 on the free surface may

now be stated as

R R i

¢, = 0. (5)
Consistent with the adopted linearization process, this already
linearized boundary condition need not be applied to the actual
locatiors of the free surfaces. Instead, it may be applied to the
planes y=0 and y=-h, and to the portions of the entering path that
correspond to the cavity walls as ¢+ 0.

On the wetted side of the foil, the linearized boundary con-

dition is

o, = €8,.(s,t), (6)

which is applied to the portion of the entering path corresponding

to the wetted side of the foil as ¢+ 0. At x=tw, which are denuted

hy points D and E in Fig. 1, it is required that

——— e e
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¢x=¢y=0 for t>0. (7) :
& The boundaries to which the lincarized boundary conditions are % ?

- applied define the linearized flow field., Since the layer of water é
is assumed to be originally motionless, the initial condition may % 1

be stated as %
0= 0 8 -]
in the entire flow field. ’E !

As explained in (1), it is possible to express the boundary %
condition (5) as % i

5
by = 0 (9 ;|
. é on the free surfaces y=0 and y=-h, and as é 1
b5 = a(s) (10) 3 |
on the cavity walls where n=0. In {106), q(s), the speed function % 4
on the cavity walls, is not yet known, but it will be determined § ?
in the process of sclving the problem. The advantage of replacing %% f
: the free surfac boundary condition (5) by (9) and (10) is that i‘ {
the variable t n: acts merely as a parameter in solving the flow é% 3
,é velocity. é? :
3. SOLUTIONS % ‘
The boundary conditions (6), (7), (9) and (10) form a typical %E |
. : boundary-value problem, whose solution determines the velocity % ;
% field that includes the unknown speed function q(s). To solve the § ‘

: present problem, the same methcd of solution used in (1) is adopted :

{ ,§ here. The flow mction is divided into three different phases: the

initial entry, the complete entry, and the exit. The solution to

each phase is sought separately.
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To find the solutions for the initial and the complete entry j
X phases, the linecarized flow field is mapped onto the upper-half 3 1
i of a parametric g-plane for a given t, as shown in Fig. 2, where % ;
the images of points A, B, C, D, E and T arc labelled accordingly: % |

, point A is mapped to the origin of the g¢-plane, B to (b,0), C to %
(¢,0), D to the point of infinity, E to (-1,0) and T to (t,0). g ﬁ
The mapping function may be expresscd as g i

. R R O M (IS R (11) :
i where z=xtiy and g=£+in. In (11), thc branch cut is chosen to lie § i
% vetween =0 and g=c with 0<Arg(g) <27 and 0<Arg(z-c) <2n. It 3:% j
% can be shown from (11) that .% 1
¢ = ()71 (12) ;§ i

and that b as a function of t is governed by the equation,

Ry
RN 1.,‘,‘.,

1 2
wt/h = ST () /b T be) . (13) :t

The integrai shown in (13) can be expressed in terms of a hyper-
geometric functiun of two variables; however, it is more convenient
for future applications to express the relationship between b and

t numerically. The results for several values of A are shown graph-
+§ ically in Fig. 3. It should be noted that the correspondence of b=0
with t=0 and of b=« with t=hcscywr can each be shown analytically.

On the boundary 0<E <c, the dependence of s on £ and t may

be expressed in an integral form as

€ . - -
ws/h = L9 (bov) (e-v)" 1oy av. (14)
Obviously, s has only c-e extremum in the region 0<&<c. This

-7 -

Lx
. mwmmmmm‘mﬁumm,.‘muu:mwlmu'l|ulvmm;nmxnmm.u.w i B




occurs at &=b, at which s=t. As & increases from 0 to b, s in-

creases monotonically from 0 to t; as § further increases from b

—— i

to ¢, s decreases monotnnically from t to 0.

Initial Entry f

This phase of motion occurs during the time interval 0<t<1,

in which the trailing edge of the foil has not yet become submerged.

. m——

Consequently, only one cavity wall is generated. This is located

) on the suction side of the foil ana is described in Fig. 1 as BC. i

ks

Suppose the unknown speed function q(s) on the cavity wall

M

BC is designated by ql(s). By solving the boundary-value problem
(cf£. 111), the complex velocity w(z,t), which satisfies the finite
pressure condition at point A and C and the %-root type of singu-

larity in pressure at point B, becones

' ., S
PR WY - e -
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1-y b c Y-y 5% .

1 _(z-c) g2 V]e-b|* de

W = o 2 {f g (S,t)+f q (S)} - ’ (15) st

TR Y gyt 0 A N

g where ql(s) is the solution of the integral equation g'

& t : 1 5
|) ds = 0. (16)

5 [gt(s,t)+q1(s)l(l

LR, AR b S A

In the above expressions, £ is regarded as a function of z and t,

-3
o
=

£ a function of s and t, and the function (c-b)k is restricted to

the branch specified by 0<Arg(g-b) <2w. It should be noted that
€, the parameter used to indicate the smallness of the disturbances,

has been omitted from (15) and (16). The omission of ¢ will con-

¢
5
2
*=
=
=
g
%
B
£
E

tinue from here onward.

When gt(s,t) is given, the integral equation (16) determines

ql(s) for 0<s<t<1. However, for the lipxiting case as t+0,
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ql(O) can be explicitly dctermined, and the result is

a,(0) = -Q,(v)g, (0,0, (17)
where 1
1 T
Qp(v) = 6 K(U)dl/{ K(u)du, (18)
and
K = w¥ Y L] ey - w7t (19)

Equ. (17) indicates that ql(O) is independent of h, the thickness
of the layer. The function QO(Y) is plotted in Fig. 4, where the
ordinate is QO and the abscissa y, whose corresponding value of A
is also shown in the figure. With the aid of either (9) or (15),
it can be shown that the velocity at point C is always pointing
vertically upward, irrespective of the value of y so long as 0<y<
%. The magnitude of this velocity is equal to Q,(v)g,(0,0)cscy.
Throughout the initial entry phase, A (i.e., point g=0) is

the point of contact between the foil and the upper free surface
of the layer. The asymptotic behavior of w in the neighborhood of
A can be studied from- (15). For the case when 0<y<,

waoa (0)g7%  as g0, (20)

where
1-y _. b c 1. -1
a (1) = S e YT s g (s,0)+f a (57} V] E-b] B(c-5)Y Lae. (21)
1 nb 0 t b 1
When y=%, however,

wa g (0,t)Ing as g0, (22)

The pressure distribution on the wetted side of the foil,
which lies on the segment 0<f <b, can be derived from (15). The

derivation involves the integration of w(z,t) with respect to 2z

5
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(vhich produces the complex velocity potential £(z,t)) and the
differentiation of f(z,t) with respect to t. The final result

may be written as

- %(55‘1) Y, (0) (55
t
2rg (s,t) 1n LEGE/ETE: g, (23)
0 blg-g|
where
b c . 1 -1
ay(8) = {1 gy (s,1)-f a,(s)3e* Y ]E-b| "F(c-£)Y TdE. (24)

The above results form the basis on which numerical calculations
for the solution of the initial entry can be made.

Complete Entry

This phase occurs during the time interval 1< t < hcscyw, in
which both the leading and trailing edges of the foil remain sub-
merged in the water. In this case, a second cavity wall, TA, is
generated in addition to the already established BC. The flow
configuration has been shown in Fig. 1. Suppose the unknown

speed function on BC where s> 1 is again designated as ql(s) and

that on TA as qz(s). Then, the solution for w(z,t) may be written

as (cf. 11))

A £
Woro- 2 (39 ( =P {f qzcs)

b
+£ gt(s,t)+{ q1(5)}(ETE

blk \

where 1 is the E-coordinate of the trailing edge T, whose s-coor-

dinate is (t-1), and the function (C-T)k is restricted to the
branch specified by 0 <Arg(g-t) < 2»x. The value of t can be

determined from (14) by iterations. The iteration process is a

LR AT Gria

a

e
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straightforward one and can be made to converge for any s on the

e

foil or on the cavity walls., This is because s is a monotonically
increasing, or decreasing, function of £ in those ranges.
The unknown speed functions ql(s) for 1 <s <hcscym and qz(s) f

for 0 <s <hcscym-1 are governed by the following two integral equ- 2
ations,
t-1 t t 1 0

{ q,(s)+ J g, (s,t)+f q,(s)} L ds = . (26) ;
e S B TCEO TR T 0

Using the procedures described in the previous section, the =

pressure p on the foil BT, which lies on the segment 1<f<b, can

AR
oy RS

be obtained from (25), and the result may be expressed as

*

5 .
e, -

"
if

- 25ty Va0 (Bt ) 7

t 2 3

v 2 g (s,t) 1n OO ETEOEEN g5, (27):

T -1 (b-1)|z-&| %

where f{
(©) = (0. (5)+ g, (5000 Fan ()} (5 dz (28) 4
a,(t) = q.(s)+/ g, (s,t)-f q,(s 2 . be

3 0 b T t b 1 c E l (E'b) (E"T) I!i 1;%

G

When the shape function g(s,t) is given, (25), (26) and (27) can
be used to calculate the solution of the complete entry.

Special Case as h+ o

et

iy
3%

As h+ o, the problem becomes that of the oblique entry of a

AT
AR
LS

fully ventilated foil into a deep ocean. The solutions for the

present case may be extracted from those obtained previously by

re-scaling the parametric g-plane in such a way that point E tends
to point D at the point of infinity. This can be achieved by
replacing ¢, b, ¢ and t in the previous solutions by t/h, b/h, c¢/h

and 1/h, respectively, and then letting h-+o, When such a process

- r".{:x,.gx ,3;2?7:‘ &-’ﬁﬁ%’fﬁg =3 2

"-4 5
o o,
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is carried out, (11) becomes

e S s St

| 2 e -2V b) (50) Y, (29)
and (12) and (13) become, respectively, §
p | c = b/(1-y) (30) 4
and %
b = B(y)nt, (31) £ ¢1
where B
B(y) = (%1)7. : (32) § |
éz Similarly, (14) becomes ‘g
3 g
- e 5 ggv'Y(b-vJ(c~v)*'1dv - (), (73) B
%i where 4
" S(u) = B(y)ul"’(r_%- wy Y (34)
% and
§ u = g/b. ; | (35)
% For both the initial and complete entfies, the solutions

w(z,t), the integral equations which govern ql(s) and qz(s), and
the pressure distributions on the foil retain formally the same
} ‘ expressions as those shown in the previous sections where the case

of finite h was studied, with the exception that the relations (11)

to (14) should be replaced by (29), (30), (31) and (33).

A special case for which a closed form solution can be ob-

]

tained during the initial entry is when gt(s,t) is given by

g, (s,t) = tBs, | (36)

where 8 and o are arbitrary constants, To seek the closed form
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solution, the integral equation (16) is transformed, by using (30),

(33) and (35), into
1
1 - Iy
{6 gt(s,t)+{ qq(s)IK(u)du = 0, (37)
where K(u) is given by (19). The substitution of (33) into (36)

gives
g (s,t) = t3+°8°(u). (38)

When (38) is substituted into (37), it becomes obvious that the

solution of the integral equation (37) is
R+C

ql(s) = - ABOS (39)
Where ABo is a constant, .
: ‘ 1 Ty
Agg = ! S°cu)x(u)d5/2 sP* (K (w)du. (40)

Note that A00=Q0(y). When the motion of a foil can be expressed
as a linear combination of terms of the type shown in (36), the

initial entry solution is readily obtainable by the aid of (39).

Examples have been given in (1], in which the heaving and pitching

motions of a vertically entering flat plate were studied.
After complete entry is achieved, the foil is assumed to
move indefinitely'into the deep ocean without changing its phase

of motion. Eventually, as t-+«, the flow tends to the classical

cavity flow having a zero cavitation number, and no exit phase will

occur for this special case. For the case of finite h, the exit
phase is considered in the following section.

EXIT

As the leading edge of the foil pierces through the lower free

- 13 -
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surface, the layer of water is assumed to be separated into two

2 disconnected flow regions bounded by ATB'EA and DB"CD, respectively,
E: as shown in Fig. 5. In the figure, B' indicates the point of con-
tact between the foil and the lower frce surface, and B" the point
at which the cavity wall and the lower free surface intersect.
All other points in the figure have previously been defined.

To study the hydrodynamic forces acting on the foil during the
exit phase, which occurs when hcscym < t < hcscyn+l, only the flow

region bounded by ATB'EA nceds to be considered. It should be men-

PUSy

tioned here that the entire flow motion from t=0 to t=hcscyn+l is
continuous, since the flow condition at the end of each phase of
- motion is used as the initial condition for the next phase of motion,

When the linearized approximation is taken, the linearized

T R R o0 T MR i iyt s A6 e . R 5 A Mty U BB S s B

flow field can be mapped onto the upper-half of a parametric g-
plane, as shown in Fig. 6, with point A mapped to the origin of the

z-plane, point E to z=-1 and point B' to the point of infinity.

The mapping function can be extracted from (11) by letting b+e,

and the result is

3z . _hdym -y -1
3% 7€ & (g+1) " (41)

The boundary conditions for the present phase of motion may

be stated as follows:

E dp = 0 on n=0", £<0, (42)
3
= 4,(s) |22 on n=0*, 0<g<r, (43)
0y = 2,(s,0) [BE]  om ne0®, et (44)
3 and
-~ - 14 -
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; b = ¢, = 0 at g=-1, (45)

ol 0 R
B T LM
A A ma e

i i

where s as a function of { may be expressed as

Y ,;.ﬁmw_.["‘ ‘;' Wy

&y
s =5 f e e (46)

. and 1, again, is the £-coordinate of the trailing edge T. As men-

tioned before, the flow condition at the end of each phase of

LT

motion should be used as the initial condition for the next phase,

W1 iy

This result is satisfied if qz(s) in (43), when s < hcscyn-1, is the

solution found at the end of the complete entry.
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The boundary-value problém specified by (42) to (45) can be

O ST L e I

solved, and the solution which satisfies the finite pressure con-

dition at points A, T and B' is

b, Sl o n b S e o1
S R
P N

AR a4

. T - - - ;-
wo= Lendym cY(c-r)‘f{é ISMENCRRL Y|g-n) T B (47) - B

25 ket

Dk s

subject to the condition that
“t-1 hcscyn

{r qz(s)+ J
0 t-1

gt(s,t)}l£~rl_%ds'= 0, . (48)
where 0 < Arg(z-tv) < 2m has been chosen.

In (48), qz(s) is considered as known when 0 <s < hcscyrn-1,
and therefore (48) is an integral equation for qz(s) only when

hcscyn-1<s <hcscyr. When this part of qz(s) becomes known, w(z,t)

AL R AT SR L T B e S ab pet o

for the exit phase can be determined from (47). However, the as-
ymptotic behavior of w at point B', where |g|=~, can be visualized
directly from (47) without solving (48); the result is that w at B'

is bounded if y<% and becomes iogarithmically singular if y=Y4,

A NN R R e P o Y Bt Ko

An intereéting aspect of flow behavior is revealed by studying
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the velocity potential £(z,t). When w(z,t) given in (47) is inte-

a_a

grated with respect to z, f(<,t) becomes

t-1 hcscy 2
£=£-X0if q (s)+ S g, (s,t) nlretxe-1l 4o (49) ;
Tm e 7277 ¢ t 57t i

where fT is the value of f(z,t) evaluated at the trailing edge T,
£ is regarded as a function of s and t, and ¢ as a functic: of 2z
and t. The partial differentiation of f with respect to t by

holding z fixed yields

S e S N A S T RO B o e s N R e T e P

hcscyw 2 dy l
of _ 1 Y -Tt+/E-1 . T
7, eIl ds vl (01,01, (50) j
!
where 2 is the stream function evcluated at T. From (50), it is ;
]
: {

o

seen that ¢,=0 identically if 8,4=0. This happens, for example,
when the foil is a flat plate. In such a case, the potential ¢
becomes stationary, and therefore the pressure becomes zero through-
out the entire flow field. In other words, for a foil whose gttuo
during exit, the flow around the foil becomés conformed to the
motion of the foil so that no additional disturbance is generated.
To exit, the foi® simply slides out of the already established flow

without encountering any resistance.

For a general case when gtt(s,t)#o, the pressure acting on

the wetted part of the foil, which is represented by TB' where

g>1, is
hcscyr —_2
p=2 g g, (s,t)1nlfe-T/E 1" 40 (51)
" t-1 Lt lg-z|

The determination of p does not depend on the solution of the inte-

gral equation (48). To determine w(z,t), however, (48) has to be

solved.
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3. EXAMPLES

Consider a circular-arc foil with a small arc angle 26 and a
small angle of attack o from the entering path. 1In this case,
g(s,t) = (a-8)(t-s)+8(t-s)2. (52)
This foil degencrates into a flat plate as 6+0. When (52) is
substituted into (16) and (26), the unknown speed functions ql(s)
and qz(s) can be solved from the resulting integral equations.
The method of solution has been explained in detail in {1}; for
convenience, however, it is briefly described in the following.

Since ql(s) is expected to be bounded everywhere on the cavity
wall BC, it may be expanded into a regular series as

9 (s) = I by, (smsy)” (53)
for s in the neighborhood of s=s5 (m=0, 1, 2, ...), which is a set
of fixed points on the cavity wall BC. The bmn are unknown con-
stants to be determined.

A regular expansion like (53), however, cannot be made for
qz(s) because it is singular at s=0. But, when the singular part
is removed, the remainder may be expanded into a regular series.
Suppose the singular part of q:(s) is denoted by qi(s). Then, from
(20) and (14), q%{s) may be exp-essed as

a3(s) = -c()s” N/ LN ey, (54)

where

(5-v)/(1-v) . .
C(t) = %[i—(}%—:ﬂ] clib Yy/(1-v)
b ‘ C ’_ -
°f6 gt(s,t)+£ q,(s)}E™* Y)g-b)%(c-5) Y Lag, (55)
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and as

2
q3(s) = %gt(o,l)ln—%—; when y=4. (56)
ST+

Equ. (56) is purposely constructed in such a way that qg(s) tends
to zero as s+o, It can, therefore, be applied even to the

special case when h+«, Because the trailing edge of the foil is
always one unit above the leading cdge, [qz(s)-qg(s)] may conven-

iently be expanded into

8

a(s)-a3(s) = I cpy(ssyrD)?, (57)

where Con 8T€ unknown constants.

To study the initial entry phase, (53) is truncated to a poly-
nomial of degree N and substituted in (16). The integral equa-
tion is now ready to be solved in steps. Suppose, when m=0, 50=tp
=0 are chosen. Then, (16) contains b, (n=0, 1, 2, ..., N) as un-
known constants. These unknowns can be determined by evaluating
(16) at N+1 points in t, startirg from the.first point at t=t0+6,
where 6§ is a small number, and inéreasing consecutively to the
(N+1) point denoted by t=t,, which is assumed to be less than 1,
At these points in t the integral equation is satisfied. The
resulting N+1 algebraic equations determine the bOn' and therefore
ql(s) becomes known for oiﬁ?it1° Since ql(s) is now known when
0<s<ty, the portion of the integral equation associated with
it may be transfered to the right-hand side of th2 equation so that
the foregoing prbcess may again be used to obtain the solution
q, (s) when t;<s <1,

Calculations were carried out for a flat plate foil at an

angle of attack a and for a circular-arc foil with 6=a. The ad-
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vance ratios chosen were A=0, 0.5 and 1. In the calculations, the
relationship between b and t was determined ‘'roi1 (13), which has
been shown graphically in Fig. 3. The dependence of s on £ and t
was determined directly from the integral (14). But, for the in-
v rse case when s and t were prescribed, the corresponding £ was
determined from (1%) hy iterations. As expiained before, the iter-
ation process is a straightforward one and can be made to converge
for any s on the foil or on the cavity walls. For the initial
entry phase, the value of h need not be specif}ed in the calcula-
tions, and it is considered a free parameter of the problem.

To study the complete entry, which occurs during the time
interval 1<t <hcscyn, the integral equations (26) -- instead of
(16) -- should be solved. During this phase of motion, qz(s) is
an unknown function in addition to ql(s) when s> 1. When the
series cxpansion (57) for [qz(s)-qg(s)l is truncated to a poly-
nomial of degree N, the foregoing method of solution may again be
used to determine ql(s) when 1< s <hcscyr and to ‘determine qz(s)
when 0<s <hcscyrn-1. In the present case, h cannot be considered
a free parameter as it was during the initial entry because the
value of h is needed in the determination of 1, the £-coordinate
of the trailing edge of the foil.

The pressure distributions on the foil during the initial and
complete entries can be determined from (23) and (27), respectively.
Their properties are similar to those shown in [1], where the spe-
cial case of y=% was studied. For illustration, some of the pres-

sure distributions are shown in Fig. 10. The explanation of the
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figure will be given at a later stage in this work.

As explained previously, closed form solutions can be obtained
for the initial entry phase as h+«. When (52) is compared with

(36), the solution ql(s) can easily be obtained by the aid of (39).

The result is

e o e i

ay(s) = - (a-0)Qp(y)-20Q, (¥)s, (58)

where Ql(y)=A10-A01 and AaB is defined in (40). The pressure

distribution on the foil is

P = 1(a-0)Py(¥)+6tP) (Y)] (w/ (1-u)1* +6tG(w)  for O<u<1. (59)

Where u is defined in (35),

M MR A A M R

1
Py(Y) = 2—‘{%—(-1)7{f *Q(n/ }!—Kﬂlldu, - (60)
1-p
4YB(y), t v K (1)
PLOY) = Teyt] [1-SG071 Q)] 'YS(u)}-;%%— du (61)

kx(v)ln[/u(]. v)+/v(1- U)) dv. (62)

G(u) = B() o]
H-V

The function G(u) is always positive when 0<u<1 and vanishes

when u=0 or p=1. Since 0<S(u) <1 when 0<u<1, it is not diffi-

cult to show that Po(y) and Pl(y) are positive when 0<y<%. This

implies that, if 0 <6 <a, the pressure near the leading edge B of

the foil is always positive definite during the entire initial entry
phase, a condition that will prevent ventilation from developing
on the pressure side of the foil. For reference, the function

Ql(y), Po(y) and Pl(y) are shown graphically in Fig. 7, where the

scale for Q1 is shown on the left-hand side of the figure an! that
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for P0 and P, on the right-hand side.

When 6=0, the foregoing rcsults correspond to those of a flat
plate foil. In this case, p shown in (59) is a function of u only,
i.e., a function of the combined variable s/t only. This means
that, as expected, a similarity solution exists for a flat plate
during the initial entry when h=e,

For the complete entry, however, no closed form solution can
easily be obtained even for the case of h=». The numerical method
described previously was used to obtain the solution.

For a finite h, exit occurs during the time interval hcscyw <
t < hcscymr+l. For this phase of motion, the pressure distribution
on the foil can be determined directly from (51). In the calcula-
tions, the functional relationship between s and £ was obtained
from (46): s was calculated directly from (46) when & was given,
but £ was calculated by iterations when s was given. Some of the
pressure distributions during the exit phase are shown in Fig. 10.

The force and moﬁent coefficients of the foil are obtained
by integrating p, which is defined in (1), over the wetted part of
the foil. Suppose the force ccefficient in the n-direction, when
normalized by the chord length of the foil, is denoted by Cn' Then,

C, = -fpds. (63)

The moment coefficient about the leading edge of the foil, CMB,
may be expressed as

CMB = f(t-s)pds, (64)
where Cy is positive when the moment is counterclockwise. For

B
the particular type of foils under consideration, the force coef-
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ficient in the¢ s-direction, Cs, is related to Cn and CM by
B

Cg = (a-O)Cn-ZGC (65)

L

Numerical results of Cn and CMB for a flat plate foil at an
angle of attack a are shown in Fig. 8. Fig. 8(a) shows the results
of -Cn/a versus t for various values of h, For each value of h,

a group of three curves is prcsented in Fig. 8(a); they correspond
to different values of A, as indicated in the figure. Generally
speaking, when other factors are gqual, the loading is larger when
h is greater, and, within a group of constant h, the loading is
larger when A is larger. Fig. 8(b) shows the corresponding curves
for CMB. For comparison, the force and moment coefficients of the
corresponding supercavitating plate, at zero cavitation number,
are also shown in Fig. 8(a) and (b) at the location indicated by
t==, They are the upper bounds of the respective coefficients in
the present study.

Sincg the force (or moment) coefficients for different values
of h and 1 are nearly equal during the initial entry (0<t<1),
they cannot be distinguished clearly in Fig. 8(a) (or 8(b)). For
a clearer view, they are plotted in different scales in Fig. 8(c).
In reading Fig. 8(c), t should be considered less than, or equal
to, unity for any given set of values of h and A.

Similar results for a circular-arc foil with 0=a are shown in
Fig. 9. .

Some representative pressure distributions on the foils are
shown in Fig. 10. Fig. 10(a) shows those on the flat plate foil,
Fig. 10(b) on the circular-arc foil, and Fig. 10(c) on the circu-

lar-arc foil during the exit phase..
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The four solid curves shown in Fig. 10(a) indicate the pres-

sure distributiqgs for the case when h=« at various times and dif-
ferent values of A. When the time factor alone is considered,
these curves may be divided into two groups: one corresponds to
t=w, and the other to 0<t<1, as indicated in the figure. The
latter group represents the pressure distributions on the flat
plate during the entire initial entry phase (C<t<1) for different
values of A as indicated. The loading is larger when A is larger.
The former group, which consists of a single solid curve, repre-
sents the pressure distribution on the plate at any A when t=w,
This pressure distribution is actually the same as that on the

" corresponding supercavitating plate at zero cavitation number.

These two groups of curves form the upper and lower bounds
for the pressure distributions on a flat plate foil entering an
infinitely deep ocean at one of the values of A considered. In
fact, the former group is the upper bound for all pessible pres-
sure distributions obtainable in t}.: present study. In conjunc-
tion with Fig. 8(a), these two groi,s are sufficient for visual-
izing the pressure distributions on « flat plate entering a layer
of water of finite thickness.
Suppose, for example, the case of h=2w is considered. During

tﬁe initial entry, the loading on the plate, as shown in Fig. 8(a),
is about the same as that for the case of h=», This means that,
for those values of A considered, the pressure distributions on
the plate during the initial entry are about the same as those
shown in the group indicated by 0<t<1 in Fig. 10(a). During the

complete entry, the loading on the plate, as shown in Fig. 8(a),
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increases continuously from that at t=1 until t=3.1, at which time

the maximum loading on the plate is about reached. This indicates

that during the time interval 1<t < 3.1 the pressure distributions
on the plate shift upward from one of the group indicated by 0<t<

1 shown in Fig. 10(a) to the corresponding one in the group of

three broken curves, shown in the same figure, according to the
! value of ) considered. After t=3.1, the loading on the plate

starts to decrease. Therefore, the pressure distributions on the

plate start to shift downward from the group of three broken curves
shown in Fig. 10(a), and eventually they become identically zero
during exit.
For the case when h=0.S5r, the situation is slightly different.

From Fig. &8(a), it is seen that the loading on the plate has about
reached its maximum at the end of the initial entry phase (t=1).
But this maximum loading is less than the loading for the case of
=o at t=1. This means that for the case of h=0.5nr the pressure
distributions on the plate for the values of A considered never
exceed those shown in the group indicated by 0<t<1 in Fig. 10(a).
When t is small, the pressure distributions are about the same as
those shown in the group. As t becoses larger, but still less than
unity, the pressure distributions over a major part of the plate
start to shift downward from those shown in the group except near
the trailing edge of the plate, where the pressures may actually

shift upward for a while, and eventually all the pressure distri-

butions become identically zero during exit.
For the circular-arc foil, similar situations occur, although

the pressure distributions during exit are not identically zero.
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Some typical pressure distributions are shown in Fig. 10(b) and

(c). Fig. 10(b) is equivalent to Fig. 10(a). Fig. 10(c) shows
the pressure distributions on the foil during exit for the case

of h=0.57. In the figure, 2_ indicates the exit length; when

e
23'0.01, for example, it indicates that the leading 1% of the foil
has exited from the layer of water. The effect of the thickness

of the layer on the pressure distribution during exit is very small.
For all three values of h considered (h/n=0.5, 1 and 2), the pres-
sure distributions are very similar; whén A is constant, their
differences do not exceed 1%. Furthermore, it should be noted that
those curves shown in Fig. 10(c) are also very similar if both the
ordinate and abscissa are normalized by (1-28). In this case,

only three curves, one for each value of A, are needed to describe
the pressure characteristics during exit of the circular-arc foil.
Such a similarity, however, may not exist for other foils whose et

is not constant.

4. CONCLUDING REMARKS

Using the method developed in [1], the problem of oblique
entry into and exit from a horizontal layer of water of arbitrary
thickness by a two-dimensional, fully ventilated foil has been
solyed. The present solution contains that obtained in [1}.
Therefore, the conclusions derived in (1] are equally valid for the
present case. The consideration of oblique entry makes the present
solution useful in studying not only the partially submerged
supercavitating propeller but also many other problems, such
as the high-speed water entry and exit of a wing or a control sur-

face, the operation of a high-speed hydrofoil in a high sea state.
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Some prominent features of the present solution are summarized

in the following.

When h is infinite and the flow is in the initial entry phase,

P TIPS PIITL S,

analytical solutions in series forms can be obtained for arbitrary
foil motions, such as heaving and pitching. In other situations,
numerical methods are more efficient to effect the solutions.

The velocity at point C (cf. Fig. 1), the intersectional point
of t@e upper free surface of the layer and the cavity wall on the

suction side of the foil, is always pointing vertically upward,

e A s £ S Bk ot SRS DRt e AP R

irrespective of the value of y so long as 0<y<X%. The magnitude

of this velocity is equal to Qo(y)gt(0,0)cscyn.

o
i

b

When gtt(s,t) of a foil is zero during the exit phase, the

A

present linearized theory predicts that the hydrodynamic pressure
acting on the foil is zero throughout this phase. This implies
" v that the force characteristics of an exiting foil do not depend on

its angle of cttack but depend on its camber and its unsteady

motions.,

From the numerical results obtained in this work, it may be con-
cluded that the effect of the thickness of a layer of water on the
force characteristics of a foil entering the layer is not important
during.both the initial entry phase and the exit phase. However,

the thickness of the layer determines the magnitude of the maximum

R DT AT (e w10t 0 o e n

loading on the foil as it goes through the layer. It may also be

™

concluded that, when the angle of attack of a foil measured from

the entering path remains constant, the force coefficient -Cn in-

p—

creases as the advance ratio A increases. Nevertheless, it will

never exceed the force coefficient of a corresponding supercavita-

ting foil at zero cavitation number, even when A+« (that is,
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during the initial entry (0<t<l).
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Figure 10(a). Some typical pressure distributions
for a flat plate foil.
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Figure 10(b). Some typical pressure distributions
for a circular-arc foil with 6=q,
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