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SOME APPROXIMATIONS IN MULTI-ITEM, MULTI-ECHELON*
INVENTORY SYSTEMS FOR RECOVERABLE ITEMS

John A. Muckstadt

Cornell University -
Ithaca, New York

ABSTRACT

The optimization problem as formulated in the METRIC model takes the
form of minimizing the expected number of total system backorders in a two-
echelon inventory system subject to a budget constraint. The system contains
recoverable items — items subject to repair when they fail. To solve this prob-
lem, one needs to find the optimal Lagrangian multiplier associated with the
given budgelt constraint.

For any large-scale inventory system, this task is computationally not trivial.
Fox and Landi proposed one method that was a significant improvement over
the original METRIC algorithm. In this report we first develop a method for
estimating the value of the optimal Lagrangian multiplier used in the Fox-Landi
algorithm, present alternative ways for determining stock levels, and compare
these proposed approaches with the Fox-Landi algorithm, using two hypotheti-

cal inventory systems — one having 3 bases and 75 items, the other S5 bases ABBFSSION fer
it o SIS

and 125 items. The comparison shows that the computational time can be re-
duced by nearly 50 percent. L
Another factor that contributes to the higher requirement for computational | 806
time in oblaining the solution 10 1wo-echelon inventory systems is that it has to L TR
allocate stock optimally to the depot as well as to bases for a given total-system

tical inventory problems with a sizable system stock level. This report also sug-
gests a simple approximation methad for estimating the optimal depot stock {
level. When this method was applied 10 the same two hypothetical inventory ;
systems indicated above, it was found that the estimate of optimal depot stock st

is quite close to the optimal value in all cases. Furthermore, the increase in ex- !
pected system backorders using the estimated depot stock levels rather than the

optimal levels is generally small = l

fus i
stock level. This essentially requires the evaluation of every possible combina- gs/ ega/
tion of depot and base stock levels — a lime-consuming process for many prac- | 1 g' ."l’ ;
",
¢

.

5

a

&
s
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I. INTRODUCTION

Almost a decade ago, Sherbrooke formulated the well-known METRIC model for deter-
mining optimal stock levels for recoverable items — items subject to repair when they fail — in
a two-echelon setting [3]. Briefly, the two-echelon system consists of several locations, called
bases, at which primary demands occur; these bases are in turn resupplied as necessaiy by a
central repair and inventory-stocking point called a depot. When a failure occurs at a base, a
demand is placed on base supply for a corresponding replacement part. The failed part is then
either repaired at that base, or is sent to the depot for repair, depending on the nature of the

*This research was partially supported by the Office of Naval Research under Contract N00014-75-C-1172,
Task NR 042-335, and by the RAND Corporation.
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378 J. A. MUCKSTADT

failure. Resupply of base supply comes from the base maintenance organization if repair is
accomplished at the base; otherwise, resupply comes from the depot. In either case, the organi-
zation resupplying the base supply activity does so by exchanging a serviceable part for the
failed part. Thus the inventory policy for placing orders on the base’s maintenance organization
or the depot is an (s — 1,s) policy.

Sherbrooke presented a model that can be used to determine both depot and base stock
leveis for all items for this system. In particular, the problem he formulated was that of
minimizing the expected total number of base back orders existing at an arbitrary time subject
to a constraint on system investment, that is,

min i "2 ¥ (x = spplx|n;T,(s9]

j=1 i=] x>s,

m n
(P1) subjectto ¥ ¥ ¢5;, € C,
J=0 i=1
where
n = the number of items,
m = the number of bases,
s = the stock level at base j for item /, a non-negative integer,
Sio = the depot stock level for item /, a non-negative integer,
Ay = the expected daily demand rate for item / at base j,
C = the unit cost for item i,
C = the budget constraint,
T,(si) = the average resupply time for base j for item /, given that
the depot stock level for item i is s;o and
p(x|y) = the probability that x units are in the resupply system when the

expected number of units in the resupply system is y.

Furthermore, Sherbrooke shows that 7),(s;) can be expressed as
Tu(-’i& L "IAU + (l " ’U) [BU + 8(3,& X DI]D
where

the average base repair time for item /i at base J,

the proportion of demands requiring base repair for item /
at base J,

the average order-and-ship time at base j for item /,

the average depot repair-cycle time for item /,

expected depot backorders/expected depot daily demand rate
a/A) ¥ (x - s,0p(x|r,D), the expected delay per

x>l'°

depot demand for item /, and

| A i (1 = r, )\, the expected daily depot demand for item .
J=1

5;
~
]

i
8(s;0 - D,

In the remainder of the report, / will refer to an item and j will refer to a base (j = 0 represents
the depot). For a complete description of the proble.n’s background and formulation, see Ref.

3).

» { Subsequently, Fox and Landi suggested a Lagrangian approach for solving problem P1 [2].
W) : ! One obstacle to the implementation of METRIC using the Fox-Landi algorithm is the require-
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ment of estimating an appropriate value for the Lagrangian multiplier. Another important and
related problem is the lengthy computer run time required to obtain an optimal solution to
problem P1 when using their algorithm. A large portion of this computational effort is related
to searching for the optimal depot stock level. This search is particularly time-consuming for
items having a high average number of units in the depot repair cycle since the amount of com-
putation required by their algorithm is roughly proportional to the number of depot stock levels
explicitly examined.

In this paper, we first develop an approach for obtaining an estimate of the optimal
Lagrange multiplier value required in the Fox-Landi algorithm, present two new methods for
determining stock levels, and compare these methods with the Fox-Landi method and other
techniques. The proposed approach eliminates the particularly time-consuming portion of the
Fox-Landi algorithm devoted to searching for the best } agrange-multiplier value and
significantly reduces computation time for determining stock levels without degrading the qual-
ity of the solution.

We then present a method for estimating the optimal depot stock level. Limited compu-
tational experience indicates that this method is easy to implement, provides a very good esti-
mate of the optimal depot stock level, and is particularly useful for items having a high average
number of units in the depot repair cycle. For these items it is possible to reduce computation
time required by the Fox-Landi algorithm by as much as 90 percent.

II. THE APPROXIMATION PROBLEM

In this section, we first construct a problem that is a continuous approximation to problem
P1. We then state and prove two theorems that are the basis for an algorithm that can be used
to solve this approximating problem.

Two useful probability distributions for describing the demand process are the Poisson
and negative-binomial distributions. As shown in Ref. [1], this implies that if demand has a
Poisson or a negative-binomial distribution, then, for a given value of A, T,(s;0), the probability
distribution representing the number of units in resupply of items /i at base J at any time,
plx|x,T,(s,], is a Poisson or a negative-binomial distribution, respectively.

Experimental data gathered during the conduct of this. study indicate that, when
plx|x,T,(s,)] is either a Poisson or a negative-binomial distribution, the expected number of
back orders at each location can be closely approximated by an exponential function. This is
not unexpected. First, for budgets of practical interest, the item stock levels, s,;, are normally
much larger than the average demand during the resupply time. In fact, the probability of run-
ning out of stock during the resupply time is often much less than 0.15 in real applications.
Thus, the only probabilities entering the backorder calculation are the tail probabilities of the
distribution. In the tails, both the Poisson and negative-binomial distributions behave almost
like the geometric distribution; that is, each succeeding probability is' raughly a constant propor-
tion of its predecessor. Consequently, when s, is large relative to§\,,7',,(s,o), the expected
number of backorders existing at any time at location j for item i is approximately a geometric
function of s,. Therefore, an exponential function is a useful continuous approximation to this
relationship between expected backorders at a location and the item’s stock level at that loca-
tion.

Furthermore, total expected base backorders for each item exhibit this same behavior. If
demand has either a Poisson or a negative-binomial distribution (or, for that matter, any com-
pound Poisson distribution), then the total number of units of an item in resupply across all
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bases has either a Poisson or a negative-binomial distribution, respectively, if we assume
independence of demand and common variance-to-mean ratio among base demand distribu-
tions. Since, in most practical situations, total system stock substantially exceeds the total
expected number of units in resupply, the tail of the distribution describing the total number of
units in resupply is the only portion of the distribution of importance. As an approximation,
this distribution can be used to determine the nature of the relationship between total expected
base backorders and total system stock. For the reasons discussed previously, an exponential
function should also adequately represent this relationship.

Thus we will approximate

f 2 (X T S,,)p[xl)\,,T,,(s,ﬂ)]

i=1 ¥>y,

with the exponential function

B,(N) = a,e_h‘N:
In this approximation, N, represents total system stock. In practice, the parameters a, > 0 and
b, > 0 are estimated using regression analysis. The data used in the regression analysis are the
backorder data obtained from the solution to the problem

min i ¥ & =s)plx|x;T,(s,9)

i=l x>5;

m
subjectto ¥ s, = N, and
i=0

S,,-O, 1, ceey N,,

for several appropriate values of N,.

We now formulate a continuous approximation to problem P1 in which the exponential
approximation to total system backorders for an item is used. In this approximation problem,
the decision variables are the total system stock, N,, rather than the stock levels for each loca-
tion, s;. This approximation problem is a vehicle for obtaining an estimate of the optimal
Lagrangian-multiplier value used in the Fox-Landi algorithm. The approximation problem is
formulated as problem P2:

min i B,(N)
i=1
(P2) subjectto 3 ¢,N, € C,
i=1
where
N, 2 0.

Note that N, is a continuous variable in this approximation. The optimality (Kuhn-Tucker)
conditions for this problem are as follows:
Find 6, 2 0 such that

(a) et +0,c, 20
a dN’ 1€i "
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(b) TN 2 C
=1
N> 0,
() 6, | SN - C] -0, and
=1
(d) N, bl +0,c,|=0.
dN,

A relaxed version of problem P2 in which the nonnegativity constraint on the item stock
level is removed is problem P3:

min ¥ B,(N,)

=1

(P3) subject to ¥ ¢,N, < C.

1=1

The optimality conditions for this problem are similar to those for P2. In condition (a) the in-
equality is replaced by an equality and the nonnegativity restriction on N, is omitted. Also 0,
will represent the Lagrangian multiplier for problem P3.

We now explore the relationship between problems P2 and P3 in detail.

Suppose we solve problem P3.* Let N, represent the optimal solution to problem P2,
and N represent the optimal solution to problem P3. If N2 > 0 for all /, then N,' = N.? and
the objective function values are equal.

If N2 < 0 for at least one value of /, let
N, = max(0, N2

and

c

t e¢N, > C.
i=]

Suppose problem P2 is modified slightly so that C is replaced by C. This modified prob-
lem is called problem P4. The optimality conditions for this problem are the same as those for
problem P2 after substituting C for C. Also, let 6 represent the optimal value of the Lagran-
gian multiplier for problem P4.

In solving problem P3, we will obtain a value for 8, It is easy to show that 0= 8, and
that N, = max(0, N2 is an optimal solution to problem P4 by demonstrating that these values
satisfy the Kuhn-Tucker conditions corresponding to problem P4. Consequently, the optimal
solution to problem P4 is N, = N, = max(0, N). Furthermore, the optimality conditions are
satisfied when 6 is cqual to 0,

THEOREM 1: 6, > 0, = 0.

*Section 11l develops the method for determining the solution to problem P3.
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PROOF: The optimal objective function value for problem P2 is a convex, differentiable,
strictly decreasing function of the available budget, C. Since the slope of this function is equal
to the negative of the Lagrangian-multiplier value, 6, > 6 since C < C. But 6,=46, so
0, >0,

Next we compare_N,‘ with /V,. Suppose C > C so that 0,>60,= 9. Let us examine the
two cases N, > 0 and N, = 0 separately.

First, assume N, > 0. Then

oh gc,=0
dN,; v =N, £ i
Furthermore, if N,' > 0, then
4 +6,c,=0
dN, |y - ¢, = 0.
Since
= dB
e, = — ==
0,c, > Oc, N N,=-/V,'
dB, dB,
— > — 5
dN, [v=N, dN, [N =n)
and N' < N. If N' =0, then N, > N,\.
Next, assume N, = 0. Since
s +0,c, > - +8c, >0
dN, N,-O 1€ dN, N,=0 ¢, 2V,

it follows that N,'=0 by complementary slackness. Thus we have proven the following
theorem.

THEOREM 2. N, > N,'and N, > N,' whenever N, > 0.

Having established several important relationships among problems P2, P3, and P4, we
next develop a simple algorithm for solving problem P2 and show how to find the solution to
problem P3.

III. COMPUTING OPTIMAL SOLUTIONS FOR PROBLEMS P2 AND P3

Observe that the optimal solution to problem P3 must satisfy the two conditions
dB,

d—Nl+02(‘,-0

and

t(‘,N, =C

=

because each B,(N)) is a strictly decreasing function of N,.
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Since
B(N) = ae "™,
where a,, b, > 0, the first condition states that
abe "N
0, =—— > 0.
¢
Letting
n ab,
A1In6,=In l——-— — b,N,
¢
and
a;b,
d, = In I’— !
4
we see that
d -9
N =
: b

From the second constraint we know that

n d’ p— é
,-21 3 b, l =C
Thus
n
3 (cd/b) - C
é b = n
3 (c/b)
i=1
Letting
”z cid, d noC
« 5 and B=Y 5

i=| i=]

we can express 0 as

s a~C
6 = .
Thus
(E1) 0, = ela-0OB
and
d, - 32
(E2) N, = —b-p——

Consequently, N, is a linear function of C.

383
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We may employ the following algorithm to find the optimal solution to problem P2. Let
! =(1, ..., n}and N, represent the optimal solution to problem P2.

STEP 0: Solve Problem P3 as described above, thereby obtaining an initial value for
N, i€l

STEP 1: Set N,! = 0 for all N, < 0 during the last iteration and delete the corresponding i
from /. Recompute « and 8, where

cd,
a = ——
/§ b’ l

and
cl
= =

STEP 2: Using (E2), obtain new estimates of N, for each i € /. If N, > 0 for all / € [,
then the optimal solution has been found, and N,!= N, for all ;i € / and N'=0 for all
i=1, ..., nfor which i £ [. If there exists some i for which N, < 0, return to Step 1.

It is clear that our solution satisfies all the optimality conditions for problem P2 except,
possibly, condition (a) for i £ I. However, at an earlier iteration (when i was deleted from /)
we had

dB, |

—_ +6 c, =0,
dN, |n-%, :

where 52 and N,(<0) are earlier values of 0, and N,, respectively. Since dB,/dN, is clearly
increasing in N,, and 0, increases at each iteration (Theorem 1 and its corollary), condition (a)
must hold. Convergence is guaranteed since » is finite.

IV. A COMPARISON OF ALTERNATIVE SOLUTION PROCEDURES
FOR SOLVING PROBLEM P1

In this section we review three algorithms for solving problem P1 and compare them to
two algorithms designed to obtain a solution for problem Pl based on the solution to the
approximating problem, problem P2.

The Sherbrooke Procedure
The first algorithm, a procedure originally proposed by Sherbrooke [3], is a marginal-
analysis algorithm consisting of two phases. In the first phase, each item is examined indepen-

dently. The optimization problem solved for item /in the first phase has the form:

Z(N) =min § T (x = 5)plx|n, T, (5,0]

/=1 x>,
m
(P5) subjectto ¥ 5, =N,
/=0
where
=0, 1, ...,
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and N, is the total system stock available for distribution among the depot and bases. Problem
P5 is solved by obtaining the solution to the N, + 1 problems

Z(N, s,) = min f T (x = s5)plx|n,;T,(s:9]

j=1 x>y
m
(P6) subject to 3 s, =~ N, — s,
f=1
where
s;=0,1, ...,
and s,y is fixed for 5,,=0, 1, ..., N, Problem P6 can be solved via marginal analysis. Then
Z/(N) =min Z(N,, s,
Si0
where
S,o-o, kew N,.
The second-phase problem is
n
min ¥ Z,(N)

s-]

n
subjectto 3 ¢,N, € C,

i=-1

where

MNy=Q, n

Sherbrooke [3] suggests that a marginal-analysis algorithm be used to find a solution to this

knapsack problem. Clearly other procedures could be employed to obtain an optimal solution.

In any case, this approach requires a substantial amount of storage to save all the Z,(N)) values.

For moderate-sized problems having several thousand items, a storage requirement of 106 or '
more words may be needed to save these values. Furthermore, the computation time iequired

to obtain these Z,(N,) values for such problems is very large.

The Fox-Landi Procedure

Subsequently Fox and Landi (2] proposed a Lagrangian algorithm for solving problem P1.
In particular, they formulated the relaxed version of problem P1 as problem P7:

(P7) min i t Y x=s)plx|n,T,(s09] + 6 i tc,s,,,

j=l j=] ¥, j=0 i=]

where
s;=0,1, ...,

and 0 is the Lagrangian multiplier. Since problem P7 is separable by item, its optimal solution
can be found by solving the » individual item problems

min § 5 (x - 5,)0lx|r, T, 50 + 0 § e,
j=0

I=l x>y,

subject to

",-0, l, vee s

S N
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This problem, like problem P6 in Sherbrooke’s two-phase method, is solved using a partitioning
procedure, that is, it is reformulated as

(P8) min  Jfcso+ Y, min Y (x =s)plx|n,T,(s,0) + 8c.s,: 5,0 fixed]|l,

,0=0.1. .. foul 5720, 1. ... =

or equivalently as

(P9) min Z(s,q, 0)
where

Sip==0, L, .o
and

Z(s,5,0) =0cs0+ Ymin | Y (x —s,)plx|x,T,(s,]

s
J=1 if X >$;

+0cs,;:s,=0,1, ..., s,fixed}.

ool LG

To determine Z(s,q; 9), solve the m base problems
min Y, (x —s,)plx|x,T,(s0] + 0c,s,,.

S x>y
"

The optimal s, is the smallest nonnegative integer for which

¥ plx|r,T,(s9] < 6c..

\'>\”

Problem P8 is solved for each item for a given value of 8. This yields a total investment
cost corresponding to 6. In the Fox-Landi approach, the "optimal" value of 8 is selected from a
grid of M equally spaced values,

0>8,>...>0y>0.

The optimal value of @ is the 8, K€{0, ... ,M}, whose corresponding total investment cost is
closest to C.

Fox and Landi suggest that their method is a single-pass method; that is, only one pass
through the item data base is necessary to obtain the optimal solution. The storage require-
ment to effect this one-pass approach is potentially enormous. For a moderate-sized problem
having 3000 items, 20 bases, and M = 63, almost 4 million item stock levels must be saved,
plus possibly millions of additional item data elements reflecting fill rates, probability of no
stockout at an arbitrary time, expected base backorders, and so on. Furthermore, because there
may be no simple method for estimating suitable bounds on the values of the multipliers, much
larger values of M may be required to ensure adequate approximation of the budget.

It has been the author’s experience that Air Force personnel have difficuli estimating a
reasonable range for @ for large problems. This is not surprising, because the data used in the
model frequently change in real situations, thereby causing the optimal value of the multiplier
to change. Furthermore, changing the multiplier’s magnitude by 107 or less often causes the
corresponding total cost to change by many millions of dollars. Consequently, 2'° values of
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have been used in some Air Force applications to make the system "foolproof.” In these cases,
60 million or more item stock levels would have to be explicitly stored, plus a considerable
amount of other item and base data, to make the Fox-Landi algorithm truly a one-pass method.

On the other hand, if their method is altered so that the item data are passed through a
second time, it is possible to eliminate virtually all of the requirement for secondary storage. ‘In
the first pass, only the running total cost corresponding to each x» K €{0, ..., M)}, is saved.
At the end of this phase, the "optimal" multiplier value, 8* is established. The second phase of
the algorithm requires a second pass through the data base. In the second pass, the optimal
stock levels for each location are found for all items by resolving problem P8 with 8 = 6 *

In some applications, the Fox-Landj one-pass method is clearly infeasible; that is, there
may not be enough peripheral storage capacity to save all of the data. If storage capacity is
available, there is a tradeoff between the time and cost required to store and access the data in
the secondary memory using the one-pass method, and the time and cost to recompute the
stock levels using the second method. For realistic Air Force problems, the two-pass methed
appears to be the only feasible approach, given current hardware constraints, if M is large
enough to guarantee that a solution can be found that closely approximates the target budget.

The Bisection Method

A third way to solve problem P1 is a slight modification of the Fox-Landi algorithm called
the bisection method, which employs a bisection search to find the optimal value for 8. This
procedure requires initial upper and lower bounds on the optimal value of 6. Call these 0, and
8, respectively. The bisection method is as follows:

STEP 1: Set 6 = (6, +6,)/2.
STEP 2: Solve problem P8 with @ = @ for each item.

STEP 3: If the total cost of the solution obtained in Step 2 exceeds C, then replace 8,
with 8; otherwise, replace 6 with 8.

STEP 4: If a stopping criterion has not been met (such as a fixed number of iterations or
an error tolerance), return to Step 1; otherwise, stop.

The major drawback to the bisection approach is that a separate pass through the item data
base is required at each iteration of the algorithm. This algorithm performs very well in terms
of convergence, and we have found that it almost always produces solutlons that are within 1/2
percent of the target budget using 10 bisections.

Comparison of Methods

The closeness of the solutions to the target budget generated by either the Fox-Landi
method or the bisection algorithm depends on how broad a range of multiplier values must be
searched for a fixed value of M or a fixed number of bisections. It should be pointed out that
both of these methods only yield an approximation to the optimal multiplier value (assuming
one exists).

Of the methods discussed thus far, it has been the experience of the author, as well as of
Fox and Landi [2], that the latter two algorithms better Sherbrooke’s algorithm in run times by
an order of magnitude or more on real problems, given reasonable estimates of upper and lower
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bounds for the Lagrangian multiplier. Thus, in the comparisons we will report, only these two
Lagrangian methods will be discussed.

Approximation Methods

Earlier we described an approximation method for estimating the optimal value of 6 and
of each N,. Several options are open for implementing this approximation method. One way to
implement it is to use a two-phase approach. We call this approach the First Approximation
Method. The values of a, and b, are computed in the first phase of this method, and the
optimal value of 8 is estimated using (E1). In the second phase, we solve problem P8 for each
item, using the estimate of the optimal 6. This approach has two major advantages over the
Fox-Landi method:

1. The estimate of the optimal multiplier can be obtained without prespecifying a range of
values, and computation time to obtain the estimate does not depend on the uncertainty of the
multiplier value.

2. The computation time to find an esiimate of the optimal multiplier is much smaller.

If the two-pass version of the Fox-Landi algorithm is used, the second phase of that method
and the second phase of the approximation method are the same. The one-pass version of the
Fox-Landi algorithm requires considerably more storage, and also requires more computer time
to determine the optimal stock levels, than this approximation method requires.

This approximation approach also has advantages over the bisection method:

1. Only two passes through the data base are required, as opposed to seven or more
required for the bisection method in practice.

2. No stock levels need to be saved; in the bisection method it is necessary to save all
stock levels and other cata for three multiplier values.

Another algorithm can be employed that directly uses the results of the approximation
problem, that is, problem P2. We call this approach the Second Approximation Method. This
algorithm is of interest in situations in which only total system stock is computed for each item,
and there is no interest in computing the optimal distribution of the assets. Determining the
optimal allocation of a budget among items is of primary importance when purchasing inventory
or making budgetary projections for spares for different systems. In these cases, distribution
decisions are usually not very critical.

The Second Approximation algorithm also consists of two phases. In the first phase we
estimate the values of the a, and b, parameters, and in the second phase we determine total sys-
tem stock for each item, using the algorithm described in Section III, and rounding N, to the
nearest integer. The algorithm requires one pass through the item data base and one pass
through an item file consisting of a,, b,, and c¢,, The major advantage of this approach is that it
eliminates the stock-allocation phase of both the Fox-Landi method and the First Approxima-
tion algorithm.

V. A COMPUTATIONAL COMPARISON OF VARIOUS ALGORITHMS

The Fox-Landi algorithm, the bisection algorithm, and the two approximation methods
have been coded and tested on several sample sets of data for the Air Force’s new F-15 fighter.
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Since all of the tests yielded the same general results, we will discuss only two of them in
detail. The first test had a 75-item sample and had 3 operating bases. The flying programs
were very different at each base. In the second test, 125 items were included in the sample,
with demands occurring at S bases; in this test, only the Fox-Landi and the two approximation
methods were compared. The run times stated for both approximation algorithms include the
time required to estimate the values of é, and b,. In all Fox-Landi calculations, a maximum of
128 multiplier values was examined; ten bisections were used in all applications of the bisection
method. Furthermore, in both test cases all stock levels for all relevant multiplier values were
stored in main memory. Thus, although the reported computation times, which include com-
pile times, are roughly equal for all the algorithms, they are biased in favor of the Fox-Landi
method because this type of storage would be impossible for larger problems. In addition, the
range of multiplier values considered in the tests of the Fox-Landi and the bisection methods
was selected after estimating the optimal multiplier value using the First Approximation
Method. Thus the test results are biased in favor of them, since the range of multiplier values
was much smaller than would normally be the case.

The data displayed in Tables 1 and 2 indicate how well each approach approximates a
given target budget for the two test-data sets. Without a doubt, the bisection method produced
solutions that best matched the target budgets, followed in order by the Second Approximation
Method, the Fox-Landi method, and the First Approximation Method. As mentioned before,
the results are biased in favor of both the Fox-Landi and the bisection methods due to the ini-
tialization of the range of multiplier values. From a practical viewpoint, all approaches worked
acceptably well in meeting the target budgets. Furthermore, the stock levels generated by the
various approaches were virtually the same for similar budgets. Consequently, total system
expected backorders, for all practical purposes, are indistinguishable; that is, the backorder
versus investment curves virtually coincide among these various approaches. Exact comparison
of computed stock levels and expected backorders cannot be made among the competing
methods since the allocation of the available budget in each case depends on the way each algo-
rithm estimates the Lagrangian multiplier. 4

The area in which the methods clearly differ is in computation time. The approximation
methods require substantially less time than either the Fox-Landi method or the more time-
consuming bisection method. Other experimentation has shown that the percentage difference
in computation times tends to be even greater as the number of items increases.

Thus, the approximation methods produce answers that are as good as those produced by
the Fox-Landi method and the bisection method, but do it much more quickly than those
methods. The bisection method does, however, match target budgets slightly better than the
approximation methods. However, the approximation algorithms are virtually foolproof, which
is perhaps their greatest advantage. The user does not have to spec:’ the range of multiplier
values or the number of bisections in advance. This eliminates one problem associated with
implementing either the Fox-Landi or the bisection algorithm. In view of these observations,
the approximation procedures developed here appear to be superior for use on real problems.

VI. ESTIMATION OF THE OPTIMAL DEPOT STOCK LEVEL

We have described Sherbrooke’s algorithm and several Lagrangian methods for solving
problem P1, and have demonstrated that it is possible to reduce significantly the computational
requirement of the Fox-Landi method by solving an approximation problem to obtain a good
estimate of an appropriate value for the Lagrangian multiplier. In this section we describe a
different way to reduce the computational requirements of all the algorithms that have been
discussed. As can be seen by reexamining Sherbrooke’s approach (see problem P6) and the
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TABLE 1 — 75-ltem, 3-Base Test Case

Total Cost ($ millions)
Target
Budget First Second
($ millions) | Bisection | Fox-Landi | Approximation | Approximation
3.68 3.67 3.68 3.63 3.63
397 399 39 382 403
427 4.27 4.27 4.30 418
4.57 457 4.57 4.62 4,61
4.87 4.87 4.85 4.87 4.78
5.16 5.16 5.18 5.09 5.17
5.46 5.46 5.42 5.38 5.49
5.76 5.76 5.76 5.75 5.79
6.05 6.06 6.05 6.06 6.08
6.35 6.34 6.38 6.28 6.33
6.65 6.65 6.63 6.63 6.73
6.94 6.89 6.80 6.87 6.92
71.24 1.24 7.19 127 1.24
1.54 7.54 .57 7.68 1.51
7.83 7.84 1.17 7.80 7.83
8.13 8.14 8.24 8.20 8.05
8.43 8.42 8.50 8.42 8.42
8.73 8.73 8.50 8.74 8.77
9.02 9.02 9.04 9.11 9.00
Execution
time
(seconds) 92.57 19.57 1159 4.57
TABLE 2 — [25-Item, 5-Base Test Case
Total Cost ($ millions)
Target
Budget First Second
(§ millions) | Fox-Landi | Approximation | Approximation |
26.4 26.7 248 26.6
27.6 27.6 26.2 279
28.7 28.7 27.6 289
298 30.0 29.5 298
31.0 31.2 30.7 30.8
321 321 320 322
33.2 333 331 331
344 344 343 34.2
354 355 359 35.7
36.6 36.8 37.0 36.7
378 38.0 38.1 377
389 386 393 39.2
40.0 399 40.6 40.0
41.2 41.1 4.1 41.3
423 42.5 439 424
434 433 4.7 437
44.6 4.5 45.6 4.2
45.7 46.3 46.1 459
46.8 47.2 4.3 - 46.7
Execution
time
(seconds) 36.98 16.28 4.74

NOTE: All programs are run on an IBM 370/168.

f:”_____
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Fox-Landi algorithm (see problems P8 and P9), the amount of computation required to solve
problem P1 using these methods is directly proportional to the number of depot stock levels
explicitly examined. Consequently, if this number can be reduced, then the total time required
to compute an optimal solution can also be reduced.

The method of estimating the optimal depot stock level that we describe in this section is
of particular value when the expected number of units in the depot resupply system for an item
is 20 or more. The approximation algorithm can reduce computation time for the algorithms
described in Section IV by as much as 90 percent for these high-demand items.

We have indicated how the optimal base stock level s,; can be calculated given the depot
stock level s, and the value of #. In particular, we have shown that s, is optimal if it is the
smallest nonnegative integer for which

T plx|A, T, (s9) < 0c,.

\'<\”

We now develop a different but equivalent way of characterizing s,;. To simplify notation, let us
suppress the item index i. We will also assume that p[x|\,T,(s¢)] has a Poisson distribution.

Define the convex back-order function for base j as
Bi(s; s & X (x = s)plx|r,T;(sp],
X>S}

for s; > 0 and integer, and é,, the piecewise linear completion of B, as

B,(1; s¢) if tis a nonnegative integer,
i [Bi(s;; so) — Bi(s, — 1; spllr = (s, = 1)]
B(t;s9 & { +B(s,— 1,59, 5,-1<1<s;,

where s, is a nonnegative integer,

and B(-1; s A oo.

Let
AB/(s;; 59 & B/(s;; 59 — B/(s,— 1; s
when s, is a nonnegative integer, and
D(s; so) & (v: AB/(s;; s9 < v < ABs, + 1; s9)).

Observe that D,(s;s) U (AB,(s;; s9) is the set of subgradients of B, at s, Then an

alternative way of verifying that s,' is an optimal base stock level is to show that
—0c € D(s;; s9).

Next let
m
Flsy, sy ..., 553 50 & X [B,(s); 59 + cs)).

j=1
By dropping both the integrality and nonnegativity restrictions on Sg, we obtain the following
relaxation of problem PS$: :

(P10) min J@csy + ngi{: {F(sy, ..., s, s9): spfixed){.
; 50 =-0.1....

L

SEY VSI——
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If s, is the optimal solution to problem P10, then

(E3) 2L Lo,
aSO

But
9F & 88, aT, .

-

Furthermore, by writing B,(s;; so) as

Y KplK + s, IAT(s9].

K=l
we see that
"2 A Ke -A;T;(sq) I\, T/(so)]Kh’
aT = (K +5;, - 1!
K+s;
_ 3 59 N Ti(s9) ™™
Z e (K +35)!

. X/AB(SI; So).

As we discussed in Section II, tne function

By(s) & Y (x = s9p(x|AD)

X>sq

can be closely approximated by an exponential function of the form age & ' where agand b,
are positive real numbers. Then

T/(s& - r/A/ + (1 e 3 ’i)BI+ % aw—ho‘o
and

87', (l-’/)

o 217 [ g/ —boso
aSo A aoboe k

Upon combining these observations, we see that

:,F - z)‘/Aé(s,. so) ") "obof‘h""’.

/=1

Recall that —0c € D(s;; so). Consequently —6c approximam the marginal reduction in
backorders at base j when the stock level at that base js s, After making this substitution and
representing this further approximation of 8F/8s, by 0F/9s,, we see that

&t ;
| b ,_il(l r,)A,—Ocaoboc ~boo

-~ Bcaghoe ",

Substituting this approximation into (E3) we obtain the following estimates of the optimal
depot stock level:
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- 1
(E4) § by In laobo l

Recall that the value of ¢ is derived based on an exponential approximation of B(s().
As the average number of units in the depot repair cycle increases, that is, as A D increases, the
quality of this exponential approximation improves in the region in which the optimal depot
stock level should be located. Consequently, the approximation should be most accurate in
these cases. But the problems for which the search for the optimal depot stock level is most
time-consuming for the algorithms described in Section IV correspond to the items having a
large number of units in depot repair. Therefore, the proposed approximation method will be
most appropriate for the items requiring the greatest amount of computational effort.

The approach we have described for estimating the optimal depot stock level has been
coded and tested using a sample of 40 F-15 aircraft items. The test consisted of two sets of
runs. In the first set, monthly flying was divided among 3 bases; in the second set the same
monthly flying program was divided among 5 bases. The total budget distributed among the 40
items ranged from $34 million to $65 million in the first set of runs, and from $34 million to
388 million in the second set. Table 3 contains the data indicating both the optimal and the
estimated depot stock levels for each item in both runs.

As shown in the table, there is usually no single optimal depot stock level for an item.
Rather, the optimal value depends on the amount of total item system stock available for distri-
bution among the depot and bases. The estimate of optimal depot stock is quite close to the
optimal value in all cases. Furthermore, the increase in expected system backorders using the
estimated depot stock levels rather than the optimal levels is generally small. For most items,
the increase is substantially less than 0.1 back orders.

The results of the tests indicate that it is possible to estimate closely the optimal depot
stock level using (E4). Additionally, incorporating this method for estimating the optimal
depot stock into the algorithms described in Section IV will considerably reduce the search
required to find the optimal depot stock level, and will therefore markedly reduce the computa-
tional time needed to solve problem P1 using these algorithms.
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TABLE 3 — Comparison of Optimal and
Estimated Depot Stock Levels

Optimal Depot Stock Levels

Estimated
Case | Case Il Optimal Depot
Item | (3 bases) (5 bases) Stock Levels

| 4-7 5-9 6

2 1,2 1-3 1

3 6 6,7 6
4 0-2 2,3 1

S 10,11 8-12 10

6 18-21 18-21,25 19

7 1,2 1,2 1

8 2 3.4 2

9 5,6 6,7 6
10 1 1,2 1
11 4,5 4-6 S
12 1 1 0
13 0-2 0,1 0
14 1-3 1-3 2
15 2-4 34 3
16 8,9 8,9 8
17 1,2 1,2 1
18 3,4 3-5 3
19 12-14 13-14 12
20 9-12 10-13 10
21 21-27 22-28 23
22 4,5 4-6 5
23 1 1-3 1
24 1,2 2,3 2
25 5-7 6,7 6
26 16 16 16
27 3 3.4 3
28 40-42 41-43 40
29 8-10 9,10 9
30 1 2 1
31 1,2 1,2 1
32 8,9 8,9 8
33 4,5 5,6 5
34 9-11 9,10 10
35 6,7 7,8 7
36 1-3 2 2
37 1,2 1,2 1
38 7,8 7-9 7
39 2,3 3.4 3
40 41-43 42-44 41
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AN INVENTORY DEPLETION PROBLEM WITH RANDOM AND
AGE-DEPENDENT LIFETIMES

Daniel Thorburn

National Central Bureau of Statistics
Stockholm, Sweden*

ABSTRACT

The following problem is studied. The units of an inventory are used one
by one until all have failed. Their lifetimes decrease with their ages, when they
are taken out of the inventory. An.item of age a is supposed to have a lifetime
Y exp(-a), where Y is a random variable which does not depend on a. It is
shown that in order to maximize the total lifetime the items should be taken
according to the LIFO principle. This is shown for a certain class of distribu-
tions of Y. This class includes the exponential and the Pareto distributions.

1. INTRODUCTION

Consider a stockpile consisting of » items, which are characterized by their age. When an
item of age a is taken cut it will last for the time 7(a). When it fails it is immediately replaced
by a new one until there are no more items left. If, for instance, there are only two items in
the stockpile, with ~es a, and a,, the total lifetime will be either 7(a;, a;) =
T(a)) + Tla, + T(a,)) or T(a, a,) = T(ay) + Tla, + T(a,)], depending on the order in
which the items are taken out. Lieberman [4] asked in what order the items should be taken in
order to make the total field life as long as possible. He and later Brown and Ross [1] gave
almost complete answers when the lifetime is a fixed function of the age.

In this paper we shall study a special case of random lifetimes. We suppose that they are
distributed as

(1.1) Y exp(—ca),

where Y is a random variable and c is a constant. We will prove that the LIFO principle is
optimal for a class of distributions of the random variable Y. This class includes among others
the exponential distribution. LIFO is short for "Last In First Out," i.e. the youngest item in
stock shall always be the one that is taken out. Ross (Ref. [5], p. 179) stated this as an open
question. He conjectured that the LIFO principle would be optimal. Brown and Solomon [2]
studied random lifetimes.

In the next section we introduce the notations and do some preliminary work. In the
third section we discuss the paper of Brown and Solomon and its relation to our work. Our
main result, Theorem 4.1, is given and proved in the following section. The last section con-
tains two examples, in which Theorem 4.1 holds.

*Research done when the author was at the Department of Mathematical Statistics, University of Lund, Lund,
Sweden.
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2. PRELIMINARIES

When the lifetimes are fixed it is clear what is meant by maximal total field life. When
they are random this is not so obvious. Ross [5] considered expected total field life. We will,
however, use the same criterion as Brown and Solomon [2], stochastic monotonicity. A ran-
dom variable X is stochastically larger (or smaller) than Y if its distribution function lies to lhe

right of and below (or to the left of and above) that of Y. We will wriie this as X > Y

(or X € Y). (If they have the same distribution we use an equality sign.) It is easy to see that
X is stochastically larger than Y if and only if E[#(X)] 2> E[h(Y)] for all increasing functions
h, such that the expected values exist. If we take / to be the identity, this is the criterion of
Ross.

We will also use the monotone likelihood ratio (m.l.r.). The random variable X has
increasing (or decreasing) likelihood ratio with respect to Y if f,(1)/fy(1) increases (or
decreases) with . Here fy and fy denote the densities of X and Y. It is easy to see that the
monotone likelihood ratio implies stochastic monotonicity. If every pair of random variables in
a family has a monotone likelihood ratio, we will say that the family has the m.l.r. property.
An equivalent definition of m.Lr. is fy(x) fy(y) — fy(») fy(x) > 0 whenever x > y.

We will also use failure rates [3]. Suppose that the random variable X has the distribution
function Fand the density /. Its failure rate is

wu() = f()/11 -~ F(1)] = l,ig)0 P(X <1+ X > 0/h
An absolutely continuous distribution is completely defined by its failure rate:

Fx) =1 = expl= [ u(n) di).

In the following we shall only study positive random variables. If a distribution is defined by a
failure rate such that F(x) does not converge to one, we say that the random variable takes the
value infinity with probability exp[— J w(r) dr]. Some results for failure rates, which are
needed later on, are given below.

LEMMA 2.1: Let Xand Y be two independent random variables with failure rates u y and
uy. Then the failure rate u of min(X, Y) is

() = p (1) + (1),
PROOF: The failure rate u(r) equals
|im-l-P(X<t+horY<l+h|X>tandY>t)
r—0 h :
—lim L (POCS 4 [ X> D+ P(Y S t4+h | ¥V > 1)
h—0 h
~PX<t+h | X >0 -P(Y <t+h | Y > 0]

=u (1) + py(t) = 0.

LEMMA 2.2: If X and Y are two positive random variables such that X has increasing
likelihood ratio with respect to Y then u y(x) < u y(x) for all positive x.
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PROOF: The proof is by contradiction. Suppose that for some value x,,
f}((xo) fy(xo)
fmf(r) dt 3 fwf(t) dt

Xa X Xo Y

uy(x,) = = uy(x,).

Using the assumption of m.L.r., we have the following contradiction,

. fx(x) fy(X) fy(X)
l - -fx - L] o dX
4 L Sx(t) dt fx fy(t) dt fx Sy(t) dt
> 5 _!/M— dx =1

If instead of two random variables we consider a multiplicative family with the m.L.r. pro-
perty we get the following corollary.

COROLLARY 2.1: If X is a random variable and if the family aX has the m.Lr. property
then xu x(x) increases with x.

PROOF: The failure rate of aX is u y(x/a)/a. By the previous lemma this is decreasing
in a and the result follows.

: LEMMA 2.3: Let X be a random variable. Let 4(-) be a convex function such that 4(0) .
= 0 and h(x) — xis increasing. If xu y(x) increases with x then p y(x) 2 u,p(x).

PROQOF: Since h(x) is convex it must be differentiable almost 2verywhere and
h(t) = fp h'(x) dx. Define 4'(t) to be right continuous in the points where the derivative
does not exist. The function 4'(x) so defined is increasing in x because 4 (x) is convex. It is
now easy to see that

WO/t = [ W) dx/t < 0 RO/t = ().
The conditions of the lemma give that 4(t) > tand hence
tuy(t) < h(0) pylh (D).
Using these two formulas we have
aoolh ()] = () /h'(1) € uylh (D) A ()/1t A'(1)]
< uxla ()]
With x = h(¢) the result follows.

3. RELATION TO PREVIOUS WORK

Brown and Solomon [2] studied random lifetimes, ?ut thiy diddnot consider exponential

deterioration for other than bounded variables. Let X, 2 X, 2 ... 2 X, be independent ran-
dom variables and 4 a positive function. An item / will last for the time X,d(¢) if it is kept in
stock for the time ¢ before it is taken out.
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Brown and Solomon showed that if d is increasing and convex the items should be taken
in the given order. If on the other hand d is increasing and concave they should be taken in
the opposite order. They also showed that if d is convex and P(X 1 2 Xy =1, the items
should be taken out with increasing indexes. We will here give a simple corollary of this result.
The corollary says that if all the lifetimes are bounded by M and if d(¢) does not decrease fas-
ter than 1/M, then the items should be taken with increasing indexes.

THEOREM 3.1: Suppose that X,, X,, ..., X, are independent random variables such
d d d

that X, > X, > ... 2 X, and X, < M with probability one. If d is positive decreasing and
convex and if |d'(0)| < 1/M then the items should be taken in the given order.

PROOF: If X, > M, the result follows immediately from the results of Brown and Solo-
mon, so let us assume that X, < M. Let X, = M and define g(¢) by

d(0) . Md (0)
_— d L —mm————
s s W R
Md(0) i Md(0)
Sl SO L, o I
T Md’(O)I T2 T Mo
The result of Brown and Solomon can now be applied to X,, ..., X, and g(r). Thus

Xo Xy, ..., X, should in this situation be taken in this order. But when X, fails we have
exactly the situation described by our theorem and the result follows.

Brown and Solomon also proved that if there are only two items with m.Lr. in the stock-
pile, the larger one should be taken first when d is positive and convex. We will here prove a
weaker result using a proof that illustrates one of the tricks used in proving Theorem 4.1. First
we state a simple lemma without proof.

LEMMA 3.1: The function x, + x, exp(—cx,) — x, — x, exp(—cx,) is positive, increas-
ing, and convex as a function of x; > x,.

Denote the initial ages of the items in stock by a; < a, and the total field life by
T(a,, a,), if the item with initial age a, is taken first, and by T(a,, a,) if the items are taken
in the opposite order. We consider from now on the situation described by (1.1), i.e., with
exponential deterioration. '

LEMN}A 3.2: Let the family a¥, a € R*, have the m.lL.r. property. Then
T(a,, ay) 2 T(ay a)).

d
PRPOF: Let X, and X, be independent random variables such that X, = Y exp(—ca,)
and X, = Y exp(—ca,). With this definition we have

d
X] v, o X) exp(—cX.) - T(a,, 02)
(3.1) d
Xy + X, exp(—cX) = T(a, ay)

If the densities of X, and X, are denoted by /, and f,, respectively, then their joint density can
be written
Si(xy) fix)

(3.2
- Ul(X|) f)(.k‘;) I(X| < xz) +f|(x2) fz(X|) I(X| > x,)]
+ U](X|) f;(x;) —f|(x;) f;(x,)] l(x, > X))-




INVENTORY DEPLETION WiTH RANDOM AND AGE-DEPENDENT LIFETIMES 399

where /is the indicator function. The first term is symmetric in x, and x,. The second term is
positive when x, > x, and vanishes elsewhere. This follows from the assumption of m.L.r.

In order to obtain the distributions of 7(a,, a,) and T(a, a,), we integrate the two
terms over the sets x; + x; exp(—cx,) < rand x; + x, exp(—cx,) < 1, respectively. From the
symmetry it follows that the integrals of the first term are equal. It follows from Lemma 3.1
that the integral of the second term is smaller over the first set. Lemma 3.2 now follows from
the definition of stochastic monotonicity.

REMARK 3.1: This method of dividing the density functions can also be used when n =
3. In that case, however, the density has to be divided into six rather complicated terms, all of
which require different proofs. We will not try to do so here since, as far as we know, there is
no possibility of generalizing this method to a general n.

4. A GENERAL NUMBER OF ITEMS

Let the items in stock have ages a;,<a,<a3;<...<a, and let
T(a,q), a,3), ..., a,) denote the total field life when the item with age a,(;) is taken first,
that with initial age a,(; is taken next, and so on. If we assume that the LIFO principle is
optimal when the stockpile consists of p items, and if » = p + 1 we know that the p last items
will be taken according to the LIFO principle. The youngest on. ‘ill thus be one of the first
two items taken. If we could show that

T(a|. gy Ay ooy Qpyy Qppls v oo a,,+|)
(41) d
2 T(ﬂ‘, a, Qj ..., Qg1 Qp4ys -+, a,,H)

the result would follow, for by optimality of the LIFO principle when n = p, the first quantity
is always stochastically smaller than T(a,, ay, ..., a,4)).

Formula (4.1) can be rewritten as

T(a,, a;) + Tla,+ T(a\, a)), ..., a,_, + T(a,, a),
ay+ T(ay, a), ..., apy + T(ay, ay))
d
? T(ak, al) + T[a2+ T(ak, 0|). cvey g + T(a,.. a,).
4.2) a + Tlay, ay), ..., apsy + T(ay, a)l.

The problem can thus be viewed as a p-unit problem, where the first item has a different distri-
bution (here: T(a,, a; or T(a;, a,;), respectively). Lemma 4.1 treats this problem. We
repeat that u is the failure rate of the variable Y in the definition (1.1) of lifetime distributions.

LEMMA 4.1: Suppose that the LIFO principle is optimal when n = p. Let U, and U, be
random variables with failure rates u, and u, and let the following conditions hold:

4.3) u[x exple(y + a)l} 2 ul(x + y) exp(cy)] exp(ca)),
4.4) ui(x) € py(x), and
(4.5) wi(x) € wlx exp(cay)] exp(cay).
The following stochastic inequality holds:
T| = Ul + T(a| + Ul- PR a,,_| + U|)

i

AL o I 15
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d
2 T2= U2+ T(a,+ Uz, iy a,,_|+ Uz)

PROOF: Let us suppose that we have the situation described as T, i.e. p units such that
the first unit has the lifetime U, and the other units have lifetime distributions corresponding
to their initial ages a, a,, ..., a,_,.

Construct Z, with the f?ilure rate A (1) = u,(t) — u,(t), which by (4.4) is positive. Now

by Lemma 2.1 we have U, = min(Z,, U,). If we replace the first unit at time min(Z,, U)),
even though it may be functioning, the total field life will be distributed as 7,. The general
idea of the proof is to change min(Z,, U,) into U, in a number of steps so that each step will
yield a stochastically larger field life.

If Z, 2 U, we are finished. If Z, < U,, we define the variable U, as

(46) UJ'——'UI-ZI.

The failure rate of Usis u (¢ + Z|). If Z, < U, the remaining total field life after Z, is distri-
buted as

(47) T(a, + Zl' dioraly an-l + Zl)
or as
(48) U3+ T(a,+Z,+U3....,a,,,l+Zl+U;)

depending on whether we replace the first item at Z; or not.
—onstruct a new random variable Z, depending on Z, by its failure rate

(4.9) A1) =

t explc(a, + Zl)]l exple(a,+ Z)] —u (t + Z),

which by conditions (4.3) and (4.5) is positive. This definition leads by Lemma 2.1 to

d
(410) min(U;. Zz) - Yg(al + Z|)

If we replace neither at Z, as in (4.7) nor at U;,=2Z,+ U; as in (4.8) but at
Z, + min(U;, Z,), the remaining total field life at Z, will be distributed as

T(al o Z|, a,+ Z|, a,+ Z|. ceey Ap B Zl).
By the induction hypothesis this is stochastically larger than
T+ 2y ..., 81+ 2Zy, a1+ 2P 3 Tla1 + 2y, ... a,_+ Z)).

In other words, we have shown that the total field life is stochastically longer if the first unit has
the lifetime

4.11) min(Z,, U\) + min(Z,, Uy) I(Z; < U) =min(Z, + Z,, U)),
than if the first unit has the lifetime

d
(4.12) min(Z,, Ul) - Uz.

The first step in the change of min(Z,, U,) into U, is now completed. The next step will
proceed in exactly the same way with Z, replaced by Z,+ Z,. If Z,+ Z, 2 U,, we are
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finished; otherwise, we define U,= U, — Z,— Z, [see (4.6)]. It has the failure rate
m(t + Z, + Z,). Construct Z, depending on Z, and on Z, with the failure rate [see (4.9)]

AJ(’) ‘ﬂ.lf exp[(‘(a, + Zl + Zz)]] exp[t‘(a; s Z| G Zz) —“l(’ + Z| o Zz).

d
Now [see (4.10)] we have min(U,, Z;) = Y g(a, + Z, + Z,). We thus find that the total
field life is stochastically larger if the first item has the lifetime [see (4.11) and (4.12)]
min(Z, + Z, + Z;, U,) than if it has the lifetime U,.

The second step is completed. By repeating this argument unitl Z, + Z, + ... > U, we
find that it would be better to let the first item remain in the system until it fails, i.e. until the
time U|.

That Z, + Z, + ... eventually will reach U, follows from the fact that A ,(¢) is bounded
in every finite interval

A (1) € sup wlr exp(ex)] exp(ex) for i > 1.
0<x<r

The distribution of U, is thus changed into that of U, in such a way that the total field life
increases stochastically in each step.

THEOREM 4.1: If the following conditions hold:
(4.13) w(x) decreases in x,
(4.14) Y - a, aeR™* has the m.Lr. property, and
(4.15) x pu'(x)/u(x) decreases in x,
the LIFO principle is optimal.

¢

PROOF: It is trivial that the theorem holds for » = 1. We have in fact, by Lemma 3.2,
that it holds for » = 2, but we do not need that fact. We will now prove that if it holds for
n = p, then it also holds for » = p + 1. When this is done the result follows from the axiom
of induction. Unfortunately it is not possible to use Lemma 4.1 directly on (4.2). We will
therefore first change the situation into one where the lemma is applicable and then check the

conditions. Exactly as in the proof of Lemma 3.2 we find that it is sufficient to consider the
situation

d
X, + X, exp(—=cX)) = T(a,, a)

d »
X, + X, exp(=cX,) = T(ay, ay)

where the distribution of X, and X, is given by K[f1(x)) fi(xi) — filxe) filxD] 1(x; > xp).
In order to simplify notation we introduce the following positive variables:
Z =X, + X, exp(—cX}),
Y= X+ X, (=cX)) - Z, and
Y = (X, = X,) exp(—cX)).
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Formula (4.2) is now reduced to
Y|+T(a2+2+ Y|. Sty s ak,,+Z+ Yl, ak+,+Z+ Y|, ey A,,+|+Z+ Y])

d
Y+ T@+Z+Y,, ..., a4+ Z+ Yy 0+ Z+ Yy ..., 6+ Z+Y).

This formula will be shown to hold for any given fixed Z by use of Lemma 4.1. Observe that
a, in the lemma corresponds to a,,; + Z or a,,, + Z here, depending on whether i < k — 1 or
not. The failure rate of Y, and Y,, given X,, are called u, and u,.

Condition (4.3) is easily shown to follow from (4.13) and (4.14) and Corollary 2.1:

exp[c(az +Z+ y)] u[x exp[c(az +Z+ y)]

> exp[c(a2+ Z +y)l uwilx +y) exp[c(a2+ V4 +y)l}

> exp[c(az + Z)] m

(x +y) exp[c(az + Z)]].

Condition (4.4) is more complicated. If xu,(x) were increasing, Lemma 3.1 would say
that Y, — Y, is positive, increasing, and convex as a function of Y, and Lemma 2.3 that
condition (4.4) held for such functions. We will thus try to show that

fl(x) fk(Xk) —f,(Xk) fk(X) i
f' f|(l) fk(Xk) e f|(Xk) fk(l) dt
g fk(X) f](Xk)
fl(x) fK(Xk)
p.l(x - X,) exp(ca .)I x exp(ca ,)l 3 o s R Y _f_n(Xk) :
G ulx exp(ca)] exp(ca,) fi(x) fi(X))

is increasing.

(X - Xk)
(4.16)

By Corollary 2.1 the first factor is increasing. The m.Lr. property gives that the second
term of the numerator decreases from one as x increases from X,. That

wlx exp(c a,)] exp(c a))

i wlx exp(c a,)] exp(c ay)

is less than one and increasing in x follows from Lemma 2.2 and the fact that the derivative of
its logarithm
w'lx exp(ca))] w'lx exp(cay))

exp(a) L rexplaan) ~ P Ul explean)

is positive [by (4.15)].

That the second factor of (4.16) is also increasing can now be seen by writing it as
(4.18) (a1 =y)/=h@y) yl,

where y equals the second term of the numerator of (4.16) and h(y) equals (4.17). Formula
(4.18) is éasily seen to be increasing in x noting that its derivative with respect to y is negative.
We have now shown that (4.16) is increasing in x > X;.
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Condition (4.5) remains to be proved. If x > X, the failure rate of X, equals
nz[(x - X,) exp(—cX,,)] exp(—cX,)
54 [1x) fillx) = f1(x) fi(x)
I 1w af) - 11 [ 50 ar
< N [T 10 a@

= p[x exp(ca,)] exp(ca,).

The first expression follows from the definition of Y, The inequality is a consequence of the
m.Lr. property and Lemma 2.2. A redefinition of x and (4.13) and (4.14) gives

wi(x) < pa(x)

< y.[x explc(a, + Xk)] + X exp(ca,)] exp[c(a, + Xk)]

< u[x exp[c(az + X“)l} exp[c(a(z. + Xk)]

Condition (4.5) follows if we remember that a, in Lemma 4.1 corresponds to a, + X, in this
proof.

5. APPLICATIONS

It is easy to check that the conditions of Theorem 4.1 hold for the exponential distribu-
tion. The failure rate is in that case a constant. Condition (4.13) that u(x) is decreasing and
condition (4.14) that x u'(x)/u(x) is decreasing are both trivial. Condition (4.15) that the
exponentiai distribution has the m.l.r. property is well known.

Another class of distributions for which the conditions hold is the Pareto family starting at

zero:

(5.1) f(x)x(x+a)*a>0 k>1.
The failure rate of this distribution equals

(5.2) p(x) = (k = 1)/(x + a).

It is easily seen that (5.2) is decreasing in x. The m.Lr. property holds since
Sv(x)/ fay(x) = (x = 1)7¥[(1/a) (x/a = 1]7*
=14 (a-1)/(x=-a)]*a'*
is increasing in xif a > 1. Condition (4.15) is easy to check:
xp'(x)/u(x) = x[=(k = 1)/(x + a)/[(k = 1)/(x + a)]
=1+ a/(x + a).
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APPROXIMATING PARTIAL INVERSE MOMENTS FOR
CERTAIN NORMAL VARIATES WITH AN APPLICATION
TO DECAYING INVENTORIES*

Steven Nahmias and Shan Shan Wang

University of Pittsburgh
Pittsburgh, Pennsylvania

ABSTRACT

This paper considers the problem of computing E(X ", X > 1) when Xis a
normal variate having the property that the mean is substantially larger than
the standard deviation. An approximation is developed which is determined
from the mean, standard deviation, and the cumulative standard normal distri-
bution. Computations comparing the approximate moments with the actual are
reported for various values of the relevant parameters. These results are ap-
plied to the problem of computing the expected number of shortages in a lead-
time for a single product which exhibits continuous exponential decay.

1. THE APPROXIMATION

The purpose of this paper is to consider an approximation for E(X~" X> t) for t >0
when X is a normal variate with the property that w>> o, which is common in physical
processes in which a normil distribution is used to describe a nonnegative phenomenon. Since
the probability of obtaining a negative observation is ®(—u/o) (where ® is the cumulative
normal distribution) it must be true that u >> o in order that this probability be neligible. The
application of our results to a problem associated with a product which exhibits continuous
exponential decay will also be considered. The random variable X will correspond to the lead-
time demand which is a nonnegative random variable generally assumed to be normal.

We have that
) EXnX>0=f x|u o) dc

where

x| @, o) = U_\/l—i:‘; exp l - (x =i ozl.

For any n > 1, this computation would require using numerical integration methods.
The approximation developed here is based on approximating the normal density by a gamma
density, simplifying, and then reapproximating the resuiting gamma density by the normal.

Since u>>a, f(x) can be approximated by

*Research Supported by the National Science Foundation under grant ENG 75-04990.
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20| 0. ) = —/’—r(;) xo—l g hx

where

a=(u/o)?and B = u/o?.

The justification for this is as follows. It is well known that g(x | a, B) is the probability
density of the sum of k independent and identically distributed random variables with denstiy
g(x | a/k, B) (see DeGroot [1], p. 237). It follows from the central limit theorem that for «
large, g(x | a, B) can be approximated by a normal density. The mean and variance of a
Gamma random variable with parameters « and 8 are u = a/B and o? = a/B2. Solving for «
and B in terms of u and o? gives the results above. Note that the original assumption that
w>>c implies that a will be large and g(x | a, B) will give a good approximation to
f(x l n, o).

Hence
E(X "X > = f,wx'"g(x | @, B) dx
- J‘Iw Eu xu'l*ne—B\dx

I (a)
i B" 7 pu—n a—n—1,—Bx
@ (a-1) ... (a—n) f' I' (a—n) ¥ e

The integrand of (2) is simply the gamma density g(x | « — n, B). Since u>>ac, this
gives a>>0 which would imply that a« — n>> 0 for moderate values of n (that is,
wu>> o+/n). Hence, we may than reapproximate g(x | a—n, B) by a normal density with

—n
a T It follows that

~ a—n " a2
mean g = -B— and variance o =

E(X" X>1)= fx | @, &) dx

|

p’ .[5 pt=p’+n ol

i iron | Lo Y=o
i=-1

9” oo
(a—1) ... (a—n) j:

2

n

I e bens
(a=1) ... (a=n)

3)

where ® (x) = 1 — ®(x).

The value of 7 should be small enough so that u > o+/n. Otherwise the argument of >
in (3) will not be defined. This is only a mild restriction since (1) will be essentially zero for
large n. The quality of the approximation will clearly depend upon whether or not a—n is
sumc|iently large to apply the central limit theorem and reapproximate g(x | a, B) with
S(x | 4, ).

In order to compare the effectiveness of (3) as an approximation to (1) we have estimated
(1) by numerical integration. Table 1 presents a summary of some of the computational results
for various values of u, o, 1, and n. Note that for u/oc = 10, the agreement is extremely
close, while the quality of the approximation deteriorates as u/o decreases. It should be noted
that for larger values of n, (2) may be used directly if tables of the cumulative gamma distribu-




TABLE 1 — Comparison of Exact and Approximate Calculations

INVERSE MOMENTS FOR DECAYING INVENTORIES

uw | o t | n | Exact value (1) | Approximation (3)
10 | 1 1 1 0.10103158 0.10101009
5 1.175 x 10°° 1.165 x 1073
10 | 1 0.04664270 0.04648207
5 3.57 x 10°® 3.5 x 107
10 | 2 1 1 0.10461799 0.10416607
5 2.931 x 107} 1.915 x 1075
10 | 1 0.04375230 0.04382718
S| 275 x10°¢ 2.56 x 10°®
10 | 3 1 1 0.11252050 0.10963436
5 6.0250 x 10°* 5.102 x 1075
10 | 1 0.04133040 0.04156939
5 223 x 10°° 1.13 x 10°¢
10 | 4 1 1 0.12173662 0.11646283
5 261 x 10°? 331 x 1074
10 | 1 0.03925619 0.0397417
S| 1.87x10° 489 x 1078

407

tion are available. However, in most cases where u is relatively large, it is generally true that

o < Ju (with equality *. '©:ng when X is approximately Poisson), so that the approximation
should give excellent resuns.

2. DECAYING INVENTORIES

When inventory levels decline by a fixed fraction each period due to spoilage or loss in
value (exclusive of demand), the inveniory exhibits continuous exponential decay. The term
exponential decay arises in the following manner. Suppose /(¢) represents the inventory level
for a continuous review system at time r Ignoring demand, the decay assumption may be
expressed as /(r + 5)//(t) = y* where y = the fraction of stock decaying per unit time
(0 <y < 1)and s > 0. This is equivalent to

4) I (t+s)=-exp(=0s) I (1)

where @ = — 1n (y). The constant @ is ordinarily referred to as the decay rate and represents
the instantaneous rate of decrease of the relative inventory levei /(¢ + s)// (¢t) at s = 0 (that
o d |1 +5s) A
“al fn J|r"""

Decaying inventories arise in various situations. One example is radioactive materials,
such as nuclear medicines (see Refs. [2] and [6]) or UO, nuclear fuel for a fission reactor.
Another possible application for an inventory model with decay is ln the area of cash flow
management. Continuous discounting of future returns and continuous exponential decay
correspond to precisely the same physical process. Alternatively, a decay model might be use-
ful for providing an approximation to the more complex problem of managing a fixed-life per-




408 S. NAHMIAS & S. S. WANG

ishable commodity (see Nahmias [5], for example, for an analysis of the periodic review ver-
sion of this problem).

There is an alternative interpretation of the decay model which explains more clearly how
it relates to a perishable inventory problem. Suppose /(0) = N units are on hand initially at
time ¢ = 0, and also assume that the lifetime of each of the units is a random variable having
the negative exponential distribution. That is, if 7\, T, ..., Ty are the respective lifetimes of
each of then N items, the P{T, > s} =exp (—6s) for s > 0and 1 < i < N. It follows that
the number of units on hand at any time s > 0 is a random variable having the binomial distri-
bution with parameters N and p = exp (—6s), so that the expected inventory level at time s,
say /(s), is given by Npor 1(0) - exp (—8s) which agrees with (4) for + = 0. It is important to
recognize that the exponential decay process is a purely deterministic process which arises as
the expected value of a process with random lifetimes. For large N, the law of large numbers
and the concept of ensemble averages provides a justifiction for using the deterministic
exponential decay model for a problem of this type.

A common inventory policy for continuous review inventory systems is to trigger an order
when the level of on-hand inventory reaches r, the reorder point (see Hadley and Whitin (4],
Chapter 4). An important part of determining the proper value of ris to compute the expected
number of units which go short during the leadtime, say 7. Under the common assumption
that leadtime demand is a normal random variable, we will show how the results of the previ-
ous section can be used to give a very close approximation for the expected shortage in lead-
time for a decaying inventory.

Ghare and Schrader [3] have analyzed the extension of the simple EOQ model to allow
for continuous exponential decay. They show that if the dgmand rate at time u is given by the
function D(u), 0 < u <t, then I(t) =e " - (1(0) - J:) D(u) e” du). When D(u) = A\,
independent of u, this reduces to

(5) (1) = e - (1(0) + A/6) — N/6.

Suppose that X = demand in a leadtime 7. Then the demand rate during leadtime is a
random variable A (X) = X/r which now must be treated as an explicit function of the
leadtime demand X. We will assume that items leave stock at a constant rate of A (X) during
leadtime. If 7*is the amount of time that elapses from the time an order is placed until inven-
tory level hits zero, then for any realization X of the leadtime demand, the inventory level /(r)
will decrease according to (5) with A = A(x), on the interval between the time the order is
placed until min (7* ,7). The case T* < 7 is pictured in Fig. 1.

" It follows from (5) that for a given value of x, T*solves
0=¢e"T"(r + A(x)/8) — A (x)/0
or
(6) T* = (1/8) - In (1 + r6/x(x)).

In order for a shortage condition to occur it is necessary that 7* < 7. Let w(r) be the
minimum number of units demanded in a leadtime to ensure that a shortage condition will
occur. Then w(r) may be obtained from (6) with 7* = 7 and A(x) = w(r)/7, which gives

r-%ln A +r07/w(r)
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It

FIGURE | — A possible realization of the inventory level, /(), in a leadtime .

or
@) w(r) =r07/(e’" —1).

Hence, if X € w(r), then T* £ 7 and no shortage occurs, while if X > w(r), then T* < 7 and
a shortage will occur.

Suppose that y(x) = numbers of units which decay in a leadtime when x is the leadtime

‘demand. When T* < 7, the inventory level drops from rto 0 in a time T*, which includes the

losses due to both demand and decay. The loss due to demand is exactly A/x) - T* It follows
that the loss due to decay, y(x), is given by y(x) = r — A(x) T* which from (6) becomes

® y(x) = r = —‘—‘0’2 in (1 + ro/(x)).

It now follows that for all x > w(r), the number of units which go shart in a leadtime,
say S(x), is

S(x)=x+y(x)—r,
which becomes, after we substitute A(x) = x/r, and use (8),
()] S(x) =x — (x/07) - In (1 + rér/x).

Since total demand in leadtime is assumed to be normal with mean u and variance o2, we
obtain the expected number of units short in the leadtime, say P(r), from (9) as

P(r) = E(S(X), X 2 w(r)) =

(10) f:’, lx ~(x/07) ‘In (1 +r 0 7/x)} f(x|u, o) dx,
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where w(r) is given by (7). Note that for x = w(r) the integrand will vanish. We may write
P(r) = P, (r) — P,(r) where

Pr) = fw(r) x flx|p, o) dx
and

Pyr) = [ (x/67) In (1 + 7 07/x) f(x|u,0) dx

It is well known (see, for example, Hadley and Whitin [4], p. 446) that since f(x | u, o)
is a normal density,

(11) P,(r)-a¢[—“%ﬁ +ud

w(r) 'E]
o

where ¢ is the standard normal density and 3 is the complementary cumulative standard nor-
mal distribution function. Note that we also used the identity

(12) L g T .
g

=
o

Unfortunately, no such direct result is available for determining P,(r), so that exact com-
putation of P,(r) requires numerical methods. However, if we use a Taylor series expansion
for the In (1 + r @ 7/x), the results of the previous section can be applied. The Taylor series
expansion for In (1 + ¢) around any point ¢, can be shown to be

1
n

n
L=ty
1+f0

(13) nd+0=1n(+1)+ 3 (D"

n=1

where t = r 0 7/x.

We have expérimented with various values of r, and found that the best results were
obtained at 71y = r @ 7/u. In this case (13) becomes

ror _ ror ]’
In(l1+r07/x)=In 1‘+if- + 2(__1),.-1_1_ = /22
w S n |y, e
n
ot < 1 rér "1 1"
winft 4+ ZL] 4 T & L2 _ L
"§ N 1+LQI. lx 1
M
-1+ 2224 i(-—l)""l -
n=1 n 1+’_01
m
P » 1 i In-i
(14) : 2riil 1=t
/E[’ X))\~
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It is of interest to examine the conditions under which this series will converge. Suppose
that u — 30 < x < u + 30. Then

n n

<lfor (s £

<
6

ror "ll 1

ror ;——p._
®

£ -1
1+ "

whenever [x — u| < 30, which guarantees convergence of the series for this range of values of
x. Note that this agrees with our former requirement in Section 1 that o should be small in
comparison with u.

Using (14) and truncating after N terms, we now obtain the following approximate
expression for P,(r):

Injl + ";ﬁ
@8 Py =l [ xS ln, o) e
1 s L[ )" T
+0‘r n§( l) n ]+.r_0l w‘!:)x
m
z[n] L= piet, o)
i=0 L) | ¥ ®
N nf n
o gl mnh+ 28|+ z(_l)n-l.l. - o - Py(r)
or n=1 n 1+ rOJ K
M
N wfl . n—l_ 4
+ L SEp | Lol Gl -p
or n=1 1+ Lol [ L
M
1 & 1 ror 4 ~1 e
s e D! = |————— n| |—
or n§ n 1 + ﬂ 1-22 l'] »
M
f" [(x|u, o) o
w(r) x!=t X

The final equality results from separating out the terms corresponding to i=0 and /=1 and
using the definition of P,(r), an explicit expression of which is given in (11). The final term
can now be approximated by using (3), with the result that

oo i-1
wi(r) x'= i-1
s (u?- ko?d

3 |uw() —pl+ (i —1) o?
ovul-(i-1) o?

(16)
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Combining (11), (15), and (16) gives the following computing formula for P(r):

an POymfi~ gl 200, Loglj my
or 0r i n|pn+ror
. [(r ] ——&W(r:r_ +ud l____p_w(r) -
a
o b 2~: ror |
ér o net |+ rét
1 «1 ror * & (=1
or S on |pn+ror ;;’ [',1] (-w ,\[1,
1= wl) -y
ﬁk &/-l y
where

2
b= L__k.‘f_' (‘Y,."%*/uz—kaz,

1 — - o
b () = —=e () = e d

Although (17) may appear to be fairly complicated, it is completely determined from the
knowledge of only the mean and variance of leadtime demand and the standard normal density
and distribution functions. Computations were performed to compare the effectiveness of the
approximation for P(r) for various combinations of u, o, 7, and 8. The exact calculation of
P(r) given in (10) was accomplished by numerical integration and the approximation was
obtained from (17). Table 2 summarizes the results for 4 =10, ¢ = 2, 7 = 5, and N = 6 for
9 = 0.1, 0.3, 0.7, and 1.0. Note that the agreement is quite close throughout and is exact to
two decimals for all 10 < r < 130 when 6 = 1. Also, the values of w(r) can be seen to
change substantially with 8. We also tested the approximation for larger values of u and found
that it gave excellent results as long as u/o was relatively large (say 6 or more). It is worth
pointing out that although (17) is fairly' complicated, it can be determined far more quickly for
moderate values of N than can (10) by numerical integration. This can be extremely important
when the expected number of shortages incurred during leadtime must be computed for a range
of values of r.
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TABLE 2 — A Comparison Between Exact and Approximate Expression
Jor Expected Shortage forp = 10,0 = 2, N = 6,7 = 5.

0 =0.1 0 =203 0 =107 =10

P S S oy Sl T s L E kSRS v
& | Wi(r) | Exact E_’_\PP, J_ Wir) | Exact | App | W(r) | Exact | App | W(r) | Exact | App
10 7.71 2.03 2.05 431 394 394 1.09 5.74 574 | 0.34 6.44 6.44
1S [ 11.56 | 0.20 | 0.22 6.46 222 2.27 64 | 4.80 480 | 0.51 5.75 5715
20 | 1542 | 0.00 -.00 8.62 0.97 1.02 2.18 4.10 4.10 | 068 5.24 5.24
25 | 19.26 0.00 | 0.00 | 10.78 | 0.26 0.35 2.713 3.54 354 | 085 4.83 4.83
30 0.00 | 000 | 1293 0.03 0.01 3.27 3.07 3.07 1.02 450 | 450
35 000 | 000 | 1508 0.00 0.00 3.81 2.67 2.67 1.19 420 | 420
40 0.00 0.00 0.00 | —0.00 4.36 2.31 2.32 1.36 3.95 3.95
45 0.00 | 0.00 0.00 0.00 4.90 2.00 200 | 1.53 3.2 3.72
50 0.00 | 0.00 0.00 0.00 5.45 1.72 1.73 1.70 3.52 352
55 0.00 | 0.00 0.00 0.00 5.99 1.46 1.49 1.87 3.34 3.34
60 0.00 | 0.00 0.00 0.00 6.54 1.23 1.28 | 2.04 3.17 3.17
65 0.00 | 0.00 0.00 0.00 7.08 1.02 1.09 | 2.21 3.01 3.01
70 0.00 | 0.00 0.00 0.00 7.63 0.83 08 | 237 2.87 2.87
5 0.00 | 0.00 0.00 0.00 817 | 066 | 0.78 | 2.54 2.74 2.74
80 0.00 | 0.00 0.00 0.00 8.72 | 0.51 0.50 | 2.71 2.61 2.61
85 0.00 | 0.00 0.00 0.00 9.26 | 0.38 0.52 | 2.89 2.49 2.49
90 0.00 | 0.00 0.00 0.00 9.81 0.28 0.33 | 3.05 2.38 2.38
95 0.00 | 0.00 0.00 0.00 [ 1035 | 0.19 | 032 | 3.22 228 2.28
100 | 0.00 | 0.00 0.00 0.00 | 1090 | 0.13 0.24 | 3.39 2.18 2.18
105 0.00 | 0.00 0.00 0.00 3.56 2.08 2.08
110 0.00 | 0.00 0.00 0.00 3.73 1.99 1.99
115 0.00 | 0.00 0.00 0.00 3.90 1.90 1.90
120 0.00 | 0.00 0.00 0.00 4.07 1.82 1.82
125 0.00 | 0.00 0.00 0.00 4.24 1.74 1.74
[_BO 0.0 | 0.00 J 0.00 0.00 4.40 1.66 1.66
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ABSTRACT

An exact method for solving all-integer linear-programming problems is
presented. Dynamic-programming methodology is used to search efficiently
candidate hyperplanes for the optimal feasible integer solution. The explosive
storage requirements for high-dimensional dynamic programming are avoided
by the development of an analytic representation of the optimal allocation at

each stage. Computational results for problems of small to moderate size are
also presented.

INTRODUCTION

The problem to be considered in this paper is the all-integer linear-programming problem,
which is as follows:

max z = ¢'x,
Ax < b, and
(1) x 2 0, integer.

In (1), c and x are n-component vectors and c¢ has integral nonnegative components. A4 is an
m X n matrix and b is an m-component vector. Furthermore, we assume that z is bounded and
that there exists at least one feasible integer point in the convex set S = {x|4x < b, x > 0).

In an earlier paper by one of the authors [1], a precursor of the formulation of the
method proposed in this paper was made. However, it was not efficient from the point of view
of computer storage. A basic reformulation of the method is made in this paper which changes
the previous algorithm very significantly. In the present paper, the basic theory to make the
algorithm computationally efficient is presented. The new algorithm is presented along with
some computational results. It should be emphasized that this algorithm is exact and suffers
from no numerical problems of convergence.

The assumption that the components of ¢ are nonnegative is equivalent to the statement
that each of the separable terms of the objective function is nondecreasing. This is required by
the dynamic programming approach we shall use. This is not a limitation in generality, since if
any nf the ¢;, j =1, 2, ..., n, are negative, a simple transformation may be made to convert
the negative coefficients. This will be discussed in a subsequent section.

415
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It will be noted that if any attempt were made to solve the problem given by (1) by
dynamic programming it would rapidly run into the "curse of dimensionality," for m > Jor4
and the storage requirements on a computer would be not only prohibitive but nonexistent.
The method proposed here avoids this explosive increase of memory requirement when the
dimensionality is high. We will, however, exploit the use of dynamic-programming methodol-
ogy, as will be seen subsequently.

2. GENERAL DESCRIPTION OF THE ALGORITHM

The general idea of the proposed algorithm is to search candidate hyperplanes for lattice
poirits. This proceeds as follows. If we remove the integer requirement from (1), the relaxed
problem can be solved as a linear-programming problem. Suppose the optimal value of the
objective function for this relaxed problem is z°. In addition, let the optimal value of the objec-
tive function for (1) be designated z* It is clear that z* < z°. The basic idea behind the
hyperplane search algorithm we propose is to start at the linear-programming solution and
search the hyperplane c¢'x = [z 9] (where [a] indicates the greatest integer less than or equal to
a) to see whether or not it contains any feasible lattice points. If it does, we are done. If it
does not, we move the hyperplane in a direction parallel to itself and then search the hyper-
plane ¢'x = [z29 — 1. Since ¢ was assumed to have integral components, ¢'x must be an integer
if x is to have all integral components. If the hyperplane ¢'x = [z — 1 contains at least one
feasible lattice point, we are done. If it does not, we continue the process. This procedure is
clearly finite. Since it was assumed that S was nonempty and contained at least one lattice

" point, we must eventually find it. Let us now describe this algorithm or class of algorithms

more precisely.
We summarize the notation we will use:

z* = optimal value of objective function in (1),

2° = optimal solution to linear-programming problem derived from (1),
z, =2~k k=0,1,2, ...,

S = {x|4x < b, x 2 0},

L, = lower bounds on x,, i.e., x, 2%, j=1,2, ...,n and

u; = upper bounds on x;, i.e., x; L u;, j=1,2, ..., n
HYPERPLANE SEARCH ALGORITHM

1. Solve the linear programming problem
max z = c'x
Ax € b,and
(2) x 2 0.
If xX°, the optimal solution to (2), satisfies the requirement of being all integer, we are done.
Otherwise, proceed to step 2.
2. Determine lower bounds £, and upper bounds u; for each variable x,, We then have
L <x; < u,
3) x;integer, j=1,2, ..., n
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3. Find all combinations of x,, j =1, 2, ..., n, which satisfy

c'x =z,
(4) beEx €4, =13 .8

4. If no integer valued vector x* can be found, increase k by 1, i.e., decrease z, by 1 and
return to step 3 (or in some cases step 2 — see discussion below). If at least one x* is all
integer, go to step $.

5. If at least one x*€S, we are done. If for all x x*€S, decrease z, by 1 and return to
step 3 (or in some cases step 2 — see discussion below).

Let us now consider each step of the above algorithm in greater detail. First, we may
note that since the set S is nonempty, is bounded, and contains at least one integer point, the
finiteness of the algorithm is guaranteed. How efficient such an algorithm can be depends very
strongly on how step 3 is carried out. Let us consider each step in turn.

Step 1 requires little comment. Any simplex code can be used to solve the linear-
programming problem given by (2).

Step 2 should be carried out in the most convenient fashion. Lower bounds of zero on
the x; can always be used. If upper bounds can be easily determined from the physical intepre-
tation of the variables, they should be used. Linear-programming could also be used, if neces-
sary, to determine both the lower and upper bounds on the x; by solving the problems

min x;, max x;,
Ax < b, Ax < b,
c'x =z, clx =z,
(5) x 2 0. x 2 0.

These problems could be solved once (initially) to get bounds, or periodically, as steps 4 and 5
of the algorithm indicate. In any case, lower and upper bounds can be found.

Steps 4 are 5 and self-evident and require no extensive comment except to note that this
is the only place the structural constraints of (1) enter the problem, with the possible exception
of the determination of bounds. As we shall see, the determination of the solution x*in step 3
does not explicitly depend upon the constraints 4x < b.

3. HYPERPLANE SEARCH BY DYNAMIC PROGRAMMING
We now consider how we may use a dynamic programming formulation and method of

solution to deal with step 3 of the hyperplane search algorithm. This amounts to finding all
combinations of x; which satisfy (4). We may formulate this problem as

(6) max z = ¢'x
¢'x =z,
G >0 =12 W
0<L <x,€u, j=1,2,..., n and
x;integer, j=1,2, ..., n
- N —. S———
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The fact that we already know the maximum value of z for this subproblem, viz, z,, in no way
invalidates (6) as a meaningful problem, since what we are seeking is whether or not there
exists a set of values x satisfying the constraints of (6). It will be noted, as mentioned previ-
ously, that we need to assume that all ¢, > 0. Let us demonstrate that this does not result in
any loss of generality.

LEMMA 1: An integer programming problem of the form given by (6), except that not
all of the objective function coefficients are positive, may be transformed into an equivalent
problem all of whose coefficients are positive.

PROOF: The proof is by construction. Suppose we have the problem
max z = c'x,
c'x =z,
) L<x <y,

where c is an integer vector, but notall ¢, > 0. If ¢, > 0, let X, = x;and ¢; = ¢, and if ¢; <
0, left X, = u, — x; and ¢ = —c,. Further, let P = {j|c; > 0} and N = {j|c; < 0}. We may
then rewrite the objective function of (7) as
max z = Y ¢x; + ¥, ¢x;
jeP jeN
=Ycx;+ ¥ cu—x)

jeP jeN

(8) =&x+ X u,
jeN

Hence, instead of solving (7) directly, we may solve the equivalent problem

max z = c'x,
()] (R=ze+ Ylu =3, 0<% <4
jeN
where
i=t ifc >0,
(10) {4, = u,
and
£ =0 ifc; <0,
(11) y=u, -4

and now the equivalent problem (9) has all ¢, > 0.

T

The problem given'in (6) can be solved by the use of dynamic programming. Since the

‘objective function and the single structural constraint are separable and nondecreasing (c; > 0)

functions, the sufficient conditions for a solution by dynamic-programming are satisfied (see
Ref. [2]). By applying the principle of optimality the dynamic-programming solution to (6) is
easily obtained. The optimal return functions g,(:) are given by the following recursion rela-
tions:

(12) g\) =max cyx; =N, A=cyt,t=0,1, ..., u,
bx o X30) ~% otherwise,

e e « T— ik e

" eewer
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where
A
(13) 8|= C A-C|l f'o l , Uy,
l undefined, otherwise:;
4 (8 s BESEE
(1 &) = 2 Tixbsm[c,x, + g, (A — ¢x))], i, 1, .o R
' A
(15) 5,(\) = mm[us, [—“
CS
. 5
(16) Ag= Y cu,

f=1

The usual dynamic-programming approach would be to calculate
&) and x/(\), A =0,1, ..., A,

for s =1, 2, “n — 1, where x,(\) is the value of x, which produced g,(A) for each value
of A. Fmally, we would calculate g,(z,) and x,(z,), assuming a solution exlsts We would then
subtract c,x, from z, and then find, corresponding to A =z, — c,x,, in the tabulation of

x,-1 (A), the value of x,_, (z, — c,,x,,) which gave rise to g,_(z, — ¢,x,). This backwards pro-
cess would yield, successively, x,, x,_y, ..., x|.

The principle difficulty with this approach is the storage requirement, which, while it is
orders of magnitude less than that for the simple-minded approach of using a state variable for
each constraint of (1), still is quite considerable. For each variable a vector x,(A) must be
stored. Furthermore, there are often many alternate optimal values of x,(A) which maximize
cx; + 8,—1(A — ¢,x,) and they must all be stored. Hence x,(A) is actually a matrix, say of

u
average dimension = 7’ X A|. Hence the total amount of storage required is approximately

e
2 - —. For example, if all c; were 5, all u; = 10, and n = 100, we would require about
s=1

1 260,000 words of computer storage. There are ways to minimize this, but nevertheless, with
increasing n, the storage problem becomes significant.

In the following section, a set of equations will be derived by the use of simple ¢combina-
torial theory, which will give explicit formulae for x,(A) for any A, and hence the need for a
complete tabulation of x,(A) will be eliminated. Indeed g,(A) need never be explicitly calcu-
lated. The reduction in storage is drastic and renders the hyperplane method just described of
practical use. The entire calculation process will be reduced to calculating x,(z,),

n
Xp1(zk = €px0), o) x) (2, = X cox,) directly.

s=2
4. DERIVATION OF EQUATIONS FOR OPTIMAL SOLUTION

The derivations that follow are concerned with deriving a set of expressions that yield
x,(A) by applying the recursion relations (12) to (16) to the problem
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n
max z = Y, ¢x, (c;=1)

i=1

n
2 CX) =2y,
i=1

b€ €U, j=12 ....m,
a7n cinteger, j=1,2, ..., n

It will be noted that we have assumed that ¢, = 1. This is not absolutely necessary but it does
result in a drastic simplification of the expressions for x,(A). There is no loss in generality in
doing so, as the following lemma shows.

LEMMA 2: Given the problem

(18) c >

a problem satisfying the conditions of (17) can be derived which contains the solution to (18)
as a subset.

integer,

PROOF: The proof is by construction. If we add a variable x, = 0 to the vector x then
the following problem has a solution which contains the solutions to (18) as a subset.

n
max z = x, + ¥, C;X;,
j=1

n
X,, + ZC,X, - Zk,
f=1

L<x < u
x, =0,
(19) c integer.

By adding the constraint x, = 0 to Ax < b of the original integer linear programming, we force
x, to be zero and hence have a problem which has as a subset the solution to ( 18).

In what follows then, we always assume that ¢; = 1. We shall present the equations for
optimal allocations x,(A\), s =1, 2, ..., n and proofs of their validity in the next set of lem-
mas. Without any loss of generality, we shall assume that'4, =0, s =1, 2, ..., n. That this is
so is obvious, since if £ < x < fandif y=x —£4 o0 € y < &t — £ = u. Therefore, the prob-
lem for which we are developing a set of expressions for x,()) is:

n
maxz= Y ¢cx;, (c;=1),
jm=1
n
z(‘,x,-zk.
j=1
0LSx, €y, Jj=12, ..,n

(20) c; integer, j=1,2, ... n
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LEMMA 3: x;(A) =\, 0 < A < u,.

PROOF: The dynamic-programming solution, which results from the application of the
principle of optimality to the first stage, is:
(21) g(\) =max x; =\, O0<A\ < u, integer.
x‘-A

This must be the case because, in the backward allocation process, the first stage is reached last.
If ¢, = 1 and A is left to allocate, then clearly x; (A) = A.

LEMMA 4 x/(\) =0, A S ¢, -1 <A, ;,5=2,3, .., n
PROOF: The dynamic programming recursion relations for 2 < s < n are as follows
(22) g(\) = 0(212;(’(“ legxs + g,y (A = ¢;x)].

Let A —cx;=¢ 2 0. If A — cx, < 0, g,_,(£) does not exist.

CASE1A=¢,—1:

We have
cs—1—cx, =& ¢, 21,
and
cs(1=x) —1=¢ ¢ 2 1.
If
x;=0, E=c,—1, g_() =¢é=c,— 1< Ay,
and

x;(A) = 0.
If x; 2 1, € > 0. Hence g,_, does not exist. x,(A) = 0 is the only solution.

CASE2,A < ¢, —1:

Let
A=c¢,—1, 1 <t<gc,
th;n
A—cCxs=c,—t—cx,=¢ 20,
and .
(1 —x) —t=¢
If
x;=0, Emci—t 20, g,_1(6) =c,—t < A,_y,

and

x,(A) = 0.

If x, 2 1, ¢ <0. Hence g,_, does not exist. x,(A) = 0 is the only solution.
We have therefore proved that:

xA\) =0, A\€c,~1 €A, s=2,3,...,n
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LEMMA 5: x,(\) =0, 1,2, ..., 8(),c, €A <A,
where

for s =2,3, ..., n

8,(A) = min [[—A—I ug
CS

PROOF: The dynamic-programming recursion relations for 2 < s < nare:

(23) g(\) = W Lok, + 8= ).

Since A > ¢, and 8,(A\) = min —:1- , ug|, then A — ¢;x; 2 0. Furthermore, A < A;_, and

f ]
g-1() and x,_,(-) have been defined for all values 0 < ¢ < A,_,. Hence, it is clear that
2,(A) = \ and hence a value may be assigned for each x;, 0 < x; < 8,(A), corresponding to
each term in brackets in (23). Therefore,

g Cssks"\s—l-
xA) =0,1,2...,80), (.53

e g
LEMMA 6:
y A=(A,_ +1 A—-(A, +1)
x(A) = ——(—c—‘———)l+1. [——(——c-‘——— F 8 Loty TN KA
where
ve=ug—t% A 2 le(uy = t")],
and
t* = maxlc(u,— ) =A1 €0, ¢=0,1,2,...,5=23,....n
5 !

PROOF: The dynamic programming recursion relations are

(29) g(\) = o<:‘2§,(x) legx, + 8y (M —¢ex)), Aoy < A< A

We may rewrite (24) as
2“3 + g,_l(k o 2",), AT
8,0) = max(0 + £, (). & + £ =€) 3,0 ¢, + g, 0 - 8,00 )

Since A > A, and g,_;(A) for A > A,_, is undefined, it is clear that x,(A\) = 0. Therefore,
the minimum value of x,(A) > 0. To determine the minimum value we note that

A=—cx, S A+ 1;

Therefore,

s) x, > il—(ﬁc——'ﬂ
However, x, must be an integer. Hence we know that

- (A +1
(26) x, 2 l*__(_A.‘;_‘_f_).I
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and
(27) x, #= 0.

The above facts can be combined by means of the following. Since x #0, A
Ay + 1+ c,. If we substitute A = A,_; + 1 + ¢, into (26) we have

S Amtlta-A+D

x‘/

Cs
However, a value of 1 under this condition is not possible since
& (A, +1+c,—c) =g, (A, +1),
and g,_,(A,_; + 1) is undefined. More generally, if A = As_; + g, then
&) = max[0 + g_,(A,_; + q), c.g,((A;_, +q —¢), ..,
S8\ e, + g (A_1+qg—8,() )

will contain terms for which g,_,(A) is not defined. This will occur precisely for those terms for
which ¢ > ¢,. This leads to the minimum value for x, as

A=A+ 1)
cs

(28) +1.

Larger values of x, will obviously be permitted, since A — c;x, will decrease as x, increases, and
hence values of g,_,(-) will exist for these arguments. However, there is an upper bound on
x,. This will be called v, and is derived as follows. If A > csug, then clearly the largest value
of x, is u, since

8,(c,u;) = max[0 + g,_,(cu), ¢, + g,_\(cu, — ¢, ..., cou, + g,_,(0)]

It is clear that no entry beyond the last is possible and this corresponds to x, = u,. However, if
A < cu,, we wish to find the largest value of x, compatible with that value of A. We recall
that when A 2 c,u,, the largest value of x; = u,. Let us now suppose that

(29) A2 cvy = c(u; — t%)
In order to make v, as large as possible in (29) it is clear that
1* = maxfc(u, —t) =21 €0, t=0,1, 2, ...,
!

i.e., t*is the minimum value of ¢ such that X\ > ¢,v, = ¢,(u, — t*). Then v, = u, — t* It is
seen that when A 2 c.u,, t* = 0.

A=(A;_ 1 +1)

{

We have not considered the possibility that v, may be less than [ * 1.

The significance of this is treated in Lemmas 7 and 8.

Lemmas 3, 4, 5, 6 together constitute the following theorem which gives the formulae to
be used in the backwards recursion for a solution by dynamic programming of the problem
stated in (20). The optimal values of x,(A) for any A and for all s can be calculated from these
equations.

THEOREM 1: The optimal returns x,(A\) for any A and all s which constitute the solution
to (20) are included in the following:

L fﬁ——*———— *A‘:dt:
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(30) f x;(A) =X, 0 <\ < u, A\integer,
31 OLONSe,—-1<A;, §5=2,3, ...,
(32) 012 B Rk E i . VML B
A—(A,_+1 A—(A,_;+1)
(33) [————l——) il [—————' B, L S ey Ve
c, c,
x,(\) = ﬁ
where v, = u, ~ t*% A 2 leg(u, — )],
t* = max(c,(u,—t) =21 €0, ¢=0,1,2, ..., s=2,3, ...,
]
and
(34) Lundeﬁned itk >A, s=2,3..,n

For the proof of

Theorem 1, see Lemmas 3 to 6.

It should be noted that the statement of Theorem 1 implies that the relations given by
(30) to (34) also include values which are not optimal returns. This is so because of necessity;
the dynamic-programming solution generates negative infinite returns for some values of A (see
Ref. [1]), i.e., some values of g,(\) are not defined. The next two lemmas deal with this situa-

tion.
LEMMA 7: If
A—(A_ +1
v, < ——c“—) +1, A,y <A Ay theneg > A+ 1.
:
PROOF: By hypothesis, we have that
A=A, +1)
(35) y < |[—————| +1.
]

Since [a] < a, we can remove the integer requirement of

oozt
CS

in (35) and strengthen the inequality. Hence we have

(36)

A= (AS—I o l)
St
Cs

1.

v, <

Since ¢, > 0, we can rewrite (36) as

@37

A+, = (A +1) > ¢

By definition, when A,_; < A £ A, we know that

(38)
The inequalities
(39)

vy = u,0or A < ¢,V + .
(37) and relations (38) together imply that
Cs — (A,_l +1) >0.

AR
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Rewriting (39) we have
C > /\5_1 + 1.
which was to be shown.

LEMMA 8: If ¢, > A,_; + 1, then g(A\) = —co for A =A,_,+1 +pc, p=0,1, ...,
and x;(A) is undefined.

PROOF: The dynamic programming recursion relations are

&) = max [ex,+g_(A—cx)], s=23,...,n
0<x,<8,(\)
Consider g(A), A=A, _;+ 1 +pc,, p=0, 1, .... We then have

&(A,_ +1+pc) =maxl0+g,_ (A, +1+pc), c,+g (A, +1+pc,—c),
, e8(\) + g (A, + 1+ pc, — c,5,(\))],

A,_|+l+pc_, ]

CS
Consider the terms in the brackets in (40). The first term exceeds the limit A,_, of the func-
tion g,_,(-) for all values of p. Since ¢, > A,_, + 1 by hypothesis, ail arguments of g,_,(") in
subsequent terms will either exceed the limit A, or be undefined if the argument is negative.
This will depend upon the relative magnitudes of p and x,. However, in no case can the value

be both less than or equal to A,_; and nonnegative. This follows because the argument of g,_,
is

41) A +1+¢(p—-x)

(40) where 8,(A) = min [u,,

CASE 1, p < x,

It then follows that p -- x; < 0. Since ¢, > A, ;+ 1. A, +1+¢c(p —x) <0, and
negative arguments for g, ;(-) are not defined.

CASE 2, p = xg

It then follows that (41) reduces to A,_, + 1, which exceeds the limit of the arguments
for g,_().
Case 3, p > x:
c(p —x) >0.
Therefore A;_; + 1 + ¢,(p — x,) exceeds the limit A,_, allowable for g,_,(:).

This completes the proof.

The import of Lemmas 7 and 8 is to settle the question raised at the end of Lemma 6 on

A=(A_; + 1)

——;—'—— +1for A,,; <A <A, By Lemma 7,
s

this fact implies that ¢, > A,_; + 1, and Lemma 8 tells us that if this latter fact is true then

x,(A) is undefined. Hence, the backwards recursion may be discontinued for the set of values

x,, being tested with the current value of z;, and the next set of x, values may be tested.

what was the significance of v, <
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The significance of Theorem 1 and Lemmas 7 and 8 is that the entire backwards recursion
n
for the optimal values x,(z,), x,_, (zx ~ ¢,x)), ..., x;(zx = ¥ ¢,x;) may be calculated, given
s=2
any value of z,, from the equations (30) to (34) in Theorem 1 without ever carrying out the
forward calculation and storage of lengthy tables. Furthermore, Lemmas 7 and 8 tell us that in
the course of the calculation if we encounter for some s = ¢ that ¢, > A,_, + 1, we may ter-
minate the calculation for the current z, and proceed to begin again with z, — 1.

In the next section we shall give two examples of the use of the theory we have just
developed.

5. HYPERPLANE SEARCH ALGORITHM — TWO EXAMPLES

Example I: Max z = x| + 3x,+ 4x; + 6x,,
2x; + 3x; + 6x3 + 4x4 < 23,
Sx;+4x,+ 2x3+ x4 < 20,
41) x; 2 0, integer, j =1, 2, 3,4.
First we solve (41) as a linear-programming problem, ignoring the integrality requirement. If

we do so, we obtain the solution x; = 0, x, = 2.056, x; = 1.111 and z* =9.5. Hence z* < 9.
Let us now apply the hyperplane search algorithm equations of Theorem 1.

It is readily seen from the constraints of (41) that the variables are bounded as follows:
0<% <7, 0<x,;€2, 0<x;<2, and0 < x4 < 3.

However, if we solve a linear programming problem in which we maximize each variable in
turn, we find the following closer bounds:

0<x; <5, 0<x,;<2 0<x3<1,and0 < x4<0.
Therefore, we have ;
A|-5, Az-ll, A3-14, and A4-14.

We know from the bounds that x;(9) = 0. For A = 9 we have that ¢c; = 3 < 9 < 14 = A,
Therefore, we have that x;(9) = 0, 1. Since the LP solution gave x; = 1.111, we try x;=1.
Then A = 6,and c, = 3 < 6 < 11 = A, Hence we have that x,(6) = 0, 1, 2. Since the LP
solution had x, = 2.056, we try x; = 2, which leaves A\ = 0 and x; = 0. We now have as a
candidate solution x, = 0, x, =2, x; =1, and x, = 0. We see that this solution does satisfy
the constraints of (41) and hence the optimal solution to (41) is:

x; =0, x;=2, x3=1, x¢g=9, and z* = 9.

If we wished, we could check to see if there are any other optimal solutions by checking the
other possibilities. In this problem the truncated value of the linear-programming problem gave
the value of z for the optimal hyperplane.

In general, one may have to reduce z° several times. However, the linear-programming solu-
tion for the objective function is usually close, and frequently the values of x; are reasonably
close.
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Example 2:
Max z = 10x, + 8x, + 7x;,
8x, + 7x,; + 5x; < 34,
X +x,+x3<6,
(42) X1, X3 x3 2 0, integer.

The linear programming solution is x; = 1.333, x; = 4.667, z = 46. Because ¢, # 1, we con-
vert (42) to the following:

Max z = xy+ 10x; + 8x, + 7x;,
8x, + Tx, + 5x; < 34,
X1 +x,+x3;<6,

X1, X, x3 2 0, integer,
(43) xo=0
The following bounds are easily derived:

0<x0<0, 0<x; <4, 0<x,;<4,and0 < x; L6.
We then calculate: ;
Ag=0, Ay =40, A, =72, A; =114, z°=46;

x;(46) =0, 1, 2, ..., min[6. ‘7—6] 40,123 456
We give a sample calculation for x; =0. If this is the case then A\ = 46 and
x;-146‘+4l +1,...,4=1,2,3,4 Ifx;= 1, then A = 38 and x; = —3—’:3—1 &1
3 = 4, 3. Since 4 > 3, this ‘corresponds to g£,(38) = —c0. If x, =2, then A = 30 and
x| = 3‘;—;1 +1, ..., 3 = 3. This gives a potential solution x; =3, x, =2, x;=0. How-

ever, this violates one of the constraints of (42). If x,; = 3, there is no solution, since g,(22)
= —oo, and if x2 = 4, there is again no solution. Repeating this entire process for the remain-
ing values of x; will also yield similar results.

We next try z, = 45. We again find
x;(45) =0,1, 2, 3, 4, 5, 6.

Noting that x; in the linear-programming soluuon was between 4 and 5, a good compulauonal
strategy is to first try 6 rather than zero. If x; =6, then A = 3. This ylelds x; = 0 and x,
nonexistent. We next try x; = 5. This yields A = 10 and x;=0,1. If x; =0, then A = 10
10-1
N E

This is found to satisfy the constraints of (42) and hence we have found the optimhl solution.

and x| = +1, ,» 1 = 1. We have a potential solution x; = 1, x; =0, and x; = 5.

6. COMPUTATIONAL RESULTS

In order to gain some insight into the computational feasibility of the method developed
in this paper, an experimental code was written to solve problems with randomly generated
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data. A program to generate problems such that (1) always has a feasible noninteger solution
was developed. The matrix A4 had full density. This averaged about 90% dense for all matrices
generated because of some random generation of zeros. The range of values for a,, the ele-
ments of 4, was 0 < a,, < 10 for all the problems generated. For the majority of problems
tested, the values of ¢, the objective function coefficients, were in the range / < ¢, < 4.
These were also randomly generated. On the 15 x 50 problem, coefficients in the range 0 < ¢,
< 50 were used. However, only ten of the coefficients were positive. The values of the
coefficients for b,, the components of the requirements vector b, were computed as follows. A
set of values of a "feasible point", x, was randomly generated in the range (0, 4). If x/; are the
components of x,, then

b= a,x,+1
i
By this means the generation of a problem with a feasible solution was guaranteed.

In the implementation of the algorithm, step 2, the determination of lower and upper
bounds, was carried out using equation (5), i.e., a simplex calculation for the larger problems.
For smaller problems, a cruder method for bound determination was used. All calculations
were done on a CDC CYBER 70, Model 72, which is a moderate speed computer. The results
are given in Table 1.

TABLE 1 — Computational Results

- = No. of Mean Time | Least | Greatest | Bounds by
Problems (S) Time Time Simplex
3110 10 0.2 0.05 0.7 No
41|10 10 5.7 0.08 28.6 No
5110 10 22.4 0.08 118.4 No
5115 10 14.8 1.3 89.8 No
5120 1 0.5 - - No
3115 S 0.9 0.09 3.0 No
4 | 15 10 13.2 0.2 50.3 No
4 |20 3 32,5 0.1 97.2 No
5116 1 0.1 - - No
5121 1 1.0 - - No
4 | 24 1 5.6 - — No
4 | 28 1 0.2 - - No
5| 32 1 0.2 - - No
8 | 10 20 2.18 2.0 3.0 Yes
10 | 20 25 12.5 5.0 71.0 Yes
10 | 25 5 140.8 11.0 639.0 Yes
10 | 30 7/ 207.1 19.0 1284.0 Yes
12 | 33 2 26.5 21.0 32 Yes
15 | 40 4 342.8 54.0 782.0 Yes
15 | 50 1 218.0 — — Yes

The results of Table 1 indicate that the method has been used successfully on problems of
relatively moderate size. Further tests on larger problems have not been made for a number of
reasons. First, program and storage optimization would significantly alter the times presented
in Table 1. More importantly, the wide variation in times found for problems of the same size
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is probably due to the nature of the problems, i.e., a matrix 4 with high density and with ran-
domly generated coefficient entries. Real-world problems would be much more sparse and
highly structured. Hence, no definite conclusions can be drawn from Table 1 about how the
method would operate on such problems. Unfortunately, such problems are not available to
the authors for testing. The results of Table 1 are sufficiently encouraging, however, that this
method should be explored further on real problems.

ABSTRACT

An exact method for solving all-integer linear-programming problems is presented.
Dynamic-programming methodology is used to search efficiently candidate hyperplanes for the
optimal feasible integer solution. The explosive storage requirements for high-dimensional
dynamic programming are avoided by the development of an analytic representation of the
optimal allocation at each stage. Computational results for problems of small to moderate size
are also presented.
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ABSTRACT

Infinite-horizon, countable-state, continuous-time Markovian decision
models are solved by formulating as a pair of infinite linear-programming prob-
lems. Expected discounted and average returns are considered as criterion
functions. For both criterion functions, the existence of deterministic optimal
stationary policies is established by solving the associated infinite linear-
programming problems. Computational procedures for finite state and action
sets are discussed by considering associated finite linear-programming problems.

1. INTRODUCTION

In this paper, we develop a methodology that can be used to analyze stochastic dynamic
systems, such as health, transportation, educational, economic, and production systems. These
systems change continuously, due to changes in the environment in which they operate. Some
of the factors that influence these systems are controllable and others are not, hence the
behavior of the systems cannot be predicted completely. This makes it appropriate to treat the
systems as stochastic rather than deterministic. Since some of the factors that influence a sys-
tem are controllable, our object is to determine how to adjust these controllable factors, so that
the system operates satisfactorily. We assume that the possible states of the system are count-
able and that the available actions are finite; they are denoted, respectively by S and 4. The
changes in the system are governed by a set of known numbers g;(a) (i, j €S, a €A), called
the transition rates. The transition rates may be interpreted as probabilities; that is, if at time ¢
the system is in state i, /€S, then the approximate probability that the system is in state j #= /
after time 8¢ is given by ¢,(a)8s, and the probability that it remains in the same state is
[1 = £,4,4,(a)8t]. The system may be observed at any time and classified into one of the
possible states /, /i€S. If the system is in state /€S and an action a € 4 is taken, then the sys-
tem receives a bounded return r(i, a) per unit time and moves to the new state j €S governed
by the transition rates g,,(a). Under certain general conditions on {g;(a)}, the trajectory of the
stochastic dynamic system can be represented by a Markov process. In view of this, we use the
words system and process synonymously.

We are concerned with the optimal control of the type of stochastic systems described
above. For controlling such systems we need a rule that prescribes the action to be taken; this
rule, denoted by =, is called a policy. It is assumed that the policy = is specified by a family of
measurable functions {d, (1)}, where, for each /€S

(i.1) Yd,()=1andd, () >0, € A.

431
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Thus the function d,(r) may be interpreted as the probability of taking an action a, a €4, at
time 1, given that the current state of the system is i€S. A policy = is called Markovian if
d,(t) =1 or 0, and it is called stationary if d,(-) is independent of rand satisfies (1.1). A sta-
tionary policy is called a deterministic stationary policy if, for each i, d,, =1 or 0, /€S, a€A.
That is, a deterministic stationary policy specifies a single action depending upon the state of
the processes but independent of time .

When a policy = is applied, the transition rate from a state / to a state j is given by
(1.2) q,(t. m) = Y q,(a) d,(1), i, j €S.
a
Let Q(1, w) be the transition rate matrix whose (i,j) " element is given by (1.2). For each /€S,

the transition rates are assumed to satisfy:
(1.3) : zq,,-(t, m) =0, ¢g,(t, 7) 20, j # i, and
/

(1.4) 0<|qg,(t, | <M< oo,

Under these assumptions, it was shown in Ref. [13] that, for any given Markov policy =, a
unique transition probability matrix

(1.5 F(st,m) = f, (st,m), i, j € )

exists, and that for almost all + > s it satisfies the Kolmogorov differential equations:

(1.6) 9F—(‘a:—’i - F(stm) @ (), with F (s, 5, #) = L.

If « is a stationary policy, then the transition rate matrix Q is independent of ¢, and the
transition probability matrix F defines a time-homogeneous Markov process x (1, 7).

The expected rate of return out of a state /i, when the Markov policy  is given by
a.mn Gt m) = Xrl a)d, (1), t 20, €S
a -

Since the rate of return r(i,a) is uniformly bounded, it is obvious from (1.7) that r(i, ¢, w) is
uniformly bounded in iand 7. For any Markov policy 7, using the above definitions and nota-
tions, we define two economic criterion functions. The first one, the total expected
discounted-return function, which is given by:

(1.8) V@, a, m) = _’;m e Zf,-,- (o, t, @) r (G, t, w) dt, €S,
J

where a > 0, is called the discount factor. The other, the long-run expected average-return
function, is defined by:

g i

1.9) oG, ) = lim 77! S Er0tmrGuma  ies
Lt ;

If the limit in (1.9) does not exist for any i € S, then we set ®(i, ) = —oo for that i

A policy m* is called an a-discounted optimal policy if ¥(i, a, #*) 2 ¢(i, a,m), i€S,
and it is called an average optimal policy if ®(i, w*) 2> ® (i, w), /€S, where = is any Markov
policy.

The object of this paper is to show the existence of an optimal deterministic stationary
v policy for the discounted and the average-return case, by considering a separate pair of infinite

T — —L —
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linear-programming problems. A linear-programming problem is called an infinite linear-
programming problem if the number of variables and constraints are countably infinite [6].

The methodology developed here is important mainly for two cases which are currently
under investigation by the author. In the first case, using the results developed by Fox [9], and
Gustafson and Kortanek [10], we can obtain an approximate optimal policy, along with the
corresponding return for the criterion functions (1.8) and (1.9) by considering a series of finite
linear-programming problems. It is also possible to estimate the error between the approximate
and optimal solutions, and the convergence rate. In the second case, that of the discounted
model, the methodology can be used to parametrize the discount factor. This enables us to
identify the interval in which an optimal policy is invariant. The parametric analysis of the
discount factor will be, in a certain sense, an extension of the results given by Denardo [3],
Howard (Ref. [11], p. 88), Miller and Veinott [16], Mine and Osaki (Ref. [18], p. 22), and
Veinott [22].

Semi-Markovian or Markov renewal decision processes are also used to study stochastic
systems (see Ross, Ref. (20], p. 156). In this case, the decisions are made only at the instant
of transitions, whereas in the continuous-time Markovian decisions models the decision are
made at any time. As pointed out by Doshi [5], the optimal policy we obtain using semi-
Markovian decisions might result in suboptimal operation of the system. In addition to this,
with continuous-time Markovian decision models we need less data than we do with semi-
Markovian decision models to analyze a stochastic system. For these reasons, continuous-time
Markovian decision models are preferable to semi-Markovian decision models for studying cer-
tain stochastic systems.

In Section 2, the existence of a-discounted optimal deterministic stationary policies is
proved for all Markov~policies. In Section 3, the analogous results for the average-return cri-
terion function is established. Finally, in Section 4, the computational aspects of the results
obtained in the earlier sections are discussed when the state space is finite.

2. COUNTABLE-STATE DISCOUNTED-RETURN MODEL

In this section, the following results are established by formulating the expected
discounted-return model as a pair of infinite linear programs called primal and dual problems.
Primal and dual problems always have bounded feasible solutions. There is one-to-one
correspondence between the set of dual feasible solutions and the set of stationary policies.
Both problems have bounded optimal feasible solutions such that the corresponding values of
their objective functions are equal. At least one dual optimal feasible solution is capable of
interpretation as an a-discounted optimal deterministic stationary policy. Finally, a sufficient
condition is given which will guarantee that every dual optimal feasible solution will yield an
a-discounted optimal deterministic stationary policy.

The methodology given in this section provides the means of obtaining an approximate
optimal policy for the criterion function (1.8), and of conducting parametric analysis of the
discount factor a. These could not have been done by using the results given in Ref. (14] and
the finite state policy interaction methods because of computational difficulty. The results
obtained here are a generalization of discrete-time results proved by Evans [8]. Some tech-
niques given by him will be used to establish our results.

B —
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Let {y,; j€S) be a set of positive number such that 3 y, =1, and g be a vector defined

5 5 1 B
on S with bounded components. Consider the following pair of infinite programs:

PRIMAL I DUAL I
Inf ¥ vy,g sup ¥ Y w, r(i, a)
J i a
subject to subject to
ag-Yaq,a) g > rlia), LI walad; =gl =y,
/ i a
i€S, a€A. wi, 20, JES, a€A.

LEMMA 2.1 The primal always has a bounded feasible solution.

PROOF: Let ¢(i a7*) = sup¢ (i a, w), i€S. Then, it is known [14] that
(i, «, m*), i€S, is the unique solution of the functional equation
ag, = max, [r(i,a) + Y q,(a) g,-], i€S.
j

Taking g, = ¥(i, @, m*), i €S, satisfies the primal constraints. Hence, {$(i, a, m*)} is a primal
feasible solution. The value of the objective function is given by

Ty G a7 =Sy |f, e T7, @ w*) r Gow®) dil
] 7 J

< [27] i— [sgplr U 1r‘)|]
Since Yy, =1, the r(j, =*) are uniformly bounded, and a« > 0, Yy, (i a, #*) is a finite

number.
LEMMA 2.2 The dual has a bounded feasible solution.

PROOF: Let 7 be any stationary policy specified by {d,}. Define
.1 ' Ug= 27 fo e f,(t, w)d,dt, i€S, ac€A
!
Now we will show that {u,,)is a bounded dual feasible solution. It is obvious that u;,, = 0, /€S,

a€A. Substituting u,, from (2.1) for w, in the left hand side of the dual constra.nt, we arrive
at:

22 [a 6,/ - q,,(a)l 27, J;” e-a’f,,- (1, m) d,dt, j € S.
re !

Since the series converges absolutely, we obtain after some simplification

Y f: e~ [a VAR WA UR N M (w)l d, j € S.
1 i

Using (1.6) and integrating by parts, we can show that this is equivalent to y;, j€S. Substitut-
ing the value of {u,) from (2.1) in the dual objective function for w;,, we obtain after some
simplification

2.2 Y Tu,rG a)=Ly vl a, m).
e !
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Since 2, y:=1, and ¢(/, a, 7) is uniformly bounded in /, a, and , the righthand side is
finite. Hence, {u,,} is a bounded dual feasible solution.

THEOREM 2.1: There is one-to-one correspondence between the set of dual feasible
solutions and the set of stationary policies.

PROOF: Let {w,]} be any dual feasible solution. First we will show ¥ w, > 0, j€S.

The dual constraints may be written as

(2.3) [az W;a] [a - g,(a)] - E/ 02 We q,(a) =y, jES.
Since y, > 0, j€S, and {g;,(a)} satisfies (1.3), we have

(2.4) I w,>0.

Define

2.5 d, = {;h i€S, a€A.

By definition, the set {d,,} defines a stationary policy, say 8. If {u,) is the set of values given
by (2.1) when the policy 3 is applied, as shown in Lemma 2.2, {u,,) is a dual feasible solution.
If :

(2.6) Ug=w, €S, a€A,

then we can conclude that there is one-to-one correspondence between the set of feasible solu-
tions and the set of stationary policies. Now we will show that (2.6) is true.

Let w, = 2 w,, i€S, and W, and y represent the row vectors whose /" elements are

a
given by w; and y,, /€S, respectively. Using this notation and (1.2), we may write 2.3 as

since [a/ — Q(8)] is the resolvent of the operator Q(8). From Dynkin (Ref. (7], p. 24) we
obtain

W = j; ety F (1, 8)dt.
The i” component of W is given by
T wo=w= )T j;- e~f, (¢, 8) dt, i€S.
a !

Using (2.1) and (2.5) we obtzin:
Iwe= Yu, Ii€S.

From this, (2.1), and (2.3) we conclude that (2.6) is true.

LEMMA 2.3: If (g) and {w,) are, respectively, primal and dual feasible solutions, then
(2-1) z"’ ‘/ > z 2‘0,, ’(l. a).
/ i a




436 P. KAKUMANU

Since the infinite series that appear in both primal and dual are absolutely convergent, the
proof of the lemma is similar to the corresponding result in finite linear programming [21].

Since the primal and dual problems have bounded feasibie solutions, the optimal solutions
for both problems will always exist. In the following theorem, we establish that there is no
duality gap, that is that the values of the objective functions for the corresponding optimal
feasible solutions are equal. Then, using the results developed here, we establish the existence
of an a-discounted optimal deterministic stationary policy.

THEOREM 2.2: There is no duality gap.

PROOF: Let {w,] be a dual optimal feasible solution and = * be the corresponding sta-
tionary policy obtained from {w,) through (2.5). Now, following the argument given in
Lemma 2.2, we obtain

(2.8) Y warli,a)=Xy ¥l a 7).

Since y; > 0, /€S, and the same = * maximizes y(/, «, m) over all stationary policies for
every /€S, we obtain

Wi, a, #*) =sup (Y(i, a, w)], i€S.
In Lemma 2.1, it was shown that g =y (i, a w*), /€S, is a primal feasible solution. From

(2.8) we conclude that {g;’} is a primal optimal feasible soluﬁon, and that the values of the pri-
mal and dual objective functions are equal.

THEOREM 2.3: An a-discounted optimal deterministic stationary policy always exists,
and there is at least one dual optimal solution that will give this policy.

PROOF: Let {g’} be the optimal primal feasible solution. Consider the sets

T, = Iallag‘, = r(la) + Ya,(a) g, a, €A}, I€S,
!

where a,€ 4 is the action taken when the state of the processes is /€S. For each state / €S it
can be easily shown that T is not an empty set [14]. Let us define

a’ = mgn {t|a, €T),

. | ifa = a/,and
Via =10 otherwise.

Then a policy o * can be obtained from {v,} using (2.5), and it is clear that o *is a deterministic
stationary policy. As in Theorem 2.1, we can show that {ve) is a dual feasible solution. Using
(2.2) and Theorem 2.2, we may write the dual objective function as

TXuterloa) =Ty G a o) = Tye:

Hence, o * is an optimal deterministic stationary policy, and {vi) is the optimal dual feasible
solution that will yield this policy.

In Theorem 2.6, we give a sufficient condition that will guarantee the optimal determinis-
tic stationary policy for every dual optimal feasible solution. We can prove the following two
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theorems easily using Lemma 2.3, Theorem 2.2 and the duality theory of finite linear program-
ming.

THEOREM 2.4: The necessary and sufficient condition that any primal {g,} and dual {w,)
feasible solutions are optimal to respective problems is that

Z*gg,-- I3 w, r, a).

THEOREM 2.5: Any pair of primal {g,} and dual {w,} feasible solutions is optimal to
respective problems if and only if

"W lag, -Yaq,(a)g - r(i,a)] =0, /€S, a€A,
J
and

3[ YYw,ad,— a,,(a)] =0, /€S

THEOREM 2.6: If there is a primal optimal solution {g,} such that
(2.9) ag/=r(i, a) + ¥ q,(a)g/
/

for only one a€A for each i€S, then every dual optimal solution yields an a-discounted
optimal deterministic stationary policy.

PROOF: Let a,” € 4 be the unique a for which (2.9) holds, that is
(2.10) ag*=r(, a) + Y q, (g, i€S.
i

For any other a € A, we have
(2.11) ag’ > r(i, a) + Y q,(a) g/, i€S.
i

Let {w*,} be any dual optimal feasible solution. Then from (2.4) we have
(2.12) T wo >0, i€S.
a

From Theorem 2.5, (2.10), and (2.11), for each i €S, we have
(213) w,20ifa = a*and
.= ( for all other a € 4.

From (2.12) and (2.13), we obtain for each /€S
w, > 0ifa =a* and
= () for all other a € A.
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Now define

d,=-——=10r0, i€S, a€A.

W
2 Wi;
b

Hence, by Theorem 2.1, o *is an a-discounted optimal deterministic stationary policy and the
corresponding optimal return is give by g = ¢(i, a, 0 *), /i€S.

3. COUNTABLE-STATE AVERAGE-RETURN MODEL

In this section, by considering a pair of infinite linear programs we establish the existence
of an average optimal deterministic stationary policy. The methodology that will be developed
in this section is analogous to that given in Section 2. In view of this, we will briefly indicate
the proof for the main results and the rest will be stated without proofs. Consider a pair of
infinite linear programs associated with the average-return model:

PRIMAL il ' DUAL II
Inf A Sup ¥ ¥ x;, r(ia)
subject to subjec't tao
h— Zq,-j(a) v, 2 rlia), _ZZ X, ¢;{a) =0, j€S, and
i€S, a€A. 0 SN
]

Xip 20, i€S, a€A.

Taroughout this section we need the following assumption:

ASSUMPTION 3.1: For each deterministic stationary policy , the resulting Markov pro-
cess x (¢, m) is positive recurrent with only one recurrent class.

THEOREM 3.1: Primal and dual problems have bounded feasible solutions.

PROOF: The existence of bounded primal feasible solutions is proved by use of the argu-
ment given in Lemma 2.1, and Theorem 3.1 of Ref. [15]. The existence of dual feasible solu-
tions can be shown as follow. Let 7 be any stationary policy specified by the set {d,,}. Con-
sider 2

1 T
(31) Yia ™ lim — L fﬂ (l. 77) d,-, di, l€S.

T—oco

It is obvious that (y,,) satisfies nonnegative restrictions and that ¥, ¥ v, = 1. Substituting the

] a
value of y, from (3.1) in the left-hand side of the first dual constraint, after some
simplification we arrive at

T=o T

him 1 j;rlzf,, . ma, (n)l di, JES.

We can show that this is equal to zero by using (1.6) and integrating by parts. Since r(i, a) is
uniformly bounded in i and g, it follows that 3, ¥ v, r(i, @) is finite. Hence, Vi is a

]
bounded dual feasible solution. i
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THEOREM 3.2: There is one-to-one correspondence between the set of dual feasible
solutions and the set of stationary policies.

PROOF: Let {x,} be any dual feasible solution. As in Theorem 2.1, we can show that

‘xlﬂ
; i€S, a€A,
Xip

(3.2 dg=
£

defines the probability distribution on A4 for each i€S. This shows that the dual feasible solu-
tion {x,} yields a stationary policy, say .

Let p,(w), i €S, be the steady-state probabilities of processes when the stationary policy o
is used. Under Assumption 3.1 p,(w),i €S, satisfies the following conditions:

(3.3) : Yp.(m) g, (m) =0, i€S,
Yp, (m) =1, and p,(7) >0, i€S.

Using (1.2), (3.2), (3.3), and dual feasible solution {x,,}, we obtain
(3.4) Y x,=p, (@), i€S.
- a

T
Noting that p, (7) = ;im T j; fi (t, @) dt, i€S, and from (3.1) and (3.4), we have

3.5) Tx, =Yy, (€3
From (3.2) we have, for i€Sand a€4, y, = Y ypdo= Y Xpdyy= X4
b b

This shows that the stationary policy = yields a set of numbers {y,,} from (3.1), which are
equal to the dual feasible solution that is used to obtain =, which proves the theorem.

For the primal and dual problems considered in this section, the results corresponding to
those of Lemma 2.3 and Theorems 2.4 and 2.5 can be proved by use of the arguments given in
Ref. [21] for finite linear programs. In the following theorem, we establish the existence of
optimal primal and dual feasible solutions with no duality gap and the existence of an average
optimal deterministic stationary policy. The results correspond to Theorems 2.2 and 2.3.

THEOREM 3.3: Both the primal and dual problems have bounded optimal feasible solu-
tions with
(3.6) Inf h=sup 3 ¥ x,r(i, a),

/I a

and there exist’s an average optimal deterministic stationary policy.

PROOF: It was shown in Theorem 3.1 that a bounded primal feasible solution (4% v,)
exists. Let

TI- Ilh. - ’(I. a,) s ZQI, (a/) V,.. IES].

heetuendio, NEEEEE RNt
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where a, is the action taken when the process is in state /€S and at least one such a, exists.
Let ¢, = minf{a, | /€T), i€S, and o * be a policy that prescribes the action a,” when the pro-
cess is in state /€S. It is clear that o *is a deterministic stationary policy and satisfies.

h*=r@, o) + Y q,(@*)v/, i€S.
Vs M

Then, from Theorem 3.3 of Ref. [15], we have
3.7 h* =®(, a*), i€S.

Let {y,) be the solution obtained from (3.1) when the policy o *is used. In Theorem 3.1
it was shown that {y;} is a dual bounded feasible solution. The corresponding dual objective
function is

XY varl a).
Substituting the value for y, from (3.1),
T
i -1 - ;
’Eaz hl-'.nm T J; Si (¢, w) d*, dt] r(i, a), l€S,

where {d,} corresponds to o * Since all the terms are positive, the limit and the summation
signs can be interchanged. Using (1.7) and (1.9), after some simplification we arrive at

(3.8) Y Yyartia) =0 %), [€S.

We can show from (3.7) and (3.8) that (h* v/} is a primal optimal solution and {y} is a dual
optimal feasible solution as the solutions attain their lower and upper bounds respectively. The
policy o *is an average optimal deterministic stationary policy.

Under certain conditions similar to those given in Theorem 2.6, it can be proved that
every dual optimal feasible solution is capable of interpretation as an average optimal deter-
ministic stationary policy. All the results established in this section can be shown easily when
the time parameter ¢ is discrete instead of continuous.

4. FINITE-STATE: CASE COMPUTATIONAL PROCEDURES

In this section we assume that the state and action sets are finite; they are denoted respec-
tively by S = (1,2, ... ,m}) and 4 = (1,2, ... ,L}, where m and L are finite positive integers.
The summations over /, j, and k vary from-1 to m, and over a and b from 1 to L. When the
state and action sets are finite, the primal and dual problems given in Sections 2 and 3 can be
written as standard linear programs.

The main purpose of discussing the finite state models is to show their use in obtaining
the solutions for the infinite linear-programming problems discussed in Sections 2 and 3. This

~ will be done by solving a series of finite-state problems whose solution is known to converge to

that of the countably infinite state problem [9]. For a finite state space, Denardo (2], Howard
[12], Mine and Osaki [18], and Osaki and Mine (19] have formulated Markovian renewal pro-
gram problems as finite linear-programming problems. For the reasons stated in Section 1,
sometimes it is preferable to study the decision process as a continuous-time Markovian process
rather than as the Markov renewal process.

We first discuss the discounted-return model. Mine and Tabata [17] formulated finite-
state continuous-time Markovian decision models as standard linear-programming problems by

-
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using various transformations. These transformations limit the use of linear-programming tech-
niques for solving the continuous-time Markovian decision models. The methodology
developed in Section 2 wil! allow us to formulate the continuous-time models as a pair of stan-
dard linear programs without the help of any type of transformation. This type of formulation
is very important in obtaining the solution to continuous-time Markovian decision models by
solving the associated linear programs:

PRIMAL 111 | DUAL III
min Yy g, max ¥ ¥ r(i, a)w,
J i &
subject to subject to
ag;— Yq,(a)g; 2 rGia), | Taw,-F ¥ w,q,(a) =y, jES,
/ a /I a
i€S, a€A. w, 20, jJES, a€A.

The numbers y;, j€S, are strictly postive and add up to unity. The results that were
proved in Section 2 hold in particular when the state space is finite. We now show that every
dual optimal solution obtained by the simplex method may be interpreted as an a-discounted
optimal deterministic stationary policy, and that the corresponding primal optimal solution
yields an optimal discounted return.

THEOREM 1.1: There is one-to-one correspondence between the set of dual basic feasi-
ble solutions and the set of deterministic stationary policies.

PROOF: Let {w,} be any dual basic feasible solution, that is, at most m of the w,, 's are
strictly positive. In Lemma 2.2 we showed that 2 w;, > 0 for each i€S. Hence, there is only

a
one w, > 0 for each /€S: Let the probability of making action a € 4 when the process is in
state / €S be defined by

w
d,= <=—=1o0r0,
(5.1) 2 W

b

depending upon whether w;, > 0 or not. Then (d,,} defines a deterministic stationary policy
denoted by o *.

Using the argument given in Theorem 2.1, it can be shown that the deterministic station-
ary policy o * corresponds only to {#,). This proves the theorem.

From this theorem, it follows that the dual optimal feasible solution obtained by using the
simplex algorithm may be interpreted as an a-discounted optimal deterministic stationary pol-
icy. The corresponding optimal expected discounted return is obtained from the primal optimal
feasible solution. '

We now discuss the finite-state and action-set Markovian decision models and the associ-
ated linear programs for the average-return case. As in the discounted case, the infinite linear
programs given in Section 3 can be written as regular linear programs given by

PRIMAL IV DUAL IV
min h max ¥ 3 x, r(i, a)
subject to s subject to

¥ x.4q,(a) =0j€S, and
/I a
h=%a,(@ v, > rGa), | TLxa=1,
J i @
I€S, a€A. X, 20, i€S, a€A.
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It should be noted that the dual problem has (m + 1) constraints, but it is easy to show
that at least one of the dual constraints is a redundant constraint. Hence any basic feasible
solution can have at most m of the x, different from zero. Since any dual feasible solution
{x,,) must satisfy ¥ x, > 0 for each i €S, we conclude that all basic feasible solutions are non-

a
degenerate. It can be shown that each dual basic feasible solution corresponds to a determinis-
tic stationary policy and vice versa. Every dual basic feasible solution can be interpreted as a
deterministic stationary policy by defining

xl
d,=——=——, i€S, a€A.
fob

b

If the simplex method is used to solve the dual problem, we will always get an optimal
basic feasible solution. This optimal solution yields an average optimal deterministic stationary
policy, and the corresponding primal optimal solution will give the average optimal return
h* =®(, o*), i€S.

When the state and action sets are finite, the above methodology will give an alternate
procedure for finding the optimal policies and the corresponding returns. The methodology also
allows us to conduct a sensitivity analysis of the various parameters in the model, using existing
linear-programming codes.
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RENEWAL PROCESSES OF PHASE TYPE

Marcel F. Neuts

University of Delaware
Newark, Delaware

ABSTRACT

This paper discusses a class of analytically and numerically tractable renewal
processes, which generalize the Poisson process. When used to describe in-
terarrival or service times in queues, these renewal processes lead to computa-
tionally explicit solutions which involve only real arithmetic. Previous
modifications of the Poisson process, base. on the Erlang or the hyperexponen-
tial distributions, appear as particular cases.

1. INTRODUCTION

In many stochastic models, tractable analytic or numerical results are usually only
obtained if certain random variables are assumed to have a negative exponential distribution.
This accounts for the wide use of the Poisson process as an arrival process in the analysis of
queues and counters, the birth-and-death assumptions underlying epidemic models, and the
negative exponential durations ascribed to service times, lead times, headway in traffic, and a
large variety of other random time intervals. The classical memory-less property, which elim-
inates the drastic growth in dimensionality due to conditioning, is the underying source of all
simplifications that we owe to the negative exponential distribution.

The limitations of the exponential distribution in modeling real durations are well-known.
A large probability is assigned to the shorter time intervals, and the proper unimodality or mul-
timodality of many real situations cannot be represented. This was recognized by A. K. Erlang.
It led him to introduce the probability distributions which bear his name. In practice, it is now
common to assume Erlang or hyperexponential (finite mixtures of negative exponentials) distri-
butions to model random time durations which are too far removed from the exponential case.
These distributions have a greater versatility and allow for relatively tractable expressions under
repeated conditioning.

With these desirable properties in mind, the author [3] introduced the probability distribu-
tions of phase type, of which the Erlang and hyperexponential distributions are very special cases.
Discusssions of the algorithmic simplifications introduced in the study of some problems in
queues and branching processes are given in Refs. [4], [5], [6] and [7].

The present paper deals spccifically with renewal processes in which the distribution of the
time between renewals is of phase type. The material developed here is basic in the discussion

*This research was sponsored by the Air Force Office of ‘Scientific Research, Air Force Systems Command, USAF,

under Grant No. AFOSR-72-2350 B. The United States Government is authorized to reproduce and distribute re-
prints for governmental purposes notwithstanding any copy right notation hereon.
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of certain queueing models which, to date, have not been solved in a computationally con-
venient form ([7].

HISTORICAL BACKGROUND

We first review some definitions and state some results established earlier. In this paper
we only concern ourselves with probability distributions of phase type on [0, o), bearing in
mind that there is an entirely analogous development of probability distributions of phase type
on the nonnegative integers.

We consider an (m+ 1)-state, continuous-parameter Markov chain with states 1, ...,
m+1, whose infinitesimal generator Q has the form
T T"l
0o Ol

where T is a nonsingular m xm matrix and T° is an m-vector. The diagonal elements of T are
negative. All other entries of T and the components of T® are nonnegative. Moreover

2) Te+T°=0 wheree=(,1, ..., 1.

(1 -

The state m+1 is absorbing. We require that all other states be transient. The necessary
and sufficient condition for this is that the inverse T~! exists. In this case eventual absorption
into the state m+1 from any initial state i €(1, ..., m} is certain.

The vector of initial probabilities is denoted by (a.a,.)), where a is an m-vector such
that 0 < @e < 1. The probability distribution F(-) of the time till absorption in the Markov
chain Qis then easily seen to be

3) F(x) =1 — aexp(Tx) e, for x > 0.

The probability distribution F(-) is said to be of phase type. Henceforth this phrase will be
rendered as "F(-) is PH." The pair (a. T) is called a representation of F(). If a,,,, > 0, the
distribution F(-) has a jump of height a«,,,, at the origin. All other probability mass is distri-
buted on (0, o), according to a density given by :

4) ¢(u) =a exp(Tu) T foru > 0.

The moments u), K > 1, about the origin all exist and are given by the formula
(5) pi=CD*Kla T e, fork > 1.

EXAMPLES: (a) For the exponential distribution with parameter A, the matrix Qis given
by

-A A
00

so that F(-) then has the simple representation (1, —\A).

; anda; =1, a; =0,

(6) 0=

(b) The generalized Erlang distribution obtained by the convolution of m exponential dis-
tributions with parameters A, ..., A, has as one of its representations the pair (@, T) given
by

x>
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a=(1,0, .., 0
bt :
g 2
5 Tl e at
6 6 o A

with T = (0, ...,0, \,)"

(c) The hyperexponential distribution

m -—
(8) Fx) = a1 -, x>0

(=]
may be represented by @= (ay, ..., a,) and T =diag(=\,, —\y, ..., =\,), With
Too (kg <o s Kid.

For any representation (a, T), we can define a matrix Q* by

9) Q* =T+ T°A4A°
where 7° is an mxm matrix with m identical column vectors given by the vector T°. The
matrix A° is defined to be (1 — a,,,) " digg(a,, ..., a,). The matrix Q*is easily seen to be

a conservative stable matrix. It may be considered to be the transition probability matrix of an
m-state Markov chain, which has a close relationship to the probability distribution F(-). As
shown in [3], we may always delete possibly superfluous states in the original chain to insure,
without loss of generality, that the matrix Q* is irreducible.

The significance of Q*is as follows. At any time that an absorption occurs in the Markov
chain Q, we instantaneously perform one or more independent multinomial trials with probabili-
ties ay, ..., a,4, until one of the outcomes 1, ..., m occurs. The state i€fl, ..., m} so
obtained is then treated as a new initial state for the Markov chain Q. The process so obtained
is an (m+1)-state Markov chain in which the state m+1 is an instantaneous state. The process
obtained by requiring the path functions to be right-hand continuous is again a Markov chain
with the m states {1, 2, ..., m} and the infinitesimal generator Q* It is routinely verified that
the times between the (instantaneous) visits to the state m+1 are independent and identically
distributed with the common distribution F(-).

The remainder of this paper deals with a unified treatment of renewal processes of phase
type. For use in the sequel, we recall the following result, proved in Ref. [3]

THEOREM 1: If the probability distribution F(:) is PH with representation (a, T) then
the probability distribution

(10) P =4 [ 0= Ful au x >0,
m 70
is PH with the representation (&, 7) where # is the unique probability vector, satisfying

wQ* =w(T + T°A9) =0,
(11) me=1.
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REMARK: The straightforward proof of Theorem 1 is given in Ref. [3]. It is worth
pointing out that this result is highly intuitive. In the stationary version of the Markov chain
Q°*, m, is the probability of being in state i, 1 < i < m at a given time. The PH-distribution
with representation (ar, 7T) is clearly the probability distribution of the time till the next visit to
the instantaneous state m+1, i.e., until the next renewal.

COROLLARY I:
(12) (A=ap) ' ®wT=1/u’

PROOF: Formula (11) leads to

(13) al =-(1-ap,,y ®TI)a,
and hence
(14) me=—(1—-a,,) ' @TIaT''e=(0~-a,) ' @TIu,=1.

THEOREM 2: The renewal density of an ordinary PH-renewal process is given by

(15) () =0 —a,,) ‘aexpl(T + T°491] T°, for t >0,
and we have
(16) lim (1) = L.

o K

PROOF: The quantity ¢(r)dr is the expected number of renewals in [¢, + + dt). If at
least one renewal occurs, the expected number of renewals in [r, + + dt) is given by
(1 — a,,+) . The probability that there is at least one renewal in [r, + + dt) is also the proba-
bility that, in the Markov chain Q®* a visit to the instantaneous state m+1 occurs during that
interval of time. The latter probability is given by

a17) (1 —ap4) 'aexp(Q*) TCdr,
so that (15) follows.

Since Q*is irreducible, so is the stochastic matrix exp(Q*). In fact, one may prove that
exp(Q*) is strictly positive, and therefore aperiodic. The limit matrix of exp(Q*), as t — oo,
is given by Il, with I1;; = = ;, for 1 < i, j € m. It follows that
(18) fim (1) = (1 — a,,) 2 @M T= (1 —a,,) ) (@TY = L,

(=00 3

by (12).
Remarks on Computation
We see that &(1) = (1 — a,,,) "' ¢,(t), where ¢,(:) is the renewal density of a PH

renewal process with underlying PH-distribution F,(-) with representation (8, 7}, where
B= (1 -a,,) 'a We can therefore conveniently assume that a,,,, = 0, in computing ¢{7).

e ik e = L A R e WSRO

A e+ e~
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We only need to soive the system of linear differential equations
v'(t) =v(t) (T + T°4°), for t 20,
(19) v(0) = a,

by any one of a large number of numerical methods. For each computed vector v(t), ¢(¢) is
then given by

(20) d(1) =v(r) T

PH-renewal densities can therefore be readily computed by entirely elementary methods.
This is of some practical and pedagogical interest. We also see that the stationary renewal den-
sity ¢,(¢) is obtained by choosing the initial state of the chain Q* according to the probability
vector w. We obtain the expected result

6,(1) = (1 — ) 'wexp(Q*) T°
(21) =(1-a, ) 'aT°=1/u,.

2. THE NUMBER OF RENEWALS IN AN INTERVAL

Let P,(n, t) be the conditional probability that at time ¢ the Markov chain Q*is in the
state j€{1, ..., m} and that n renewals have occurred in the interval (0, f), given that at time
t = 0+ the chain Q* was in the state i€{l1, ..., m}. The matrix with entries P,(n, 1) will be
denoted by P(n, t). It is then easy to see that the matrices P(n, t) satisfy the recurrence rela-
tions

P(0, t) = exp(Tt), for ¢t > 0,

and

22) P(n, ) = (1 —ap) Lagh [ explTC — )] T°4°P(a —v, u) du

=1 —ay) f‘,a;,:,', LIP(n — v, u)T°A°explT(r — v)] du,

v=]

forn>21,120.
The matrix probability generating function

23) PG )= 3 P(n, 02 |2 €1,
n=0

is given by the following theorem:

THEOREM 2:

(24) Pz, t) =exp{lT + (1 —app 2) ' (1 = apyy) 2 T°A°]tl. for t 2 0.

PROOF: The recurrence relations (22) lead to
P*(z, t) = exp(Tt) +

(25) (1 = apu2) ™ (1 = @)z [ explT( = )] T°4 P*(, u) du.
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It is well-known that exp(—Tt) exists and is the inverse of exp(7t) [1]. Left-multiplying in
(25) by exp(—Tr) and differentiating the resulting expression with respect to 1, we obtain,

exp(=Tr) % P*(z, 1) = exp(~T1) T P*(z, 1)

(26) + (0 ~apy2)'z(1 —a,,,) exp(=Tt) T°A°P*(z 1),
which leads us to the differential equation
(27) % P*(z, ) = [T+ (1 — ap12) ' (1 = ap4y) 2T °4°] P*(z, 1),

with the initial condition P*(z, 0) = /. It now follows directly that P*(z, ) is given by (24).

REMARKS: (a) Formula (24) generalizes the classical formula for the probability gen-
erating function of the Poisson distribution. For m=1, T=—\, T°=A, and a,=0, a;=1, we
obtain

(28) P*(z, t) =exp(—A +Az) ¢

(b) By a series expansion with respect to z in (27), or by repeating the argument used in
proving (26), we see that the matrices P(n, t) satisfy the system of linear differential equa-
tions.

PO, t)=TP@O, t)=p©, ) T

and
P(n, 0 =TPn )+ —ap.) Satii TA°P(—v, 1)
v=| L
29) -P(, DT+ =-apy) SaZhPln—v, OT4",

v=1

forn > 1, t 2 0, with p(n, 0) = §,,/, for n = 0.

Except for very special cases, it will be necessary {o solve the system (29) by numerical
techniques. We also note that in the case a«,,; = 0, which occurs in most practical applica-
tions, all the preceding expressions simplify considerably. -

THEOREM 3: For t 2> 0, we have

30) lg—t P*(z, t) e] =ui ' te+ (1 =apy) ' [ —exp(Q*)] (+*N1— Q") ' T",
z=]

where 7* > max[-Q,].

PROOF: Expanding the matrix exponential in Formula (24) and differentiating with
respect to z, we obtain

oo n n=| i
3D [i P, :)] =(=ap)? T o7 L@ 7A@
ot z=] a=l M° =0
= i e { S .- 5 —

|
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Right-multiplying on the right by e we obtain, since Q*e = O,

(32) [% P*(z, t)e] -l = ap)™ z - (@) T

2=l n=1

()
= (1 =-ap)”" J:’ exp(Q*u) du T".
The evaluation of the latter integral is of some independent interest, since the (i, j)-entry of
the matrix exp(Q*u)du is the expected amount of time spent in the state jin (0, 1), given
that the Q‘-cgam starts in the state i.

It is easily verified that the matrix
33) Pi=1+2 00

is irreducible, is stochastic, and has the invariant probability vector #. This implies that the
matrix / — P, + II is nonsingular [2]. We have the relations

(34) l—-P,+II-l'l—%Q’. H-H[H-;I:Q']-

We now see that

j;lexp(Q’u) du (n_ % QO] z G + 1)' (Q.) [ 1_1. 01

v=0

(35) =1t — —Tl—, [exp(Q*%) - 11,

from which it follows that

(36) I% P*(z, t)e] =(l—-a,.)'tOT°

z=]
-
+ (0 =apy™! % [1-—exp(Q*)] Iﬂ - ;1—, Q'] i
Using Corollary 1, we obtain (30).

COROLLARY 2: The expected number 4 () of renewals in (0, 4 is given by

H@t) = (1 - a,,ﬂ"al% P*(z, t)elz-I

37 = 4+ =) 2all - exp(Q*)] (r°1 — Q%) ' T°,
and the expected number of renewals in [0, 4 is given by H(1) + (1 = a,,,)) 7.

REMARK: Except for the inverse of the matrix 7 *II — Q% which needs to be evaluated
only once, the numerical computation of the renewal function again reduces to the computation
of aexp(Q*), for various values of . This may be done by a routine numerical solution of a
well-behaved system of linear differential equations with constant coefficients.
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3. NUMERICAL METHODS

In a number of applications of PH-distributions, it is necessary to evaluate the matrices
P(n, t) for0 < n < Nand 0 < t < T* Usually T*is given and N needs to be determined so
that the components of the vector

(38) S PG Te
v=N+1

are all less than a preassigned e.

If Nand T*are known, the system of differential equations
(39) P'(0, t) =T P(0, 1),

and

n
P(n, ) =TPn, t) + Yay; 1 T°A°P(n—v, 1), for 'S n < N,

v=1
with initial conditions P(0, 0) = £, P(n, 0) =0, for 1 < n < N, can in most cases of practical
interest be solved by a classical procedure such as the Runge-Kutta method. Although the
coefficient matrix of the system (39) has a very simple structure, shown in (40), the order in
the system is usually sufficiently high that its solution by a "theoretical" method such as the
spectral method is impractical and lacking in numerical accuracy.

The coefficient matrix of the system (39) is given by

T @msi T°A° @pe1T°4° - oN7}T4°

0 5 Cut TA° ... affT4°

0 0 T EEETRR ~ o i

0 0 0 PR b
(40) C(N) =|. ; . .

0 0 0 e el

0 0 0 e T

and C(N) is a matrix of order Nm. In view of the special structure of C(N), it is not neces-
sary to store this large matrix in implementing a numerical integration method such as the
Runge-Kutta procedure.

The matrix T is also frequently sparse, and this can be used in practice to obtain substan-
tial savings in the number of arithmetic operations involved in solving the system (39).

In most practical cases, the system (39) is also not stiff. Any problems due to stiffness are
usually apparent in the entries of the matrix 7. If one attempted to approximate, e.g., the
degenerate distribution at ¢ > 0, by an Erlang distribution of order m and parameter A = ¢/m,
one would obtain not only a very high value of m, but also a stiff system of differential equa-
tions. Techniques based on distributions of phase type are clearly not suitable in this case.
Theoretical results on these problems provide only broad guidelines, and a certain amount of
numerical experimentation and the use of build-in accuracy checks appears to be required in
practice.

The computer storage requirements depend clearly on the sizes of m and N. In some
applications, we are not interested in the matrices P(n, t) themselves, but in some quantity
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expressed in terms of them. As discussed in Ref. [7], the applications in queueing theory
involve the sequence of matrices 4,, n > 0, defined by

(41) A= fow P(n, 1) d K1),

where K () is a probability distribution on [0, ®). The evaluation of an adequate number of
terms of the sequence {4,} requires first a truncation of the integral in (41), followed by a
numerical integration using the computed matrices P(n, t) at a sufficient number of r-points.
We can avoid storing the matrices P(n, t) for a large number of ¢ points by evaluating the
integrals in (41) by a "progressive" integration procedure such as Simpson’s rule. For special
distributions K (¢), there may be a substantial gain in computational effort by using an appropri-
ate quadrature method, say Laguerre quadrature, if K(-) is a gamma distribution. These are,
however, routine matters of numerical analysis, whose discussion here would only repeat classi-
cal material.

We conclude by listing a few practical problems, which can be handled by ad hoc general
procedures, but for which a more refined analysis would be welcome.

For a given T* > 0, we need to determine N, so that the conditons stated in (38) holds.
More tractably, we can determine N so that the probability of having more than N renewals in
[0, 779 is small. As a crude but useful procedure, we can use known approximations to the
mean and the standard deviation o(7*) of the number of renewals in [0, 7%, and choose, e.g.,
N to be the smallest integer to execeed H(T*) + 3a(T*). For larger values of 7* the asymp-
totic normality of the number of renewals in [0, 79 can be used for the same purpose. It
would be of interest to have a refined analysis of the remainder vector, given in (38), but this
does not appear easy.

We also note that the sequence {(1 — a,,,) '@ P(k, 1) e, k > 0} defines a discrete pro-
bability density, with parameters a, 7, and ¢, which generalizes the Poisson density with param-
eter At There are a variety of particular cases, invelving only a small number of parameters,
which may be of interest as counting distributions derived from'modifications of the Poisson -
process. If we consider the particular case given in (7), we obtain the probability density

(42) p=aPk Ne= T en BT o k30
s 4 S0 (mk +v)!" il

Few particular cases are as tractable analytically as this case. Even for the hyperexponential
case, the explicit form of the probabilities p, is forbiddingly complicated.
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ABSTRACT

We present techniques for classifying Markov chains with a continuous state
space as either ergodic or recurrent. These methods are analogous to those of
Foster for countable space chains. The theory is presented in the first half of
the paper, while the second half consists of examples illustrating these tech-
niques. The technique for proving ergodicity involves, in practice, three steps:
showing that the chain is irreducible in a suitable sense; verifying that the mean
hitting times on certain (usually bounded) sets are bounded, by using a "mean
drift" criterion analogous to that of Foster; and finally, checking that the chain
is such that bounded mean hitting times for these sets does actually imply ergo-
dicity.

The examples comprise a number of known and new results: using our
techniques we investigate random walks, queues with waiting-time-dependent
service times, dams with general and random-release rules, the s-S inventory
model, and feedback models. «

1. INTRODUCTION

Since the introduction of the embedded chain method by Kendall [9]), Markov chain
analysis has been recognized as an important tool in many branches of operations research.
The most closely studied chains have undoubtedly been those which are integer-valued. This is
so partly because a very complete theory exists for analyzing such chains, but a contributing
factor has also been the formulation (since the results of Foster [6]) of readily verifiable criteria
for classifying integer-valued chains as ergodic or as recurrent. Recent developments in
Markov chain theory now enable these criteria to be extended to cover the classification of

*Currently at Department of Statistics, Yale University, New Haven, Connecticut.
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chains taking values in more general spaces. Tweedie [19] has given a review of this general
theory.

In this paper the special case of Markov chains whose state space is the real line, or a
closed subset of the real line, will be considered. We shall develop techniques for proving the
existence of unique stationary distributions, and for showing that the n-step transition probabili-
ties converge to this stationary distribution. These techniques enable us to classify a number of
the continuous-valued chains which occur naturally in operations research; applications to ran-
dom walks, waiting times for queues, capacities of dams, inventory problems, and feedback
chains are given.

2. CONTINUOUS-VALUED MARKOYV CHAINS

In order to motivate the description of continuous-valued chains, we begin with a review
of the corresponding more familiar concepts for the integer-valued case.

The evolution of a (time homogeneous) integer-valued chain is described by its transition
matrix P = [P(i, j)] defined by 1
PG, j) =Pr{X, = j|X,_, = i}:

Suppose that the chain is irreducible, i.e., for every pair (i, j) there exists an n such that
Pr{X,=jlXo=1i} > 0.

In the analysis of such chains, a question of fundamental interest concerns the existence of a
unique stationary distribution {m(k)}: that is, a distribution satisfying

2.1) (k) = Y () P(j k)
i
for all k. If such a distribution exists {X,} is said to be ergodic (d; positive recurrent).

A concept weaker than ergodicity is recurrence. Consider the hitting times

T, = inf{n > 0:X, = k}.
The chain {X,} is said to be recurrent if these variables are proper for any starting point X,
that is, if

Pr(T, < o|Xg=j} =1
for all j and k. It is well known (Feller, Ref. [7], Chapter XV) that for an irreducible chain
recurrence is equivalent to the single condition

Pr{Ty < o|Xg=0} =1.
Further, the chain is ergodic if and only if
2.2) E[To|Xg=0] < o
and the stationary distribution is then given by

w(k) = (E[T | Xo=kD'>0

for each k. In all but the simplest cases it is impossible to solve (2.1) directly, or to find the
distribution of T, conditional on X, = 0 explicitly enough to check for recurrence or ergodicity.
However Foster [6], and later Mauldon [12] and Pakes [14], have given sufficient conditions for
recurrence and ergodicity of irreducible integer-valued chains. We extend these conditions to
continuous-valued chains.

——
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Consider a time-homogeneous Markov chain {X,}, with state space X, which we will usu-
ally assume to be a closed (but not necessarily bounded) subset of the real line (—oo, o). (All
our results can be given virtually unaltered when X is taken as a closed subset of a higher
dimensional Euclidean space, but for ease of exposition we generally restrict ourselves to the
one dimensional case here.) The evolution of the chain is described in one dimension by the
collection of distribution functions

Fx(y) -P'{XrH»l Sy | X,,‘X};
however, we will find it easier to work with the corresponding measures

P(X, A) = Prl/"nérl GAIXII - X]
induced in one dimension by the distributions F,; that is, if 4 = (a, 6], then P(x, 4) =
F.(b) — F.(a), and P(x, -) is then extended to all the Borel subsets of the real line in the
usual way. We assume, in order that the chain be well-defined, that for each 4 € ¥ (the o -

field of Borel subsets of X) the function P(:, 4) is measurable, and for each x, P(x, *) is a
probability measure on ¥.

As in the discrete case, to classify such a chain we need a notion of irreducibility.

DEFINITION: We say {X,} is ¢-irreducible if there exists a nonzero measure ¢ on Fsuch
that, for any x € X and 4 € F with ¢(4) > 0, there is an n for which P"(x, 4) > 0.

When X is countable, taking ¢ as counting measure leads us back to the usual concept of
irreducibility. For general X, ¢ need not have any atoms (¢ will often be, for example, Lebes-
gue measure) but if it does have atoms then the analysis is greatly simplified (see Section 10).

We shall call a ¢-irreducible chain {X,} ergodic if it has a unique stationary distribution,
i.e. a probability measure m on ¥ satisfying, for every 4 € ¥,

(2.3) n(4) = [ w(dx) P(x, 4).

If {X,) is ¢-irreducible then (Tweedie, Ref. [19], Section 4) there is ar most one stationary dis-
tribution; if further {X,} is ergodic then the r-step transition probabilities converge to the sta-
tionary distribution = in the strong Cesaro sense that

AEFR N

2.4) sule T P(x, 4) — w(4)|—0
m=|

for m-almost all x.

Thus ergodicity has connotations for continuous state spaces similar to those for the
discrete case. Moreover, there is again a close relationship between ergodicity and the finite-
ness of the means of the hitting times

T,=inf{n > 0: X, € 4).

This connection is not as simple as the necessary and sufficient condition given by (2.2) for
discrete chains. But it can be shown that, given certain conditions on the chain, ergodicity is a
consequence of’;

(2.5) ’l:a E[T,‘IX()-Xl < oo,
provided A is one of a certain class of sets determined by the preliminary conditions satisfied by

the chain. One of the main aims of this paper is to detail the conditions which lead to a useful
class of sets in this context. For example, we shall show that ¢-irreducibility plus certain con-
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tinuity constraints on the transition probabilities implies that we need only verify (2.5) for a
single bounded set 4 of positive ¢-measure, in order to prove that the chain is ergodic. In gen-
eral, we call any set A4 such that (2.5) is a sufficient condition for ergodicity of {X,} a rest set
(for ergodicity) for that chain.

In the next four sections we describe some suitable test sets for four important classes of
Markov chains which occur in operations-research models. For such chains then, ergodicity can
be proved by finding a test set satisfying (2.5). This will always be achieved by applying the
following result.

THEOREM 2.1 (Tweedie, Ref. [19]), Theorem 4.1): Let g be a nonnegative measurable
function on X. If for some € > 0 and 4 € ¥,

(2.6) f« P(x, dy) g(y) < g(x) — e for x € 4
e Elg(X)|Xo=x] <

then we have the bounds

g(x) —e for x € A5

2.7 ElT)Xo=x) < g(x)/e for x € A
and
2.8) EIT|Xo=x1 <1+ [ PCx d) g0)/e for x € 4.

A very common choice for the test function g is g(x) = x when the space X = [0, ). This
will be the case for the examples of Sections 10, 11, 12, and 14. Thus it seems worthwhile to
show explicitly how Theorem 2.1 can be used for that choice of g.

THEOREM 2.2: Suppose X = [0, ) and that there exist € >0, M < o and a
bounded 4 € ¥ such that

2.9) ElX\|Xo=x] < x~¢€ for x € A€
and
(2.10) ElX||Xo=x1 < M for x € 4.
Then

sup E[T | Xy=x] < oo.

PROOF: Apply Theorem 2.1 with g(x) = x, noticing that x/e is bounded on A4 and that
the right-hand side of (2.8) is bounded by 1 + M/e.

In most of the cases which we shall consider the space X is [0, o) and the test set will be
a bounded interval [0, B]. We can then interpret (2.9) as "mean drift towards" this test set.
With this sort of interpretation, many of our results are more intuitively meaningful: they can
be seen as providing some delineation of the class of chains for which mean drift towards "rea-
sonable" sets does in fact imply ergodicity.

The discussion above, and the method we advocate, can be summarized in the following:

ERGODICITY TECHNIQUE: To prove ergodicity for a given Markov chain {X,), carry
out the following three steps:

S st: >

STEP 1. Identify a suitable ¢ and show (X,} is ¢-irreducible for this ¢.
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STEP II. Identify possible test sets for the chain.

STEP III. Apply Theorem 2.1 (or Theorem 2.2) to one of these test sets to prove bound-
edness of the mean hitting times as specified by (2.5).

The reader who is primarily interested in applications could now turn straight to Section 9,
which is the beginning of the examples segment of this paper. Of course some back-
referencing would then be required: to Sections 3-6 to see how the test sets have been
identified; to Sections 7 for ¢-irreducibility; and possibly to Section 8 as well, where we
describe a concept of recurrence which generalizes the one for discrete chains.

3. TEST SETS WHEN ¢ HAS AN ATOM

Sometimes ¢ can be chosen to have an atom at some point a, i.e. {a} can be reached
from every point in the state space (see Sections 10 and 11).

THEOREM 3.1 (Tweedie, Ref. [19], Section 5): If ¢ has an atom at « then {a} is a test
set for any ¢-irreducible chain.

From this simple result we obtain the more usable condition:
THEOREM 3.2 (Tweedie, Ref. [19], Section 5): If ¢ has an atom at « then a set B con-

taining a is a test set if for some integer N and some & > 0

max P’(y, {a}) > 8
ng<N
for every y € B.

If X=1{0, 1, 2, ...,} and (X,) is irreducible, then Theorem 3.1 implies that {0} is a test
set; Theorem 3.2 covers the result that {0, 1, ... M is a test set for any finite N. See Section
10.

4. TEST SETS WHEN THE CHAIN IS WEAKLY CONTINUOUS

In the absence of the discrete type of behavior of Section 3 we can resort to 2 continuity
condition on the chain to identify some useful test sets.

DEFINITION: (X,} is said to be weakly continuous if for every bounded continuous real
function fon X

Prx) = [ P(x ay) f(3)

is also bounded and continuous. Equivalently: if x, — x then P(x,, ) — P(x, ) in distribu-
tion, i.e., F,»(y) — F,(y) at every continuity point of the latter in one dimension.

THEOREM 4.1 (Tweedie, Ref. [19], Section 5): If (X,} is a weakly continuous ¢-
irreducible chain then any bounded set of positive ¢-measure is a test set for that chain.

Proving weak continuity in order to use Theorem 4.1 may often be difficult if the chain
has a complicated structure. Since we feel the weak continuity condition will prove the most
frequently used in practice, we give in the remainder of this section a routine for proving weak
continuity which reduces the evaluation of quite complicated models to a series of relatively
simple steps.
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In many models the chain under consideration may be regarded as a secondary process,
derived from a primary process about which we are prepared to make assumptions. In particu-
lar, we aim to carry weak continuity of the primary process over to the secondary one. That is,
suppose the transition of the chain {X,} (with transition probabilities P(x, -)) from x to x'can
be decomposed into a sequence of simpler transitions: from x to y, according to a transmon
law Q,(x, -); then from y, to y, according to law Q,(y,, -); ... ; and finally from y,_, to x’
according to 'the law 0:(«—1, ). Then weak continuity of each of the Q.(y,_;, *)’s results in
the same property for the P(x, -). See Section 11 for an example of such a decomposition. To
utilize this concept we give the following simple results.

THEOREM 4.2: If the transition law P(x, -) can be decomposed as
@.1) Pix, A) = [ ... [ 0ix &) Q01 @) ... Qi A)

where each Q,(y,_,, *) is weakly continuous, then P(x, -) is also weakly continuous.

PROOF: If f is bounded and continuous, and Q,(y;_;, -) is weakly continuous, then
Q.f(y,_) is continuous; by induction, from (4.1), Pf(x) = Q, Q, ... Qif(x) is continu-
ous, which is the desired result.

When applying this theorem we usually make the transition probabilities Q;(y;—;, *) as
simple as possible (see Section 11). Here are some of the simple forms of transition probabili-
ties for which weak continuity can be proved fairly easily:

(i) A transition law R (x, -) on X will be called degenerate (at h) if there is a function h
such that R (x, -) is concentrated at /4 (x) for every x € X. For example, in Section 11 we shall
use h(x, y, z) =[x +y —2)*, y, 2]

(ii) For a vector process, the transition law R (x, ) may affect only a subset of the coor-
dinates of x. Formally, suppose X is a product X; x X, of two spaces of lower dimension, and
suppose also that R(> ) leaves the X, coordinate unchanged in the sense that (writing
x = [x,, x,] in the obvious manner) there is a probability measure R*([x,. x,). *) on X satis-
fying

4.2) [ RUx,, x4, dlyy, yd) SO y) = fll R;‘ﬁx,. X3, dv) £y, xp

for every bounded measurable fon X. In this case we say that R (x, ) acts only on the X, coor-
dinate of X. For example, the transitions in Theorem 11.1 are of this form.

(iii)) When X = X, x X,, one of the coordinate processes may form a Markov chain in its
own right. That is, if X, = [X,,, X,,), then (X,,} (say) may be a Markov chain. In this case
the transition law of the X, chain is given by

(43) R \(x;, A) = R([x}, x3l, 4 x Xy

for any v, € X,. We shall identify this situation by saying that the projection on the X, coordi-
wate space is Markovian. Such is the case with the waiting times of Section 11.

As might be expected, weak continuity for transitions of any of these forms is easier to
- wt givhrah

IMBOREM 4 ) Suppose R(x. ) is a transition law on X. Then

C W0 0w degenerste #t A then it is weakly continuous if and only if A is continu-

—

BT S — .

P~




L=
——

B

PROPERTIES OF CONTINUQUS-VALUED MARKOV CHAINS 461

Gi) if X =X, x A, and R(x, -) acts only on the X, coordinate of X, then it is weakly
continuous if and only if

Rg(lx,, x) = [, R*(Lx; xol, dv) gy
is continuous for each bounded continuous g on X;

Gii) if X = X, x X, and the projection onto the X, coordinate space is Markovian (as in
(4.3)), then the weak continuity of R([x,, x,}, -) implies the weak continuity of R (x,, -);

(iv) R(x, -) is weakly continuous if and only if Rf(x) is a continuous function of x for
every bounded uniformly continuous fon X.

PROOF: (iv) This follows directly from Theorem 2.1 (ii) of Billingsley [2].

(i) Rf(x) = f[h(x)] which is continuous in x for every bounded continuous f if and
only if 4 is continuous.

(ii) For any bounded continuous g on X, the function f(x, x} = g(x,) is bounded and
continuous on X. Since Rf(x, x) = R*g(x, x,), the continuity of R "¢ follows from that of
Rf.

Conversely, suppose R*g is continuous for every bounded continuous g on X, Let fbe
bounded and uniformly continuous on X. If x, = [x,, x,J — xo= [xg,. xo) as n — oo then

|Rf(x) — RFGx9| € f R*(x, dy)| 71, %00 = SO0 x|
+ | f R*(x,, dyy) f(y;, xo9) — f R*(xq dyy) fyy. xgl.

The first term tends to zero as X,; — X, since f is uniformly continuous; the second term
tends to zero because, for fixed xy, g(¥)) = f(y,, xo) is continuous and R "¢ is then continu-
ous by assumption.

(iii) If g is bounded and continuous on X, then f(x, x, = g(x,) is bounded and con-
tinuous on X = X, x X, Hence

J' R|(X|. dy.) 8()’1) — f R([x.. X}]. dU]. yz]) f(y|. yz)
is a bounded continuous function (not depending on x).

5. TEST SETS FOR CHAINS WITH WEAKLY CONTINUOUS CQMPONENTS

Suppose {P(x, -)) is a collection of substochastic transition measures. i.e. for each
x, P(x, -) is a measure on F with P(x, X) < 1, and P(:, 4) is a measurable function for each
A € F. The definition of the iterates P"(x, 4), and the concepts of ¢-irreducibility and weak
continuity of the (P(x, -)},-are entirely analogous to those for the case of stochastic transition
laws. In the same way, all the methods for proving weak continuity given in Section 4 carry
over to the substochastic case.

Now if {P(x, -)) is the family of transition probabilities for a Markov chain {X,}, then
(P(x, -)} is said to be a component of {P(x, -)} if
P(x, A) > P(x, A) forevery x € X, 4 € §.

The existence of suitably well-behaved components can be used to identify test sets.
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THEOREM 5.1 (Tweedie, Ref. [19], Section 5): If the chain {X,} has a weakly continu-
ous, ¢-irreducible component, then any bounded set of positive ¢-measure is a test set for the
chain.

The use of components is illustrated in Section 12.

Finally, we note a simple sufficient condition for {X,} to have a weakly continuous ¢-
irreducible component. Suppose

P(x, ) =a(x) Pi(x, ) + [1 — a(x)] Pyx, *),

where a(x) is a continuous function with 0 < a(x) < 1 for all x. If P\(x, -) is ¢-irreducible
and weakly continuous, then P(x, -) = a(x) P,(x, -) is a weakly continuous ¢-irreducible
component of {X,)}, no matter how badly behaved P,(x, *) is.

6. TEST SETS DEFINED BY SUBINVARIANT MEASURES

Our final method for finding test sets is the hardest to use in practice, but it will prove
necessary in Section 13 since the results of Sections 3, 4, and 5 are inadequate for handling the
inventory model.

If {X,) is a ¢-irreducible chain, then it can be shown (Tweedie, Ref. [18]) that there
exists at least one nontrivial o-finite measure u, with u >> ¢, such that

(6.1) wd) > [ uldy) P(r.A) forall 4 €F.

Such a u is called a subinvariant measure.

Unfortunately, to go beyond the mere existence of u is often tantamount to finding an
invariant measure (i.e. one for which the inequality in (6.1) can be replaced by an equality),
which is close to proving ergodicity directly. Nevertheless, the following is useful on occasion.

THEOREM 6.1 (Tweedie, Ref. [19], Chapter 5): Let {X,] be a ¢-irreducible chain with
some subinvariant measure u. Then any 4 € Fwith 0 < u(4) < oo is a test set.

7. PROVING ¢-IRREDUCIBILITY

Without ¢-irreducibility the chain may not be classifiable at all, so it seems worthwhile to
give some guidelines for establishing irreducibility. As with integer-valued chains though, it
may often be necessary merely to assume ¢-irreducibility, or to give conditions which are
“grossly sufficient” for ¢-irreducibility (see Section 11). There are two cases where irreducibil-
ity can be easily checked:

(i) If there is some point a € X which can be reached with positive probability from every
point in the space, then we can take ¢ to consist of a single atom at a. See Section 11 for
example.

(i) If {X,) has a ¢-irreducible component (see Section 5), then it is itself also ¢-
irreducible. Although trivial, this observation is sometimes quite useful since it may be easier
to work with the iterates of some component of the chain, rather than with the P"(x, *)’s them-
selves.

| ————
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8. RECURRENCE FOR CONTINUOUS-VALUED CHAINS

In the continuous case there are various possible definitions of recurrence: see Tweedie,
Ref. [19], Section 3. Here we shall call a ¢-irreducible chain {X,} recurrent if there is a ¢-null
set N such that for all x € N,

(8.1 Pr{Ty < o|Xy=x) =1

for every B € Fwith ¢(B) > 0. The null set N occurs in our definition because one can prove
that, if {X,} is not recurrent in this way, then it is transient in a natural manner (Tweedie, Ref.
[19], Section 3); such a classification fails if we demand that (8.1) hold for all x and all B with
¢(B) > 0.

Because a dichotomy between transience and recurrence exists, we can again hope to find
individual sets that will help classify the chain itself. If the validity of (8.1) for a particular B

implies the recurrence of the chain {X, }, then we say that B is a recurrence test set for that chain.

The next two results then give, respectively, criteria for identifying recurrence test sets, and a
criterion for investigating recurrence using these sets.

THEOREM 8.1 (Tweedie, Ref. [19], Section 5): Each of the test sets (for ergodicity)
identified in Theorems 3.1, 3.2, 4.1, 5.1 and 6.1 is also a recurrence test set for the same class
of chains.

THEOREM 8.2 (Tweedie, Ref. [19], Section 10): Suppose (X,} is ¢-irreducible. Then a
sufficient condition for recurrence of [X,} is the existence of a non-negative measurable func-
tion g and an increasing sequence (4,} of recurrence test sets for (X,) satisfying

(8.2 f‘ P(x, dy) g(y) < g(x) for x € A§
(8.3) v:e() €n)C A, n=1,2, ...

Whilst (8.2) is similar to the condition (2.6) for bounded mean return times, (8.3) is a restric-
tion on the type of “test function" that can be used in proving recurrence. In general, however,
(8.3) is not overrestrictive. We conclude by giving the most common form of use of Theorems
8.1 and 8.2, based on Theorem 5.1 and the test function g(x) = x.

THEOREM 8.3 Suppose X = [0, %) and (X,) is ¢-irreducible with a weakly continuous
component. Then a sufficient condition for {X,} to be recurrent is the existence of a constant 8
such that

(8.4) L P(x, dy) y £ x for x 2 8.

In our examples we concentrate on proving ergodicity rather than recurrence. There is a
pragmatic reason for this: the ergodicity criteria of Theorems 2.1 and 2.2 are often, rather
surprisingly, more easily verified than the recurrence criteria of Theorems 8.1 and 8.2. For
example, we often impose a condition which implies that, as x — oo, '

lim sup [f‘ P(x, dy) y - x] <0,

which immediately gives (2.9) for large enough x ; the analogous condition to give recurrence
would seem to be

lim sup [fl P(x, dy) y - XI <0,
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but this does not give (8.4). Hence we counsel some care in writing down the “natural” exten-
sion of ergodicity conditions as recurrence conditons. However, as it is usually quite simple to
adapt the conditions for ergodicity to cover the recurrence case, we shall generally leave the
formulation of these extensions to the reader.

9. INTRODUCTION TO THE EXAMPLES

The three steps which constitute the basis of our technique for proving ergodicity were
listed near the end of Section 2. We now illustrate the ways in which this technique can be
applied, by proving a number of ergodicity results for a variety of Markov chain situations. We
do not pretend that these results are in any sense optimal, indeed, most of the conclusions
could be further refined, if methods suited to the particular example were used (see Kiefer and
Wolfowitz [10], or Loynes [11]). Rather, we wish to demonstrate the essential simplicity of
our three-step method. In each case the proof is arranged so as to emphasise this point.

10. RANDOM WALKS

One of the simplest examples of a continuous-valued Markov chain is the random walk
[X,} on [0, o) defined by
(10.1) X,=(X, ,+7Y)"

where {Y,) is a sequence of independent, identically distributed (—oo, oo)-valued random
variables. The next result is extremely well-known; we give it because it is a straightforward
example of the techniques espoused above.

THEOREM 10.1: If £(Y,) < 0 then [X,} is ergodic.
PROOF: [ ¢&-irreducibility: We show that €, the point mass at 0, is a suitable irreducibil-

ity measure. Choose a 8 > 0 such that Pr(¥, € —3) = y > 0. Then for n > x8 ',
PriX,=0|X,=x) 2 y">0.

Il. Test sets: Any set of the form {0, 8] is a test set. This can be proved either by show-
ing that the chain is weakly continuous or by applying Theorem 3.2 if N 2> B8~ then, as
above,

max P"(y, (0}) > y" for every v € [0, B].

111. Boundedness of hitting times: Apply Theorem 2.2.
EIX| - XolXo - X] - E[max{ yl' - X"
— E(Y,) as x — oo, by dominated convergence
<.0,
thus E(X,| X, = x) < x — e for large enough x.
11. QUEUES
Some of the standard queueing results follow from the preceding results for random

walks. In this section we consider a slightly more complicated situation: a queue with waiting-
time-dependent service times. Such a queue was studied by Callahan [3], but in a rather
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artificial discrete setting. Tweedie [20] discussed the continuous state space version of this
model; our technique for proving ergodicity can be used to weaken his conditions. Tweedie
[21] also discusses this model in more detail using a stronger version of our Theorem 2.1.

Let the interarrival times {T,} of customers in a single-server queue be independent and
identically distributed with mean u < oo. Let W, denote the waiting time of the n" customer,
and S, the service time. The random variables {S,} are assumed to be conditionally indepen-
dent of each other and of the T,’s, given the relevant waiting times, but the distribution of S,
does depend on the waiting time W,

PriS, € A|W, =) =y, (4).
The waiting times { W,} are defined recursively by
(11.1) Wy=(W,,+S,_,—-T)+

{W,) is thus a Markov chain with state space [0, ). Proving the ¢-irreducibility of {w,) is
difficult; we give here two "grossly sufficient” sets of conditions which apply to two different
types of ¢. Both of these conditions are weaker than those proposed by Callahan [3] for
discrete state space chains, cr Tweedie [20] for the continuous state space.

(a) For all @ > 0, and some 8 > 0 and y > 0, Pr(S,_, -T,<-8|W, =w) >y
This makes { W,} e,-irreducible.

(b) There exist N > 0, n > 0 such that Pr(S,_, — T, > | W, ,=w} >0 forw < N

and the distribution of S, , — 7, conditional on W, = w has a positive density on (—n, 0) if
@ > N. This makes {W,} ¢-irreducible with ¢ as Lebesgue measure on (N — n, N +q).

THEOREM 11.1: Suppose { W,} is ¢-irreducible and that (i) v.(*) is weakly continuous in

w,

(11.2) (ii) sup EIS,|W, = 0] <
and

(11.3) lim sup E[S,|W, = w] < u.

Then {W,} is ergodic.
PROOF: 1. ¢-irreducibility: has already been assumed.

II. Test sets: We prove that (W, ) is weakly continuous, so that [0, Bl is a test set for all
large enough values of 8 (Theorem 4.1).

Decompose the trivariate chain X, = (W,, S,_,, T,) as
(11.4) Xn - (W;p Sn—lr Tn) = g (W,,. s,,_l, T,,+])

(”.5) o (W;p S,,; T,,+|)
(11.6) = (W + S, =T, )" Sp Tosdl
= Ap41-

Then (11.6) is degenerate at the continuous function 4(x, y, z) = [(x + y — z)*, », z], and
so is weakly continuous by Theorem 4.3 (i); (11.4) is trivially weakly continuous since T,y is
independent of 7, (and X,) ~ use Theorem 4.3(ii); and (11.5) is weakly continuous by

fg__.‘pg
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assumption — use hypothesis (i) and Theorem 4.3(i). Thus the chain {X,} is weakly continu-
ous, by Theorem 4.2, and hence the projection {w,} is also weakly continuous, by Theorem
4.3(iii).
IIl. Boundedness of hitting times: Apply Theorem 2.2 with 4 = [0, ] for a large enough
value of B.
E[(W,— Wy|Wy=0l=El(w+ Sy— T)* — 0| Wy=wl]
= E[max(Sy— T, — w}| Wy = ol.
This last term is certainly greater than
E[Sy— T\| W= wl,
but exceeds it only by an amount
Elmax{0, T, — So— o}| Wy=w0] < E[(T, — )]
—0 as w— oo,
Thus it suffices to show that
lim sup E[Sy— T,|Wy=w] < 0.

W=

This is equivalent to (11.3).

'i'he proof of ergodicity for the usual waiting times in the GI/G/1 queue is contained in
Theorem 11.1. For this special case one could also use Theorem 3.2 for establishing that
bounded sets are test sets for ergodicity.

The assumption that y () is weakly continuous is a natural extension of the case where
S, is independent of W,; however it does not cover the case of deterministic service times, i.e.,
where y,(-) is concentrated at the point y(w), unless y(w) is a continuous function. We can
handle some discontinuous y(w)’s by using components.

THEOREM 11.2: Suppose y,(-) is concentrated at y(w), and that y(w), although not
necessarily continuous, is bounded on compact sets. Then the chain {W,) is ergodic under the
same conditions as in Theorsm 11.1 except that (i) should be replaced by (i)'. T has a density
g (¢) which is not concentrated on a bounded set.

PROOF: We find a weakly continuous ¢-irreducible component of {W,}. Our bounded-
ness assumption ensures the existence of a continuous function k(w) with k(w) 2 y(w) for
every w. Define transition measures P(x, -) by setting, for each nonnegative measurable £,

g(t) ar,

armn Plw. N =r@ [
so that in particular, for any set A4,

+k (w)

0if 0¢ 4
Lu(») g(e) de if 0 € A

Since g(¢) is not concentrated on any bounded set, (11.8) shows that P(w, ) is one-step €g
irreducible. Moreover, for any f, and in particular for bounded continuous £, (11.7) implies
that P(w, f) is continuous in .

(11.8) P(w, A) =

e .
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Since P(w, (0, ®)) =0, P(w, A) > P(w, A) forany 4 C (0, ): but also
P, 0 =P (T2 w+yWw| W,=0

i L+y(w) g(t) i

> J:»+k(<z») g(t) %
= P(w, 0).
Thus {P(w, )} is a weakly continuous eg-irreducible component of {P(w, -)}. The rest of the

proof can now be carried out as in Theorem 11.1, but this time [0, 8] is a test set by virtue of
Theorem 5.1 instead of Theorem 4.1. '

This theorem covers the type of service times considered by Sugawara and Takahashi
[17]; conditions (i) and (i)’ seem to cover the bulk of the likely models for waiting times.

Since, in these two nonoverlapping cases, assumption (i) gives ergodicity, it may seem
that this assumption alone is sufficient for ergodicity, and that steps I and II are unnecessary.
The following somewhat artificial example shows that this is not the case; boundedness of the

hitting times on compact sets does not give ergodicity if the chain is sufficiently incompatible
with the topology of the space.

Example: Suppose the arrivals in the waiting-time-dependent service-time model above
are deterministic, with interarrival times of length 1. The waiting times will take on values in
[0, 1], and the conditional distribution of the service time S are, for W € H =

PrS =14+ D" =n|Wan)=a,>0,
PrS=2-n"'|W=n)=1-a,>0,
and for w € [0, 1)\H, :

PriS=1-ow|lW=0]=1,

Pr(S =2|W =0} =1.

Hence (W,) is ¢-irreducible with ¢ as counting measure on the set H, and in at most two steps
from any w, {W,) takes values in this set ("two-step irreducibility").

Now for all « > e,
E[W,~ W)|Wy=w] € -minle,la,(n + D' +1-a,-n":n < ).
Hence if a, — 1 sufficiently fast, { W,} will have mean drift towards each set of the form [0, e).

But if lll a, > 0, then the chain has no stationary distribution (intuitively such a distribution
would be concentrated at zero, and this cannot happen).

12. DAMS

We consider two generalizations of the Moran model of a dam with infinite capacity (see
Prabhu, Ref. [15], Chapter 6). The content Z, of the dam at time n is determined by a
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sequence (X,} of independent identically distributed inputs and the fixed quantity m (= amount
released per unit time):

(12.1) Zysy=2,+ X, —min{m, Z, + X,}.
W;a retain the same input scheme but replace the deterministic release rule by a random release
rule. ;
The first model incorporates a "release function" R (*); 'réplace mby R(Z,) to define
Z,o=2Z,+X,—min{R(Z), Z, + X,}
12.2). =(Z,+ X,— R(Z)I :
cf: the general release rule for the continuous-time model of Moran [13].
THEOREM 12.1: Suppose the random variables X, have finite mean » > 0 and a density
function g which is positive at each point of (0, ). Then the Markov chain {Z,) is ergodic if
(i) R(-) is continuous,
(12.3) (i) bn_r_xl, inf R(u) > p.

PROOF: We shall produce a ¢-irreducible weakly continuous component of the chain
{Z,). This will not only establish the ¢-irreducibility of the chain (Section 7) but will also
prove that bounded sets of positive ¢-measure are test sets (Theorem 5.1); this takes care of
steps I and II of the method for proving ergodicity.

For any nonnegative function f,
EU(Z)|Zo=21= [ flz +x - R(2)] g(x) dx

» l:(:)-z]" Sflz + x = R(2)] g(x) dx

= P(z, /), say.

By construction, the substochastic transition laws P(z, -) defined by the above expression con-
stitute a component of (the transition laws of) the chain {Z,).

1. ¢-irreducibility of the component: Because of (ii) there exists a constant uy > u such
that R(u) > u + € whenever u > u,, for some positive e. Let ¢ be Lebesgue measure on
[ug, °°). Since, by a change of variable,

PGz f) = j; f(w) glo + R(2) ~ z] dw,

2~R ()]
and g is everywhere positive on (0, ), it follows that P(z, 4) > 0if z < ug and ¢(4) > 0.
Moreover, since ”

Pz 4) > j;"° Pz, du) B(u, A),

¢-irreducibility will follow if P"(z, [0, uol) > 0 for every z > u,, where n depends upon z.
But if z > ugthen R(z) 2 p + ¢, and so

& 2-u/2
Plz,(z =, z —p/2)] 2 fz_“ f(w) glo + R(2) — z] dw
> 0.
The required conclusion follows by induction.
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II. Test sets: We prove that P(z, ) is weakly continuous so that, by Theorem 5.1, any
bounded set with positive ¢-measure will be a test set.

Now if fis bounded and continuous, and if z, — z, then

PG, N = fw_ N o Slza +x = R(z)] g(x) dx

oot W f[z+x—R(z)]g(x) dx

by dominated convergence since both (R (z) —z)*and f(z + x — R(z)) are continucus func-
tions of z.

[II. Boundedness of hitting times: Use Theorem 2.2 with 4 = [0, ] for B large enough.
ElZ,- ZyZy=z] = Elmax{X, — R(2), z]]
< Elmax{X, — u —¢, —2}] if z > u,
— E[X,—un — €] as z — o, by dominated convergence

il

We remark that essentially this general release model has been considered in the much more
difficult continuous-time case by Cinlar and Pinsky [5] and Harrison and Resnick [8]. Their
methods are by necessity much more sophisticated than the straightforward techniques that we
can give in the discrete-time case.

The conditions of Theorem 12.1 can be modified slightly to give other conditions for
ergodicity:

(a) It suffices for R(u) to be greater than u + € for every u > 0; no conditions are
needed for the chain {X,}. In this case {Z,) is e irreducible. The standard fixed release rule of
(12.1) is covered by such an assumption.

(b) Suppose the common density function g of the X,’s is bounded below by a strictly
positive, decreasing, continuous function g’, and that R (:) is bounded above by a continuous
function R'(:) and is bounded below on [u, o] by a positive continuous function R"(-).
Then the method of proof of Theorem 12.1 goes through using the component

- - i ' o) = o
P*(z, /) L:_R“(:Wf(w_) g'le + R'(z) - zldw;
notice that P*(z, ) < P(z, ).
Further generalizations of the basic dam model are possible. We leave to the reader a

proof of the following random-release result, noting only that the assumptions ensure €
irreducibility.

THEOREM 12.2: If (Y,} is a sequence of independent, ndemlcally distributed, non-
negative random variables which are independent of {X,}, we can define the random-release
dam model {Z,)} by

Zoy= (zn +X,~ Yn)+‘
If E(X,) < E(Y,) then {Z,} is ergodic.
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13. INVENTORIES

The standard inventory model poses a more difficult problem since the transition laws
exhibit distinctly noncontinuous behaviour — even the existence of a weakly continuous com-
ponent would require intuitively unnatural assumptions. However, the chain can be analyzed
by means of the result in Section 6.

Let {X,} be the s-S inventory model (Prabhu, Ref. [15], Chapter 5):
X,,‘X,,_l—f,, if S < X,,_, < S,
X,,-’S—f,, if X"_ISS,

where the £, are independent, identically distributed non-negative random variables with com-
mon distribution law F(:) and 0 £ s < S. The chain {X,} has state space (—oo, S].

THEOREM 13.1: Suppose F{0} < 1.. Then {X,} is ergodic.
PROOF: I ¢-irreducibility: Clearly ¢(-) = P(S, -) is a suitable irreducibility measure.

Il. Test sets: Let u be a subinvariant measure for the chain. The subinvariant equation
(6.1) can be written as ;

(13.1) w(A) > [ wd) PG, 4) +u(=o, 51 P(S, ),

so if A is any set with P(S, 4) > 0 and p(4) < o then u(—o0, s] < oco. By assumption,
Pr{¢, > 0} > 0 hence Pr{¢, > €} > 0 for some € > 0.’ Thus, if u(—o0, s] = 0 then by tak-
ing A = (—o0, x] in (13.1) we would obtain u(s, s + €] = 0. Repeated application of this
argument would lead to the conclusion that u(—o, S] = 0, which contradicts the assumed
nontriviality of u. Thus 0 < u(—%, s] < co, and so by Theorem 6.1, (—oo, 5] is a test set.

IIl. Boundedness of hitting times: Use the test function g(x) = (x + D)* where D is any
fixed positive quantity. Take 4 = (—oo, 5] as the test set. Then for x € 4= (s, S],

Elg(X)|Xo=x] = [ _ (x =y + D)* F(av)
~x+D- [ _ x+D-(x-y+D)*Fd)

=-x+ D - flo " min{x + D, y} F(dy)

<x+D- [ minfs +D,y) F(dy).

This last integral is strictly positive and independent of the value of x. Notice also that
Elg(X)|Xo=x] € S + D for every x. Thus Theorem 2.1 can be used to prove that {X,} is
ergodic.

By a repetition of the argument for step Il it could be shown that u(—e0, S] < e. Thus
the whole state space itself is a test set. For this test set the mean drift condition of Theorem
2.2 is trivially satisfied so ergodicity follows as before. We should remark that finiteness of a
subinvariant measure can also be shown to be equivalent to ergodicity, by more direct methods.

14. FEEDBACK MODELS
Let {Y,} and {Z,} be mutually independent sets of independent identically distributed ran-

dom variables, and let b be a positive constant. A general form of the feedback model (X,} is
specified by

N —
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X, Y, if |X,] < b,
14.1) X,,+l= X,,+ Y,,"’Z,, le,, > b, and
Y. &Y. 42 X €=

This model was introduced by Bellman [1], with the Z,’s constant. Calton and Rogers [4] also
analyzed a deterministic form of the model, using results similar to our Theorems 2.1 and 8.2.

The model described by (14.1) is not weakly continuous, and so we look for a weakly
continuous component. Let Q,(4) = Pr{Y, € A}, Q,(4) =Pr{Y,—Z,€ A} and
Q3(4) = Pr{Y,+ Z, € 4}, and write Q for the largest measure such that 0(4) <
min[Q,(4), Q,(4), Q;(4)] for every Borel set A. A sufficient condition for Q to be nonzero
is that Y, admits a density g(y) satisfying, on some set of positive Lebesgue measure,

min{g(y), f_w gy + a) dPriZ, < a}, f_m gy —a) dPr{z, < a)] > 0.
In the deterministic model, for example, this will occur if
minlg(y), gy — k), g(y + k)1 >0

where the Z,’s take the constant value k; for this it would suffice to have g(y) > 0 on some
set of the form (—k — 8, k + §).

THEOREM 14.1: Suppose Q dominates Lebesgue measure on some interval (=, »). If
|E(Y,)| < E(Z,) then {X,) is ergodic, whilst if |E(Y,)| < E(Z,) then {X,) is recurrent.

PROOF: Define P(x, 4) = (4 — x). Then by definition (P(x, -)} is a component of
{P(x, )}, and it is ¢-irreducible with ¢ as Lebesgue measure, from our first assumption (which
is again "grossly sufficient"; see Revuz, Ref. [16], Section 3.4, for less practical but finer condi-
tions). Moreover, P(x, -) is weakly continuous: if fis bounded and continuous and x, — x,

Bl ) = [fx, +y) O(ay)
- f f(x +y) Q(dy) by dominated convergence
= Px, /).

It is simple to show that the second assumption implies that E[| X || X, = x] < x — € for all x
outside some bounded region (—M, M), whilst E[|X,|[Xq=x] K M + E|Y|+E|Z,| < o if
x €(—M, M). Ergodicity follows. Similarly the third assumption enables us to use Theorem
8.2, whence the recurrence result.

Using techniques similar to those of Section 12, we could handle feedback models with
more general feedback, e.g., we could replace {Z,)} in (14.1) by R(X,). A typical set of condi-
tions for ergodicity would then be that R () is continuous (to establish weak continuity), that
Y, has positive density everywhere (to give ¢-irreducibility with ¢ as Lebesgue measure) and
that lim inf R(x) > E£(Y,) and lim sup R(x) < E(Y,) (to establish mean drift towards

X =00

x——00

some bounded interval).
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ABSTRACT

In this paper we consider the problem of maximizing the sum of certain
quasi-concave functions over a convex set. The functions considered belong to
the classes of functions which are known as nonlinear fractional and bi-
nonlinear functions. Each individual function is quasi-concave but the sum is
not. We show that this nonconvex programming problem can be solved using
Generalized Benders Decomposition as developed by Geoffrion.

INTRODUCTION

In this paper we consider the application of the Generalized Benders Decomposition
(GBD) as developed by Geoffrion [4] to certain nonconvex programming problems. Before

showing how this is done, however, we briefly summarize the application of GBD to a problem
whose form is similar to the one of interest.

The variables of our problem are of two forms, y€ E" and x € E™. The problem we wish
to solve is given by problem P :

P: maximize z = f(x)

subject to G (y,x) >0,
x€ X,y€ Y.

Of interest here are problems where the functions G (y,x) are not concave in x and y jointly,

but fixing x renders them so in y and fixing x yields the same for y. The sets X and Y are taken
to be convex sets. The function f(x) is assumed concave.

Goeffrion showed that under certain conditions problem P could be solved for a global
maximum, even though it appears at first glance to be a nonconvex programming problem. To
achieve this result, Goeffrion extended the work of Benders [2] to include nonlinear program-
ming problems. We now describe the (GBD) method for solving problem P. A knowledge of

the method is not necessary but may be helpful. The procedure is represented by the following
steps:

STEP 1: Let a point y€ Y be known. Solve the following optimizatio. problem:

Pl: maximize z = f(x)
473
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474 A. V. CABOT

subject to G (y,x) >0,
x€ X

The value of z in the solution to P1 is a lower bound on the optimal solution to problem P;
call it LB. In subsequent steps it may be necessary to solve P1 several times. The value of LB
is always given as the greatest of the values of z in solutions to problem P1. Denote by u =0
Kuhn-Tucker multipliers associated with the constraints G(y,x) >0 in the solution to problem
Pl. We assume that such multipliers are given by the method used for solving problem P1.
We also assume that for any y € Y there exists an x '€ X such that G(7,x)20. Thus, problem
P1 will always have a feasible solution. Now go to Step 2 with p=1 and u'=u .

STEP 2: Solve the optimization problem

P1A: maximize y,

subject to y, < maximum ) +ugyx)), j=1,....p
X

y €Y.

Let (,,9) solve problem P1A. Let UB = y,, where UB is now a known upper bound on the
value of the optimal solution to problem P.

STEP 3: Return to problem P1 with the solution j and solve it. If LB 2> UB—e¢ (where €
is a prechosen number), terminate with j and the corresponding solution to problem P1 as the
solution to problem P. Otherwise, increase p by one and put 4’ = i and return to Step 2. We
now point out various aspects of the algorithm.

Note that in Step 1 the optimization problem is essentially problem P with the vector y
fixed. The lower bound created at this stage may not increase at each iteration of the algorithm.
We assume that problem P1 satisfies some sort of regularity assumption so that the vector #
exists.

Step 2 of the method is the most difficult to perform. Problem P1A is essentially the dual
of problem P. The value of y, in the solution to problem P1A will be strictly decreasing, since
each problem is more constrained than its predecessor. We thas see that the value of UB will
decrease at each iteration until the method terminates. The solution of problem P1A will gen-
erally be in two steps. First, compute the maximum on the right-hand side of the constraints
corresponding to u”. Second, solve problem P1A for the values of (9,.9). The first of these
steps is the most difficult, unless the maximum can be carried out independently of the vector
y. Note that once this maximization is carried out, the second step is straightforward if the
function G (y,x) is assumed to be concave in y for fixed x.

Termination of the method in a finite number of steps (for ¢ > 0) is provided by
Geoffrion in the following theorm, modified slightly to correspond to problem P.

THEOREM (Geoffrion, Ref. [4]): Assume that X and Y are compact convex sets and
that for every y € Y there is an x * € X such that G(7x*) > 0. Also, assume that the func-
tions fand G are concave on X for every fixed y € Y, and that problem P1 satisfies a regularity
assumption guaranteeing multipliers & for every y € Y. Then, for any ¢ > 0, the GBD pro-
cedure terminates in a finite number of steps.

In the following sections, we shall show that the assumptions of the above theorem are
satisfied by two problems which are equivalent to nonconvex programming problems.

[;‘.. e e
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NONLINEAR FRACTIONAL PROGRAMMING

In this section we consider a special form of problem P. While the constraint set is a con-
vex set, the objective function is not concave, and thus maximization may lead to locally
optimal but globally suboptimal solutions. The problem takes the form:

P: maximize :z = if,(y)/c,(y)

1=]
subject to y€ Y

Once again we assume that y € E” and that Yis a convex set. Each term of the objective func-
tion is the ratio of f; ()), a concave function, to ¢,(y), a linear {unction in y. We assume that
c¢(y) > 0and f(y) > 0 for y€Y, i=1, ..., m. Such functions belong to the class of func-
tions which Mangasarian [5] terms nonlinear fractional functions.

It is well known that each function f,(y)/c,(y) is a quasi-concave function, in the sense
that for constant x; > 0, the set f,(y)/c,(y) > x, is a convex set. We shall use this result to
formulate another optimization problem which is equivalent to problem P, in the sense that
both problems have the same optimal solution. We will apply the GBD procedure to the
equivalent problem.

To formulate the equivalent problem, we make note of the fact that it is always possible
to determine a value of x/ so large that the inequality has no solution for y € Y. If this is not
true, then the problem would have an infinite solution. In practice one could determine x/ by
maximizing each function f,(y)/c,(y) over Y. (Theoretically, one must assume £,(y)/c,(y) is
pseudoconcave to perform this maximization [1,5], but in actual practice this rarely causes
difficulties.) We thus assume that one can obtain the numbers xt i=1, ... ,m.

Given the above we formulate problem P’ :

m
P maximize z = ¥ x;

i=]

subject to fi(y)=x;c, (y) 20, i=1...,m,
Y€ Y, 0€x,<xli=1, ... ,m.

We see that the optimal solutions to problem P and problem P’ are the same. For notational
purposes we denote the set X = {x,|/0 < x; € x i=1, ...,m). Comparing the components of
problem P’ to the convergence theorem for the GBD procedure we find that the sets Y and X
are compact, and that for any j€ Y there exists x* € X such that G(7x*) = f(7)-
x;%,(y) 20, i=1, ... ,m. We note also that f; (y)—x, c,(y) is concave in x, for fixed y. Thus,
if we can perform the steps of the method we can guarantee that, for any € > 0, the GBD pro-
cedure will yield the optimal solution to problem P’ in a finite number of steps.

Applying the GBD procedure to problem P’ we must first solve at each stage the problem
P’ 1 with y fixed at y€ Y,

Pl maximize z = $x,

i=-1
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subject to f(y)—x;c,(y)20,i=1, ..., ,m,
x€X.

It is easily seen that problem P’ 1 is in fact equivalent to m linear programming problems in one
variable, and thus has the closed form solution X, = f,(y)/c,(y),i=1, ... ,m. Since P' 1 is a
linear-programming problem, the Kuhn-Tucker multipliers always exist and in fact have closed
form solution &, =1/c; (), i=1, ... ,m.

The first time problem P'1A is solved it will have the form

P'1A: maximize y,

m m
subject to y,< maxiGmxum Yxi+ Xa (f(»—xic(y)},
X

i=1 i=]

y€ Y.

Because of the form of X this yields the problem

P' 1A: maximize y,

m m
subject to y,< 4./, (y)+ Y maximum {x;,[1-a;c,()]},
i=1 i=1 0<x<x!

ye Y.

For a typical term on the right-hand side of the constraint, the maximization will be given by x;
=0,if ]l —4,c(y) £0,and x; = x* if 1 —a ¢/ (y) 2 0. Of course, when 1 — #;c,(y)
=(), the value of x; is of no consequence. Thus, in order to solve problem P'1A, one must
solve 2™ problems considering all possible signs of the terms 1 ~ &, ¢,(y). For example, when
the enumeration is performed one might start with 1 — # ¢,(y) < 0 for all / and solve the
problem

P' 1A : maximize y,

m
subject to y, € Y ./, (y),

=]

1-d,c,(y)€0,i=l, ... ,m,

y€ Y.
This problem is a concave programming problem, since #, > 0, c,(y) is linear, and f,(y) is
concave for i=1, ..., m. We might next consider the problem with 1 — &, ¢,(y) 2 0 and all

other conditions unchanged.
This gives the problem

P' 1A : maximize y,
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subject to yosi uf(y)1—uc,(y)],

im]
1-iyc,(y) 20, 1-ii,c () €0,i=2, ... ,my€ Y.

This is also a concave program due to the linearity of c,(y).

In order to solve problem P'lA one must first solve all 2™ cases and take as (j, 7) the
solution with the largest value of j,. This becomes an upper bound on the optimal solution to
problem P'. Of course, this will be quite cumbersome if m is large, but many practical prob-
lems are still within the range of solvability since it is the number of quasi-concave functions in
the sum, rather than the number of variables in the problem, that determines the degree of
difficulty of the problem.

There are two additional points of difficulty. Once problem P'1A has been solved, it is
necessary to carry the contraints on the quantities 1 — #,c;(y) forward to the next formulation
of P'lA. Thus, at each step of the method the constraints on P'1A grow larger. Since they are
linear, this may not increase the difficulty of P'1A too much. A more serious problem occurs
when two or more different solutions at any one stage tie for having the maximum value of Yo
In this case, it is necessary to carry all these solutions to the next stage, solve problem P’ 1 for
each y (unless they are the same) and then solve P’ 1A for each combination. Thus, if k solu-
tions tie in the solution to problem P'1A at any stage, it might be necessary to solve, at a
minimum, k2" programming problems the next time problem P'1A occurred.

The combinatorial nature of the solution procedure may at first seem depressing. It
should be pointed out, however, that it has been shown (3] that zero-one integer programming
problems can be formulated as a special case of this problem. Viewed from this perspective, it
is not surprising that the effectiveness of the procedure deteriorates exponentially in the
number of functions in the sum. Keeping this in mind, we present an example of the method
in the next section.

AN EXAMPLE PROBLEM
Consider the following problem:
P: maximize z = y,+1/y+y; + yy/3-y,

subject to y€ Y = {y,y,|y+y,21,
Y1+72€2,y,20,p,20).

A geometric view of the problem with the value of z given at each extreme point appears in
Figure 1. It appears, from the extreme points, that there are two local maxima. It should be
pointed out, however, that there is no guarantee that the global maximum occurs at an extreme
point. Taking x{ = x4 = 2, we formulate problem P’ as

P’. maximize z = x,+x,

subject to y+1—x,(y,+y,) 20,
Yyr—x3(3=y) 20,
YEY = (yyyolyi+y:21,y14y,€2,9,20,,20),
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3/2
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2 3/2

FIGURE |

and
x€ X = [x1,x)|0€x,€2,0<x,<2).
To begin, we pick the local optimum, ¥, =1, y, = 0, and get problem P'1:
P'1: maximize z = x+x,

subject to x,<2,3x,<0,x € X, which yields x; = 2, x, = 0, z = 2, so that LB = 2. We
get multipliers #, = 1, ¥, = 1/3. Problem P'1A has the form:

P'1A: maximize y,

subject to y,,<mg)<(im‘uzm (x x4y 1=x,(y )1 +1/3 [y =X 3=y,
ol
0<x,<2
ye Y.

Simplifying, we get the problem
P'1A: maximize y,

subject to y,<—y,
+(1/3)y, +1+ mggixtln&m (e 1=Cy 1y ) 14+x,(1-(1/3) 3=y )1},
0<x,<2
y€ Y.

We must solve four problems:
1: maximize y,
subject to y, <=y —yr+3,
yi+y €1, (1y,200€ Y,

with optimal solution y; = 1,y,=0,y, = 2.
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2: maximize y,

subject to y,<—y,—(5/3)y,+3,

yi+y<1,(1/3) y,<0,y€ Y,

with optimal soluton y, =1, y, =0, y, = 2.

3: maximize y,

subject to y, < ¥, + ¥, + 1,

n+y,21,(1/3)y, 20,y€Y,

with optimal solution y, = 2,y, = 0,y, = 3.

4: maximize y,

subject to y, <y +(1/3)y,+1,

n+y21,(1/3)y,<0,y€ Y,

with optimal solution y, = 2,y, = 0,y, = 3.

Problems 3 and 4 have the same value of y, (we take this solution to problem 3 to aid the
explanation, although the solution y, =0, y, = 2,y,=3 has the same value), and thus y,=3

serves as an upper bound on the value of z in problem P. We thus proceed to problem P1
with LB = 2, UB = 3, and the solution y, = 2,y, = 0.

P'l: maximize z = x+x,

subject to 2x; £ 3, 3x, €0, x€X. The solution gives x, = 3/2, x,=0, and z = 3/2 so

that LB = 2 again and &, = 1/2,i7, = 1/3.

Proceeding to problem P'1A, we get the cases:

I: maximize y,
subject to y,<y+(1/3)y,+1,
Y.< (1/2)y+(1/3)y,+1/2,
ntya2l,
y|+y2>20
(1/3)}’2>0,
ey,

Solutions: y; = 2,y, =0, y, = 3/2.

2: maximize y,
subject to y, <y +(1/3)y,+1,
Y.L 1/ y+y+1/2,
yl+y2>l9
yl+y2>2v
(1/3)_?2 . 0,
yEevY.

maximize y,
subject to y, <y, +1,
y,,( (1/2)y|+(l/3)y2+1/2,
2l
.Y|+}’2) 20
(1/3))’2 - 0,
yEeY.

Solutions: y, = 1,y, =0, y, = 3/2.
maximize y,

subject to yo<y +y+1,
yo<(l/2)y|+(l/3)y2+l/2,
.V|+y2>1|
yn"’)’z)Z,
(1/3)y,20,
yEY.
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Solutions: y; = 2,y,=2,y,=0, y, = 3/2.

3: maximize y,
subject to y, <y, +(1/3)y,+1,
Vo< (1/2)y\—(2/3)y1+5/2,
nty2l,
ty,€2,
(1/3)y,<0,
yevY.
Solutions: y,=1,y,=0, y, = 2.
4: maximize y,
subject to y, <y +(1/3)y,+1,
YoS—(1/2)y,+5/2,
nty<l,
yity,€2,
(1/3)}’2 - 0,
yeY.
Solutions: y; =1,y,=0, y, = 2.

Solutions: y; =0, y,=2,y, =5/2.
maximize y,
subject to y, <y +y+1,
Yo<—(1/2)y,—(2/3)y+5/2,
n+y21,
yl+y2<2’
(1/3)y2 - 0’
yE€Y.
Solutions: y; =1,y,=0, y, = 2.
maximize y,
subject to y, <y +y,+1,
Yo$—(1/2)y1+5/2,
ity 21,
Yi+y282,
(1/3),}’2}0,
yevy
Solutions: y; =0, y,=2,y, = 5/2.

The best solution is y; =0, y, =2, and y, = 5/2, which gives UB = 5/2. When the
solution y,; = 0, y, = 2 is used in problem P'l, we get LB = 5/2, and thus the optimal solution
appears to be the extreme point corresponding to the largest value of z.

In the following section we consider another class of quasi-concave function for which the

GBD procedure is applicable.

BI-NONLINEAR PROGRAMMING

A second type of quasiconcave function amenable to the proposed technique is a bi-
nonlinear function. The proposed problem is of the following kind:

P: maximize z = if,(y) cei(y)

i=]

subject to y€ Y. The functions f,(») are assumed to be concave, and the functions c;(y)
to be linear. We also assume that f,(y) 20 and ¢;(y) >0 for y€Y, i=1, ... ,m[5]. The prob-

lem P' is formed as follows:

m
P’: maximize z = ¥ x,

i1

subject to £,(y)—=x,/c(¥) 20, i=1, ..., m,

y€Y, x€X

The set X is determined exactly as it was previously. Note that this problem also satisfies the
assumptions for solution by the GBD procedure. Once again, for fixed y problem P’ has a
closed form solution as m linear programming problems, so that Kuhn-Tucker multipliers u; are

again guaranteed to exist.

For a given u vector, problem P'1A can be formulated as follows:

P'1A: maximize y,

.
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m m
subject to y,< Y u.f(y) + ¥ maximum {x,[1—u/c,(y)]},
1= i=1 OSX,SXI”

Y€ Y.

Here, once again, the solution in terms of x; depends on the sign of the terms 1—u,/c,(y). If
1=uj/c(y) <0, we have x, =0, and if 1-u,/c,(y) >0, we have x;, = x" Thus, the solution
procedure for this problem exactly parallels the procedure for the nonlinear fractional problem.
It should be pointed out, however, that problem P'1A is not a sequence of linear programs,
since it contains the terms u,/c,(y) for problems with x; = x/. A saving grace may be that
since the functions c,(y) are linear, a simple change of variables can transform these terms into
separable nonlinear functions for which linear-programming approximations are available.
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ABSTRACT

Consider a single-server exponential queueing loss system in which the ar-
rival and service rates alternate between the pairs (A;. u;) and (A;. u,), spend-
ing an exponential amount of time with rate ca; in (A, ), i =1,2. It is
shown that if all arrivals finding the server busy are lost, then the percentage of
arrivals lost is a decreasing function of c. This is in line with a general conjec-
ture of Ross to the effect that the "more nonstationary” a Poisson arrival pro-
cess is, the greater the average customer delay (in infinite capacity models) or
the greater the percentage of lost customers (in finite capacity models). We
also study the limiting cases when ¢ approaches 0 or infinity.

1. INTRODUCTION

This paper is a continuation of a study of queueing models with nonstationary Poisson
arrivals begun in Ref. (2], where it was conjectured, and verified in a special case, that a queue-
ing system with nonstationary Poisson arrivals will lead to larger average customer delays than
would a similar model having stationary Poisson arrivals with the same average arrival rate. In
order to investigate this conjecture further we consider a single-server loss system that oscillates
between two feasible levels denoted by 1 and 2. When the system is at level / (i = 1,2), the
arrival process is a Poisson process with rate A, and the service times are exponential random
variables with rate u,. The time interval during which the system functions at level i is also an
exponential random variable with rate ca, where c is a constant, i.e. the persistence of the sys-
tem at any level is governed by a random mechanism: if the system is functioning at level i, it
tends to "jump” to the alternative level with Poisson rate ca;,.

*This research has been partially supported by the Office of Naval Research under Contract N00014-77-C-0299 and the
Air Force Office of Scientific Research, AFSC, USAF, under Grant AFOSR-77-3213 with the University of California.
Reproduction in whole or in part is permitted for any purpose of the United States Government.
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We suppose that an arriving customer will only enter the system if the server is free when
he arrives. Let L(c) denote the proportion of customers that are lost to the system. In the
following section we show that

L (¢c) is decreasing and convex in c.
It should be noted that the (time) average arrival and service rates, A and i, are given by

& Ajay + M — _ ot pa
a|+a2 : a,+a2

and are thus independent of ¢. The purpose of the constant c is to regulate how fast the system
changes levels; thus, the larger cis, in some sense "the more stationary the process is." Indeed,
as c¢ approaches infinity, the system converges to a stationary one.

2. THE LOSS FUNCTION L(c)

The system can be analyzed as a continuous-time Markov process with states
{(m,i)Jm = 0,1 and i = 1,2}, where m denotes the number of customers in the system and i
denotes the level of the system. The transition probabilities are stationary and satisfy the for-
ward Kolmogorov differential equations. Moreover, for all (m,i), the limiting probabilities, call
them P,,, exist and are independent of the initial state. The set {P,,} satisfies the following
balance equations:

(1a) (N + ca) Py = p Py + carPpy
(1b) (p1 + ca) Py = \\Py + cayPyy
(2a) (\; + cay)) Py = u Py + ca Py,
(2b) (py + car) Pyp = APy + cay Py,
with

(3) Py + P+ P+ Pp=1.

Let L(c) denote the proportion of customers lost to the system. Since
XL(C) - A]P“ + Xanr
we can calculate L (c) by finding P, and P,,. Before doing that, let us note that the proportion
of time the system is in level | is
a
(4) Py + Py = —2—
o1 5 e + oy

which can be obtained either by adding (1a) and (1b) together and substituting (3), or by con-
sidering the system as an alternating renewal process. Similarly,
)

(%) P, bl
Py + Py o

The easiest way to solve for P,; and P,, is to put (1a) and (1b) in a matrix form as fol-
lows:

(A| o cal) -~ [Pml [002P02]

Py| ™ leasPyf

1
© =Aq (uy + cay

e




PR o

QUEUEIMG LOSS MODEL 485

Similarly, for (2a) and (2b):

(kz",’ ('Clz) —MK P()z t‘ali’m
(7) _Az (p.2+ca2) P|2 i (‘a,P” ]
Putting (6) and (7) together yields
(Al + (‘a|) K, (A; + Caz) %) P02 C20|02P02
(8) —A‘ (“'l + t‘a;) =A3 (ﬂ.: + Caz) P” g czalaan g

From the first row of (8) we obtain
[c(a|A2+a2A,) +A2(A|+“|”Pm - [C(a.u,+a; “l, +“2(A!+“|”Plz~

Therefore,

P” f(G|A2+02A|,*A)(A|+“',

& Py, clap,+ayp) +u(h+u)

Hence, by (5) and (9),
a, “,"Ai’f?“""{“ﬁ‘ tuy)

Plz- ¥ - —— — & e
ayta; clafhy+pu)+adn, s+udl+a, +pu)a,+u,

and

a, lag ,*a, pn)rvuida +un)

Py = g o
- ata; clafh,+pu)sadn sudleln s pua, +u)

Due to the symmetry of the equations (1o (18 and (Ju (I8 we see that

@, (labd *ap lvala +n4
Py = o 1
ata; clafa,sudrsaia cu sl sua v+,
a, ilogs *» » LT
Py = -
a+a; clafda,vp)ruis R T LU

Thus, we have

AL r(o,A,:-,g!l tafmdn, comdsajmba tpy .
Al = (a)+a)lclafa,+pudrata sudleta o puiin, +u)
Differentiation yieids

g lA g, 'ﬂ’l'l’;

XLe) = et S
t) (¢|+-ﬂ'f'.|“)+’)‘.ﬂ‘|”|"*“l"|"‘)+‘,,',

and

20#1(“;- ‘1‘""‘“‘3#’) *.,‘l|¢ﬁ|"
(a;+a)lclayhy+up) +ay(h, +u )+ A +u)h+uy))’
There are two cases to consider.

AL"(c) =

CASE I: Ay — Ay =0;ie., the traffic intensities A ,/u, and A y/u; are equal, say to p.

In this case L'(c) = 0, and thus L (c¢) is independent of the value c. Moreover, we have
simple solutions for the P,,’s in this case, namely
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a 1
a t+a; 1+p

Py =

Py e B
L art+a; 1+p
L TR ey
ayta; 1l+p

L BRI
R ay+a; 1+p°

Py, =

Hence, P,, the proportion of time the system is busy, is

P =P, +Py=—E—,

1 1 2* T%p
and P, the proportion of time the system is empty, is
1

1+p°
In terms of P, and P,, the system functions as an ordinary M/M/1 loss system with traffic
intensity p. The loss function is found to be

S Pl
L(c) s

PoEP01+P02-

CASE 2: ANy — ANy g # 0.

In this case L'(¢) < 0 and L"(c) > 0. Hence, L(c) is a decreasing convex function of
the value c.

Therefore, if the ratio of the time the system stays at each level is fixed, then the faster
the system alternates between these two levels, the better the system is (in terms of the loss
function).

3. EXTREME CASES

We have shown that L (c) is a strictly decreasing function of ¢ when the traffic intensities
Ai/p; and Ay/u, are not equal. Now let us study the two extreme cases: (a) ¢ — oo, i.e. the
system alternates extremely fast between level 1 and level 2 or, equivalently, the mean time
that the system stays at each level approaches 0; (b) ¢ — 0, i.e. the system alternates extremely
slowly between level 1 and level 2 or, equivalently, the mean time that the system stays at each
level is becoming infinitely large.

CASEl: c— o

Faa (al)t2+a2)«|)z
A lim L(c) (a, + aplay(Ay + py) + ay(A) + u)]’

implying that

lim L(c) = _)‘ =.
preeay n+A
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’ Furthermore, the proportion of time that the system is busy can be obtained by

P,-Iim P”+lim P|2-_A-.
e e E+A
and the proportion of time that the system is idle is

Po-limP0|+limP02-_ =
o m+ A
Thus, the limiting system is equivalent to a no-queue-allowed M/M/1 system with constant
arrival rate A and service rate w.

Since L (c) is decreasing, the value is the smallest value the system can achieve

E+AX
for the loss function.
CASE2: ¢ —0
Aﬁaz(hz +uy) + Xzzal(Xl +upy)
(al =+ (12)(A| + [L])(Az + ”-2)

a, A7 aj ¥

Xlim L(c) =

a|+¢12 A|+ﬂ.| a|+a2 K2+‘L2'
and the proportion of time that the system is busy is

a, Ay a) Ay

Py=1lim P, + lim P, = A
’ c—0 " c—=0 i a|+a2 }l.|+x1 a|+a2 }L2+A2

The proportion of time the system is idle is

@ el @y M)
a|+a2 }L|+A| a]+¢12 }12+A2.

Py=lim Py, + lim Py, =
TR TR e

Thus, the limiting system functions as the (time) average of two independent M/M/1 loss Sys-
tems, one with arrival rate A, and service rate x|, and the other with arrival rate A, and service
rate %3

4. RIGHT AND WRONG ARRANGEMENTS

Let us assume A\; < A, and u; < u, and compare the system R with levels A\puy),
(A3 1) to the system W with levels (A, ), (Ayu;) under the condition a; = a, In other
words, the system R has the arrangement such that the server with slow service rate goes on
the shift with the slow arrival rate and the person with the fast service rate goes on the shift
with the fast arrival rate. The system W is arranged the other way around. If we denote the
loss functions of the systems R and W by L and L, respectively, then a simple algebraic :
computation yields that Lg(c) < Ly(c), and so the system R is better than the system W in SN
the sense of loss function.

B

i f
t 5. FINAL REMARKS i
$ The, model considered here is similar to ones considered in Refs. [1] and [3]. However, |
t the results obtained in these papers, being in terms of the root of some polynomial, do not
f ‘ seem to enable one to draw the type of conclusion obtained in the present paper.
ol
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OPTIMAL DISPATCHING STRATEGIES FOR VEHICLES HAVING
EXPONENTIALLY DISTRIBUTED TRIP TIMES*

Kamran Asgharzadeh and G. F. Newell

University of Califiornia, Berkeley
Berkeley, California

ABSTRACT

A transportation system has N vehicles with no capacity constraint which
take passengers from a depot to various destinations and return to the depot.
The trip times are considered to be independent and identically distributed ran-
dom variables. The dispatch strategy at the depot is to dispatch immediately,
or to hold any returning vehicles with the objective of minimizing the average
wait per passenger at the depot, if passengers arrive at a uniform rate.

Optimal control strategies and resulting waits are determined in the special
case of exponentially distributed trip time for various N up to N = 15. For
N >> 1, the nature of the solution is always to keep a reservoir of vehicles in
the depot, and to decrease (increase) the time headway between dispatches as
the size of the reservoir gets larger (smaller). For sufficiently large N, one can
approximate the number of vehicles in the reservoir by a continuum and obtain
analytic expressions for the optimal dispatch rate as a function of the number
of vehicles in the reservoir. For the optimal strategy, it is shown that the aver-
age number of vehicles in the depot is of order N'3. These limit properties are
expected to be quite insensitive to the actual trip time distribution, but the con-
vergence of the exact properties to the continuum approximation as N — oo is
very slow.

1. INTRODUCTION

We are concerned here with strategies for dispatching vehicles from a depot of a public-
transportation system. The system consists of N vehicles, each of which takes passengers from
the depot to various destinations, and then returns after some random :rip time to make
another trip. Passengers arrive at the depot at a constant rate, and vehicles 'ave sufficient capa-
city that a passenger can always board the next departing vehicle. The objective is to minimize
the long-time average wait per passenger at the depot.

A similar problem was previously considered by Osuna and Newell [4], with emphasis on
the case of small All, particularly N = 1 or 2. For N = 2, the coefficient of variation of the trip

time, C(T) = Var? (T)/E (T), was further assumed to be small compared to 1. The following
analysis will approach the problem from the opposite extremes, cases of N >> 1 and/or trip
times with large variances, where vehicles are likely to pass each other enroute.

*This research was supported in part by the National Science Foundation under grant MPD 72-05068A03.
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It was shown by Osuna and Newell that if the dispatch times 7, < 7, < ... define a
sequence of headways
Him=1.—% 1 i=2.3, ...,
which are identically distributed random variables satisfying a law of large numbers
n
15 & <wun,
n ;=\

and if passengers arrive at a uniform rate independent of dispatch times, the average wait per
passenger is

(1.1) E(W) = E(H)/[2E(H) = (1/2) E(H)[1 + CX(H)].

It is therefore desirable to keep both the mean headway and the variance of H small.

We assume here that the stochastic properties of the trip times are given and that the only
mechanism for control is to delay a dispatch. The minimum value of E(H) is achieved by
dispatching vehicles with no delay, but then the random trip times generally lead to a large
value of C2(H). The optimal control strategy involves an increase of the "effective trip time"
in order to improve the regularity. For small N, this strategy typically requires that one merely
delay a vehicle’s departure if it returns too early, but there will seldom be more than one vehi-
cle at the depot. For N >> 1, however, the optimal strategy will typically involve maintaining
a reservoir of vehicles at the depot, so that one will almost always have a vehicle to dispatch at
some desired dispatch time. The actual number of vehicles in the reservoir will fluctuate and
may occasionally vanish. The optimal strategy describes, among other things, what average
fraction of the total number of vehicles one should keep in the reservoir in order to stabilize
the departures.

Our analysis of the problem is in two parts. First we give an exact formulation of the
problem for exponentially distributed trip times. An analytic solution, although conceptually
simple, becomes unmanageable if N becomes large (even N = 4), but we do show numerical
solutions for N :X 15. In the second part we derive an approximate forumlation for the prob-
lem, the solution of which gives the asymptotic properties for N — oo. The numerical and the
asymptotic solutions agree fairly well for N = 15. For N >> 1, the optimal expected number
of vehicles kept at the depot is shown to be proportional to N'/3.

Although the postulate of an exponentially distributed trip time is not very realistic for
most real transportation systems (which typically have a coefficient of variation in trip time con-
siderably less than 1), the results obtained here should give a crude upper bound on the
optimal number of vehicles kept at the depot for systems with smaller variation in trip time.
For sufficiently large N, however, one can argue that the process of returning vehicles should
be approximately a Poisson process, regardless of the detailed nature of the trip time distribu-
tion or the dispatch strategy. The optimal control strategy should, therefore, be insensitive to
the trip time distribution provided that the uncertainty in trip time is large compared with the
mean headway (so that a typical vehicle passes or is passed by many others before it returns).
Unfortunately the convergence to such an asymptotic behavior is very slow and of questionable
accuracy for any reasonable values of N and C(T) encountered in real systems.

2. Formulation
Let T, be the trip time of the vehicle which leaves the depot at time 7, i =1, 2, ....

The T/s are assumed to be independent identically distributed random variables with a continu-
ous distribution function Fp(z) = P(T, < z). We can measure time in any arbitrary units.

K R A
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Hereat_‘ter, all times will be interpreted to be measured in units of E(T)/N (the average head-
way with no control). In these units

2.1 E(T) N =1.

At any time, the information that is relevant to the future behavior of the system is the
number of vehicles, x, in the depot; the number of passengers, M, waiting to be served; and
the times r; 2 1, 2 ... > 15_, since the last dispatches of all the vehicles enroute. Since there
is nothing to be gained by dispatching more than one vehicle at a time, the t's will satisfy
L>1> .. D>t

We assume that at any time, we know the values of x, 1y, ..., tn—y, but we cannot
observe M. Since passengers arrive at a uniform rate, we will base our strategy on the expected
value of M, E(M), which is proportional to the time ¢ since the last dispatch. (The time ¢ since
the last dispatch may be equal to one of the ¢; or it might be a time since the previous dispatch
of one of the x vehicles in the depot.) Since the optimal strategy does not depend upon the
arrival rate of passengers, we arbitrarily take this rate to be 1.

We can define a state of the system as the vector <x, 4, ¢, ..., ty_,>. If at all times we
follow a strategy (dispatch or not) which depends only upon the present state of the system, the
future behavior will depend only upon the present state, and hence we have a Markov process.

Generally, this Markov process is quite complicated. If, however, we assume that the trip
times of the vehicles are exponentially distributed, then the future arrival times of the vehicles
at the depot are independent of previous dispatch times. The future behavior of the system
depends only on the state vector <x, +>. This state space, as shown in Figure 1, consists of
N+1 real lines, r > 0, x =0, 1, ... ,N.

Since the dispatch strategy depends only on the state of the system, it is specified by a set
of points in the state space at which one should dispatch a vehicle, and a complement set of
points at which one should hold every vehicle. It is intuitively obvious that if we should
dispatch whenever the state is <x, 1>, then we should also dispatch whenever the state is
<x, t'>, for 1" 2 1 Therefore, we can assign numbers a, for each x such that we hold every
vehicle if we are at any point <x, t>, t < a,, and we dispatch one if we are at a point

X‘ :
o T 2 e s e s ;

- ——h ——————————————————————————
N-1| Oy : ¢

N — = — e e .
FIGURE | — The state space. The light solid lines (0, a) On-2 3
are the set of hold points, the dark solid lines [a;, a,_,] are . 3
the set of dispatch points, and the light dashed lines € £ |
(a,_;, =) are the set of unreachable points. Two typical X +I I, ~ — = - e md - - - .- = &

state trajectories ABCEDFG and A’B' C' D’ E' F’' G’ are A il e |

drawn with dark solid lines and dark dashed lines, respec-  ~ o4 g A e B T
tively. X~lw- S o R YR I

s

e

J
i
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<x, t>, t 2 a,. Note that a,= oo is the only possible value for a, It is also obvious that if
we should dispatch at a point <x, t>, then we should dispatch at a point <x+1, > because
we can better afford to use the vehicles if we have more of them. It follows that

(22) °°-a(,2a|>az>...>a,v>0.

Figure 1 also shows two types of state trajectories. As long as no departure occurs, the
state moves at unit speed from left to right with upward jumps of magnitude one at each arrival
of a vehicle (as at BC, DE, B’C’, —). At any departure time, however, there is a downward
step by one and a return to ¢t = 0 (as in GH or F’G’). A dispatch will occur when the state
<x, t> first reaches a point with ¢+ > a,. This may occur either because a vehicle arrived at
time ¢t and a, < t < a,_,, as at point G, or the state moved to the point <x, a,> continu-
ously as at F. It is not possible to reach states <x, t> with t+ > a,_, shown by the broken
lines; dispatches occur only in the intervals [a,, a,_,].

The problem now is to find that strategy, i.e., a sequence a,, ..., ay among all the possi-
ble a, 2 a, > ... 2 ay, such as to minimize the expectation of wait of a randomly chosen
passenger. Under a strategy of no control, a vehicle is dispatched as soon as it returns no
matter how short the headway, i.e., a;= ... =ay =0, ay= o. The only states which can be
reached, however, are those with x = 1 or 0.

For any strategy (a,}, the states of the system <x, 0>, x =0, 1, ..., N — 1, immedi-
ately after a dispatch define a finite-state Markov process. If 4., is the conditional probability
of having y vehicles after the kth dispatch, given that we had x vehicles after the (k—1)th
dispatch, and p,(k) is the probability of having x vehicles after the kth dispatch, then the p, (k)
satisfy the equations

N-1
2.3) py(k+1) = Eo Qyy Px(k), y =0, ..., N- 1.

After sufficient time (k — o0), the p,(k) will approach an equilibrium distribution p, which
satisfies the equations
&) : Nz-l N-1

. py-‘_oqx,ypx- xEopx-l'

To evaluate the ¢,,, we note that the assumption of exponentially distributed trip times
means that (in the units (2.1))

(2.5) Fr(z) = 1 — exp(-z/N).

If there are x vehicles at the depot, and no dispatch occurs during a time interval a, then, for
each of the N — x vehicles enroute, there is a probability 1 — exp(—a/N) that it will return in
the time interval a, and exp(—a/N) that it will not. The probability of exactly / arrivals in an
interval a, given that x vehicles were at the depot at the beginning of the interval and no
dispatches occurred during the interval, is

Nl—x] [exp(—=a/N)1¥=*""[1 - exp(—-a/N)]’, (2.6)

a binomial distribution with / successes, N — x — / failures, and probability of failure
exp(—a/N),
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From Figure 1, one can readily see that a transition from the state <x, 0>to <o, 0>,
with 0 € o < y — 1, will occur if and only if at most y — x vehicles arrive in the time interval
[0, a,]. The probability of this event is, therefore,

y-1 V=X 0
@amn o, = Eo‘qx,(r - z—o lNax] lexp(=a,/N)I1¥=*=" [1 — exp(~a,/N)]"

=Fg(y —x; N—-x, 1—-exp(-a,/N))
forx —-1<y<N-1,x=0, ..., N-1
=0fory < x — 1,

in which Fg(x; n, p) is the cumulative binomial probability distribution [5], and
(28) Gxy = Q.r.v+l Kix Qx,y

The solution of the system of N linear equations (2.4), with g, , given by (2.7) and 2.8),

determines the p, as functions of the strategy {a,]. One can also determine the stationary
headway distribution

(2.9 F(h) = P(H > h)
in terms of the p, and a,.

For h < ay, F(h) = 1, whereas fora,,, < h < a,x=0,1, ..., N -1, itis given by

(2.10) F(h) = BZO pg P(H > h|B vehicles present at the start of H)
— ato pg P(at most x — B arrivals in (0, h)|B)
= ﬂzo ps Fglx — B, N = B, 1 — exp(~h/N)).

From this, one can evaluate

@.11) EGH) = [ Fh) at, ECHY =2 h F(h) dh,
and
E(W) = E(HY/2E(H)
as functions of the {a,}. The problem is thus reduced to minimizing E(W) with respect to the

a,,witha, 2 a, 2, ... Zay.

Except for small N, the evaluation of E(W) and a, is extremely tedious, but one can
obtain some bounds on E(W) and the a,. We first note that, if we dispatch with no control,
the arrivals of vehicles form a Poisson process with C(H) =1 and, from (1.1),
E(W) = E(H) = E(T)/N = 1. Therefore

E*(W) = E(W|a,,..., ay) < 1.

On the other hand, from (1.1), we have

E(W) = ﬂz”—) (1 + CAH)] > #

.
g A i
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One can show that the minimum value of E(H) is achieved with no control, i.e., E(H) >
E(T/N) = 1. Consequently,

(2.12) 1/2 < E*(W) < 1.

The lower bound would obtain if one could maintain regular headways with negligible control
delays. The goal for any finite N is to make E*(W) as close to 1/2 as possible.

Although E(W) is a complex function of a,, ..., ay_,, its dependence upon ay is rela-
tively simple. For any fixed values of @, ..., ay_;, one can show from (2.10), (2.11) that
8 E(H) _ 5 dE(H)
day 2 ¥ ey

and that the equation
dE(W)/day =0
is satisfied provided that ay satisfies the equation

Thus, for any choice of a,, ..., ay_,, the optimal ay must satisfy (2.13). This does not
give ay "explicitly”, because E(W) depends upon ay, but E(W) varies so slowly with a that a
sequence of successive approximations will converge very rapidly.

Equation (2.13) can also be derived by a dynamic-programming argument, such as
described in reference [4], for the special case N = 1.

Since we know that E*(W) > % it follows that
(2.149) %sE’(W)-a,QSa,}_.s...sao-co.

Also, the strategy ay =ay_ = ...=a, -% will give a smaller E(W) than no control,
ay=ay_,=...=a,=0, therefore a better upper bound for £*( W) than (2.12).

3. NUMERICAL RESULTS FOR SMALL N

For N =1 and 2 ( and perhaps 3), evaluation of the optimal control can be done analyti-
cally, but for larger N the solution of (2.4) and the minimization of E(W) with respect to the
a, must be done numerically.

The solution for N = 1 was described in reference [4] even for a general trip-time distri-
bution. The optimal strategy is to dispatch the single vehicle immediately if it arrives after
some time a,, but dispatch at time a, if it arrives before time a,. Equation (2.4) has the trivial
solution po = 1. The headway distribution (2.10) is a truncated exponential

1, 0<h<a,
Fih) = exp(—h), a, < h,. '
giving

E(H) = a, + exp(—a,), and E(H?) = a} + 2(a, + Dexp(—a,).
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The optimal a, is given by (2.13) .
a,?/2 + (a; + Dexp(—a;’
a, +exp(—a;)

(3.1) a, =

which can be solved by successive approximations. If we substitute any jth approximation
a,(j) in the right-hand side of (3.1) and evaluate the (j+1)th approximation as the value of
the left-hand side, this sequence of approximations will converge very rapidly. For example, if
we take a trial value of a;(0) = 1/2, then a,(1) = 0.935 and a,(2) = 0.901 (already correct to
three decimal places).

As compared with no control, the optimal control has reduced £(W) from 1 to approxi-
mately 0.90. This reduction is achieved through increasing £(H) from 1 to 1.307 and decreas-
ing C2(H) from 1 to 0.38. This illustrates how the average wait can be reduced through an
improvement in the regularity in service at the expense of longer average headways.

For N = 2, there are two control parameters a, and a,. The transition probabilities (2.7)
become
Qo.1 = q0.0=1— qo., = 2exp(—a /2) — exp(~a),
and
Qi1=4q10=1~-4q,=exp(-a)/2),
and the solution of (2.4) is

exp(—a,/2)
1 — exp(—a,/2) + exp(~a))’

which is independent of a,.

The headway distribution (2.10) becomes

~ l. 0< h < a,,
F(h) ={(1 = poexp(~h/2)—pgexp(—h), a, < h < a,
poexp(—h), a, < h
from which one can evaluate £(H), E(H?), and E(W) as explicit functions of a, and a,.

The pair of equations

QE(W) _ BE(W)

=0fora,=a;and a, = a,,

601 aaz
for the optimal a, and a,, can be manipulated into the form
(3.2a,b) a; = — 2Inlexp(=a;/2) — a;*/8], a; = E*(W).

The minimum of £(W) can again be obtained by successive approximations. If we sub-
stitute any Ah approximation a,(j) in (3.2a), we obtain a th approximation a,(j). The
(j+1)th approximation for a, is then obtained by substituting a; (j) and a,()) into E(W), as
in (3.2b). This sequence of approximations converges very rapidly. Table 1 illustrates the
iterations starting from a,(0) = 1/2. '

s . 2
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TABLE 1

Iteration Number
0 1 2

a; | 0.500 | 0.899 | 0.838
a; | 0.582 | 1.243 | 1.125
pe | 0922 | 0.715 | 0.755
E*(H) | 1.091 | 1.366 | 1.310

E*(W) | 0.899 | 0.838 | 0.835

Whereas the optimal control for N =1 reduced E(W) from 1 to 0.901, E(W) can be
further reduced to 0.835 for N = 2. Again, as in the case of one vehicle, this result is obtained
by an increase of E(H) from 1 to 1.31 (approximately the same as for N = 1) and by a larger
decrease in C2(H), from 1 to 0.28.

For N > 2, it becomes progressively more tedious to determine the a,’s by setting
derivatives of E(W) equal to zero. One should, instead, use numerical techniques better suited
for a computer. For any N and any particular choice of the a/'s, the matrix g, , was computed
numerically from (2.7) and (2.8). The system of N linear equations (2.4) was then solved for
the p,. That q,, = 0 for y < x — 1 means that the yth equation of (2.4) can be solved for
py+rintermsof pg, ..., p, y < N —1. Thus, for y =0, 1, ..., one can successively evalu-
ate p,, py. ..., in terms of p,, then determine p, from the normalization. The headway distri-
bution can be evaluated from (2.10), and the values of E(H), E(H,), and E(W) calculated.

The evaluation of E(W) for any particular N and {a,} is computationally quite simple
even for moderately large N. To minimize E(W) with respect to the {a,}, however, we
exploited certain known properties of the a,, such as (2.14), and followed an iterative scheme
for which E(W) would converge rapidly to E*(W). The scheme successively minimizes E(W)
with respect to one variable at a time in the following way.

First we take a;(0) = a3(0) = ... = a,(0) = 0.5 and let a, vary over the interval (0.5,
2.5] (in steps of 0.1). We find the best E(W), E(W) (0), and the corresponding a,(0). Next
we choose a,(1) = a,(0) and a;(1) = a,(1) = ... = ay(1) = E(W)(0) and let a, vary over
the interval [a3(1), a,(1)]. We find the best E(W), E(W)(1), and the corresponding a,(1).
In the third step, we choose a,(2) = a (1) a,(2) = a,(1), and a,2) =...=4,(2) =
E(W) (1) and minimize E(W) with respect to a;.

We continue until we have minimized E(W) with respect to ay_;, chosen
ay=E(W) (N - 2), and obtained a new trial sequence ay(N —1) € ay_; (N-2) <
... € a,(0). Starting with this trial solution, we now repeat the above procedure of succes-
sively determining new values of a,, @, ..., ay. As was true in the numerical schemes for
N =1 and 2, this procedure converges within only a few cycles.

It took only 1.6 minutes for a CDC 6400 computer to run the program for N = 15. This
time would likely increase rapidly with N. Our purpose here, however, was mostly to bridge the
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gap between the results for N =1 and 2 and the asymptotic results described in the next sec-
tions. No attempt was made to develop more efficient programs for dealing with larger N
because the practical limitations of the model do not justify high precision.

Results of these calculations are shown in Figures 2, 3, 4, and 5. Figure 2 shows values
of E*(W) as a function of N. Although these are defined only for integer N, the points at
integer N have been joined by a smooth curve. The unit of time (2.1) has been chosen as the
average uncontrolled headway, not the trip time. If one were simply to add more vehicles to an
existing route, keeping E(T) constant, then the average wait in real time units would be
E*(W)E(T)/N which will, of course, decrease with N at a much faster rate that E*(W). The
reason why E*(W) decreases with N is that, the larger N is, the less the control of any one
headway affects the future arrivals. All uncontrolled systems give a Poisson arrival process of
vehicles, but the larger N is, the larger is the space of control strategies. For N — oo, the
optimal control will permit nearly regular headways, and Ez(W) = 1/2, as compared with the
uncontrolled strategy with Ey(W) = 1. »

xpectations of Woit
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FiGure 2 — Different expectations of wait versus N.

Figure 3 illustrates the distribution of controlled headways for N = 1, 2, 3, 15, and oo,
and also the common exponential distribution for the case of no control. We expect that, for
N — oo, the optimal control will produce H = 1 with probability 1 because, by keeping only a
finite number of vehicles at the depot, one can make the probability of running out of vehicles
(po) arbitrarily small. One can see, however, that the approach of F *(h) toward that of N = o
is quite slow. Figure 3 also shows an approximate F(h) for N = 1000 obtained from asymp-
totic formulas derived in the next sections.

Figure 4 illustrates the optimal strategies a, for several values of N. Since vehicles are
dispatch at a rate 1/E(H), this is also the rate of return. For small x, x =1, 2, ..., one
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FIGURE 3 — Headway distributions for different N.
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FIGURE 4 — Control strategies for different N.
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dispatches with headways larger than £ (H) to prevent the state from reaching 0, but if one has
many vehicles in the depot, one dispatches them more frequently.

Figure 5 shows the distribution of the number of vehicles available in the depot immedi-
ately after a dispatch for the cases of N = 1, 2, 3, and 15. The distribution is drawn with coor-
dinate y = N~'3x in anticipation of the limit behavior for N — o described in the next sec-
tions.
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FIGURE 5 — Distribution of the number of vehicles in the
depot immediately after a dispatch.

4. A CONTINUOUS APPROXIMATION

Figures 3, 4, and S suggest that for N >> 1, the a,'s and p,'s change relatively little as x
changes by 1. It seems advantageous, therefore, to change the domain of x from the integers
{0, 1, ..., N to the continuous interval [0, M and to assume that a, of Figures 1 or 4 can be
approximated by a smooth curve a(x) and that p,(k) can be approximated by a smooth func-
tion p(x, k). The p(x, k), which can be interpreted as a "probability density" of the number
of vehicles at the depot immediately after the kth dispatch, will satisfy a continuous counterpart
or (2.3)

N
@1 p(. k+1) = [ q(ep) p(xk) ax

in which ¢(x,y) is the conditional probability density of having y vehicles after the (k+1)th
dispatch, given that there were x vehicles after the kth dispatch.

We anticipate that, for N >> 1, the effective "width" of the distribution p(x,k) will be
large compared with the probable one step changes of the state, y — x, and that the p(x, k)
will, therefore, approximately satisfy a diffusion equation of the form [2]*

2
@2 plx kD) = px k) = = L [at)p ) + L 25 (8G0p(x ),
x 2 9x

*In reference (2], the left-hand side of (4.2) would be written as 9p (x,k)/9k.

P ——— A
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in which
(4.3) a(x) = E(Y — x|x) and B(x) = E((Y - x)?|x)

are the first and second moments about x of the random variable Y|x having a probability den-
sity g(x, y).

For k — oo, we expect p(x, k) to approach an equilibrium distribution p{x) which is a
solution of the ordinary differential equation

(4.4) wnd [a(x) p(x)] + £ A [B(x) p(x)] =0
dx 2 dx? :

We also expect for N >> 1 that, under an optimal strategy, there should be a negligible proba-
bility for the number of vehicles at the depot to be comparable with N, i.e., p(x) and any
derivatives vanish for sufficiently large x. Thus we can integrate (4.4) to obtain

(4.5) < fate) peeil & % d18(x) p(x))/dx =0,

which in turn, gives
(4.5a) B(x) p(x) = expi2 f‘; [a(y)/B(¥)] dy

for some integration constant x,, which is to be determined by the normalization condition

N o0
(4.5b) fo p(x) dx = fo p(x) dx = 1.

The a(x) and B(x) can be expressed in terms of the control strategy a(x); therefore
(4.5a) represents .ssentially, the continuum approximation to the solution of the N simultane-
ous equaticas {. +). The a(x), however, must eventually be chosen so as to minimize E(W),
which can also be expressed in terms of the p(x) and a(x).

Actually, instead of using (4.5a) to express p(x) in terms of a(x), so as to minimize
E(W) with respect to a(x), we will use (4.5) to express a(x) in terms of p(x) and minimize
E(W) with respect to p(x). Whereas in the discrete case we minimized £(W) with respect to
the N parameters a,, a,, ..., ay, the continuum version will involve minimizing E(W) with
respect to a function a (x) or p(x), and give a calculus of variation problem.

5. CALCULATION OF a(x) AND B(x)

The exact transition probabilities g, , are given in terms of a, by (2.7) and (2.8). Since a,
is to be approximated by a smooth function, we expect that a, — a,,, will be small compared
with a,. It is convenient therefore to note that transition from x to x + /can occur from any of
the mutually exclusive events

A = exactly /+1 arrivals in [0, a,, /]

B = exactly /+1 arrivals in [0, a,,,,,] and 1 or more arrivals in [a,,,;, a,/], or

= at most /arrivals in [0, a,,,,,] and at least /+2 arrivals in [0, a,,/].

Event B involves at least one arrival in [a,,,,; a.4+/], and C involves at least two. For
small values of a,,, —a, ., we can write
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A} l[;/-i—_lx (1 — exp(=a,./N)1"*! [exp(~a,, /N)IN -1,
p(B) = [llv-i-—lx 1- exp(—aH,H/N)m [exp(—a,,+,+,/N)]N—*~l~l

X (@)= @y + 0(a, s/ ~ ay4i49)?
= (a4 — a4 p(4) + 0(a,, — ax+l+l)2-

and

p(C) = 0(a,,, — ax+l+l)2'

therefore ;
N—x I+1 N—x~I-1
(5.1) Gexrr= l,+1 , (1 - exp(=a,,/N)1"'[exp(=a,,/N)]

i1 + (ayy — Gy + 0(a,y — ax+l+l)2v 2 -1

The conditional moments «(x) and B(x) can be evaluated from
N—x-1 N—x~1
(5.2) alx) = ¥ g ., and B(x) = X e n
I=—1 I=—1
but these are difficult to evaluate exactly, because aHV, is a function of / To simplify them, we
expand a,,, = a(x+/) as

-2
acy =alx+l) = alx+1) + (I-1)a’ (x+1) + -(LZL a” (x+1) + ...,
where

d o) d?
— a(x+1) and a"(x+1) = — a(x+1).

a'(x+1) = = i

If we expand the terms of a(x) and B(x) in powers of a’(x+1), a”(x+1), x, x/N, a,/N,
etc., the sum over / can be evaluated term by term from the moments of a Poisson distribution.
For purposes of combining terms of the same order of magnitude, however, it is convenient
here to anticipate the relative magnitudes of x, a'(x+/), etc. We assume now, and verify later,
that the relevant range of xis x = 0(N'?) for N >> 1, and that in this range of x (except pos-
sibly for x = o(N'7)),

(5.3) a(x+1) =14+ 0(N"3), a'(x+1) = 0(N"), a"(x +1) = 0(N).

That a(x+1) should be approximately one derives from the fact that one must have an average
of one arrival between each dispatch to maintain an equilibrium. An a(x) > 1 means that
vehicles are, on the average, returning faster than they are being dispatched.

An expansion of (5.2) in powers of N gives, for N >> 1,

(5.4) alx) =alx +1) =1 - (x/N) + 0(N™)
and
(5.5) B(x) = a(x+1) + O(N~3) =1 4+ 0O(N~'13),

!
|

|

o
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6. THE EXPECTATION OF WAIT

To express E(H), E(H?, and E(W) in terms of a(x), p(x), we write E(H) in the
form

N j+1
6.1 EH) =Y Y EHi J) q,,p

j=0 i=0
where E(H|ij) is the expectation of a headway that starts with i vehicles, and ends with j vehi-
cles after the dispatch, and g, ;p; is the joint probability of having i/ and j such vehicles.

Since the headway that ends with j vehicles after the dispatch is usually a,,), and a,, is
close to one for most j, we rewrite (6.1) in the form

N j+l
E(H) _— 2 2 [1 + (a,-+| e 1) 4= E(H - a,+||i,j)] q.;P
j=0 i=0

We know that
j+i

Y q.,;pi=p; and E(H — a;,|j+1,j)) =0,

i=0
therefore
N N
(6‘2) E(H) =1+ 2 (a,'+| ey l)p/' + 2 t E(H W aj+l|i-j)QI.ipl-
j=0 j=0 i=0
Similarly,
N N : iy
(6.3) EHY) =1+ Y (ah - Do+ X T EMH = alli)) a.;p.
v j=0 j=0 i=0

We anticipate that the first term of (6.2) will be large compared with subsequent terms. If
we expand 1/E (H) about one, and multiply it by £(H?), we obtaiu

N N
(6.4) 25( W) =]+ Z (alz,,,l o l)p/ G Zo(aH.] e l)ﬂ/
/=0 j=

N
+ 3 SIEH = apy i) - ECH = a,)li))a, p, + R
Jj=0 i=0

N
=1+ 3 (a4~ Da;p
=0

N
+ z tE[(H = al+|) (H + al'ﬂ g ll’-j] ql.[ pi + R
j=0 i=0
in which R contains terms proportional to second or higher powers of [E(H) — 1] and
[E(HD - 1).

In order for H to deviate from a,,,, it is necessary that there be at least one arrival in
{a,41, a)). Therefore,
(6.5 EW(H=-a;,) (H+a; = D[ij]
= E[(H~a,,) (H+a,4, — 1)|ij and H#a,,)) P (H#a;,|i))
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is of order (a; — a,,)% Except possibly for the first few values of j, say j < y = o(N'?), we
expect from (5.3) that (a;, — a,,)? ~ [a'(j)]> = 0(N*?). These terms will give a negligible
contribution to (6.4).

The terms in (6.5) for small i,j are not necessarily negligible, particularly the term for
i = j =0, because a, = . If we started with no vehicles in the depot and no vehicle returned
by a,, we would have to wait until the arrival of the first vehicle. If this extra waiting occurs,
we would wait on the average another average arrival headway. This term of (6.5) represents
the penalty for running out of vehicles, which a proper control strategy will want to avoid.

We could consider separately the terms of (6.4) that contain the p; with j > y from those
with j > v, and write (6.4) in the form

p N y—1
(6.6) 2E(W) =1+ Y (a,5,—1 a,up,+ X b, p,+ R + 0N,

Iy j=0
in which the b, are positive functions of the a,'s.

For j > y, we can approximate the a,,, and p; by the continuous functions a(x+1) and
p(x) and write (6.6) as

-1
la(x + 1) = a(x+1) p(x) dx + 3. b, p, + R.

6.7 2 =1+ [
i=0

The second term of (6.7) involves both the a(x+1) and p(x), but these two functions
are related through (4.5), (5.4), and (5.5). We can use these equations to express a (x+1) in
terms of p(x). From (5.4) and (4.5), we have

=l = ¢ QNN P L X -1
a(x+1) -1 = alx) + N B B [B(x) p(x)] + N +0(N7Y),
Thus the integrand of (6.7) becomes

6.8) p(x) a(x+1) [a(x+1) — 1] = p(x) [a(x+1) = 1] + p(x) [a(x+1) — 1)?
3 2

~
s .

N |-

d X d x
s (B(x)p(x)] + N p(x) + p(x) l g (B(x) p(x)] + =

1
2p(x)

The first term of this is of the largest order relative to N, but it is a perfect differential and
integrates to
S 'I
1

d v S L
B TR T R 2)]" g

“- 14 1 1 1
fy—l/ 2dx[ﬁ(.vr)p(x)]aix PP e+ 3

e 4 ey -
=-qpy-3)

In the last term of (6.8), we can approximate B8(x) by one and neglect the x/N, so that
(6.7) becomes

2
©9 26 =1+ f " I-;‘; p(x) + iplTx)' IEP.%

y=1
dx—%p('y) + Y bp, +R
/=0
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Although we have used the equations relating the a;'s to the p;’s to eliminate a(x+1)
from the integral of (6.7), the p,, b,, and a, for j < v are still constrained to satisfy (2.4). The
details of this are quite complex, but the issues are clear.

The p, must satisfy the normalization condition
'y-—i oo
(6.10) T+ S ap® ax =1,

and, through (2.4), the p(y) in (6.9) depends upon the p;, 0 < j< y—1. By appropriate con-
trol, we can distribute the probabilities p; so that either most of the probability lies in
0<j<y-=1,ormostliesin j > y. The term —(1/2)p(y) in (6.9) suggests that, to minim-
ize (6.9), one should assign most of the probability to small j so as to make this term as large
as possible. One can show that this term is identified with the fact that the smaller j is, the
more vehicles there are in use, and consequently the shorter the average headway is.

On the other hand, the terms b;p; of (6.9) for 0 < j < y—1 are all positive, particularly
the term for j = 0, which includes an extra wait if j = 0 and no vehicle has returned by the
time a,, when a dispatch is desired. To minimize these terms, one should have a very small
probability for j € ¥y — 1. One can show that the effect of these terms overpowers the term
—(1/2)p(y), and dictates a policy for which the p; for j < y — 1 are small for N >> 1.

For sufficiently larger N, the strategy which minimizes E (W) must be approximately one
for which p(x) is chosen so as to minimize the second term of (6.9) with y = 0, i.e.,
minimize

2
o et & oA 1 dp(x)
Wi 1=, [N”(")+ 4 () [ & ld"'
subject to
(6.11a,b) p© =0and [ p(x) dx = 1.

7. LIMIT DISTRIBUTION

To minimize (6.11) subject to (6.11a,b) is a standard calculus of variation problem. It can
be transformed into a more familiar form, however, if we let

(1.1) p(x) = Nl,,, '

x 5
NBl YT NBe

Then, in terms of f(y), minimize (6.11) subject to (6.11a,b) becomes the well known Sturm-
Lionville Problem [3]):

minimize :

1.2) o LA
J-WJ; ny’(y)+ pe r] dy

subject to

(7.2a,b) £© =0and [ /20 dy = 1.

i
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The Euler equation corresponding to minimize (7.2) subject to (7.2b) is

(1.3) 4y
P dy2
which is the Sturm-Liouville differential equation with Lagrange multiplier \. The only solu-
tion of (7.3) that vanishes for y — oo is

S*(y) = KAi (y + 1))

in which K is a constant and Ai(-) is the Airy Function [1]. The normalization (7.2b) deter-
mines K thus

=+ 1) f*(y).

oo 2
(1.4) /) = A + N/ Ai@) de)
and
- 1 2. % oot
(7.5) p*(x) = N AI'W + A /fA Ai(¢) dé¢.

This determines f*(y), except for a translation of coordinates by Az, but the boundary
condition (7.2a) requires that Ai(A\) = 0. Figure 6 shows graphs of Ai(z), Ai(z) and
Ai'(z2)/A(z) = d In Ai(z2)/dz.

| { . i
I‘ ‘ I” \\ Aiz(l)
\ |‘ /’ 14 Ai(2)/10 Ai(z) —=——
. \ \/ ‘3\
\‘ ‘ x \\\
\ ] 2 ‘\\
\ \ /)
B [ /N b
\ , \\ ~.~~"‘- z
4 3 /% T i 2 3 >
“ \\ l" I \\\‘s
\ 7 e
\ \ 3 e
\“ \I
i ‘\‘ 'IA\ |
\\ I' ‘
Nu? ‘ -4
: 5
‘, -6
FIGURE 6 — Airy functions.
i Although Ai(z) has zeros at z = —2.339, —4.088, ..., we know from (4.5) and (5.4)

that

1 dp(x) d .
1/3 i i, SENX- -
a(N'Py +1) =1+ Bea) e 1+ = In Ai(y + ),

i
—_—
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and that a(x) must be a monotone decreasing function of x. As one can see from Figure 6,
values of y + A less than —2.339 would violate the latter condition, consequently A must be the
zero at

(7.6) A = -2.339.

The normalization in (7.4) and (7.5) can be evaluated by numerical integration:

o Ai(6) d€ = 0.491.

Thus the optimal limit distribution and control are

a.n p*(x) = 2.037 N/ Ai(xN 13 ~2.339)
and
(1.8) a*(x+1) =1+ NP AP (N~ =2.339)/Ai(xN 13 =2.339).

This verifies the conjecture made in (5.3), particularly that a(x+1) =1 + 0(N~3),
Indeed the dependence of p*(x) and a*(x+1) — 1 upon N involves merely a scaling of coordi-
nates with all lengths x measured relative to N'/°. For large values of xN~'3 one can use the
asymptotic approximations )

(7.8a) Ai(z) . 27:”2 g exp[—-% z’”l [1 - -‘% My
and |

(7.8b) Ai(2)/Ai(z) = — 2"+ (=1/4)z7 '+ ..., forz >> 1,
and, for small values,

(7.92) Ai(z) = (0.491) (z + 2.239)

(7.9b) Ai'(2)/Ai(z) = (z + 2.339) ! for (z + 2.339) << 1.

Thus, p*(x) decays very rapidly for large values of xN /3, and is proportional to x2 for small x.

The mode of the distribution p*(x) occurs where
Ai' (xN13 4 2.399) =0, x N3 = 1.320.

At the mode, the second term of (7.8) vanishes, i.e., a*(x + 1) = 1, which means that the
system is "in balance," with a dispatch rate nearly equal to the arrival rate. The expected
number of vehicles in the depot immediately after a dispatch can be evaluated by numerical
integration to give

E(X) = (1.559) N'3,

somewhat larger than the mode because of the skewed distribution.

Of the N vehicles one has available, the fraction of vehicles which one keeps at the depot
is thus of order N~%3,

The smooth curve of Figure 5 shows the complementary distribution function

oo oo 2
Sorerac= 7 A -2339) &
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as a function of xN~'3, One can see that the discrete distributions for N = 1, 3, and 15 are
approaching this limit distribution but, since these asymptotic expansions are essentially expan-
sions in powers of N~'/3, one does not expect very rapid convergence relative to N. The main
error seems to be associated with the fact that, for finite N, one can allow a nonzero probability
for x = 0 with a moderately large a,. For N = 15, p, is still about 0.14. To obtain a second
approximation in the asymptotic expansions is very tedious; attempts to do so were not very
fruitful. One can see from Figure S that a translation x — x + 1 would improve the fit consid-

erably, but the asymptotic expansions cannot be expected to distinguish between x = 0 and
x =1,

Figure 7 compares a, for N = 15 with the continuous a*(x). On this scale, 0 < x < 15,

the agreement does not look very good, but most of the state probability lies in the range x = 1
to 5, where the agreement is satisfactory.

X Number of Vehicles
in the Depot

15] ofs

°: a*(x)
1 1 1 ls o(
(o] 05 1.0 1.5 20 Time Since
the Lost
Dispateh

FIGURE 7 — The optimal strategy for N = |5,

Since the headway which ends with x vehicles in the depot is approximately a*(x + 1),
and the p*(x) are known, one can easily evaluate a continuum approximaton to the headway
distribution F*(#). The curve of Figure 3 for N = 1000 is obtained in this way. This clearly
demonstrates how slowly this distribution converges to the limit H = 1.

o i e e N ]
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By substituting (7.4) into (7.2), one can evaluate the integral JN??, and show that
2E* (W) =1 + (2.282) N 23 4+ o(N?),

In Figure 2, this continuum approximation is represented by the curve labeled E-(W).
8. DISCUSSION

The main purpose of the above analysis was to investigate the nature of efficient control
strategies for a public-transportation system having a large number N of vehicles serving the
same depot. The measure of performance is considered to be the average wait of passengers at
the depot.

Previous work [4] has described strategies (at least for small N) in which the trip time of
vehicles is so predictable that vehicles do not pass enroute. The analysis of optimal control
strategies for several vehicles with some passing is extremely difficult. The optimal strategy
would be very complex since it would exploit any relevant information about past departure
times of all vehicles. It seem reasonable, therefore, to consider cases with large N as some
indication of how the qualitative nature of the strategy changes when the fluctuations in trip
time become so large that enroute passing of vehicles becomes a dominant feature.

The postulate of exponentially distributed trip time, which was made to simplify the
mathematics, is obviously not representative of typical transportation systems, which usually
have a coefficient of variation in trip time considerably less than one. The analysis of sections 2
and 3 is therefore of questionable relevance to real applications except as a crude upper bound
on the effect of fluctuations or possibly as a first step in the mathematical analysis of systems
with more general (possibly Erlang) distribution of trip time.

The results of Sections 4 to 7, particularly the conclusion that the optimal number of
vehicles to keep at the depot is O(N”J‘), though rather crude even for an exponential trip-time
distribution, are likely to be quite insensitive to the trip-time distribution for N >> 1. They
should provide an vpper bound on the effects of fluctuations, and possibly a close one. The
reason that one should expect this is as follows.

Even though vehicles are dispatched with nearly regular headways under the optimal con-
trol, if N >> 1 and NC(T) >> 1, vehicles will pass each other enroute. The process of
returning vehicles is the superposition of the processes generated by each of the N vehicles
and, under quite general conditions, will have stochastic properties similar to a Poisson process.
In particular, in a time 1 << NC(T) the number of returning vehicles should have approxi-
mately a Poisson distribution, because it is a count of statistically independent rare events (the
return of any th vehicle). During such time intervals, the return process is, therefore,
insensitive to the stochastic properties of 7, except for the mean N.

From (4.2) one can show that the "natural unit of time" for the diffusion equation is of
order N?. This is the time it takes for the system to reach an equilibrium or to return to an
equilibrium after some disturbance. If the return process behaves like Poisson process for
times of this order, i.e., if r = N3 << NC(T) or C(T) >> N~'3 one might expect the
diffusion equation to be approximately correct. Of course, N~'/3 is not very small for reason-
able values of M.

The results described here may be useful as a bound on the strategies for real systems,
but they are not expected to be quantitativeiy accurate for any of the systems which motivated
this analysis. The intended applications were for bus routes (downtown terminal to suburbs, or
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airport to downtown) with N perhaps about 20 and C(7) probably about 0.1, or elevators with

N about 6 and a C(T) perhaps about 0.3. Unfortunately, these values of N are not large
enough for the present theory to be accurate.
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EVALUATION OF COMMONLY USED
RULES FOR DETECTING "STEADY STATE"
IN COMPUTER SIMULATION*
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ABSTRACT

A definition of the problem of the initial transient with respect to the
steady-state mean value has been formulated. A set of criteria has been set
forth by which the efficacy of any proposed rule may be assessed. Within this
framework, five heuristic rules for predicting the approximate end of transien-
cy, four of which have been quoted extensively in the simulation literature,
have been evaluated in the M/M/1 situation. All performed poorly and are
not suitable for their intended use.

1. INTRODUCTION

In this paper we consider some of the problems posed by the existence of an initial tran-
sient in the system response which may arise in a digital-computer simulation of a stochastic
process. Basically, the situation is this. Suppose that a discrete-parameter stochastic process
{X, t=1,2,3, ...} is being observed for which a set of initial conditions, denoted by /, exist
at t = 0. For example, X, may be inherently discrete, like the waiting time cf the " customer
arriving at a queuing system after the simulation begins; or, it may arise by sampling, at
equidistant time intervals, a continuous time series such as the number of jobs in a system.

We suppose that the first moments of these random variables exist and tend to an asymptotic
limit, independent of /, i.e., :

lim E(X,|/] = u,
—+00

where u., is defined as the steady-state mean. We assert that the principal problem of the ini-
tial transient is that of determining the minimum ¢, call it ¢* such that the expectation of the
random variables X,, > ¢* is as close as one desires to the limiting expectation.t Symbolically,
t*is the smallest ¢ for which

E(X)

1—¢<E—[x:]-(l+¢. 21"

*This research was supported in part by the National Science Foundation under Grant Number ENG 75-06900.
tThroughout this paper we use the standard notation of an upper-case letter for a random variable and a lower-case
letter for a specific value the random variable may assume.
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where E[X,] = u., is the steady-state expected value and € >0 is a preassigned number. Thus,
for example, € = 0.05 if one desires to be within five percent of the steady-state mean value.
Figure 1 illustrates examples of some ways that E[X]/E[X.] may converge and also the t*
corresponding to the given e. Though our notation does not show it explicitly, it should be
noted that * depends on e.
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FIGURE 1 — Some ways E[X,]/E[X..] converges and the
associated * value for the indicated e value.

The importance of this problem arises from the fact that a simulator must know the con-
ditions under which data are being collected. Is the process near the limiting condition of
steady state, or does it still have a long way to go to be near the equilibrium condition? That
question must be answered in order to collect and analyze data appropriate for any specific pur-
pose. For exarnple, if all data are collected far from equilibrium they cannot be used to pro-
duce good estimates of the steady-state mean. The disastrous consequences of not properly
accounting for the initial transient have been illustrated very well by Law [5] in the construc-
tion of a confidence interval for the steady-state mean, using either the method of replication or
the method of batch means. Knowledge of * is not only necessary for estimation of steay-state
parameters, but also for parameters of the transient part of the process. In the latter case,
repetitive samples are required, and it is wasteful to go past r* or inadequate to be far short of
it.

Several methods or rules of thumb for determining an estimate f}of t* have been sug-
gested in the literature and are discussed later. It was anticipated that these methods for detect-
ing 1* would state a very specific procedure for obtaining a unique estimate 7*of ¢*in any partic-
ular instance. However, a careful examination of existing rules, whose origins are always based
on some rationale, shows that such a goal is difficult to attain in every case. First, the pro-
cedure itself is not always unambiguously defined; sometimes, certain parameters are left to the
investigator to select. Second, even when these parameters are selected, the application of the
rule does not necessarily result in a unique estimate — i.e., certain judgmental aspects remain,
so that two people looking at the same set of data and carrying out identical procedures will
come up with different estimates for ¢* To remove these vagaries and attain unambiguous
specificity would require substantial effort to pin these rules down any further. As a matter of
fact, the performance characteristics of all of them are so poor that to make them more explicit
would be a useless endeavor.




————

RULES FOR DETECTING STEADY STATE 513

In the remainder of this paper we (1) discuss the criteria for goodness of a detection rule,
(2) describe some rules that exist in the literature and a slight modification of one, and, finally,
(3) present the results of an empirical evaluation study of these rules.

2. GOODNESS CRITERIA

In assessing the goodness of a rule for detecting ¢* or estimating ¢* there are several desir-
able characteristics to look for. These are accuracy, precision, generality, low cost, and simpli-
city. Each of these will be discussed in turn; but first the reader should be reminded again that,
given a rule (including its vagaries), we are merely estimating a well-defined number * Thus,
many of the concepts associated with estimation theory, such as unbiasedness and mean square
error, apply.

2.1. Accuracy

3 ; 7 LW ;
A rule is a statement %at tells us how to obtain a t*. Of course, this is just one possible
value of a random variable 7% i.e., T*is an estimator of ¢* Accuracy will be used as a measure
of location. Thus, it seems that an appropriate definition of accuracy, a, would be

_ EITY
[

a

If this ratio is close to one, then we say the detector is accurate; if it is greater than one it
implies a positive bias, and less than one, a negative bias.

2.2 Precision

Precision, p, will be used as a measure of variation; more specifically, the coefficient of

variation of 7% namely,
‘, 4%
ar[ T*]

P T

will be defined as the precision of the estimator. Clearly, a small value is desirable; when p is
close to zero we say that the detector is precise.

2.3. Generality

This is a property which means that the rule performs well across a broad range of sys-
tems and a broad range of parameters within a system.

2.4. Cost

By cost we mean the expense, in computer time, from using a given detection rule. As
will be seen, there are three factors which we combine to arrive at a total cost. Not all factors
appear in every rule. These factors are -

(i) computer time for the algorithm itself, i.e., its computational efficiency,

(i) computer time for collecting computer output data only for a preliminary estimate of
t*, and subsequently discarding this data, and
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(iii) computer time associated with a positively biased rule. Thus, if E[f'}] > > r* then
on any replication of the simulation experiment, one of two situations may occur, unbeknownst
to the analyst. Either (a) more data is generated than would be required if one were studying
the transient situation, or (b) for estimating a steady state parameter, u ., for instance, the use-
ful data generated between ¢* and the smallest integer greater than or equal to E[T*] would not
be used.

2.5. Simplicity

This is a characteristic of a rule which makes it accessible to the average practitioner of
large-scale system simulation. A rule utilizing abstruse mathematical or statistical results is
nearly incomprehensible, and virtually useless, to the average person who needs to know how
to get statistically reliable results from a simulation.

In evaluating any specific rule, its accuracy, precision, and generality should be considered
first. A rule that is not satisfactory on all three counts is obviously undesirable, and not worth
pursuing. Unless a rule is prohibitively expensive, cost should be a relatively minor considera-
tion. However, it is a matter of personal judgement where one balances budget constraints with
the necessity for a good predictor. The criterion of simplicity is always satisfied in the rules we
are considering in this study.

3. DETECTION RULES

In this section we describe the rules most commonly appearing in the simulation litera-
ture. The results of an empirical evaluation study of these rules, in terms of the criteria dis-
cussed above, are presented later.

3.1 Rule 1 (Conway Rule)

Conway (1] says, "I usually truncate a series of measurements until the first of the series
is neither the maximum nor the minimum of the remaining set. I do not do this for every run,
but rather decide on a stabilization period by examining a few pilot runs and thereafter delete
this same period from the result of each run.”

Thus, this rule specifies a priori the number of exploratory replications and the number of
observations per exploratory run, denoted by e and £, respectively. Then if {x;,, x5, ..., x;] is
the set of observations on the i'" exploratory run, one computes

xi& = max{x, X 441, ... Xu)
and

x:k— i} min‘xlk'xl,l(+l' LN X,/’
for k = 1,2, ..., 2 and determines ¢, such that

- +
Xi, < Xy, < Xy

occurs for the first time. Then the estimate of 1*is given by

]

1% = max{r,ty ..., 1]

A schematic diagram of this situation is shown in Figure 2 for a single ¢xploratory run of length
10.

e s
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3.2 Rule 2 (Modified Conway Rule)

This rule is the only one considered in this paper that is not in the literature. In this rule,
we turn Conway’s idea around and continually look backwards to find the first observation that
is neither a maximum or minimum of all the previous observations. Thus, the total number of
observations in this procedure is a random variable, in contrast to the Conway rule. Again, the
method requires a prespecified number of exploratory replications, e, each of which produces a
stopping point. The maximum Stopping point in this set of stopping points is selected as r*

A schematic diagram of this situation is shown in Figure 3 for a single exploratory run.
The observation values shown are the same as those in Figure 2. Note, however, that the
simulation stops, in this case with observation 6, when the criterion is met.

QO osservaTiON SeLECTED
g x
s . ® FIGURE 3 — Modified Conway rule applied
g to a single exploratory run.
>
gl = N
oX
8 1 1 1 1 el 1

1 1
| 2 3 4 S 6 7 8 92 10
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3.3. Rule 3 (Crossings-of-the-Mean Rule)

This rule, appearing in Fishman (Ref. [2], p. 275), specifies that a running cumulative
mean be computed as the data are generated, and that a count be made of the number of cross-
ings of the mean, looking backwards to the begin,ging. When the number of crossings reaches
a prespecified number, then one has arrived at % Thus, if the segment Boks oo, x,) has
been generated, define

1, ifx;>X,, x;,, <X, or X; KXo Xp41 > X,
@ 0, otherwise ,
| withj=1,2, ..., n -1, where
' ‘ n

! ’?n"l le'

' Then compute
. ! Q,= Yo,

| ' j=\
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which gives us the number of times that the series x, Xz, ..., X, Crosses the mean. One com-
putes 2, Q3 ..., stopping at 27> when, for the first time, the number of crossings is greater
than or equal to a preassigned number. The intuitive notion is that the larger this number is,
the greater is our confidence that bias due to initial conditions has been resolved. This seems
reasonable. For example, if one were to start the system out empty, one would expect the
cumulative average, X,, to increase and level out to its equilibrium value. When this happens,
the individual x,'s, measured in the near equilibrium situation, would be sprinkled on either side
of the equilibrium value and thus contribute to an increasing (. However, during the early
stages, the individual x;'s would fall above this increasing cumulative mean, and therefore add
nothing to the ,. A schematic of the situation is shown in Figure 4.

X OBSERVATION
o CUMULATIVE MEAN

FIGURE 4 — Crossings of the mean.

OBSERVED VALUE
#‘
x
x
p(’

f IR T L 1 3 i S Y
3% D 6T 18 9 0
OBSERVATION NUMBER

3.4 Rule 4 (Cumulative-Mean Rule)

The procedure described by Gordon (Ref. [3], p. 285) for this rule is to specify, a priori,
the number of exploratory runs, the number of observations in each run and the initial condi-
tion for each that is held constant for each exploratory run, then to plot the grand cumulative
mean over all exploratory runs and observations and select the observation number which
appears to be stable. i

3.5 Rule 5 (Gordon Rule). (Ref. [3], p. 285)

For a very large class of processes, namely ones for which covariance stationarity obtains

and where =
m=73 R,

j=—00

is finite, and where R, = R_, = covariance of lag j, it can be shown (Ref. [3] p. 281) that

Varil) = &40l
n n

where O(Ln) denotes terms of order higher than 1/n. However, suppose there exists an initial
bias. Label the random variables
S P (RO =N Bniins s v v 5. Mgt

where n* corresponds to the point where near equilibrium is obtained and n is the number of
additional observations beyond that point. Define

. k. = R

Xn‘+n- by X
- L4
n*+n /3

el x
n‘-Fz i

i=l
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and
-t %y
W n 2 i
j=1
where
X/'-X,;c.‘,/ j=1,2, voie glls
Then, it can be shown that
2
= n m 1
VarlX,-,,] = —"T;—n —n— + o(—).

Thus, after a sufficiently large number of observations beyond n* the variance of ..
behaves like the variance of X, which has no initial bias. The similarity of behavior is in the
sense that the variance consists of a term of order 1/ plus a term of order higher than 1/n.

The idea, proposed by Gordon requires a priori specification of the number of exploratory
runs, e, the number of observations to be made in each exploratory run, £, and the initial condi-
tion which is held constant for each exploratory run, x,. Denoting the mean value of the o
exploratory run by X,,, one may estimate Var [X,] by

s¥n) = sl Y (F = E%
€=1 =

where e is the number of exploratory runs,
N = ne,

X l ‘Zf 1
" -
N e o in ne

3 i

i=1 j=1

and
x,; = i'" observatioin of the j” exploratory run.

As indicated above, in the absence of initial bias, s*(n) can be expected to be inversely
proportional to n or s(n) inversely proportional to Vn for larger values of n; however, in the
presence of initial bias, such as our constant initial condition, this behavior will manifest itseft
only after the effects of initial conditions are eliminated. Gordon suggests plotting s(n) versus
n on log-log paper and finding the point on the plot where it steadies into a straight line with a
negative slope of 1/2.

3.6 Comment

A very important observation here is that Rule 3 wastes no data. Thus, in practice, the
run for determining 7 would be included as part of the simulation, so that in carrying out the
experiment, when a point in time is declared as near equilibrium, the experimenter may then
stop (if, say, he is conducting a study of transient characteristics), or he may continue from ¢
on, to collect data while the system is near steady state. The point is that there is no separation
of experiments; i.e., one set to determine a near-equilibrium point and a second set of data-
collecting experiments. This is not the case for rules 1, 2, 4, and §, as they are not an integral
part of the simulation model. Rather, these rules require that an initial set of experiments be
conducted to specifications laid down by the rule, the sole purpose being to provide data for
estimating an appropriate stopping point. The actual data-collecting experiments require addi-
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tional replications of the simulation. All the data generated for establishing the near-
equilibrium point are essentially wasted.

4. EMPIRICAL EVALUATION STUDY

As stated earlier, the criterion of simplicity has been met by all five rules described above.
Each of them would be comprehensible to any simulator with a modest background in
mathematics and mathematical statistics, and is readily usable. So this point will no longer be
addressed.

The next three criteria to be considered are those of accuracy, precision, and generality.
The obvious way to go about doing this is to look at how the detection rule performs over a
wide spectrum of systems. We began with one of the best-known queuing systems, namely,
M/M/1. If a rule performs well in this instance, i.e., it is accurate and precise over a wide
range of initial conditions x, = number of customers in the system at ¢ = 0 and parameter

values p = 2‘-, where A is equal to the arrival rate and u the service rate, respectively, then it
would be necessary to assess the generality of the rule. These considerations, i.e., accuracy and
precision, would have to be studied with other systems. This study is only a beginning. The
M/M/1 queuing system was chosen for the following reasons:

(1) Queuing simulations occur often.

(2) Theoretical values of the quantities of interest can be computed with relative ease.

(3) It is easy and inexpensive to simulate.

In order to carry out our evaluations, it is necessary to determine the true t* for various
xo and p combinations. This means that the expectation £ {X,] must be known as a function of
t as well as £{X.]. These are basically analytical problems; and, as pointed out in the preced-

ing paragraph, one reason for selecting M/M/1 is that the analysis is tractable.

The observed random variable (chosen from many possible outputs), referred to in gen-
eral as X, so far, is, for the M/M/1 model,

W, = waiting time in queue of the r'" arrival before being served.
The simulation was carried out recursively using
W, = max(0, W,_, + S, — 4),
where
S,_;= service time of the (¢~ 1)" arrival,
A, = interarrival time of the /" arrival.

E[W,] for an initial condition of empty is given in Ref. [4]. The expectations for nonempty
conditions were developed in the course of this study; see Ref. [6] for details.

e
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The main objective of the empircal study was to estimate the accurac
the various rules. For rules 1, 2, and 3, we made 100 independent estim
100, for each value of p and x,, considered and used

y angprecision of
ates 7, i = 1,2,...,

1 @
0 BV
a= T = E[T*]
as the estimate of the accuracy a, and
5= Wat (P
ELT%)

as the estimate of precision, p, where

Gat 1) = RO ay,

i=]

and

Each of the 100 estimates was determined by running the simulation and selecting in accor-
dance with the prescription provided by the rule. This procedure, of replicating 100 times, was

too expensive for rules 4 and 5. However, we are confident, based on only one replication, that
our conclusions regarding these rules are correct.

4.1 Rule 1 (Conway Rule)

We have followed the spirit of Conway’s thought that one should use a "few" exploratory
replications and a small number of observations. The specified number of exploratory replica-
tions, e, was always either 1, 3, 5, or 10. The specified length of each replication, £ (i.e., the
number of customers), was varied as follows: 4(1) 10(2) 20(5) 30(10) 50(25) 100. A wide
range of parameters p and x, was tested, as shown in Table 1. In general, it was possible to
make 100 replications for each p, x,, e, £ combination. However, in some situations, especially
for low £ and p values, a replication may produce a sequence of waiting times for which the
Conway criterion is not met , i.e., there exists no observation such that it is neither a minimum
or a maximum of all succeeding observations. For example, in the case of
p=0.1,x9=0, e=1, and £= 5, only one out of the 100 replications was successful in pro-
ducing a '8 . Table 2 shows the number of successful replications out of 100, as a function of
the exploratory run length £, for the conditions specified previously. Obviously, the estimates
of accuracy and precision are based only on the subset of successful runs.

TABLE 1 — M/M/I Queuing
Parameters Used to Test
the Conway Rule

X0
p 0)5/10] 25
0.1 X
0.5 X | x
0.7 X X
0.9 X X
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TABLE 2 — Number of Successful
Replications out of 100 Using
the Conway Rule with p = 0.1,
xg=0,ande =1

Number of Successful
Replications
5 1
10 7
15 18
20 27
25 43
30 55
40 72
50 82
75 97
100 98

The Conway rule resulted in a very poor set of performance characteristics. Figures Sa, b,
¢, and d show plots of accuracy for p = 0.1, 0.5, 0.7, and 0.9, respectively, and various values
of the other parameters. These plots are all for ¢ = 0.10; however, the results are essentially
identical for € = 0.05. They show that for low p values this rule overestimates ¢* and for high
p values it grossly underestimates t* Thus, it fails on the accuracy criterion.

Note that e = 1 does not appear on Figure 5a. This was because there were not enough
successful replications to get good estimates. This is also the reason why the left endpoint is
not the same for all curves. The plots begin only when £ is sufficiently large to produce enough
replications for a good estimate. -

Similar plots for estimates of precision were also obtained. Figures 6a and b, for p = 0.5,
are typical of these results — roughly that 0.3 < p < 0.6 for x, = 0, and 0.4 < p < 0.8 for the
nonempty starting case, i.e., when xo =95, 10, and 2§, for p = 0.1, 0.5, 0.7, and 0.9, respec-
tively.

4.2 Rule 2 (Modified Conway Rule)

In the original form of the Conway Rule, the length of the exploratory runs, /, must be
specified in advance, and one looks ahead only in order to make a determination of whether or
not the criterion is met. In the Modified Conway Rule, since one only looks back for making
the detcrmination, there is no need to specify an explor}\tory run length; i.e., the exploratory
run continues until the criterion is met and an estimate 7*is acquired. Thus, the only parame-
ter in this version of the rule is the number of exploratory runs, e. This also makes presenta-
tion of the data substantially simpler.

The performance in this case was very poor also. Figures 7a, b, ¢, and d summarize the
accuracy results for € = 0.10; the results for € = 0.05 are essentially the same. In these particu-
lar sets of runs, an additional value of x, was run for each value of p. This intermediate value
was in some cases selected to be very close to the steady-state number in the system, which is
given by p/(1 — p). Thus, for example, in Figure 7d, the additional value is x, = 10 and the
steady-state value is 9. The Modified Conway Rule badly underestimates ¢* in virtually all
cases, except for the intermediate x, values at p = 0.5 and p = 0.7.
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FIGURE 7 — Accuracy characteristics of the
Modified Conway rule.

Again,' similar plots were obtained for precision characteristics. An example of one is
shown in Figure 8 for p = 0.5. Its appearance is typical of all curves, starting with about
p = 0.4 to 0.5 for one explolratory run and improving to p = 0.2 to 0.3 for 10 exploratory runs.

FIGURE 8 — Precision characteristics of the

.8
- Modified Conway Rule.

As in the Conway Rule, the data obtained in these experiments are probably not used in
any subsequent inferential studies and, therefore, may prove to be quite costly.

In summary, both the Conway and Modified Conway Rules have poor performance
characteristics with respect to accuracy in the M/M/1 situation. These rules will no longer be
tested in other situations, since, even if they produced good results in some other cases, our
criterion for generality would not have been met.
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4.3 Rule 3 (Crossings-of-the-Mean Rule)

In testing this rule, the only open parameter we considered is the number of crossings to
be attained before declaring that near-equilibrium had been reached. The range of system
parameters was the same as that used in the Conway Rule (see Table 1). Figures 9a, b, ¢, and
d display accuracy versus the number of crossings for p = 0.1,0.5,0.7, and 0.9, respectively. It
is clear from these figures that the rule is very conservative for low p values, i.e., it overesti-
mates the ¢* and provides accuracies much greater than one, no matter what criterion is selected
for the number of crossings. As p increases it becomes less conservative; in fact, for p = 0.9

its accuracy is less than one for crossings below 25. Nevertheless, it appears that a crossings
criterion of 25 would work uniformly across all system parameters in the sense that it provides

an estimate 1* which, on the average, is greater than ¢* for all conditions tested. Thus, the sys-
tem is closer than expected to the equilibrium condition.
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FiGURE 9 — Accuracy characteristics of
Crossings-of-the-Mean Rule.

The fact that this rule overestimates 7* is a serious problem in terms of the number of
excess observations required beyond the true near-equilibrium point. To illustrate this point,
consider Table 3, which shows the pairs (¢*,d) for the cases tested. The first coordinate of the
pair is the true ¢* value for € = 0.1 and the second coordinate is the estimated accuracy, 4.
Thus, for example, the excess number of observations in the case of p = 0.1 and xp = 0 is
(3)(55 — 1) = 162, and this is also the largest excess. In all situations of excess, the actual
attained value of e is nearly 0, i.e., the process is essentially in equilibrium.

Now, if we wanted to be within an € = 0.05 of u ., the (¢*d) would be as shown in Table
4. The maximum excess is the same value of 162 but the other excesses have been reduced at
the expense of an accuracy of only 0.7 for p = 0.9.
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TABLE 3 — (t*a) fore = 0.1 and
a 25-Crossing Criterion

(t* a)
p
xo=0 | xo=5 xp=10 | x, =25
0.1 | (3,55) (5,33)
0.5 | (10,12) | (16,8)
0.7 | (29,6) (58,3.5)
09 | (272,1) (413,1)

TABLE 4 — (¢* a) fore = 0.05 and a
25-Crossing Criterion

(t* a)
p
xo=0 xo=5 xo=10 xo=25
0.1 | (3,55) (6,28)
0.5 | (14,7) (20,6)
0.7 | (42,4) (73,2.8)
0.9 | (411,0.7) (552,0.7)

Table 5 shows the excess number of observations for € = 0.1 and 0.05 where the figures
above and below the diagonals are for ¢ = 0.1 and 0.05, respectively. A negative excess
means, of course, that additional observations are required to achieve the desired near-
equilibrium level.

TABLE 5 ~ Excess Number of Observations for € = 0.1
(Above Diagonal) and 0.05 (Below Diagonal) for a
25-Crossing Criterion

P Xn-o Xo-s x(L-IO x,,-25
0.1 | 162 160

162 152
0.5 | 110 112

84 100
0.7 | 145 145

126 131
0910 0

-123 5 -166

If a 30-crossing criterion is specified, the corresponding results are shown in Tables 6, 7,
and 8. In this case, the accuracies are always greater than one and result in an increase in the
excess number of observations.
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TABLE 6 — (¢t* a) fore = 0.1 and a
30-Crossing Criterion

(¢% @)
P
Xo-o Xo-s Xo-lo x0-25
0.1 | (3,65 (5,40)
0.5 | (10,14) (16,10)
0.7 | (29,7) (58,4.5)
0.9 | (272,1.5) (413,1.5)
TABLE 7 — (¢* &) fore = 0.05 and a
30-Crossing Criterion
(1% @)
P Xo-o xo-S XQ-lo X0-25
0.1 | (3,65) (6,33)
0.5 | (14,10) (20,8)
0.7 | (42,4.8) (73,3.6)
0.9 | (411,1) (552,1.1)

TABLE 8 — Excess Number of observations for e = 0.1

(Above Diagonal) and 0.05 (Below Diagonal)
Jor a 30-Crossing Criterion

p | xo=0 Xg ™= $ xg= 10 | xo = 25
0.1 | 192 195 :
192 192
0.5 | 130 144
126 140
0.7 | 174 203
160 256
09 | 136 207
0 55

Curves similar to the accuracy ones were developed for precision. A sample of one of
these is shown in Figure 10. In general, precision improves with decreasing p and increasing
values of the crossing criterion. A summary of precision estimates for all the cases tested is
shown in Table 9 for crossings’ criteria of 25 (above the diagonal) and 30 (below the diagonal).
These values of precision would appear to be intolerable, in view of the fact that the r* values,
say for p = 0.9, are between 300 and 500.

4.4 Rule 4 (Cumulative-Mean Rule)
This rule was tested using 10,000 arrivals. Table 10 shows the number of replications

(NR) and the utilization ratios, p, which were used. The initial conditions, x,, were 0 and §
for p = 0.5 and 0 and 25 for p = 0.9.
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TABLE 9 — Precision Values for Crossings’ Criteria of
25 (Above Diagonal) and 30 (Below Diagonal)

P xo-O Xo-s Xo-lo X0-25
0.1 | 023 0.22
0.21 0.21
0.5 | 0.28 0.32
0.24 0.31
0.7 | 0.47 0.42
0.52 0.41
0.9 | 0.68 0.52
; 0.62 0.48

TABLE 10 — Utilization Ratios and Number of Replications
Used in Testing the Cumulative Mean Rule

p | Number of Replicatons (NR)
05 |10 50 100 200
09 10 50 100 | 200

Typical plots of the cumulative mean waiting-time-in-queue versus n (the customer
number), for the empty initial condition, are shown in Figures 11a and b. In addition, for p =
0.5 and NR = 230, a stationary simulation was performed, i.e., one in which the number of
customers in the system, when the simulation is begun, is a random variable with the steady-
state number in system distribution. The result is shown in Figure 11c. The true steady-state
mean delay in queue, in these figures, is one for p = 0.5 and nine for p = 0.9.

An inspection of these figures reveals (1) that it is difficult to determine, from a small
number of exploratory runs, when stabilization has occurred, (2) that a large number of obser-
vations per run are required to make any determination of stability, and (3) that 7*is grossly
biased positively, even in the stationary case of Figure 11c.

The conclusion seems obvious; the cumulative mean is a very poor method for estimating ¢*
and we, therefore, do not intend to consider it any further, e.g., no estimate of precision has
been obtained since it would require an inordinate amount of computer time. As pointed out
by Law [5], it appears to be a technique that would determine the value of » for which

$ Elx)

i=] -~

n B
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FIGURE 11 — Characteristics of the 9
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4.5 Rule 5 (Gordon Rule)

This rule was tested using the same conditions as Rule 4 (Cumulative-Mean Rule) and, in
fact, the same data. Corresponding to Figures 1la, b, and c are Figures 12a, b, and c. The
straight lines on these figures slope downward at the rate of 1 in 2. Again, it is seen that a large
number of exploratory runs and observations per run are required in order to carry out the pro-
cedure. Also, ¢*is extremely biased positively, even in the stationary case (Figure 12¢). The
positive bias is to be expected, since even in the stationary case Var[X,] is inversely propor-
tional to n only for large values of n. Thus, for p = 0.5, ¢*from Figure 12a would be taken as
600; yet the ¢* values would be 10 (Table 3) and 14 (Table 4) for € = 0.1 and 0.05, respec-
tively. Similarly, for p = 0.9, ¢* would be taken as 1200 (Figure 12b) and the ¢* values for €
= (.1 and 0.05 would be 272 (Table 3) and 411 (Table 4), respectively. We conclude, again,
that this is a poor method for estimating ¢*, and shall not pursue it any further. As in the case
of Rule 4, no effort was made to determine its precision. characteristics.

5. SUMMARY

In this paper we have developed a comprehensive framework within which may be pur-
sued a study of the problem of the initial transient with respect to mean value. In addition,
four rules quoted frequently in the literature, plus a natural variant of one of them, have been
evaluated in the M/M/1 situation. The principal conclusion is that none of the five rules is
satisfactory and that they should not be recommended for use by practitioners.

In summary, the Conway and Modified Conway Rules badly underestimate ¢* they are
costly in the sense of wasting data, and there exists no procedure for determining either the
number or length of exploratory runs.
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The Crossings-of-the-Mean Rule when applied to high p values, dictates a crossing crit-
gerion of about 30. But this causes a large positive bias for the lower p values, and hence, is
wasteful of data. Also, its precision, especially at the higher p values, is unacceptable.

Both the Cumulative-Mean Rule and the Gordon Rule are badly biased positively. They
have too many judgmental factors, such as the number and length of replications. If these are
not selected to be very large initially, then there is the chance that all the data generated cannot
be used, and the whole procedure must be started anew from the beginning; unless, of course,
a snapshot of the system at the end of each replication has been preserved, so that additional
observations can be added to each run without starting all over. It might be argued that both
these techniques, when applied with a sufficient number of runs and observations per run,
automatically provide an estimate of the mean. In the case of the Cumulative-Mean Rule, the
stabilization value would be that estimate; and in the case of the Gordon Rule, an estimate
could be provided by using the cumulative mean of all the observations beyond the truncation
point. The point is that both are extremely costly — substantially more data have been gen-
erated than are needed to achieve the goal.
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ABSTRACT

The problem considered is to locate one or more new facilities relative to a
number of existing facilities when both the locations of ‘the existing facilities,
the weights between new facilities, and the weights between new and existing
facilities are random variables. The new facilities are to be located such that
expected distance traveled is minimized. Euclidean distance measure is con-
sidered; both unconstrained and chance-constrained formulations are treated.

1. INTRODUCTION

To date, the study of location problems has been restricted primarily to deterministic for-
mulations. In this paper the effect of random variation on the location decision will be studied.
Probabilistic formulations of the multifacility Weber problem are developed and solution pro-
cedures are obtained. Applications of the various formulations are cited to motivate an under-
standing of the contexts in which the formulations apply. '

The elements of a facilities-location problem which are treated as random variables are the
locations of the existing facilities and the amount of interaction between new and existing facili-
ties. As an illustration of a location problem in which random variation can exist, consider the
location of a maintenance department for material-handling equipment in an industrial plant.
Maintenance performed is of two types, scheduled and unscheduled. Unscheduled maintenance
arises when the material-handling equipment fails and a repairman is dispatched to the job site
to perform the necessary repairs. The location of the equipment when it fails is a random vari-
able. Additionally, the number of times a particular piece of equipment fails during a year is a
random variable. The determination of the location of the maintenance department based on
the random variation involved is typical of the location problems considered.

The deterministic formulation of the multifacility Weber problem is given by

n m
P1. minimize f(X,, ..., X)) = ¥ VulX,=Xl+ T IW,X,-P],
% 1</<k&n j=l i=
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where
X, = |ocation of new facility j, j=1, ..., n,
P, = |ocation of existing facility i, i=1, ..., m,
Vik = number of trips per unit time between new facilities j and

k, for all j < k,

W, = number of trips per unit time between new facility j and
existing facility i, for all j, i,
| X, — P = Euclidean distance between the points X; and P,, and
f(X,, ..., X,) = total distance traveled per unit time as a function of

AR

In P1, the objective is to determine the locations of the new facilities in order to minimize
total distance traveled per unit time. In the subsequent discussion, it is assumed that all new
facilities are chained [4].

The treatment of the probabilistic variation of P1 includes the possibility of P,, V;, and
W, being random variables. Two types of probabilistic problems are studied. In the first case
it is assumed that, for a given realization of P, a realization of W, occurs. Once the location
of existing facility / is known, all subsequent trips between new facility j and existing facility i
will share the same distance | X, — P,|, and the weight aftached to the trip will be W,. From 2
probability point of view, the distance traveled between new facility j and existing facility i/ is
expressed as a product of the random variables W, and |X, — P,|. In the second case con-
sidered, for each trip included in W, the distance between new facility j and existing facility /
can be different. There are W, trips during the planning horizon under investigation, and
existing facility / changes its location during this planning horizon independent of the weight
W,. For convenience, let P, denote the location of existing facility / on trip A. Thus, on trip
h, the distance traveled is determined from the value of the random variable P;,. The "weight"
or number of trips per unit time is considered to be independent of the location of each exist-
ing facility. Thus, the distance traveled can be represented as a random sum of random vari-
ables.

To illustrate the first of the two cases considered, let us suppose new warehouses are to be
located across the country. The sources of goods shipped to the warehouses and the destina-
tions of goods shipped from the warehouses are not known a priori. However, after the
warehouses become operational, the locations of suppliers and customers will become known.
The number of shipments per month from the suppliers to the warehouses and from the
warehouses to customers is not known exactly, but can be expressed in the form of a probabil-
ity distribution. Since all shipments from supplier / to warehouse j will be from the point P,
once the value of P, becomes known the location problem can be formulated as a function of
the sum of the products of the random variables [ X, — P,| and W,

As an illustration of the second case, let us suppose a military hospital is to be located to
provide medical treatment for personnel wounded in combat. Patients are brought from the
area to the hospital in helicopters. There are m combat areas, and the number of helicoter trips
to and from combat area / is a random variable W,. The location of a wounded soldier in com-
bat area /i is a random variable denoted by P,. Thus, each of the W, trips can be to a different
location in combat area /. In this case, the location problem is formulated as a random sum of
random variables.

Research on probabilistic formulations of the Weber problem has included the treatment
of the single-facility problem by Cooper (6], who assumed P, is distributed as a bivariate normal

Yo
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probability density function, W, is deterministic, and distance is Euclidean. All random vari-
ables he assumed to be independent. Cooper employed a convergent, linear iteration technique
to minimize expected cost per unit time. The convergence of the algorithm was established by
Katz and Cooper [18). The same iterative algorithm was employed subsequently by Katz and
Cooper [19] in treating both exponential and symmetrical exponential distributions as the
probability-density function for P,.

Hurter and Prawda [16) solved the Euclidean, single-facility location problem when the
quantities of service demanded are independent random variables. They formulated the prob-
lem as a chance-constrained programming problem, but the constraints were used to bound W,
instead of bounding the cost of transportation, which is a function of the distance. In their
analysis, the locations of the existing facilities are assumed to be deterministic when the proba-
bilistic problem is transformed to a deterministic equivalent problem. Hurter and Prawda
showed that any existing algorithm for solving the deterministic single-facility problem can be
used to solve their chance-constrained problem.

The only previous research on a probabilistic formulation of the multifacility Weber prob-
lem appears to be the chance constrained formulation of Seppild [28]. In his model, V and
W, are treated as random variables, but P, is assumed to be deterministic and Euclidean dis-
tances are employed. Seppild employs a fractile criterion rather than an expected-value cri-
terion. Using the approach developed by Charnes and Cooper [5] to convert the chance con-
straint to its deterministic equivalent, Seppdld obtains a nonlinear objective function. To solve
his model, the CHAPS algorithm developed in [27] is used to convert the nonlinear objective
function to a linear objective function augmented by some nonlinear convex constraints. A
linear approximation algorithm similar to MAP, introduced by Griffith and Steward [13], is
employed to solve the resulting formulation.

2. PRINCIPLES OF CHOICE

In modeling a real-world decision problem, Morris [21] suggests thzt three alternatives are
available. The problem can be modeled as a decision under assumed certainty, a decision under
risk, or a decision under uncertainty. The research to date on location problems has concen-
trated on modeling the problem as a decision under assumed certainty. Thus, deterministic
approaches were taken, where either the total travel cost was minimized (minisum criterion), or
the maximum travel cost was minimized (minimax criterion). The present research effort con-
centrates only on modeling location problems as decisions under risk. '

In a decision under risk it is assumed that the probability distributions are known for all
random variables. Also, a number of alternate principles of choice are possible. Sengupta and
Portillo-Cambell [26] suggest four possible optimization criteria under conditions of risk:

(a) expected-value criterion
(b) portfolio criterion
(c) aspiration-level criterion
(d) fractile criterion.
The expected-value criterion involves the determination of the location of the new facili-
ties such that an appropriately defined expected-cost function is minimized. The portfolio cri-

terion seeks the location which minimizes the variance of cost, subject to a constraint on the
expected cost produced. An aspiration-level criterion is used when the facilities are to be
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located such that the probability of cost being less than some specified value is maximized. The
fractile criterion is difficult to express verbally; it involves the location of the new facilities so
that one minimizes the value on the cumulative distribution function of total cost which
represents the acceptable probability of cost exceeding that value. Mathematically, the fractile
criterion can be stated as

minimize z
subject to: Pr [/ (x) € z] 2 a,

where f(x) is the total cost resulting from x, the vector of coordinate locations on the new
facilities, and z is the cost below which total cost occurs with at least a probability of a. The
deterministic equivalent form of the fractile criterion (see Ref. [5]) is written as

minimize E[f(x)] + K SD[f(x)],

where E[...] and SD[...] are the expected total cost and standard deviation, respectively and
k is some number of standard deviations derived from the probability distribution for a given
value of « and z

Depending upon the situation considered and the preferences of the decision maker, addi-
tional constraints can be added to the four basic principles of choice. As an illustration, one
might wish to minimize the total expected distance traveled between all facilities, with the res-
triction that the probability of the total distance exceeding 100 miles must be less than 0.10.

The aspiration-level and fractile criteria require that the probability distribution for total
cost be known, whereas the expected-value and portfolio criteria require a knowledge of at
most the first two moments of the distribution of total cost. Consequently, in order to provide
sufficient information to model a specific location problem using the appropriate principle of
choice, the probability distribution for total cost will be developed for the situations considered.
Then the first two momeats will be derived.

Geoffrion [12] discussed the above criteria and the relationships between them. Sengupta
and Portillo-Campbell [26] and Hazell [15) supported Geoffrion’s observations with computa-
tional results. For a critique of the effectiveness and the pros and cons of the described cri-
teria, see Hazell [15].

In the sequel, two criteria are considered. The first is an analogue of the minisum cri-
terion for the deterministic case, where the expected total random cost is minimized. Using the
expected-value criterion naturally has a higher risk than using other criteria, but if we assume
that the variance of each random location is small and the correlations between the existing
locations are relatively small, then the expected total cost over a large time horizon gives the
decision maker reasonable low-risk information. If the decision maker is concerned about a
realization near the tail of the probability distribution, e.g., in the case of the emergency-
facilities location problem, where the maximum random distance is of interest, other criteria
may be used to reduce the risk. The expected-value criterion may be considered a special case
of the fractile criterion, when k = 0.

The second criterion considered in this paper is analogous to the fractile criterion. Basi-
cally, it involves minimizing expected total cost subject to probabilistic constraints on acceptable
levels of risk, i.e., a chance-constrained programming. The fractile criterion is an analogue of
the minimax criterion for the deterministic case. Fried [11] compared the chance-constrained
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programming with both the fractile and the portfolio models; he demonstrated the stability of
the chance-constrained model relative to the other two models. Also it is a consistent method
of treating the utility choices involved in trading-off risk.

In Section 3 expected total cost criteria are used as an unconstrained probabilistic prob-
lem, and in Section 4 chance-constrained programming is used in a constrained probabilistic
problem. The chance-constrained model will provide a good tool for sensitivity analysis on the
acceptable level of risk.

3. UNCONSTRAINED PROBABILISTIC FORMULATION*

In this section, the two problems discussed above are formulated mathematically. The
first problem is identified as the case when the expected cost is the product of the random vari-
ables P, and W; the second problem is associated with the case when the expected cost is a
random sum of random variables.

For the case of the product of the random variables, the expected total cost function is
given by #
P2. minimize E[f(X,, ..., X,)] = E[ Y VilX - X
. 4 1</ <kgn
n m
+ T T Wlx, - pl
jm] =]

- 2 E[V’k”X,_Xk|
I<j<k<gn

+ 3 S EWElX, - PJl.

j=1 i=]

For the case of a random: sum of random variables the problem of minimizing expected
total cost is written as
P3. minimize E[(f(X,, ..., X,)] = E[ Y vulx - Xl
b K 1</ <k<n

n m W

+EE T Ix-rl

J=1 im=] h=]
e E E[Vlkllxi_xkl
I€/<k<€n

n m wl
+$ 8¢ )ﬁ|x,-p,,|].

j=1 i=] h=1

A comparison of P2 and P3 indicates that the two differ only in the expected value of the
second set of summations. However, since the value of the random sum of independent and
identically distributed random variables is given by the product of their expected values, then
solving P2 is equivalent to solving P3.

*As a notational convenience no distinction is made in the random variable P, = (a,.5,) and the value of the random
variable.
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Since P2 and P3 are equivalent formulations in expected value, it suffices to treat only
one of the cases in detail. In the plane, the Euclidean distance between the points X; and X,
and the points X, and P, can be represented by

|X,' = in = [(Xj‘ = xkl)z + (ij g= xkz)zlllz
and
|X; = P = [(x;; — a)? + (x5 = 5)FV2

Hence, P2 can be written as

P4. minimize E[f(X,, ... X)1 = ¥ EVll(x; - x)?+ (xj2 = x )2
1<j<k<n
+ ”2 iE[Wj,']E[(le = ai)z + (ij — b)2]l/2‘
Jj=1i=1

where it is assumed that all random variables P, are normaliy distributed in 2m dimensions. Let
P,,= la, b, ay b, ..., a,, b,} be normally distributed in 2m dimensions with mean vec-
tor A,, and positive definite covariance matrix ¥,,. Hence the frequency function of P,,, is
expressed as

EESET W ep
fzm(sz) (2‘"')'”\/‘_'/2—»1‘. e (P2m AZm) V2m(P2m Azm)-

Here it is assumed that the random variables are dependent, i.e., the correlation
coefficients are greater than zero for some of the random variables. Since the covariance matrix
is positive definite, then there exists a nonsingular 2mx2m matrix Q,, such that if
P, = Q3 Py, the Py, ={a,, by, a3, by ..., a,, b,) are independent. See Ref. [22] for
a proof. In this case, the new mean vector is Q,, 4,, and the variances will equal the
corresponding eigenvalues.

In location problems it could be assumed, without loss of generality, that the random vari-
ables P, are independent for all /, i.e., the locations of all existing facilities are considered
independent. In this case, for the same i the two random variables a,, b, are dependent and
their frequency distribution is a bivariate normal distribution. The above transformation 05!
will rotate the x and y axes through the acute angle ®, where

tan 2¢ = 20,‘,,‘1(0,21 - o'bzl),
and will transform the density function to a bivariate normal distribution with new independent

variances equal to the corresponding eigenvalues of the covariance matrix. If ¢ = (|4), then
Ty =0y =0,

Thus in this paper only the independent case is discussed since all other situations can be
reduced to it. Let
a~N(ug, o), foralli i=1, ..., m, and
b,~N(u,,‘, "'3)' foralli, i=1, ..., m.

To simplify computations, it is assumed that o, = o, = o, No distributional assumptions
are required for V, and W, since only their expected values are required in P4; we let
E[V/k] -Il;kﬂnd E[Wn] -E”.

| —
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In the Appendix, the expected Euclidean distance between the points X, and P, is
obtained. Substituting the expected Euclidean distance in P4 yields

minimize ¥ u [0 = X)) + (x); — x0) Y2
4 1<j<k<n

T g Eren |42

j=1 i=1

where H is the confluent hypergeometric function defined by (A.10) (see Appendix) and Alis
defined as

(1) x 4 { A,z,-(x,l—;t,,)2+(x,2—u,,)2.

It is easily established that the objective function in P4 is strictly convex [2]. Also, based
on the differentiability conditions at the optimum, the necessary conditions can be obtained.

Taking the partial derivatives of E[f (X, ..., X,)] with respect to all X; and setting them
equal to zero gives

() @ (x;—x ) K A2
_E_[.L_ tﬂ'/k 1~ Xk \/_2“” H-l—,2,— |
dx)1 k=1 Dy i=1 T, 2 20}
k=
J=1 ..., nm
and
3) L[L. "z /k(x/2 xkz) .\/—2 . 1 g )‘/2:
9x)2 k=1 ,-1“” T, 2" Py
k)
Jj=1, ..., n
where
L Kk k >j
ok = ko k<j
and
@ Dy = [(x;; = x)? + (x;, = X2 42 for all j, k.

Unfortunately, if any two new facilities j and k have the same location at any time, then
Dj =0 and the partial derivatives in (2) and (3) are undefined. Eyster et al. [8] employed a
hyperboloid approximation procedure (HAP) to eliminate this situation. To adopt their
approach, a positive constant e is introduced under the square root in D,; consequently, the
partial derivatives always exist. Let A ; denote the modified D ks 184,
(5) i/k - [(x,, - sz)z e (Xlz o sz)z + 6]”2.

When we substitute (5) in (2) and (3) and set the derivatives to zero, the following iterative

expressions result:
< ﬁ/kxkl z F// 1 8 Ajzi(h)
2 s (n a- 1 2 B ]
k=1 Ajk je1 o

k)

) xﬁ"”’ -
& Ax 1 2#/: A12:“')
z (h) + 52 2 2
k=1 K jml T o
k
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and

~—

A (A - 2h)

& M Xk2 1 _\/:r_"' B 1 Aji
= + — —— ——— H -, 2' e S
2 A i(kh) 2 2 2 T, “b' 2 2‘7:2

k=1 =1
7 xj(2h+l) -
"zﬁ,k+_1__\/l—i_ﬁi lz_)«},m
o a2 2 5o 2°7 20}
k=j 1

4. CONSTRAINED PROBABILISTIC FORMULATIONS
4.1 Chance Constrained Multifacility Weber Problem: Case I

The first chance-constrained formulation of the multifacility Weber problem considered is
that involving products of random variables. The optimization problem is given as

nm 7*2,-
PS. minimize Z = ¥ puDu+ \@ Y Sa,oH [_% 1, _.2_#]

1<j<k<n j=1 i=1
(€)) subject to  wj Dy < €, forall j, k,
Vi3 R
9 and Pe(W,R, K€ 2V jml, .... m,
where

D,'k - [(X“"xk[)z"'(x,;—xkz)zl‘n, R/, - [(x,-,—a,)2+(x,2—b,)2]‘/2.

and £, £, and vy, are known constants. The first set of constraints (8) is deterministic and
forms a convex set. Thus, the only probabilistic element in PS5 is due to the chance constraints
(9). To develop their deterministic equivalent representations, the following aprroximation is
employed: Let the random variable W be normally distributed with mean u y and variance o .
Let the random variable R2 be defined by R? = (x;—a)? + (x,—b)?, where a ~ N(u,, o
and b ~ N(u,, o?. The probability-density function of R? can be shown to be [17]

1 2
~=——=(y+r%)
(10) gkz(y) = __._2_ e 202 lg IL‘IZ——zl‘ 0 < y < oo,
20 o
where

Xz - (X[ = “a)z + (Xz s #0)2
and

1, = the modified Bessel .function of the first kind and of order a.

If we assume that W and R? are independent, then the probability density function of the new
random variable Z = WR is given by

Vl" vy Ly
2 K(,,_,,)/g(z)

z
TP ,0< 2z <
-2 |v v
2 ~Llr]=2

(11) g(z) =
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where K, (ax) denotes the modified Bessel function of the second kind and order v, and v, and
v, denote the degrees of freedom for noncentral chi-square distributed random variables.

To motivate the approximate deterministic equivalent, let ¥ = W2R2 where R? is distri-
buted as a noncentral x7(A?) with two degrees of freedom and noncentrality parameter A2, and
W?is a noncentral x#(u?) with one degree of freedom and noncentrality parameter w2 [17]. If
we use Patnaik’s noncentral chi-square approximation [23], two different x 2 distributions with
degrees of freedom v, and v,, respectively, are obtained.

The Mellin transform of x 2 is given by Webb [30] as*

(12) M(f(x2 | s) =2067"

Since the Mellin transform of the product of random variables is given by the product of their
Mellin transforms, then

(13) M| s) =M s) - M(f(x2)| 5)

F—+s 1

g

In order to find g(y), the density function of y, the inverse Mellin transform of (13)
must be obtained:

c+l

el

Equation 14 can be expressed alternatively, in order that the inverse will be recognized easily,

(149) M'=g(y) = y '226-Dp

il st rl22 4 x-1] 4
2 s 2 X S.

from the tables of inverse Mellin transform. In (14), let s’ = 2s + i | + - 2; then

2 2
ds = %ds ‘and (14) can be written as
I—[1 + :-2- .v_l * e 1

2 2 4 4 c+ioo
(15) g(y) = 2 Y L [T (s

r vy r 12 2wi Ye—io

2 2 ’~,
g V) vy s’ vy V1 . .
J r gk l rl3 + . ] ds
*The Mellin transform of the random variable x is defined as £ (x"').
T ——— = . ™ ,‘
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In Ref. (7], on p. 331, the following Mellin transform is given:

(16) = =1 —59s-2 -E- —— i- _V_

K,(ax) = M [a 2 l‘[z > l"[2 op
where k,(ax) is the modified Bessel function of the second kind and order v. Observing the
similarity between (15) and (16), we conclude that the probability density function for
Y = WR%is

\4

(17 gly) =

y‘ 4
v v K V= ly|/2)'0<y < oo,
32y [

2 2

To simplify (17), let y!/2 = 7z then 2zdz = dy. Thus, the probability density function for
Z = WR can be written
vl+v2 >
2

K(vl—vz)/Z (Z) :
,.0 <2z < oo,

4
vitvy iy
——% Y v
2 Bl V) S

If the cumulative distribution of g(z) is required, some assumptions are made first to
obtain a closed form for the integral of (11). It is first assumed that all weights (W,) are such

n m
that 0 € W, < 1; this is achieved by dividing each weight by 3, 3 W, + Y Vi Thus,
f=1 o=l 1</ <k <n

the weights can then be defined as the fraction of the total weight. Patnaik [23) provided the
following approximation to a noncentral x? with degrees of freedom v and noncentrality param-

eter \:
(18) X2\ = cx}

where

g(z) =

which has the desired form.

v + 2\ A?
g R o

Therefore, when the distribution of W2, which is x ?(u?) distributed, is approximated by a cen-
tral x 7, the degrees of freedom are

¢ =

4
R e
1 + 2u?
From the assumption that the random variable W, takes values below one, the second term in
(19) is always a fraction.

(19 Fw] e

Given two chi-square distributions, each with degrees of freedoms n,,n,, respectively, if &
ny > n, then

(20) Pr(x2 <€) < Prx?, € €).
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It may be seen that using n, instead of n, will underestimate the probability. Hence, there is
no overestimation in the probability in (9) if we assume that f defined in (19) equals two, since
the difference in this range is small for the x? distribution. Since

@n Pr(W,R, < €,) =Pr (WPR2S £D),
applying Patnaik’s approximation [x 2(A?) = cx ] yields
Pr(WIR?< €D =Pr(W}R2< E}/cieid)),

where c; and ¢, are defined as in (18).

Under the assumption that v, = 2, (11) reduces to

Y1

2
(22) g(z) = ——l z Ku-2z), 0<z<oo,
¥
__,l ;

The cumulative distribution is obtained by integrating (22) over z. Letting

(23) F(a,,) = Pr (Wﬂ R[, S a,‘,),
where a2 = £2|c,c,0 2, and noting that
(24) 2 K@ dz = =D Ky (w) + 27T (n41),

substitution of (24) in (25) yields
|

(a,) ? K, (@)
2

V1
-1
2[ £

Therefore, the chance constraints in P5 can be written as

(25) Fla;,) =1 -
Vi

n
a,, it Ky (a;)  forallj =1,

-(26) I_‘l l ] and i =1,

Note that « , is a function of c,, and from (18) it is clear that it is a function of X;; in the same

manner v, is a function of X,. Since K,(-) is well tabulated and available for computer calcula-

tions, an iterative method to solve the nonlinear programming problem is reccommended. Prob-
lem PS5 may be stated in a deterministic equivalent form as

nom 2

P6. minimize Z= Y. wu,Di+~/— I Zp,,a,rll 4 1, - ok

X 1</<k&n i jol iml 2 20}

subject to “IRDIk < ejk' rof all J. k,
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<1-y; forallji

For a constant v, it is easily shown that the last set of constraints forms a convex set
(from the definition of K (-)); the first set of constraints also forms a convex set. Thus, the
joint constraint set is convex. It can be shown that the objective function is strictly convex;
thus, if a local optimum is achieved, it is also a global optimum. Hence, a number of nonlinear
programming algorithms may be employed to obtain the solution to P6. In the case that v, is
not considered as a parameter, i.e., v; is a function of X;, the convexity condition of the con-
straints may not hold. However, a local optimum solution is still available and it may turn out
to be a global optimum solution.

It is easier to work with the constraints when v is treated as a parameter since K, /2(~)

will have the same order during all iterations. However, this may be accomplished, without
loss of generality, if the known (p,,,', I ,,,) are rescaled so that any coordinate takes a value

between zero and one. This will imply that A ; is bounded as 0 <; <1, from ®), vi=2
and the constraints given by (26) are written as
. a,-, Kl(a,-,) S 1 - 'Y/',, fOl‘ a“ i,j,

which will simplify the computations dramatically. Note that the optimum solution has to be
adjusted to its former scale so that the total cost obtained is in the correct units.

4.2 Chance-Constrained Multifacility
Weber Problem: Case II

The second type of problem to be considered involves a random sum of random variables.
The optimization problem is formulated as
A

T n m o 1
T uuby+ \/:2'-2 2#/;0‘;H[‘ 2’ L = -20—'2

I1€j<k€n j=1 i=1

P7. minimize Z =
X;

subject to p Dy < €y, forall jk

w, ;
i J-l. cee g My

h=1

where Dy , R, €,, v,» H, and X are as defined previously. In order to solve P7 the chance
constraints are converted to equivalent deterministic constraints. If we define the random vari-

able Y, as
W,
Yy= i R,}"’.
h=l
we may conclude, under very general conditions, that Y, is approximately normally distributed
with mean
(27) E[ Y”] - El W”IE[R’,’]




———

e I SN

|
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and variance

(28) ViYy,) = EIW ) VIR,) + VIW,JEYR,).
From (A.12),

T Az
(29) \/— 1 | 2
E[R,,] = —2 o, Hl—- —2, 1, — —"—2 ,2

and

(30) E[R,,’]-20,2+x,2,.

For a detailed discussion of the conditions underlying the Central Limit Theorem for the sum

of a random number of independent random variables, see Blum, et al [3] and Reényi [24], [25).
The chance constraints can be written in normalized form as

Y,.,-E[y/-,] < f/l'_E[yll]

3 < 2y
(31) Pr SDIY,] SDIY,] y; for all ji

where SD[Y,] denotes the standard deviation of the random variable Y,. Equivalently, (31)
can be expressed as

Josm e,

i=

(32) £, 2 ELY,] +5D[Y]é 7" (v,).

The deterministic equivalent of P7 is given by
oy 2 T o & 1 A2

P8. minimize z = ¥ wuuDu+ f5 X Lo, H-5.1, -5

X, 1</ <k<n 2 35 2 20

subject to D, <€), 1 < j <k <n

=L

and E[yj,] + SD[Y//]‘ﬁ_,(‘Yﬂ) < f/,, T , m.

It can be shown that E[Y,] is a convex function and the objective function is strictly con-
vex [2]. However, the convexity of SD(Y,] may not hold. Hence, a local optimum solution is
guaranteed using any convergent convex programming algorithm.

APPENDIX
1. Derivation of Ef(x,—a)? + (x,~b)%):

Let R? = (x;~a)? + (x,~b)% From (10)

- (y+rd)

1 o? Ay
(A.1) 8pa(y) = = § %" 1, I—U;Ll 0 <y < oo,




¥
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The expected value of R?is derived as follows:
E[RY] = _f:) Y 8pay)dy

_._l- (y+A2)
- _.L 202 A [L& dy

o 202 ol

2
Let = AL b i ihen dw-Ldy
202" 202 202

(A2) EIRY =202 ™ [ we " [,XVW) dw

But from Ref. [1], p. 375,

ozl s il

k=0 (k) -0 (k1)?

Substituting (A.3) in (A.2) yields
E[RY) =207 eV 3 A L f ™ (Vw)* dw.

=0 (k1)?
It can be seen that the integral is a gamma function where
r@ = [ e a

from Ref. [1], p. 255. Therefore, the integral equals
(A.4) S Wit e dw = T(k+2) = (k+D) (kD)
Substituting (A.4) for the integral, we obtain

E[RY =202 § A1 (‘2’ - (k+1)

k=0

-5 2 (A’)* " i k()

=202e
gag okl

Since e’ = 2 (k—)‘
k=0
E(RY =202 ¢V [ei’ + () J’]
=202 420222
Since A? = 2—)‘3;
(A.9) E[R?Y = 20% + A2,
2. Derivation of El[(x—a,)2 + (y_b/)quzl:




<o e <
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Given that the random variable P behaves according to the normal distribution, i.e.,
a~ N, o), b~ N(u,o?), we let R denote the statistic given by R = [(x,~a)? +
(x,—5)%"2. Then the probability density function of R is

-2
(Ab) §R(r) - LI e 2q2 IDIL;
ag o

,0< y < oo,

where
A= (x;=p)?+ (x;—p,)?% and
I, = the modified Bessel function of the first kind and order n.

The probability density function of R? is given in (15). Since the statistic R equals the square
root of the statistic R2, then

() = gy - ||

dr

: o |y
where r = V/y; thus 2rdr = dy and the Jacobian e 2r. Therefore,
1
S ST R
R =2 =5 e 2 L|AML o<y <o,
20 o’

which gives the probability density function shown in (A.6) Given the probability density func-
tion of R, we derive the expected value as

E[R] = J;w r gg(r) dr
1

w 2 ———=(r24\Y)
- [T L ,o[M &
0 o2 o?
Using the expansion of /,(z) given in (A.3),
2%
A2 l Ar y
T ggt = w 1302 B =
e 2
E[R] = r? ——c 2 4
[ ] 0'2 J; k§0 (k')z

2
Let -55—2 = w, then r = VZoVw, dr = "32-' w™'2dw, giving
ag

2k
A

o |2¢r2 o 242 L
) k+l g=w O 2
- /;o g _‘; [\ﬁal wktl = \Ew dw

2%
- e o o &k 1
(A7) -Vigce ¥ ¥ J; w2 e dw,

P S (1)
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But the integral is a gamma function [1], p. 255, thus

1
A.8) L S 3
( J; w e ¥dw =T k+2 ;
Substituting the value of the integral in (A.7), we obtain
2 A
: | A] plesd r|2
20 2 rq) 2

&
(A9) EIRl=Vic e 202 2
k=0

k! T(k+D |3l T
r\=
2
From Ref. [1], p. 504,

(A.10) _ % Fla+k) 1) 2+
Hiao2) = & Ty Tlowd) ki

Substituting (A.10) in (A.9) we obtain

A2
& 3le 2 gyl3 A’
E[R] Jz’arlzle H[z.l, 202].

o S AOE \/Z
Since F‘Z] X
% 3
ad® o, gl R
(A.11) E[R] -\/;-Ué’ "’lz. 1, 202 .

Equation (A.11) may be further simplified by using the Kummer Transformation (Ref.
(1], p. 505) which is stated as

H(a,b,z) = e’ H(b—a,b,~z)

Application of the Kummer Transformation to (A.11) yields the following expected value of R,
b 1 A2
(A.12) E[R] \/-2_0”( X 1--3;;]
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THE CONSTRAINED SHORTEST PATH PROBLEM
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ABSTRACT

The shortest path problem between two specified nodes in a general net-
work possesses the unimodularity property and, therefore, can be solved by
efficient labelling algorithms. However, the introduction of an additional linear
constraint would, in general, destroy this property and the existing algorithms
are not applicable in this case. This paper presents a parametric approach for
solving this problem. The algorithm presented would require, on the average,
a number of iterations which is polynomially bounded. The similarity of this
approach to that of the generalized Lagrange multiplier technique is demon-
strated and a numerical example is presented.

1. INTRODUCTION

The problem of determining the shortest chain between a pair of specified nodes in a gen-
eral network is of interest in many ways [5]. The problem is formulated as a special case of the
minimal-cost-flow problem [4], and efficient algorithms are available for computing the shortest
path. The shortest path so obtained will minimize a particular linear attribute (function) of the
path such as cost, time, or distance. In the constrained shortest path problem, the optimal path
must adhere to an additional linear constraint and minimize the chosen attribute. A typical for-
mulation of this problem will be one of finding a path with minimum distance subject to a

. budgetary constraint. Alternatively, it may be one of minimizing the cost subject to a con-

straint on time. The introduction of such an additional constraint destroys the unimodulerity of
the constraint matrix, and any simplex-based algorithm would not, in general, guarantee an
integral solution.

In this paper, we treat the additional constraint also as an objective and formulate a bicri-
teria linear program. The optimal solution to the original problem is shown to be a special kind
of extreme point of the bicriteria problem. An algorithm is presented for obtaining such an
extreme point. At each iteration of the algorithm, a shortest path that minimizes a positively
weighted average of the two objectives is determined. It is shown that one needs to solve, on
the average, at most n such problems, where » is the number of variables, to obtain the desired
nondominated extreme point. It is of interest to see that the process has strong similarity to
the generalized Lagrange multiplier technique [3], and this aspect is demonstrated. A numeri-
cal example illustrates the algorithm.

2. FORMATION OF THE PROBLEM
Let [N; A] be a network having a single source s and a single sink . Let a(x, y) be the

cost of transporting a unit flow along the arc (x, y), and let b(x, y) denote the traverse time
along this arc. The constrained shortest path problem is formulated as:

549
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Minimize z,(f) = Y a(x, y) - f(x, »)
A

lif x =5,
subject to ¥ f(x, ») = X f(r, x) =§-1if x =1,
yEN vEN 0 otherwise,

(P1) and Y b(xy) - f(x, y) € B,
A

f(x, y) =0orl.
It is assumed that a(x, y) and b(x, y) are nonnegative for all (x, y) € A4, and the vector b
(with b(x, y) as its components) is not a multiple of a.
Consider, now, the following bicriteria linear program.
Minimize z,(f) = L a(x, y) - f(x, y)
and z,(f) =L b(x, y) - f(x, »)

1if x =s,
subjectto ¥ f(x, y) — ¥ f(y, x) =1-1lifx =1,
e pEl . 0 otherwise,

(P2) f(x, y) 2 0.

In the above formulation, it would be rare that the two objectives are simultaneously
minimized. Therefore, the solution of the problem has to be based on the concept of nondom-
inance [6]. Denote the feasible set of (P2) by F, and let z(f) denote the two component vec-
tor [z,(f), zo(f)]. Let f* € Fand G, = f € F: z(f) < z(f*). The point f*is said to be a
nondominated solution if and only if z(f*) = z(f) for all f € G,.. Extreme points of the set F
which are nondominated solutions are called nondominated or efficient extreme points.

The following lemma provides the relationship between (P1) and (P2).

LEMMA 1: There exists a nondominated extreme point of (P2) which is a solution to
(P1).

PROOF: Let f* be that optimal solution to (P1) for which £ b(x, y) - f(x, y) is minim-
ized. Then, clearly, f* is a nondominated solution to (P2). The unimodularity of the con-
straint matrix of (P2) implies that all the extreme points of F are integer vectors. Since each
one of these extreme points of Fis a vector of zeros and ones, it follows that any integer solu-
tion of (P2) must be an extreme point of F. Again, since f* is an integer nondominated solu-
tion of (P2), it must be a nondominated extreme point of (P2). Thus an optimal solution to
(P1) can be obtained by searching through the nondominated extreme points of the decision

space F.

Let the feasible set in the two-dimensional objective space of (P2) be denoted by Z. Con-
sider the following lemma:

LEMMA 2: The set Z is convex and each extreme point of Z corresponds to at least one
extreme point of the feasible set F.

e i S A T AN i




CONSTRAINED SHORTEST PATH PROBLEM 551

PROOF: The convexity of the set Z is obvious. Consider, now, an extreme point z ° of
the set Z. There exists at least one f, say f°, such that z(f9 = z°. Assume, contrary to the
hypothesis, that there is no extreme point in the set F which corresponds to z °. Since f°is not

k
an extreme point, we can write f°= Za,f,, 0 < «, < 1, where the f’s are distinct extreme

i=1

k
points. So z(f9 = ¥ a;z(f). If all z(f)’s are the same, then each must equal z °, leading to
i=1
a contradiction. Otherwise, z °, an extreme point, is being expressed as a convex combination
of some distinct points, which again leads to a contradiction.

Every extreme point of F need not correspond to an extreme point of Z. A point z € Z
is nondominated if and only if z < Z — z = Z Thus every nondominated point in the decision
space F corresponds to a nondominated point in the objective space.

The algorithm presented below involves a search process in the set Z for nondominated
extreme points. Each iteration involves the solution of a shortest chain problem in which the
arc distance c(x, y) is a positively weighted sum of a(x, y) and b(x, y). Initially, two non-
dominated extreme points are determined by solving two shortest chain problems, one for each
objective. The positive weights are determined by the slope of the line joining these two
points. If the two points are z” and z*), the weights would be w,=z{" —z{* and
wy =2z — z{7. With these newly defined costs on arcs, a shoriest chain problem is solved.
Thus, either a new nondominated point is revealed, or it is shown that the weighted objective
function does not change. In the latter case, if fis a solution, then

T clx )0 ») = w2z 4wy zy(s)
(x.v)€A4
where c(x, y) = w, - z{” + w,- z5*. In this case, one of the alternative optima is the desired
solution and the algorithm terminates. In the former case, the new nondominated point
obtained is used to determine the positive weights for the next iteration.

3. ALGORITHM

STEP 0: Find z{V = Min (z,|f€F)

and 23V = Min (z,]z; = z{" and f€F).

[z{ is obtained by searching through all the extreme points
that yield z{".]

Record (z{V, z{V). Similarly, find

z§? = Min (z,|f€F)
and z{? = Min (z,|z, = z{? and f€F).
Record (z®, 2{?) and set k = 2. Stop if

B < z{? or B > z{Y, since in the first case the problem is infeasible and in the second case
the additional constraint is redundant. Otherwise, set r = 1 and s = 2 and go to Step 1.

STEP 1: Set w("*) = z{" — z{9 and w;" = z{) = z{".

Let 7 be the optimal solution to the shortest chain problem with c(x, y) =
wi"a(x, y) + wi" - b(x, y) as the unit cost of arc (x, y). (If there are alternative optima,
choose the one for which z, is minimum and call it f) If, for this solution f,
}%c()xe.g) f(x, y) = w20 4 wr9240 g6 to Step 3.

xy
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Otherwise set k = k + 1 and go to Step 2.

STEP 2: Let z{*) = Za(xy) - flx, y)
and 240 = !(‘.b"(é.}a) f(x, »)

If z{ > B, set r = k. If z{ < B, set s = k. If z;* = B, go to Step 4, otherwise go to Step
1.

STEP 3: Determine all the alternative optima for the shortest chain with c(x, y), as
defined in Step 1, as the unit cost on arc (x, y) and choose the one, say f* for which the addi-
tional constraint is satisfied and La(x, y) - f*(x, y) is minimized. Stop, since f*is the desired
solution.

STEP 4: Stop, since f, the solution which yields z{*’ and z;*’ for the two objectives of
(P2), is the desired solution.

Certain comments can be made about the algorithm. Both in Step 1 and Step 3, the algo-
rithm would have to determine all the alternative optima to the shortest chain problem. This is
not difficult to do, since all the integer solutions satisfying the constraints of (P2) are extreme
points of (P2), and there are simplex-based algorithms for finding the shortest chain [1]. The
simplex method can be used to obtain the shortest chain since it is easy to show the
equivalence between the shortest chain and the assignment problem [5]. Also, Dijkstra’s algo-
rithm [2] can be modified to yield all the optimal solutions to the shortest chain problem.

4. VALIDITY OF THE ALGORITHM

Before proving the validity of the algorithm let us introduce some notation. Given two
efficient extreme points z, z €R2 let Q(u, v) =z|z < A -z + (1 = Nz, z; 2> z{,
z, 2 zz‘"’. Let us assume that the algorithm does not converge in Step 0, so that problem (P1)
has a nontrivial feasible solution.

LEMMA 3: Let z be a solution in the objective space corresponding to an optimal solution
of (P1) which is a nondominated solution of (P2). Then, at each iteration of the algorithm,
z € Q(r, s) with rand s as defined in the algorithm.

PROOF: Let us first show that the algorithm generates an efficient extreme point, z*’, at
each iteration of the algorithm. Since the algorithm does not terminated at Step 0 of the first
iteration, by assumption, z" and z® are distinct efficient extreme points. Thus w, and w, are
strictly positive, and hence the new point, if any, obtained at Step 1 of the first iteration is the
result of minimizing a positively weighted average of the two objective functions of (P2).
Hence, this new point must be a nondominated extreme point. Thus, at each iteration 2" and
2 are efficient extreme points.

Since, at Step 0, z{" minimizes Za(x, y) - f(x, y) and zi”, minimizes L6(x, y) -
f(x, »), and zV and z? are nondominated extreme points, it follows that initially the result of
Lemma 3 holds. Now assume that the result holds till iteration k. Then, as proved earlier,
2k+1 is a nondominated extreme point. Thus, the interior of the convex hull generated by
2, 24D and z*) does not contain any efficient point. This is illustrated geometrically by
Figure 1.

| I ———
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FIGURE 1 — lllustration of the proof.

Again, since rectangle R cannot contain any efficient points, Q(r, Kk +1) U Q(k + 1, s)
contains the point z. However, depending upon the line z, = B, either Q(r, k + 1) or
Q(k + 1, s) contains the desired point. Hence, z € Q(r, s) at every iteration of the algo-
rithm.

The algorithm terminates when minimizing the objective function corresponding to the
line joining z") and z* does not yield any new point. Thus z|z = {Az” + (1 — A)z®} defines
a supporting hyperplane in the objective space Z. Also, from Lemma 3, z € Q(r, s) at termi-
nation. Thus z = A% + (1 — A9z, for some A° between 0 and 1, provides an optimal
solution to (P1). Step 3 of the algorithm determines a solution which corresponds to a point on
the line joining z” and z*) and which is closest to z, = B.

Figure 1 illustrates another important property of the algorithm. If the nondominated
extreme points in the objective space are uniformly distributed over the entire nondominated
region, each iteration of the algorithm divides the region of search-by one half. Since 2" is the
maximal possible number of feasible solutions to (P1), it is a crude upper bound on the
number of nondominated extreme points in the objective space. Hence, the maximum number
of iterations needed to reduce the search to one efficient point would be log,(2") (=n). Based
upon Lemma 3 and the above remarks, we can state the following theorem.

THEOREM: The algorithm determines an optimal solution to (P1) in at most » iterations
on the average.

5. RELATIONSHIP TO GENERALIZED LAGRANGE MULTIPLIER TECHNIQUE

Defining z2(f) = 2(? v()’éi’) f(x, y)
and 25(f) = )(:‘bv().z') f(xY),
the problem (P1) can be rewritten as: '
Minimize z,(f)
subject to z,(f) € B,
SEF.
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Now consider the problem of minimizing w, - z,(f) + w, - z,(f) subject to f € F, where w,
and w, are determined at Step 1 of the algorithm. If we define A\ = w,/w, this is equivalent to
minimizing z,(f) + Az,(f). The weights thus provide a Lagrange multiplier at each iteration of
the algorithm. The nature of the algorithm is therefore similar to the GLM method proposed
by Everett [3]. It is important to note, however, that the algorithm presented here is a finite
one whereas the application of GLM method to problem (P1) would not guarantee finite con-
vergence.

6. AN EXAMPLE

Consider the following undirected network shown in Figure 2. The first number on an arc
(x, y) gives a(x, y), and the second b(x, y). The additional constraint in the problem is
Lb(x, ) f(x p).

Figure 3 illustrates the application of this algorithm to the network in Figure 2. The
desired solution is not an extreme point in the objective space, but corresponds to an extreme
point, that is a chain, in the decision space F.

FIGURE 2 — A network.

18 z = (10,18)

Optimal Solution (11, 17)

FIGURE 3 — lllustration of the algorithm

) | (3317
(10,13) 15 20 25 30 15 40 1
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7. DISCUSSION

Although the constrained shortest chain problem is an integer problem, the algorithm
presented in this paper would solve the problem efficiently without resorting to integer pro-
gramming techniques. The methodology presented is quite general. An additional constraint
can be handled easily in any 0-1 integer program. The algorithm becomes attractive when this
integer program without the additional constraint has a special structure, such as unimodularity,
leading to a computationally simple solution method. Minimum spannmg tree, assignment, and
knapsack problems would fall into this category.

The method can be easily extended to the situation where there is more than one addi-
tional constraint by "nesting." Thus, if there are two additional constraints, one would not have
to solve more than n? shortest chain problems, on the average, to get the desired solution.
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PERMUTATION FLOW-SHCOP THEORY REVISITED
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ABSTRACT
The paper provides a new theoretical framework for generating dominance

conditions and lower bounds and for solving special cases. All existing and
new results have been derived in a routine and simple manner.

1. INTRODUCTION

Consider the following problem: Finc a permutation P = PPy ...py Of TOWS 1,2, ...,
of a given n x m matrix {t,}.t,, > 0 that minimizes

] *3 m
(1) T(P.m) =  max Bt Ehat ¥ ¥ G
g U DXL ¥n-1 |s=1 s=w, S=W,_) "
over a set of integers w,w,, ...,w,_; which satisfy conditions
(2) l1<w € w;£...€w,_ € m.

We have just formulated the well-known flow-shop problem of finding a permutation P
that minimizes the completion time T(P,m) of processing items 1,2...n on machines
M .M, ... .M, provided that the processing times ¢, of item r on machine M, are given, that
each item passes through the machines in the same order, M,,M,, ...,M,, and that the
machines process the items in the same order.

A sequence y of cells of an n x m matrix is called a segment if each element (r,s) of y
(except the last) is followed by either (r+1,s) or (r,s+1). An m+n—1 element segment is
called a path.

REMARK 1: Johnson [5] meant by a path a walk in the matrix from the upper left-hand
corner to the lower right-hand corner, taking steps to the right or downward.

Observe that the summations in (1) are extended over the following path ' (I' makes a
downward turn at each (r,w,), r < n):

F=(1,1...(0,w); Qw)...(2,w);...; (mw,_)...(n,m).
T(Pm) = lrl:la'gi (mzm o

557
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where [I'] is set of all paths. Path T is called a critical path for a given permutation Pif 7(P,m)

T Z Iy, s
r

This paper offers an entirely new theoretical framework for solving the problem that
makes the shape of the segment its focal point. Then the derivation of all existing and new

results in such areas as special cases [1], [3], [5), [8], [9], [11], [12], [14), [15), dominance

conditions (2], (7], [10], [13], and lower bounds [4], [6] becomes a simple routine.

We have shown that the flow-shop problem can be formulated in pure combinatorial
terms without the usual Machine-Job-Completion-Time interpretation. Hence, such widely
used concepts as earliest time, shortest run-out time, and bottleneck and nonbottleneck
machine are no longer necessary to develop lower bounds, since the shape of the critical path is
the main factor. The author hopes that further extension of this new approach will ultimately
produce a reasonably efficient branch-and-bound-solution method.

2. SELECTED TYPES OF CRITICAL PATHS
We find it convenient to describe a segment by a sequence of R and D symbols that indi-

cate its right-hand and downward turns. Notice that consecutive symbols of this sequence are
different. Figure 1 illustrates a DRDR segment.”

St

FIGURE 1

(a) (a’) (b) (b) (d)

FIGURE 2

We will show that the solution of the flow-shop problem is easily available whenever the
type of the critical path I' remains the same for all permutations P and T is of the following
type: (a) RD, (a') DR, (b) DRD, (b') RDR, (c) RDRD, (c') DRDR, or (d) RDRDR (see
Figure 2).

REMARK 2: Each case includes D and R as a subcase. Cases a and a', band b’, ¢ and ¢'
are subcases of the subsequent cases (but not of each other).

n
CASE a: Path I' passes row 1 and column m where 2 t,m is constant for each P.

r=|

m=1 m—1
SOLUTION: Find min ¥ f,,= ¥, Thenany P = /... tis the optimal permutation.
o oswl] ]

*I" makes at most m—1 R-turns and n~1 D-turns.
teg., P = im, where = is an arbitrary n—1 element permutation of numbers re (1,2, ..., n — ().

I R —
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CASE a': SOLUTION: Find mm =Yt = Zt,, Then any P = , ... i*is the optimal
s=2 s=2
permutation.

CASE b: It is well-known that Johnson’s algorithm solves the problem whenever I'
makes exactly one R turn (as in this case).

SOLUTION: Apply Johnson’s method to the two-machine AB flow-shop problem with
processing times A4, = Zt,s and B, = 21,,

s=1 s=2

REMARK 3: The solution of Case b remains optimal under a much relaxed assumption
that I' makes the single R turn for the permutation produced by Johnson’s algorithm.

CASE b": Path T passes through an entire column, say column h.

SOLUTION: Find

h—1 m
mm Zr,,, + 2 bl = 0¥ T 4,

s=1 s=h+1 s=1 s=h+1

Then any P = ... jis the optimal permutation.

CASE d: Assume that I’ makes two D turns along columns vand v, u < v.

v—1
SOLUTION: Solve (as in Case b) the two-machine AB problem where A, = Y, and B,
= 21,,, and let 1,2, ..., n be the optimal permutation. Consider sequences p a qi"p. 1
u+l

p=lp+1,....q-1.g+1, ...,nqfor all possible 1 < p= g < n. Let 1(pag) be the completion
time of sequence paq on machmes A and B. Flnd

9 o

u-=1 m
2’/" + ¥ tu+1Gag)| - T+ X+ tliaj).

s=1 s=v+1 s=1 s=v+]

mm

Then P = jajis the optimal permutation.
CASES c and ¢': SOLUTION: Proceed as in Case d.

d
Sequence P = iB-/i 1, ....i=l,i+1, ..., nis optimal if

mm [ i, +t(pp)| = uilt“ + t(iB),

s

while sequence P = oj= 1,2, ...,j-1,j+1,...,nj, is optimal if

min I 3 tutited)|= $ i+ 1000,

ALY P s=v+l

*e.g., P = mi(see previous footnote).

o e T AT BT R <
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3. CLASSIFICATION OF SPECIAL CASES
OF THE FLOW-SHOP PROBLEM

All known special cases belong to one of the following categories:

CASE I: Forsome0 < # £ m,

min f,, 2> max f,,,, 1<s < h-1,
r r

and

min f,,,, 2> max ., h+l < s < m.
Several subcases of Case I have been solved in Refs. [3], [5], [9], [14], and [15].

CASE 11 [9]: For some 1 € h < m—1,

min f,,,, 2 max f,, 1 <s < h-l,
r r

and

min f,, 2> max f,.,,, h+l £ s < m—1.
References [1], [3], [8], [14], and [15] considered special cases of II.

CASE III: Forsome i € n,and h< m,

ts2t,, 1<r<n,
and

L2 s 1<s < m
For subcases of Case III see Refs. [11], [12], and [15].

CASE 1IV: min(¢t,,t,,) 2 t,, 1 £ r < n,2 € s < m—1. Two subcases of Case IV have
been solved in Ref. [15].

The envelope concept (see the following section) will be utilized in solving these special
cases.

4. ENVELOPES

Let y be an arbitrary segment having two endpoints (/,#) and (j, v), i € j, u < v. Such
a segment consists of j—i+v—u+1 cells. Both RD and DR segments connecting the same end-
points as y are called envelopes of y and denoted by ¥ and vy respectively. Note each of the seg-
ments vy, ¥, and y passes through j—i+v—u+1 cells. If i=j, or u=v, then y = y = ¥.* Every
path I' can be présented as a sequence of segments y,, yj, ...,¥s, Where the last cell of y, is an
initial cell of y,4,, ¢t =1, ...,k~1. Otherwise the y, are mutually exclusive. The envelope
concept makes it easier to visualize the shape of I' whenever it is presented as a sequence of
segments. For instance, I' = y, ¥, indicates that I is a DRD type (see Figure 3 where v, and

7, share cell (r,5)), while I' =T shows that I' isa RD path.

*Then both envelopes are R or D segments, or single points (if i=/. and u=v).
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FIGURE 3

REMARK 4: Paths and segments will be denoted by symbols I' and y exclusively.

The solution of Cases I-IV requires a preliminary proof that, for every segment located in
a certain area, one of the following conditions holds:

(3 Y, < Xt foreach P,
(r.s)ey (r.s)ey
or
4) Yt < Xt,, foreach P.
Y 2

This proof always follows the same routine: We establish a one to one correspondence
between cells (r,s)ey and(r’,s ey (or y, depending on whether we want to prove (3) or (4)),
and prove that, for each (r,s)ey, ~

(5) ’p,s < ’p,.s"

We say that the diagonal technique or the row-column technique has been used if cells (r,s) and
(r',s") are located on the same 45° diagonal (r+s = r'+s’), or on the same row (r=r’) or
column (s=s").

5. SOLUTION OF CASES I AND II

CASE I: We distinguish three subcases, 1 < h < m—1, h=0,and h = m.
1. Consider the first subcase: Let I' = +,y, where v, and vy, share a cell (i,h)el’ (see
Figure 4). For h=2, m—1, this cell is specifically defined as: (i,#) = min(r,h)eT" (if h=2), and

(i,h) = max(r,h)el’ (if h = m—1).* Define I'y= vy, ¥, Applying the diagonal technique to

prove (5), we can see that (3) and (4) hold for y = y, and y = y, respectively.

Hence,

z ly,s € z Ip,s:

(r.s)el’ (r.s)ely

“Then segments v, (f A=) and y, (if h=m~1) make a single R turn along row i.
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FIGURE 4

Consequently, the type of the critical path is DRD. For solution see Case b.

2. If h = 0, then mint,,, > maxt,, 1 < s< m—1.
Again applying the diagonal technique, we see that (3) holds for y = I'. Hence T, a RD type,
is a critical path. For solution see Case a.
3. If h = m, then min r,, > max‘,,, 1 < s< m—L
Proceeding as in the previous case we can see that the critical path is a DR type (see Case a’).
CASE II: Let y = y,y,y3; where y, and v, share cell (i,4), while y, and y; share cell
(,h+1). Consider I'y= ¥, v, y; (see Figure 5). Observe that y, makes one R turn since it

occupies two columns h and h+1 only. Utilizing the diagonal technique, we can see that (3)
and (4) are satisfied for y = v, and y = y; respectively. Therefore

2ty & Tlpsr
r T,

which means that RDRDR is the type of the critical path. For the solution, see Case d, where
u= h, and v = h+l, A, =t and B, = lrn+1e

T
== i e =i oy
|
|
|
7 ih
72
Ciod e 3
[ i
S ')
FIGURE §
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6. DECOMPOSITION OF THE FLOW-SHOP PROBLEM
CASE III: We will prove the following:

PROPERTY 1: Term t,/,"=’max t,, appears in (1) for every P.

Proof: Let P = 1,2, ..., n. It is sufficient to show that cell (i,4) belongs to the critical path.
Consider a path T that does not pass through (i,4) but crosses column 4 at (j,4) and row i at
(i,u). Let T = y,y,y; where vy, is a segment that connects end points (i,u) and (j,#). Define
I'g as y,y,y3 or v,7,y; depending on whether (i,h) is located below or above I'. Obviously
(i,h) €Ty~ The row-column technique leads us to the conclusion that (4) (or (3)) holds for
v = vy, Thus

Y. 6 ¥, j Q.E.D.
r Fy

REMARK 5: It is easy to show (by a counterexample) that Case III is a necessary condi-
tion for Property 1.

Property 1 allows us to break the original problem into 2”~! subproblems. This can be
accomplished in the following manner: (1) Let / = (1,2, ..., n), and generate all 2"~ subsets
Jof I-(i). (2) Let Jdenote a complement of J, and consider two flow-shop problems: one for
jobset J+(i) and machines M,M,, ..., M,, the other for jobset J+(i) and machines
M,, ..., M,. (3) Find sequences of the type aiand i8 that minimize the sum of processing
times of both problems. Then permutation P = aip is the optimal solution of the entire prob-
lem.

Consider Case IlIl for # =1 and P = ... i The following obvious property holds:

PROPERTY 2: Sequence P maximizes (1).

n m
PROOF: Observe that 37, , = ¥, + Xt is the largest value of (1) for all possible P.
T

r=1 s=2

7. ORDERED, SEMIORDERED AND OTHER
SPECIAL CASES

ORDERED CASE [11]): (1) For each i and j, row i is either greater than, equal to, or
smaller than row j (i.e., for all 1 < s < m: either t;; > t;, t;=t, or t;; < t;). (2) For any u
and v, column u is either greater than, equal to, cr smaller than column v (i.e., forall 1 < r <
m: either t,, 2 t,, t, =t,, 0rt, <1t,).

SEMIORDERED CASE [15]: The first condition of the Ordered Case is met. It is obvi-
ous that the Ordered Case is a subcase of Case III. Let 4 be the largest column. For 4 = 1 the
following property holds [11]:

PROPERTY 3: (a) No critical path makes a R turn along row i if some subsequent row j
(where P = ,..i...j...) is greater than /.

(b) No critical path makes a D turn along column u if some subsequent column v is
greater than 4. Notice that Property 3b does not depend on permutation P.
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Property 3 can be easily shown by applying the envelope approach along with the row-
column technique from Section 3. According to Ref. [11], sequence P is optimal if all n rows
are arranged in a nonincreasing order. Case 4 = m is symmetrical to case # = 1. Hence the
rows in the optimal permutation are arranged in a nondecreasing order. If 1 < 4 < m, then
the problem is decomposable as Case III (see Ref. [12]).

Let h=1. Assume also that m is the second largest column. Then Property 3 implies:
COROLLARY 1: The critical path makes a single R turn.

According to Ref. [15] (again with the help of the envelope approach) Corollary 1 is valid
for the following less restricted cases: (a) Case IV, m = 3, and (b) Case IV, m arbitrary, pro-
vided this case is semiordered.

Consider the following two cases:
CASE1l: t,=t,=...=t,foreachl < r < n
CASE 2: t;;=t),=...=t,foreach]l < s < m.

It is easy to see that the critical path for Case 1 makes, for each P, a single R turn along
n m
the largest row, say row i. Since T(P,m) = Yt,, + Y t; is the same for each P, any sequence

s=2

=1
is optimal. The same conclusion is valid for Case 2, since (1) is constant for each permutation.
8. DOMINANCE CONDITIONS

Consider sequence p = p\py, ..., Py, p C I = (1,2,..., n). Define

L | Wa v
C(p,u,v) = max t, «+ st ...+ tol,
0) vy = max T+ Ty A

s=u S=wy S=w_{

where 1 € u < v € m. Then (see (1))

T(p,v) = C(p,1,v).

Divide p into ¢ disjoint subsequences: a,, a,, ...,a, C I, t < k, preserving the order of the
elements of p. The p = aja,...a, From (1) and (6) we obtain the following formula:

(@) T(p,v) = : lT(al,ul) + Clagupuy) + ...+ C(a,.u,_,.v)l

max
1Su U< .. Sy

The following three dominance conditions assume that presequence o C / of permutation
P = o is fixed.

CONDITION I [4], [10): T(c',u) € T(o,u), V1 € u £ m, removes sequences o . . .
(sequences o’ and o contain the same elements).

PROOF: Let 7 be an arbitrary sequence and # N o = ¢.
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In view of (7),

T(on,m) = ,2“2 [T(o,u) + C(m,u,m)], and

T(ac'mw,m) = max (T(o" u) + Clmw,um)l].

<u€m

Hence I => [T(o’nw,m) £ T(om,m)l, Q.E. D.

CONDITION 11 3], (7], [13): T(oabu) — T(obu) < t,, ¥V 1<u<v<m, where a,bel,
eliminates sequences g&. . . -

PROOF: Consider two arbitrary disjoint sequences =’ and 7" where
m U w" = |- cab. Again, by (7)

T(ocabn'n".m) = l<méix< [T(sabu) + C(x',u,v) + C(x",v,m)], and

T(obm'an"'.m) = max [(T(obu) + Clx' uv) + Cla,vw) + C(x",wm)]
1€SugvE<wsm

> max [(T(ebu) + Clr'.uv) + Clayy) + Cla"vm)l,

1SugvsEm

where C(a,v,v) = 1, [C(a,v,w) = it,,,l.

S=y

Hence
(8) T(ocabm'n".m) € T(ocbn'an",m)
holds if for each u, and v,u < v. T(cabu) < T(obu) + t,, which is Condition IL

CONDITION 11l (131: T(oabu) — T(obu) € tsm ¥ 1<u<m, removes sequences
ob...a

PROOE: Assume 7" = ¢ in the preceding proof. Then it is obvious that (8) holds for
n" = ¢ whenever T(cabu) € T(abu) + Clamm) = T(ocbu) + tym, ¥4 S m QED.

It is known (see Refs. [7] and [13]) that whenever Condition II is not met, there exists a
hypothetical example where (8) is violated. To show it, assume
T(oabu) > T(abu) +t, for some u < v, v 2> 2.

Define 7’ = (p) and =" = (g). If pand g satisfy (8) and (9) of reference [13], that is:

< lpsst 1<s €u-l,
> max (T(cabs+1) — T(oab,s), T(obs+1) ~T(obs)lu € s € v=1,
ts € |3 T(obpa,s—1) ~ T(abps—1), P

>0, v+l £ s<m
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and
< min (’as+l'tps+l)' 1 <s <v-l,
t,s = {2 max [T(cabp,s+1) — T(cabp,s), T(obpa,s+1) — T(obpas)l,y <s < m—1,
>0, s=m,

where the 1, satisfy (8), then:

1. T(ocabpg,m) = T(aab,u) + C(pq,u,m),

v m
2. C(pq,u,m) ” ztps"' z’q-"

S=u s=v

3. T(obpag,m) = T(ab,u) + C(paq,u,m), and

4. Clpagum) = Tty + toy + Tty

S=u Smy

Hence,
T(oabpg,m) — T(cbpag,m) = T(cab,u) ~ T(ab,u) —t,, >0, Q.E.D.

One can generate the following dominance conditions that are independent of presequence
o, and involve elements a,be/ only:

CONDITION 1V [16]: C(ab,u,v) < C(ba,u,v), ¥ 1< u < v < m, eliminates sequences
O e

PROOF: Foranyo,7m C I, o N m = ¢,
T(ocabm,m) = Kmax [T(o,u) + C(ab,u,v) + C(w,v,m)], and

ugv<m

T(obam,m) = l<m(axs [T(o,u) + C(ba,u,v) + C(w,v,m)].

Hence Condition IV => [T (cabw,m) < T(obaw,m)], Q.E.D.

Condition IV can be verified in the following manner ( see Ref. [16]): Consider a flow-
shop problem where machines M\ M,, ..., M, pass through jobs a and b in order ab. If
MM, ..., M, is the optimal sequence obtained by Johnson’s method, then Condition IV
holds, and we eliminate sequences ...ab... . If M, M,_,, ..., M, is the optimal
sequence, then we eliminate sequences . . . ba . . . (Then Condition IV’ holds — see Remark
6).

CONDITION V: C(abku) — C(bku) < t,, V1< k <u <v<m, eliminates
sequences ... b...a....

PROOF: Consider dominance condition II. Then
T(oabu) — T(obu) = max [T(o,k) + C(abk,u)]l — max [T(c.k) + C(bku,)]
1€k<u 1<k<u

£ max [Clabku) — C(bku)l.
1<k<u




PERMUTATION FLOW-SHOP THEORY 567

Hence V => T'(cab,u) — T(obu) < t,], Q.E.D.

Condition V can be rewritten in the following form:

W w=—1
max | Y, — Yip

<t
kSw<u s=k s=k

avr

which means that the total waiting time of item & for sequence ab processed on machines
M,, ..., M, does not exceed ¢,,.

REMARK 6: According to Ref. [13], pp. 1253-1254, one may arrange the machines and
the items (i.e., the rows and columns of matrix [#,]) in a reversed order and find symmetrical
dominance conditions.

Applying this approach to V we get

CONDITION V"

w w+l
fax Itos— Dlos| Sty VISWEKk<SKvEm,
<w<gvy

§=y S=y

which also eliminates sequences ...b...a. ... .
Thus sequences ...5...a ... are removed whenever V or V'is met.
REMARK 7: Sequences b ... can be eliminated if Conditions II (o = ¢) or III' hold.

All dominance conditions that involve a and b only (this includes II and III for c=¢) may
improve the efficiency of the solution process, since they do not require excessive computa-
tions, and their verification may significantly reduce the number of branches.

We offer the following practical suggestions:

® Check the dominance conditions in the following order: (1) IV, IV, ) IL, II' (o =
¢); (3) V, V'. Condition V (V') should not be checked if IV (IV’) or II (II') does not hold.*

® The choice of a "forward" or "backward" procedure (See Remark 6) should depend on

whether the number of sequences b... removed by Condition ';'ll exceeds the number of
sequences ...a removed by Condition II'. :

® Prior to the branch-and-bound-solution procedure, find an initial solution P using
Johnson’s Method (as in Case b, Section 2).

Determine T(P,m) and t(P) the completion time of sequence P of the two-machine AB
problem. If

n=1- m=1
T(P,m) = t(P) - )'_" b g

rm) $=2

then Pis an optimal solution (see Ref. [15]).

*Since Condition V is stronger than either IV or Il while V' is stronger than either IV' or II'.

R P -
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9. LOWER BOUNDS

Reference [6] generates lower bounds based on the bottleneck machine and non-
bottleneck machine concept. Consider a permutation P = ow. Without loss of generality, we

may assume o = 1,2,..., k 0 < k € n—2. Let [n] be a set of all (n—k)! permutations of
elements k + 1, k + 2, ..., n. In view of (6) and (7),
T(om.m) = max [T(o,w)+ C(m,wm)] > max [T(o.w)+ min C(w,wm)].
ISwsm <wm melm]

Define [y,] as a set of all segments of the same type that connect end cells (k+1, w)
and (n,m). Observe that [y,] is a single element segment if vy, is a RD, DR, or D type (y, is
always a D type).

Assume that the optimal sequence for the respective type (see Section 2) is
m,=k+1,..., n. Then

5 : df
min C(w,w,m) > max_ ¥, t =K,

melmw ¥ wely,] (rs)ey,
Hence, the lower bound LB(c) for all possible permutations o -.. is
) LB(s) = max_ [T(o,w) + K]
k+1<wsm

If o = ¢ (k= 0) then (9) provides a lower bound for T(P,m).

EXAMPLES:
1. Let y, is a RD segment. Then (see Case a)

m~1 n ; m—1 n
Ky= Sti+ Ttm= min | Tt + 3Tt

s=w r=k+1 K+ISr<n (oo r=k+1

2. If y sub w is a RDR segment then (see Case b')

h=1 n m
K,= max | Tti+ X ta+ Xt
wEhEm |y r=k+1 s=h+1 4

where

h—1 n m h=1 n
ztis + z ty + 2 Ljs = Tir: z‘ps + z Ly + 2 ’qs]'

s=w r=k+1 s=h+1 s=w re=k+1 s=h+1

k+1 € p, g £ n

3. Assume that y, is a DRD type. According to Case b, the optimal solution =, of the AB
problem is k+1, ..., n.

m—1 n
K,= max t tw ¥ X tos + Llm|-
k+1€9<n | k41 s=w+l r=q
|
Observe that K, = t(m,) ~ Y t, where t(m,) is the (minimum) processing time of
s=w+l

sequence m, of the two machine AB problem. Consequently,

smw4+l

LB(o) = max [T(a'.w) + t(m,) - Mil t,,].
k+l€wgn
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Define [y,] as a set of all segments of the same type that connect end cells (k + 1, w)
and (n,m). Observe that [y,] is a single element segment if v, is a RD, DR, or D type (y,, is
always a D type).

Assume that the optimal sequence for the respective type (see Section 2) is
w,=k+1,...,n. Then

. dr
min C(m,w,m) > max Y t =K,
welw] yoelr,) (rs)ey,,

Hence, the lower bound LB(o) for all possible permutations o ... is
9) ; LB(o) = max [T(o,w) + K,].

k+<wsm

If o = ¢ (k= 0) then (9) provides a lower bound for T(P,m).

EXAMPLES:
1. Let y, is a RD segment. Then (see Case a)

m—1 n <
Ke= Yti+ Y tpm= mm 21 + 2 Ll
s=w r=k+1 k+igrsn | 1, r=k+1
2. If y sub w is a RDR segment then (see Case b’)
K, = Jmax 2:,, + 2 ty + 2 s
s=w rek+1 s=h+1
where
2!,, + z ty + 2 t = mm 2!,,, + z th+ X t,,s].
s=w re=k+1 s=h+1 S=w r=k+1 s-h+l
k+1 < p, q < n

3. Assume that y, is a DRD type. According to Case b, the optimal solution 7, of the AB
problem is k+1, ..., n.

m—1 n
K, = max t Lyt Xt Thm|-

k+1€q<n | uiy s=w+l r=gq
~1

n
Observe that K, = t(w,) — ¥ Y 1, where t(w,) is the (minimum) processing time of
rek+1 s=w+l
sequence =, of the two machine AB problem. Consequently,

n m~1
LB(o) = (max_ [T(o,w) + t(mw,) - '-El S_?ﬂt,,].

Define LB, as LB(co) where x indicates the type of v,. In view of Remark 2 and the definition
of K,, the following inequalities hold for any o:

max(LB,,LB,) < min(LB,,LB,),
max(LB,,LB,) € min(LB,LB.), and}. (10)
max(LB.,LB.) € LB,.
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ABSTRACT

The 0-1 multiple-knapsack problem is an extension of the well-known 0-1
knapsack problem. It is a problem of assigning m objects, each having a value
and a weight, to n knapsacks in such a way that the total weight in each knap-
sack is less than its capacity limit and the total value in the knapsacks is maxim-
ized.

A branch-and-bound algorithm for solving the problem is developed and
tested. Branching rules that avoid the search of redundant partial solutions are
used in the algorithm. Various bounding techniques, including Lagrangean and
surrogate relaxations, are investigated and compared.

1. INTRODUCTION

The 0-1 knapsack problem is a familiar one in operations research. In its simplest form,
the problem is to find the most desirable set of objects to place in a single container of given
capacity. Eilon and Christofides [4] describe a series of generalizations to the 0-1 knapsack
problem, each of which they define as a type of 0-1 loading problem. The type of 0-1 loading
problem we address in this paper may be formulated as follows:

o (P)maximize z = ¥ ¥ ¢x,

2) subject ¥ w,x;, < b, for all j,
(3) Y x,; < 1 forall i,

j
4) x; = 0,1 for all i,j,

where ¢, and w, represent the value and weight, respectively, of each of m objects and b,
represents the capacity constraint on each of n containers. Our objective is to choose objects
for placement into containers so as to maximize the total value of the objects chosen without
violating any of the capacity constraints b, We assume that the objects are indexed such that
ci/wy 2 ¢)/wy 2 ... 2 cu/w,. We define this particular type of 0-1 loading problem as the
0-1 multiple-knapsack problem.
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A great deal of research has been done on various forms and generalizations of the 0-1
knapsack problem (see Salkin and de Kluyver [18] for a survey of the knapsack problem and
related problems). Little work has been done on (P), however. Eilon and Christofides discuss
the application of problem forms such as (P) but do not suggest a solution. In a more recent
paper, Ingargiola and Korsh [15] describe a series of rules useful for limiting the search for
optimality, though little computational experience is given to indicate the effectiveness of these
rules.

In this paper, we will present a branch-and-bound procedure for solving (P). Emphasis is
on an empirical computational study of various new bounding techniques, including Lagrangean
relaxation and surrogate relaxation. Section 2 discusses the relaxations and the solution of their
multipliers. Section 3 presents the algorithm in detail. After a general description, two subsec-
tions discuss more difficult parts of the algorithm. Section 4 presents computational results that
indicate the relative efficiency of each of the relaxation procedures presented in Section 2.

2. RELAXATIONS OF THE MULTIPLE-KNAPSACK PROBLEM

In this section we discuss two relaxation methods found to be useful in providing tight
bounds for discrete optimization problems, the Lagrangean and the surrogate relaxations.

We define the Lagrangean rélaxation of (P) relative to a nonnegative vector A=(1,) to be

(5) (PR) maximize ¥ ¥ c¢x;— X A (Y x;—1)
PR i J
= F(c,=A) Txy+ ZA,
: ; 7 i
6) subject to Y, w; x,;< b, for all j,
) x;; = 0,1 for all i,j.

An important feature of the relaxed problem (PR,) is that, once values of A = (A are found,
it decomposes into a collection of single-knapsack problems, one for each j. Ross and Soland
[17] used a similar approach to solve the generalized problem.

Another potentially useful relaxation of (P) is surrogate relaxation. Unlike the
Lagrangean solution strategy, which absorbs a set of constraints into the objective function, this
strategy replaces the original set of constraints by a new one called a surrogate constraint. The
concept and the applicability of the surrogate procedure were introduced by Glover [10], [11],
and useful refinements of the procedure were suggested by Balas [2], and Geoffrion [6]. Addi-
tional work in this area has been presented by Greenberg (12] and Greenberg and Pierskalla
{13], among others.

The surrogate relaxation of (P) can be defined as
(8) (PR, maximize ¥, Y cx,

1

i
9) subject to 2 LD S 21r,b,_

P aid i
(10 Y x; <1, forall i
7
(11) x,; = 0,1 for all i,j.

————————eeeee g — — Lt
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Surrogate relaxation converts problem (P) into a single-knapsack problem. This can be
observed if we replace ¥ x,; with y, in (8) through (10), thus reducing (PR ) to
/

(12) (PR,) maximize Ec,y,

(13) subject to 2 Ywwy, < Ym b,
, J
(14) y; =0,1 for all .

It has been pointed out (Geoffrion [7], Greenberg and Pierskalla [13]) that such relaxa-
tions can provide a bound closer to the optimal value of the integer solution than does the
linear programming relaxation. The tightness of the bound clearly depends on the choice of the
multipliers; i.e., A for (PR,) and = for (PR,). One suitable choice is to set them equal to the
optimal dual multipliers of the continuous (linear programming) problem of (P). We see in the
following paragraphs that these dual multipliers are easily found.

Let (P) denote the continuous relaxation of (P) by replacing (4).with 1 > x,;, > 0 for all

i, j. An optimal solution to (P) can be readily found because (P) contains the properties that

Dantzig [3] identified in the 0-1 single-knapsack problem. Let (x,,) denote optimal solution to

(P). Since the objects are ordered such that ¢,/w;>cy/w,>. .. >c,/w, , we obtain the fol-
lowing results for (x,):

1 ifi <t

(16) Y x,;= [Zb— ] /w, if i =1

J S igr-1
ifir >t

where ¢ is the smallest object index such that

a7n 2w>zb

i<t

_Let (X)) and ( 7 ;) be, respectively, the optimal dual multipliers of constraints (2) and (3)
in (P). By the complementary slackness theorem

5, c—wic/w) if i<t
a8 x=1lo  irize,
and

(19) 7, =c/w,forall j.

The term (PRjy) denotes the Lagrangean problem when A = (X, is used as the multi-
plier vector. As noted before, (PR;) decomposes into a series of single-knapsack problems, one
for each j. Similarly, when (7)) are used in the surrogate problem (PR,) to obtain (PR_), a
single-knapsack problem is defined as

(200 (PRmax 3 e

21 subjectto ¥ wy, < b,
i J

(22) yi=20,1 for all .
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Although other multipliers may provide better bounds than X and w, we feel that, since X
and 7 are so easy to compute, the extra computional effort required to find other muitipliers
would overshadow the savings realized. It is important to note that the bounds derived from
(PR;) or (PR -) are always better than or equal to the bounds from linear programming relaxa-
tion.

3. The Branch-and-Bound Algorithm

The essential steps of our algorithm are closely related to those developed for the 0-1
single-knapsack problem by Ahrens and Finke [1] among others [5,16]. The general form of
these algorithms can best be described as being of a "branch and exclude" type which succes-
sively determines whether or not an object is to be in the knapsack. The presence of multiple
knapsacks in our problem demands a further decision: To what knapsack is the object to be
assigned next?

In this paper, we construct successively higher levels of the branch-and-bound tree either
by assigning an object to a knapsack or by excluding that object from all knapsacks. Any
chosen level of our branch-and-bound tree, therefore, represents the assignment of some
objects to the knapsacks and.the exclusion of some other objects from all knapsacks. For sim-
plicity, assume that the excluded objects have been assigned to the (n+1) ¥ (dummy) knapsack.
Let F denote the index set of the objects that have not been assigned. When F=¢, we have
found a feasible solution and the corresponding objective value z, which can then be compared
to the incumbent solution value z .

n+1
Define S to be the index set of the objects that have been assigned: § = {i| ¥ x, = l].
i =t
If M is the index set of all objects, then SUF = M and SNF = ¢. The cardinality of set S
thus coincides with the level of the branching tree. To avoid excessive notation, we simply
note that if S #= ¢, then (P) and its relaxed problems (PR,) and (PR,) are reduced to prob-
lems with respect to objects in F only.

A general description of the steps of our algorithm is as follows:
STEP 1 (Initialization): Set z = —o0, § =0, F = M. Let tree-level index k = 1.

STEP 2 (Bounding): Solve the relaxed problem (PRjy) or (PR.) with respect to F. Com-
pute the value of such solution, 2, by utilizing the original objective function (1). If z;, < 2%
go to Step 5. If the solution is feasible to (P), go to Step 4; otherwise, go to Step 3.

STEP 3 (Branching): Select an object i/ and assign the object to one of the knapsacks
(including the dummy knapsack). Record the value of the objects in the knapsacks (excluding
the dummy). If all objects have been assigned, go to Step 4, otherwise update S,F, and k and
g0 to Step 3.

STEP 4: Update z*and its corresponding solution. Go to Step 5.

STEP 5: (Backtracking): Find the smallest level k such that Ekosz'. Denote the level
preceding kg as k_, (i.e., k_, = ky—1), and denote the corresponding object index in S as iy .
If k_;<0, terminate the procedure, otherwise set k = k_, and free all indices in S following
Iy Finally, assign object ik toa knapsack that is different from the knapsacks to which it has
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0-1 MULTIPLE KNAPSACK PROBLEMS 575

previously been assigned and go to Step 2. If object ix_, has been previously assigned to each
of the n+1 boxes, however, set Ek_l = —oco and go to Step S.

Detailed descriptions of steps 2,3, and 5 above are provided in the following two
subsections.

3a: Solving the relaxed problems (Step 2)

Both the Lagrangean relaxation and the surrogate relaxation reduce the original problem

(P) to single-knapsack problems. Our single-knapsack algorithm is adopted from program g of
Ahrens and Finke [1]. The algorithm is easy to use and has performed satisfactorily.

A few rules were added to the single-knapsack algorithm to increase efficiency. At a given
level of our branching tree, some of the knapsacks have been assigned objects. For each knap-
sack j, let f; be its unassigned capacity, that is

(23)  f;=b~3 wux, for all j.
€S

RULE 1: Knapsack jis deleted from (PR,) and (PR,) if f; < mi;lw,, j=1, ..,n
RULE 2: Object i is deleted from (PR,) if w; > maxf;ieF
J

RULE 3: For each single knapsack j in (PR,), object i is deleted from consideration if
w,>f;, i€F.

We have found such simple rules to be very effective in reducing the amount of computa-
tion.

3b. Assigning objects to knapsacks (Steps 3 and 5)

In considering Steps 3 and 5, we must make two important decisions: (1) which object to
choose for branching (Step 3) and (2) to which knapsack should an object be assigned (Steps 3
and §).

The branching object we choose depends upon the type of relaxation employed. In the
case of Lagrangean relaxation, we choose that object in F which appears in the most single-
knapsack solutions involved in calculating (PR;). In the event of ties, the lowest-indexed
object in Fis chosen. This choice of branching object has two advantages. First, it has the abil-
ity to change the most-violated constraint in (3) of the original problem into a satisfied con-
straint. Second, it will generally generate a tighter upper bound for use at the next level of the
branching tree.

Since the surrogate relaxation does not solve a series of single-knapsack problems to cal-
culate a bound, the object in F which we choose to branch on is simply the lowest-indexed one.
The object chosen by this rule represents the object that has the highest value-to-weight ratio
among objects not yet assigned and thus has the highest a priori chance of being in the optimal
solution of (P).
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When considering the assignment of a chosen object to a knapsack, we use several rules
developed by Hung and Brown [14) for this type of assignment. The rules are useful to reduce
the number of knapsacks an object may be assigned to.

Assume that objects of the same weight belong to a class and that knapsacks of the same
capacity belong to a class. The order of objects in a class is determined by the order in which
they are chosen as branching objects. (This ordering does not change the indexing determined
by value-to-weight ratios at the beginning of the algorithm.) However, we assume that knap-
sacks are indexed in descending order of their capacity, i.e., b,2b,2>... 2b,. Therefore,
knapsacks of the same capacity class are grouped together. For simplicity of expression, by a
"preceding object" to object i we mean an object in the same class as object / whose order in the
class precedes object i.

The rules for assigning an object i to knapsacks are

RULE 4: Object i can be assigned to knapsack j if either (a) object i/ is the first object in
its class to be considered or (b) the preceding object was assigned to a knapsack whose index is
not greater than j.

RULE §: Object i can be assigned to knapsack j if either (a) jis the smallest index in its
class or (b) knapsack j—1 is not empty.

RULE 6: Object i can be assigned to knapsack j if w;<f;, where f; is the remaining capa-
city of knapsack j as defined in (21).

For ease of bookkeeping and backtracking, we define u, to be an index set of all knap-
sacks to which object / can be assigned. Note that if an object cannot be assigned to any knap-
sack j, 1 €j<n, according to Rules 4 through 6 we let u, contain the index of the dummy
knapsack only. Once u, is determined, we assign object / to the knapsack which has the smal-
lest index in u, and then remove the index from u, When we return to object / during the
backtracking step (Step 5), we simply reassign object i/ to the lowest-indexed knapsack remain-
ing in &,

For a detailed discussion of the branching rules 4 through 6, the reader is referred to
Hung and Brown [14).

4. COMPUTATIONAL EXPERIENCE

The algorithm as described has been programmed in FORTRAN V code and run on a
UNIVAC 1108. We obtained series of problems consisting of up to 200 objects and up to six
boxes by generating values and weights independently from a uniform distribution in the inter-
val (10,100]. Box capacities were then generated in a similar manner, except that the interval
b, €b;, b, was used, where b, = [0.4(Zw, /n)] and b, = [0.6(Zw, /n)]*. The final box capa-
city generated, b,, was chosen such that occupancy ratio = £b, /Ew, = 0.5. If b, < min w, or

m’x b, < max w, the set of generated box capacities was discarded and a new set was gen-
!
erated. The occupzi.cy vatio of 0.5 was used for all problems attempted.

Tables 1 and 2 indicate computation times for our algorithm, with first the surrogate
relaxation (Table 1) then the Lagrangean relaxation (Table 2), to determine upper bounds on

A v e e T
*The brackets [ ] denote the greatest integer less than the enclosed quantity.
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TABLE 1 — Surrogate Relaxation

Two Boxes Three Boxes Four Boxes
of Complete | Solution Time (S) | Complete Solution Time (S} | Complete | Solution Time (S) W
Objects | Soluti Soluti Soluti

High | Low | Av. High | Low | Av. High | Low | Av.
20 10 0.2 0.01 | 0.1 10 4.1 | 0.01 0.4 10 336 | 03 9.6
30 10 0.20 | 0.01 | 0.1 10 54 [ 003 | 08 10 %9 1 03 | 223
40 10 0.6 0.04 | 0.2 10 525 | 04 19.6 1 - - -
60 10 20 0.1 0.7 1 - - - 1 - - -
80 3 - =i 0 - — = 0 - = i =
100 0 - - - 0 - - - 0 - - -

TABLE 2 — Lagrangean Relaxation
Two Boxes Three Boxes Four Boxes
of Complete | Solution Time (S) | Complete Solution Time (S) | Complete | Solution Time (S)
Objects | Soluti Soluti Soluti

High | Low | Av. High | Low | Av. High | Low | Av.
20 10 1.5 | 0.1 | 04 10 351 | 0.2 4.0 10 90.1 | 08 | 186
30 10 56 | 03 ([ 1.1 10 37| 03 09 10 833 | 04 | 109
40 10 51| 08 | 23 10 802 | 0.7 | 16.1 4 - - -
60 10 74 | 1.0 | 28 10 38.1 1.7 6.8 7 - - -
80 10 210 | 22 | 7.2 10 142 | 2.7 6.6 5 - - -
100 10 110 | 39 | 65 10 9.7 | 43 7.1 4 - - -

partial solutions. The sets of rules defined in Sections 3a and 3b were used in each case. For
each object/box combination a total of ten problems was attempted, and the total number of
complete solutions obtained within a maximum of 250-s running time, excluding input/output
time, is specified. For those problem sets requiring < 250-s for completion of ten problems,
the maximum, minimum, and average solution times are also specified. Due to the method in
which problem sets were generated, each relaxation procedure attempted to solve exactly the
same set of problems.

The results summarized in Tables 1 and 2 indicate that the surrogate relaxation is rela-
tively more efficient when the number of objects and/or boxes is small, but that the Lagrangean
relaxation is vastly superior when one attempts to solve larger problems. Also, our experience,
as shown in Tables 1 and 2, would indicate that, although the number of objects is an important
factor in estimating solution time, the number of boxes has a tremendous influence * A further
indication of the effect of the number of boxes can be shown by the results obtained in the
attempt to solve an additional set of ten problems consisting of 20 objects and six boxes (occu-

pancy ratio = 0.5). The computer ran out of time after having solved only 3 of these prob-
lems.

In an attempt to improve upon the solution times presented in Tables 1 and 2, we solved
a series of problems in which we applied both the surrogate relaxation and the Lagrangean
relaxation for each candidate problem then used the bound having minimum value as a test
against the incumbent. While the number of branches in the branch-and-bound tree was in

general reduced with this method, the results were not significantly better and are not reported
here.

*This should not be surprising, since the number of distinct solutions to (P) can be characterized by (n+1)™. For a
20-object problem, then, the maximum number of solutions, if we use only one box, is 1.04 x 10%, but for six boxes
this number increases to more than 7.9 x 10'°.
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As has been shown in Tables 1 and 2, it becomes increasingly difficult to obtain optimal
answers to (P) when the problem size becomes large. We were, therefore, curious to see how
efficient our Lagrangean relaxation routine would be if we were to require solutions which were
within some small percentage value « of a known upper bound on the optimal solution to (P).
Since each of the initial surrogate and Lagrangean relaxations yields such an upper bound, we
determined to specify a = 0.5% and to run a series of problems generated in the usual manner
but to suspend calculations wher we found a solution value z2R (1-a/100), where R
represents the minimum value associated with the initial surrogate and Lagrangean relaxations.
The results of these calculations are shown in Table 3.

As can be seen from Table 3, our Lagrangean relaxation technique becomes very efficient
when we require only that our solutions lie within some small value of the known upper bound.
These results are very encouraging when they are considered in the light of the obvious
difficulty in obtaining provably optimal solutions to large problems.

TABLE 3 — Lagrangean Relaxation (a = 0.5%)

Two Boxes Four Boxes Six Boxes
of Complete | Solution Time (S) | Complete Solution Time (S) | Complete | Solution Time (S)
Objects | Soluti Soluti Soluti

High | Low | Av. High | Low | Av. High | Low | Av.
50 10 23 1.3 1.6 10 33 1.3 20 10 98.6 14| 154
100 10 45 31 44 10 9.1 44 58 10 13.3 56 13
150 10 14.4 88 | 110 10 16.3 85 | 122 10 209 { 13.1 | 160
200 10 18.2 | 140 | 16.1 10 216 | 187 | 20.1 10 292 | 208 | 230

In comparing our results with previous work, the only other computational experience we
found was that of Ingargiola and Korsh [15] in which they solve a set of ten problems consist-
ing of 15 objects and 6 knapsacks (occupancy ratio = 0.2 ). Their average computation time
for this set of problems was 7 seconds on an IBM 370-155. We were unable to generate ran-
dom problems having the characteristics defined by Ingargiola and Korsh, due to our restriction
that all item weights be less than or equal to the largest box capacity. When we suspended this
restriction, our Lagrangean relaxation procedure required an average of 0.2 seconds per prob-
lem.
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