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ABSTRACT

Performance of a vertical array for estimating multipath signal
parameters and for detecting multipath Gaussian signals is investigated
in this report. By assuming that the multipath signal directions are
known and the number of array elements is larger than the number of paths,
the parameters of the signal from each individual path may be estimated
so that the multipath signal cancellation problem can be minimized. The
performance, in terms of signal-to-noise ratio, of the Maximum Likelihood
Estimate (MLE) for the signal parameters of individual paths is shown to
be independent of the relative signal phases from other paths. But, the
performance does depend upon the angular separation of multipath signal
directions and the length of the array. In the case where some knowledge
about the signal parameters is available, the Maximum A Posteriori Probability
Estimate (MAP) is also considered. The linear relationship between the MLE
and MAP estimates is derived. It is interestinag to point out that the MAP
estimate is unique even if the number of array elements is less than the
number of signal paths.

The optimum array processor, for detecting multipath Gaussian signals
with known arrival angles, has a quadratic structure. In a two-path signal
example, the optimal array has two beamformers pointing in the directions of
two signal paths and has a term which cross-correlates both beamformers,
even when the signals are independent from path to path. The cross-correlated
term takes care of the leakage of signals from paths other than the beamforming
direction through each beamformer. The performance evaluation of the processor
is achieved by the development of a general method called "the eigenvalue

method". This method may be used to find the analytical expressions for the




probability of false alarm (PF) and the probability of detection (PDO for array
detectors implementing a quadratic sufficient statistic. Several examples are
presented to illustrate the use of the eigenvalue method.

The family of Receiver Operating Characteristic (ROC) curves for detecting
multipath Gaussian signals clearly show the difference between the performance
for detecting multipath Gaussian signals and that for detecting multipath
known-waveform signals. The ROC curves for multipath Gaussian signals cases
are not only a function of the array factor and the multipath structure, but
also are non-linear on normal-normal probability paper. It is also shown that
the spatial discriminating capability of array detectors improves performance
at high signal-to-noise ratios. In the performance comparison between optimal
array detectors and an optimal signal array element detector, we found the array
not only increases the output signal-to-noise ratio by k times, where k is the
number of array elements, but also improves PD in the high PF region.

The comparison between performance of an optimal array and a suboptimal -
array is also carried out to give insight regarding the trade-off between
processor complexity and detection performance. In the two-path signal example,
the single beamformer array which points a beam in one of the two signal
directions needs 10 elements to achieve the same performance as an optimal
array with only 4 elements, for SNR=1 (signal-to-noise ratio per element).
Performance of a double beamformer array which has two beamformers pointing
in the directions of two signal paths is evaluated for comparison. These
results show that the performance difference between the double beamformer
and optimal arrays is noticeable only for high signal-to-noise ratios and a
small array aperture. This implies that the cross correlation structure

in the optimal array is not very important if either the array aperture is

(i)




large enough to isolate signal paths or the signal-to-noise ratio is low.
The performance comparisons made in this report give some insight regarding
the trade-off between processor structure complexity and detection performance,

which are major factors to consider in implementing array detectors.
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CHAPTER I  INTRODUCTION

1.1 Underwater Acoustic Transmission

The acoustic sound propagation in an ocean channel is very compli-
cated. The modes of sound propagation depend on the sound velocity
profile of the ﬁnderwater channel. The detailed physics about the
channel characteristics is described in Tolstoy and Clay [1] and Urick
[2]. The sound velocity in the ocean depends on temperature, pressure
and salinity. Several typical velocity profiles are shown in Fig. 1.1
(from Tolstoy and Clay [1]). In general, the temperature at the sea
surface is higher than that in deep water. The water temperature is the
factor that dominates sound speed for the first 1,000 meters in depth.
Beyond that, the pressure becomes the overriding factor. The shape

of the velocity profile determines the multipath structure of the sound

i channel. Fig. 1.2 shows the sound rays associated with a particular
velocity profile. The sound transducer is located at a depth at which
the velocity is minimum. The rays are calculated using a ray tracing
program. By this method we may predict the ray incident angle, the

! transmission loss and the arrival time. Since many other environmental

factors such as a random surface, a time-varying sound velocity profile,

and a random medium are not considered in this method, the results ob-
tained from this method can only be used for rough estimates. In Fig. 1.2
we see different types of propagation. Some rays which do not touch the

surface or bottom are called refracted-refracted (RR) rays. Some rays




which touch the surface are called refracted-surface-reflected (RSR)
rays. Some rays which touch both the surface and the bottom are called
surface-reflected-bottom-reflected (SRBR) rays. The multipath signals
received at the receiver depend on both the depth and the range of the
receiver location. This result has been presented in a paper by

Flanagan, Weinberg and Clark [3].

1.2 Review of Previous Research

Many different approaches have been used to study underwater acoustic
channel characteristics in the past two decades. An important paper by
Steinberg and Birdsall [4] showed that the phase of the received wave-
form in a fixed-system in the straits of Florida varied less than 100°
during intervals of 1/2 - 1 hour and that the multipath structure of the
signal had stability on the order of 5 minutes. Oue to the fact that h
the phase is much more stable than the amplitude, the phase estimates aré
Fourier transformed to find the relationship between the internal waves
and the fluctuation of the phase spectrum [5,6,7]. The discontinuity of
the phase curve which is associated with the deep amplitude fading is
attributed to the signal cancellation of multipath signals [5]. The
fluctuation of signal energy results in a nonstationary confidence inter-
val for the phase estimate. Especially during a deep fade, the phase
information is lost. A key to minimizing this signal cancellation is to
separate the multipaths spatially. This will be discussed in later
chapters.

The multipath structure of the underwater acoustic channel was
investigated by Steinberg and Birdsall [4]. In that experiyent a

pseudo random sequence was sent through the Straits of Florida and the




received signal was matched to the sequence to find the multiple time
arrivals. The temporal separation of different arrivals showed the
existence of multipaths [4]. Dyer [8] examined the signal fluctuations
in the ocean for both multipath and scattering processes and showed that
the multipath propagation dominates the fluctuations. Adams [9] investi-
gated the fluctuations of the transfer function of a random multipath
channel. Both mean and variance of the random transfer function were
calculated for his multipath model.

In order to obtain spatial information about the channel, linear
arrays have been used to process underwater acoustical data [11, 12, 13].
Jobst [10] modelled the number of multipaths as a Poisson distributed
random variable. Using this model the spatial coherence and temporal
coherence are estimated for a horizontal 1ine array. It is shown that
spatial coherence decreases with increasing angle from broad side, with
increasing frequency, with increasing sound speed, and with increasing
vertical arrival angle at the receiver. Williams and Battestin [11] used
a vertical beamformer to isolate a single RSR (refracted-surface-reflected)
path and to investigate the phase coherence time for single and multipath
signals. Urick [12] showed the effect of multipaths on the gain of an
additive vertical array. The phase coherence, in terms of the clipped
correlation coefficient, falls off rapidly with horizontal range of the
source. However, no amplitude stability of a single path was mentioned in
their papers. There are other papers that investigate theoretical signal
processing techniques for arrays. Hinich [14] used match filtering concepts
to formulate a maximum 1ikelihood estimate of source depth using a vertfca]

array. The eigenfunctions of the underwater wave quide are used to match




the array to the received signal. Bucker [15] used a similar method to

locate sound sources in shallow water.

1.3 Approach of This Report

The relationship between the error in the phase estimates and the
signal-to-noise ratio is presented in Chapter II. It is useful to have
either the variance of the estimate or a confidence interval along with
the phase estimate so that we may judge the goodness of the estimated
phase. We will show that multipath signal cancellation can contribute to
the loss of signal-to-noise ratio during a deep fade and therefore we would
like to investigate the signal along each path. To distinguish multipath
signals spatially, a vertical array is used in Chapters III and IV. The
resolved path technique is introduced in Chapter III for estimating the

signal waveform of each path. Both the signal amplitude and phase are

estimated simultaneously. The signal waveform is assumed fixed but unknown.

The maximum l1ikelihood estimate of the signal waveform is shown to be an
unbiased Tinear minimum mean square error estimate. In Chapter IV, each
single-path signal is assumed Gaussian with known variance. Both maximum
a posteriori probability estimates of the multipath signals and the likeli-
hood ratio test are formulated. A beamforming structure in the optimal
detector will be pointed out in Chapter IV. The detection performance of
optimal array detectors is evaluated in Chapter V by using an "eigenvalue
method". The probability density function of the sufficient statistic is
shown to be dependent on a set of eigenvalues. The general form of the
probability density function is derived analytically. The probability of

detection and the probability of false alarm are also obtained in closed




form. The eigenvalue method can also be applied to evaluate the detection
performance of suboptimal detectors. The performances of suboptimal pro-
cessors, such «s a single beamformer and double t2amformers, are compared
with that of the optimal processor. The result of this comparison will

clearly show the trade-off between the complexity of processor structure

and the detection performance.




CHAPTER 11
PHASE ESTIMATION PERFORMANCE OF A SINGLE HYDROPHONE

The time samples of signal phase estimates have been used for investi-
gating the environmental factors in the underwater acoustic channel
[4,5,6,7,11,12]. However, the performance of the phase estimate usually
is not presented along with the estimate. Some misleading conclusions
may be drawn by examining only the phase estimate, especially in a deep
fading situation. A typical piece of underwater data is presented in
Figure 2.1 (from Steinberg and Birdsall [4]) to show both the amplitude

and phase of the received waveform simultaneously. During deep fades,

when the detector output is less than -30dBub, the phase angles have
180° or 90° jumps. The deep fades may be attributed to multipath signal -

cancellation. Since the signal in that experiment is a single frequency

-

sine wave, phasor diagrams are shown in Figure 2.2. A noise free signal 4

phasor diagram shown in Figure 2.2(a) demonstrates signal cancellation

in a four-path channel. If signal component 54 rotates 150°, then the f
magnitude of the resulting signal phase changes a lot. The resultant E
signal phasor in Figure 2.2(b) is much longer than that in Figure 2.2(a).

The fluctuation of signal energy does affect the performance of the
signal phase estimate. Thomas [17] and Cederquist [18] investigated the

error probability density function of the phase estimate as a function

of signal-to-noise ratio.
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and x is the error of the phase estimate.

The effect of signal-to-noise ratio on the phase estimate can also be
demonstrated graphically in Figure 2.3. Suppose there are two signal
phasors, one with amplitude ars the other with amplitude a5, and both

are corrupted by an additive noise phasor n. The resulting phase estimate
error of the phasor a, is ) and that of the phasor 3, is 7% In Figure
2.3, we can see that ¥y is larger than &1. As shown in Figure 2.4, the
density function peaks up as the signal-to-noise ratio increases.

Cederquist [18] also calculated the limits for a 90% confidence level [19].

The curves shown in Figure 2.5 are from Cederquist [18]. We can see that
at low signal-to-noise ratios such as -10dB, the 90% confidence interval
covers +160°. This implies the uncertainty of the phase estimate is very
high for low signal-to-noise ratios.

In a single hydrophone case, the receiver cannot distinguish signals

with different incident angles. The corresponding signal-to-noise ratio

(SNR) depends on the relative phases at the hydrophone of the different

multipath signals as shown in the following equation:

Single hydrophone:

M
Z amej em
' m=1 l

€

In

SNR =

!
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where ay is the amplitude of the mth path signal, and
8 is the phase of the mth path signal.

In the underwater acoustic channel, the variation of water temperature
due to tides and internal waves changes the acoustic sound transmission.
The phase of each path varies widely for small variations in the sound
velocity profile [1]. A detector output curve shown in Figure 2.1 shows
the fluctuation of the amplitude of signal plus noise. If we assume the
output signal-to-noise ratio fluctuates as much as the detector output
shown in Figure 2.1, then it is meaningful to draw confidence intervals
of the phase estimate along with the phase output curve shown in Figure
2.1. Clearly, we will have a nonstationary confidence interval. It is
a reasonable practice to consider only the portion of the phase curve in

which the signal-to-noise ratio is above a certain level. Of course,

this will introduce new problems in dealing with data discontinuities

where the signal-to-noise ratio is not high enough.

Al alternative method of dealing with the signal cancellation problem
is to isolate single paths by using a vertical array. In Chapters III and
IV, methods to resolve multipaths spatially are investigated with the hope
that the resolved paths will be found to be more stable and that other infor-

mation on channel characteristics will be obtained.




CHAPTER III
NON-RANDOM PARAMETER ESTIMATION USING A VERTICAL ARRAY

3.1 Problem Geometry and Notations

The problem geometry of a vertical array in a multipath channel
is shown in Figure 3.1. The time delay between adjacent elements
associated with the mth path, Tm? depends on the vertical incident
angle O Since the incident angles of multipath signals are different,
the time delays of multipath signals are different from path to path.
The time delay associated with the mth path can be expressed as:

D cos %m

Ty P e (3-1)

where D is the separation of adjacent elements,
C is the sound velocity,

O is the vertical incident angle of the mth ray.

Throughout this report the incident angles of the multipaths are assumed

known. In a practical situation, these incident angles may be obtained

L3

through a ray tracing method.

We use M to denote the number of paths, and K to denofe the number
of array elements. We consider a single frequency sound source in a
multipath channel. The received data is Fourier transformed to obtain a

phasor of a signal frequency. The phasors for a time-delayed waveform

are well-known to be the original phasors multiplied by a complex phase




10
shift e™3“T. When the signal is present, the received data is the summa-
tion of multipath signals and noise. The complex vector R represents the
phasors received by array elements and S represents the phasors of multi-

path signals.

|7
"

AS+n (3-2)
(R]’RZ’...'RK)

R. : phasor of received data at the ith element.

where R

(SI’SZ’...’SM)

S_ : phasor of signal from the mth path.

(=}
1]

(nl’"2’.°°’nK)

n. : Gaussian noise received at the ith element.

A = (!qs!es"'a!n) a.k X M matrix
V. = (1, expljory], expljur 21,2+, expliut(K-1)])

is the pointing vector of the mth path.

A four path noise-free phasor diagram is shown in Figure 3.2(a) to

illustrate the equation above. At the ith element, the phasor of the mth

J

path, Sm, is equal to a_e em where an is the amplitude and O is the

m
phase of the mth-path signal. The signal phasors received at the (i+1)th

element is related to that received at the ith element by the following

equation.

Sﬁ o exp[jmrm]

Rl
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where Sﬁ is the signal phasor from the mth path received at the (i+1)th
element and Sm is the signal phasor from the mth path received at the

ith element. The time delay ™n contributes the phase shift wrt In

n°
Figure 3.2(b) every signal phasor in Figure 3.2(a) is rotated by Wty
degrees. The resultant noise-free phasor Ri+1 turns out to be larger

than Ri' This indicates that although one element has a potential signal
cancellation problem, other elements still receive some signal energy, if
the vertical angular separation between paths are large enough or the array

is long enough to resolve paths.

3.2 Maximum Likelihood Estimate (MLE)

When the signal waveform is fixed but unknown, the maximum 1ikelihood
estimate can be used to estimate the received multipath signals [20].
Schweppe [21] developed the "decoupled-beam" data processor for estimating
signal waveforms from multiple-signal sources. The maximum 1ikelihood
estimate (MLE) used in his paper is equivalent to the Linear Minimum Mean
Square Error Estimate (LMSE). The technique can be used for estimating the
multipath signals. The MLE is derived in the following equations by maximizing

the conditional likelihood ratio, A(R|S).

MRIS) = expl-(R-A $)*Q"' (R-A §) + R*Q"'R] (3-3)
where Q=Eln g_*] = anL (3-4)
Q'-ts1 (3-5)

%

T
§- = [51, Sz'...’ SM]

and Sm is the phasor of mth path signal.




A(R|S) is also called the likelihood function. The likelihood function is
maximized by minimizing the first term of the exponent in equation (3-3).
Héﬁce. the maximum likelihood estimate of the signal can be found from the

following equation:
R-AS=0 (3-6)

If the dimensionality K of vector R is larger or equal to the dimension-
ality M of the vector S, then we may solve for the maximum 1ikelihood esti-
mate of the received multipath signal. In other words, if the number of
array elements is no less than the number of multipaths, then it is possible
to resolve every path and to find values of the MLE for signals arriving
along eachﬁpath. Otherwise, if the number of array elements is less than
the number of paths, then the MLE estimate is indefinite. (i.e., we may
have an infinite number of solutions.) In general, the Maximum Likelihood

~

Estimate of the received multipath signals, §MLE’ can be expressed as:

Swe = WDTAR  for ko (3-7)

Since Afﬁ is a K by K matrix and the rank of matrix A is not greater than
min(K,M) the inverse matrix of Afﬁ does not exist if the rank of Afﬂ_is
less than K. This implies that M cannot be less than K. If A is a square
matrix, then the maximum likelihood estimate for the received multipath

signals is quite simple.

R for K=M (3-8)

it mikibeim. PSR p—— Msnn

S
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The mean and the covariance matrix of éHLE can be derived for K>M.

B8y ] = ELATA) AR (3-9)
RV (3-10)
=s

coviSy gl = ELGp9) -9 ] (3-11)
= (A" Teln 0" (3-12)
= @ns 2 (3-13)

A K=2, M=2 example is demonstrated to show the operation of the
estimator and its performance. The matrices A and Afl are shown in the

following equations.

1 1
: A= (3-14)
eJuTy eduty
_1 3 eJuT2 -
- 9Ty 30Ty | gdury 1 o

Since the matrix A in this example is a square matrix, the MLE can be
expressed as:
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)
Sy e = e 3-16)
we™| g | TRAR ¢
2
Juwt o
1 e 2 Ry = Ry ( )
= 3-17
Jut Jwt ;
et 2-e"1 -eduTy Ry + R

In orderAto see the physical meaning of the matrix operation,
consider a noise-free case. When n=0, the signal phasor received at
the first element, R1. is equal to the sum of the phasors, 51 and 52'
Similarly, R2 is equal to the sum of the phasors Si and Sé. where
SR 371 and S5 =S, ¢T3 The noise-free phasor diagrams of §1
and §2 are shown in Figure 3.3. The phasor components of R1 and R2 are
also shown in Figure 3. We notice that the resulting phasor R.I may
be very small. In Figure 3.3(c), the phasor diagram of the maximum 1ikeli-
hood estimate of the signal from the first path, §1, shows the complete
cancellation of the signals from the second path. Similarly, the phasor
diagram of §2 shows the complete cancellation of the signals from the
first path. This operation is called "infinite sidelobe rejection" by
Schweppe [21].

The mean and the variance of the estimate are usually used for
estimation performance measurements. It is quite easy to show that the

maximum 1ikelihood estimate is an unbiased estimate.

El Sy el = €D AR (3-18)
= A TA S + (AR (3-19)
=S (3‘20)




e e—
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Var($,] = € (§; - 5, (3-21)

1
T‘ejw'rz A eij'lF [Var(Ry) + var(RZ)](3_22)

Zonz
QIWTy _ GJuTy [2 (3-23)

Similarly, we may show that:
varf$,] = (5, - 5% (3-24)
= Var{ §;] (3-25) -

From Chapter II, we know that the phase angle estimate depends on the
signal-to-noise ratio. It is interesting to compare the performance of
the signal phase estimate of the resolved path method with that of the
single hydrophone method. The expressions for the signal-to-noise ratios

of these two methods are shown below,

2| jwt Jutq (2
ai e 2 - 1
Resolved path (MLE) : SNR = 5 for i=1,2 (3-26)

Zdn

s
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a]e391 + azejez 2
Single hydrophone: SNR = 5 (3-27)

%

where a; is the signal amplitude of the ith signal path,
and 8, is the signal phase of the ith signal path.

In the single hydrophone case, the signal-to-noise ratio goes to zero
even for multipath signals with large amplitudes if the signal phases, 8
and 85 are 180° out of phase and the signal amplitudes are identical.
This signal-to-noise degradation may be minimized by employing the spatial
discriminating capability of a vertical array. As shown in equation (3-26)
the signal-to-noise ratio of the resolved path maximum 1ikelihood estimate
is a function of time delays Q3 and Tys where the time delays are proportional
to the array element spacing. Since both 3 and T depend on the separation
of array elements, proper control of the separation of the array elements will
increase the signal-to-noise ratio to its maximum at 2 a%/anz. For a
K-element array the maximum signal-to-noise ratio may reach K a?/onz. From
the discussion above we observe that the signal-to-noise ratio of the resolved
path estimate depends on the spatial resolving power of the array and the
signal-to-noise ratio can be increased by increasing the array aperture. If
the "noise like" fluctuation of the signal amplitude, as shown in the single
hydrophone case [4], is truly due to multipath signal cancellation, then
the resolved path signal estimate should be stable enough to provide additional
signal amplitude information for studying the channel characteristics.

On the other hand, equation (3-27) shows that the signal-to-noise ratio
of the single hydrophone estimate depends highly on the relative phases of
signals from different paths. As shown in Tolstoy and Clay [1], the variation

of signal phase due to the variation of the channe! temperature profile is
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different from path to path. This implies that the summed signal phase
may fluctuate significantly. DOue to the potential signal cancellation,

the signal-to-noise ratio and the confidence interval of the phase estimate
may vary dramatically in the single hydrophone case. Since the fluctuation
of T and Ty which depends on the incident angles of planewave arrivals
are relative stable compared to that of summed signal phases, we may con-
clude that the resolved path method should provide additional information
for studying both the signal amplitude and phase.




CHAPTER IV
ESTIMATION AND DETECTION OF RANDOM MULTIPATH SIGNALS USING A VERTICAL ARRAY

The maximum a posteriori probability estimate (MAP) for each indivi-
dual signal path is presented in this chapter. The relationship between
the maximum 1ikelihood estimate and the maximum a posteriori probability
estimate is also investigated. The optimal array signal detector which
uses the likelihood ratio test will be shown to have a beamformer structure
and cross-correlator terms. Only the structure of the detector will be
discussed in this chapter. The performance of the detector will be presented

in Chapter V.

4.1 Maximum A Posteriori Probability Estimate (MAP)
Suppose the multipath signals are uncorrelated zero-mean Gaussian

random processes. Then we may find the maximum a posteriori probability

estimate (MAP) for the random multipath signals. Assuming we know the
covariance matrix of the received multipath signal vector S, the MAP estimate
can be obtained by maximizing the probability of S given R. The expression

for p(S|R) is shown below.

o

(S,R)

P(SIR) = SRY (4-1)

. P(R[S)p(S)
= _FIRET_ (4-2)
( where

| P(RIS)P(S) = C; expl-(R-A _S_)*Q,-,](_R:A s) - §*§;]§.]

and Qs, gn are the covariance matrices of received

multipath signals and received noises respectively.
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Schweppe [21] has derived the maximum a posteriori probability estimate
for Gaussian signals in uncorrelated Gaussian noise. The maximum a
posteriori probability estimate of the signal, éMAP’ is expressed in

equation (4-4). Unlike the maximum likelihood estimate, §MAP does not

have a K > M restriction.

:LU'N
>
O
™
>
>
+
Q
b=
~nN
(]
—
—
(|}
—
|>
*
1>
~
AWV
=

(4-4)

Although the number of array elements, K, is assumed no less than the
number of paths, M, in this chapter, the expression above is valid
even for K < M. We recall that in the expression for the maximum likeli-
hood estimate, the matrix Afﬁ cannot be inverted if K < M. But, in the
expression for the MAP estimate the inverse of the matrix [ﬁ?§.+ anzgs“]
does exist even faor K < M, because the rank of the matrix is equal to
max(K,M). This is due to the introduction of a priori knowledge, Q.
into the processor. So, even when we do not have enough array elements to
resolve every path, we can combine the a priori knowledge with the observed
data to do a MAP estimate for the Gaussian signal for each path.

Fur the cases where K > M, there is a relationship between the MLE and the
MAP estimator. The expression for §MAP can be rewritten as:

3 200" A. for K > M 5
Sy = [L+ 0 20 T 17T @) TR for ks (4-5)

= [L+ o, AN 95] St (4-6)
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This expression shows clearly how to bring in the a priori knowledge into

the MAP estimator. Since all matrix operations are linear, we may derive

~

§MAP from §MLE by a Tinear transformation for K>M.

4.2 Structure of the Optimal Array Processor for Detecting Multipath
Gaussian Signals in Gaussian Noises

The optimal array detector can be formulated by implementing the

likelihood ratio A(R) which is defined as A(R) = P(RI®1) [20). The

P B.Hg
probability of R, which is a complex random variable given the signal is

present, can be expressed as [22]:

p(RIHy) = n7"(det ;17" exp[-R'Q;'R] (4-7)

: where Q = ERRIH] = AESSIA + Eln n) (4-8)

Similarly, the probability of R given the signal is absent is:

p(RIHg) = 1~idet 01" expl-RQ,'RI (4-9)
where Q= IR R'[Hyl = E[n n'] (4-10)

The 1ikelihood ratio of R is the ratio between equations (4-7) and (4-9).
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det
AR) = 20

shown in the next equation.

Then,

= + ’ s°°°,
G D=y,

T CMRG R Ry

random signals are independent from path to path.

A sufficient statistic, y, which is a monotonic function of A(R), is

(4-11)

(4-12)

To simplify the detector structure, we assume that the multipath

(4-13)

(4-14)

(4-15)

(4-16)
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Whel'e A_ - [_v:l g!z,"',in ] (4"]7)
and °§ is the variance of signal from the mth path.
m

From the structure of g_1 as shown in equation (4-16), we may apply the
well-known matrix inversion lemma M times to find 94']. The lemma [23]

is stated in the following equation.

-1 -1 1 -1 %=l
(B+uu =8 - ——8 uubl (4-18)
(1+uB u)
where u is a vector and B is a square matrix.

A M=2 example is formulated to give more insight into the detector
structure. In the example we assume that the noises are independent from

element to element, so

*

i TR BERDN
Gy = oy Lrog By * °§2 L (4-19)

We let the first two terms in the equation shown above be B,, such that

= 2 i
B8 oﬁ 1* 051 Y1¥; . Then,

2 4
* 051 “n *
B = (2 L+ol w1l I w420
n Ie
1
1+ Ky
a

—
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and
-1 2 2 *. 2 *_ =]
Q' = log L+ 05 Wy + 05 Yo¥p ] (4-21)
= (B + c§2 Yo¥p"17 (4-22)
o;
e Ty v, 87! (4-23)
ot +? Sl - TR
So == =2
After some manipulations, we find:
=1 1 1 * % ( * ) * & * ) *
9 = L- Gy - cuply + el ylipyy + (4 ¥pluYs ] .
o (4-28)
c§ Kag
U
_;I g,
where ¢, = = B n (4-25)
Kag Ko o o % ‘2
2 1 ot I | ;
1+ —=]1 + . % Y
2 = & |
n % %




, (8-26)
2
3 2
E 051 O‘sz
; : o5
an Cq = Eisele (4-27)
3 I(fv2 Kaz az 02
S S S S
1+ —2 s + 21 ¥ 14 24w 42
B iy b
% % %n
o S SR - 3
o G Lo (429
°n
& * * * * *
GGy oty - of (i wly + (g BIvy, ]
: (4-29)

Consequently, the sufficient statistic y = 5*(_(}51 -Ql'l )R can be expressed as:

y = o (R (5 R) + (R (v )=l (159 (R0 R) + (1"xp) (Ryy) (3R]

(4-30)

Rl
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We may call !4*5 a beamformer pointing in the direction of the first path.
Similarly, ngg is a beamformer pointing in the direction of the second
path. The term (gfgq)(gq*g) = ng*glz can be physically realized as a
beamformer pointing in the direction of 2 followed by an envelope
detector. The structure of the optimal array detector is shown in
Figure 4.1 as a combination of beamformers, envelope detectors and cross
correlators. The first and second terms in equation (4-30) measure
the output power of beamformers. The third term is a correction term
which correlates the output of two beamformers. The effect of the third
term on the detection performance will be discussed in Chapter V.

Although we only dealt with a single frequency case in this part, it
is not difficult to extend this result to broadband signals. The difference
between the single frequency and broadband signals cases is that one uses

time delays instead of phase shifts for the broadband signals.




CHAPTER V
PERFORMANCE OF DETECTING MULTIPATH GAUSSIAN SIGNALS IN GAUSSIAN
NOISE WITH A LINEAR ARRAY

A general method called the "Eigenvalue Method" for evaluating per-
formance of array detectors will be introduced in this chapter. The
method is general enough to cover all detectors which employ the quadratic
sufficient statistic (i.e. y=3fg,g, where Q is a hermitian matrix.) The
performance of the optimal detector will be evaluated and compared with
that of conventional suboptimal detectors such as the single beamformer

and mul tibeamformer.

5.1 The "Eigenvalue Method"
Suppose the array signal detector has a quadratic sufficient statis-
ticy = g*gg_where Q is hermitian (i.e. Q_* = Q). Then, we may find the

characteristic function of y using the following equations.

¢y(.i¢) = Ey[exp(wy)] (5-1)

= Eqlexp[i9R Q R} (5-2)

= f [exp(10R'Q R)Ip (R)d R (5-4)
R

p(R) = K {det ﬂ"exp{ -3_*1'151 ’ (5-4)
V = cov[(R] ,

¢y(i@) is the characteristic function of y.
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Then, ¢y(io) =f K{det v}~ lexp[ - El] + ieR g_jd R (5-5)
R

" f x Kidet V3 lexpl R*V (L - 16V QIRJR  (5-6)
R

- (det(1 - 0 !m}-l (5-7)

To simplify the notation, we let G = V Q, where G is a square matrix with

dimension K. Any square matrix G is similar to either a diagonal matrix
or a triangular matrix. We may find matrices g“ and P such that

g“_e_ P = B where B is either a diagonal matrix or triangular matrix with
all the eigenvalues of G on the main diagonal. Then, det[l - i¢G] can

be expressed as:

det{I ~ i0 G] = det{P”'}det[I - 16 G]det(P} (5-8)
= det{I - 10 P ' P (5-9)
= det{I - 9 B) (5-10)
= T—r (1 «ion ) (5-11)
2=

where A, is the eigenvalue of matrix G,

Hence, the characteristic function of y becomes

¢, (19) = £ (1 - qon,)”] (5-12)
y ];T %

—
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The density function of y can be obtained directly by taking the inverse

transform of the characteristic function,¢y(io) of y. Dyer [26] used

this techmique to derive the expressions for the density functions of y as: 3

(1) Aan )‘;Ls are equal to A.

1 K=1
ply) = y 'exp(-y/A)  for y>0
Ai;(K) for y<0 (5-13)
0
(2) Each Ay has a distinct value
< 1 1
p(y) = E xz' hz- exp('Y/)‘z) for y>0 (5-14)
. for y<0
0
K X
where hg. = 1~ i'l (5-15)
L
¥ !

(3) m groups of eigenvalues, each group has Mz identical eigenvalues.

m S-) L 1 3
ply) = Y =T X
U AzMz n=1 r n ak""




_exp(-i k y)

ﬁ-(k * nj‘] i s
J¥n k= -ix!

The above equations are derived using calculus of residues. The first
two equations are very useful, but the last equation does not give us
aﬁy idea of the functional form of p(y). Hence, another approach is
taken in this report as will now be shown.

We recognize that the probability density function corresponding to
the characteristic function (1 - 1¢Az)'] ?s exponentially distributed.
In other words, if ¢, (10) = (1 - 16A,)7" then,

p(x) %; exp(- x/X;) wav (5-17)

0 for x<0

We can view the random variable y as a sum of independent random variables,
X5 because the characteristic function of y can be factored as

6 (i0) = ¢, (i9)edp, (id)eeep_  (i®). Since the probability of x; is expo-
nentially distributed as described in equation (5-17), the probability
density function of y is the convolution of exponentially distributed proba-

bility densities. The resultant function p(y), obtained from the convolution, will
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take one of the following three functional forms.

(1) An A, are equal to .

1 K-1
) = -y/2) for y>0
p(y ;k;zz3y exp(-y or y>

(5-18)
0 for y<0
(2) Each A, has a distinct value.
p(y) 2 C, exp(-y/2,)
2=1
0 for y<0
=
where Cl W p—————
LI
#4

(3) m groups of eigenvalues, each group has M, identical eigenvalues.

M,-1
- & ala for y>0 &
IR |l I ol s T (5-20)
%=1 r=0 "%
- for y<0

where "1 is the number of elements in the &th group,
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m

f\::; M, = K,
and drz depends on the eigenvalues, but is not a function of y. From
equations (5-18), (5-19), and (5-20), we can see that p(y) is a finite
sum of functions with form ymeay. This functional form will give us
closed form expressions for the probability of detection (PD) and the

probability of false alarm (PF). By definition, P and Pe can be

written as:

Pp = fp(ylﬂl)dy (s-21)
n

P_= [ prlHglay (5-22)
n

If we perform these integrals, we will have expressions 11’kef .Vmeaydy,
n

which can be found in an integral table as:

m-r |
roa ay ay i -1" L'y__.r
fye e — ! (m-r)! a™" |n
n

i o om=r

an r+1 m!
=g (-1) (5-23)
r=0 (m=r): arﬂ
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Eventually, we will not have any integral left in the expressions for PD
and Pc. In the next two sections, we will find the eigenvalues of G along
with the expressions for PD and PF analytically, for some special cases. In
general, the eigenvalues of the G matrix can be calculated using numerical
methods. There are computer programs developed at Argonne National
Laboratory and currently available at many computing centers [24]

for solving eigenvalues of any complex matrix. After solving for the eigen-
values of matrices go and gq, equations (5-18), (5-19), (5-20), (5-21),

and (5-22) can be used to calculate Pp and Pc. This method which is called
the "Eigenvalue Method" can be used to calculate the exact values of PD and

PF at any point on the ROC curve with the aid of a computer.

5.2 Optimal Performance Evaluation for Array Detectors
In this section, we will investigate some special properties of the i
eigenvalue xz in the optimal detector cases. We will aiso derive eigen-
values analytically for some special cases, Performances of the detectors
are compared to see the effect of adding hydrophones to the array receivers.
First, we would 1ike to derive a general formula for performance
evaluation, From Chapter IV, we saw that a sufficient statistic for

likelihood ratio, y, can be expressed as:

y = &*(9[,' - 9.{] R (5-24)
where Qq is cov R[Hy]
and 94 is cov[g_lH]].




rby(ifb) = Eylexp(idy)]

- Eglexp[ieR" (0507 Ry} (5-25)
_{r tdet v} Texp{ -R"V"'R + 95 - g RIR  (5-26)

- fn"‘{det W lexaf -RVHI - dov(q]! - g IRIR  (5-27)

R
= {detf I - fov(gy' - ;)11 (5-28)
where V = covR] (5-29)

We let G = V (98] - g{‘) to simplify the notation. The matrix § under
both H0 and H? can be further expressed as:

Hy: cov[RIHO] = Q (5-30)
= 9@ - g e

-0 ! (5-32)

=1~ (g gh” (5-33)

Hy: covRIHy] = @ (5-34)
§ = 9.1(9(',] - g{]) (5-35)

=0, 05 -1 (5-36)

et iy A
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From equations (5-33) and (5-36), we may find the relationship between

the eigenvalues of G and that of Q, go“ as:

i 1
AGO o B % (5-37)
09,
XG =
T INEE (5-38)
%9

These two equations show that we need only to solve for the eigenvalues of

g 90-] and then use equations (5-37) and (5-38) to calculate AGO s
As . Furthermore, we may derive the relationship between A. and A. .
G.l G0 G.l
3 A 1 .
AGI B 1 (5-39)
0
A
G
R (5-40)
-AG
0
1
XGO 1 '**r (5-41)
"
AG1
5 g Kt
1

This implies that once we know Ag_ we can find g, very easily.
0 1
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There are special cases in which analytical expressions for the
eigenvalues of G can be obtained. These special cases will be shown as

2

examples. To simplify the derivation, we further assume that 90 .5
which means the noises at the receiving array elements are independent

from element to element and have equal power.

Example 1: Single Path Signal

If we have only one path, then the covariance matrix g_1 can be written as:

q = crz‘ 1+ c.vg] 11!_1* (5-43)

The matrices Gy and G, become:

Gp=Ll-oQ (5-44) -
=1- 0'2‘ ("5 L, & V'I*)-] (5-45)
G = (o,z, 9_{1)" -1 (5-46)
=g -1 (5-47)
ag
n
- - "

e
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" (5-48)

02
(5-49)

From equations (5-45) and (5-49), we know that it is easier to find XG
1

than to find AGO. AG1 can be found using the following equation.

02
$4 *
§ 1 =5 »iyy) (5-50)
g
n
MZ
51 :
e TR (5-51) -
g
n
= AG1 2 (5-52)
kcs2
Equation (5-52) shows the eigenvalue A, = ; and the eigenvector v,
1 c
n

of gq. Once we find AG , We may substitute XG into equation (5-42) to
1

find XGO.
g
1
(5-53)

Gy




» (5-54)

From equation (5-49), we observed that the rank of Gy is one. By using
equations (5-40) and (5-42), we know that a zero eigenvalue of either &
or §_1 will imply a zero eigenvalue of the other. So, the rank of go is
also one. Hence, the density functions of y under both hypotheses are

exponentially distributed as:

P(y[Hy) = -,;1— exp(-y/ig ) for y>0 (5-55)
Gy 0
0 for y<0
p(ylHy) = 3%— exp(-y/xG ) for y>0 (5-56)
f 1
1
0 for y<Q

Then, PD and PF become:

Pp = /p(yliﬁ)dy (5-57)
n
= exp(-n/}; ) (5-58)
1

A fp(ylﬂo)dy (5-59)
n




= exp(-n/xGo) (5-60)

The corresponding ROC curve has been identified as a power type ROC curve
by Birdsall [25].

Pe = (P (5-61)
A
s
= (Pp)\'s, (5-62)
2
o, _
e
3 (5-63)
= PD n

The ROC curves can be calculated from equation (5-63) as long as the total.

Kog

signal-to-noise ratio,-——il » is specified. A set of ROC curves with

%n

3 different A values are shown in Figure 5.1. The slope of the curves in

Figure 5.1 decreases as the A value increases. As shown in Figure 5.1
the slope of the power type ROC curves is always less than the slope of
the ROC curve of the known-waveform signal case [20]. From equations
(5-61) and (5-63), the parameter A can be identified as the total signal-
to-noise ratio plus one. By using this relation, we may look at Figure
5.1 again and find that the performance improvement measured on normal-

normal paper is not linearly proportional to the signal-to-noise ratio.

In the high PD and Tow PF region, the performance improvement is less than

| that in the low PD and low PF region for the same signal-to-noise ratio

improvement. These observations show the shortcomings of using detectability
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index as a performance measure for the Gaussian signal case.

Example 2: Two Path Signals Detected by a Two-Element Array
In this example we assume two signal paths (M=2) and two elements (K=2) ~
and use the characteristic equation det[Q, - AL] = 0 to solve for 1. Since

[ °r2\ I, the matrix g1g(')‘ is equal to 1 Q,. From equation (5-36), we

as
find the relationship between XG and AQ as follows:
1 1 ¢
A, " 1—2*0 = (5-64)
1 % 1

Substituting equation (5-64) into equation (5-40) we have:

%
XG 2] - g (5"65)
0 Q.l
The key to obtaining )‘G and )‘r is to solve A\, from the characteristic
1 o 4
equation, det{Q, - AI] = 0.
. e 2 * 2 * »
Q- ALmoplrog o By, oL (-
. - - : - $i:
Oy = A @) 1 oJuTy T 1 @Iy
= . +52 (5-67)
S 2
1
O o1 edumy 1 -jut
n B B
L - L . L 4

det[Q, - Al] = (051 + o§2 +od - 02 - c§1 euT 4 c§2 e¥72|2 (5-68)

The eigenvalues of Q; can be solved very easily from equation (5-68).
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e Ry S 2 juty , 2 jut
AQ1 °s1 + 052 *o, ¢t °s1e 1+ csze 2 (5-69)

Q
Xe —-‘2- - 1 (5-70)
1 °n~
cg; + c§2 & 021 ejmt1 + 022 e¥T?
= —_ 02 (5-71)
n
2
Wy 8 (5-72)
G A
0 01
2 2 2 jur 2 jwt l
s *ol  Elios el Lot e 2 -3
- S_LT . j bre, P , (5-73)
2 2 1T . X Wt 2 _Jwt
L= + 051 + csz * ' °s] eV 1 + 052 ev 2

The two non-zero eigenvalues of G, and G, are distinct exceot for the

= 0, The density function of y

| €
rare case that | a§1ej“11 + osz eJ¥T2

takes the form of equation (5-7). The probability of detection (PD)

and the probability of false alarm (PF) become:
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G G
Py = 3 1:1X Gipls ot Yot . 1,2 exp(- 5 D)
G 3 3 G - A
T 1,2 1,1 1,2 G1 1 3
- (5-74)
AG AG
Pe = 0, exp(- +1— ) + 0,2 exp(- ——
; "8p,1 " 6,2 "G, 1 "8g,2 ~ "%, *g,2
’ ’ ? ? ’ ] (5_75)
where XGO , and AG] ; are expressed in equation (5-73) and (5-71) with

positive sign and AG and XG with negative sign.

0,2 1,2

In order to examine the character of the ROC curves, Qe considered a
specific case and plotted the ROC curves in Figures 5.2 and 5.3. In
Figure 5.2 the optimal performance of a 2-element array for detecting
2-path signals are plotted for different total signal-to-noise ratios. The
signal incident angles are assumed to be +15° from the horizontal axis
and the signal strengths from both paths are assumed equal. The ROC
curves are similar to the power type ROC curves shown in Figure 5.1. We
would also like to examine the ROC curves for 2 path signals with different
signal strengths. The ratios of signal strength are assumed to be 1:1,
2:1 and 10:1. In Figure 5.3, three sets of curves are drawn on normal-normal
paper. By comparing these curves we conclude that the performances are almost

equal for low signal-to-noise ratios. However, for high signal-to-noise

el
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ratios, the case in which each path has equal signal strength gives the

highest performance among the three.

Example 3 M Signal Paths Detected by a Two-element array
The extension of the two-path results in example 2 to the M-path

case is straight forward. For the M-path signal case, Q‘I becomes :

g =of L+ °§1 By ke °§M Yy Yy (5-75)

Consequently, the characteristic equation is:

2
2 2 g _ g
det[Q, - AI] = (o, + e** *+ o0 +o->‘) z
§ = ar g Sy =1 (5-77)
and the eigenvalues of XQ] are
M M P
” jwt "
AQ1 12‘1 asi vo, t 12,; %, ed¥%y (5-78)
The eigenvalues of go and G, can be expressed as:
M
2 2 j‘*"’il
= I s
Ny i i = (5-79)
1 o}
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M M
Z og - Z c§ eJ¥Ty
R i=] Mi =1 4 (5-80)
0 02+202tl%02 ¥y
n L 51- i l -
i=1 =1

By substituting equations (5-79) and (5-80) into equations (5-73) and
(5-74), we may find Pd and P for the M signal path case.

Ten signal paths with equal spatial angular separations are assumed
to be within the range of +15° from the horizontal axis. The signal strength
of all paths is assumed equal. The ROC curves of the 2-element array
detector are plotted in Figure 5.4. The general shape of the curve is
similar to the curves in Figure 5.1. This may be explained by the fact
that there are only two non-zero eigenvalues and one of them is dominant
under hypothesis H1. Hence, the density function of y under H1 is Qery
similar to an expontial curve and the resulting ROC curves are similar to
the power type ROC curves. The results shown in this example also demon-
strate that it is not sufficient to characterize the ROC curves by using
only the mean and variance of the sufficient statistic y. In this case,
there are only two non-zero eigenvalues in spite of the number of signal
paths. The density function of y under both hypotheses is very much different
from the Gaussian distribution and cannot be characterized completely by
only the mean and the variance of y. Besides, one of the two non-zero
eigenvalues of G; is much larger than another. This is why the ROC curves
for this case, as shown in Figure 5.4, are very similar to the power type

ROC curves.
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For any matrix, the eigenvalues can be evaluated by solving the
equation det[Q - A\I] = 0. However, if the dimension of the matrix is
larger than 4, the eigenvalue cannot be solved for analytically. Even for
a (3x3) matrix case, obtaining the eigenvalues can be quite tricky.

Example 4 will show a case with two signal paths and a 3-element array.

Example 4 Two Signal Paths Detected by a Three-element Array
We assume M=2 and K=3 in this example, where M is the number of paths

and K is the number of array elements. The covariance matrix Q, becomes:

S 2 * 2 *
Q=oplrog Yy *o HY (5-81)
Then,
L2 2 “, 2 .
94 “2Ak '(°n =ML % °s1 - Bl Ors‘,_ Yo %o (5-82)
: y B TYPRNNE |+ O
2 gl e 1
as - A O
o by amne Q) L N B
+g
o
5 SR °r2| ~ A eJuT gmdumy 1
- / ~ -
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, N
1 ejurrz e2jm1.'2
+ c§ e JuT, | eJuTy (5-83)
2
3 ¢ ~2uty e duT; 1 J
and,
Siid e S e R 2, *
2 g * *
-(os”l . JS_I *ige A)(AZA2 + 2A<|l\1 ) (5-84)
where A = °§ oIy 4 og_ eJuTy (5-85)
1 2
and Ay = o% eBlum 4 o2 e2duTy (5-86)
1 2

From equation (4-29) we know that the matrix
-1 -1 p * " * * * * %
QD ~Q =y Y teaywy, -cf (¥ [y + (Y Biu ] (s5.g7)

has rank 2. We also know that both G, = Q, (9_5] - q 1) and
G = Q (go“ - 94"1) have rank 2. This implies that one of the solutions

b A ok Tl e
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to the characteristic equation of 50 and 54 has to be zero. In other

words, one of the eigenvalues of gq should satisfy the following two

equations.
%
"G =1 - T 0 (5-88)
0 Q]
XQ1
XG = —2— -1=0 (5-89)
1 9,

We found that )01 should be equal to oi

to satisfy both equation (5-38)
and equation (5-89). This eigenvalue, AQ1 = oﬁ , will be verified with

the following equations.

det(g; - g 1 = det(; - & 1 (5-90)
det[c ‘) v1v1 +0 §2 !2!2*] (5-91)

” 2 * 2 " . :
Since the rank of 051 Vi * osz Vo¥y is two and the dimension of the

matrix Q is three, we can easily see that det(Q; - 02 1} = 0. This
shows that AQ = 02 is indeed a solution to the characteristic equation
of gq The next step is to reduce the 3rd order equation by dividing

det[Q; - ALl by (cn - A). After some manipulations we obtained a simple

second degree equation in ).
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det[Q, - A1]
1 et 2,2 2 2 vo 2 2 2
7 3(cs a )° o+ 3(cs * o )(on - 1) + (on - 1)
de » & 1 2 1 2

* *
-[AZA2 + 2A1A] l1=0 (5-92)

where A] and A2 are defined in equations (5-85) and (5-86).

We may solve the second degree equation to get A

Q-
2302 +02 )+ [ =32 +0% )2 + a(A AT + 2AAT)
S Sn’ — s S 272 1™
IS SO B b %2
n 2
(5-93)
SO,
32+ )
we Tepisd. il e ¢ s * *
XQ] - i 5 t3 ‘/ 3(0s1 + 052) + 4(A2A2 + 2A1A1 )
(5-94)
2. 2% * N o4 § s wond
where -3 (%51 + USZ) + 4<§2A2 + 2A]A1 ) =9 051 +9 os2 6 052 osl[

-j2uwty + j2uwt -j2uwt, + jowt ) ~juty + jut Juty=jut
(e 1 2 Sl 2 L3 2 \a 1 2 . & 1 2
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Substituting equation (5-94) into equations (5-70) and (5-72), we can

get \. and A, .
Gy &

To show the detection performance of the 3-element array, we use -

the same two signal paths as in example 3. The optimal ROC curves for

several signal-to-noise ratios are shown in Figure 5.5 for a 3-element

array. We notice that there are only 2 non-zero eigenvalues because

there are only twe paths. In general, the number of non-zero eigen-

values is no larger than min(K,M), where K is the number of array elements

and M is the number of signal paths. In Figure 5.5, the shape of the ROC

curves for a 3-element array is similar to that in Figure 5.2, and is

apparently not like normal ROC curves which would be the result for the

case with Gaussian distributed sufficient statistics under both hypo-

thesis. By using the equation A = 1 + K.SNR, we also recognize that the-
slope of the ROC curves in this example is slightly higher than that for |
the power type ROC curves shown in Figure 5.1.

In order to see the performance improvement by adding hydrophones
to the array receiver, we make the performances comparison among arrays

with different numbers of elements in the next section.

5.3 Performance Comparison between Optimal Array Processors with
Different Numbers of Elements
In the previous section, we have derived performance evaluation

methods analytically for some special cases. However, we will not solve
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every problem by using the analytical method because it is too tedious
and error prone. A numerical method for finding the eigenvalues of a
complex matrix is shown in Appendix A. By employing the software sub-

routine package EISPACK, a computer program for evaluating the detection -

performance numerically has been developed to find the performance of

arrays with more than 3 elements. To make sure of the correctness of

the computer program, we have checked the numerical results with the ROC
curves obtained from the analytical method for several cases.

We use the case with two signal paths coming in at +15° from the
horizontal axis as an example to show the detection performance improve-
ment due to adding hydrophones to the array. In Figure 5.6 and Figure
5.7, performances of arrays with one, two, and three elements are plotted

2 2

g g
s s
for different values of signal-to-noise ratio per element, SNR = ] 2_

2

%n

where og and cg are signal power of path 1 and path 2 respectively.
1 2

The ROC curve has a slope less than tan 45° on the normal-normal paper. In
general, the slope of the ROC curves is smaller for high signal-to-noise
ratios than for low signal-to-noise ratios. We also notice that the
performance improvement obtained by adding one hydrophone to a 2-element

array is less than that obtained by adding one hydrophone to a single-element
array for SNR=10. However, for low signal-to-noise ratios such as SNR of

1 and 2, improvements from adding one hydrophone to a 2-element or a 3-element
array are nearly the same. This phenomenon can also be seen by comparing

the solid lines in Figures 5.8 and 5.9. In Figure 5.8, the ROC curves for SNR=1
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and K=1, 2, 3 and 4 are parallel with equal spacing. On the other hand,
the ROC curves in Figure 5.9 for SNR=10 and K=1, 2, 3 and 4 have unequal
spacing. Apparently, the performance improvement due to adding one hydro-
phone to an array depends on the array factor as well as the signal-to-
noise ratio per element. In general, the performance improvement is less
for high SNR than that for low SNR. This shows a difference between the
performance of detecting multipath Gaussian signals and that of detecting
multipath known waveform signals [28] in which the performance improvement
due to adding hydrophones is independent of signal-to-noise ratio.

It is also interesting to compare the performance characteristics
of array detectors with that of a single phone detector. We look into the
question of how much performance improvement an array can gain over the
signal phone. To answer this we compare the performance of a single hydro-
phone detector with the performance of the array detector with K elements.
In Figure 5.8 we compare the performance of a single hydrophone detector
with K times the signal-to-noise ratio with the performance of K-element
array detectors for K=1, 2, 3, 4 and 10, and SNR=1. We observe that the
performances of these two cases are nearly the same for small (K-SNR) values.
But, for large (K-SNR) values the performance of an array detector is better
than that of the single hydrophone case. In Figure 5.9 we make a similar
comparison for SNR=10. The curves in Figure 5.9 show dramatic performance
improvement for the array detectors. By referring to the structure of the
optimum array detector in which signals from each path are spatially separated
from other paths by beamforming action, we may conclude that the array

detectors not only receive a total output signal-to-noise ratio K times
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higher than that of the single phone, but also provide the capability of
separating multipath signals spatially. The spatial discriminating
capability of the array detector does improve the performance considerably
for high signal-to-noise ratio cases. ;

By inspecting the slopes of the curves in Figure 5.8 and 5.9, we
notice the difference in shape between the array and single hydrophone
ROC curves. This can be explained by looking at the density function of
y. As discussed before, we know that for a single hydrophone the density
function of y is exponentially distributed. On the other hand, the density

function of y for the array detector depends on two non-zero eigenvalues

for various K values and signal-to-noise ratio as is shown in Table I.

From the table we observe that in some cases two eigenvalues are almost

identical and in other cases one eigenvalue is larger than the other. For
the K=2 cases, there exists a dominant eigenvalue which is due to the fact
that the size of the array is too small to discriminate two signal paths.
Hence, the resulting ROC curves have shapes similar to that of the power
type ROC curves, which is the character of the ROC curves for a single
hydrophone detector. For the K=4 cases, the width of the mainlobe of a
4-element array is about 60° which is about two times the angular separation
between the two signal paths. In other words, the 4-element array may

point a beam to one path and null out the other path simultaneously. As

a result, the eigenvalues for this case are almost identical. Consequently,

2

the distribution of y is the x“ distribution with 4 degrees of freedom.

The noticeable difference on ROC curves between the exponential distribution
2

and the

distribution with 4 degrees of freedom is the slope of the ROC
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curves. The curves of the former case have smaller slopes than that of
the latter case.

By investigating the beam pattern of a K-element array [27], we found
that the main beam width is approximately equal to 180°/(K-1). For K=2
and K=3 cases, both signal paths are in the mainlobe of the beam pattern,
and for K=4 and K=10 cases, one path is in the mainlobe and the othe} is
in the sidelobe. Consequently, the eigenvalues of gq for the K=4 and

K=10 cases are close to each other while the AG 's for K=2 and K=3 are
1

far apart. The dependency of the eigenvalues on the array beam pattern
will be discussed further in the next section in which we will investigate
the performance of suboptimal processors such as single and double beam-

formers.
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5.4 Detection Performance of Suboptimal Array Beamformers
A. Single Beamformer

A single beamformer which points to one of the M signal paths and
a double beamformer which points to two signal paths are investigated
in this section. The trade-off between the complexity of the processor
structure and the detection performance will be evaluated.

A single beamformer is a suboptimal array which ignores the existence
of the multipath structure and points a beam to the direct path. The
simplicity of the processor structure makes it popular in practical
applications. The sufficient statistic y of the single beamformer may be

expressed by

y=R uu R (5-95)

where u is the pointing vector of the single beamformer.

Then, by definition,

Gy =0y (uy) (5-96)
=ouu (5-97)
and
G =0 (u u’) (5-98)
e SEa. i T B
o Uy +os]\_’.1 (Yqu )u +eeeto M!M(!n!)!
(5-99)
where
Q) = chltag wquy +eedog vy’ o
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It is quite easy to find the eigenvalue of go from the next equation.

u (uu) (5-101)
u (5-102)

To find the eigenvalues of gq is not obvious. We should use the matrix

theorem that "the eigenvalue of gq is equal to that of qu". By observa-

tion, we found the eigenvector and eigenvalue of qu from the following

equations.
T T M o oo UG
T * 2 & Tw * | x
Gu =opu (wu)+ Y cgi(x,-g)y_ PR (5-103)
i=1
i *T 2 | * |2 *T :
Gy by ¢ f.; %, [ g‘ u (5=104)
Hence,
M
-2 *
Yoy %% K+ Y 021 v"ul? (5-105)
1=1

The ROC curve for this case is apparently a power type ROC curve and can
be expressed by

Pp = (P (5-106)
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AG1
where A= — (5-107)
Go
M
2 * |2
b IR
g=1 1
=] g (5-108)
Ko
n

The second term in equation (5-108) is the summation of signal energy
weighted by the beam pattern.

In order to compare the single beamformer performance with the optimal
processor performance, two signal paths are chosen coming at +15° from the
horizontal axis. The values of A for K = 2, 3, 4 and 10 are 2.4723, 2.6313,
3.0029, 6.1121 respectively in the 02 =g = 5 oz cases. We notice that

a
Ka§
the value of A can be approximated by A = 1 + 21 when K>4. This is due
ag
n

to the fact that the beamwidth of the mainlobe for K>4 is less than 60°.
Hence, the second signal is in the sidelobe of the beam pattern and does
not contribute too much signal energy. In other words, the single beam-
former array nulls out the second signal source when the size of the array

is large. Consequently, it has the same performance as that of the single

2
Ko
path case in which the ROC curves are characterized by A = 1 + ;

%n
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The ROC curves of the single beamformer are plotted in Figure 5.10
and Figure 5.11 for different signal-to-noise ratios. By comparing
these ROC curves with that of the optimal detectors, we conclude that the
performance loss due to not taking account of the second path increases
as the number of array elements increases. This indicates that the larger
the array size, the more important the knowledge about the spatial structure

of the signal.

B. Double Beamformer
If we want to retain the beamforming structure and improve the per-
formance, then the double beamformer is our next choice for detecting

two path signals. The sufficient statistic y is described in equation

(5-109).
y = 5*("51 vy ogz vo¥s R (5-109)
£~ 90("; By * °§2 Yp¥p ) (5-110)
= 05(031 quq* + cgz !212*) (5-111)
G = 9.1(0; vy + o§2 ¥,") (5-112)
P °r2\(°§1 yy + °§2 l2112*)*("’; 1111*“’52 vo¥p )2 (3-113)

From equation (5-111) and (5-113), we know that we need only to find the

i
ANt S i35 i et s
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eigenvalues, XDB’ of matrix (o§1 !ng* +0 §2 !2!2*), because AGO aind -

A61 may be expressed in terms of ADB as shown in the following equations.

2

2L 2

—— e ————

Eigenvalue ADB may be evaluated by both analytical and numerical methods.
A simple two-element case will be shown as an example for the analytical

? method.

|
|
t' g V.V = + 0'2 VoV 4
f
i
: [ - 4 N
- 1 juwt 1 jwt
e 1 e 2
2 2
= o + a0
S] j 52 j
-JwT -Jwt
e L TJ e 2 1
. L J

E‘ (5-116)
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3 2 2 |2 Jury o dutyl,
= (o, +o A)° - |l e +o0. e © (5-117)
sy s, 51 S
Jut Jut
Apg = c§1 + c§2 + ci] e 1., ogz e 2 (5-118)

Substituting equation (5-118) into equations (5-114) and (5-115), we may

find Ag and AGI. The rest of the performance evaluation procedure is
0

similar to that of the examples in the previous sections.

The structure of the double beamformer can be realized as two beam-
formers followed by envelope detectors as shown in Figure 5.12. Comparing
Figure 5.12 with Figure 4.1, the only difference is that the cross correlated
terms are missing in Figure 5.12. The performance degradation due to the
lack of the correlated terms is the main topic in this subsection.

The performance of the double beamformer has been calculated by using
numerical programs for two, three, four, and ten element arrays. The ROC
curves are shown as the dashed lines in Figure 5.13 and Figure 5.14. On
the same Figures the ROC curves of the optimal detectors are also shown.

[t is interesting to see that the performance of the cdouble beamformer is

very close to optimum for K>4. This can be explained by the fact that one

of the two signal paths is in the sidelobe of the beam pattern and consequently
the cross correlated terms in the optimal array are small compared to the
beamformer output power. Hence, the cross correlated terms may be ignored

when the array size is large enough such that the main beam width is less
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than two times the angular separation of the two signal paths. In

Figure 5.13 we observe that the performance of the double beamformer

is very close to optimum for K = 2, 3, 4 and 10 at a signal-to-noise

ratio of 1. But, in Figure 5.14 the performance degradation is severe -
at K = 2 at a signal-to-noise ratio of 10. This indicates that the cross
correlated term plays an important role only for cases with high signal-

to-noise ratio and small array sizes.




CHAPTER VI SUMMARY

This report has proposed vertical arrays for estimating parameters
of multipath signals and for detecting multipath Gaussian signals. The

spatial discriminating capability of vertical array processors can be

used to isolate individual signal paths in an underwater acoustic channel.

The amplitude and phase estimates of signals from each individual path
are obtained and compared to that for a single hydrophone case. The
signal-to-noise ratio of each individual path is shown to be independent
of the relative signal phases of other paths. This suggests that the
vertical array processor may be useful in the deep fading problem for
minimizing multipath signal cancellation. Two approaches are taken to
estimate the signal parameters. In Chapter III, the signal parameters

are assumed non-random and the maximum 1ikelihood estimates (MLE) and
their performances are shown. It is clear that if the number of array
elements is less than the number of signal paths, then the maximum Tikeli-
hood ratio estimate is not unique. In Chapter IV, the signal parameters
are assumed to be Gaussian random variables with covariance matrix gs,

and the mc<imum a posteriori probability estimates (MAP) of multipath
signal parameters are employed. With the a priori knowledge about the
signal in terms of the covariance matrix gs, the MAP estimate has a unique
value even for the case where the number of array elements is less than
the number of signal paths. The linear relationship between MAP and MLE

estimates is presented to show the incorporation of the a priori knowledge

of the signal parameters.

e
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The second part of this report is devoted to the detection of
multipath Gaussian signals in Gaussian noise. Like most Gaussian signal
detectors the optimal array detector has a quadratic structure. A
two-path signal example shows that the optimal array not only points two
beams in both signal directions but also correlates both beams to form a
cross correlation term, even when multipath random signals are assumed
independent from path to path. In Chapter V, the significance of the
two-beamformer structure and the cross correlation term are investigated
in terms of detection performance. An analytical method called the
"Eigenvalue method" is developed for evaluating the performance of any
array signal detector which has a quadratic sufficient statistic. The
eigenvalue method starts with the characteristic function of the sufficient
statistic under both hypotheses and then transforms the characteristic
function to the probability density function. The probability of false
alarm and probability of detection may be calculated analytically once
the eigenvalues of the covariance matrices of the observed data under both
hypotheses are calculated. Although we may find the eigenvalues of any
matrix with dimension less than four by an analytical method, the calcula-
tion of eigenvalues is berformed mostly by a numericai method in Chapter IV.
For matrices with dimensionality less than three, both methods are demon-
strated.

Performance comparisons were made between optimal arrays with different
number of elements. By use of the two-path signal case as an example, we
found that the performance improvement obtained by adding one hydrophone

to a 2-element array is less than that of adding one hydrophone to a
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single-element array for high signai-to-noise ratios around SNR = 10.

But, for low signal-to-noise ratios such as one, two and four the performance
improvement for both cases are nearly the same. This shows the difference
between the performance of detecting Gaussian signals and the performance
of detecting known waveform signals. It is well-known that in the latter
case the detectability index is the product of two functions, one depends
on the signal-to-noise ratio, another depends on the array factor. In
other words, the performance improvement in terms of detectability index
by adding one hydrophone to an array is independent of the signal-to-noise
ratio. The phenomena of the former case may be explained by the property
of power type ROC curves which are the type ROC curves that result in the
Gaussian signal detection problem. The family of power type ROC curves

shows that the performance improvement due to the increase in signal-to-

noise ratio starts to decrease after the parameter A becomes larger than
about 21. During the process of comparing the ROC curves for the Gaussian
signal array detectors with the power type ROC curves, we observed the
difference in the slopes of ROC curves. This led to a comparison between

the performance of a k-element array with that of a single phone detector

with k times the signal-to-noise ratio. For low total output signal-to-
noise ratios in the range of one to four the difference in performance
between these two cases is insignificant. However, for high signal-to-
noise ratios, (i.e. (k+SNR)>10), the array detector is better than the
single phone detector, for the same total signal-to-noise ratio. This

may be attributed to the spatial discriminating capability of the array.




64

The trade-off between the processor complexity and performance is
also shown in Chapter V by comparing the performance of an optimal array
detector with that of conventional beamformers. Again, the two-path case
is used to demonstrate the performance difference between optimal, single
beamformer and double beamformer arrays. A single beamformer array which
points a beam in one of the two signal directions performs poorly com-
pared to the optimal array. Although the structure of the single beam-
former is only one branch of the optimal processor, the performance of
a 10-element single beamformer array is equivalent to that of the optimal
array with only 4 elements at SNR = 1.

Another suboptimal array processor which points two beams to two

signal paths and sums up the envelope detector outputs is also investigated.

The performance comparison shows that if the aperture of the array is large
enough such that the second signal direction is not in the mainlobe or any.
significant sidelobe of the array pattern, the difference between the
suboptimal array and optimal array in performance is very small for all
signal-to-noise ratios. For high signal-to-noise ratios and small arrays
the performance difference between the suboptimal and optimal arrays is
noticeable. This finding implies that the cross correlation term in the
optimal processor is not very significant if the array aperture is large
enough to isolate signal paths or the signal-to-noise ratio is low.

The eigenvalue method, introduced in this report, is a powerful tool
for evaluating performance of array detectors. Since the detection per-
formance and the processor complexity are two major factors to consider

in the implementation of array detectors, the trade-off of these factors,




as shown in this report, gives insight into the problem of detecting

multipath Gaussian signals in Gaussian naise.

|
{
|
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APPENDIX A

COMPUTER PROGRAMS

The computer programs for evaluating eigenvalues of matrices
go and §.|, and for calculating PD and PF are shown in this appendix.
The subroutine calling éequences are shown in the block diagrams. There
are two types of methods for evaluating the eigenvalues of a complex
matrix. One is the analytical method which is limited by the dimen-
sionality of the matrix. It is not trivial to find the performance of
array detectors with more than three elements by the analytical method.

Another method is a numerical one which can be used for arrays with

any number of elements.

(1) Analytical Method

A typical calling sequence for the analytical method is shown below.

MAIN

PROGRAM PDPF

EIGEN

Subroutine “EIGEN" calculates the eigenvalues of matrices G, and G;, and
subroutine "PDPF" calculates the probability of detection (PD) and the

probability of false alarm (PF)‘ The analytical algorithms used in

A-1




subroutine "EIGEN" depend upon the number of array elements, the number

of signal paths, and the sufficient statistic. The mathematical descrip-

tions of these algorithms are described in the main text. In the follow-

ing computer program listings, a complete program for optimal array -

detectors for K = 2 and M = 2, several "EIGEN" subroutines, and a complete

program for optimal array detectors for M = 10 and K = 2 are included.

A-2




C THIS IS THE MA[wN PGM FOR CALCULATING PDPF By ANALIT(CAL METMOU,

C 7415 PGM wILL CALL SUDRUUTINE EIGEN wnlICr wILL CALCUATE ELGENVALUES
C OF GO,Gl, THE Maln ALSU CALL SUBRUUIINE PLUPF U GET Pu ANuU FF
C WNE ASSSuME 03,5 WNAVELEMNGTH

100
101
103
102

300
200

19

C THIS IS FUR KXz2,M32
C WE ASSSUME 0=.5 WAVELENGTH

DIMENSLON ELTACIV)PUCLI0)PF(LU)

NRITE (9,101)

READ(S,100) APH[,APRIP

PHIzAPHI*§,1416/180,
PHIP=APHIP#*3,1416/180,

WRITE(6,102) -
READ(S,10Q) VARS1,VARSZ2,VARMN

wRITE(6,103)

READ(S,100) (ELTACI),I=1,10)

FURMAT(Fl4,.,0)

FURMAT(1X,24HTYPE IN APHI,APHIP,F14,0)
FURMAT(1X,20HTYPE IN 1O THRESHOLD VaALUE)
FURMAT(LIX,30HTYPE IN vARSlerVvARSC,vARN,F1d,0)
CALL ELGEN(PHI,PRIP,vVARS1+sVARS2)VARN,GLL1,G12,G01,G02)
CALL POPF(ELTA,G1l,012,601,502,P0,PF)
WRITE(6,200) 6G11,G12,601,G02

WRITE(6,300) (PLU(JI,PF(J)sd=L,10)
FORMAT(2X,2F12.6)

FORMAT(2X,2F10,.,4)

STOP

EnD

SUBRQUTINE PUPF(ELTA,G11,612,G01,602,FD,PF)

DIMENSIUN ELTA(10),PD(1U),PF(10)

OU 10 K=1,10 |
PO(K)SGLl12EAP(=ELTA(K)/G11)/(Gll=Gl2)+G12*EXP(=ELTA(K)/
G12)/7(G12=6G11)
PF(K)=GUI*EXP(=ELTA(K)/GO01)/(G01=602)+GUR*EXP(=ELTA(K)/
G02)/(GU2=GUl)

CONTINUE

RETURN

END

SUBRUUTINE EIGEN(PHI,PHIP,VARS]1,VARS2,VARN,G11,512,601,G02)

OPTIMAL CASE (ANALITICAL YETHUD) .

CC1=3,1410*COS(PHI)
CC2=5.14162COS(PHIP)
COMPLEX Al,A2,C1l,C2
C1sCHPLX(0,,CC1)
C2sCMPLX(0,rCC2)
Al=CEXP(Cl) .
A2=CExP(C2)

RSCABS(VARSL*A1+VARS22A2)
G11=(VARSL1+VARS2+R)/VARN
Gl12=(VARS1+VARS2=R)/VARN
GO1=3(VARS1 +VARS2+R)/7 (VARSI +VARS2+VARN+R)

GU2=(VARS]1#VARS2=R)/ (VARSI +VARSC+VARN=K)
RETURN i
END
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C THIS 1S SUBRUUT(ive EIGEN FOR ONUBLE BtamFuRMER
C USE THIS w~#11H MAIN PGMm AND SUBRUQUTINE PUPF
SURROUTINE EIGEN(PHL,PH[P,VARSL1,VARS2,VAKN,UL11,L12,G01,602)
C THIS 1S FUR SuBUPTIMAL BEAMFURMER PERFUKRMANCE K=z2,M=z2
CUMPLEX (1,C2
C13CMPLX(0,03,14162CUS(PHI))
C2=CMPLA(Ver3.1410*COS(PHIP))
DA1SVARS1+VARS2+CABS(VARSI*CEXP(C1)+VARS2xCEXP(C2))
DA2=2.,2(VvARS]1*VvARS2)=~DAl
GUI=SVARN2DAL
GU2=sVARNZDA2 )
Gll3VArN2DAL+DALxDAL
i G12svVARNZDA2+DA%DA2
RETURN
END

SUBROUTINE EIGEN(PHL,PHIP,VARS1,VARS2,VARN,G11,6G12,G01,G0¢2)
C THIS IS THE SUBROUTINE EIGEN FOR CALCULATING EIGENVALUES FOR M=2,K=3
C THIS IS FUR K=3,M=2 OPTIMAL CASE (ANALITICAL METHUD).
C USE THIS w~ITH MAIN PGM AND SUBRUUTINE POPF
COMPLEX CCl.CC2
CC2=CHPLX(0406,2832%(COS(PH]I)=CUS(PHIP)))
CC1=CMPLR(0,,3,14106%(CAS(PHI)=COS(PHIP)))
AS9 ,#(VARSL »22+VARS2*##2) =6 ,2VARS1 #VARS2+4 ,#VARS] *VARS2* (2,
1 *REAL(CEXP(CC2) ) +d  *REALCCEXP(CC1)))
@11=vARN+3 ,#(VARS1+VARS2)/2,+SQGRT(A)/2,
Q123VARN+3 ., #(VARS1+VARS2)/2.=SGRT(A)/2.
Gl1l=Qli/VARN=1,
G12=Q12/VARN=}, .
e01=1,=VARN/Q1
60221 .~VARN/GEL2
RETURN
END

C THIS PRG IS FOR M=10 AMD K=2 QPTIMAL CASE
C THIS IS THE PGM TU CALCULATE PD AND PF
DIMENSIUN ELTAC10),PD(10),PF(10),PHI(LV)
M=10
D0 S KK=1,5
PRI(KK)=(90,=FLOAT(KK)*#3,)%3,1416/100,
KK1S10=KK+1
PHI(KK1)=(90 ,+FLUAT(KK)#3,)*3,1416/180,
2 CONTINUE :
WRITE(6,102)
READ(S5,100)VARN

a Lo aads o iy nanl o Lot

102 FORMAT(1Xs12HTYPE IN VARN) THIS PAGE 1S BEST QUALITY PRACTICABLR
: WRITE(6,103) FROM COPY FURNLSHED 0 DDC e
READ(S,100) CELTACI),I=1,10)
100 FORMAT(F14d40)
VARS=1,/FLUAT(M)
103 FURMATCL1X,20HTYPE IN 10 THRESHOLD VALUE)

CALL E{GEN(M,PHI,VARS/,VARN,G11,G12,G01,Gv2)
CALL PDPF(ELTA,G11,G12,601,602,FD,PF)
wRITE(6,200) G11,612,601,G602
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wrITE(B8,300) (PV(J),PF(J),J=1,10)
FURMAT(2X,2F12.0)
FURMAT(2X,2F1U.4)
STUP
EnD
SUBRUUTIVE PUPF(ELTA,GLL1,6G12,G01,Gul)Pu.PF)

DIMENSIUN ELTACLD)APOCLU),PF(L10)

Du 10 x=1,10
PO(R)SGLI*EAP(=ELTA(K)/G11)/(GLl1=G12)+G122EAP(=cLlA(K)/
G12)/7(G12=6G11)
PF(K)SGUL#EXP(=ELTA(K)/G01)/7(GO1=602)+LU2*EAP(=ELTA(K)/
G02)/(GV2=Gol)
CONTINUE

~ETURN

END
SUBROUTINE EIGEN(M,PHI,VARS,VARNIGLlLlsb12,6UL,G02)
DIMENSION PRI(10),C(10),A(10)
CUmPLLEX C,A,B
BaCMPLX(De0ev,)
DO 10 I=Ll,mM
CCL)SCMPLX(0q4r 3,1916*CAS(PHICI)))

ACL)SCEXP(CCI))

838+A([)aVARS

CUNTINUE

R=CARS(B)

AMSFLJIAT(M)

Gl11=(AMaVARS+R)/VARN
G12=(AM2VARS=R)/VARN

GO1=(AM*VARS+R)/(VARN+*AMRVARS+K)

Gu2=3(AMaVARS=R)/(VARN+AMA*VARS=R)
RETURN
END

UALT
s o ST
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(2) Numerical Method

A subroutine package called "EISPACK" [24] is employed in the
numerical method. The calling sequence is described in the block diagrams

below for both the optimal case and the double-beamformer case.

OPTEIGEN

PDPF

Figure A. 1 Block Diagram for Optimal Case.

|' ““““““““““ b |
| |
| CBAL !
I |
| |
DBEIGEN ; CG | CORTH |
| |
i | COMQR I
Go’ G, : :
| EISPACK ]

e o an oo e o on o o o o - e - -

POPF

Figure A. 2 Block Daigram for Double Beamformer Case

The following program 1isting includes the main programs, "OPTEIGEN",
"DBEIGEN", and "PDPF". Subroutines in the software package "EISPACK"

are excluded in this appendix because of their length. Program listings

and documentations are available on request.




e i b e

THIS 1S PuM 'DBeluEN,
TJd RUN THIS PGM: HRUN =L 0AD+NAASIEISPACA UN MTS,
TJU RUN THIS PGM: HRUN e JAD+NAASIE[SPACK N MTS
TO NUN THIS PGM In uUTHER UN[V, SUoRUUTINE PaCkAGE '"EISPACK' I3 ~EEDEO,
TAIS IS THE NUMERLICAL METAOUL TU GET ElGEN VALUES UF MATRICES ©B,6uril
DIMENSIJIN VARS(10),PHICLI0)sACL10),CC10),60(CLU),G1(L10)
REAL*8 aR(lUs10) AT C1upl0) o wRCLU) oL (10)sdR(LULLND)PZI(LU,10),
1 Sv1(10?,Sv2(10),Sv3(1v)
CUuMPLEX A,C
C START TQO GENERAT MATRIX Do FOR DOUBLE BEAMFURMERS239535553235083038543
ARITE(0,104)

(o
c
c
C
c

104 FORMAT(3x,'TYPE IN NO, QF ELEMENIS, [3') e
READ(5,109) K
105 FORMAT(I3)
WnRITE(0,223)

223 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>