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ABSTRACT

Performance of a vertical array for estimating mul tipath signal

parameters and for detecting mul tipath Gaussian signals is investigated

in this report. By assuming that the multipath signal di rections are

known and the number of array elements is larger than the number of paths ,

the parameters of the signal from each individual path may be estimated

so that the mul tipath signal cancel lation problem can be minimi zed. The

performance, in terms of signal-to-noise ratio, of the Maximum Likel ihood

Estimate (MLE) for the signal parameters of indi vidual paths is shown to

be independent of the relative signal phases from other paths. But, the

performance does depend upon the angular separation of multipath signal

directions and the length of the array. In the case where some knowledge

about the signal parameters is available , the Maximum A Posteriori Probabilfty

Estimate (MAP) is also considered. The linear relationship between the MLE

and MAP estimates is derived. It is interesting to point out that the MAP

estimate Is unique even if the number of array elements is less than the

number of signal paths.

The optimum array processor, for detecting multipath Gaussian signal s

with known arri val angles , has a quadratic structure. In a two—path signal

example, the optimal array has two beamformers pointing in the directions of

two signal paths and has a term which cross-correlates both beamformers,

even when the signal s are independent from path to path. The cross-correlated

term takes care of the leakage of signals from paths other than the beamforming

di rection through each beamformer. The performance evaluation of the processor

is achieved by the development of a general method called “the eigen value

method” . This method may be used to find the analytical expressions for the

~ 
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probability of false alarm and the probability of detection 
~ D° for array

detectors Implementing a quadratic sufficient statistic. Several exampl es are

presented to illustrate the use of the elgenvalue method.

The family of Receiver Operating Characteristi c (ROC) curves for detecting

mul tipath Gaussian signals clearl y show the di fference between the performance

for detecting multipath Gaussian signals and that for detecting multipath

known-wave form signals. The ROC curves for multi path Gaussian signals cases

are not only a function of the array factor and the mul tipath structure , but

also are non—linear on normal-normal probability paper . It is also shown that

the spatial discriminating capability of array detectors improves performance

at high signal-to—noise ratios . In the performance comparison between optimal

array detectors and an optimal signal array element detector , we found the array

not only increases the output signal—to—noise ratio by k times, where k is the

number of array elements, but also improves P0 in the high 
~F region.

The comparison between performance of an optimal array and a suboptimal -

array is al so carried out to give insight regarding the trade—off between

processor complexity and detection performance. In the two-path signal example,

the single beamformer array which points a beam in one of the two signal

directi ons needs 10 elements to achieve the same performance as an optimal

array wi th only 4 elements , for SMR= I (signal-to-noise ratio per element).

Performance of a double beamformer array which has two beamformers pointing

in the directions of two signal paths is evaluated for comparison . These

results show that the performance difference between the double beamformer

and optimal arrays is noticeable only for high signal-to-noise ratios and a

smal l array aperture. This implies that the cross correlation structure

in the optimal array is not very important if either the array aperture is

(I i )
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- large enough to fsolate signal paths or the signal—to-noise ratio is low .

The performance compari sons made in this report give some insight regarding

the trade-off between processor structure complexi ty and detection performance ,

whi ch are major factors to consider in Implementing a rray detectors .

( i i i )
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CHAPTER I INTRODUCTION

Li Underwater Acoustic Transmission .

The acoustic sound propagation in an ocean channel is very compl i-

cated. The modes of sound propagation depend on the sound velocity

profile of the underwater channel . The detailed physics about the

channel characteristics is described in Tolstoy and Clay [1] and Urick

(2]. The sound velocity in the ocean depends on temperature, pressure

and sal inity. Several typical velocity profiles are shown in Fig. 1.1

(from Tolstoy and Clay [1]). In general , the temperature at the sea

surface is higher than that in deep water. The water temperature is the

factor that dominates sound speed for the first 1 ,000 meters in depth.

Beyond that, the pressure becomes the overri ding factor. The shape

of the velocity profile determines the multi path structure of the sound

channel . Fig. 1.2 shows the sound rays associated with a particular

velocity profile. The sound transducer is located at a depth at which

the velocity is minimum. The rays are calcul ated using a ray tracing

program. By this method we may predict the ray incident angle , the

transmission loss and the arrival time. Since many other envi ronmental

factors such as a random surface, a time-varying sound velocity profile,

and a random medium are not considered In this method, the results ob-

tained from this method can only be used for rough estimates. In Fig. 1.2

we see di fferent types of propagation. Some rays which do not touch the

surface or bottom are called refracted-refracted (RR) rays. Some rays

I
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which touch the surface are called refracted—surface-reflected (RSR)

rays. Some rays which touch both the surface and the bottom are called

surface-reflected-bottom-reflected (SRBR) rays. The multipath signal s

received at the receiver depend on both the depth and the range of the

receiver locati on. This resul t has been presented in a paper by

Flanagan, Weinberg and Clark [3].

1.2 Review of Previous Research

Many different approaches have been used to study underwater acousti c

channel characteristi cs in the past two decades . An important paper by

Steinberg and Bi rdsall [4) showed that the phase of the recei ved wave—

form in a fixed-system in the straits of Florida varied less than 1000

during intervals of 1/2 - 1 hour and that the multi path structure of the

signal had stabi lity on the order of 5 minutes. Due to the fact that

the phase is much more stable than the ampl itude, the phase estimates are

Fourier transformed to find the relationship between the internal waves

and the fluctuation of the phase spectrum [5 ,6,7]. The discontinuity of

the phase curve which is associated with the deep amplitude fading is

attributed to the signal cancellati on of multipath signals [5]. The

fluctuation of signal energy results in a nonstationary confidence inter-

val for the phase estimate. Especially during a deep fade, the phase

information is lost. A key to minimizing this signal cancellation is to

separate the multipaths spatially. This will be discussed in later

chapters .

The multipath structure of the underwater acoustic channel was

investigated by Steinberg and Birdsal l [4]. In that experiment a

pseudo random sequence was sent through the Straits of Flori da and the

_ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _  
~~~~~ --~~-~~~- - -~~~~~
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received signal was matched to the sequence to find the multiple time

arri vals. The temporal separation of diffe rent arri vals showed the

existence of multi paths [4]. Dyer [8] examIned the signal fluctuations

in the ocean for both multipath and scattering processes and showed that

the multipath propagation dominates the fluctuations. Adams [9] investi-

gated the fluctuations of the transfer function of a random niultipath

channel . Both mean and vari ance of the random transfer function were

calculated for his mul tipath model .

In order to obtain spatial information about the channel , linear

arrays have been used to process underwater acoustical data [11, 12, 13].

Jobst [10] modelled the number of multi paths as a Poisson distributed

random variable. Using this model the spatial coherence and temporal

coherence are estimated for a hori zontal line array. it is shown that

spatial coherence decreases wi th increasing angle from broad side , with

increas ing frequency, with increasing sound speed, and with increasing
vertical arrival angle at the receiver. Williams and Battestin [11] used

a vertical beamformer to isolate a single RSR (refracted-surface- reflected)

path and to investigate the phase coherence time for single and rnultipath

signals. Urick [12] showed the effect of multipaths on the gain of an

additive vertical array. The phase coherence, in terms of the cl ipped

correlation coefficient, falls off rapidly with horizontal range of the

source. I~owever, no amplitude stability of a single path was mentioned in

their papers. There are other papers that i nvestigate theoretical signal

processing techniques for arrays. Hlnich [14] used match fil tering concepts

to formulate a maximum likelihood estimate of source depth using a vertical

array. The eigenfunctions of the underwater wave guide are used to match
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the array to the received signal. Bucker [15] used a similar method to

locate sound sources in shallow water.

1.3 Approach of This Report

The relationship between the error In the phase estimates and the

signal-to-noise ratio is presented in Chapter II. It is useful to have

either the variance of the estimate or a confidence interval along with

the phase estimate so that we may judge the goodness of the estimated

phase. We will show that multipath signal cancellation can contribute to

the loss of signal-to-noise ratio during a deep fade and therefore we would

l ike to investigate the signal along each path. To distinguish multipath

signals spatially, a vertical array is used in Chapters III and IV. The

resolved path technique is introduced in Chapter III for estimating the

signal waveform of each path. Both the signal ampl itude and phase are

estimated simultaneously. The signal waveform is assumed fixed but unknown.

The maximum likelihood estimate of the signal waveform is shown to be an

• unbiased linear minimu m mean square error estimate. In Chapter IV , each

single—path signal is assumed Gaussian with known vari ance. Both maximum

a posteriori probability estimates of the mul tipath signals and the likel i-

hood ratio test are formulated. A beamforming structure in the optimal

detector will be pointed out in Chapter IV . The detection performance of

optima l array detectors is evaluated in Chapter V by using an “eigenval ue

method”. The probability density function of the sufficient statistic is

shown to be dependent on a set of elgenval ues. The general form of the

probability density function is derived analyti cally. The probability of

detection and the probability of false alarm are also obtained in closed

— -.---- -
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form. The eigenvalue method can also be applied to eval uate the detection

performance of suboptimal detectors. The performances of subopti mal pro-

cessors , s uch ~s a singl e beamformer and double L�amformers, are compared

• wi th that of the optimal processor. The result of this compari son will

clearly show the trade-off between the complexi ty of processor structure

and the detection performance.

L
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CHAPTER II
PHASE ESTIMATION PERFORMANCE OF A SINGLE HYD ROPHON E

The time samples of signal phase estimates have been used for investi-

gating the envi ronmental factors in the underwater acoustic channel

[4,5,6,7,11 ,12]. However , the performance of the phase estimate usually

is not presented along wi th the estimate. Some misleading concl usions

may be drawn by examining only the phase estimate, especially in a deep

fading situation. A typical piece of underwater data is presented in

Figure 2.1 (from Steinberg and Birdsall [4]) to show both the amplitude

and phase of the received waveform simul taneously. During deep fades,

when the detector output is less than -3OdBub , the phase angles have

180° or 90° jumps. The deep fades may be attributed to multipath signal -

cancellation. Since the signal in that experiment is a single frequency

sine wave, phasor diagrams are shown in Figure 2.2. A noise free signal

phasor diagram shown in Figure 2.2(a) demonstrates signal cancellation

in a four-path channel . If signal component 54 rotates 1500 , then the

magni tude of the resulting signal phase changes a lot. The resultant

signal phasor in Figure 2.2(b) Is much longer than that in Figure 2.2(a).

The fluctuation of signal energy does affect the performance of the

signal phase estimate. Thomas [17] and Cederquist [18] investigated the

error probability density function of the phase estimate as a function

of signal-to—noise ratio. 

-- ~~~~~~~~- - -
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~~ 
is the signal-to-noise ratio.

and x is the error of the phase estimate.

The effect of signal—to-noise ratio on the phase estimate can also be

demonstrated graphically In Figure 2.3. Suppose there are two signal

phasors, one wi th amplitude a1 , the other with amplitude a2, and both

are corrupted by an additi ve noise phasor n. The resulting phase estimate
-

• error of the phasor a1 is and that of the phasor a2 is ~p2. In Figure

2.3, we can see that 
~
p2 is larger than ~~ As shown in Figure 2.4, the -

density function peaks up as the signal-to—noise ratio increases.

Cederquist [18] also calculated the limi ts for a 90% confidence level [19].

The curves shown in Figure 2.5 are from Cederquist [18]. We can see that

at low signal -to-noise ratios such as -10dB, the 90% confidence interval

covers ±160°. This implies the uncertainty of the phase estimate is very

high for low signal—to—noise ratios.

In a single hydrophone case, the receiver cannot distinguish signals

with di fferent incident angles . The corresponding signal-to-noise ratio

(SNR) depends on the relative phases at the hydrophone of the di fferent

mul tipath signals as shown in the following equation :

Single hydrophone:
M
Eame

i8m

SNR = m=l 
2 

-~~~—- -- - -~~---— -- - --..-- ——— -.-—--•-- - •
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where am is the amplitude of the mth path signal , and

is the phase of the mth path signal .

In the underwater acoustic channel, the variation of water temperature

due to tides and internal waves changes the acoustic sound transmission . 
--

The phase of each path varies widely for small variations in the sound

velocity profile [1]. A detector output curve shown in Figure 2.1 shows

the fluctuation of the amplitude of signal plus noise. If we assume the

output signal -to-noise ratio fluctuates as much as the detector output

shown in Figure 2.1, then it is meaningful to draw confidence intervals

of the phase estimate along with the phase output curve shown in Figure

2.1. Clearly, we will have a nonstationary confidence interval . It is

a reasonable practice to consider only the portion of the phase curve In

which the signal-to-noise ratio is above a certain level . Of course,

this will introduce new problems in dealing with data discontinuities

where the signal-to-noise ratio is not high enough.

Al alternative method of dealing with the signal cancellation problem

is to isolate single paths by using a vertical array. In Chapters III and

IV , methods to resolve multipaths spatially are investigated wi th the hope

that the resolved paths will be found to be more stable and that other infor-

mation on channel characteristics will be obtained .
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CHAPTER III

NON-RANDOM PARAMETER ESTIMATION USING A VERTICAL ARRAY

3.1 Problem Geometry and Notations

The problem geometry of a vertical array in a multipath channel

• is shown in Figure 3.1. The time delay between adjacent elements

associated with the ruth path , tm~ 
depends on the vertical incident

angle •m~ 
Since the inci dent angles of mul tipath signals are different,

the time delays of multipath signals are different from path to path.

The time delay associated with the mth path can be expressed as:

0 cos •tm = C 
m (3—1 )

where 0 is the separation of adjacent elements,

C is the sound velocity,

is the vertical inci dent angle of the ruth ray.

Throughout this report the incident angles of the multi paths are assumed

known. In a practical situation , these incident angles may be obtained

through a ray tracing method. -

We use M to denote the number of paths, and K to denote the number

of array elements. We consider a single frequency sound source in a

mul tipath channel . The received data Is Fourier transformed to obtain a

phasor of a signal frequency. The phasors for a time-delayed waveform

are well-known to be the original phasors mul tiplied by a complex phase

_______ _________________ _ _ _ _ _ _ _ _ _ _ _  —- .~~~- —- - -. - ~~~~~ .• - -.



10

shift e J~
)t. When the signal is present, the received data is the sunina-

tion of mul tipath signals and noise. The complex vector R represents the

phasors received by array elements and S represents the phasors of mul ti-

path signals. —

R A S + n  (3-2)

where RT = (R l,R2,•*• IRK)

- • R1 : phasor of received data at the ith element.

=

phasor of signal from the ruth path.

n = (nl,n2,s..,nK

n1 : Gaussian noise received at the ith element.

A = ~~~~~~~~~~~ a K x M matrix

= (1, exp(jwrm], exp[jwtm2],•.•, exp(jwt(K-l)])

is the pointing vector of the mth path.

A four path noise—free phasor diagram is shown in Figure 3.2(a) to

illustrate the equation above. At the ith element, the phasor of the mth

path, 5rn~ 
is equal to ame’

1°m where am is the ampl itude and em is the

phase of the ruth—path signal . The signal phasors received at the (i+l )th

element is related to that received at the ith element by the following

equation .

= 5m exp[jwr~] 

~~~~~~~~~~~~~~~~~~~~~~~~ • •  •~~~~~~~~~~~ ••
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where S~ is the signal phasor from the ruth path received at the (i+l )th

element and Sm is the signal phasor from the ruth path received at the

ith element. The time delay tm contributes the phase shift In

Figure 3.2(b) every signal phasor in Figure 3.2(a) is rotated by wt m
degrees. The resultant noise—free phasor Ri+1 turns out to be larger

than R
~
. This indi cates that although one element has a potential signal

cancellation problem , other elements still receive some signal energy, if

the vertical angular separation between paths are large enough or the array

is long enough to resolve paths.

3.2 Maximum Likelihood Estimate (MLE)

When the signal waveform is fixed but unknown , the maximum likel i hood

estimate can be used to estimate the received mul tipath signals [20].

Schweppe [21] developed the “decoupled-beam” data processor for estimating -

S 

signal waveforms from mul tiple-signal sources. The maximum likelihood

estimate (MLE) used in his paper is equivalent to the Linear Minimu m Mean

Square Error Estimate (LMSE). The technique can be used for estimating the

mul tipath signals. The MIE is derived in the following equations by maximizing

the conditional likelihood ratio, A(RIS).

A (RI ) exp [-(R-A ~)*9.~ (B~-~. .~~.) 
+ R*~~

l
~] (3-3)

where Q E[n n*] = 
2t (3-4)

~-l l~~ (3..5)

ST [S1, S2,..•, SM]

and is the phasor of mth path signal .

_ _  --- -~~--~~~~~~~~~~~~~~~~~~~~~~~~~ ---- - • ~~~~~~-- - .  ~~~~~~~~~~~~~~~~~~~~~ -
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A(RIS) is also called the likelihood function. The likelihood function is

maximized by minimizing the first term of the exponent in equation (3-3).

He~ice, the maximum likelihood estimate of the signal can be found from the

foUowing equation:

(3-6)

If the dimensionality K of vector R is larger or equal to the dimension-

ality M of the vector 5, then we may sol ve for the maximum likelihood esti—

• mate of the received multipath signal . In other words, if the n umber of

array elements Is no less than the number of multipaths, then it is possible

to resolve every path and to find values of the MLE for signals arriving

along each path. Otherwise, If the number of array elements is less than

• the number of paths, then the MLE estimate is indefinite. (i.e., we may

have an Infinite number of solutions.) In general , the Maximum Likelihood

Estimate of the received mul tipath signals, 
~11LE’ 

can be expressed as:

~1tE 
(A*AJ~~A*R for K>M (3-7)

Since A A  is a K by K matrix and the rank of matrix ~ is not greater than

* *min(K,M) the inverse matrix of A A does not exist if the rank of A A is

less than K. This Implies that M cannot be less than K. If A is a square
S 

matrix , then the maximum likelihoo d estimate for the received multipath

signals is qui te simple.

~MLE 
= for K=M (3-8)

- .  5- • - -  ________ 
~~~~
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The mean and the covariance matrix of 
~.MLE 

can be derived for K>M.

E[
~~~E

] 3 E [(~*&Yi
~
*
B.] (3-9)

(A AY A A S  (3-10)

cov[
~4lLEJ 

= E[( LE-~
j(
~~~E

-SJ] (3-Il)

2 (A A) E[n n J (3-12)

* -l 2
= 

~~ ~n

A K—2, M~2 example is demonstrated to show the operation of the
estimator and its performance. The matrices A and A 1 

are shown in the
following equations.

1 1
• A :  (3—14)

e~
’
~ 1 e~~

1
~2

1 1 IejWT2 -1
S e’~~2 

_eJ~
)Tl 1 

(3—15)

Since the matrix A in this example is a square matrix, the MLE can be
expressed as:

_ _ _  - j--
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Si

~MLE 
= &

_l
~. (3-16)

2

e3’~2 R1 - R2
= 

1 (3—17)
e — -e ’~ l R 1 + R 2

In order to see the physical meaning of the matrix operation,

consider a noise—free case. When n20, the signal phasor received at

the first element, R1, is equal to the sum of the phasors, S~ and S2.

Similarly, R2 is equal to the sum of the phasors S~ and S~ where

S~ 
2 S1 e~~ l and s~ 2 S2 ~~~~ The noise—free phasor diagrams of

and are shown in Figure 3.3. The phasor components of R1 and R2 are

also shown in Figure 3. We notice that the resulting phasor R1 may

be very small. In Figure 3.3(c), the phasor diagram of the maximum likeli—

hood estimate of the signal from the first path, S1, shows the complete

cancellation of the signals from the second path. Similarly, the phasor

diagram of shows the complete cancellation of the signals from the

first path. This operation is called “infinite sidelobe rejection” by

Schweppe [21].

The mean and the variance of the estimate are usually used for

estimation performance measurements. It is qui te easy to show that the

maximum likelihood estimate is an unbiased estimate .

E
~~MLE] 2 ~(~~*A)_ l A*~J (3-18)

= Et (A*AY1A*A S +  c~*Ay
lA*~J (3-1 9)

£ (3-20)

The variances of S1 and are also derived in the fnl lowing equations.

_ _ _ _ _  - --• S --
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Var(S1) = E[(S1 - S1H (3-21)

2 

{e~~ 2 - eJwTlt 2 
[Var(R1) + Var(R2)l

( )  

-
-

2a 2
= 

1eJwT 2 - e~
’
~

lI2 
(3—23) 

V

Similarly, we may show that:

• Var(~~2
] = 

~~~~ 
- S2)

2] (3-24)

= Var (S1) (3-25)

From Chapter II, we know that the phase angle estimate depends on the

signal-to-noise ratio. It is interesting to compare the performance of

the signal phase estimate of the resolved path method with that of the

single hydrophone method. The expressions for the signal—to—noise ratios

of these two methods are shown below,

a 2fei
CA)12 - e~

wtlI2
Resolved path (MIE) : SNR 2 for 1=1 ,2 (3-26)

‘V

_ _  _ _  _ _ _  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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j  
a1e’~ i + a e38212

Single hydrophone: SNR 2 
2 (3-27)

where a1 Is the signal amplitude of the ith si gnal path ,

and is the signal phase of the ith signal path .

In the single hydrophone case, the signal-to—noise ratio goes to zero

even for multipath signals with large amplitudes if the signal phases, 81
and 

~2’ 
are 180° out of phase and the signal amplitudes are identi cal.

This signal-to-noise degradation may be minimi zed by employing the spatial

discrimi nating capability of a vertical array. As shown in equation (3-26)

the signal-to—noise ratio of the resolved path maximum likelihood estimate

is a function of time delays 
~ 

and r2, where the time delays are proportional

to the array element spacing. Since both and r2 depend on the separation

of array elements, proper control of the separation of the array elements will

increase the signal—to—noise ratio to its maximum at 2 a
~
/on

2. For a

K-element array the maximum signal-to—noi se ratio may reach K a~/ci~
2. From

the di scussion above we observe that the signal-to—noise ratio of the resolved

path estimate depends on the spatial resolving power of the array and the

signal-to—noise ratio can be increased by increasing the array aperture. If

the “noise l ike” fluctuation of the signal amplitude , as shown in the single

hydrophone case [4], is truly due to multipath signal cancellation, then

the resolved path signa l estimate should be stable enough to provide additional

signa l ampl itude information for studying the channel characteristics.

On the other hand, equation (3-27) shows that the signal-to-noise ratio

of the single hydrophone estimate depends highly on the relative phases of

signals from different paths. As shown in Tolstoy and Clay [1], the variation

of signal phase due to the variation of the channel temperature profile is 

_
_ _



17

di fferent from path to path . This implies that the sunined sIgnal phase

may fluctuate signifi cantly. Due to the potential signal cancellation ,

the signal-to-noise ratio and the confidence Interval of the phase estimate

may vary dramatically in the single hydrophone case. Since the fluctuation

of and r 2, which depends on the Incident angles of pl anewave arrivals

are relati ve stable compared to that of suniued signal phases, we may con-

• d ude that the resolved path method should provide additional information

for studying both the signal amplitude and phase.

‘I
L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~•~~~~~~ ~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~ •~~~• •



• CHAPTER IV

ESTIMATION AND DETECTION OF RANDOM MULTIPATH SIGNALS USING A VERTICAL ARRAY

The maximum a posteriori probability estimate (MAP) for each indivi-

dual signal path is presented in this chapter. The relationship between

the maximum likelihoo d estimate and the maximum a posteriori probabilit y

• estimate is also i nvestigated. The optimal array signal detector which

uses the likel ihood ratio test will be shown to have a beamformer structure

and cross—correlator terms. Only the structure of the detector will be

discussed in this chapter. The performance of the detector will be presented

in Chapter V.

4.1 Maximum A Posteriori Probability Estimate (MAP)

Suppose the multipath signals are uncorrelated zero-mean Gaussian

random processes. Then we may find the maximum a posteriori probability

estimate (MAP) for the random mul tipath signals. Assuming we know the

covariance matrix of the received multipath signal vector S, the MAP estimate

can be obtained by maximizing the probability of S given R. The expression

for p(S IR) is shown below .

(4- 1)

- 
p(R~S)p(S)- 

p (R) 
(4 2)

where * -1 * -lp(R~S) p (S) = C1 exp[-(~-A S) 
~~~ (B.4.~.

) - 
~~~~~

S 
and 

~~~~ ~ 
are the covar iance matri ces of rece i ved

mul tipath signals and received noises respecti vely. 

~~~~~~~~~~~~~~ -- _ - - _ j
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Schweppe [21] has deri ved the maximum a posteriori probability estimate

for Gaussian signals in uncorrelated Gaussian noise. The maximum ~~,

posteriori probability estimate of the signal , 
~~~~~~~ 

is expressed in

equation (4-4). Unlike the maximum likelih ood estimate, 
~~~ 

does not

have a K ~ M restriction.

= [&*&+  ~~2~~
_ l ]_ l

A*R K M (4-4)

A l though the number of array elements , K, is assumed no less than the

number of paths , M, in this chapter , the expression above is valid

even for K < M. We recall that in the expression for the maximum likel l-
*hood estimate , the matri x A A cannot be inverted if K < M. But, in the

expression for the MAP estimate the inverse of the matri x [A~~ +

dnø~ exist ever~ for K < M, because the rank of the matrix is equal to
rnax(K ,M). Th is is due to the introduction of a priori knowledge , Q~

,
into the processor. So, even when we do not have enough array elements to

resolve every path , we can combine the a priori knowledge with the observed
data to do a MAP estimate for the Gaussian signal for each path .

~~r the cases where K > M, there is a relationshi p between the MLE and the

MAP es timator. The exp ress i on for 
~MAP can be rewritten as:

• [ 1+  a 2(A*A ) Q ~]~~(A*A )~~A*R for K > M  (4-5)

= [ I 4  2(A*A)~~~~]~~S (4-6)
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- ______
This expression shows clearly how to bring in the a priori knowledqe i nto

the MAP estimator. Since all matrix operations are linear , we may derive

from 
~MLE by a linear transformation for K>M.

4.2 Structure of the Optimal Array Processor for Detecting Multipath

Gaussian Signals in Gaussian Noises -

The optimal array detector can be formulated by implementing the

likel ihood ratio A(R) which is defined as MR) = 
______  

[201. The
P~~~~ I H

0
1

probability of R, which is a complex random variable given the signal is

present, can be expressed as

p(R~H1) IT 
K{det Q.1}~ exp(—R Q~~ ) (4-7)

where = E(R R*IH1 ] = A E(S + E[n~~J (4-8)

Similarly, the probability of R given the signal Is absent is:

p(R~H0) ~
_K
{det Q0

Y ’ exp(_~*Q~~~) (4— 9)

where = E( RR~IH] = E (nn*] (4— 10)

The l ikel ihood ratio of R Is the ratio between equations (4-7) and (4-9). 

—• _ ~~~~~~~_--_ - ••--  _ • _
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detg0 * 1 * i
det g

~ 
exp( -R R + B~ 9~ ~J (4-11)

A sufficient statistic, y, which Is a monotonic function of A(R) , is
shown in the next equation.

y R*[Q~~ - R (4-12)

To simplify the detector structure, we assume that the multipath

random signals are independent from path to path.

Then,

~~ a g~~+ 5 s *~~ (4-13)

= + A ~ S S*]A* (4-14)

= 

~O + [!.1’!.2’~~~~!M
] 

~~~
• 

~2
• 

.

s 
(4—15)

SM

= + E 
~m 

~~ !m (4-16)
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where A =  [!1’!2’ ’ ’i.11 ] (4—17)

and ‘
~ m 

is the variance of signal from the mth path.

S 

From the structure of as shown in equation (4-16), we may apply the

well—known matrix inversion lenmia H times to find ~~~ The l enria [23]
is stated In the following equation.

(9 + u u~]~~ = ~~1 - 
~~~~~~~~~ 

1u * (4-18)
(1 + u B  u)

where u is a vector and B is a square matrix.

A M=2 example is -formulated to give more insight into the detector

structure. In the example we assume that the noises are independent from

element to element, so

(4-19)

We let the first two terms in the equation shown above be B1, such that

= a~ L + c~ !.i!.i • Then,

2 4

9 1 [a2 L + a
~ 

*~_l = _  !. i!. i (4-20)

1 +

—A
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an 
~ + 

~~~~ 

+ *~-l (4-21 )

= + cY
~2 

*~-l (4 22)

2

= ~~~~ 
- 

~ + 
2 *9

_l 1 (4-23)

~s2~-2 -1~ -2

After some man i pulations , we find:

-1 1 * * * * * *Q~ L~~~i!~i!.i 
- c 2~~~ +c 3[(!2 v1 )y

~v1 ~~~~
(v

1
y~~

)v
1!2 . 1

(4—24)

~~~~~~ 
( Ka~

T ~~~ + 
- 2

\ an (4—25 )
where c~ ~~ 

+ + 
~~~~~~~~~~~~~~ 

~~~ ~2 
~~* l 2

1

_ _ _ _ _ _ _ _ _  -5__~~~~~~~~~~~~~~~
___ II:
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a2 / ~ 2
S2 1  

_ _ _ _

c2 
2 

+ ~~~ 
a~~ a~ 

k*~ 
~2 

(4-26 )

and c3 = 

(
~ 

K:~~)( +_ _  

~~S~~~~~5 
~~*~~~2 

- . (4-27)

So, Q~~~~~
-Q

~~~

1 
= .4_ L- g.~ 

(4-28)

+ c2~~~
* 

- c3[ (~~~v1)~~~ + ( * ) *

(4—29 )

Consequently, the sufficient statistic y = ~
*(~~

l _
~~

l
)a can be expressed as:

y = Cl (~
*
~1 ~ (

* ) + (R* ) (!2
*
a)_c3 (c~

) (R *!~)(v l
*R) + * ) * ( * ]

S 

(4-30)

_ _ _ _ _  _ -

~~~~~~~~~~~~~~~~

_ _.--- 
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We may ca ll v1
5*
R a beamformer pointing in the di rection of the fi rst path .

Similarly, ~ R is a beamformer pointing in the di rection of the second

* * * 2path . The term (Rv 1 )(v 1 R) = ~~ R( can be physically realized as a
• beamformer pointing in the direction of x-~ 

fol lowed by an enve l ope
detector. The structure of the optimal array detector is shown in

Figure 4.1 as a combination of beamformers, envelope detectors and cross

correlators. The first and second terms in equation (4-30) measure

the output power of beamformers. The third term is a correction term

- 
which correlates the output of two beamformers. The effect of the third

S 

term on the detection performance will be discussed In Chapter V.

Although we only dealt with a single frequency case in this part, it

is not difficul t to extend this result to broadband signals. The di fference

between the single frequency and broadband signals cases is that one uses

time delays instead of phase shi fts for the broadband signals.

~~~~~~~~~~~~~~~



CHAPTER V
PERFORMANCE OF DETECTING MULTIPATH GAUSSIAN SIGNALS IN GAUSSIAN

NOISE WITH A LINEAR ARRAY

A general method called the “Eigenva l ue Method” for evaluating per-

formance of array detectors will be introduced in this chapter. The

method is general enough to cover all detectors which employ the quadrati c

sufficient statistic (i.e. y=R*Q R , where ~ is a hermitian matrix.) The

performance of the optimal detector will be evaluated and compared with

that of conventional suboptimal detectors such as the single beamformer

and mul ti beaniformer.

5.1 The “Eigenvalue Method”

Suppose the array signal detector has a quadratic sufficient statis—

* *tic y = RQ Rwhere Q is hermitian (i.e. ~ = ~) .  Then, we may find the

characteristic function of y using the following equations.

= E~[exp(i$y)) (5—1 )

2 E9{exp(ioR
*
Q.~ J } (5-2) -

f  
*J [exp( i~R~~ R)] p (R) d R (5 4)

J ~_

where p(R) ir~~{det 
~~~~~~~~~~~~ (5-4)

V COV(~ ] ,

and •~(9) is the characteristic function of y. 

~~ •. 
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Then , •y(i~) t1J w~~{det 1}
1exp1-B~1

1
B~.
+ ~~~~~~~ B~ (5-5)

f 

~~~~ .}
_l
exp(_~.

*
y.~~L - isV ~1~JdR (5-6)

= {de~ L - i~ ~ ~u }1

To simplify the notation, we let G = V Q, where G is a square matrix with
dimension K. Any square matrix G Is simi lar to either a diagonal matrix

or a triangular matrix. We may -find matrices P 1 and P such that

P 2 B where B is either a diagonal matrix or triangular matrix with

all the eigenvalues of G on the main diagonal . Then, det(L - i,~] can

be expressed as:

detf I - iS ~
] = det{P~~}det[t  - is ~j det{P} (5-8)

= de~~L -  15 P ’9~~J (5...9)

= detf I - is ~j (5-10)

= (1 iSA L) 
(5—11)

9.21 -

where is the elgenvalue of matrix (i,

S 
Hence, the characteristic function of y becomes

= (1 - iSA9.)~ 
(5—12)

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  • - - _ _ _ _
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- 

.The density function of y can be obtained di rectly by taking the inverse

transform of the character’istic function~~y(is) of i. Dyer E26] used

this technique to derive the expressions for the density functions of y as:

(1) All X~s are equal to X.

1 y
K_l exp(_y/X) for y>O

A (K) for y;O (5-13)

(2) Each has a distinct value

* 
ç

1 h~~ exp(-y/X9.) for y~0 (5-14)
for y cO

0

where h
~ 

= ~~~~~~ (1 - (5-15)

(3) m groups of eigenvalues, each group has ML identical elgenvalues.

- 

m

p(y)* 
m ~~~l-M9. 

Erp i ) , 1 1 X
(121 II 

~~~--— - — 5 --
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I exD(-t ky) 1 1
+ iA j I)~3j 5— 6)

J~n k —iXn

The above equations are derived using calculus of residues. The first

two equations are very useful , but the last equation does not give us

avy idea of the functional form of p(y). Hence, another approach is

taken in this report as will now be shown.

We recognize that the probability density function corresponding to

the characteristic function (1 - i$X9.Y
1 is exponentially distributed.

In other words, if = (1 - isX9.Y~ then,

p(x) *~~—ex p(- x/X9.) 
for x~O (5-17)

1 0  for xcO

We can view the random variable y as a sum of independent random variables ,

x1 , because the characteristic function of y can be factored as

~ (is) = 
~x 

(iS)’~$ (ls)’’~’$ (Is). Since the probability of x1 is expo-y 1 X2 Xk
nentially distributed as described in equation (5—17), the nrobability

density function of y is the convol ution of exponentially distributed proba-

bility densities. The resultant function p(y), obtained from the convol uti on , will 

- - - 5 -  - —~~~~-——- -- -- • - ----~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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take one of the followi ng three functional forms.

(1) All A2, are equal to A.

for y>O 
(5-18)

0 for ycO

(2) Each A9. has a disti nct value.

E C
~ 
exp(-y/A9.) 

for y>0 
(5-1 9)

a for ycO

K-2
where C = ___________

~~~A9.~~ A~)

‘ist
(3) m groups of elgenvalues, each group has ML Identical eigenvalues.

p(y) E [M
9.
_l 

d Y
(ML 1 r ) exP(_Y/X

)] 

for y>O (5—20)

r~O 
r~

0 for ycO

where M9. Is the number of elements In the 9th group,

— ~~~~~~~ - -- - - 5 ,  ~~~~~~~~ •~~~~~~~~~~~~ — - —~~ • • —  -.
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E M9 = K,

and dr2 depends on the elgenval ues, but is not a 
function of y. From

equations (5—18), (5—19), and (5—20), we can see that p(y) is a finite

sum of functions with form yme~~. This functional form will gi ve us

closed form expressions for the probability of detection 
~~~ 

and the

probability of false alarm 
~~~ 

By definition , P0 and can be

written as:

~D 
= 1 p~ ,IH 1)dy 

(5-21 )

= 
f

pcy IH o )dY (5—22)

If we perform these integrals, we will have expressions like~fy
m~~ dy,

whi ch can be found in an integral table as: n

m-r 

S

r _ _ _ _ _ _f  Y
1’aY dY e~

’ (-1 ) 
(m- r) a’~

1

= can E (1)r+l m~ ~
m_r 

r+l 
(5-23)

r0 (m-r) a

_ _ _  - - — -— 5 - 5—- 55--~~~ ---— --- 5- - - -  -~~~~- 5- - —
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Eventually, we will not have any integral left in the express ions for P0
and In the next two sections, we will find the eigenvalues of G along

wi th the expressions for P0 and ~F 
analytically, for some special cases. In

general , the eigenvalues of the G matrix can be calculated using numerical

methods. There are computer programs developed at Argonne National

Laboratory and currently availabl e at many computing centers [24]

for solving eigenval ues of any complex matrix. After solving for the eigen-

values of matrices and G1, equations (5—18), (5—19), (5—20), (5—21),

and (5-22) can be used to calculate P0 and P~. This method which is cal led

the “Eigenvalue Method” can be used to cal culate the exact values of 
~D 

and

at any point on the ROC curve with the aid of a computer.

5.2 Optimal Performance Evaluation for Array Detectors

In this section, we will investigate some special properties of the

eigenvalue A9 In the optimal detector cases. We will also derive eigen—

val ues analytically for some special cases, Performances of the detectors

are compared to see the effect of adding hydrophones to the array receivers.

First, we would like to derive a general formula for performance

evaluation, From Chapter IV, we saw that a sufficient statistic for

likelihood ratio, y, can be expressed as:

y R*(g4~l - 9
1 )R (5-24)

where is cov(RIH0]

and IS cov(RIH1],

_____ _____ 5 — _ -S
~~~~~~~~~ — - -  — —S -~~~ - ~~~~

_ --— -5 -~~~~~~~~~~
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= E~(exp(i5y)}

= Egfexp (is~
*
~~~~~.j~ )BJ } (5—25) 

-

-

~~~5Tr K{det ~~~~~~~~~~~~~ isR*(~~ - Q~~)~]dR (5-26)

= 
f
~
_K

cdet 1}
_l
exp(_~

*
1~~C1 - iSV(Q~ - g~

’1 )~~JdR (5-27)

= ~de~~! - 1sV(~~ - ~~l )]}
_l 

(5-28)

where V cov(~~J (5-29)

We let G = V (Q~ - Q~
1) to simplify the notation . The matrix ~ un der

both H0 and H1 can be further expresse d as:

H0: cov (RIH0] (5—30)

G = g 1) cs-3l )

= — ~~ a1 1 (5— 32)

= — (~4 ~ ‘r’ (5-33)

H1 : cov(RIH1] a1 ‘(5 34)

= a1~~ 
- (5-35)

= a1 ~~l  (5-36)

- 5 - -  ——-- -  S - -’-~~~~~~~~~~ —-5-- -- -5  -- - - 5 -~~~~~~~
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From equations (5-33) and (5—36 ), we may find the relationship between

the elgenvalues of G and that of Q1 ~~ 
as:

A = 1 -  (5 37) 
--

t41 
~o

A G X 1 1 (5—38)
Q1QO

These two equations show that we need only to solve for the eigenval ues of

Q~ ~~ and then use equations (5-37) and (5-38) to calculate 
~ and0

AG . Furthermore , we may derive the relationship between and AG1 0 1

= 1 — l  (539)
0

AG
= 

1 (5—40)
~
AG

= 1 — (5—41 )

AG
2 

l+X (5—42)

This implies that once we know A G we can find A G very eas ily .
0 1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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There are special cases in which analytical expressions for the

eigenvalues of G can be obtained. These special cases will be shown as 
-
-

examples. To simplify the derivation , we further assume that
S which means the noises at the receiving array elements are independent

from element to element and have equal power.

Example 1: Single Path Signal

If we have only one path, then the covar iance matrix can be written as:

a1 ~ + 

~~~ 

(5-43

The matrices and G1 become:

(5-44) -

2 - c~ (o~ L + 
~~l 

~~ 
!.l
*
Y~ (5-45)

a1 = (
~ a~

Y’1 — I (5-46)

=4 a1 - L  (5-47)

_ _ _ _ _ _ _ _  _ _  - - - - - —S  
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= -
~~~~ (a~ I + 

~l ~ !.1
*) - 1 (5-48 )

a2

= T Ii 11
* (5-49)

an

From equations (5-45) and (5-49), we know that it is easier to find 11
than to find AG . AG can be found using the following equation.

0 1

~i 
= ~~~~~ ~~~~~

Ka~
= 

2 ~i 
(5—51 )~

= AG 11 (5—52)

ka5
2

Equation (5—52) shows the eigenvalue AG1 
= 

~~ 

and the eigenvector V1

of G . Once we find A , we may substitute A into equation (5-42) to

find A

AG 1 (5 53) 
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ko5
2

= 2 (5—54)
n

From equation (5—49), we observed that the rank of G1 is one. By using

equations (5-40) and (5—42), we know that a zero eigenval ue of either

or will Imply a zero eigenvalue of the other. So, the rank of Is

also one. Hence, the density functions of y under both hypotheses are

exponentially distributed as:

p(y~H0) ~~~— exp(-y/X~. ) for y>0 (5—55)
G0 

‘0

0 for ycO

p(yIH 1) = ~~~~~~ exp(-yfx ) for y>0 (5-56)

0 for ycO

Then , 
~D 

and 
~F 

become:

= 

J~P(yIHi )dY ( 5 5 7)

= exp(
~
n/XG ) (5-58)

P~ = f p(y~H0)dy (5 59)
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= exp(-~/X~~) (5-60)

The corresponding ROC curve has been identified as a power type ROC curve

by BIrdsall (25].

= (p)A (5—61 )

(XG \
= (P

0)\
~G
0J 

(5—62)

/ 

Ka\~~~ -

(1 + 
~
2 ) (5—63)

= P 0\

The ROC curves can be calculated from equation (5-63) as long as the total- -

2Ka5
signal-to-noise ratio, 2 is specified. A set of ROC curves with

different A values are shown in Figure 5.1. The slope of the ~urves in

Figure 5.1 decreases as the A value increases. As shown in Figure 5.1

the slope of the power type ROC curves is always less than the slope of

the ROC curve of the known—waveform signal case [20]. From equations

(5-61) and (5—63), the parameter A can be identified as the total signal—

to-noise ratio plus one. By using this relation , we may look at Figure

5.1 again and find that the performance Improvement measured on normal-

normal paper Is not linearly proportional to the signal-to—noi se ratio.

In the high P0 and low 
~F 

region , the performance Improvement is less than

that in the low P0 and low ~F 
region for the same signal-to—noise ratio

Improvement. These observations show the shortcomings of using detectability

_ _ _ _ _ _ _ _ _
_ _
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index as a performance measure for the Gaussian signal case.

Example 2: Two Path Signals Detected by a Two-Element Array

In this example we assume two signal paths (M=2 ) and two elements (K=2)

and use the characteristic equation det[a1 
- xiJ = 0 to sol ve for A. Since

= ~2 
~~~
, the matrix is equal to 1Q .~

. From equation (5—36), we
2

find the relationship between AG and A as follows:
1

AG 
—]
1AQ - 1  (5-64)

1 1

Substituting equation (5—64) into equation (5-40) we have:

a2
AG = 1  -~~iL. (5-65)
0 Q1

The key to obtaining Ac and Ar is to solve A from the characteristic
l
i 

10
equation, det(Q1 - Afl = 0.

- XI = + a~ V1 V
1~ + a~ ~ - XI (5-66)

- A 0 1 e~’~
1l 

- 

1 e~~ 2

= .~ 2 (5-67)
2

0 
0
~ 

- A c i 1 e 3wT 2 1
- J - .

det [~~1 
- Afl = (a~ + a~ + - A ) 2 

- a~ e1~~l + ej~
T2 2 (5-68)

The eigenva lues of a1 can be solved very easily from equation (5—68). 

-
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A = a2 + a2 + a2 ± a~ e
J
~
t1 + a2 e3~

T
2I (5-69)

1 ~l ~2 ~ S 1 S2

The elgenvalues of G1 and become:

AQ
AG 

= —~~. — l  (5—70)
1

a2 + a2 I a2 e1~~l + a2 e~~
T2S1 S., ± t  S, S.,

= 2 (5—71 )
an

2a
A = l _ . ~!!~

_ —

AQ

a2 
+ a2 ± I a2 e1

~~ 1 + a2 e1
~~2

= ~i S2 ~2 (5—73)

a2 + a2 + a2 ± ~ a
2 e1

~~ i + a
2 el~

t2n 
~i 

S2 S 1

The two non-zero elgenval ues of a1 and are distinct exceot for the

rare case that a~~e
1
~~l + a~ 

e3Wt2~ = 0, The density function of y

takes the form of equation (5-7). The probability of detection (P0)

and the probability of false alarm 
~~~ 

become :

I 

-~~~-- - -_ -S--— -- - --5 - —--
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A G A G
P0 

1 ,1 exp(- ~ + 1,2 exp (-. ~ )
1 ,1 ‘1 ,2 ‘

~ ,~~ 

G1 ,2 - A
G

1 1 ,2
(5—74 )

AG A
0,1 

— exp(- ~ + 
130,2 exp(- ‘~ )

0,1 10,2 ‘0,1 0,2 0,1 ‘0,2 (5 75)

where AG and AG are expressed in equation (5-73) and (5—71 ) wi th
0,1 1,1

positive sign and A13 and AG wi th negative sign.
0,2 1,2

In order to examine the character 0f the ~0C cur ies, we considered a

specifi c case and pl otted the ROC curves in Figures 5.2 and 5.3. In

Figure 5.2 the optimal performance of a 2-element array for detecting

2-path signals are plotted for di fferent total signal-to-noi se ratios. The

signal incident angles are assumed to be +150 from the hori zontal axi s

and the signal strengths from both paths are assumed equal . The ROC

curves are similar to the power type ROC curves shown in Figure 5.1. We

woul d al so like to examine the RUG curves for 2 path signals with di fferent

si gnal strengths. The ratios 0f signal strength are assumed to be 1:1 ,

2:1 and 10:1. In Figure 5.3, three sets of curves are drawn on normal-norma l

paper. By comparing these curves we conclude that the performances are almost

equal for low signal-to-noi se ratios . However, for high signal-to-noise

_ _ _ _ _ _ _ _  
_ _ _ _ _ _  A
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ratios , the case in whi ch each path has equal signal strength gi ves the

highest performance among the three.

Example 3 M Signal Paths Detected by a Two-element array

The extension of the two—path results in example 2 to the M—path

case is straight forward. For the P1-path signal case, fl1 becomes :

2 2 * 2 *
~i 

an l+~~s1
!i~~l 

+ •
~~ 

$ 4~
_
~4 

(5-76)

Consequently , the characteristic equation is:

2

det( 
~ 

- Afl (a~ + •.. + + a~ 
- x) 2 

- 

~~l 1 e~~
ti

and the eigenvalues of A~ are

E + a~ ± E a~ e~~
Tl (5—78)

The eigenvalues of and can be expressed as:

M P1

E a2 ± Ea
2 

e~~ l

A * ~~~ 
s1 i~1 5j ( 5 7 9)
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M M
Ea ~~+j E ci2 e~~

)Ti
A i—i I ial ~I (5 80)
~ a~ + ~~~ a~ ± 

~~~ a~ e~~
t
ij

1—1

By substituting equations (5—79) and (5-80) into equations (5-73) and

(5-74), we may find P0 and P~ for the M signal path case.

Ten si gnal paths with equal spatial angular separations are assumed

to be wi thin the range of +15° from the horizontal axis. The signal strength

of all paths is assumed equal . The ROC curves of the 2-element array

detector are plotted in Figure 5.4. The general shape of the curve is

similar to the curves in Fi gure 5.1. This may be explained by the fact

that there are only two non-zero eigenvalues and one of them is dominant

under hypothesis H 1 . Hence, the density function of y under H1 is very

similar to an expontial curve and the resulting ROC curves are similar to

the power type ROC curves. The results shown in this example also demon-

strate that it is not sufficient to characterize the ROC curves by using

only the mean and vari ance of the sufficient statistic y. In this case,

there are only two non-zero elgenval ues in spi te of the number of signal

paths. The density function of y under both hypotheses is very much di fferent

from the Gaussian di stributi on and cannot be characteri zed completely by

only the mean and the variance of y. Besides , one of the two non-zero

ei genvalues of is much larger than another. This is why the ROC curves

for thi s case , as s hown In Figure 5.4, are very similar to the power type

ROC curves.
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For any matri x , the eigenva l ues can be evaluated by solv ina the

equation det[2 - Xfl = 0. However, if the dimension of the matrix is

larger than 4, the eigenvalue cannot be solved for analytically. Even for

a (3x3) matrix case, obtaining the eigenval ues can be quite tricky .-

Example 4 will show a case with two signal paths and a 3-element array. H

Example 4 Two Signal Paths Detected by a Three-element Array

We assume P1—2 and (=3 in this example, where M Is the number of paths

and K is the number of array elements. The covariance matrix becomes:

a~ I~ 
a~ V1 !.1* + v (5-81)

Then, S

- AI .(a~ - A)I + a~ v1 v.~
’ + a~ ~2 (5—82 )

- A 0 0 
1 e~

Wt1 e2jWTl

Q a~ - A 0 2 e i~
t1 1 e~~Tl

0 0 a~ - A e_JWTf e_ i
~

Tl 1

11. 1 s y S : S~~~~Ss,!~~ nr - - - - - - - ~~ ~~~~~~~~~~~~~ 

- -
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1 e~~ 2 eZi
~
T2

+ a2 e 1’
~ 2 1 e1’~ 2 (5-83)

e 21
~~2 e 1

~~2 1

and,

det(a1 - Afl = (a~ + a~ 
+ - A ) 3 + ( A ) 2 A2 + 4 A2~ S

+ — ) t ) ( A~A2
’
~ + 2A1A1 ) (

where A1 = a2 e~~
tl + ~2 e3~~2 

(5-85) 
-S1 ~2

and A = a2 e2
~
jWt1 + a2 e23Wt2 (5-86)

From equation (4-29) we know that the mat:ix 

* * *- 

~ 
cl ~i ~i ~~zi~ 2 - c 3[ (~~ ~~~~~ 

+ 
~~ ~~~~~ 

1 (5-87)

has rank 2. We also know that both 90 (9~ 
- ge

l) and

a1 ~~~ 
~~~~~~~ — 9~~~~~1

) have rank 2. This Impl ies that one of the solutions

- -
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to the characteristic equation of and has to be zero. In other

words, one of the elgenvalues of a1 should satisfy the followi ng two
equations.

a2
A13 = 1  -~~ --= 0 (5—88)

0
AQ

~1 a~

We found that should be equal to c12 to satisfy both equation (5..~8)
1 n

and equation (5-89). This elgenvalue, A~ = a2 
, will be verified withn

the following equations.

det(a1 - AQ j J  = det(a1 - a~ n (5-90)

= det[a~ v1v~~ + a~ 
~~j~*] (5-91 ) 

-

* *Since the rank of a~ v1v1 + a2 y
~
y
~ 

is two and the dimension of the

matrix a1 Is three, we can easily see that det(a1 
- = 0~ This

shows that A~ = a2 is indeed a solution to the characteristic equation
‘•1 ~

of ~~~~~~. The next step is to reduce the 3rd order equation by dividing

det(a1 
- AL] by (a~ - A). After some manipulations we obtained a simple

second degree equation In A.

ii
,

L 
--

~~~~~~~~~
--- -

~~~~~
-
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ -~-S--- -~- -~- _ J
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det[a1 - AU 
3~~2 + a2 )2 + 3(a 2 + a2 )( 2 

- A) + (a 2 
- A ) 2

a~~~~X S
1 S

2 ~l ~2 “

_ [A
2A2

* + 2A1A1
*] = 0 (5-92) 

- 
-

where A1 and A2 are defined in equations (5-85) and (5—86).

We may solve the second degree equation to get X~‘11

2 2 1 2 2 2  *-3(q + a )±~~j
-3(a +a ) + 4(A A +~~A A  )

(a~~
_ X )  

2- 

(5—93)

so ,

3(a2 + a 2 )
X

Q 
= + 

S
1 ~2 ÷ 1~~/ -3(a~ + a~~ )2 + 4(A

2
A
2
* + 2A

1
A 1
*
) 

S

(5-94)

where _3 (a
2 4a 2)2 + 4(A A * +2A A *) ~~~ ~~~~~ ~ 6a 2 a~
~l ~2 

2 2 1 1 s1 s2 I

I j2wt
1 
+ j2wt2 -j2w r2 + j2wt1~ ( 

-~~wt
1 

JcAr r
2 

Jwt 1-~wT 2
~e ~~e 1 + 2  \e 

5-~~~~~~ -~~~~~~~~~—-  - 
S

S———~~~~ — -  5 — . - -— - - - -*5—--—-— 5-
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Substituting equation (5—94) into equations (5-70) and (5-72), we can

get A 13 and xG0 1
To show the detection performance of the 3-element array, we use

the same two signal paths as in example 3. The optimal ROC curves for

— several signal—to—noise ratios are shown in Figure 5.5 for a 3—element

array. We notice that there are only 2 non-zero eigenva l ues because

there are only two paths. In general , the number of non—zero ei gen-

val ues is no larger than min(K,M), where K is the number of array elements

and M is the number of signal paths. In Figure 5.5, the shape of the ROC

curves for a 3—element array is similar to that in Figure 5.2 , and is

apparently not like normal ROC curves which wo uld be the resul t for the

case wi th Gaussian distributed sufficient statisti cs under both hypo-

thesis. By using the equation A = 1 + K.SNR, we also recognize that the -

slope of the ROC curves in this example is slightly higher than that for
the power type ROC curves shown in Figure 5.1.

In order to see the performance improvement by adding hydrophones

to the array recei ver, we make the performances comparison among arrays

with different numbers of elements in the next section .

5.3 Performance Comparison between Optimal Array Processors with

Different Numbers of Elements

In the previous section , we have derived performance evaluation

methods analytically for some special cases. However, we w ill not solve
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every problem by using the analytical method because it is too tedious

and error prone. A numerica l method for finding the eigenvalues of a

compl ex matrix is shown in Appendi x A. By employing the software sub-

routine package EISPACK, a computer program for evaluating the detection -
-

performance numerically has been deve l oped to find the performance of
arrays with more than 3 elements. To make sure of the correctness of

the computer program, we have checked the numerical results wi th the ROC

curves obtained from the analytical method for several cases.

We use the case with two signal paths coming in at +15° from the

horizontal axis as an example to show the detection performance improve-

ment due to adding hydrophones to the array. In Figure 5.6 and Figure

5.7, performances of arrays w ith one , two, and three elements are plotted

2 2a
~ ~~a5

for di fferent values of signal-to-noise ratio per element, SNR = 1 
2 

2
an

where ~
2 and a2 are signal power of path 1 and path 2 respectively.S

1

The ROC curve has a slo pe l ess than tan 45° on the normal-norma l paper. In

genera l , the slope of the ROC curves is smaller for high signal—to—noise

ratios than for low signal—to—noise ratios. We also notice that the

performance improvement obtained by adding one hydrophone to a 2-element

array is less than that obtained by adding one hydrophone to a single-element

array for SNR=lO . However, for low signal-to-noise ratios such as SNR of

1 and 2, Improvements from adding one hydrophone to a 2-element or a 3—el ement

array are nearly the same. This phenomenon can also be seen by comparing

the solid lines In Figures 5.8 and 5.9. In Figure 5.8, the ROC curves for SNR= I

-- -- - - 5--- ~~~~~— -“ - - 5-5~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ .- - S
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and (=1 , 2, 3 and 4 are parallel with equal spacing. On the other hand,

the ROC curves in Figure 5.9 for SNR=lO and K=l , 2, 3 and 4 have unequal

spacing . Apparently, the performance improvement due to adding one hydro-

phone to an array depends on the array factor as well as the signal-to -

noise ratio per element. In general , the performance improvement is less

for high SNR than that for low SNR. This shows a di fference between the

performance of detecting multipath Gaussian signals and that of detecting

mul tipath known waveform signal s E28] in which the performance improvement

due to adding hydrophones is independent of signal -to-noise ratio.

It is also interesting to compare the performance characteristics

of array detectors with that of a single phone detector. We look into the

question of how much performance improvement an array can gain over the

signal phone. To answer this we compare the performance of a single hydro-

phone detector with the performance of the array detector with K elements. - -

In Figure 5.8 we compare the performance of a singl e hydrophone detector

with K times the signal-to-noise ratio with the performance of K-element

array detectors for (=1 , 2, 3, 4 and 10, and SNR=1 . We observe that the

performances of these two cases are nearly the same for small (K.SNR) values .

But, for large (K.SNR) val ues the performance of an array detector is better

than that of the single hydrophone case. In Figure 5.9 we make a similar

comparison for SNR=10. The curves in Figure 5.9 show dramatic performance

improvement for the array detectors. By referring to the structure of the

optimum array detector In which signals from each path are spatially separated

from other paths by beamforming action, we may conclude that the array

detectors not only receive a total output signal-to-noise ratio K times
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higher than that of the single phone , but also provide the capability of

separating mul tipath signals spatially. The spatial discriminating

capability of the array detector does improve the performance considerably

for high signal-to—noi se ratio cases. 
-

By inspecting the slopes of the curves in Figure 5.8 and 5.9, we

noti ce the difference in shape between the array and single hydrophone

ROC curves. This can be explained by looking at the density function of

y. As discussed before, we know that for a single hydrophone the density

function of y is exponentially distributed . On the other hand , the density

function of y for the array detector depends on two non-zero eigenval ues

for various K values and signal—to—noise ratio as is shown in Table I.

From the table we observe that in some cases two eigenvalues are almost

identical and in other cases one eigenvalue is larger than the other. For

the K=2 cases, there exists a dominant eigenval ue which is due to the fact

that the size of the array is too small to discriminate two signal paths.

Hence , the resulting ROC curves have shapes similar to that of the power
type ROC curves , which is the character of the ROC curves for a single

hydrophone detector. For the K=4 cases, the width of the mainlobe of a

4—elemen t array is about 600 which is about two time s the angular separation

between the two signal paths. In other words, the 4-element array may

point a beam to one path and nul l out the other path simultaneously. As

S a result, the eigenvalues for this case are almost identical . Consequently,

the distribution of y is the x2 distri bution wi th 4 degrees of freedom.

The noticea ble di fference on ROC curves between the exponential distribution

and the distribution with 4 degrees of freedom is the slope of the ROC
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curves. The curves of the former case have smaller slopes than that of

the latter case.

By investigating the beam pattern of a K-element array [27], we found

that the mai n beam width is approximately equal to 180°/(K-l). For K=2

and K=3 cases, both signal paths are In the mainlobe of the beam pattern,

and for K=4 and K=1O cases, one path is in the mainlobe and the other is

in the sidelobe . Consequently, the eigenval ues of a1 for the K=4 and
K=1O cases are close to each other while the ‘s for K=2 and K=3 are

1
far apart . The dependency of the eigenvalues on the array beam pattern

will be discussed further in the next section in which we will investi gate

the perfo rmance of suboptimal processors such as singl e and doubl e beam—

formers .
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5.4 Detection Performance of Suboptimal Array Beamfo rmers

A. Single Beamformer

A single beamfo rmer which points to one of the M signal paths and

a double beamformer which points to two signal paths are investigated

in this section . The trade-off between the complexity of the processor

structure and the detection performance will be evaluated.

A single beamformer is a suboptimal array which ignores the existence

of the multipath structure and points a beam to the direct path. The

simplicity of the processor structure makes it popular in practical

applications. The sufficient statistic y of the singl e beamformer may be

expressed by

* *Y = a  ~~L a (5-95)

where u is the pointing vector of the single beamformer.

Then, by definition,

= Q0 ( *) (5-96)

~ a~ 
* ( )

and

9.i ( *) (5-98)

= a~ 
* 2 ( *) * 2 ( * ) *

(5-99)

where
= afl.L+aS vl vl

+.-”+aS!tl!M (5-100)
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It is quite easy to find the eigenvalue of from the next equation .

U a2 i,~ (u *u) (5-1 01)

= Ka~ u (5-1 02)

To find the eigenvalues of G1 is not obvious. We should use the matrix

theorem that “the eigenvalue of is equal to that of G1
T
~ By observa-

tion , we found the eigenvector and eigenvalue of G1
T from the followi ng

equations. —

G TU* = a~ 
*1(1*1) + ~~ 2 ( * ) *T( T * T ) (5-103)

i =1

K + 
~~~ 

(5404)

Hence ,

XG = a~ K + E ~~~~~
j k i

*

~~ .j 2  (5-105)
1=1

The ROC curve for this case is apparently a power type ROC curve and can

be expressed by

= (5—106 )
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AG
where A = i—]- (5-107)

Ec7~ 
* 2

= 1 +  2 (5-108)

- S  

Ka~

The second term in equation (5-108) is the sunination of signal energy

weighted by the beam pattern.

In order to compare the single beamformer performance with the optimal

processor performance, two signal paths are chosen coming at +15° from the

horizontal axis. The values of A for K = 2, 3, 4 and 10 are 2.4723, 2.6313,

3.0029, 6.1121 respectively in the a2 = a2 = ½ a2 cases. We notice that
~i ~2 

n

2- Ka5
the value of A can be approximated by A = 1 + 2 when K~4. This is duean

to the fact that the bean~idth of the mainlobe for K4 is less than 600.

Hence, the second signal is in the sidelobe of the beam pattern and does

not contribute too much signal energy. In other words, the single beam-

former array nulls out the second signal source when the size of the array

Is large. Consequently, it has the same performance as that of the single

2Ko
path case In which the ROC curves are characterized by A = 1 +

an
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The ROC curves of the single beamformer are plotted in Figure 5.10

and Figure 5.11 for di fferent signal-to-noise ratios. By comparing

these ROC curves wi th that of the optimal detectors, we concl ude that the

performance loss due to not taking account of the second path increases --

as the nunter of array elements increases. This indi cates that the larger

the array size, the more important the knowledge about the spatial structure

of the signal .

B. Double BeamforTne r

If we want to retain the beamforming structure and improve the per-

formance , then the double beamformer is our next choice for detecting

two path signals. The sufficient statistic y is described in equation

(5—log).

= .a
*(a~

1 
x1x1 + 

~ ~~~~~~ 
(5-l og)

= ~~(a~ v1v~~ 
+ a~ v2v2

*) (5—110)

= a~(a~ v1v~~ + a~ v2v2
*) (5-111)

~l
(1
~ i 

!.l!.l + a~ -~2~2~ 
(5—112)

= a~(a~ !i.!.i + a~ ~2~2
)
~~
0s1 1 1  ~ ~2!~2

) (5 113)

From equation (5-111) and (5-113), we know that we need only to find the

L -~ _ . _ ~~~~~
r _
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elgenvalues, 
~‘DB’ 

of matrix (~2 V V ~~ 
~~ ~2 

v v *) because AG and

AG may be expressed In terms of A as shown in the following equations.
1 Du

= a~ XDB (5—114)

= ~ AOB + A~8 (5—115)

Eigenvalue XDB may be evaluated by both analytical and numerical methods .

A simple two-element case will be shown as an example 9or the analytical

method.

2 * 2 *a5 + 
2

1 1
e e

S
1 

S
2

-jWT
2e 1 e 1

(5— 116 )

_ _  -- --5-- 5------ .- S ~~~~~~~~~~~~~~~~~~~~ —.5-- - ~~~~~~~~ -- — - - - - - -~~~~~



— - -——--— -—---- - --—--—-—----— —-- ———
~z--_ _ _ _ ___ _~~~~_ . — - —- - -

59

det[a~~vi vi
* + a~~~~~ 2

- xfl

2 2 2 “ 

~‘~ l “= (a 5 + a 5 - x) — a’ e + a’ e ‘ (5-117)
1 2 ~2 S .

2 2 2 ~~~~~~~~~ jC4 t~,A DB = a5 + a 5 + a
5 

e ‘ + a e ‘ (5-118)
1 2- 1 2

Substituting equation (5—118) into equations (5—114) and (5—115), we may

find A
G 

and A G . The rest of the perfo rmance evalua tion procedure is
0 1

similar to that of the examples in the previous sections .

The structure of the double beamformer can be realized as two beam—

formers followed by envelope detectors as shown in Figure 5.12. Comparing

Figure 5.12 with Figure 4.1, the only di fference is that the cross correlated

terms are mi ssing in Figure 5.12. The performance degradation due to the

lack of the correlated terms is the main topic in this subsection .

The performance of the double beamformer has been calculated by using

n umerical programs for two, three, four , and ten element arrays. The ROC

curves are shown as the dashed lines in Figure 5.13 and Figure 5.14. On

the same Figures the ROC curves of the optimal detectors are a l so shown.

It is interesting to see that the performance of the t~oub 1e beamforme r is

ve ry close to optimum for (>4. This can be explainer! by the fact that one

of the two signal paths is in the sidelobe of the beam pattern and consequently

the cross correlated terms In the optimal array are small compared to the

beamformer output power. Hence , the cross correlated terms may be ignored

when the array size is large enough such that the main beam wi dth is less

L . 5- -—--—-—5--— - - 
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than two times the angular separation of the two signa l paths . In

Figure 5. 13 we observe that the performance of the double beamformer

is very close to optimum for K = 2, 3, 4 and 10 at a signal-to-noi se

ratio of 1. But, in Figure 5.14 the performance degradation is severe - -

at K = 2 at a signal-to-noise ratio of 10. This indi cates that the cross

correlated term plays an important role only for cases with high signal-

to—noise ratio and smal l array sizes.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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CHAPTER V I SUMMARY

This report has proposed verti cal arrays for estimating parameters

of mul tipath signals and for detecting multi path Gaussian signals. The

spatial discriminating capability of verti cal array processors can be

used to isolate individual signal paths in an underwater acoustic channel .

The amplitude and phase estimates of signals from each individual path

are obtained and compared to that for a single hydrophone case. The

signal-to-noise ratio of each indi vidual path is shown to be independent

of the relative signal phases of other paths. This suggests that the

vertical array processor may be useful in the deep fading problem for

minimizing multipath signal cancellation. Two approaches are taken to

estimate the signa l parameters . In Chapter III , the signal parameters

are assumed non-random and the maximum likelihoo d estimates (MLE) and

thei r performances are shown . It is clear that if the number of array

elements is less than the number of signal paths , then the maximum likeli-

hood ratio estimate is not unique . In Chapter IV , the signal parameters

are assumed to be Gaussian random variables with covariance matri x

and the mL~imum a posteriori probability estimates (MAP) of rnultipath

signal parameters are employed. With the a priori knowl edge about the

signal In terms of the covariance matrix Q5 , the MAP estimate has a unique
value even for the case where the number of array elements is less than

the number of signal paths. The linear relationship between MAP and MLE

estiiiates is presented to show the incorporation of the a priori knowl edge

of the signal parameters.
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The second part of this report is devoted to the detection of

mul tipath Gaussian signal s in Gaussian noise. Like most Gaussian signal

detectors the optimal array detector nas a quadratic structure. A

two-path signal example shows that the optimal array not only points two

beams in both signal directions but also correlates both beams to form a

cross correlat ion term, even when multipath random signal s are assumed

independent from path to path . In Chapter V , the sign i ficance of the

two-beamformer structure and the cross correlation term are investigated

in terms of detection performance . An analytical method called the

“Eigenvalue method” is developed for eval uating the performance of any

array signal detector which has a quadratic sufficient statistic. The

eigenval ue method starts with the characteristic function of the sufficient

statistic under both hypotheses and then transforms the characteristic

function to the probability density function . The probability of false -
-

alarm and probability of detection may be calculated analytically once

the ei genvalues of the covariance matri ces of the observed data under both

hypotheses are calculated. Although we may find the elgenvalues of any

matrix wi th dimens ion less than four by an analyti cal method , the calcula-

tion of eigenvalues is performed mostly by a numeri cal method in Chapter IV .

For matrices with dimensionality less than three, both methods are demon-

st rated

Performance comparisons were made between optimal arrays with di fferent

number of elements. By use of the two-path signal case as an example, we

found that the performance improvement obtained by adding one hydrophone

to a 2-element array Is less than that of adding one hydr~phone to a

— ----5-- - - — S — - - S - - S - - -- -- . — S - — - - - - - -- S - - -- ---.- -rn-,-—---- ----- 5-— 
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S single-element array for high signal-to-noise ratios around SNR = 10.

But , for low signal-to —noise ratios such as one , two and four the perfo rmance

i mprovement for both cases are nearly the same. This shows the difference

between the performance of detecting Gaussian signals and the performance

of detecting known waveform signals. It is well-known that in the latter

case the detectability index Is the product of two functions , one depends

on the signal—to—noise ratio, another depends on the array factor. In

other words , the performance improvement in terms of detectability index

by addi ng one hydrophone to an array is independent of the signal-to-noise

ratio. The phenomena of the former case may be explained by the property

of power type ROC curves which are the type ROC curves that result in the

Gaussian signal detection problem. The family of power type ROC curves

shows that the performance imp rovement due to the increase in signal-to-

noise ratio starts to decrease after the parameter A becomes larger than

about 21. During the process of comparing the ROC curves for the Gaussian

signal array detectors wi th the power type ROC curves , we observed the

difference in the slopes of ROC curves . This led to a comparison between

the perfo rmance of a k-element a rray wi th that of a single phone detector

with k times the signal-to-noise ratio. For low total output signal-to—

noise ratios in the range of one to four the di fference in performance

between these two cases is insignificant. However, for high signal-to-

noise ratios , (i.e. (k.SNR)>lO), the array detector is better than the

single phone detector, for the same total signal-to-noise ratio. This

may be attri buted to the spatial discri minating capability of the array .

-

~~~~~~~ 

- 
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The trade-off between the processor complexity and performance is

also shown in Chapter V by comparing the performance of an optimal array

detector with that of conventional beamformers. Again , the two-path case

is used to demonstrate the performance di fference between optimal , single
S 

beamformer and double beamformer arrays. A single beamformer array which

points a beam In one of the two signal directions performs poorly com-

pared to the optimal array . Although the structure of the singl e beam-

former is only one branch of the optimal processor , the perfo rmance of

a 10-element single beamformer array is equi valent to that of the optimal

array with onl y 4 elements at SNR = 1.

Another suboptimal array processor which points two beams to two

signal paths and sums up the envelope detector outputs is also investi gated.

The performance comparison shows that If the aperture of the array is large

enough such that the second signal direction is not in the mainlobe or any

significant sidelobe of the array pattern, the di fference between the

suboptima l array and optimal array in performance is very small for all

signal-to—noise ratios. For hi gh signal_t~_noise ratios and smal l arrays

the performance difference between the suboptima l and optimal arrays is

noticeable. This finding impl ies that the cross correlation term in the

optimal processor is not very signifi cant if the array aperture is large

enough to isolate signal paths or the signal-to—noise ratio is low.

The eigenva l ue method, introduced in this report, is a powerful tool

for evaluating performance of array detectors. Since the detection per-

formance and the processor complexity are two major factors to consider

in the implementation of array detectors, the trade-off of these factors,

— -- - --- - — - - - - - -~~~~~~~~~~~~~~~~~~ -- -~~~ --~~~~S-- — - - -~~~ — -- - 5 - -
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as shown in this report, gives insight into the problem of detecting

rnultipath Gaussian signals in Gaussian noise .

I 
—-— - -
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APPENDIX A

COMPUTER PROGRAMS

The computer programs for evaluating ei gen va l ues of matrices
and a1, and for calcul ating P0 and ~F 

are shown in this appendix.

The subroutine call ing sequences are shown in the bloc k di agrams . There

are two types of methods for evaluating the eigenva l ues of a complex

matrix. One is the analytica l method whi ch is limi ted by the dimen-

sional ity of the matrix. It is not trivial to find the performance of

array detectors wi th more than three elements by the analyti cal method.

Another method is a numerical one which can be used for arrays with

any number of elements.

(1) Analytical Method

A typical callir.g sequence for the analytical method is shown below.

Subrou tine “EIGEN” calculates the eigenvalues of matrices an d G1, and

subrou tine “PDPF” calcul ates the probabilit y of detection 
~~~ 

and the

probability of false alarm 
~~~ 

The analytical algori thms used in

A- 1

- -~ 
- - -5——-—-— -~~ —

~~I•iiir._~_ 
~_~~

- --- — —----
~

--— — ---- 5—-- — - —  — - ------------ - - .- - - - - - - - ——- -- —-5-— - — — — -- —-———-— .- .- -— _ -_-~~~~ _______



_ _

subroutine “EIGEN” depend upon the number of array elements, the number

of signal paths, and the sufficient statistic. The mathemati cal descrip-

tions of these algorithms are described in the main text. In the follow—

ing computer program listings , a complete program for optimal array

detectors for K = 2 and M 2, several “E IGEN” subroutines, and a complete

program for optimal array detectors for M = 10 and K = 2 are m d  uded.

- 5

A-2
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C Till S IS TME 4 A ( ~~ ~GM FOi~ LA LC U LAT P ~G IWPF ~ Y A IA L IT ICM L t4 t.Tri IJ~~,
C T-i I~ I~GM ‘dLL C ALL SUOPWUTINE EIGc~’1 ~ ri1Cr’ .‘IILL LA LC LJ A r E EL~~t~I VALLTh.S

C U~ (O ,Gt . T I-t E ri~ I\I ALSU C~~LL SUbRuU rt~~E PuP~ nj  i~~T 
p
~ ~~~

C ~~~ . ASSSQM~ U . 5 nA V ~.LE N~~TI1
) I ’ E N S L f J r ’4  ~L r A ( u)  ‘Pu (10) ,p~F (LU )

#~kltE (D.I01)
R~ AU (5,1Ou ) APIiI,APri IP

P1lIP A P I 1 I P *h 1M 1b /l~~O .

‘~~ITE (b,1u2) 
—
-

REA D(~ , IOU ) V A R S t .V A R 5 2 , V AI ~N

~~IrE (b,Lo3
A~)(b,1OU) 

(~ LTA (I),l :1.tO )
LOU Fu~MA T (F14 .u)
jot FURMA T( LX ,24&PITYPE IN AP~~I , API4 IP,Ft” .0)
103 FL)PMAI (LX ,2OHTYPE IN 10 Tr~I~ .S~iOLD V A L U E )
1O~ F UR MAt ( 1X ,3Q~ TY PE IN ~~~~~~~~~~~~~~~~~~~~~~~~~

CALL EiG EN PMI,PPiIP , V A ~~S l ,v4 ~~S~~,v A ~~N ,G1 1, G I2 ,G O I ,G 0 2
CALL P O P F ( E LT A ,G j L ,~~t~~,G 0 1 , (0 2,l~O, PF)
.Rl TE (b,200) (il I,G1~~,(~0l, G0~
~s R I T Et b , 3 u 0 )  (PU(J ) , PF(J ) , J:L, 10)

300 FQRMAT (2X,2F12.e)
FQRMAT (~ X,2F1U,4) 

-

STOP S

E~D S

SUaRUUTINE PUPF (ELIA ,GI 1,G12,Gut,G02,Po.PF ,
DIMENSIUN ELTA ( 10) ,PO (Iu),PF (lO)
DU 10 (:1,10

PU(K):G1I*EXP ( LTA (K )/G11)/ (Gt1- (i1~ )+GI2*EAP (’ELrA (X)/
I Gta)’(Gt2~G1t)

PF(K):G01,E~~P (~~E LTA U ( ) /G Ol )t (G O l 0a) U2~~EA P ( —~~L IA(()/

I G 0 2 )/ l~G U2 - G Ut 3
10 CONTINU E

R E.TURN
E Ni)

S SUBROUTINE E IGEN C PI4 l ,PP I I P ,V A ~~~1, V A P S 2, V A ~~I.( 1  1.~.,1~~,GO1,(02)C IrlIS IS FUR (:2,M:2 O PT IMA L CASE (4r~A LItI CA L 1ErHu ~ ),C W E AS SSUM E ):.5 MA V E L E N G T I- I

CC1 :3.1~o1o*COS (Pi$I)
CC 2:3 • l’$ 16 *COS ( Pu lp )

cOMPLEx AL ,A 2,Cl,C2
C 1:C IPLX (0 . ,C C L)
C2:C lPLx l.O .,CC2) - - 

—

A I :CEXP (Cl)
A 2 :CE AP ( Cd )  -

R:C A u 3 5 ( v A W S I * A l # V A R S 2 * 4 2 )
G t 1 : (V A R S 1~~ VA ~~S2+~~) / VA R N

G 1 2 : ( VA R SL .V A R S2 -W ) / VA R N

~O 1 = ( v A ~~s l ,V * R 5 2 + R ) / ( v A R 3 t l v A R S 2 s V A ~~N + w )
V A~S1s AR S~~.’ )/ (  V A .ISI,V A l.~S~~PV A UI—k

REn IJRN
END

TillS PAGE IS BEST QUALITY FRLClIC.&5L~4F1~O~ copy 1UP~2~Isn~jj~ ~L~Q J~ Q 
~~
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C TPIIS IS SUBk(J~ T L’~t EZGEN u-O R O’~UaLE e~~A~~~uRMEk
C USE T i15  ø I F H  MAI N PGM A ND SIJd RUUFINE PUPu-

SUB s.~O U T L M E  El M ( u~I4 1,i’uLP ,v A R s t , v A R S 2 ,  v - ,I,~~ ~~~~~~~~~~~~~~~C TuIS IS FUR SuauPrIu4 AL ~EAM~ URMER P (.JMMAN LE K:d.M:2
CUMPLEA C1,C2
C1 C M P LX ( 0 .,3.I~Ub* CUS ( Pr$ l ) )

C2 :CM PLA(0,,3 ,1410*COS (PPIZP)) S

OAL VARSI- *V *R52,CA8S (VARSIaCE*P (C1)+VARS2*CEXP(C2 ))
0*2:2, a ( vA~ St .VAi ~52)—OA1GO j : V ARN *0* 1
GU2ZVARN*OA 2

Gl1 :VA u ut Na DA1 ,DAI *0*1
G12:vA ,~N*DA2.DA2*DA2RET URN

E ND 
- -

SUBROUTINE EIGEN (i~HL ,PHIP,VARS1. VAR S2,VA RN ,G1 t,(~12,GOL,G0~ )C Tr$IS ~3 ThE SU~ROUTIME EIGEN FOR CALCULAT ING EL (iE;~4VALIjES FOR M:~~,K:3
C TIlLS IS FUR :3,M:2 OPTIMAL CASE (ANALITICA I . METIIUD) ,

C USE Tilts ~tTIl MAIN PGM ANI) SUeRUUTXNE PDPF
COMPLEX CC1.CC2
CC2:CMPLX (O .,b ,2832*(COS (PHI)—CUS(PMIP)))

CC1:CP4PLA (O.,3.t~ilb* (COS (PI$I)—COS (PNlP)))A:9.* (VARS1**2+VARS2**2)~ 6,*VAR S1*VARS2l .4,aVA kS1*VARS2* (2,j *R~AL (CEXP (CC2))t4,*REAL (CExP (CCl3 )3Q1I VARN+3.i (VARS1tVARS2)/2 .,SQRT (A) /2.
Qi2:VARNi.3.* (VARS1sVAR52)/ 2.—S(~R1 (A)/2,GI 1:01 l/VA14N 1.
012 Q12/VARN”I

i~0 1:1 ,—I AR N/Q 1 1
G0~:I ,.VARN/U 12

RETU RN S

END -

C Th IS PRO IS FOR M t U  *140 (:2 OPTIMA L CASE
C TillS IS TIlE P014 TO CA LC ULATE PD A NO PF

DI MEP’4SILJN ELIA (1U),PD (1O),PF (t0),PhI (10)
143 10

00 5 t(u :~,5PPuI(lth):(90..FLOAI (p (il)*3.)*3.lalb/100.
IcK 1=1 U~~I(K+t
PIlI(Kt(1):(90,fFLOAT (K~ )*3,)*-i. l’416/1dU ,CONTINUE S

u’I R I T E ( b , 1 i 3 2 )
REA O (~~.t 0 0 ) VA I ~N

102 FOH MAT ( 1A ,t ’ 2 MT YPE IN yARN )  TBISPAGX IS BSST QUALIfl P ACTIC~~~l*
k IT E (6, 1 ui) i~oM ~~~ It~~t1S1iED TQ D~Q ~~~~~~~~~~~~~~

REA D(~~, 100) (ELTA ( I) • 1:1,10)
100 F QR M A T ( F 1 4 ,O )

V A k S t , / F L U A r ( M )
103 F U R I I A T ( L X ,2bIITY PE IN 10 TuRESI.,OLD VA LUE )
- 

CALL ELGc.N(M ,PMI,VARS. vA t~N ,Gl1,G12,GOL ,0U2)
CALL POPF(EL TA ,G t 1 ,012,(01,l.102,PD,PF)
~‘i4 ITE(b ,-2uO) G1L ,0t~ ,GOt.00,~ -
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~iETuR~.END
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CU M PLE X C ,A ,B
8:C ,-IPLX (0 . . V.)
00 10 1 1 , M
cu):CMPLx (o., 3.t~41b*C0S (PtlI (I)))A (L):CEXP(C (I))
azd+A ( 1) *VARS
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(2) Numerical Method

A subroutine package called “EISPACK” [24] is employed in the

numerical method. The call ing sequence is described in the block diagrams

below for both the optimal case and the double-beamformer case. —

_ _ _ _ _  _ _ _ _  

CBAL ]~~

OPTE I GEN CG CORTH 1
A A 

COMQR J
G0 G1 i

L _ _
~~~~~~~~ _~~~~~~~~~~~~~~~~~~

_ _ _ _ _  J
PDPF

Figure A. 1. Block Diagram for Optimal Case. 

--
~

I I  I L  ~~~~ 
I

OBE IGEN F—Hi CG i

I ~~‘1 COMQ~J IA
G~~

A
G

EI SPACK 

PDPF

Figure A. 2 Block Daigram for Double Beamf ormer Case

The following program l isting Includes the main programs, “OPTE IGEN” ,

S 
“OB EI GEN” , and “PDPF” . Subroutines in the software package “EI SPACK ”
are excluded in this appendix because of their length . Program listings

and documentations are available on request.
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C TMI S iS PIM ‘DBcIl .,EN .
C T~~j  RUN TIlLS PG~4: ~RuN ~LDAO A A ~~:CI5P AC,% 1j ’~ M rs ,
C T~ RUN THIS P~ M : ~RUN — L J A D + N A A S : t I S P A C K  UN M I S
C TL) kU’~ r u-us POM IN uTr IER UNIV . SUo~ uUt I s E  PAC ,c A (,~ ‘E I~~PA C R ’ I.i ~E~~DE0 ,
C TrILS LS Ii-i~ N L j C IERI CA L  ME1~~OU TO O t t  ~1~ EN V A LuE~ jF .1aT K1LE~ ~~~~~~~DIMENSIJ N V A R S (  1 O ) , I~ 4 L (  L O ) , A ( I 0 ) , L ( 1 U J ,~~U ( 1 U ) , G l ( I 0 )

1 O ) , A I ( l u ,  j U ) , .~R ( 1 U ) , 4 j ( 1 U ) . L R ( 1 U , 1 0 ) , L 1 ( 1~J , 1 0) ,
1 SVt (tU? ,SV2~~1U ),Sv3 (1u)

CO M PLE X A ,C
C SIA R T TO GENERAT MATR IX Dt~ FOt~ 00U~~LE aEA M FU RME R$a3 5%S ~~~~~~~I~~3,D $~~$5$

nR I TE (o, 104)
10 4 FORMA T (3* , ’TTPE IN NO,, OF ELEMEN IS, Li’)

FOR MAT(I3 )
,sRLTE (o,223)

223 F3R MAT( 3x. ’T YPE t~i NO. OF PATr ,S,M ,I3’ )

- ~ukITE (b,101)
101 FURMAT (IX ,’T YPE IN PuI (1),...i~I4l (M ),Fl4.O’)

kEAD (’~.1OU) (PHI (KKM), Ks~M:1,M)
nRITE (b, 102

r~EA U ( 5 , 1 0 O )  (V A R S ( M) , KP~M 1 , N ) , v & ~(N
102 FORM A T(1X ,’TYPE IN VARS( 1) ,...VA R S (M ) , V AWi 4.F1~J ,O’ )
101) FORMAT(F14.0)- - 

00 ~~~ i(M:j,M
Pill (i(M)aPp,I(p (M) *3,141 b/180.
C(I(M):CMPL*(U..3,1~11b*COS (PHI (rU4)))A (KM):CEXP (C (KM ))

222 CONT INUE
C M DENOTE THE NO . OF PATHS. ~ DENOTE ruE NU. OF ELEMENrS

00 5 11:t,uc
00 6 12:1,uc

A I (L 1 ,12) :tj ,
o coNniNuE

CONTINuE
00 10 1:1,14
00 20 I1 i,uc
DO 21 J1:1.l( -

AR (It,JL ):REAL (A(L )** (J1—I1 ))*VAR S (I)+A ,~(I1,Jl )
Aj (Il,JI):A IMAG (A(t )*a(J1 11 ))*VAWS( I )4AI (Ij ,J1 )

21 CONTINUE
20 CUNTIrIUE
it) CQP4FINuE

00 19 1 1,’(
19 k - R I T E ( b . 1 L 7 )  (AR(l ,J),J :1, t()

00 29 L : 1, ,
29 WRIIE ( o , 1 1 7 )  ( A L ( I , J ) , J : l , uc )

117 FQkMAT (3 (,I3o2o,~~)
C END JF GENERATIN G u *rRzx D~ * * *A * * * * * * *A * * * * * ** ** * ** * * * * * * ** ** *k a*
C REA L (OB ) IS AR ; AIMAG( Db) Is Al

CALL CG (1O, K ,A R ,A t , ,,~T,Q,Zii,Z1,SV 1,SV2,Sv3, IER)
IF (ZEP •NE , 0) ,‘IRITE (o,i79)

179 FURMA T(3X. ’ERR QP IN SUb GO ’)
- 

MR lTE (b,~~~8)
S FURMAt (3X , ’EIt,ENVAL UES OF ~UUtlL~ 

j~~~Mu-u,~’1~~R ’ )
- 

~.RITE( 6,113) (.~dR (I),a[ (I),I I, K) -

• 11 3 FuRMAT(’,X ,2U2O.t~)- 

00 90 :j ~ r.. TIllS ~~~ IS B5S~1 
~~~~

~O (L):vARN ~~.W(L)

A-i 

-- ~~~~~~~ - - --~~~~~~~~~~~~~ 
-5 - - -~~~~~~~~~~~ 5-~~~ - - -~~~~ - - _
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ThIS PAG~E IS BES~r QUALITY ?R.LCTIC.A.B14
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

X
~~~~LS1 D T O D~Q _ _ -

90 (. UNT LNUE
nii ITE (b .115) (Gt (L1),L1:l,,( )

FOR MAT (SX , ’EIOE NVA LU ES lF 01’ .3E2Q.~4)
r~R !TE( b. 114) (G0 (L1),L1 :L.X3

1.14 FURMA t(’~X ,’EIGENVALUE5 OF G~ ’,3E2u,ö)
00 TO 99

999 WR I TE (b,991)
991 FURMA I (3X , ‘METHOD FA IL ’)
99 STOP
- 

END

C TillS IS P014 ‘OPlE IGEN ’
C TO RUN r~ is PGM:. ,)RUN -LOAo ,NAAs :EISPAC,t LiP~ tiTS .
C TO RU N THIS ROil IN OTHER UN IV . SU~~RuU1I NE PAC KA t, E ‘EI SPACK ’ Is N EEDED.
C TuIS IS THE NUMER I CA L  W A Y  TO GET THE EIGENV ALUES OF DI AN D 00,01

DIMENSIUN VARS (10) ,PHL (t0),A (LO ),C (1O ),00(tu ) .01(10)
REAL*8 AR (10, 10),Al(10,1U),~~R (10),~’I (1O),Zk (1O, 1U),ZI (IO, lv)

I ,SVt (10),5Y2(lO),5V3(10-)
COMPLEX A ,C -

- C START TO GENERATING MATR IX D0~~1Q1. *****a ***a*******~~********~~*a****
nRLTE (b. 1-04)

104 FORMA T (3* , ’TYPE IN MU. OF ELE.M EN TS c,I3’ )
- - 

REAQ(5 ,105) IC
LO ~ FU RM A T (13)
- 

4VRITE (b,223) - ‘

223 FORMAT (3X, ’IYPE IN NO. OF PAT1iS,13’)
READ(5,1O5) M -

v R I T E ( 6 , t Q 1 )
101 F O R M A T C L X ,’TYPE IN PHIC1) ,Pu-sI 2) ,...,Pu41(M),F1a .0’)

READ (5.100) (PHl(KKM ) ,KKM L,M)
iWR ITE (8, 102)
READ(S,100) (VARS (KKM), ICKM I,M ).VA RN -

102 FURMAT (2A, ‘TYPE I1~ VA~RS(L),.,.,V AR S ( M ) ,V A R N , F l~4 ,u ’)
LOt ) FORMAT (F14 ,O)

00 222 ,(M~~1,M
PHI (,(14):Pp1I ( KM) * ~~, 1418/180.
C (ICM)aC$PLX(0 .,3,lOlb*COS (PHI (ICM)))
*(I(M)ZCEXP (C (KM))

222 CONTINUE
C ~ DEN OTE THE ‘40, OF PAT HS, ( DENOTE THE NO, OF ELEMENrS

DO 5 I1 Z1,IC
DO 6 12*1.K

IF (LI .EQ. 12) AR (I1,12):VARN
*1 (11,12) *Q,

•
- CJ ,.TLNU (

is’ 10 1zI,M
u ~O Ii’I.”

~~~~ i t  J 1 ’ & .4

~• ~t . J 1 )$ø taL (* (L )~~* (JI L 1) ) *V4RS (I )PA R( I1 s J I )
• ~. I L t s * L * G ( * ( l ) a a ( , j 1 — l 1 ) ) * v A N S ( I ) + A L ( I 1 . J 1 )

- e

A-a 
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111
C END O1 ~ENE~ A IlrlG Q u—L ~ A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
C REAL (Qj) IS A R ; A L M A G ( O 1)  IS A L

GA LL CO (10 ,K, A R, A I , ,i.I,0,ZR,~~I,S v1, S~~2,SV3, LE R)
113 FO RMAI( 3A,20 20 .8)

.‘ R L T E ( o . t l L )  IER
111 F U R M A I ( 2 X , ’ I E R : ’ , L b )

~HI TE (b, 112)
112 FOR MAT(2x , ’ ELG E N~ ALuES OF UI’ )

‘sR ITE (o. 113 ) (~~R (I) .i~I (l ),I 1.,I~ )
C C A L C U LA T E  E LG ENVAL UE S OF 00 AND 01

00 91) L 1 . ’t
00(L):1 ,—VA RM / .,II (L)

G1 (L) v,R(L)/VAHN I.
90 CONT IN UE

- 

.‘MITE (b .1t53 (Gl (L1),L1:t.K)
1514 FJRMAT (~ X ,’EIGENVALuE5 OF G0 ’ ,3E20.o)

FORMA T (Sx , ’EIGENvALUES OF 017’ ,3E20.o)
r.RITE (o, 114) (G0(L1).L1:L,K)

STOP
END S

C TH IS IS P014 ‘PDPF ’. INPU T: E I G E N V A L U E S  OF 00.01; JUTPUT :PU.PF
DIMENSION ELTA (1U ),PD( I0),~ F (1v)

DO 99 111:1,20
.iRITE (6, 103)

REAO (5,10U) (ELTA (I),I:t,10)
WR ITE(b,11)L4)

103 FURMAT (2X, ’TYPE IN 10 THRE SHOLD VALUES ’)
- 

READ (’~,10u) G11 ,G12.G0l,002
L O U  FOHHA T(F 14 .O)
11)4 FORMAT (2X , ’I YPE IN 011,012,001.002. F14 .u ’)

CALL PDPF (ELTA,G11,012,001,,,02,PD, PF)
i”RITE (b,200) G11,012,00t,i02

~“RLTE (6,3u1)301 FURMA T(2x , ’rHIS IS PD & PF’)

~RITE (6,3U0) (PO (J),PF(J),J 1, 10)
200 FOR$AT (2A ,2F18.a) - 

-

FORNAT(2 X ,2F1 0,5)
“RITE (b . 1 11 )

111 FORMAT (3 .*.’STOP? Y : lYRE NONZERO tr ’~T E G E R ;  -~~: T y P E 0 ’ )
REAO (58112) ISTOP
IF (IST3P .NE . 0) Go TO 199

112 FUR M A I ( 1 3 )
99 CONrINUE
L9 9 STOP

ENO
SU~ RQUTIsE PL PF(ELTA,G1l ,G12,001,Gu2, PU,RF)
DI MENSION ELTA (10).PD(1U),PF (1O )
00 10 K 1,ju

P0(K):G11*EXP(— ELTA( IC)/Gl1 )/(G11—G1d )+G12*E~~P (—tLr A(~~)/
1 G12)/ ( G1 2 — G t 1 3

PF (K):G01*EXP (—E LTA(K)/G0 j)/(G01—OOfl+ 002*EXP (—tL TA (K)/
1 002)/(G02—G01)

LO CONTI Nu E
RETURN
END ~~~~~ 
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Figure 1.1 Underwater Sound Velocity as a Function
of Depth.
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Figure 3.1 Multipath Signals Geometry .

-5 - ~~~~~—-— --— --5



r’~ 
- 

~~~~~~~~~~~~~~ ~~~ - -~~ ::JT~~~~~T ________________ 

- - -

Im

S3
— —— — 

I

/ /

S S21
1 

—

I 
I

/S4 ~~~
I
~~~~~2 - — . —

Si ~~~~~~~~~~~~~~~—. 5—

R
! -ii e1

~~ Re

(a) The ith element.

S = S
u n  

m m

4 — — —— S

5- —

— — 
—

C 5~~_ _~~~
’

- \ -.-;:\~ 
8 2+~ r2

R. \ ~~~~~~ __ S•’
_ .__ 

—

/
I /

\ ~~

-

~~~~~ Re

(b) The (i+1)th element.

Figure 3.2 Noise-free Phasors at the ith and (i+ l)th  Elements.

-



~. -T~~ t - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • _ ~~~

_ _  -._ ._ 
-~~~~~~~

Im Im~~~

/ ~~~~~~~~~~~

I %
ç...~~~ 2

+wT
2

/2 )

R ~~~
. - -. 1 ‘~\0 + W T1 ~~, 

- ~~ 01 _____________ 
•
‘ \\ ~ ~ Re

(a) 1st element - (b) 2nd element

Tm Tm t~/_R1
e~~~

T1+R
2

RZ/ ~~~~~~

, 
Re 

‘

~~~~~~~~~~~ 
)~~~~ i W t l

1/ ~‘.~~~2 , -
, I —
, I / /

/
-

- R 52,
I 

A 1
‘ I S ( R e  2 — R )

S ’  I . 1 JWt2 ~WT 1 1 2
2~ R e~~~~2~~R2 

e —e

. S 

¶2 e~~
T2 ei~ T1 

(_R
1eiWT l + R

2
)

Cc) Signal estimate of 1st path signal (4) Signal estimate of 2nd path signal

Figure 3.3 (a) Noise—free Data Received at 1st Element.
(b) Noise—free Data Received at 2nd Element.
(c) (di Phasor Diagrams of Signal Estimates of 1st and 2nd path
Signals. 

---5—-- - -5— 
_ _ _



~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- - ----5- —-5— -_ -5-- - - --5 -5 5- —-5— —‘-5 - .5-

-I-

I I
+ LT~~

+ 1+

cf4

_ 
_ _  

I

~~~ 1 

_ _  
_

____ 

—
~

)-- 
I

I

-- --i -—— -- -- 5 - -- -~~~~~~~



.9~ I I J
~~~ I I h I U I ~~~I~~~I~~~~I ~ I I ’ ’ ’  

—

:: :
.60 A 5  V’~Z.50 — —

~D .40 _. 
—

.30 w A~3 —

.20 — —

.10 — —

.0 5 — —

.01 I l l I  I ~~ I , I , I , I , I , I , I  I
.01 .05 .1 .2 .3 L~ ~5 .6 .7 .8 .9 .95 .99

- 
pp.

Figure 5.1 Power Type ROC Curves

- --- -— -5-- S— — - -- ~~~~~~~~~~~~ — —- - -- - -5-  - —~~~~~~~~~~~~~~~~~ -~~~~— - -  ~~~~~~~~~~ --- - - - -  - - - 5  - -- - ———— -—  -- - - - 5



- -  iIj 1I1~~.~~~~ .~~~~ _ - — - - 
: —----

~~~
—- —-- - -

I I I~~~ I 

~ I I ’ ’ ’

.80 - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

.7 0 -~~~~~~~~~~~

~° 

~~~ 
s~~y”~ yz

7 
-

-

PD .t~o ...~“ SNB_).” -

.30 ... 
—

.20

2
.10 - -

. 05 ~~~~~ —

.01 L I I I  I I l l I l l I l l i l I l  I I I , , ~~.01 .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95 .99

Pr

Figure 5.2 Optimsl Perfor~~nce of a 2-element Array for Detecting
Two—path Signals from ±15° of Horizontal Axis. 

- - 



A0 A06’4 969 DUKE UNIV DURHAM N C ADAPTIVE SIGNAL DETECTION LAB 

— - - 

FIG 2011 

- 1MULTIPATH SIGNAL PROCESSING USING A VERTICAL AR RAY .CU)
JUL 7? C S LIU N000Ue 75 C—0191

UNCLASSIFIED TR—13 NL

2 c 2
AOG4l ~ -.

U
END

4 - - 79-



a F~ L I~ 28 ~Jli25
LU

_ _ _  

L 0 2.2
L.

II I.’ ~: 
IH H~°
HII~IlkI’ 2

~ 1KI1~
4 IIIu~

.o .

MICROCOPY RESOLUTION TEST CH&~T
NA1K)~ AL BUREAU OF STANOARDS I963-~



~~~ ~,“
.70 — .__#‘

_ —

.60 - SNRyP
~ ~~~~

50 -
~~~~~~

• ,.4~~
D .L~0 -,. ..~~~~~

‘ —

30
S

.20 a2 + a 2
$1

2
.10 — c —

a2 $ = 1:1
05 — . ~~1 $ ~~ = 2 t 1 

a~1
t a~~ =io~~j.

.01 1 1~~~~I & I ~~~I t I i I i 1  I I
.0]. .05 .1 .2 .3 .L~ .5 .6 •7 •$ •g •95 •gg

Figur. 5.3 Com~sriaon of Opt1~~1 perform ance for Detecting
Two-pith Sigmals with Unequal Strength.
Signals are from + 15° of Horizontal Axis.

—-a———--. .-- — -,-, . — — — . . -~~~~----: 
--



F
I I I I I ‘ 

~~~~~~~ I ‘ I ‘ I ‘ I I j I ‘ ‘ ‘

.80 - -

-

.60 ~ ~~~~~~~ V

.50 - V -

• Li0 .. .#‘ SNR),V 
-
-

.30 — —

.2 0 —
a2
5., 5

SNR~~ 
a. 2

.10 - -

. 0 5 —  —

.01 I l l I  I I , I i I i I i I , I i I  I I I~~~i i
.01 .05 .1. .2 •3 • L4 .5 .6 .7 .8 .9 •95 •99

Figure 5.2 Opti l Perfor~~nce of a 2-element Array for Detecting
Two—pith S(gn~1s from ±15° of Horizontal Axis.

- .—

~

.— ~~~~~~-- — - —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



.9~ ‘ ‘ ‘ 1  I ‘ I ’ I ’ I ’ I ’ I ’ I ’ I  I

.60 - V

.50 — —

P

.30~~ -

.20 — 10 -

Z a ~~
SNB 13.

.10 — a2 —
U

.05 
a 

2 for 1, j— 1,• • •~ 1O~S
1 

S
j

.01 I L ~ I 
.
~~ I 

•
~ I I 

•
~ ~~~~ I I 

•
~ I 

•~~ •~~
i I I 

~~~

Pr

Figure 5.~l Oprimsi Perfo~~~nce of a 2-element Array for
Detecting 10—pi th Signals.



-~.-- .., - . —~~~~~~~~~~ —~~~~—-~~~~---— . , - .~- - .
— - - -—-~~~~~~~~~~~

‘ ‘ ‘ I  I ‘ I I I I I I I I I 1 I I I  ‘ I I ’ ’ ’

.70 — SN~~

:: 
SNBz1.,”~

”
~

.40 — 
-
-

.30~~ -

.20 -

.10 — SZ4R. —

U

.0 5 —  —

.01 l i i i  I I I I~~~~I I I I I I I I I  I I
.01 .05 .1 .2  .3 .4 .5 .6 .7 .8 .9 .95 .99

Pr

Figure 5.5 0pti~~l Perfox~~noe of a 3-element Array for Detecting
Two-path Sig’~ 1s from t 150 of HOrizOntal Axis. 

. 
~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _  _ _



—

‘ ‘ ‘ I  I ‘ I 1 I I I h I T I h I $ I  ‘ f i l l

~~-~~
‘ ,‘//

.60 — SNR—~e..~~ ~~~ 
/ —

p
.50~~. ~~~~~~~~~~~ /

.40 — ,4
~#~l~

•’

,

/ 

•/

30 ‘~~~~~~‘ /• — 
‘~NR~’1 

—

.20 — 7 a2 —

/
SNR ]. 

= _ _ _ _ _ _ _

a 2

.10 — U —
3-element Array

.05 — 2-element Array

— — 1-element Array

01 i i i l I I I I I I I I f I I I I I ,  I l i l t

.0]. .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95 •gg

Pr

Figure ~.6 Comparison of Optiemi. Performances of Cue , Two aM
Three-~~.ement Arrays for Detecting Two-path Sig~ia~.ls
from ~ 3.5° of Horizontal Axis. Signal-to-noise
Ratio Per Element Is Equal to 1 or 4.



.- -.—. , . ...... .-~..—.. 

~~~~~~~~~~~~~~~~~~~~~~~ 
—‘II
-’

.90 I I I ’ •I ’ I ’ I ’ I ’ I ’ I  ‘ I

.95 — 
~0~~~~~~~~~~ / .

/  
-

.90 — 
S1~~l1a~~~

• 
p~~~~~

’

~~~~~~~~

’ 
•
/ 

-.—_..v
_ 
/ ./

• -~~~ -~ I,

.80 — S1ID.lQ~~~ 7 / -

• ._
_

~~~~~~~/
_ 

/ /

.70 — ~‘ 3~~~~~7~ 7 ./  -

• / /
.60 -. ~

/‘ / —
•/ ~~~SZffi.Z’

.50 — —

.40 — ‘
• 7

.30 -. —

.20 - ~~~~~~~~~ 
-

.10 — 
_____  3—element Array —

.05 - — - - - -  2-element Arimy —

— - — 1—element Array

.oi I I I I I I I I I I I I I I I I

.0]. .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95 .99

P

Figure 5.7 Compsrison of the Opti .l Performences of One, No, aM tThree-element Arrays for Detecting Two-path Signals
from t 15° of Horizontal Axis. Signal—to-noise Ratio
Per Element Is 2 or 10.
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