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1. Introduction

In this paper I would like to give a
very partial account of integration theory in
Hilbert space and related questions of absol-
ute continuity which may be important in prob-
lers of stochastic realization theory, linear
and non-linear filtering, detection theory and
quantum communication theory. This theory is
largely the creation of I.E. Segal and his
former students, notably Gross and Nelson. The
need for such a theory arose for the purpose of
putting quantun field theory on a rigorous
mathematical basis. The theory has a distinct
algebraic character and I believe is particu-
larly suited to the needs of stochastic system
theory. An account of this algebraic approach
may be found in SEGAL-KUNZE [1], SEGAL ([{1] and
the bibliography cited there). Tihis theovy is
different from the work of the Russian school
(cf. GELFAND-VILENXIN) in the sense that
esseantially Hilbert space techniques are used
and in general one werks with "weak" processes
as opposed to “"strict" processes. In this theory
non-linear functions of processes can be handled
and in particular certain non-linear functionals
of white noise can be given mathematical meaning.
The other approach to some of these questions is
due to GROSS (cf. GROSS (1], [2] and the biblio-
graphy cited therein) where a countably additive
"extension" on a separable Banach space of the
finitely-additive Gaussian measure on a Hilbert
space is obtained. These ideas have recently
beex modified and developed by Balakrishnan
(cf. for example BALAKRISHNAN (1], [2]) imn a
series of papers related to detection and filter-
ing theory.

2. Segal-Gross Theory of Weak Processes

It is a known fact that there is no analog
of Lebesgue measure (i.e. a countably additive
measure which is translation and notation in-
variant) on an infinite dimensional Hilbert
space. In fact no such ceasure exists even when
invariance is relaxed to quasi-invariance. Such
an "invariaant" measure however exists if we do
not insist on countacle additivity.

1. This research has been supported by the Air
Force Office of Sponsored Research uander Graat
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& « Let V be a raal topological vector space,
V 4its topological_ dual and let <.,.> denote the
pairing of V azd V. A taze set is a set C of
the form

(2.1) C= {xavl(<x,yl>. oo <x,yn>) € A)

where A 1s a Bore! set ia R” and ¥ EV‘, 3=1,2,..n

If K is a finite dimensional “subspzace of v*
containing y.,...,7_ then C is said to be based
on K. The cdllect:3n S. of tame sets based on K
is a O-ring. le:z R = U,S, be the ricg generated

. KK

by (§¢)gev” :

A noa~zegative set function u defined on R
is a tame sa=t zeasure if

1) u(v) =1 =

2) ¥ fi-ice dimensional subspace KCV , is
councably addizive whea restricted to the C-Ting

An equivaleat comcept is that of a weak
distributica. Let 4 = (Q,A,P) be a probabilicy
space. A Jzax diszribution on Y is an equival-
ence class of licear caps F : V = RV(R,A,P). Two
such maps are,equivalent if for any finite set
yl.....yn € V , the joinc distribution of
Fi(ry)se-0f (y,) ia £® is the same for j = 1,2.

A ta=e “fuac:zion F on V is one of the form
F(x) = £(<X,% >,...,<X,7 >) for some Baire func-
tion on R® and for some rinite sequence ¥,,...,¥
in V*, If K is so=2 finite dimensional subspace
containing Fyseees?, then F is said to be based onK.

Let H be a :eai Hilbert space. For C a
tame subset of V based om K, define

5 2
(2.2) u(c) = (27) 2_,; — (_II:H )dz

where A is a 2orel set in K and n = dim K. It

is possible to ezlarge H and obtain a countably
additive measure oa a larger space which is in

a sense an extexsion of u.

Let £(x) = £(Px) be a tame function for some
finite dinmeasional projection P. Let ¢ be the
restriction of £ to F = Range (P). Then ¢ is
Borel measurable on F and_,

n

2
= x|
(2.3) Syfx)du(x) = (2m) z.l;, $(x)esp (— -llz—l x
where o = di=(F). .

Let A = algebra of bounded complex-valued
functions oa E together with their uniform limits

The integral defized in (2.3) can be extended to
all of A as 2 conzinvous linear functional which
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A5 -‘?-nlgebn with unit
in the supnorm and hence A = C(x) for some com-

we denote by E(f).

pact Hausdorff space X. Let f » f be this iso-
morphism. Morveover E is a continuous positive
linear function on A and hence by the Riesz re-
presentation theorem

E(f) = /. f dn , wvhere m in this case is

probability measure. The ismorphism £ ™ f can be
extended to tame functions in L' (H,u) by demsity
such that (fz)" = £3. Hence if f = char.fn.(A),
A a tame set, f s characteristic function of
some measurable set A and p(A) =~ m(X). Using the
Gelfand Transform, we can see that for f € A,
is an extension of £ from H to all of X. Now A
and in fact H 1s such that m(H) 3 O. ;
Let H be identified with H . he continu-
.ous linear functionals on H are in L(H,u). To
the linear functional determined by y there
cgrrtspouds a measurable F(y)(.) on X. F : H~+
L“(X,n) is norm-preserving. It can be shown
(1) that the map F completely determines the
extension £ » £, (2) the map £ » £ can be ex-
tended to all tame functions and (3) £ =
O(F(yy)se..,F(y ) where £(x) = o«x,yl),...,
(x,y ’)) The £8nctions F( ) on_X are normally
distgibu:ed with variance and Yyreces¥y
are orthogonal, thea F(y. ),...,F(y ate in-
dependent. More concret% realizations of H
- and the measure space (X,m) can be obtained,
for example
a) vhere H = 9.2 X=R , o the product measure
corresponding to Gauss measure on each coordin-
. ate, b) H =HYX0,1), X = €(0,1) with m = Wiener
measure. However it can be easily proved that
these various extensions are all measure theo-

retically isomorphic.

3. Abstract Wiemer Spaces
and Absolute Continuity

The discussion above could be formalized
using the ideas of Abstract Wiener Space due to
Gross.

Let H be a Hilbert space and let U be the
tame measure given by (2.2). A measurable morm
on H is a norm ||*|| such that ve > 0, 3 finite
dimensional projection ? such that Vv finite
dimensional P LA P "

u((.a| | |r.| |>e})>e.

Let B = completion of ¥ with respect to
lI*l]. E is s Banach space. The canonical
dd‘u. {1 : 8 -C {s compact. Ideancifying H
and B, ve obtain by duality the embeddings

[ »
Bl = H e HE
i i

E* can be identified with its image in H and
H wvith its image in E. The measure u has a
countably additive extension p on the borel
fields of E. The triple (1,H,E) 1s called

Wiener space and p Wiener measure om E.
Now, E' would,be interpreted as_functions
on E belonging to L°(E,p) and their Lz-non

uals the H norm. Hence the el.o.uro of E* m
L2(E,p) cau be ideatified with U*. If e € 8",

ve denote by & the corresponding random yi;riable
on E. Let ? e a finite dimensional orthogonal
a

projectioz c= 3 such that = Z s
x = e . .,x> e, (e )
- 15 i i
orthonor=al iz 2, thea P =3 3. e, defines a raa-

i=1
dom variable oz E with values in H.

A fizciion £ on H with values in_a Banach
space F dc:c-:.‘.:us a random variable f on E with
values in 7 if for any sequence of finite dimen-
sional p:o‘c:::an P~ I strongly in H the se-
quence of ra=doa vaBiables 2 - f in measure
p on E.

Some Preliminaries

Let ¥ e a real Hilbert space and let L(H)
denote the s;ace of bounded linear operators om
H. Let 1 ée:a:e the Banach space of nuclear
operatorsic= Z under the norm | X} ll. = tr{(l*x)l‘l.
11 is a *~iieal in L(H). Let I, dénote the Banach
space of Fiiser: Sv:hnidt operatirs on H with norm
HKI l2 = [ez(z*R) ] I, 1s also a *-ideal n

I£ X ¢ I, the Fredholm detgrminant of
(I+K) 1is dd‘_:ed by det (I+K) = w (1+A1) where
i=1
the Ay are t=2 efgenvalues of K counted with their
multiplicizies., If K€ éﬂ the Carleman Fredholm
ge:em.i.na:z of I+K is defined by §(I+K) =

{ouy (+A, YeL, det(I+K) is an analytic function
on 11 a:zd 2£{I+X) 1is an analytic f.unction on I
2’y

Ptel.ninary Lems

The .o”mring lezmes follow from the Hork of
Gross (c£. Gzoss[1]). =
Lemma 3.® rez K € L(H). Then K determines a
randon vasiz>le K on E with values in E.
Lemma 3.2 let be a family of orthogonal pro-
Jections _cczverzing to I strongly. tKe 12.
Thea (K*3 ) is a Cauchy sequence in L*(E,p;H)“and
Prob(KecE) = 1,

Suppose X ¢ I .« Then in general <Kx,x>
and Tr(X) zased not“exist.
can be give= 3 —eaning as a real random variable
on E via stschastic exteansion.

In fac:, for certain non-linear operators
K: E=E <3x,x> - trKk can be identified as a
random variazble. In the above K is continuous
and its E~decivative (defined below) ! is
Hilbert-Sc:iaid:

Let U;’bc open. A function f : U=+ F,

I Banach is E-continuous at x € U if the function
g(h) = £(x+=) defined on (Ux{x}) N H 1s contin-
uous at the origin in the induced (Hilbert) top-
ology, £ is 3-differeatiable at x if g is Fréch-
et differezciable at the origin in H. It can
then be si=wa (cf. RAMER).

Mz Let UC E be open and let K : U~ E
be such :..a' (1) K(U) C H, (i1) the H-derivative

at x, x : G- L(H,E) is continuous and Hilbert-

Schmidt™ iat (e )ncN be an orthonoml basis in
-

| ouch‘:hl: ¢SE, Vi, LetP 2'1 c :

E *E. Thea i=

[

However <Kx,x> - Tr(K) -

Ll'r!:". Loy FODES
o ‘_LEC'&

e A
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) a Cauchy sequence in Lz(E.p). ;

(1,) {an(x)} = {<p kx,x> - tr(P K) } is
neN

(11) There exists a subsequeace (o, ) such that
{p_‘k(x)} converges almost everywhere on U to

a random variable on U. Denoting this random
variable by <Kx,x> - trK , 1if (nk) is any
’ kN

other sequence for which (n-k(x)) is Cauchy
4.8., then l.k(x) -+ <Kx,x> - trk_ a.e.

(1il) <Kx,»> - trk_ does not depend on the

. chaice of basis (.")ﬁll in H.

Absolute Continuity and 'Cowuution
of the Radon-Nikodym Derivative

Case I (Translation)

Theorem 3.1 (Segal)

. Let (1,H,E) be an abstract Wiener Space
and let p be standard Wiener measure on E. Let
ctEnndlccT. :E-E: x"™ x+ e Then the

transformed measure pT _ and p are mutually ab- -

solutely continuous if and only if e € H. The
R - N derivative of pT. with respsct to p is

o el
the random variable oxp (% - 3 °

Remark:
1f E= C(0,1;u ) where :}: denotes Wiener

measure then H = 31(8.1;;\3). e Sobolev space
with Gaussian measure.

Case II (Linear Transformation)

Theorem 3.2 (Segal-Feldman)

Let ({,H,E) be an abstract Wiener Space
and p standard Wigner measure. Let q be a Gaus-
sian measure on E with covariance Q. Then p andgq
are either mutually singular or mutually ab-
solutely continous. They are mutually absol-
utely continuous if and only if there exists a
Kel,, symmetric, such that the quadratic
form i(x) on E” 1s of the form Q(x) = <(I+X)xx>.
The R - N derivative of q with respect to p is
the random variable on E givea by

=1.2 2
11_!1 () _-up(‘ski-('l’_-bl) e ).

N — . — —— - . - — ke -

It is possible to use Theorem 3.2 to prove
Theorem 3.3

Let (1,H,E) be abstract Wiener Space and
let p be the standard Wiener measure on E. Let
T = I+ K be an invertible linear transformaticn

on E with K € L(E,H). Then xlu €1, and (xls)' -

" K. Then the R - N derivative of the transformed

measure pT with respect to p is given by

|6(1) lexpl-(<kx, x> - ) = k|kxl?] a.e.

The affine case could now be proved using
Theorem 3.1. There is a non-linear version of
Theorem 3.3.

Theorex 3.: (Racer)

Lec (i,H,E) be an abstract Wiener Space and
p be standard Wiener measure on E. Let UC E be
opea aad lez T : I + K : U~ E be a continuous
non-linear :transformation such that
(1) T is a hozeomorphism of U onto an opean
subset of .
(11) R(U)C Eand K : U™ H is continuous.
(411) For each x ¢ U, the H-derivative of K at
x, Kx exists, is Hilbert-Schmidt and K‘ H e d Iz

is conti=uous and I.ﬂ + xx is invertible.

Thea p and the transformed measure pT are
mutually absolutely continuous as measures on U.
The R ~ X derivative of pT with respect to p is

. given by

1§Cr ) |expl-(<kx, > - £xK ) -4|kx|%)a.e xev.

-

Remarks:
1) As centioned earlier <Kx,x> - r.r(x*) is a -

random varisble. It is intriguing to see the
appearaace of the term tr(K_ ) which bears a
striking resezblance to the Wong-Zakai correction
tern relatizg the Ito and Stratanovich integral,
(11) Cczmsider the Kalman Filtering problem

dx‘ = ?x:dt + Gd":
d’:
standard
pendeat.

Thea by passing to the Innovations Repre-
sentatica .

dy‘ = Ex‘dt + d\)t

- Ex:d: + dn: » where v, and "t are

wiener processes assumed to be inde-

vhere 2‘ - .-‘.(x:IFé and 'vt is the Innovations

process (vhich is a standard Wiener process)
and notf=g that _ :
x, -J:K(:.s)d\)., with

K(*,°) ¢ Lz([o't]![O.t]; L®P;R™)), we are in
the situaticn of Theorem 3.3. A "causal" re-
preseatacica for the R - N derivative could be
obtained by icvoking the Kreian Factorization
Theorex in conjunction with Theorem 3.3. (cf.
HITSUDA where the reverse process is followed).

4. The Free Quantum Field and Kalman Filtering

In the previous section we have indicated
how stac:cing from a Hilbert space H with Gauss
measure of unit variance n on it we can comstruct
a Banach space E and a measure u which is couat-
ably additiv - on the borel setsof E such u is an
extensica of 2 in a certain precise sense. In-
tegratica of functions on H and questions of ab-
solute ccatinuity can be answered by passing
to the 2azach space by an appropriate stochastic
extensioa. 1ihere is a purely Hilbert space
point of view due to Segal which may turm out to
be more i=portaat for the needs of System Theory.
Due to lack of space we do not give a detailed
exposition of this theory here. This theory is




needed to show the equivalence of vafious repre-
sentations of the free quantum field® viz.
(1) The particle representation which involves
the symmetric tensor products of a complex Hil-
bert space H with itself, (ii) the wave repre-
sentation (functional integration) in the space
12(H') of a real part of H and (iii) the complex~-
wave representation in which a space K of entire
anti-holomorphic fuanctions on H are involved.
The intertwining operators between the various
representations requires absolute continuity con-
siderations and the use of the Fourier-Wiener
Transform. Mathematically, the field is diag-
onalized in the functional integration repre-
sentation whereas the particle numbers ace diag-
onalized in the teasor product representation.
In the complex wave representation the creation
operators achieve a kind of diagonalization.
Brockett (cf. BROCKETT) has recently shown
that the group with 4 generators H, P, Q, E with
the commutation relations

(g,p] =-q, (H,Ql =P ,(P,Q] =E with

the rest zero plays an important role in Kalman
Filtaring theory. This group has been called

the Harmonic Oscillator Group (cf. STREATER).

The group generated by P, Q, E, the Heisenberg
group, is a subgroup of the oscillator group.

The oscillator group is not nilpotent but solu-=
able. Streater has obtained all the continuous
unitary irreducible representations of the Har~
monic Oscillator group. He shows that if complex
Lie algebras are allowed then one can obtain the
Bargmann-Segal representation of the haruwonic
oscillator by holomorphic functioms using the
technique of Kirilov. In this representation the
creation operator C(z) is nultiplicatios by z
~and the annhilation operator c*(z) 1s 3z .

Segal (cf. SEGAL [ 2]) has explicitly given the
intertwining operators between the holomorphic
and real representations. It would thus appear
that the Zakai equations for the unnormalized
conditional density corresponding to the Kalman
filtering problem defines a "field" which is an-
alogous to the "free quantum field”.

Definition:

A concrete free Boson field over a given
complex Hilbert space H, denoted as ¢(H) is a
quadruple (K,W,l,V) consisting of

1) a complex Hilbert space K,

the space of unitary operators on K satisfying
the Weyl relations A

Wiz)W(z') = .xp(% Im<z,2">W(z+2"'), Vz,2'cH,
(111) A continuous represeantation ' from
U(H) + U(K) satisfying

T = wwz) ,vo c o), z € &

1. The free quantua field is an infinite assem~
bly of non-interacting harmonic oscillators.

(41) A continuous mapping z = W(z) : H - U(K), :

(iv) A uwnit vector v € K having the properties
that [(U)v=v YU € U(H) and W(2)v, z € H

span K topologically

(v) T is positive in the sense that if A is

any positive self-adjoint operator om H, then
dl'(A) is positive where for any positive self-
adjoint A in H éT(A) is the self-adjoint generator
of the one-parazeter unitary group [U(ei“\)ltsnl.

Let H' be a real Hilbert space and let g de-
note the ceazred Gaussian weak distribution on H'
with variaace 1. We define a positive linear
functional I (expectation) on the algebra A(H')
of all bouzded tame functions on H'. Let L4(H',g)
be the co=pletion of A(H') with respect to the
inner product <f,£'> = E(ff'). Let @ denote the
canonical ho=onorphism of A(H') into Lz(n',g).

If H is a complex Hilbert space, it has also
the structuze of a real Hilbert space with inner
product egual to the real part of the complex
inner preduct in H. In this way, we can define g
on H and hecce L“(H,g). From the work of Segal,
ve know L2 (3,8) can be regarded as the completion
of the algedra P'(H) of functions of the form

f(x) = p(Re<x,el>,.. .,Re<x.en>)

p a real polycomial and the e, are orthomormal.

In addition to P', one caa also consider the
algebra of functions

£(x) = p(<x,e;>5...,<x,¢,>) , pa

polynocial fimction on C® and complex conjugates
of the above. Let P(H) denote the last meantioned
algebra.

In the co=plex-wave representation the repre-
sinntion s7ace K is the closure of P(H) in )
L4(d,g). Sezal has shown that the elements of ‘K
can be ideaxtified as functions well defined at
every point of B and which satisfy an L“-bounded-
ness condiction. We do nmot go into the details
of the comstruction of W and I of the Weyl System e
here. It caa be shown that there exists a uanique
(upto unitary equivalence) Weyl System. It is
however worthwhile stating explicitly the form of
the "creatica" and "annhilation" operators.

Definition:

- For aay representation ¢ = (K,W,[v) of the
free Bosca field over the given Hilbert space H
and for givea vector z € H, the creation operator
for z decoted by C(z) is defined as the operator
3 (dw(z) - idw(iz)), where dW(z) denotes the self

joint geaxerator of the one-parameter group
{W(tz)|tex}. The annhilation operator for the
vector z, dezoted by C*(z) is defined as the
operator 1 (dw(z) + idw(iz)

Theoren (Sezal)

The operators C(z) and C*(z) are closed,
densely defined and mutually adjoint. In the com-
lex-wave (aati-holomorphic) represeatation, C(z)
as docain consisting of all FeK such that

<g,*>F(*) € X. C(z) is the mapping
P WVTT <2z,°>F(*). C*(z) has domain consist-
ing of all F K suchthat F:cl where F: -

:1‘8 L("‘"‘:zt.__);ﬂ&)_. C*(z) is the mapping

-
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The Particle Representation

Let H' be a real Hilbert space and let
Ebe: its complexification. Let H®® be the n-fold
symmatric tensor product of H with itself. We
glve. H'® the ianer product

<Sym. 8,9+ @8, Sym flo.. .@t'n> -

§<"(1) .£1>. .e <817.(n) )fn>
wvhere T is a permutation of (1,2,...n) and Sym
isc the symmetrization operator

Sym £0..@f, = n_ll. ; fﬂ(lp"'afn(n)

Let F be the veak centred Gaussian dis-
tribution of unit variance on H'. Associated
with H'is a probability space (R,Bu), where B
1s: generated by F(f), £¢ H and 1f £ ,...,f
are orthonormal in H' and ¢ is a RBaile funcPion
ox.R%, then

S(F(E.)yeeF(f ))dy =
'6 1 a _é
2

1 :
Wz J;ﬂ d(x)e dx

Let L2(8') denoce L2(2,8,u)
Let S (H') be the closed linear spaa in
L2(H') of all el¥ments of the form F(f )...F(f )
@ <o and_let S(H') be the orthogonal comple-
ment of § (u')n-l s (H')n. For fl....,f

in B: Define : F(£,)...F(f ) : to be the
oxthogonal projec:i%n of F 1)...F(£n) on S(H')n.

’

" Thes it {s easy to see that

: r(fl)...l-'(fn) s #»Sym tlg..afn

extends uniquely to a unitary mapping frot; S(R')n

onto H® . Ve identify S(H' },{ with 1a this
mapping. Segal showed that lf)n span L2(H).

Heorce Lz(ﬂ') - %E’e . This is Fock space.
as|

Let [(H) denote z.oﬁw . TI(4) is intrinsically
o

attached to the stcucture of H ss a real Hilbert
space. Hence if U : B' + K' is an orthogonal
mapping of one real Hilbert space into another
it induces a unitary mapping ['(U) : I'(H) - I'(K).
O s(l!)“. rc) is U@...@U (n-factors). The

ideas of Fock space are important in filtering
theory and"'gnhnd to Wiener's homogeneous chaos.
For a recent application see MARCUS-MITTER-OCONE.

S. Conclusions

The mathematics used in quantum field
theory may have applications to modelling of
stochastic systems and filtering theory. In
this paper I have concentrated on ideas sur-
rounding the free quantum field. I believe

B s . ———

ideas of nca-linear quantum field theory, for
example, those ceveloped in SEGAL [ 3 ] have ap-
plications in aca-linear filtering theory. But
this we have to leave for the future.
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