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1. Introduction ‘

~

“,,, Let V be a real topological vector space,
V its topologica1~dual and let <•,•> denote the

~~~~ In this paper I would like to give a pairing of V and V • A tame set is * set C of
very partial account of integration theory in the form
Rilbert space and related questions of absol— (2.1) C — ~~~~ (<z ,y1> , •• •  <X~Y~>) C A)
ute continuity which may be Important in prob-
lems of stochastic realization theory, linear where A is a Rorel set in R° and y~tV , j—l,2,..n.
and non—linear filtering, detection theory and U K is a finite dimensional subspece of V~
quantum communication theory. This theory is containing y ,.. . ,~~ then C is said to be based t

largely the creation of I.E. Segal and his on K. The c~1lecti~ n S~ of tame sets based on K
former students , notably Gross and Nelson. The is a 0—ring. I.e: R - uKS.~ 

be the ring generated

_________________________

mend for such a theory arose for the purpose of by (SK )~~V*
putting quantum field theory on a rigorous A mon—~egati’e set function ~ 

defined on R
mathematical basis. The theory has a distinct is a tam e set neas..re if
algebraic character and I believe is particu— 1) ~(V) — 1 *

C..) larly suited to the needs of stochastic 5y5t~~ 2) Y finite dinensional subspace KCV , is
theo ry. An account of this algebraic approach councably additive unen restricted to the c—ring

LU nay be found in SEGAL-KUNZE (1], SEGAL ((1] and SK.

~....j 
th. bibliography cited there) . This theo~y is An equivalent concept is that of a weak
different from the work of the Russian school distribution. Let ‘1 (a,A ,P) be a probability
(icf. GELFAND—VILEN~CIN) in the sense that space. A eaa df.s:ribution on is an equival—
essentially Milbert space techniques are used cute class of linear naps F V RV(Q,A ,P).  Two
and in general one works with “weak” processes such maps are5eçuivalent if for any finite set
as opposed to “strict” processes. In this theory y

~
,... ,y c V , the joint distribution of

mon—linear funct ions of processes can be handled
and in particular certain non—linear functionals j~~ L~ ’” ~~~~~~~ 

in E~ is the sam e for j  — 1,2.

of white noise can be givin mathematical meaning . 
A tame :t.nc:Ion F on V is one of the form

F(x) — f(<x,~ >,...,<x,y >) for some Raire func—
The other approach to some of these questions is tion on 5m ant for some ~èinite sequence y
due to GROSS (cf. GROSS (1], (2J and the biblio— 

~~ v~
b. If K Is some finite dimensional

graphy cited therein) where a countably additive containing 
~1’~

•.’7n them F is said tobebaaed on K.
“extension” on a separable Benach space of the Let il be a real. ~Iilbert space. For C a
finitely—additive Gaussian measure on a Rilbert tame subset of V based on K, define
space is ebraintd~ These ideas ha”e recently —u 

~ 1
2

bees od ified and developed by Balakrishnau (2.2) ~(C) — (2—) 
~ ~ exp (

~ 2 
) dx

(cf. for examp le 3AL.’~1(RISHNAN (1], (2]) in a
series of papers related to detection and filter— where A is a 3orel set in K and n — din K. It
ing theory. is possible to enlarge H and obtain a countably

additive measure on a larger space which is in
2. Segal—Cross Theory of Weak Proces ses a sense an extension of U.

Let f(x) f(?x) be a tame function for some

It is a known fact that ther e is no analog finite dimensiona l projection P. Let • be the
of Lebesgue measure (i.e. a ceuntably additive restriction of f to F — Range (P). Then $ is
measure whic h is translatio n and notation in— Rerel measurabl e on F and_n jx fl2variant) on an infinite dimensional Kilbert
space. In fact no such measu re exists even when (2.3) fR f(x )d . (x)  — (21,) Zj~ $(x)esp (_ t_

~—_)dx

invariance is relaxed to quasi—invariance. Such whar. m dim(F) .
an “invariant” measure however exists if we do
not insist on count*ble additivity. 

Las A • algebra of bounded complex—valued

________________________ 
functions on S together with their uniform limits.
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we deno te by 5(f). A is *4~ —algebra with unit we denote e the corresponding random variable
in the supnorm and hence A C(z) for sone con— on S. Let P be a finite dimensional orthogonal
pact Rausdorff space X. Let f ~ I be this iso— projection cm ~ such tha t
morphism. Moreover S is a continuous positive Px —
linear func t~ou on A and hence by the Riész re— n ~ 

<e1,x
> a1, (e

1)

presentation theorem - orthonorma.2. in H, then 1’ •
~~~ ~~~~~~ defines a ran—
i—I5(f) — I dm , where m in this case is don variable on S with values in It.

probability measure. The ismor~phism f ~‘ f can be A func:L n f on H with values in a Banach
extended to tame functions in 1~ (H ,U) by density space F date—mines a random var iable f on E with
such that (fg) • ?j . Hence if f — char.fn.(A), values in P if for any sequence of finite dimen—
A a tame set , 1 is characteristic function of siomal pro~.n:Ion P -

~ I stro flgly in H the se-
same measurable set ~ and ~ (A) m(~ ). Using the quence of random vJiables f•P ~ in measure
Celfand Transform, we can see that for f £ A , ~ p on E. m

is an extension of f from It to all of X. Now A
and in fact II is such that rn(S) 

*. 1~he comtinu— 

?~ Preliminaries
Let H be identified with H

.eus linear functionals on H are Sn L201,LO. To Let H be a real Rilbert space and let L (II)
the linear functional determined by y ther e denote the space of bounded linear operato rs on
9rresponds a measurable F(y)(.) on X. F H • H. Let I demote the Banach space of nuclear
L (X,m) is norm—preserving. It can be shown Operators1c: H under the norm I I K H ~. — tzj(K*Kj~J.
(1.) that the nap F completely determines the ~ 15 a * if £5.1 in L( H) . Let 1 demote the Banach
extension f ~ 1, (2) the map f ‘~ I can be cx— s~ace of Hi.~.be:: Schmidt operat~rs on IL with morn
tended to all tame functions and (3) 1 — l i K i l [tr(K*F3]½. 

~z is also a *..ideal in
•(F(y ) , ...,F(y )) where f(x)  — $~x ,y1),...,
(x,y i)). The fflnctions F( ) on x are normally If K t I~, the Fredho im det1rmin*mt of
dist~ ibuted with variance I l y I I~ and y , . . . , y  (I+K) is d.fi~ed by dat (I+K) • ii (l-I A~) where
are orthogonal, then F(y ),.. .,F(y ) a~e in— 

n j _j

dependent. More concret~ realizat~ons of H 
the )~ are tme eigenvalues of K counted with their

and the measure space (X,xa) can be obtained, nultipliclties. U K £ I.. • the Carlenan Fredhoin
for example getermiflam:.3i I+K is def’Ined by 6(I+K) •
a) where H — t2 , X — R , m the product measure 

~~~ ~~~~~~~~~~ 
det(I+K) is an analytic function

corresponding to Gauss measure on each coordin— on 
~l 

and f ( ÷K) La an analytic function on I
ate , b) H — HkO,l), x • C(O ,l) with m • Wiener -

measure. However it can be easily proved that Pz 1”4”ary Le es
these various extensions are all, measure thee—
reticslly isomorphic. The following lemmas follow from the work of

Gross (cf. Cl~SS[l]).• 3. Abstract Wiener Spaces Lemma 3.~ L*t K_c L (IL). Then K determines a
and Absolute Continuity random va, taSle K on H with values in S. ~~

Lemma 3.2 Let be a family of orthogonal pro—
The d iscussion above could be formalized j ections tcn7erging to I strongly. Let K c I

using the ideas of Abstract Wiener Spac. due to Then £K’~ ) is a Cauchy sequence in L (E ,p;H) 2and
— Gross. Prob (K E~~ • 1. ~~

Let I be a tu berS apace and let U be the Suppose K C ‘2• Then in general CEx ,x>
tame measure given by (2.2) . A measurable norm and Tr (Z) maid not exist. However CXx ,x> — Tr (X) -

os I La a nor. 
~~~~~ 

such that y t  ) 0, 3 finite can be given a — --“4~ g as a real random variable
dimensional projection P~ such that V finite on S via stochastic extension.

In fat:, for certain mon—linear operatorsdimensional ~~ K S H Kx,x~ — trK can be identified as a
random variable. In t~e above K is continuous
and its IL-derivative (defined below) K

Let I • cosplectow of H with respect to 
~~~bert ~~c~~~dI Ls .Iea.ch space. The canonical L S U C ! b s  open. A fimction f : U ~~~V,L I * £ Li compact. Zdencifying ~ L Banach is IL—continuous at a C U if the function

..d I • we .bta.Ln by duality the eabeddings g(h) - f (w ~h) dsfined on (U’~(x}) (‘1 H is contin—a *g _____ • g 
~~~~~~~~~~ 

E ueus at the origin in the induced (h u bert) top-
ic elegy. f i.e IL-differen tiabl. at a if g is ?r~ch—

et diiferen:i.eble at the origin in H. It can
£ can be identified with its image in H and them be shnwn (ci. RA.’~~).a with its image in S. The measure u has a Pr onositlo: : Let U C  Sb .  open and let K U .S —s
countably additive extension p on the borel be .~~ ~~: (1) K(U) C H, (ii) the H—derivative n
fields of S. The t riple (1.1.5) is called at a, : U  — L(E,E)  is continuous and Hu bert—
Wiener space and p Wiener en svr. on ~ kh..Lds. ~~ cc )
— 

~~w, 5 vould2b taterpreted am functions aCH be an orthonornel basis in
a 0

on I belonging so L (I,p) and their I,2—nor. H such the: e~E S • V i. Let P — ; •,Øe
~a9uais the 11 norm . Meece the closure of g* La *

L’(I,p) can be i4eattf Led with g~ • if a c I~ , S . Then

CODES

f t . 2 1
_ __ _  -



ci) (a (x)} — (cP ICx,x> — tr (P K) } is Theore; 3.. (3ar.er)
ft n n a acN Let (i ,H ,E) be an abstract Wiener Space and

~ Cauchy sequence in L2 (E ,p). . p be standard wiener measure on 5. Let U C  £ be
open and let T : I + K U • S be a continuous(ii) There exists a subsequence (n.a) such that 
non—linear transformation such that

(a (a) ) converges almost everywhere on U tO Ci) t is a honeomorphism of U onto an open
subset of E.

~ zandom variable on U. Denoting this random (ii) i~ t~ ~ and K : U H is continuous.
variable by cXx,x> — trK ~, if (m.~) is any (iii) For each a c U , the H—de rivative of K at

kCN a, K~ exists , is Rilbert—Scbmidt and : U 12other sequence for which (a~~ (x)) is Cauchy 
is conei~ .ou.s and + is invertible.

Them p and the transformed measure pT arei s.  then a~~(x) <Kx.x> — trK
~ 

ac .  
mutually absolutely continuous as measures on U.

(iii) <KZ,X> — trKa does not depen d on the The H — N deriv ativ e of pT with respect to p is
given by

eheice of basis (e
’
) in H.

I5(T~
)IexP(_ (<Kx,x> — trK

~
) —¼ 1Kx 1

21a.. xcU.

absolute Continuity and Computation .

of the Radon—Nikodym Derivative _______

Ci) As mentioned eat’lier <Kx ,x> — tr(K
~
) is e

Case I (Translation) random variable. It is intriguing to see the
appearance of the term tr(K ) which bears a

ths~~gI~j~j~ (Segal) striking resemblance to theXwong_Zakai correction
Let (i,H,E) be an abstract Wiener Space tern relat ing the Ito and Stratanovich integral.

and let p be standard Wiener measure on E. Let (ii) Ccma~d.r the Kalman Filtering problem
e t E a md let Te : E E : Z ~~~

X + e .  Then the

transformed measure p 1 and p are mutuall y ab-
solutely continuous if 2nd only if e C H. The dy~ - Ex

~
dt 9’ dr~ , where v~ and are

a — N derivative of p1 with r.:~~ct to P is standard ~~ener processes assumed to be m dc—
the random var iable exp (... — ~~~~ ) . pendant.

Then by passing to the Innovations Repre-
Remark: santaticn

If S — C(O ,l;~~) where denotes Wiener
measure then 1 flh (~,3.; Q, ~~e Sobolev space dy~ — Ex

~
dt + dV

~
with Gaussian measure. where 

~ 
— E(x~ F~5 and \, is the Innovations

Case II (Linear transformation) process (which is a standard Wiener process)
and not ing that

Theorem 3.2 (Segal—Feldmsn) 
~~ ~~~~~~~~ with

Let (i,H ,S) be an abstract Wiener Space
and p standard Wi jner measure. Let q be a Caus— fl.,.) c L2 ((0 , t lx(0 ,t] ; L(R~ ;ft’5), we are in
alan measure on S with covarisnc e Q. Then p and q the sttuat~on of Theorem 3.3. A “causal” re-
ars either mutually singular or mutuall y sb- pr esear a :Lca for the H — N derivative could be
solutely contimous . They are mutually absol— obtaime4 by invoking the Krein Pactorization
utely continuous if and only if there exists $ Theor em in conjunction with Theore m 3.3. (ci.

~ ci , symmetric , such that the quadratic HITSUD~. where the reverse process is followed) .
form ~ (x) on is of the form Q(x) — <(I +Y3xX>.
The S — N derivative of q with respect to p is 4. The Tree Quantum Field and Ks.lman Filtering
the random var iable on £ given by

(A +l) ¼ 
~~~~~~~~ +1) ¼2 ) .~~~~~~~~ Zn the previous section we have indicated

1J1 i — . how starting f rom a Hu bert space H with Gaus s
measure of unit variance n on it we can construct

It is possible to use Theorem 3.2 to prove 
- 

~~ ~~~~~~~~~~~ space £ and a measure i.i which is count—
Theor em 3.3 ably eddi t iw on the borel sets of E such u is an

Let (i,a,E) be abstract Wiene r Space and extensLen of m in a certa in precise sense. In-
let p be the standard Wiener measure O~ S. Lit tegration of function s on H and questions of sb-

• I + K be an invertible linear tranaforrnati !fl solute continuity can be answered by paa sing
on £ with K C L(E ,H ). Then C 12 and (Ki a) — to the 3anacb space by an appropriate stochastic
K. Then the P. — N derivative of the transformed extension . There L.a a purely Hu bert space
measure pT with respect to p is given by point of visi, due to Segal which may turn out to

be more i~~ortaac for the needs of System Theory.
6(T) Iexp (~ (CK x ,x> — trK ) — ½15x 121 g.e. Due to lgc~c Of space we do not give a detailed

exposition of this theory here. This theo ry is
The at fine case could now be prov ed using
Theorem 3.1. There is a non—linear version of
Theorem 3.3.

.rJ



~~ . 
ii .

needed to show the equivalence of valious repre— (iv) A umLt vector v C K having the properties
senta cioua of the free quantum field viz, that r(t~)v - v Y U C U(S) and W(z)v , z C H
Ci) The particle representation which involves span K topoLogically
the symmetric tensor products of a complex R u —  Cv) I is posLtive in the sense that if A is
bert space H with itself , (ii) the wave repre— any positive seif—adj oint operator on H , then
sentation (functional integration) in the space dr (A) is pos±tive where for any positive self—
L2 01’) of a rca]. part of H and (iii) the complex— adj oint A in H dr(A ) is the self—adjo int generator
wave representation in which a space K of entire of the one—paraneter unitary group (u(eitA)j  tEa] .
anti—holoworphic functions on H are involved . Let H’ be a real Hu bert space and let g dc-
The intertwining operators between the various note the centred Gaussian weak distribution on H’representations requires absolute continuity con— with variance 1. We define a positive linearsidera tions and the use of the Fourier—Wiener functional Z (expectation) on the algebra A(H’)
Transform. Mathematically, the field is diag— of all bounded tame functions on H’ . Let L2 (H’ ,g)
onali’zed in the functional integration repre- be the completion of ACM ’) with respect to the
sentation whereas the particle numbers are ding- inner product <f,f’> — E(ff’). Let 9 ~enore theonalized in the tensor product representation. canonical homomorphism of ACM ’) into L (H’ ,g).
In the complex wave representation the creation If H is a complex Hilbert space, it has also
äperators achieve a kind of diagonalizatiom. the struct ur e of a real Hilbert space with inner

Brockett (ci. BROC KETT) has recentl y shown product equal to the real part of the complex
that the group with 4 generators H , P , Q, £ with 

. inner product in H. In this way, we can define g
the commutatio n relations on H and hence L2 (H ,g). From the work of Segal ,

we heow L2 (3,g) can be regarded as the completion
(H ,?] — —Q , (H ,QI — P ,(P ,Q3 — S with of the algebra P’(H) of functions of the form

the rest zero plays an important role in Ka lman f (x) - p(Be <x,e1
> ,. . .  ,Re<x,en

>)
Piltsr ing theory. This group has been called
the Harmonic Oscillator Group (cf. STPIATER). p a real polynomial and the e are orthonornal.
The group generated by F, Q, 5, the aeisenbetg In addition to F’ , one also consider the
group, is a subgroup of the oscillator group. algebra of functions
The oscillator group is not nilpocent but solu-
able. Streater has obtained all the continuous f (x) — p (<x,e1

>,. .. ,<x,e~>) , p a
unitary irreducible representations -of the Mar— polynomial function on C m and comp lex conjugates
monic Oscillator group. He shows that if complex of the above. Let P(H) denote the last mentioned
Lie algebras are allowed then one can obtain the algebra.Bargnann—Segal representation of the harmonic In t~e complex—wave representation the repre—oscillator by holonorph ic functio ns using the s~ntat ion space ~ is the closure of P( M ) in
technique of Kir ilov. In this representation the La (li,g) . Sega]. has shown that the elements of K
creation operator C(s) is nultiplicatiog by z can be identified as functions well def ~ned at
and the annhilat ion operator 

C~~z is . every point of H and which satisfy an L —bounded—
ness condition. We do not go into the details

Segal (cf. SEG.U. ( 2  1) has explicitly given the of the construction of V and r of the Weyl System.
intertwining operators between the holomorphic here. It can be shown that there exists a unique
and real representations. It would thus appear (uptà unitary equivalence) Weyl System. It is
that the Zakai. equations for the unnormalized however vorth-.-hile stating explicitly the form of
conditional density corresponding to the Kalman the “creation ” and “annh.tlation” operators.
filtering problem defines a “field” which is an— Definition
alogous to the “free quantum field”. For any representation 4 — (K,W,I,v) of the
Definition: free Boson field over the given Hu bert space a

A concrete f ree Boson field over a given and for given vector a e H, the creation operator
complex filbert space H, denoted as 4(R) is a for a denoted by C(s) is defined as the operator
quadruple (K,U,~,V) consisting of ~ (dW(z) — id~ (iz)), wher e dU(s) denotes the self

generator of the one—parameter group
(I) a complex filbert space K, {V(t z)~ tCP.~. The annhilation operator for the
(ii) A continuous mapping a ~ U(s) : H • 0(K) , vector z , denoted by C*(z) is defined as the
th. space of unita ry oper ators on K satisf ying oPerator

~4 
(dW (s) + idU(iz)

the Veil relations
Theorem (Segal)

V( z)U(z ’) exp4 Imcz ,z ’>V(z+s ’), Vz ,z ’tH , The operators C(s) and C~ (z) are closed ,
densely defined and mutually adjo int. In th . con-

(iii) A continuous representation r from plex—wave (mmti—holomorph.tc) representation , C( z)
U(H) • U(K) satisf ying has domain consistin g of all FEK such tha t

r(u)u(a)r(u)~~ — W(U z) , YU £ U(9) , a C H ‘s, •>F ( ) C K. C(s) is the mapping
C z , ’F ( ),. Ce(s) baa domain consist-

ing of all F c K such that F5cK where V5 —
1. The fre. quantum field is an infinite assem— 

~~~ r u+c:5 — F(u) C*(z) ii the mappingbly of non—interacting harmonic oscillators. C~O
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~~~~~~~~~ F~. ~~ ideas of nc:—lfmaar quantum field theory , for~~~~~~~~~~~~~~~~~~example, those developed in SEGAL ( 3 3  have ap—
The Particle Representation plications in non—linear filtering theory. But

this we have to leave for the future.
Let H’ be a real filbert space and let

abe- its complexification. Let ~~~ be the n—fold
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