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ABSTRACT

Binary sequences find increasing use in electrical
engineering applications of ranging, time measurement and
communications. A property of interest in these applications
is the autocorrelation function of the binary sequence or
pair of sequences. O0Of the 2% possible sequences of length n,
only a few have usable autocorrelation functions. There is,
to date, no procedure known which will provide the sequence
having a specific autocorrelation function, except for very
particular cases.

In this report, kxnown properties of complesmentary sequences
are reviewed. lmost complementary sequences are defined and
the procedure to obtain them is outlined. A formula is
derived for the number of different autocorrelation functions
of the 20 possible sequences of length n bits. A computer

search is implemented with the objective of discovering se-

quences with desirable autocorrelation functions.
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I. INTRODUCTION

This study is concerned with binary sequences and their
autocorrelation functions. The objective is to obtain auto-
correlation functicns with sidelobe levels less than or equal
to predetermined values. Sequences or groups of sequences
which can provide this property are very attractive for use
in systems whose performance depends on the autocorrelation
function magnitude. Such systems are used in communications,
ranging and time measurement. The problem is to find these
sequences or "good" codes and the rules to construct them, if
such rules exist.

A class of such codes are the complementary sequences.
They are pairs of sequences with the characteristic that the
sum of their autocorrelation functions is a waveform that has
no sidelobes. These sequences were first considered by
M. J. Golay [Ref. 1] and further investigated by S. Jauregui
[Ref. 2]. They are used here to develop a technique for con-
structing another class of "good" codes, the almost comple-

mentary sequences.

A. PLAN OF THE RESEARCH

The efforts to solve the problem follow two directions:
(1) Experimentation with the binary sequences and
their properties, to find the rules which give desirable auto-

correlation functions.
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(2) Computer search of binary sequences of several

lengths to find the ones with small autocorrelation sidelobes.
As a result the following were achieved:

(1) Discovery of the almost complementary sequences.
These are pairs of binary sequences which can be constructed
using complementary sequences. Their autocorrelation functions
when added have sidelobes of predetermined magnitude, polarity
and position.

(2) Discovery of codes of lengths €20 which have auto-
correlation functions with sidelobes less or equal to one.

For example, for length n = 20, only three such codes were
found and for n = 15, none. The computer programs used here
can be used to select codes with any sidelobe levels.

Other results of interest are:

(1) Derivation of the formula for the number of the
different autocorrelation functions of all sequences of
length n.

(2) Construction of computer programs which can be
used in other cases as well. TFor example, an algorithm for
the automatic production of all possible binary numbers of
length n was devised. This algorithm can be used to select
codes having certain properties, such as codes with a fixed

number of ones and zeros.

B. PLAN OF THE REPORT

Chapter II provides the necessary background by giving

the definitions and basic properties of the binary sequence

L2




and autocorrelation function. The formation of the autocorre-

lation function RV(T) of a two level function v(t) is developed.

Matched filters and their realizations are also discussed.
Complementary sequences and their basic properties are
reviewed in Chapter III, to form the basis for the material on

almost complementary sequences.

In Chapter IV, the almost complementary sequences are
defined, and rules for their construction are given.

The formula for the number of different autocorrelation
functions in all sequences of length n is developed in
Chapter V.

Computer programs and their algorithms are discussed next

in Chapter VI.

Chapter VII gives a few applications.




II. BACKGROUND

In this section some basic concepts are discussed and

definitions given as background material.

A. BINARY SEQUENCE

A binary sequence is a list of elements each of which can
have one of two distinct values. These values are usually
represented either by +1 and -1 or by 1 and 0. Often when
the +1 and -1 convention is used, the ones are omitted and
only + and - are written.

For example, sequence A can be written:
A = ++=+ or A = 1101 or A = +1+1-1+1

The number of elements in & sequence is the length denoted
here by n. For the above example, n = 4.

The voltage equivalent v(t) of a binary sequence is a
time waveform where 1 is represented by a voltage level +V
and 0 by a voltage level -V.

For the sequence A = 1101, v(t) is given in Fig. 1 where

£ is the bit duration.

14




v(t)

+V

Fig. 1. Voltage equivalent of a binary sequence.

In this study the 1,0 notation is used. Also, when

sequence is used, binary sequence is implied.

B. - AUTOCORRELATION FUNCTION

The autocorrelation function of a tweo-level, time-limited

voltage v(t) is defined as the integral

R (t) = f"“ v(t)v(t-1)dt.

Rv(r) is a measure of the similarity between a vocltage or
signal and its phase shifted version where all values of time
delay Tt are considered.

The way to find the autocorrelation function Rv(r) of a
digital sequence v(t), is to "slide" the sequence past itself
to the right and left and at each position form the product

of the sequence and its shifted replica. Then the area of

15




the product waveform is taken and this gives the autocorrelation

of the sequence at this position.

The procedure is illustrated in Fig. 2, by showing the
complete steps for two "shift" positions T = C and 1 = €.

It can be seen from the equation for R (1) and from Fig. 2
that when v(t) is a piece-wise constant function, RV(T) will
be a piece-wise linear. The linear segments terminate at
multiples of €, a bit duration.

The autocorrelation is an even function which has its
maximum value at t = 0. RV(O) gives the level of the main
lobe. Secondary maxima are the sidelobe levels. For the

example of Fig. 2, the mainlobe level is RV(O) = uvzs.

Sidelobe levels are R _(e) = -v%¢ and RV(Be) = +v2e.
Actually the shape of the autocorrelation function of a
sequence v(t) is obtained easier by letting v = 1 and € = 1.
For example, to form the autocorrelation function of the

sequence A = 1101, the sequence is written and its delayed

version is placed beneath. For example, T = 0 gives

!
1
1101!
1
1101°

In each position the elements of these two similar se-
quences are compared. If they are the same (both zeros or
ones) they form an agreement; if not (one zero, one one) they
form a disagreement. The number of disagreements is subtracted
from the number of agreements and the result is proportional
to the autocorrelation function at this position. Here there

are only four agreements and the result is u.

16
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(c) Rv(t), for all «

Fig. 2. Autocorrelation of a binary sequence.
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Now a shift is made as follows

]

1101!

1
11071

and by the same method there are one agreement and two dis-
agreements, so the result is -1.

Similarly, the next position is
1

!
11831
1
1191
which gives 0.
The next position
1
1
1101!
%
1Y'10%

gives 1.

And finally, the last position

1
1101!
]

E 11101

always gives 0.

Since the autocorrelation is an even function, R it =
Rv(—r). If t is considered to provide a shift to the future,
-t is a shift to the past.

It Is not necessary for the values given by shifting to
the left to be wrié?en, because they are the same with the
ones resulting from shifting to the right. So, by convention

the autocorrelation of the sequence A can be written

RV(T) = 4,-1,0,1,0.

This convention will be followed in the rest of this report.

18




C. MATCHED FILTERS

Some interesting properties of matched filters will be
listed here. These properties are derived in the literature
[Ref. 3,u].

A matched filter is the best linear filter for detection
of a pulse signal v(t) in noise. The impulse response h(t)
of such a filter is a delayed, time inverted replica of the
input. If v(t) is the input to the matched filter, its impulse

response 1is

h(t)

Mv[-(t-to)], t20

h(t)

0 5 E<IO
where M = an arbitrary constant
t = time delay inherent in the filter.

From linear system theory, the output g(t) of a matched
filter is

4+
glt) = Mu/. v(t=1)v [-(r—to)]dr

o]

Let A = t=-T to obtain

+o0
g(t) = Ld/‘ v v(=-t+1+to)dA

(o]
~ +00

or g(t) -MJ vOOV(A=E)dx =y R ()
where £ = t-to.

The output is maximized when £ = 0 or t = to'

It is concluded then, that the output g(t) of the matched

19




filter is the autocorrelation function of the input. Fig. 3

illustrates the concept.

? Matched |
| . i FAEEOY . by
v(t) h(t) g(t) = MRV(t-tO)

Fig. 3. Matched filter.

Matched filters for two-~level voltages (binary sequences)
can be realized by tapped delay lines or shift registers as
shown in Fig. 4. The tapped delay line realization uses in-
verters at these positions where a zero element occurs in the
sequence. The shift register realization uses a reference
register where the original sequence is stored. This can be
a read only memory (ROM) for example. Another register
receives the input sequence v(t).

In both realizations, +1 units of current flow through
the load resistor RL for each element of the input seguence
that agrees with the "stored" sequence. And -1 unit of current
flows through RL for each element of the input sequence that
disagrees with the "stored" sequence. The net output current

through Rp (and voltage across RL) is proportional to the

number of elements which agree less the number of elements

which disagree. The output g(t) is, therefore, a measure of

the autocorrelation function of the input sequence.
Since the systems of Fig. 4 perform a discrete comparison
and summing instead of multiplication and integration, then

g(t) is a discrete version of Rv(r). For example, the sequence

20
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v(t) I 1 2 3 n
i 1 0 0
iERo g R, 3R, R,
g(t) a n
‘ |
R
(a) Tapped delay line
¥ 2 n

& ¢

e .

v(t)———E{_l

AAA

(b)

Fig. 4.

I}

Shift register

Matched filter realizations.
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1101 has the autocorrelation function shown in Fig. 2, whereas

the output gd(t) of the discrete matched filter corresponding

to 1101 is as shown in Fig. 5.

R, (t)

-4eg =3¢ -23] | -€| € | I2E 3 ie t

-1

%

Fig. 5. Discrete matched filter output.

For a sequence of n elements, the peak output is n units
of voltage. It is clear then, how signal detectability
improves as n increases.

All binary sequences have autocorrelation functions with
sidelobes of various values. The sequences of interest are
the ones with either small or negative sidelobes. The
problem is to find these sequences.

The next section addresses the issue of forming a pair of
sequences or codes, which when processed with matched filters
and the outputs added, yield a waveform with one mainlobe and
no sidelobes. This scheme provides good detectability of

binary sequences.




III. COMPLEMENTARY SEQUENCES

This section reviews complementary sequences and their
basic properties.

A set of complementary series is defined as a pair of
equally long, finite binary sequences which have the property
that the number of pairs of like elements with any given
separation in one series is equal to the number of pairs of
unlike elements with the same separation in the other series.

For example the two series:

A 00010010

B

00011101
are complementary. In A there are three like elements (denoted

by £ below) separated by one element.
OKOKO 1 OZO 1.0
In B there are:
00 Oul 3 luoul
three unlike elements (denoted by u below) separated by one
element.

Similarly for all possible separations the number of like

elements in A and unlike elements in B are as follows:




Number of Number of
Separation Likes in A Unlikes in B
i 3 3
2 3 3
3 4 4
4 2 2
5 2 2
6 Al i
7 1 1

Series having the complementary property were conceived by
Marcel J. E. Golay in connection with the optical problem of
infrared multislit spectrometry [Ref. 1,5].

Complementary series have interesting autocorrelation
functions. If the autocorrelation of each sequence is taken
and these two autocorrelations summed, the result is zero for
all T except T = 0. At Tt = 0, the sum is twice that of either
sequence. Therefore, the sum cf the autocorrelation functions
has one main lobe and no sidelobes.

For example, consider the sequences or codes

A 00010010

B 00011101

"

Sequence A has autocorrelation function:
RA(T) o 8, -l, O, 3, 0, l, O, l, O-

Sequence B has autocorrelation function:

Rg(t) = 8, 1, 0, -3, 0, -1, 0, -1, O,




Their sum is:
r = RA(T) + RB(T) = 18, 8, @, G 0 05 1050 aE

This property can be treated in equation form as follows:

Let a; and bi (i =1, 2, =----, n) be the elements of

two sequences A and B each of length n. Assume a; and bi can
be either +1 or -1. Then the respective values of the auto-

correlation functions will be

n
I B: b.,. for j20.
1

Also cj = c_j For <0

al.
4

d_j for j<0.

The necessary and sufficient condition for the pair of

sequences to be complementary is:

c: T d.
J 3

0 for 3 & 0

2n fon =0 QN

and e, + d.
1 J

where j ranges from -n+l to n-1.

Or in expanded form,

n-j n-j
I  a, a. 5 Bs b
=i 3

i 8543 i Pi4j 0 for j # 0O

+
i=

i

0.

2n for j

25




When the elements of the sequence are 0 or 1, then the
autocorrelation function is obtained by modulo-two addition.
In this case the necessary and sufficient condition for the

series to be complementary is that

n-j n-j
I(a;@a;,:) = I (b; ®by, . ®1) forall j, 1sj¢ n-1
i=1 i=1

This complementary property can be tested experimentally
by using matched filters since the output of a filter matched
to its input is the autocorrelation function of that input.
This realization is shown in Figure 6. The output of the

system of Figure 6 is shown in Figure 7 for the complementary

sequences
A= 11ll-1
B = 11-11

A. GENERAL PROPERTIES

1. Number of Elements

The number of elements in two complementary series
are equal. If they were different, the pair of extreme elements
of the longest series would remain unmatched by an unlike pair

of elements with the same spacing in the other series.

2. Symmetry

Two complementary series (A,B) are interchangeable (B,A);
that is, one can take the place of the other. This results from
the symmetry of the definition with respect to two complementary

series.

26




A Matched Ryl

——— > Filter 1

RA(T) + RB(r)

Matched

B :
‘“——__—€>‘Fllter 2

RB(T)

Fig. 6. Scheme for testing the complementary property.




" RA(r)
X
L i T
<1
4 RB(T)
i e 1 L e
\/ =1 \/ &

8 RA(r) + RB(T)

Fig.

7. Analog matched filter processing of
two complementary sequences.
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3. Seguence Length Even

A necessary condition for a sequence pair to be com-

plementary is that their length n be an even number.

4. Seguence Length Sum of Two Squares

Another necessary condition for a pair of sequences
to be complementary is that their length be the sum of the
squares of two integers. The proof was developed by

S. Jauregui [Ref. u4]:

5. Transformations

A single pair of complementary series can be the basis
for the construction of 64 pairs of complementary series.
a. Order of Complementary Sequences
Denote the reverse of A by Ar' For example,
if A = 1110, then Ar = 0111. The order of the elements of
either or both of a pair of complementary series may be
reversed. This follows from the fact that by reversing a
sequence its autocorrelation function remains the same. The
proof is developed in Section V.
b. Complementing the Sequence
Denote the complement of A by A. For example, if
A = 1110, then A = 0001l. One or both of a pair of complementary
sequences can be complemented—putting zeros in the place of
ones and ones in the place of zeros, without affecting their

complementary property. This follows from the fact that by

Pk,




complementing a sequence, its autocorrelation function remains
the same. Section V provides the proof.
c. Complementing Elements of Even Order
Denote the complement of the even order elements

of A by Ae' For example, if A = 1110, then Ae = 1011. Com-
plementing the elements of even order in each sequence—putting
zeros in the place of ones and cnes in the place of zeros, does
not affect their complementary property.

It is concluded from the above properties that a single

pair (A,B) of complementary sequences can be the basis for the

construction of 28 = 6u pairs of complementary series (some of
which might be identical) by either performing or not performing

the following six operations:

a. Interchanging the sequences.

b. Reversing the first sequence.

. c. Reversing the second sequence.

d. Complementing the first sequence.

e. Complementing the second sequence.

f. Complementing the elements of even order of each
sequence.
f As an example, consider the complementary pair A = 00010010

and B = 00011101:

f Applying a gives B = 00011101 and A = 00010010.

Applying b gives Ar = 01001000 and B 00011101,

10111000.

Applying ¢ gives A 00010010 and Br

Applying d gives A

11101101 and B = 00011101.

30




Applying e gives A = 00010010 and B = 11100010.

Applying f gives A, = 01000111 and B, = 01001000.

By applying the above properties properly, the original

pair can be reproduced:

B = 00011101 and A = 00010010

10111000 and A = 00010010

Br =

Br = 10111000 and Ar = 01001000

Er = 01000111 and AP = 01001000

(Br)e = A = 00010010 and (Ar)e = B = 00011101.

The last pair is the same as the original one.

8. Allowable Lengths

Since, as was mentioned before, the number of elements
in complementary sequences must be even and equal to the sum

of two squares, the allowable sequence lengths up to 50 are
25 U 8o LES b LB 205 26 o 3200 Sl 86 Uiy S0

It has been verified by trial, though, that complementary

sequences for length 18 do not exist.

7. Hamming Distance

The Hamming distance of two binary sequences A and B
is defined as the number of positions in which these two

binary sequences differ. This can be written in modulo two

notation as follows:




D(A.B) = 5 a; @ b.

For example, the Hamming distance of the two sequences

A = 0100
B = 1111 ‘
is
1=l
DCA.BY = % a; @ b, = (1 +#8 1 %31} =3
izl i

Now for a complementary pair of sequences, it has been
proven that their Hamming distance is always = % [Ref. 2].

For example, the complementary pair of length n = 10

A

n

1001010001

B

1000000110

has Hamming distance

D(A,B)

N3
"
w
.

8. Kernels

A Kernel is a basic length sequence which cannot be ;,
decomposed into shorter length sequences. The shortest

possible complementary pair is 11 and 10. This pair or any

of each transformation, which was mentioned before, is called

a kernel of length two or a quad.
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Some possible Kernel lengths are

2, 10, 18, 26, 3k, SO.

respectively.

been verified by M. J. Golay that n = 18 does

through exhaustive computer search that for n

! allowable transformations.

Bt

n = 34 could be achieved in the future, using
The following table shows the Kernels of n =

ignoring allowable transformations.

Table L
Kernels of Length 2, 10, 26
Number of
n Kernels A Sequence
2 i 10

10 2 1001010001
0101000011

26 i CLOOLI0ILILOLOIILL
00111010

It might be the case, though, that complementary pairs for
some of them do not exist. For example, lengths n = 4 and
n = 8 have complementary pairs, but are not Kernels because

; they can be constructed from n = 2 and n = 4 sequences

Among all the above mentioned Kernel lengths, it has

not exist.

Also, it has been verified by S. Jauregui [Ref. 2]

= 26 only the

Xernel shown in Table I exists, not taking into account all

For n = 34 a non-exhaustive computer search by
S. Jauregui revealed no Xernel. An exhaustive computer search
was not possible, due to the great computer time required.

It is possible, however, that a complete search for

new techniques.

2y 15 26

B Seguence
B

1000000110
0000100110

101100100001111111
00111010




Note: (a) The possible Kernel of n = 18 does not exist.

(b) Partial computer search for n = 34 found no
Kernel.

9. Number of Ones in Complementary Sequences

S. Jauregui showed [Ref. 2] that the equation
n = (n-p-q)2 + (p~q)2

holds for two complementary sequences A and B of length n
where p is the number of ones in A and q the number of ocnes
1 B

This leads to the conclusion that the number of ocnes

in each of the sequences of a complementary pair cannot be
arbitrary, but has to satisfy the above relation.
For example, for complementary sequences of length

n = 2 the number of ones in A and B can be respectively

either (2, 1)

or (s 0.

g B. SYNTHESIS

If the sequences A,B are complementary, they can be used

to generate other complementary pairs as follows:

tay If A

a

%1 %2 %3 T Saal %

B

b

by by by ====b__; b_

Wi s

are a complementary sequence pair, then the sequences
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f are also complementary.

For example, consider the complementary pair:

A

0001 with autocorrelation RA(T) = b 1 8L =10

B

i

0010 with autocorrelation RB(T) Ll Sl S e T

Then the sequences

(@)
1]

00010010

00011101

o
"

are also complementary with autocorrelation functions

RC(T) e R e g R A f
RD(T) =8y il O =3 Wi =il Rghs <l S D
¢y If A = a; a, ay ----a__, a,

B = bl b2 b3 -—-—bn_l bn

are a complementary sequence pair, then the sequences

c = al bl a, b2 -——-an bn

o
u

a; by a; 5, ===-a, B, ﬂ

are also complementary.
For example, consider the same sequences

A 0001

B 0010
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The sequences

(@]
"

00000110
01010011

o
"

are also complementary with autocorrelation functions

n
@
-
w
-
o
-
._l
-
o
-
[}
’.—l
-
o
-
'.—J
-
o

Rc(r)

RD(T) 8, =3, 0, =1, 0, 1, 8, =1, 0.

(c¢) If (A,B) (C,D) are two complementary sequences

pairs, A of length n and C of length n, then the pair

d d d

"1 A®2 -o=-fm B%1 B®? ——=<E%

<
(1]

V. = A% eued®t B —eap®i

is also complementary, where if an exponent is one the A or B
sequence is left unchanged, whereas if the exponent is zero
the A or B sequence is complemented.

For example, consider the complementary pairs

A

310

B

10

and

C = 00

B =00

Then the pair

00000110

<
n

11001010
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The above methods make possible the generation of comple-
mentary sequence pairs of greater lengths than the original
| ones. They can be applied in succession to generate very long
sequences which are very useful in many applications.

For example such a complementary pair used in a communica-
tions system with matched filter processing like that of Fig. 6

can improve signal detectability in the presence of considerable

8 i e S S B e Bt

noise since the summer output voltage will consist of a large

main lobe and no sidelobes.

C. SUPPLEMENTARY AND CYCLIC COMPLEMENTARY SEQUENCES

Complementary sequences are subsets of two larger sets,

namely supplementary and cyclic complementary seqguences.

1. Supplementary Sequences

Consider two sequences

o
"
o
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Now let
L= 8y 2y @y v=o=d, 4
2L = a g a _, ----a,
IIT = bl b, b --=-=b o
IV = bn bn—2 il

The expression of the sequence pair A, B in the form
(I, ITI, ITII, IV) is called sequence quadruple. Supplementary
sequences are quadruples of sequences with the property that
the total number of likes at each spacing equals the total
number of unlikes at the same spacing.

In terms of their autocorrelation function, the sum
of the four autocorrelation functions is zero any place but
T = 0, where it is four times the length of the sequences.

For example,

1001010001

=
u

w
u

1000000110

Writing in (I, II, III, IV) form gives

I = 10000
i = LOLLG
ITI = 10001

IV = 01000.




The new sequences (I, II, III, IV) have autocorre-

lation functions

RI(T) =50 2 RS U
RII(T) 2 By =»Z; =3, 2, =1, 0
RIII(T) =56 0 =1y =2, 1 0

R lh = 8o 0 So s

The sum of the autocorrelation functions 1is

5 Rp(t) + Ryp(r) + Rypp(T) + Ry (1)

In this example the sequences A, B are complementary.
In general they do not have to be though, since the supplementary

sequences are a larger set. This is illustrated in the following

example.
Consider
I = 000100111
II = 000101001
III = 000101000
Iv = 000110110

with autocorrelation functions
RI(T) = 9y 2, =Ly U Tg Bs =34 =2e =idys O
RII(t) = 9y =25 Lo O il 2hedy U5 =g

Rppplt) = 8, 0, 35 =2, 1, 05 9y 2, 3, ©

RIV(T) 2 9, 0y =3, 2, =1, =2, =i, 05 1, 0.

39




- —r—— v ST i . - SR
| —— A

The sum is

™
n

RI(r) + RII(T) + R (t) + R

III v(®

"
w
()]

-
o
-
o
-
o
-
o
-
o
-
o
-
(e }
-
o
-
o

which is zero except at the position t = 0, where it is 36.
From the sequences (I, II, III, IV) the sequences

A, B can be constructed

A

010000110001101010

B

000101100111000000

In this example neither the A, B sequences nor
the (I, II, III, IV) ones are complementary, which demcnstrates
the fact that supplementary sequences are a larger set.

Figure 8 gives another example of the supplementary

property.

2. Cyclic Complementary Sequences

In general a cyclic sequence is a never ending periodic
sequence of zeros and ones which has period of n elements. A
cyclic complementary sequence pair is a pair of cyclic
sequences, each of period n, where the number of likes in one

sequence equals the number of unlikes in the other one, for

all possible spacings. In equation form

n

al®a = b, OB

Cs = : :
n-Jj+1 i+1 1k n-j+1

01, 1sj¢n-1.

nm~Mg

i=1

In terms of autocorrelation functions the sum of the
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y ARTT(T

-l N %
u ARrr¢™?
1
\/ -1 \/ T

4 RIV(t)
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164 R(T)

Fig. 8. The supplementary property.
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two periodic autocorrelation functions is zero except at

T = kn, where k = 0, 1, 2,

For example, the cyclic complementary sequences

A

01010011, 01010011,

B 00000110, 0OOGOOO1l10,

have periodic autocorrelation functions

RA(T) = 8, —‘4, 0, 0, 0’ 03 0: -L}, 8’

|
©
~
=
~
o
~
o
~
o
-
o
~
o
-
&=
-
(e9)
~»

RB(T)
The sum is
I = Ry(r) # Rylr) = 16, 05 0, O, 05 O, 0, 8, 16....

Figure 9 demonstrates the above example.
Complementary sequences are always supplementary and
cyclic complementary, but the opposite is not always true.

Supplementary and cyclic complementary sequences constitute

a larger set.

——trm




R, (1)

VN

\j .
RB(T) ////
t

16 RA(T) + RB(T)

o]

T

Fig. 9. The cyclic complementary property.
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IV. ALMOST COMPLEMENTARY SEQUENCES

Complementary sequences are attractive for use in communi-
cations and ranging systems because the usable receiver output
voltage has no sidelobes. Sequences providing "small" side-
lobes compared to the main lobe may also beAuseful in some
applications.

It may even be desirable to have a small sidelobe at a
known position and level. For example, such a sidelobe can
be used to measure doppler as shown in Section VII.

Two binary sequences whose summed autocorrelation functions
exhibit two small sidelobes are called almost complementary in
this report, since they exhibit properties similar to.comple-
mentary sequences.

It should be noted that there are many sequences with small
sidelobes, but the ones of interest here, are those for which
certain rules hold. By applying these rules, the magnitude
and position as well as polarity (positive or negative) of the
sidelobe can be precisely predicted. By knowing these rules
almost complementary sequences or codes can be constructed.

An extensive search for "good" almost complementary
sequences was made. As a result, it is possible to list general
rules for constructing almost complementary sequences with pre-
dictable sidelobe levels, polarity and position. There is a
distinction between positive sidelobe and negative sidelobe

sequences.

nn




POSITIVE SIDELOBE SEQUENCES
Here two cases are developed.

x
1. Sidelobes % 7 K Away

If A, B are complementary sequences of length n and

the new sequences C and D of length K = 2n are formed as

follows,

C = AA
D = BB

the sum of the autocorrelation functions of C and D gives only
two positive sidelobes of magnitude half that of the main lobe
+ 1
att = - 7 K.
For example, if n = 8, then K = 16 with the main lobe
+

level of 16, and sidelobe levels of 8 at t = = U4,

For example, consider the two complementary sequences

of length n 4,

>
"

0001

o
1]

1011,
and construct the almost complementary sequences

C = AA

00010001

D = BB 10111011

having autocorrelation functions




Rc(t)

1]
@
-
)
~
o
~
|
—
-
=
b
‘_J
~
o
~
)
’_J
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o

RD(t)

"
[e")
~
]
H
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o
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]
H
-
o
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o

Adding gives
L = RC(T) + RD(T) S el o A R R o S S

So there are only two positive sidelobes with levels half the

+
- &,

i
level of the main lobe and at a distance T = = 7 K
Figure 10 illustrates the above example.

Another example is

A 0001001011100010

B 0100011110110111

i

A, B are complementary of length n = 16. Constructing C = AA,

D = BB gives

(@]
1]

00010010111000100001001011100010

ve)
1]

01000111101101110100011110110111

C, B are almost complementary of length K = 32 with auto-

correlations
RC(T) = 30, =ls Oy =k O 3, 04 =55 U =Ly Gg 9y 8Os
1y 05 Ly 16y =ly 05 =1y Oy =L Q5 =Ls Uy =35
05 5y B Ta Og Ly G
RD(T) = 32, l’ 0’ l, 0, -3, 0’ 5’ 0, l’ 0, -g, O,

~ly Og=ly 165 #ly 0y *L, 0, #ly 0, L, Oy 3,
0y =5, 0y =1, 0y =1, ©




and sum

r = RC(T) + RD(T) = 64, 0, 6, 0, 0, 0, 0, 0, G, 0,0,

with main lobe level 64 and positive sidelobe levels 32 at
T =2%16 as predicted by the rule.

For this example, the IBM-360 computer was used.

2
2. Sidelobes 3 K Away

Let A, B be complementary sequences of length n. Let

A be a new sequence generated by taking only the % first digits
. : I sl

of A (truncating A after its 5 first digits). Also let B be a

new sequence generated by taking only the % fipst digits of B

(truncating B after its % first digits). Also let A, B be

complementary of length %. Then the new sequences of length
.., _2&n

K=n 7 = 5 are

C = Ak
D = BB

and C and D are almost complementary sequences. The sum of
their autocorrelation functions has two positive sidelobes
only of magnitude % that of the main lobe and at T = = % K.
In this case there is an improvement relative to the previous

case in that the sidelobes are smaller compared to the main

lobe and farther removed from the main lobe.
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The sequences A, B of length n can be constructed by using
two complementary sequences of length % according to the rule
in Section III.B(a). Then the sequences A, B are always
complementary. For example, consider the two complementary

sequences of length n = 8

A 00011101

B

01001000.

The new sequences of length 12 are

C = Ak
BB

000111010001

010010000100

o
"

with autocorrelation functions

RC(T) 12, 1, G5 =5; 0, -6, 0, 1 &, 1, 0, <1, 0.

RD(T)

12, <1, 0; 5, 0y S, 0, =1, %, =15 O, 1, 0.

and sum

L = RC(T) + RD(T) = 24, ¢, 0, G, O, 0O, O, O, 85 O,

with main lobe level 24 and sidelobe levels 3 (24) = 8 at a
distance T = I 8.

This example is illustrated in Fig. 1l. Another
example is

01001000000111010100100011100010

w >
" "

01001000000111011011021100011101
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-1
g | Rp(™
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16 | Ro(T) + Ry(T)

8

Fig. 10. Positive sidelobes at t = 2
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A, B are complementary of length n = 32.
The new sequences of length K = 48 are
C = AA = 01001000000111010100100011100010
0100100000011101
D = BB = 10111000111011011012100000010010
1011100011101101
with autocorrelation functions
Rc(t) = 48, 1, 2, 3, 0, =1, -2, 1, 0, 3, -2, 5, 0,
*9, 2, 5, 0, -8, 2, 9, 0, 5, -2, 3, 0, 1,
=25 »ky B85 35 25 15 18, 1, 2, 3, O, =1, -2,
1, 05 =1, =2, 1, 8, =3, 2, =1, 0.
RD(T) = 48, -1, -2, -3, 0, 1, 2, =1, 0, -3, 2, -5,
Oy =9, =2, 5, 0, 5, =2, =9, 0, -8, 2, -3,
0, -1, 2, 1, 0, =3, =25 =1, 16, -1, -2, =3,
Oy 1y 24 =1, 05 15 2, =1; 0, 3, =2, 1, 0.
and sum
L = Rc(t) + RD(r) = 96, 0, 0, O, O, O, O, O, O, 0,

¢, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0’ 0’ 0’ 03 0’ 0’ 0’ 0’ 0, 0’ 0’

32, 0y 0, 05 04 0y O; Q5 G, O,

Uy Uy @, O, 0y Qy Q.

1
The main lobe has level 96 and the sidelobes have levels 3 G963 = 32

+ 2

at a distance 1t = - 3 U8 = I 32 as predicted by the rule.




2 RC(T) + RD(T)

Fig. 11.

Positive sidelobes at t =




Here also the IBM-360 computer was used because of the

length of the sequence.

B. NEGATIVE SIDELOBE SEQUENCES

Here two cases are developed similar to the ones considered

before.

1
1. Sidelobes I 7 K Away

If A, B are complementary sequences of length n and the :‘
new sequences C = AA and D = BB of length K = 2n are formed,
where A, B represent the complements of A, B respectively, then
the sum of their autocorrelation functions givestwo negative
sidelobes only with magnitudes half that of the main lobe and

il

at a distance t = : 3 K.

For example

A 1011

B

1110

are complementary. Then

C = AA
D = BB

10110100 and
11100001

are almost complementary with autocorrelation functions

n
(o2}
-

]
w
-
o
-
w
-

]
f =3
-
H
-
(=,
-

]
’—J
-
o

Rc(t)

"
feo)
~
w
-~
o
-
]
w
-
[}
=
~
]
'_J
-
o
~
'_l
~
o

RD(T)




b fn s b

and sum

L = RC(T) + RD(T) = 16y, @, 05 @, =8505 L0 sGE

Here the sidelobes are negative with levels half that of the

" + 1 + 1 + SR B
main lobe at T = - 7 K = - 5 9 - 4. This 1s illustrated

intFag 120
Another example, for which the IBM-360 computer was

used is:

>
"

0001001011100010
0100011110110111 ' é

w
(1]

A, B are complementary of length n = 16. Constructing

C = AR, D = BB gives

00010010111000101110110100011101

(@]
"

01000111101101111011100001001000 |

o
"

Sequences C and D are almost complementary of length

K = 32 with autocorrelation functions
RC(T) = 32y =35 O =3l 0 =T 0 A Oy =8y W diks O
g, 0, 3, =18, 15 0, %, 0, 1, 0, 1. @ 3, 0,
-5, 0, -1, 0, =1, O
RD(T) = 325 dig Q5 Bl i Us =il 05 i U

53
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15 RC(T) + RD(T)

-8

1
Fig. 12. Negative sidelobes at t = % 7 K. |
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and sum

L= RC(T) + RD(T) = 64, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 05, 0,00, 80 =320, 0, 0.

(8]l [ i i (o e S ol S0 LT 0T (3T S B

with main lobe level 64 and negative sidelobe levels 32 at

t =216 as predicted by the rule.

2
2. Sidelobes = 3 K Away

Let A, B be complementary sequences of length n. Let
X be a new sequence generated by taking only the complement of
the % first digits of A.

Let B be a new sequence generated by taking only the
complement of the % first digits of B. Also, let A, B be
complementary of length ?. Then the new sequences C = AA and
D = BE of length K = n + % = %? will be almost complementary
and the sum of their autocorrelation functions will have two
negative sidelobes only with magnitudes one-third that of the

+

main lobe at t = - % K

For example,

A

11101101

B 10111000

are complementary sequences of length n = 8. The new sequences
C = AR = 111011010001 and D = Bf = 101110000100 of length K = 12

are almost complementary with autocorrelations

55
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RC(T) =12, -1, 0, 1, 0, -1, 0, 1, -4, -1, 0, 1, O

RD(T) 2,1, 0 -1, 0, 2, 0, -1, -4, 1, 0, -1, O

and sum

z = Rc(t) + RD(T) = 24, 0, 0, 0, 0, 0, O, 0, -8, O,
0, 05 0

The only sidelobes are negative with level % (24) = 8 at

T =12 % K = 2 % (12) = £ 8. This is illustrated in Fig. 13.

Another example obtained with the use of the IBM-360

computer is

01001000000111010100100011100010

>
"

01001000000111011011011100011101

v}
1]

A, B are complementary of length n = 32. The new se-

quences of length K = 48 are

A = AR = 0100100000011101010010001110001010110
11111100010
B = BF = 1011100011101101101110000001001001000

11100010010.

The sequences C and D are almost complementary with auto-

correlations

RC(T) = 48, -1, 6, -3, 0, 1, -6, -1, 0, 1, -6, -1,
U5 35 65 Ly Uy =l, =6, =3y 0y 15 6y =Ly Qs
l, 6 -1, 0, 3, -6, 1, -16, -1, -2, =3, O,
dy 2y by Uy 1y 2y =1y 0y 3y =24 14 0
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RD(T) = 48, 1, -6, 3, 0, =1, 6, 1, 0, -1, 6, 1, 0O,

and sum

with a main lobe level of 396 and negative sidelobe levels of
32 at T = £ 32 as predicted by the rule.

In signal detection applications almost complementary
sequences with negative sidelobes offer better noise immunity
than those with positive sidelobes. The negative sidelobes

can be removed with an envelope detector.
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V. NUMBER OF DIFFERENT AUTOCORRELATION FUNCTIONS IN ALL
BINARY SEQUENCES OF FIXED LENGTH

Binary sequences useful for communications or ranging
purposes have autocorrelation functions with small sidelobes.
Small can be defined in terms of a predetermined level.

How can these sequences be found? At present, the only
way to find these sequences is to form the autocorrelation
functions of all possible sequences of a given length and
then select the desirable ones. This is a tedious task
specially for long sequences, since there are - o possible
binary sequences of length n. However, as shown in this
section, many of these g sequences have the same auto-
correlation function.

In general there are four sequences of given length which
have the same autocorrelation function:

1. The sequence itself.

2. The sequence obtained by reversing the original ’
sequence.

3. The sequence obtained by complementing the original
sequence.

4. The sequence obtained by complementing and reversing
the original sequence.

For example, consider the sequence of length n = 4:

A = 1101




Reversing A gives

If A is reversed and complemented, gives

Ar = 0100 = D.

All these sequences A, B, C, and D have the same auto-

correlation function
RA(T) = RB(T) = Rc(r) = RD(T) =lles =T O s B

These results are easy to prove. Consider each case

separately.

1. When a sequence is reversed and its autocorrela-
tion function taken, this is exactly the same as if the auto-
correlation function of the original sequence was taken,
since the formation of the autocorrelation function can be
considered as being accomplished by "sliding" the sequence
past itself either to the right or to the left. So, "sliding"
to the right for A is equivalent to "sliding" to the left
for Ar'

2. The autocorrelation function of a sequence is
generated by forming products and adding them. The general

form of one of these products is
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ai and aj can have the values

a. = 1 or =1

-1.

(]
n
._.l
o
s

Here the values 1 and -1 are used since multiplication is
considered in the formation of the autocorrelation function
(if modulo 2 addition were considered, the values 1 and 0
would be used).

Now the possible values of the product a; aj are

a: &. = (1)1 = 1

250 T
or a. aj = (1)(=1) = -1
or a; aJ = (=1)(1) = =1
or a. aj = (=1)C=1) = 1.

If the sequence is complemented, 1 is replaced by -1, and
-1 by 1. So the possible ‘ralues of the product a; aj are
respectively

a. a. = (=1)(=1) =1

i3
or a; ay = (1)(-1) = -1
or a; a; = (L)(-1) = -1
or a; a, = (1ICl) = 1.

The values of the product a; aj are the same as before

for all i and j and so, the autocorrelation function remains

the same.




3. Since the autocorrelation function is the same if

the sequence is reversed or complemented, it follows that it
will be also the same if the sequence is reversed and comple-

mented.

Some sequences are their own reverse. These sequences
are called here symmetric and will be denoted by the letter S.

For example the sequence A = 1001, when reversed gives
Ar = 1001 = A. In this case only the sequence itself and its
complement need to be considered. The sequences A = 1001 and
A = 0110 have the same autocorrelation function.

For some sequences, complementing and reversing givesthe
same sequence. These sequences are called here R sequences.

For example, the sequence A = 000111 when reversed and
complemented gives Ar = 000111 = A. In this case only the
sequence itself and its reverse need to be cénsidered. The
sequences 000111 and 111000 have the same autocorrelation
function.

It is assumed that the number of sequences having the
same autocorrelation function is either two or four. It has
not been shown though that there does not exist any other
number of sequences such as 3 or 5 or 6, etc., that have the
same autocorrelation function. In this work, it has been
verified by exhaustive computer search for sequences of various
lengths, that the number of sequences having the same auto-

correlation function is either two or four.

SR——

When an R sequence is reversed and complemented, the ones

of the R sequence become the zeros of the reverse complement.
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So, an R sequence has always the same number of ones and zeros.
Therefore, an R sequence is always of even length.
For example, for length n = 3, there will not be any R
sequence, since n is odd.
So far it has been established that:
(1) There are only four sequences with the same auto-
correlation function, provided these sequences are not S or R.

(2) There are only two sequences with the same auto-

correlation function, if these sequences are R or S.
(3) S sequences can be of any length.
(4) R sequences can be only of even length.
For example, all the sequences of length n = 2 and their

autocorrelation functions are:

Sequence Autocorrelations
00 25 LG50
01 Ziyi=1i5 0
10 2y =15 0
i1 25 450

Here there are two S sequences, 00 and 11, with the same
autocorrelation function = 2, 1, 0. Also, there are two R
sequences, 01 and 10, with the same autocorrelation function
=2 2y =ly 05

Another example of length n = 3 is:
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Sequence Autocorrelation
000 §: % 1. B
001 3, 0, -1, O
010 8. =2 T,
011 3, B, =1, B
100 3, 8, =1,
101 3 =3y ks B
110 3, 05 =15 0
111 35 25, 1Ly 0

Here there are four sequences which are neither R nor S,
001, 011, 100, 110 with the same autocorrelation function
3, 0, -1, 0. Also there are four S sequences: 000, 111, 01l0,
101. The sequences 000 and 111 have the same autocorrelation
function 3, 2, 1, 0 and the sequences 010 and 101 have the
same autocorrelation function 3, -2, 1, 0. In this example
there is no R sequence since n = 3 is odd.

Next the exact number of R and S sequences will be
established among all the possible sequences of length n.
The maximum number of binary sequences of length n is given
by 2. The sequences of n = 1 are 0 and 1. The number of
S sequences is two. So S = 2 here;(0, 1). For n = 2 all
sequences are 00, 01, 10, 11. Here S = 2:(00, 11), R = 2:
(01, 10),and S + R = 4. For n = 3, the possible sequences are
¢oo, 001, 010, Ol11, 100, 101, 110, 111. Here S = 4:(000, 010,
101, 111), R = 0 and S + R = 4. Going ton = 4, it can be
seen that S = 4, R = 4 and S + R = 8.
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The relation between n and S and R can be derived by
considering the mechanism of moving from a sequence of length
n to the next one of length n + 1.

For example, the sequences of n = 2 are formed by taking
the sequences of length n = 1 and adding in front of each of
them a zero and a one, one at a time, so the number of sequences

for n = 1 is doubled and all the possible sequences of length

n 2 are formed. By doing so, the following can be noted:
(a) When moving from n even to n+l which is odd, the
S + R sequences in n is equal to the S sequences in n+l.
(b) When moving from n odd to n+l which is even, the

S in n is half the S + R in n+l.

For example, for n = 4 there are S + R 8 sequences and

for n = 5 there are S = 8, but moving ton = 6 gives $S + R = 16.
So, moving from an even length to the next keeps the number

S + R, but moving from an odd length to the next doubles the

S + R number.

Using formulas it can be written:

(1]

(a) n even, (S + R)n = (S)n+l

(b) n

.1
odd, (8) = 7 (S + R) .4

Now, considering the following short table giving the S + R
terms of all possible sequences up to length n = 10, the

relation between n and S + R can be obtained.
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For n even, S + R = 2 and for
n+l ;
nodd,S+R=2T.v :
|
The number of different autocorrelation functions contained
in all possible sequences of length n is derived as follows. ;

If this number is denoted by T, two cases are considered.

(a) n is even. Here all the possible sequences number

n+2

- 2

. Also the number of S and R sequences is S + R = 2 By

deducting S + R from 2", a number of sequences equal to

n+2
2

2 -2 is obtained. It was established before that since

n+2

P n E .
these remaining 2 - 2 sequences contain no R or S sequences,
n+2
n v

they have Z__:EZ___ different autocorrelation functions. The

n+2 P+_2

2
2 S and R sequences have er— different autocorrelation

-
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functions. So finally, all the e sequences have

n+2 n+?2
2

n 2
2 '13 s 2 5 different correlation functions. By re-

arranging this result, the final formula for n even is derived

(T) - 2n-2 % 2n/2
even 5 3

(b) n is odd. Similarly all possible sequences here

n+l n+l
number 2". Also, S + R = 2 ° . Deducting the 2 2 § + R
ntll
n+il B &
2D _ 2

sequences from 2" gives 2 - 2 2 sequences with 5

different autocorrelation functions. So, all the g sequences

n+tl n+l
N _ ) 2 2 2
have n + 5 different autocorrelation functions
or in the final form
n-1
(T) = =2 4 2 ’
odd & 7z

Two examples are taken

(a) n =7

So the 27 = 128 possible sequences of length 7 give only 36

different autocorrelation functions.

Y n = 10
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So, by using sequences 10 bits long, at most 272 different

autocorrelation functions can be obtained from the 2lo = 1024

possible sequences.




VI. COMPUTER SEARCH FOR "GOOD CODES

In this section the computer programs for obtaining sequences
with "small" autocorrelation sidelobes are discussed. These
sequences or "good" codes are found by applying mainly the
results of the previous section. Because of the large number
of different sequences of length n for even modest values of n,
it is necessary to use a digital computer to search for "good"
codes. Practically, an exhaustive search is limited to n = 20
with present digital computers.

For small lengths (up to n = 10) it is possible that a
programmable calculator can be used to find the autocorrelation
function of one sequence at a time. This was done with a TI-59
programmable hand calculator by storing each element of the
sequence in a memory location. Then the autocorrelation function
was formed by multiplication of the proper elements in each
position. In this case, +1 and -1 is used for the elements
of the sequence.

The algorithm for computing the autocorrelation function
of a sequence on a large computer (IBM-360) is constructed.
This is given in Program 1 on page 111. In this program the
autocorrelation function of only one sequence can be computed.
The sequence has to be punched on a computer card. A small
modification gives Program 2 on page 112 which gives
the option to find the autocorrelation functions of any number
of sequences. Each of these sequences has to be punched on

a separate card.
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In these computer programs and also all the next ones, the
sequences are represented with zeros and ones. The algorithm
for finding the autocorrelation function has been made by
comparing the number of like and unlike elements in every
position.

To avoid punching the sequences on the cards, a program is
created to generate automatically all the possible 2" sequences
at length n. This is accomplished by counting in binary from
0 to 2" and thus generating all the binary numbers of length n.
This program is combined with the program for the computation ;
of the autocorrelation function. So, every time a sequence is

generated, its autocorrelation function is formed. This is

Program 3 on page 113.
Since only the different autocorrelation functions are of H
interest here, a.program is written to select only those codes f
having different autocorrelation functions. To understand the
operation of this program, consider the following example.

Take all the sequences of length n = 4 and the corresponding

autocorrelation functions.




Seguence Autocorrelation
0000 IR S R
0001 4: la 0: ‘l’ 0
0010 T R O (R
0011 S SR R
0100 B =15 0, 1,0
0101 Gy =3, 2, =1, 0
0110 g, =1, =2, 1, 0
0111 4, 1, 0, -1, O
1000 e T4 04 =1, 0
1001 4, -1, -2, 1, 0
1010 Hy =8, 2y =L, B
1011 4, -1, 0, 1, O
1100 |+, l, -2, ’l’ 0
llOl ua ‘1’ 0’ l’ 0
1110 4, 1, 0, =1, O
LL1E B, 35 245 Ly 0

There are a total of 2u = 16 sequences. After the eighth
sequence 0l11ll, the other sequences are complements of the
first eight ones. So, they give no new autocorrelation
function, and therefore they do not need to be taken under
consideration. In the first eight sequences there are two
pairs with the same autocorrelation function 0001 and 0111
and also 0010 and 0100. So, only six different autocorrela-
tion functions remain. The general way to proceed is to take

n

each sequence in the first %—, reverse it, complement it and

reverse complement it and then keep only the original sequence

e A

e o SR A0 B A




and reject the others, since they have the same autocorrela-
tion function. Here two cases are considered.
(a) The sequence ends in 0.

In that case its complement and reverse comple-
ment will start with one, so they belong to the sequences after 3
the first %; ones and need not to be considered. In that case
only the reverse of the sequence is taken.
: (b) The sequence ends in 1. 4

In that case its reverse and complement will start
with one, so they‘belong to the sequences after the first %; ones
and need not to be considered. 1In that case only the reverse
complement is taken.

Now, the program takes each sequence as it is generated and

reverses it if it ends in 0, or reverse complements if it ends

in 1. If the resulting sequence represents a smaller binary

number than the original one, this means that the resulting

sequence was generated before and its autocorrelation function
already taken, so there is no need to be taken again, and the
program goes to the next sequence. The procedure is repeated
until all the first %; sequences are finished. This way only

the codes having different autocorrelation functions are listed

in the printed output.

For example, in the case of n = 4 the result is as follows:




Sequence Autocorrelation
0Q0o0 e 3l 25 0
0001 b, 1, O, -1, O
0010 ke =1, 0, 1, 0
0011 b, 1, =2, =1, 0
0101 4, -3, 2, -1, O
0110 b, -1, -2, 1, 0

And the number of different autocorrelation functions is 6,

which is in agreement with the formula

/2 2
R SR e N
CAY em = 2 sy el R |

"
(o)}

The program which generates automatically the sequences
of length n and computes only the different autocorrelation
functions is Program 4 on page 1llki. An example for n = 10 is
given on page 84.

All the different autocorrelation functions are not needed.
Only those with small sidelobes. So a filtering procedure has
to be introduced in the program to keep only those auto-
correlations which have sidelobes equal or smaller than a pre-
determined level. Program 5 on page 115 generates automatically
the sequences of length n and prints only those different auto-
correlation functions with sidelobe levels equal or less than 1.
For this case the lengths n = 10, 11, 12, 13, 15, 17 and 20
were examined, and the number of different autocorrelation ;i
functions found with sidelobe levels equal or less than 1 were, |

respectively, 11, 1, 16, 31, 0, 40, 3.
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It is interesting to note that for n=11 there is only one
such autocorrelation which is a Barker code (a sequence with
sidelobes between +1 and -1). For n=15 no such codes exist,
and for n=20 only three were found.

For the case n=20 it was not possible to make an exhaustive
search because of the computer time required. Using 30
minutes of computer time, only three such autocorrelation
functions were found. It is estimated that about 2 hours of
computer time is required to make an exhaustive search.

It is evident that for lengths greater than n=20 even with
a large computer an exhaustive search is impractical.

There is though a way to search regions of big sequences.
Computer Program 6 on page 116 was used to search for a region
of the n=20 case with no new results.

The results for the cases n=1l0, 11, 12, 13, 17, 20

are listed on pages 96, 98, 99, 101, 105, 110, respectively.
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VII. APPLICATIONS

Complementary sequences, almost complementary sequences
and codes with small sidelobes can be used in communications,
ranging and spread spectrum systems. This section lists some
possible applications.

Two complementary sequences can be transmitted simultane-
ously using a quadriphase phase-shift keying (QPSK), for
example. Two complementary sequences A and B are applied to
a QPSK modulator. The output Vc(t) is a sine wave with a
phase which can have one of four values. In the receiving
system, Vc(t) is demodulated. The outputs of the demodulator
are the sequences A and B. Each sequence is processed by a
matched filter and the outputs of the two matched filters
added. Then the output of the summer will have one main lobe
and no sidelobes. Fig. 14 illustrates this system.

Almost complementary sequences with positive sidelobes
can be used to measure doppler. In Fig. 15 such a scheme is
shown. The almost complementary sequences A and B of length K
give after summing positive sidelobes at 1 = - % K from the
main lobe. Each of them is processed by a matched filter and
the two outputs of the matched filters added. The output of
the summer is connected to a counter in such a way that the
first pulse (main lobe) enables the counter and the second

pulse (sidelobe) inhibits the counter. When doppler is
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A
QPSK Vc(t)
5 Modulatonr
—a‘
(a) Transmitter
k
A R ;
v, () QPSK A I
——} Demodulator é—)
B M. g. no sidelobes | ]
(b) Receiver
Fig. 14. QPSK System. |
5‘

76




RA(T) + RB(t)

il i

(a) Sum of the autocorrelations.

A M.{. RA(T)
RA(r) + RB(t)
Counten
M.F. Ry(T)
B 2 s 47r
Clock

(b) Receiving system.

Fig. 15. System to measure doppler.
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introduced to the system, the distance between the main lobe

and the sidelobe will change by an amount proportional to the
doppler. The contents of the counter is, then, a measure of

the doppler.

Codes with small autocorrelation sidelobes can be used in
spread spectrum systems. They can be used as "chip" sequences
and as means for synchronizing the remote oscillators in such
systems. They can also be used in surveillance and ranging
systems because they provide accurate and unambiguous time

measurements.
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VIII. RESULTS AND CONCLUSION

The study presented in this thesis had as a main objective
the discovery of means of generating '"good" codes. Good codes
imply binary sequences having autocorrelation functions with
small sidelobes or no sidelobes at all.

The results of the search for good codes in this study are
the following:

(1) Almost complementary sequences were discovered.
These are constructed by using complementary sequences. The
sum of the autocorrelation functions has two sidelobes only of
predictable level, polarity and position.

(2)  Computer programs for obtaining sequences with
autocorrelation functions having sidelobe levels less than
predetermined desirable levels were prepared and used. These

computer programs reveal that for sequences of length n = 1§,

there are no codes with sidelobes less than or equal to 1.
There is only one such code for n = 11 (which is a Barker code)

and for n = 20 three such codes were found without exhausting

all possibilities. For lengths greater than n = 20, an %
exhaustive computer search is impractical. A partial search
can be made though by searching regions of these sequences
with a special computer program.

The search for good codes resulted also in the following:

(1) A formula which gives the number of the different

autocorrelation functions for all possible sequences of length n.

9
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(2) A computer program which can generate automatically
all sequences of length n and give their different autocorrela-
tion functions.

Some application of these codes were also considered.
There are some suggestions for further research.

(1) Supplementary and cyclic complementary sequences
and their properties could be further investigated and appli-
cations developed.

(2) Applications of the sequences presented here

could be implemented with hardware.
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APPENDIX A

COMPUTER OUTPUTS AND PROGRAMS

Six computer programs are included in this report and
seven computer outputs which are the results of the search
for the "good" codes. 1In the programs, the sequence length
is denoted by L.

Program 1 computes the autocorrelation function of one
sequence, by comparison of the elements of the original
sequence and its shifted replica. The length L of the sequence
and the sequence (CODE (I)) have to be punched on separate
cards.

Program 2 computes the autocorrelation functionof any
number of sequences of the same length. The number of the
sequences has to be specified in the loop DO 150. The length
of the sequences and each of the different sequences have to
be punched on separate cards.

Program 3 generates all the possible sequences of length
L and computes their autocorrelation function. Only the
length L has to be punched on a card. Everything else is
done automatically. Thus, punching cf the sequences on cards
is avoided.

Program 4 computes only the different autocorrelation
functions of all sequences of length L. This is done by the

algorithm explained in Section VI. The program produces




everything automatically and only the length L has to be

specified and punched.

Program 5 computes the different autocorrelation functions
of all sequences of length L which have sidelobes less or
equal to one. The length L has to be specified.

Program 6 searches only a region of all sequences of
length L and computes the different autocorrelation functions
with sidelobes less or equal to one which exist in this region.
Here the length L and the starting sequence (SCODE (I)) have
to be specified and punched on different cards each. All the
sequences before the starting sequence are ignored. This was
done because for long sequences, a complete computer search
is impractical.

There is a computer output which lists the different auto-
correlation functions for all sequences of length 10. The
rest of the outputs list the "good" codes and their autocorrela-
tion functions for lengths 10, 11, 12, 13, 17 and 20. The codes

listed in all computer outputs are printed with the most signif-

icant bit on the right.




CODE
COR

ICODE
JCODE
SCODE

PRINCIPAL VARIABLES USED

binary sequence

autocorrelation function of a binary sequence
length of a binary sequence

variable used to complement a binary sequence
variable used to reverse a binary sequence
starting sequence when a region of the binary

sequence of length L is searched
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SEQUENCES
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GENERATE SEQUEMCES
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PROGRAM #4

A C CA L TI THE DIFFERENT
H¥8 LET}EN 18NS AL PO§SIBLE
:QUENCE OF LEN
DE(ZO"COR(Zl,'lCDDE(ZO"JCODE(ZO,
READ 5(1 L
NN=2#%%(L~-1)

GENERATE SEQUENCES

Eoosli thN

-N’loL

Te2%%JJ) GO TO 30
i3

200
"o

- OZ20mt.
m Q—UT\‘—S"QO

v ZI0~

0 M=l oL
1203t (MIE tbpE M)

IF (CODE(11.EQ.0) GO TO 33

COMPLEMENT SEQUENCE

iCODE( M)+1
Mi2GTel) ICODE(M)=0

M=1,
(h'f'l’ ICODE (M)

=
DE ((SM+1)=CODE(L-M+1))100, 35,36

PUTE AUTOCORRELATION
DO 60 I=1,L
N=

D0 50 J=I L
2% (20027) 15 EQ.CODE(U-(1=1))) GO TO 40

NtN-6

GO TO 50

N=N+1

CONTINUE

COR(I)=N

COR(L+1)=0

K’L*%

WRITE(64200) (CODE(I)sI=1,yL)y(COR(I)yI=1,K)
CONTINUE

EQBNAT(/v' '941(12,1X))
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PROGRAM #5

AUTQC ORRE

GENERATE SEQUENCES

DO 100 II=l,NN
0 I‘ép%b

Z00
o-mrn;c»dBo
2010~ HOD
A Z M2Z W™= MmNl

-
o
1]

OZ0=c. O

TEST IF SEQUENCE ENDS IN O OR 1

DO 31 M=1,L
ICODE(M)=CODE (M)
IF(CODE{l)<.EQ.0) GO TO 33
oM

COMPLEMENT SEQUENCE

% 3§(#=£fLODE(M +

1 RE DL AT 025 Y * T conemi=o

CONTINUE

REVERSE S EQUENCE

D3 34 M=1,L

E(L=H*] )= 1CODE(M)
EBE}L-M+1)-CODE(L-M+1))100935v36
NUE

COMPUTE AUT OCORREL AT ION

DO €0 I=1,L
N=

0]
(

N
N

D0 J=1,L
IF (CODE(J ) .EQ .CODE(J=(I=1))) GO TO 40

N=N=-

G 35EsCLESS GAT

QUAL TO 1

omnm =m

A b~~~2ZZ m

éZOO. (CODE(I)gI=1oL)y(COR(IVyI=1,4K)
/e '4941(12,1X))
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20m
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READ STARTING SEQUENCE

READ(5y 11) (scooE¢x).1=1 L
RSRNAT %& :
e s

’
xsTAarsxs%Aar+sc005(x)*2**(1-1)
NN=2*%*(L~1)~1
GENERATE SEQUENCES
00 o 11=1START,NN
80 020
30
i e
D0 30 M-l.L
JJ=i—-M
I (NI.LT.2%%4) GO TO 30
CODE(JJ+1L V=1
NI=NI—-2%%JJ
CONT INUE

TEST IF SEQUENCE ENDS IN O OR 1
DO 31 M=1,L
D0 0B (1= d6DE (M)
IF(CODE(1 ) .EQ .0) GO TO 33
COMPLEMENT SEQUENCE

M

M

D

00 %(
£{1co
ONTINU

REVERSE SEQUENCE

00 34 M’l
gCODE -H+1l=lCODE(M)

g,35 h=1

12 (IC00E T LEMe1)-CODE (L-M+111100,35,35
CONT INUE

CONTINUE

COMPUTE AUTOCORRE LATION

00 €0 I=1,L
N=0

=1,L
)= [CODE (4) +
E?u).sr 1 lcoeim=o

Opet= D

3
0
1
T
E

00 50 J=I,L
gs&coogtai.eo.CSOE(J-(x-xyb) GO TO 40
= N=

GO TO 50

N=N+1

CONTINUE

[V

R EQUAL TO 1
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