

ADA 064944

ANALYTICAL DERIVATIVES

FINAL TECHNICAL REPORT

General Electric Company Cincinnati, Ohio 45215

December 1978

DOC FILE COPY

(FINAL REPORT FOR PERIOD JUNE 1978 - SEPTEMBER 1978)

Approved for Public Release; Distribution Unlimited

AIR FORCE AERO PROPULSION LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AFB, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Ĭ....

JAMES R. RUBLE Technical Manager

Turbine Engine Performance

JACK RICHENS, Chief Performance Branch

FOR THE COMMANDER

ERNEST C. SIMPSON, Director Turbine Engine Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFAPL/TBA ,W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/9 February 1979 - 55

1

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG HUMBER AFAPL-TR-78-101 TITLE (and Subtitle) Final Vechnical Repert. ANALYTICAL DERIVATIVES. B - Sept R78AEG517 D.F./Berg F33615-78-C-22Ø3 W.C./Colley G.L./Converse PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS General Electric Company 3066-11-35 Aircraft Engine Group Cincinnati, Ohio 45215 11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Aero Propulsion Laboratory (TBA) December 1978 Wright-Patterson AFB, Ohio 45433 Mint Office) 14. MONITORING AGENCY NAME & ADDRESS(II dillerent 18. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release: distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 18. SUPPLEMENTARY NOTES FEB 27 1979 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Analytical Derivatives B Engine Cycle Balance Iteration Techniques 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The variable cycle engines now being studied for preliminary engine-aircraft design have greatly increased the complexity of engine modeling, control element design, and cycle calculation relative to the simpler turbofan and turbojet engines which preceeded them. The production of engine data is the major computations cost element in mission studies and optimization investigations; this problem can become even more severe in the future unless

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

403 468

Du

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

improvements in cycle calculations and component modeling techniques are developed and introduced now.

The current method of obtaining balanced cycle data points is to use the simultaneous Newton-Raphson iteration method. The partial derivatives are obtained by numerical differentiation. This report documents the results obtained by calculating the partial derivatives from analytical expressions obtained by differentiating a cycle deck. Examples illustrating both the method of obtaining the analytical derivatives as well as setting up the control logic are given. A cost comparison was carried out between two engine simulations using numerical derivatives and the same pair of engine simulations using analytical derivatives. A data matrix consisting of the same 411 operating points was used for each of the engine simulation comparisons.

A cost saving of about 44 percent was obtained for the deck run internally and 52 percent for the deck run externally (the difference is due to the use of a larger set of output parameters for the internal deck). It is concluded that the greatest return per dollar of cost results when only that portion of the model for which the coding remains relatively constant is differentiated. Applying this philosophy an annual saving of about \$75,000 is estimated for the running of internal (AEG-Evendale) cycle decks.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

PREFACE

This report describes a design study effort conducted by the General Electric Company and sponsored by the Turbine Engine Division of the Air Force Aero Propulsion Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio under Project 3066-11-35, Contract F33615-78-C-2203. Mr. James R. Ruble, AFAPL/TBA, was the Air Force Project Engineer.

The work reported herein was performed during the four-month period beginning June 1978 and ending September 1978. The GE Engineering Manager was Donald F. Berg who was assisted principally by William C. Colley and George L. Converse. The Program Manager was Donald E. Uehling.

NTIS		White	Sec	tion	A
DDC		Buff	Secti	on	
UNANN	TOFO				
JUSTIFIC	1.4			_	
Diff. City	/A				
		and,	01 0		
		and,	T		

TABLE OF CONTENTS

Section		Page					
1.0	INTRODUCTION	3					
2.0	SELECTION OF ENGINE MODEL	4					
3.0	DESCRIPTION OF ANALYTICAL DERIVATIVE METHOD						
	3.1 Analytical Derivative Approach - Complete Derivative Set	7					
	3.2 Subroutine Derivative Structure	9					
	3.3 Low Level Derivative Set	11					
4.0	APPLICATION OF THE METHOD TO SMOTE	21					
	4.1 Control Logic	21					
	4.2 Main Compressor Subroutine Derivatives	34					
	4.3 Main Combustor Subroutine Derivatives	42					
5.0	COST ADVANTAGES OF THE ANALYTICAL DERIVATIVE METHOD	53					
	5.1 Selection of Flight Envelope and Matrix of Test Points	53					
	5.2 Cost Comparison for Internal Decks	53					
	5.3 Cost Comparison for External (Customer) Decks	55					
6.0	ASSESSMENT OF THE GENERALITY AND UTILITY OF THE APPROACH	57					
7.0	CONCLUSIONS	61					
	REFERENCES	62					

LIST OF ILLUSTRATIONS

Figure		Page
1.	Schematic of Typical VCE Showing Station Designations.	5
2.	SMOTE Computer Program Flow Chart.	22
3.	SMOTE Computer Program Flow Chart (with Analytical Derivatives).	27
4.	Flowpath for Main Compressor with Analytic Derivatives (SMOTE).	37
5.	Flowpath for Main Combustor with Analytic Derivatives (SMOTE).	45
6.	Engine Data Matrix.	54
7.	Estimated Reduction in Run Time Due to Analytic Deriva-	59

LIST OF TABLES

<u>Table</u>		Page
1.	Listing of Subroutine PROCOM (Thermodynamic Property Calculation).	17
2.	Sample Listing of Subroutine PROCOM (with Analytic Derivatives) (Subroutine Not Checked Out).	18
3.	Listing of Subroutine ENGBAL.	23
4.	Variable Summary for SMOTE Deck (Turbofan).	28
5.	Sample Listing at Subroutine ENGBAL (with Analytic Derivatives) (Subroutine Not Checked Out).	30
6.	Listing of Subroutine COCOMP (Main Compressor).	35
7.	Sample Listing of Subroutine COCOMP (with Analytic Derivatives) (Subroutine Not Checked Out).	38
8.	Listing of Subroutine COCOMB (Main Combustor).	43
9.	Sample Listing of Subroutine COCOMB (with Analytic Derivatives) (Subroutine Not Checked Out).	46

LIST OF SYMBOLS

STATION NUMBERS

1	ambient
2	fan entrance
21	fan exit/compressor and duct entrance
3	compressor exit/burner entrance
4	burner exit/hi pressure turbine entrance
5	hi press. turbine exit/lo press. turbine entrance
55	lo press. turbine exit
6	afterburner entrance
7	afterburner exit
8	main nozzle throat
9	main nozzle exit
23	duct burner entrance
24	duct burner exit
25	duct exit (if mixed-flow engine)
28	duct nozzle throat
29	duct nozzle exit

THERMODYNAMIC PROPERTIES

AM	Mach number
FAR	fuel-air ratio
H	total enthalpy (Btu/lb)
P	total pressure (atmospheres)
PS	static pressure (atmospheres)
S	total entropy
T	total temperature (degrees R)
TS	static temperature (degrees R)
V	velocity (feet/second)

COMPONENT SYMBOLS

A	afterburner
AFT	afterburner
В	burner
C	compressor
COM	burner
D	duct
DUC	duct
F	fan
M	main nozzle
NOZ	nozzle
OB	overboard
T	total
THP	hi pressure turbine
TLP	lo pressure turbine

LIST OF SYMBOLS (Continued)

ENGINE SYMBOLS

```
BL
                    bleed (pounds/sec)
     CN
                    corrected speed ratio
                    turbine delta enthalpy (Btu/lb)
     DHT
                    turbine delta enthalpy (temperature corrected) (Btu/1b)
     DHTC
     DP
                    pressure drop (lb/sq.in.)
     DT
                    temperature increase (degrees R)
     ETA
                    efficiency
     ETAR
                    ram recovery
     HPEXT
                    horsepower extracted
     PCBL
                    percent bleed
     PCN
                    percent speed
     PR
                    pressure ratio
     TFF
                    turbine flow function
     WA
                    airflow (pounds/sec)
     WF
                    fuel flow (pounds/sec)
     WG
                    gas flow (pounds/sec)
                    pressure-ratio ratio
MISCELLANEOUS
                    area (sq.in.)
     ALTP
                    altitude (ft)
     AM
                    Mach number of aircraft
     BYPASS
                    bypass ratio
     CF
                    correction factor
     CS
                    ambient speed of sound (ft/sec)
     CV
                    nozzle velocity coefficient
                    delta degradation coefficient
     DEL
     DS
                    design value
     DUM
                    dummy (not used)
     FG
                    gross thrust (1bs)
     FGM
                    momentum thrust (lbs)
     FGP
                    pressure thrust (lbs)
     FN
                    net thrust (1bs)
     FRD
                    ram drag (lbs)
     GU
                     initial or guess values
     ITRYS
                    number of loops through engine before quitting
     SFC
                    specific fuel consumption
     TOLALL
                    tolerance
     VA
                    velocity of aircraft (ft/sec)
     VJ
                    jet velocity (ft/sec)
```

NOTE: Some symbols may be truncated when combined with other symbols due to six character limit imposed by FORTRAN Computer Language.

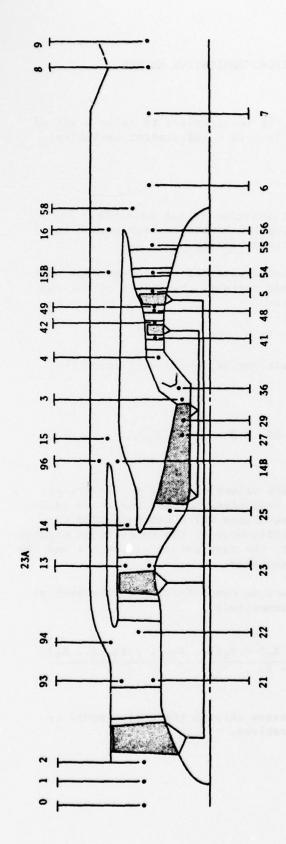
3

The next generation of military aircraft weapon systems will be required to achieve substantial improvements in design mission performance and effectiveness, multimission versatility, life-cycle costs, and survivability. These requirements will place increased demands on the propulsion system for advanced cycle concepts, advanced material and design technology, variable geometry capabilities, and a more effective engine-airframe installation with particular emphasis on inlet-engine airflow matching and engine-airframe thrust matching across the complete operating regime. The resulting propulsion system concept and evaluation and cycle selection process will require a more complex engine-airframe interaction which will involve a substantially greater number of engine and airframe design parameters, more extensive control and scheduling requirements, and a broader spectrum of mission and operational requirements.

The studies necessary to satisfy these increased design requirements will necessitate calculating many more balanced engine cycle performance points. This study program, Analytical Derivatives, was aimed at reducing the computer cost for calculating engine cycle performance by utilizing analytical derivatives instead of finite difference derivatives in the engine cycle balance iteration procedure. The technique developed is to differentiate the engine cycle and to use the numerical values of these analytical derivatives in the cycle balance iteration procedure. The calculation of the analytical derivatives will require less computer processor time than the calculation of finite difference derivatives which require evaluating the complete cycle for each independent variable. This technique was applied to a Variable Cycle Engine simulation and the resulting computer program was used to calculate 411 flight operating points. The results indicated that the computer costs were reduced about 52% when using the WPAFB CDC6600/CYBER 74 computer.

During this study, an alternate approach of applying the analytical derivative concept was devised. The differentiation of the complete engine cycle requires the constant updating of these analytical derivatives whenever a new component is added or equations are changed or added to an existing component. This alternate approach differentiates only the low level subroutines, such as those subroutines which calculate thermodynamic and aerodynamic properties. These subroutines represent approximately 10% of engine cycle program logic but account for about 75% of the computer processor time. By applying the analytical derivative technique the calculation time for these subroutines will be reduced and since these subroutines remain unchanged changes in the engine cycle will not require additions to this set of analytical derivatives. Utilizing the same Variable Engine Cycle program to calculate the 411 flight operating points, the results showed about a 47% reduction in computer processor time on a Honeywell 6000 computer. Using the ratio of the Honeywell 6000 computer time savings for the alternate method to the analytical derivative technique, it is estimated that the alternate method would result in a 40% costs savings using the WPAFB CDC6600/CYBER74 computer.

It can be concluded that in any engine simulation model using numerical derivatives to obtain cycle points, a considerable savings in both computer time and cost can be obtained by the inclusion of analytic derivatives. The greatest return per dollar of cost results when only that portion of the model for which coding remains relatively constant is differentiated. For the Air Force engine simulation model (SMOTE), the entire deck should be differentiated since the coding changes do not appear to occur frequently.


1.0 INTRODUCTION

The Aircraft Engine Group (AEG) of the General Electric Company has completed a contract entitled "Analytical Derivatives" which was sponsored by the Turbine Engine Divison of the Air Force Aero Propulsion Laboratory. The Air Force Project Engineer was James R. Ruble of the AFAPL Performance Branch. The overall objective of the contract effort was to develop and assess the suitability and the cost reduction potential of the analytical derivative procedure as applied to the computer modeling of turbine engine performance. In particular, this program developed the relevant mathematical expressions for the analytic derivatives and applied the analytic derivative technique to the calculation of balanced cycle performance for a selected Variable Cycle Engine (VCE) simulation.

2.0 SELECTION OF ENGINE MODEL

The analytical derivative study utilized two point design Variable Cycle Engine (VCE) simulations which are AEG inhouse computer programs. A schematic of the VCE used during the study is shown in Figure 1. Both the fan blocks and the compressor representation within the VCE simulation exist in parametric form. The remainder of the cycle equations are consistent with those utilized in parametric cycle decks, thereby assuring that all analytical derivatives generated in the program effort would be useful in full parametric performance decks. By utilizing the parametric feature, the engine can be changed easily by selecting different compressor and fan designs from the family of designs available in the model.

The demonstration of the analytical derivative procedure was carried out using two different engines. The initial evaluation used an engine with a fan, core-driven booster, and a compressor, each selected from the parametric system by design pressure ratios of 2.97, 1.35, and 7.00, respectively. This was designated as Engine 1. For the second engine, the design pressure ratios of these components were 3.28, 1.52, and 5.60. The second engine was designated as Engine 2.

7 Exhaust Nozzle Inlet	8 Exhaust Nozzle Throat	9 Exhaust Nozzle Exit	93 Front Fan Tip Discharge	13 Second Fan Tip Discharge	14 Inner Duct Inlet	14B Inner Duct Mixer Exit	15 Front Mixer Mixed	15B Bypass Mixer Inlet	16 Bypass Mixer Exit	94 Outer Duct Inlet	96 Outer Duct Mixer Exit
4 HP Turbine Vane Inlet	41 HP Turbine Rotor Inlet	42 HP Turbine Rotor Exit	48 LP Turbine Vane Inlet	49 LP Turbine Rotor Inlet	S LP Turbine Rotor Exit	54 LP Turbine OGV Exit	55 LP Turbine Frame Exit	56 Core Mixer Exit	58 Aft Mixer Mixed	6 Augmentor Inlet	
Free Stream Air Conditions	Engine Inlet	Front Fan Inlet	Front Fan Hub Discharge	Second Fan Inlet	Second Fan Hub Discharge	Second Fan Hub Average	HP Compressor Inlet	HPC 5th Stage	HPC 6th Stage	HPC Discharge	Combustor Inlet
•	-	7	21	22	23	23A	25	27	53	ы	8

Figure 1. Schematic of Typical VCE Showing Station Designations.

3.0 DESCRIPTION OF THE ANALYTICAL DERIVATIVE METHOD

In order to balance an engine cycle, it is necessary to solve a set of n simultaneous non-linear algebraic equations in n independent variables, represented symbolically by:

$$Y_i(X_1, X_2, ... X_n) = 0$$
 i = 1, 2, ... n

Since the equations are nonlinear, direct solution is not possible. The solution is found by trial and error, using the Newton-Raphson method to guide convergence. This method is summarized briefly.

In general, for some set of approximate values of the independent variables, the equations will not be satisfied; instead, the values of the functions Y_i will differ from zero by some error

$$Y_i(X_1, X_2, ... X_n) = E_i \quad i = 1, 2, ... n$$

The object is to determine a set of corrections δX_i which will force the erors to zero:

$$Y_i + \frac{\partial Y_i}{\partial X_1} \delta X_1 + \frac{\partial Y_i}{\partial X_2} \delta X_2 + \ldots + \frac{\partial X_i}{\partial X_n} \delta X_n = 0 \quad i = 1, 2, \ldots n$$

The Y_i 's are evaluated using the aproximate values of the X's. In principal, the partial derivatives can also be evaluated, so that the above equations form a set of simultaneous linear equations which can be solved directly for the corrections δX_i . The effectiveness of the corrections depends upon the accuracy of the approximations to the root values of the X's and the linearity of the original simultaneous equations.

In engine cycles, the functions Yi are so complicated that the partial derivatives have usually been evaluated numerically:

$$\frac{\partial Y_{i}}{\partial X_{i}} \approx \frac{Y_{i}(X_{1}, X_{2}, \dots X_{j} + \Delta X_{j}, \dots X_{n}) - Y_{i}(X_{1}, X_{2}, \dots X_{j}, \dots X_{n})}{(X_{i} + \Delta X_{i}) - X_{i}}$$

This procedure requires n + 1 complete passes through the engine model to compute each set of Y's and partial derivatives.

Direct evaluation of the partial derivatives requires much less compution time, as will be shown, although a completely different logic path through the engine cycle is required.

3.1 ANALYTICAL DERIVATIVE APPROACH - COMPLETE DERIVATIVE SET

A description of the basic analytical derivative approach follows. Each component module has a list of needed inputs $(X_1, X_2 - - X_n)$ and calculates a set of dependent variables $(Y_1, Y_2, Y_3 - - Y_m)$ utilized in other modules. A set of total differential equations can be mathematically derived:

$$dY_1 = \frac{\partial Y_1}{\partial X_1} dX_1 + \frac{\partial Y_1}{\partial X_2} dX_2 - \cdots + \frac{\partial Y_1}{\partial X_n} dX_n$$

$$dY_2 = \frac{\partial Y_2}{\partial X_1} dX_1 + \frac{\partial Y_2}{\partial X_2} dX_2 - \cdots + \frac{\partial Y_2}{\partial X_n} dX_n$$

$$dY_m = \frac{\partial Y_m}{\partial X_1} dX_1 + \frac{\partial Y_m}{\partial X_2} dX_2 - \cdots + \frac{\partial X_m}{\partial X_n} dX_n$$

The partial derivatives $\Im Y_1/\Im X_1$, $\Im Y_2/\Im X_n$, etc. are in general complex groupings of parameters calculated on the base point. The total differential equations can be derived and programmed in each subroutine. When the subroutines are executed in order, the values of $\mathrm{d} Y_1$ from an upstream subroutine frequently become the input values of $\mathrm{d} X_1$ needed in a downstream calculation. In this way, the derivative expressions can be modularized and utilized in a variety of cycles consisting of different ordered sets of subprogram modules.

To iterate a cycle to balance, partial derivatives with respect to a set of independent variables z_1 , z_2 , --- z_n are required. This set of variables is a sub-set of total set of x_i 's utilized in each subroutine as independent variables. Similarly, a subset of the Yi's represents a set of variables to be driven to zero by the iterative technique. To evaluate the partial derivatives of the Y's needed by the iterative technique with respect to, say, Z1, the value of dX_i corresponding to X_i is set equal to unity and all other dXvalues corresponding to z_2 through z_n are set to zero. By calculation through the derivative equations the appropriate derivative values can be evaluated. The derivative equations must be evaluated in this manner once for each independent iteration variable. Although this procedure leads to multiple evaluations of the derivative equations, it does make the derivative equations independent of subroutine order and only dependent on a fixed set of Xi's and Yi's in each module (unique interface parameter sets between routines). More importantly, perhaps, it permits the derivative equations to be programmed in a much more compact manner. Large portions of derivative evaluations are common to different independent variables and need not be recalculated for each variable.

As an example, consider a core compressor. Two of the input variables (X's) could be core speed (PCN25) and inlet air temperature (T25). Corresponding output variables (Y's) would be stall margin (SM25) and outlet air temperature (T3). The core speed is typical of the independent iteration variables (Z's) while T25 is calculated in an upstream component. Similarly, stall margin is typically a dependent iteration variable (driven to a demand value) while T3 is used as an input to the combustor. The equations would take the form:

$$dT3 = \frac{\partial T3}{\partial T25} dT25 + \frac{\partial T3}{\partial PCN25} dPCN25 + \dots$$

$$dSM25 = \frac{\partial SM25}{\partial T25} dT25 + \frac{\partial SM25}{\partial PCN25} dPCN25 + \dots$$

With dPCN25 set equal to unity and the differentials of all other independent iteration variables dZ's set equal to zero the set of equations reduces to:

$$dT3 = \partial T3/\partial PCN25$$

$$dSM25 = \partial SM25/\partial PCN25$$

If, on the other hand, we set dPCN25 equal to zero and set the differential of some other independent variable (say fan speed dPCN2) to unity, then the equations reduce to:

$$dT3 = \frac{\partial T3}{\partial T25} dT25$$

$$dSM25 = \frac{\partial SM25}{\partial T25} dT25$$

Although the magnitude of dT3 is different for the two cases, the same combustor and other downstream equations (utilizing dT3) can be used.

Note that, in the second example, the temperature T25 is a function of fan speed, so that:

$$dT25 = \frac{\partial T25}{\partial PCN2} dPCN2 + \dots$$

through the chaining of logic in preceeding component modules. When dPCN2 = 1, and all other independent variable differentials are zero,

$$dT3 = \frac{\partial T3}{\partial T25} \quad \frac{\partial T25}{\partial PCN2} = \frac{\partial T3}{\partial PCN2}$$

although the terms are not actually collected in this form.

3.2 SUBROUTINE DERIVATIVE STRUCTURE

in general, the total differential equations described previously were programmed into the high-level (component module) subroutines, even though evaluation of some variables occurs in low-level utility routines. The utility routines were modified as required to provide values of partial derivatives. Exceptions were the compressor and turbine map subroutines, where the differentiation was performed in the subroutines.

Differentiation of most of the formulae was straightforward, since, usually, a dependent variable was expressed explicitly as a function of independent variables:

$$Y = f(X_1, X_2, ... X_n)$$

$$dY = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \cdots + \frac{\partial f}{\partial x_n} dx_n$$

Even in cases where the equations could not be solved explicitly for the dependent variables, and iteration was required for evaluation of the variables themselves, the derivatives of the functions could always be obtained, so that explicit linear relations for the differentials were obtained, which did not require iteration.

For a system of equations:

$$f_i(X_1, X_2, ... X_n, Y_1, Y_2, ... Y_m) = 0$$
 i = 1, 2, ... m

the total differential expressions reduce to:

$$\frac{\partial f_i}{\partial Y_1} dY_1 + \frac{\partial f_i}{\partial Y_2} dY_2 + \dots + \frac{\partial f_i}{\partial Y_m} dY_m$$

$$= -\left(\frac{\partial f_i}{\partial X_1} dX_1 + \frac{\partial f_i}{\partial X_2} dX_2 + \cdots + \frac{\partial f_i}{\partial X_n} dX_n\right) \qquad i = 1, 2, \dots m$$

which are linear in the dy's and can be solved directly.

The algebraic terms representing the partial derivatives in the above formulae are evaluated during the first derivative pass, using values of independent and dependent variables obtained during the base pass. Since, in subsequent derivative passes, only the dX's change, the values calculated in the first pass are retained in storage arrays for reuse. Additional computation time was saved by performing derivative calculations in only part of the engine model on each derivative pass. Derivative calculations downstream of the point where the last dependent iteration variable is evaluated are unnecessary, as are calculations upstream of the point where each independent iteration variable first appears, except for evaluation of partial derivative terms on the first derivative pass. First-guess and engine sizing formulae were not differentiated.

In the General Electric cycle decks, three different thermodynamic property subroutines are used, in each of which the variables by lnP (log of pressure), FAR (fuel air ratio) and WAR (water air ratio) are independent. Of the variables T, H and S, one is independent and the other two dependent, according to which subroutine is called. Other dependent variables are R (gas constant), CS (ratio of specific heats at contant entropy), ALPHA and BETA (defined in the following equations). In differentiating these relations, WAR, CS, ALPHA, and BETA were considered to be constants. The differentiation formulae were derived as follows:

$$dH = \frac{\partial H}{\partial T} \begin{vmatrix} dT + \frac{\partial H}{\partial I} \\ P, FAR \end{vmatrix} d(1nP) + \frac{\partial H}{\partial I} d(FAR) d(FAR)$$

by standard thermodynamic relations, (Reference 1):

$$\frac{\partial H}{\partial T}\Big|_{P, FAR} = CP = CS (1 - ALPHA)$$

$$ALPHA = -\frac{T}{R} \left(\frac{\partial R}{\partial T}\right)_{P, FAR}$$

$$\frac{\partial H}{\partial (1nP)} \Big|_{T, FAR} = P\left(\frac{\partial H}{\partial P}\right)_{T, FAR} = (ALPHA)(R)T$$

The derivative functions CS and ALPHA were already returned from the thermo routines. The coding was modified to compute and return the remaining derivative aH/a(FAR)T.p.

Thus,

dH = CS (1 - ALPHA) dT + (ALPHA)RT d(1nP) +
$$\frac{\partial H}{\partial (FAR)}$$
 d (FAR)

This formula is readily inverted to exchange dependent and independent variables:

$$dT = \frac{dH - (ALPHA)RT \ d(1nP) - \frac{\partial H}{\partial (FAR)}|_{T,P} d(FAR)}{CS \ (1 - ALPHA)}$$

Similarly:

$$S = S (T, 1nP, FAR)$$

$$dS = \frac{\partial S}{\partial T} \left| \frac{dT}{FAR, P} + \frac{\partial S}{\partial (1nP)} \right| \frac{d(1nP)}{FAR, T} + \frac{\partial S}{\partial (FAR)} \right| \frac{d(FAR)}{T, P} d(FAR)$$

$$dS = CS (1 - ALPHA) \frac{dT}{T} - R (1 - ALPHA) d 1nP + \frac{\partial S}{\partial (FAR)} d(FAR)$$

$$T, P$$

and

$$dR = \frac{\partial R}{\partial T} \begin{vmatrix} dT + \frac{\partial R}{\partial (1nP)} \\ P, FAR \end{vmatrix} d(1nP) + \frac{\partial R}{\partial (FAR)} \begin{vmatrix} d (FAR) \\ T, P \end{vmatrix}$$

using the definition of ALPHA above and

BETA =
$$-\frac{P}{R} \left(\frac{\partial R}{\partial P} \right)_{T, FAR} = -\frac{1}{R} \left(\frac{\partial R}{\partial (1 \text{ nP})} \right)_{T, FAR}$$

then

$$dR = - (ALPHA)R \frac{dT}{T} - (BETA)R d(1nP) + \frac{\partial R}{\partial (FAR)} \Big|_{T,P} d (FAR)$$

For lean gas mixtures not subject to chemnical dissociation, ALPHA = BETA = 0, and the thermodynamic properties at a given temperature become linear functions of fuel-air ratio when expressed per pound of dry air; for example:

$$H = H_a + (FAR) H_f + (WAR) H_W$$

$$\frac{\partial H}{\partial (FAR)} \Big|_{T} = H_f$$

where H_f is the enthalpy of the CO_2 and H_2O formed by burning a pound of fuel, less the oxygen consumed and is a function of temperature only, and H_w is the enthalpy of the water.

Other low-level utility subroutines for which derivative formulae were derived included the following functions:

- Adiabatic Irreversible Compression or Expansion
- Isentropic Acceleration to Sonic Velocity
- Bivariate and Trivariate Table Interpolation
- Mach Number and Pressure Drop as Functions of Flow Function

3.3 LOW LEVEL DERIVATIVE SET

In the course of differentiating the complete engine model, an alternate method of applying the analytical derivative concept was devised. The development of this method was carried forward on a parallel path under separate funding, i.e., not Contract F33615-78-C-2203 funds. As a matter of general information and to report completely on analytical derivative techniques, a description of this alternate method is included.

The analytical derivative technique for calculating the derivative data needed to balance an engine cycle requires the partial differentiation of all of the component subroutines. The analytical derivative method will require the differentiation of any new subroutines or as a minimum, the addition of partial derivatives to account for any equation changes. Therefore, time and effort are required to implement this procedure for any new engine cycle.

As an alternate approach, differentiate the lower level subroutines, such as those subprograms which calculate thermodynamic and aerodynamic properties, and use these derivatives to update the subroutine output data. This approach is implemented by identifying two separate calculation paths in each subroutine. One of the paths is the normal subroutine calculation and this path is taken whenever a base point calculation is made. Added to this path are the calculations of the partial derivatives of the output properties with respect to each of the input parameters, and the storing of both the base point data and the calculated partial derivatives. This added subprogram logic does increase the calculation time for a base point (10%).

The second path in these subroutines is activated whenever one of the independent variables is incremented for the purpose of calculating, by the finite difference method, the partial derivatives used in the iteration method to balance the engine cycle. This alternate path calculates the difference between the saved input values and the new input data and then combines these differences and the saved partial derivatives to calculate updated output data. This path then bypasses the first calculation path and returns to the higher level subroutine. This second path has considerably fewer executable statements and therefore requires less computation time to calculate an updated set of output data.

This approach has the advantage that once the partial derivatives have been derived and included in each of the lower level subroutines they will not change and can be used in any computer cycle program. Component subroutine changes or additions or a completely new component will not require changes in the low level subprograms eliminating the need for updating the derivative calculation procedures. The time and effort to incorporate these new low level subroutines in any computer engine cycle program are minimal.

In order to evaluate this aproach, a new set of low level subroutines was developed and checked out for the chosen VCE cycle. The low level subroutines which were altered to include this new procedure are listed below.

These subroutines represent approximately 10% of the total engine cycle computer program logic; but since they are called numerous times in calculating a balanced engine cycle operating point, they account for about 75% of the processor time. Therefore, any technique which will lower the calculation time of these subroutines will have a substantial effect on the total computer processor time.

ADIABX Calculates an adiabatic compression/expansion process.

AENOZX Calculates exhaust nozzle throat area.

COFFEX Finds the Mach numbers and area required by a variable area mixer at the point of confluency.

CURVEX Two dimensional table look up procedure Z = f(X,Y).

CURVSX Three dimensional table look up procedure Z = f(X,Y,W).

PRXXXX Solves for Mach number given flow function.

SWIRLX Calculates the turbine exit swirl angle.

THOFHX Calculates the temperature and the thermodynamic properties from enthalpy, fuel air ratio, and pressure.

THOFSX Calculates the temperature and the thermodynamic properties from entropy, fuel air ratio, and pressure.

THOFTX Calculates the enthalpy and the thermodynamic properties from temperature, fuel air ratio, and pressure.

GETCXX Establishes the coefficients required to calculate thermodynamic properties.

HSCALX-CSALPX Calculates the dissociated thermodynamic properties.

The subroutine MODELX, which controls the order in which the components are called, had to be changed in order to supply an indicator which informs the low level subroutine when a base point or derivative point was being calculated. After incorporating these new subroutines into the engine cycle computer program the calculated performance did not change (within engineering significance).

In order to demonstrate this alternate approach, one of the low level subroutines from the Air Force's computer program SMOTE was chosen to be differentiated and reprogrammed. The subroutine chosen was PROCOM because it is called a large number of times; and if these changes were implemented, there could be a measurable improvement in calculation time. PROCOM calculates the speed of sound (CSEX), ratio of specific-heats (AKEX), gas constant (REX), molecular weight (AMW), specific-heat at constant pressure (CPEX), enthalpy (HEX), and entropy (PHI), as a function of temperature (TEX) and fuel-air ratio (FARX). The procedure was to differentiate CPEX, HEX, PHI, and AMW with respect to TEX and FARX; for example, for CPEX.

CPEX = (CPA + FARX * CPF)/(1. + FARX)

Since CPA and CPF are functions of temperature only, then the following is the derivation of the partial differentiation of CPEX with respect to TEX and FARX.

$$CPA = a_1 + b_1T + c_1T^2 + d_1T^3 + e_1T^4 + f_1T^5 + g_1T^6 + h_1T^7$$

$$CPF = a_2 + b_2T + c_2T^2 + d_2T^3 + e_2T^4 + f_2T^5 + g_2T^6 + h_2T^7$$

$$\frac{\partial CPA}{\partial TEX} = CPAUT = b_1 + 2c_1T + 3d_1T^2 + 4e_1T^3 + 5f_1T^4 + 6g_1T^5 + 7h_1T^6$$

$$\frac{\partial CPF}{\partial TEX} = CPFUT = b_2 + 2c_2T + 3d_2T^2 + 4e_2T^3 + 5f_2T^4 + 6g_2T^5 + 7h_2T^6$$

$$\frac{\partial CPA}{\partial FARX} = \frac{\partial CPF}{\partial FARX} = 0$$

$$\frac{\partial CPEX}{\partial TEX} = \left[\frac{\partial CPA}{\partial TEX} + FARX * \frac{\partial CPF}{\partial TEX} \right] / (1. + FARX)$$

$$\frac{\partial CPEX}{\partial TEX} = \frac{CPEXUT}{} = (CPAUT + FARX * CPFUT)/(1. + FARX)$$

$$\frac{\partial CPEX}{\partial FARX} = \frac{CPF}{(1. + FARX)} = \frac{CPA + FARX * CPF}{(1. + FARX)^2}$$

substitute CPA = (1. + FARX) * CPEX - FARX * CPF

$$\frac{\partial CPEX}{\partial FARX} = \frac{CPEXUF}{} = (CPF - CPEX)/(1. + FARX)$$

Differentiate HEX with respect to TEX and FARX.

$$HEX = (HEA + FARX * HEF)/(1. + FARX)$$

By definition

$$\frac{\partial HEX}{\partial TEX} = \frac{HEXUT}{}$$
 = CPEX

and by a derivation similar to the above for CPEX

$$\frac{\partial HEX}{\partial FARX} = \frac{HEXUF}{} = (HEF-HEX)/(1. + FARX)$$

Differentiate PHI with respect to TEX and FARX.

PHI =
$$(SEA + FARX * SEF)/(1. + FARX)$$

By definition

$$\frac{\partial PHI}{\partial TEX} = PHIUT = CPEX/TEX$$

$$\frac{\partial PHI}{\partial FARX} = PHIUF = (SEF - PHI)/(1. + FARX)$$

Differentiate AMW with respect to TEX and FARX

$$AMW = 28.97 - .946186 * FARX$$

$$\frac{\partial AMW}{\partial TEX} = 0$$

$$\frac{\partial AMW}{\partial FARX} = -0.946186$$

The remaining variables REX, AKEX, and CSEX are functions of variables which have been calculated. Differentiating these variables and combining base values with partial derivatives times the change in the independent variables leads to a more comlex expression. As an example, differentiate REX with respect to TEX and FARX.

$$REX = 1.986375/AMW = 1.986375/(28.97 - .946185 * FARX)$$

$$\frac{\partial REX}{\partial TEX} = 0$$

$$\frac{\partial REX}{\partial FARX} = \left(\frac{dREX}{dAMW}\right) \left(\frac{dAMW}{dFARX}\right)$$

$$\frac{\partial REX}{\partial FARX} = \frac{-1.986375}{(AMW)^2} \frac{dAMW}{dFARX} = \frac{1.986375 * 0.946186}{(AMW)^2}$$

Then

REX =
$$[REX]_{base} + 1.879480*(FARX - [FARX]_{base})/(AMW)^{2}$$

which is more complex than

$$REX = 1.986375/AMW$$

In order to calculate the updated information it is necessary to save the following data when a base point is being calculated.

HIST(INH) = FARX

HIST(INH+1) = TEX

HIST(INH+2) = CPEX

HIST(INH+3) = PHI

HIST(INH+4) = HEX

HIST(INH+5) = AMW

HIST(INH+6) = CPEXUT

HIST(INH+7) = CPEXUF

HIST(INH+8) = HEXUF

HIST(INH+9) = PHIUF

HIST(INH+10) = LOOPER

The updated data are then calculated by the following equations:

DELF = FARX - [FARX] base

DELT = TEX - [TEX]base

CPEX = [CPEX] base + CPEXUT * DELT + CPEXUF * DELF

HEX = |HEX] base + [CPEX] base * DELT + HEXUF * DELF

PHI = [PHI]base + [CPEX]base * DELT/[TEX]base + PHIUF * DELF

 $AMW = [AMW]_{base} - 0.946186 * DELF$

It should be noted that setting CPEXUT and CPEXUF to zero results in sufficient accuracy to efficiently balance an AEG cycle calculation. There are two listings of PROCOM showing the current version (Table 1) and the version with the analytical derivative logic included (Table 2). In the analytical derivative version, logic is included which will assign the correct storage space to each call to PROCOM and which will choose the proper path depending upon whether the calculation is a base or a derivative point. Logic must be added to the ENGBAL program to set the indicator IBASE to the correct value depending on whether a base or a derivative point is being calculated. The analytical derivative version assumes that the variable LOOPER is increased on every path through the engine cycle calculation and that IBASE will be set equal to LOOPER whenever a base point calculation is made. In addition, the

Table 1. Listing of Subroutine PROCOM (Thermodynamic Property Calculation).

```
1000
             SUBROUTINE PROCOM(FARX, TEX, CSEX, AKEX, CPEX, REX, PHI, HEX)
             IF (FARX.LE.O.067623) GO TO 1
  1010
  1020
             FARX=0.067623
  1030
             WRITE (8, 101)
  1040
           1 If (TEX.GE.300.) GC TO 2
  1050
             TEX=300.
 1060
             WRITE (8,102)
           2 IF(TEX.LE.4000.) GO TO 3
  1070
             TEX=4000.
  1080
1090
             WRITE(8,103)
           3 IF (FARX.GE.O.O) GC YO 4
  1100
  1110
             FARX=0.0
           ... WRITE (8,104)
  1120
  1130C
             AIR PATH
  1140
           4 CPA =((((((1.0115540E-25*TEX-1.4526770E-21)*TEX
  1150_
           X +7.6215767E-18) *TEX-1.5128259E-14) *TEX-6.71.78376E-12) *TEX
  1160
            X +6.5519486E-08) * TEX-5.1536879E-05) * TEX+2.5020051E-01
  1170
             HEA=((((((((1.2644425E-26+TEX-2.0752522E-22)+TEX
  1180
           X +1.2702630E-18) *TEX-3.0256518E-15) *TEX-1.6794594E-12) *TEX
  1190
            X +2.1839826E-08) * TEX-2.5768440E-05) * TEX+2.5020051E-01) * TEX
  1200
            x -1.7558886E+00
            _SEA=+2.5020051E-01*ALOG(TEX)+(((((1.4450767E-26*TEX
  1210__
  1220
            x -2.42112886-22) * TEX+1.52431536-18) * TEX-3.78206486-15) * TEX
  1230
            x -2.2392790E-12) * TEX+3.2759743E-08) * TEX-5.1576879E-05) * TEX
  1240
            X +4.5432300E-02
  1250
             IF (FARX.LE.Q.O) GO TO 5
  1260 C
             FUEL/AIR PATH
  1270
             CPF =((((((7.2678710E-25+TEX-1.3335668E-20)+TEX
  1280
            x +1.0212913E-16) + TEX-4.2051104E-13) + TEX+9.9686793E-10) + TEX
  1290
            x -1.3771901E-06) + TEX+1.2258630E-03) + TEX+7.3816638E-02
  1300
            HEF=(((((((9.0848388E-26+TEX-1.9050949E-21)+TEX
  1310
            x +1.7021525E-17) + TEX-8.4102208E-14) +TEX+2.4921698E-10) +TEX
  1320
            x -4.5936332E-07) *TEX+6.1293150E-04) *TEX+7.3816638E-02)
  1330
            X_+TEX+3.0581530E+01_
  1340
             SEF=+7.3816638E-02+ALOG(TEX)+(((((1.0382670E-25+TEX
  1350
            x -2.2226118E-21) *TEX+2.0425826E-17) *TEX-1.0512776E-13) *TEX
  1360
            X_+3_3228928E-10J+IEX-6_8859505E-07J+IEX+1_2258630E-03J+IEX_
  1370
            x +6.483398E-01
  1380
           5 CPEX=(CPA+FARX+CPF)/(1.+FARX)
  1390
             HEX=(HEA+FARX+HEF)/(1.+FARX)
             PHI=(SEA+FARX+SEF)/(1.+FARX)
  1400
  1410
             AMW=28.97-.946186*FARX
  1420
             REX=1.986375/AMM.
  1430
             AKEX=CPEX/(CPEX-REX)
  1440
             CSEX=SQRT (AKEX+REX+TEX+25031.37)
  1450
             RETURN
  1460
         101 FORMAT(1HO,63HINPUT FUEL-AIR RATIO ABOVE LIMITS, IT HAS BEEN RESET
  1470
            X TO 0.067623,6H$$$$$$)
   1480
         102 FORMATCHO.35HPROCOM INPUT TEMPERATURE BELOW 300. 6HSSSSSS)
         103 FORMAT(1HO,36HPROCOM INPUT TEMPERATURE ABOVE 4000...6HSSSSSS)
  1490
   1500
         104 FORMAT(1HD,38HPROCOM INPUT FUEL-AIR RATIO BELOW ZERO,6HSSSSSS)
  1510
             FND
```

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

Table 2. Sample Listing of Subroutine PROCOM (with Analytic Derivatives) (Subroutine Not Checked Out).
1000 SUBROUTINE PROCOM(FARX, TEX, CSEX, AKEX, CPEX, REX, PHI, HEX, INH)
1010 COMMON/HISTRG/IBASE, INHS, LOOPER, HIST (891), INHI(81)
1020 DIMENSION IHIST(891)
1030 EQUIVALENCE (HIST(1), IHLST(1))
1040 IF (INH. NE.O) GO TO 10
1050 INH=INHS
1060INHS=INHS+11
1070 10 IF (IHIST (INH+10) . NE. IBASE) GO TO 20
1080 DELF=FARX-HIST(INH)
1090 DELT=TEX-HIST(INH+1)
1100 CPEX=HIST(INH+2)+HIST(INH+6)+DELT+HIST(INH+7)+DELF
1110 HEX=HIST(INH+4)+HIST(INH+2)+DELT+HIST(INH+8)+DELF
1130 X +HIST(INH+9)+DELF
1140 AMW=HIST(INH+5)-0.946186+DELF
115060 TO 6
1160 20 If(FARX.LE.O.067623) GO TO 1
1170 FARX=0.067623
1180WRITE(8,101)
1190 1 IF(TEX.GE.300.) GC TO 2
1200 TEX=300.
1210 WRITE(8+102)
1220 2 If(TEX.LE.4000.) GO TO 3
1230 TEX=4000.
1240 WRIIE(8-103)
1250 3 If(FARX.GE.O.O) GO TO 4
1260
1280C AIR PATH
1290 4 CPA =(((((1.0115540E-25+TEX-1.4526770E-21)+TEX
1310 x +6.5519486E-08)+TEX-5.1536879E-05)+TEX+2.5020051E-01
1320 CPAUT =(((((7.+1.0115540E-25+TEX-6.+1.4526770E-21)+TEX
1340 X *TEX+2.*6.5519486E-D8)*TEX-5.1536879E-D5
1350 HEA=(((((((1.2644425E-26*TEX-2.0752522E-22)*TEX
1360 x +1.2702630E=18) + TEX=3.0256518E=15) + TEX=1.6794594E=12) + TEX
1370 X +2.1839826E-08)+TEX-2.5768440E-05)+TEX+2.5020051E-01)+TEX
1380 x -1.7558886E+00
1390 SEA=+2.5020051E=01+AL0G(TEX)+((((1.4450767E=26+TEX) 1400 X -2.4211288E-22)+TEX+1.5243153E=18)+TEX=3.7820648E=15)+TEX
1410
1410 x -2.2392790E-12741EX43.2739743E-08741EX-3.1378879E-03741EX
1430 If (FARX.LE.O.O) GO TO S
1440C FUEL/AIR PATH
1450 CPF #(((((17.2678710E-25+IEX-1.3335668E-20)+IEX
1460 X +1.0212913E-16)+TEX-4.2051104E-13)+TEX+9.9686793E-10)+TEX
1470 x -1.3771901E-06)+TEX+1.2258630E-03)+TEX+7.3816638E-02
1480 CPFUT =((((7,+7,2678710E=25+1EX=6,+1,3335668E=20)+1EX
1490 x +5.+1.0212913E-16)+TEX-4.+4.2051104E-13)+TEX+3.+9.9686793E-10)
1500 x +TEX-2.+1.3771901E-06)+TEX+1.2258630E-03
1510 MEF=((((((()-0848388E-26*TEX-1.9050949E-21)*TEX
1520 X +1.7021525E-17)+TEX-8.4102208E-14)+TEX+2.4921698E-10)+TEX
1530 X -4.5906332E-07)+TEX+6.1293150E-04)+TEX+7.3816638E-02)
1540 X +TEX+3-0581530E+01
1550 SEF=+7.3816638E-02+ALOG(TEX)+(((((1.0382670E-25+TEX
1560 x -2.2226118E-21)+TEX+2.0425826E-17)+TEX-1.0512776E-13)+TEX

Table 2. Sample Listing of Subroutine PROCOM (with Analytic Derivatives)
(Subroutine Not Checked Out)(Concluded).

1570	x +3.3228928E-10)*TEX-6.8859505E-07)*IEX+1.2238630E-03)*IEX
1580	x +6.483398E-01
1590	5 DUM=1.0+FARX
1600	CPEX=(CPA+FARX+CPF)/DUM
1610	CPEXUT=(CPAUT+FARX+CPFUT)/DUM
1620	CPEXUF=(CPF-CPEX)/DUM
1630	HEX=(HEA+FARX+HEF)/DUM
1640	HEXUF=(HEF-HEX)/DUM
1650 C	HEXUT=CPEX
1660	PHI=(SEA+FARX+SEF)/DUM
1670	PHIUF=(SEF-PHI)/DUM
1680 C	PHIUT=CPEX/TEX
16.90_	AMW=28_97946186*FARX
1700	HIST(INH)=FARX
1710	HIST(INH+1)=TEX
17.20_	HISI(INH+2)=CPEX
1730	HIST(INH+3)=PHI
1740	HIST(INH+4)=HEX
1750_	HIST(INH+5)=AMU
1760	HIST(INH+6)=CPEXUT
1770	HIST(INH+7)=CPEXUF
1780	HIST(INH+8)=HEXUF
1790	HIST(INH+9)=PHIUF
1800	IHIST(INH+10)=LOOPER
1810	6_REX=1_986375/AMW
1820	AKEX=CPEX/(CPEX-REX)
1830	CSEX=SQRT(AKEX+REX+TEX+25031.37)
1840	REJURN
1850	101 FORMAT(1HO,63HINPUT FUEL-AIR RATIO ABOVE LIMITS, IT HAS BEEN RESE
1860	x TO 0.067623,6H\$\$\$\$\$\$\$)
1870_	102 FORMAT(1HD,35HPROCOM_INPUT_TEMPERATURE_BELOW_300.,6H\$\$\$\$\$\$)
1880	103 FORMAT(1HO,36HPROCOM INPUT TEMPERATURE ABOVE 4000.,6HSSSSSS)
1890	104 FORMAT(1HO,38HPROCOM INPUT FUEL-AIR RATIO BELOW ZERO,6H\$\$\$\$\$\$)
1900	END

call sequence to PROCOM must be increased to contain a unique history array pointer. Since there are 81 possible calls to PROCOM, the history storage array (HIST) is dimensioned by 891 (81*11) and the history pointer array (INHI) by 81.

There is added logic at the beginning of the subroutine PROCOM which determines if that specific call to PROCOM had been executed previously and if not, sets the storage indicator (INH) and updates the history counter INHS by 11. This logic has been added to ensure that the first time that each call to PROCOM is executed the history storage array for that storage indicator has been filled with correct data.

This alternate approach was incorporated into the VCE cycle and the performance for the 411 approved flight operating points was calculated. The results showed that this approach used 47% less computer processor time than the original computer program but required 5K more computer storage. The alternate method is easily implemented using minimal time and cost.

4.0 APPLICATION OF THE METHOD TO SMOTE

4.1 CONTROL LOGIC

As a vehicle to illustrate the application of the method using the complete analytic derivative set, the Air Force engine cycle simulation program was selected. This program, titled SMOTE (Simulation of <u>Turbofan</u> Engine) was developed in the Components Branch, Turbine Engine Division, Air Force Aero Propulsion Laboratory and is described in References 2 and 3. A simultaneous Newton-Raphson iteration method is used to calculate balanced cycle performance. The partial derivatives are obtained by numerical differentiation. A matrix of differential error equations is then solved to determine the correct values of the independent variables which would produce zero errors. A flow chart of the program is shown in Figure 2.

As an example of the method, the derivation of the analytical derivatives and the associated computer program logic for a compressor and a combustor will be shown. It should be pointed out that none of the Fortran IV subroutine listings referred to in this section have been checked out. The listings are intended as an aid in understanding the examples, not as executable code. Control of the SMOTE program is contained in the main subroutine ENGBAL. This subroutine controls all engine balancing loops, checks tolerances and number of loops, and loads the matrix. The functioning of this subroutine is shown schematically in Figure 2, and a listing of the subroutine is given in Table 3. The incorporation of analytic derivatives would necessitate the rewriting of the ENGBAL subroutine. The new flowpath would be similar to that shown in Figure 3. In Figure 3, the differentials of the independent variables are designated by the symbol VU with an appropriate subscript. These differentials are incremented sequentially (from 1 to 6) by unity. When the indicator IDERV = 1, the deck is on a derivative path. In this case, the subroutine base point logic (the block labeled ENGINE) is jumped and only the derivatives are calculated in the individual subroutines. The errors can be calculated from the equation:

The error differentials are obtained by differentiating the individual error definitions. The unknown terms will then represent derivatives and/or differentials evaluated in the individual subroutine.

For example, Table 4 shows the independent and dependent variables (errors) for the SMOTE deck. The differentiation of the first error would proceed as follows:

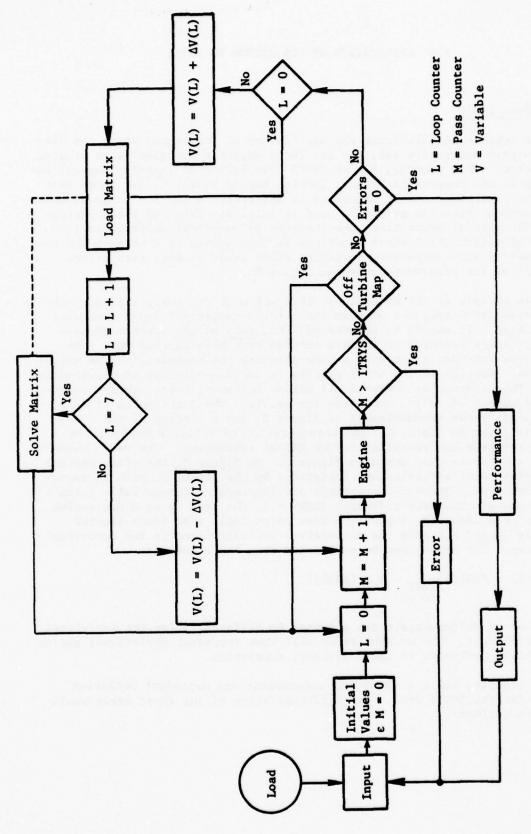


Figure 2. SMOTE Computer Program Flow Chart.

Table 3. Listing of Subroutine ENGBAL.

					•					
100		SUBROUT	TINE EN							
101		CO MMO N	1000000	-						
100	a			JDFS		MOD F		. IDUMP		
103		2IGASMX		IAFTBN	.IDCD .	IMCD	. I DSHOC	. IMSHOC	NOZ FLT	
104		3ITRYS .		NOMAP	. NUMMAP	. MAPFDG	.TOLALL	FRP(A)		
105			/DESIGN							
100		IPCNFGU.	PCNCGU.				.DELFG			
10-			PCN FDS.	PRFDS	. FTAFDS.	, WAFDS	.PRFCF	.FTAFCF	. WAFCF	
198	30						.PRCCF			
100							. DPCODS			
110	10	5TFHPDS.								
111	a	STFLPDS.	CNLPDS.	.FTLPDS	.TFI_PCF	CNLPCF	. FTLPCF	. DHLPCF	.T21DS	
112							. DPDU DS			
113	10				.ETAADS	.WG6CDS	.DPAFDS		.FT AACF	
114						.A8	.A9	. A 28	.A 29	
115					.CVMNOZ.	, ABSAV	.A9SAV	. AZBSAV	.A29SAV	
114			/ FROM							
117						T2			. S2	•
118		2T21	P21 .			T3	.P3	•H3	•53	
119		3T4				T5	.P5		, S5	•
120						BLF			*BLOB	•
121						, WAF	.WA3		.FAR4	•
122			The same of the sa	The State of the S		, WAC	,ETAB		. DUMF	•
123			FTATHP.			BLHP	. WG5	FAR5	.CS	•
124			ETATLP.			BLLP	, WG55		HPEXT	•
125	4 4 4	ATFFHP		FTAR PCBLF		PCNF	,ZC ,PCBLOB	PCNC	.WFB	•
12		COMMON			. PUBLU	PUBLID	PUDLUD	, PUBLIF	, PUDILLP	
128					. XBLF	XBL DU	.XH3	. DUMS I	.DUMS2	
129						T23	P23		.S23	•
130						T25	P 25	H25	.525	•
13						T29	P 29	H29	529	•
13:						FTAD "	DPDUC	BYPASS		•
133						T529	PS29	. V29	. AM29	•
134		COMMON	/ BAC		•		4. 02.	•	· Mile	
135					.XS55	XT 25	XPZ5	, XH 25	XS25	
130				XFAR55		XWG24	.XFAR24		.DUMB	•
13				.H6		.T7	.P7	.H7	.57	
138		4T8		H8	.58	T9	.P9	, H9	.59	
139				.WG7		FTAA	DPAFT	. V55	.V25	
14	00			AM6		.PS7	, V7	, AM7	. AM25	
14	0		PS8	.V8		TSO	.PS9	, V9	AM9	•
14	20			.VJD	.FGMD	. VJM	. FGMM	. FGPD	-FGPM	
14:	30	9FGM	FGP	WFT	.WGT	FART	,FG	.FN	SFC	
14	40	DIMENS	ION VAR	(6) DEL	(6) .ERR	B (6.) , DE	LVAR(6)	.EMAT(6	.6) . VMA	T(6).
149	50	1AMAT(6								
14	50		WORD/6H							
14					NGE , NO M	I SX/				
14		1 0.001		0.850,4	/					
149		CALL I	NPUT							
150			T. EO. 1)	GO TO	50					
15		TFFHP=								
. 15		TFFLP=								
	30#50	LOOPE								
15		NUMMAPA NOMI SS								
	50#1	LOOP=								
1.30	14141	LIXIF-	•							

Table 3. Listing of Subroutine ENGBAL (Continued).

```
1570
             MISMAT=0
  1580
             NOMA P=0
  1590
             IG()= 2
                                           THIS PAGE IS BEST QUALITY PRACTICABLE
  1400
             DO 2 I=1.6
  1610
             VMAT(I)=0.
                                           FROM COPY FURNISHED TO DDC
  1624
             AMAT(I)=0.
  1630
             DFLVAR(I)=0.
  1640
             DO 2 L=1.6
  1450#2
              EMAT(1.1)=0.
  1666#3
             LOOPER=LOOPER+1
  1670
             CALL COFAN
  1680
             W() RD=A W() RD
  1690
             IF (LOOPER.GT.ITRYS) GO TO 20
  1700
             IF (NOMAP.GT.Ø) GO TO 1
  1710
             NUMMAP=0
  1720#55
              VAR(1)=ZF*100.
             IF(MODE.NE.3) VAR(2)=PCNF
IF(MODE.EO.3) VAR(2)=T4/10.
  1730
  1740
  1750
             VAR(3)=ZC*100.
  1760
             IF(MODE.NE.1) VAR(4)=PCNC
  1770
             IF(MODE.FQ.1) VAR(4)=T4/10.
  1780
             VAR(5)=TFFHP
  1790
             VAR(A)=TFFLP
  1800
             DO 4 I=1.6
  1810
             IF(ABS(ERR(I)).GT.TOLALL) GO TO 5
  1820
          4 CONTINUE
             CALL PERF
  1830
  1840
             CALL FRROR
              IF(LOOP.GT.Ø) GO TO 7
  1850#5
  1860
             MAPEDG=0
  1870
             MAPSET=0
  1880
             DO 6 I=1.6
            ERRB(I)=ERR(I)
  1800
  1900#6
             DEL(I)=VDELTA+VAR(I)
           GO TO 9
  1910
             IF (MISMAT.GT. Ø) GO TO 30
  1920#7
             IF (MAPEDG. EQ. Ø) GO TO 70
  1930
             MAPEDG=0
  1940
  1950
            MAPSET=1
  1960
             VAR(LOOP)=VAR(LOOP)+2.*DEL(LOOP)
           GO TO 10
  1970
  1980#70
             IF (MAPSET.EQ. 0) VAR(LOOP) = VAR(LOOP) +DEL(LOOP)
  1990
             IF (MAPSET. EQ. 1) VAR(LOOP)=VAR(LOOP)-DEL(LOOP)
  2000
             MAPSET=0
  2010
             DO 8 1=1.6
             EMAT(I, LOOP)=(ERRB(I)-ERR(I))/DEL(LOOP)
  20 20 #8
  2030#9
              LOOP=LOOP+1
  2040
             IF(LOOP.GT.6) GO TO 11
  2050
             VAR(LOOP)=VAR(LOOP)-DEL(LOOP)
  2069#10
             ZF=VAR(1)/100.
IF(MODE.NE.3) PCNF=VAR(2)
  2070
  2080
             IF(MODE.E0.3) T4=VAR(2)+10.
2090
            ZC=VAR(3)/100.
TF(MODE,NE,1) PCNC=VAR(4)
             IF(MODE. EQ. 1) T4=VAR(4)=10.
  2110
  2120
            TFFHP=VAR(5)
 2130
            TEFLP=VAR(6)
```

Table 3. Listing of Subroutine ENGBAL (Continued).

```
IF(ZF.LT.0.) ZF=0.05
2140
2150
           IF(ZC.LT.P.) ZC=0.05
2160
           GO TO (1.3), IGO
            DO 12 I=1.6
AMAT(I)=-ERRB(I)
2170#11
2180#12
2190
           DO 14 I=1.6
2200
           IZER()=0
2210
           DO 13 LOOP=1.6
            IF (FMAT(I,1.00P).EQ.0.) IZERO=IZERO+1
 2220#13
2230
            IF(IZERO.I.T.6) GO TO 14
2240
           WRITF(6, 100) I
2250
           LOOPER=ITRYS+100
2260
           GO TO 20
2270#14
            CONTINUE
           DO 16 LOOP=1.6
2280
2290
            IZERO=Ø
2300
           DO 15 I=1.6
            IF (EMAT(I.LOOP).FQ.A.) IZER(=IZER(+1
2310#15
2320
            IF (IZERO.LT.6) GO TO 16
2330
           WRITE(6, 101) LOOP
2340
           L(X)PFR=ITRYS+100
2350
           GO TO 20
2360#16
            CONTINUE
2370#17
            CALL MATRIX(EMAT. VMAT. AMAT)
2380
           IBIG=0
2390
           VARBIG=0.0
           DO 18 L=1.6
2400
2410
            ABSVAR=ABS(VMAT(L))
            IF(ABSVAR.LE.VLIMAVAR(L)) GO TO 18
2420
2430
           IF(ABSVAR.LE.VARBIG) GO TO 18
2440
           LBIG=L
2450
           VARBIG=ABSVAR
2460#18
            CONTINUE
2470
           VRATIO=1.0
            IF(LBIG.GT.0) VRATIO=VIIM+VAR(LBIG)/VARBIG
2480
 2490
            ERRA VE=0.0
2500
            VMTAVE=0.0
2519
           DELAVE=0.0
2520
            DO 19 L=1.6
           DELVAR(L)=VRATIO*VMAT(L)
2530
25 40
            FRRAVE=ERRAVE+ABS(AMAT(L))
2550
            VMTAVE=VMTAVE+ABS(VMAT(L))
 2560
           DELAVE=DELAVE+ABS(DELVAR(L))
 2570#19
            VAR(L)=VAR(L)+DELVAR(L)
2580
            ERRAVE=ERRAVE/6.
 2590
            VMTA VE=VMTA VE/6.
 2600
           DELAVE-DELAVE/6.
IF (MISMAT.GT.Ø) GO TO 32
 2610
 2679
            IF (NOMISS: EQ.70) MISMAT= 1
            IF(MISMAT.EQ.Ø) IG()=1
 2630
 2640#20
            WRITE(8, 102) LOOPER
           DO 21 I=1.6
 2650
            WRITE(8, 103) AMAT(I), (EMAT(I,L),L=1,6), VMAT(I), DELVAR(I), VAR(I)
 2660#21
2670
            WRITEIS, 194) ERRAVE, VMTAVE, DELAVE
             IF (LOOPER.LT. ITRYS) GO TO 10
 2680#22
 269 A
           CALL ERROR
           RETURN
 2700
```

Table 3. Listing of Subroutine ENGBAL (Concluded).

2710#30	VMTA VX=VMTA VE
2720	DO 31 I=1.6
2730#31	AMAT(I) = -FRR(I)
2740	GO TO 17
2750#32	WRITE(8,105) AMAT, FRRAVE, DELVAR, DELAVE, VMAT, VMTAVE, VAR
2760	MISMAT=MISMAT+1
2770	IF(VMTAVE.LT.VCHNGE*VMTAVX) GO TO 22
2780	WRITF(8,106)
2790	IF(MISMAT.LT.NOMISX) NOMISS=1
2800	MISMAT=0
2810	1.00P=Ø
2820	1G()=2
2830	GO TO 55
2849#199	FORMAT(4HØROW, 12, 16H IS ZERO IN EMAT)
	FORMAT(7HOCOLUMN, 12, 16H IS ZERO IN EMAT)
2869#192	FORMAT(8HB ERRB, 28X 23HE RROR MATRIX AFTER LOOP, 14, 29X4HVMAT,
2970	16X6HDELVAR, 7X14HVARIABLESSSSSS)
2880#103	FORMAT(1H0,F8.4,8X6F10.4,10XF10.4,F11.4,4XF11.4,6Hsssss)
2890#104	
2900#105	FORMAT(12H0 AMAT, 7F16.6, 6H\$\$\$\$\$\$.
2910	1/. 12H DEL VAR, 7F16.6, 6H\$\$\$\$\$\$.
2920	2/. 12H VMAT. 7F16.6.6HSSSSSS.
2930	3/, 12H VAR, 6F16.6, 6H\$\$\$\$\$\$)
2940#106	FORMAT(1HØ, 50X 22HCHANGE TOO SMALL \$\$\$\$\$\$)
2950	END

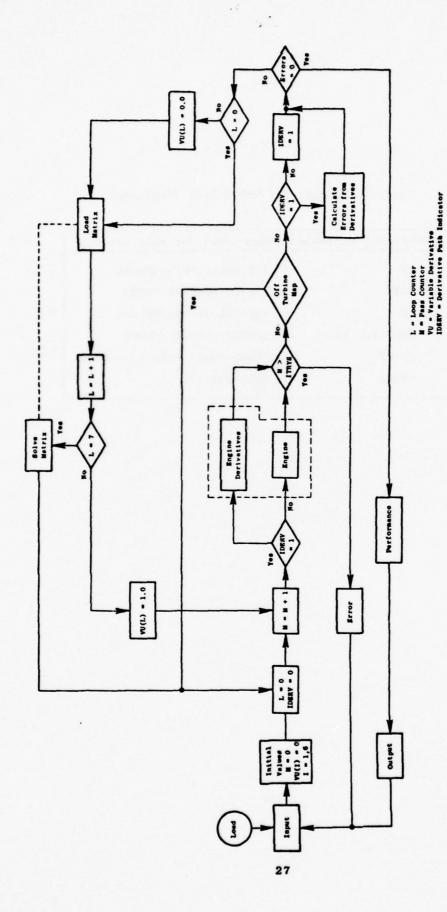


Figure 3. SMOTE Computer Program Flow Chart (with Analytical Derivatives).

Table 4. Variable Summary for SMOTE Deck (Turbofan).

Number	Independent Variable	Dependent Variable (Errors)
1	ZF	(TFHCAL-TFFHP)/TFHCAL
2	PCNF	(DHTCC-DHTCHP)/DHTCC
3	zc	(TFLCAL-TFFLP)/TFLCAL
4	PCNC (or T4)	(DHTCF-DHTCLP)/DHTCF
5	TFFHP	(PS25-PS55)/PS25 (Sep Flow)
6	TFFLP	(P7R-P7)/P7R

$$ERR(1) = (TFHCAL - TFFHP)/TFHCAL$$

$$dERR(1) = \frac{TFHCAL * (TFHCAL - dTFFHP) - (TFHCAL - TFFHP) * d TFHCAL}{(TFHCAL)^2}$$

$$dERR(1) = -\frac{dTFFHP}{TFHCAL} + \frac{TFFHP * dTFHCAL}{(TFHCAL)^2}$$

$$dERR(1) = -\left(\frac{TFFHP}{TFHCAL}\right) * \left(\frac{dTFFHP}{TFFHP}\right) + \left(\frac{TFFHP}{TFHCAL}\right) * \left(\frac{dTFHCAL}{TFHCAL}\right)$$

$$dERR(1) = + \left(\frac{TFFHP}{TFHCAL}\right) + \left[\left(\frac{dTFHCAL}{TFHCAL}\right) - \left(\frac{dTFFHP}{TFFHP}\right)\right]$$

Note that all terms on the right-hand side of the above equation would be evaluated at the base point. The quantities TFFHP and TFHCAL are normally computed when the base point is calculated. The two differential terms are evaluated on the derivative path.

In general,

$$dERR(1) = \frac{\partial ERR(1)}{\partial V_1} dV_1 + \frac{\partial ERR(2)}{\partial V_2} dV_2 + ... + \frac{\partial ERR(n)}{\partial V_n} dV_n$$

On any given derivative path all the dV's will be zero except one whose value will be unity.

Therefore,

$$dERR(1) = \frac{\partial ERR(1)}{\partial V_1}$$
 after the first pass (L = 1)

$$dERR(1) = \frac{\partial ERR(1)}{\partial V_2}$$
 after the second pass (L = 2)

and dERR(n) =
$$\frac{\partial ERR(n)}{\partial V_n}$$
 after the nth (last) pass.

The subroutine ENGBAL as it might appear with the analytic derivative control logic in place is shown in Table 5. The subroutine AERR referred to in the listing would return the individual error derivatives, i.e., dERR(i) = ERRU(I). It would contain the logic for all the error term derivatives derived in a manner similar to that shown for the first error term. The base point values and the value of the derivative and/or differential terms could be communicated to the subroutine via labeled common.

Table 5. Sample Listing of Subroutine ENGBAL (with Analytical Derivative Logic) (Subroutine Not Checked Out).

```
1000
             SUBROUTINE ENGBAL
             COMMON / ALL/
1010
           I WORD .IDFS .JDFS .KDFS .MODF .INIT .IDUMP .IAMTP .ZIGASMX.IDBURN.IAFTBN.IDCD .IMCD .IDSHOC.IMSHOC.NOZFLT.

3ITRYS .LOOPFR.NOMAP .NUMMAP.MAPFDG.TOLALL.FRR(6)

COMMON /DESIGN/
1770
1030
1040
1050
                     PCNCGU.T4GU .DUMDI .DUMD> .DELFG .DELFN .DELSFC.
.PCNFDS.PRFDS .FTAFDS.WAFDS .PRFCF .FTAFCF.WAFCF .
.PCNCDS.PRCDS .ETACDS.WACDS .PRCCF .FTACCF.WACCF .
1060
            IPCNFGU, PCNCGU, T4GU
1070
            2ZFDS
1080
            3ZCDS
1200
           ATANS
                     , WFBDS , DTCODS, ETABDS, WA3CDS, DPCODS, DTCOCF, ETABCF.
1199
            5TFHPDS, CNHPDS, ETHPDS, TFHPCF, CNHPCF, ETHPCF, DHHPCF, T2DS
            ATFLPDS, CNLPDS, ETLPDS, TFLPCF, CNLPCF, ETLPCF, DHLPCF, T21DS
1110
            7T 24DS , WFDDS , DTDUDS, ETADDS, WA 23DS, DPDUDS, DTDUCF, ETADCF,
1120
                     .WFADS .DTAFDS.ETAADS, WGGCDS.DPAFDS.DTAFCF.ETAACF.
1130
            8T7DS
                                                          .49
                              .A6
                                       .A7
                                                                    .A 28
                                                                             .A 29
1140
                                                 , A8
            9A55
                     , A 25
1150
            APS55
                     .AM55
                              .CVDNOZ.CVMNOZ.A8SAV .A9SAV .A28SAV.A29SAV
             COMMON / FRONT/
1150
                     .P1
1170
                              ·HI
            1T1
                                        .51
                                                 .T2
                                                           .P2
                                                                    .H2
                     .P21
                                                          .P3
                                        .521
                                                                    . H3
1180
            2T21
                              .H21
                                                 .T3
                                                                             ,53
                     .P4
1190
                              .H4
                                        .54
                                                 . T5
                                                          .P5
                                                                   .H5
            3T4
                                                                             . 55
                     P 55
                                        .555
                                                 . BLF
                              .H55
                                                                    . BI_DU
                                                                             .BLOB
1200
            4T55
                                                          .BLC
                                                                    . WG4
                                                                             .FAR4
1210
                              .ETAF
                                        . WAFC
                                                           .WA3
            5CNF
                     . PRF
                                                 . WAF
                     .PRC
1220
            6CNC
                              , ETAC
                                        , WACC
                                                 , WAC
                                                           .ETAB
                                                                    . DPCOM . DUMF
1230
            7CNHP
                     .FTATHP.DHTCHP.DHTC
                                                 . BLHP
                                                           . WG5
                                                                    .FAR5
                                                                             ,CS
                                                 , BILP
1240
            8CNI.P
                     ,ETATLP, DHTCLP, DHTF
                                                                    FAR55 . HPEXT
                                                           , WG55
                                       .ZF
                                                 . PCNF
                     . ALTP
1250
           PCNF ZC PCNC WFB ATFFHP TFFLP PCBLF PCBLC PCBLDU, PCBLOB, PCBLHP, PCBLEP
1260
1270
             COMMON / SIDE/
                     .XMAC .XMAC
                   - XWAF
1280
            XXPI
                                        . XBLF
                                                 . XBI.DU . XH3
                                                                    . DUMSI . DUMS2
                                        .X521
                                                           .P23
                                                 .T23
                                                                    .H23
1290
            XXT21
                                                                             ,523
                                        .524
                                                          . P 25
                     .P 24
                              .H24
                                                 ,T25
                                                                    .H25
                                                                             ,525
1300
            3T 24
                                                         P 29
                                       .528 .T29
.FAR24 .ETAD
                                                          P29 H29 S29
1310
                     .P 28
            4T28
                              .H28
                              . WG24
1320
            5WAD
                     . WFD
                                                                             . AM29
            6TS28
                                                 ,TS29
1330
                     .PS28
                               .V28
                                        . AM28
                                                           .PS29
                                                                    . V29
1340
             COMMON /
                         BACK/
                                                 ,XMG24 ,XFAR24,XXP1
                     .XP55
                              . XH55
1350
            XXT55
                                        . XS55
                                                                             .XS25
            XXWFB
                     . XWG55
1360
                              .XFAR55.XWFD
                                                                             .DUMB
                                                          ,P7
                                       .56
                                                                             .57
                     .P6
                              . H6
13.70
            3T6
                                                          .P9
                                        .58
                                                 . T9
                                                                    . H9
                                                                             ,59
1380
            4T8
                     .P8
                               .H8
                                                                    . V55
            5WG6
                     . WFA
                                                                             .V25
1390
                               .WG7
                                        .FART
                                                 . ETAA
                                                           .DPAFT
                                                 .PS7
                                        .TS7
1400
            6PS6
                     . V6
                               .AM6
                                                          . V.7
                                                                    . AM7
                                                                             . AM25
                                                                    . V9
                     .PS8
                                                 .TS9
                                                                             · AMO
                                        . AMB
                                                          .PS9
1410
            TTSB
                     .FRD
                               . VJD
                                                          . FGMM
14 20
                                        .FGMD
                                                 . VJM
                                                                    , FGPD
                                                                             . FGPM
            8VA
                     , FGP
            9FGM , FGP , WFT , WGT , FART , FG , FN , SFC COMMON /DFRIVX/ZIUX, ZZUX, ZIUY, ZZUY, ZZUZI, CPA, CPF, CPEX, AKEX, REX, HUFAR, RUFAR, PUFAR, ZFU, PCNFU, XT4, ZCU, PANCU, TFFHPU,
1430
1440
1450
1460
            &TFFI.PU
1470
             DIMENSION VAR(6) DEL(6) ERRB(6) DEL VAR(6) EMAT(6.6) VMAT(6).
1480
            (A) UV, (A) TAMAI
             DATA AWORD/6HENGBAL/
DATA VDELTA, VLIM, VCHNGE, NOMISX/
1490
1500
15 10
            1 0.001,0.100,0.850,4/
1520
             CALL INPUT
             IF(INIT. EO. I) GO TO 50
1530
1540
             TFFHP=TFHPDS
             TFFLP=TFLPDS
1550
1549#59
              LIXIPER= 0
```

Table 5. Sample Listing of Subroutine ENGBAL (with Analytical Derivative Logic) (Subroutine Not Checked Out) (Continued).

```
1570
            NUMM AP=0
 1580
            NOMI SS=0
 1590#1
             1.00P=0
 1600
            MISMAT=0
 1610
            NOMAP=0
 1629
            IG()= 2
            DO 2 I=1.6
 1630
            VMAT(I)=\emptyset.
 1640
 1650
            AMAT(I) = \emptyset.
 1660
            VU(I)=0.0
           DELVAR(I)=0.
 1679 .
 1680
            DO 2 L=1.6
 1690#2
            EMAT(I,L)=0.
            LOOPER=LOOPER+1
 1700#3 ._ .
 1710
            CALL COFAN
 1720
            WORD = AWORD
1730
            IF (LOOPER. GT. ITRYS) GO TO 20
1740
            IF(NOMAP.GT.0) GO TO I
 1750
            NUMMAP=0
            IDERV=0
 1760 55
 1770
            VU(1)=100.0+ZFU
 1780
            IF(MODE.NE.3) VU(2)=PCNFU
            IF (MODE . EQ. 3) VU(2) = XT4 + T4/10.0
 1790
 1800
            VU(3)=100.0+ZCU
 1810
            IF(MODE. NE. 1) YU(4) = PCNCU
            IF (MODE. EQ. 1) VU(4)=XT4+T4/10.0
 1820
 1830
            VU(5)=TFFHPU
 1840
            VU(A)=TFFLPU
 1850
            IF(IDERV.NE.1)GO TO 200
 1869
            CALL AERR
 1870
            DO 200 I=1.6
 1880
            ERR(I)=ERRB(I)+ERRU(I)
 1890
            GO TO 210
 1920 200
            IDERV= 1
            DO 4 I=1.6
 1910 210
            IF (ABS(ERR(I).GT.TOLALL) GO TO 5
 1920
 1930 4
            CONTINUE
            CALL PERF
 1940
 1950
            IF(LOOP.GT.Ø) GO TO 7
 1960 5
 1970
            DO 6 I=1,6
 1980
            ERRB(I)=ERR(I)
 1990
            DEL(I)=1.0
 2000
            GO TO 9
 2010 7
            DO 8 I=1.6
            EMAT(I,LOOP)=(ERRB(I)-ERR(I))/DEL(LOOP)
 2020 8
 2030
2040 9
            VU(LOOP)=0.0
            L(X)P=L(X)P+1
 2050
            IF(LOOP.GT.6)GO TO 41
            VU(L(O)P)=1.0
ZFU=VU(1)/100.0
 2969
 2070 10
            IF(MODF.NE.3)PCNFU=VU(2)
IF(MODE.EQ.3)XT4=VU(2)*10.0/T4
ZCU=VU(3)/100.0
 2080
 2090
 2100
 2110
            IF (MODE. NE. 1)PCNCU=VU(4)
            IF(MODE, EO. 1) XT4=VU(4) + 10.0/T4
 2120
 2130
            TFFHPU=VU(5)
```

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

Table 5. Sample Listing of Subroutine ENGBAL (with Analytical Derivative Logic) (Subroutine Not Checked Out) (Continued).

```
2140
           TFFI PU=VU(6)
2150
           IF(ZF.LT.U.) ZF=0.05
2160
           IF(ZC.LT.0.) ZC=0.05
21 70
           GO TO (1,3), IGO
            DO 12 I=1.6
2180#11
2190#12
            AMAT(I) =- FRRB(I)
22.00
           DO 14 I=1,6
2210
           IZFR()=Ø
2220
           DO 13 LOOP=1.6
2230#13
            IF (EMAT(I.I.OOP) .FQ.O.) IZFR(=IZFR(+1
2240
           IF(IZERO.LT.6) GO TO 14
2250
           WRITE(6, 100) I
2260
           1.00PER=ITRYS+100
2270
           GO TO 20
2280#14
            CONTINUE
2290
           DO 16 LOOP=1.6
           IZERO=0
2300
2310
           DO 15 I=1.6
2320#15
            IF(EMAT(I,LOOP).EQ.Ø.) IZERO=IZERO+1
2330
           IF(IZFRO.LT.6) GO TO 16
2340
           WRITE(6, 101) L(X)P
2350
           LOOP FR= ITRYS+ 190
2360
           GO TO 20
2370#16
            CONTINUE
2380#17
            CALL MATRIX(FMAT, VMAT, AMAT)
2390
           LBIG=0
2400
           VARBIG=0.0
2410
           DO 18 L=1.6
2420
           ABSVAR=ABS(VMAT(L))
2430
           IF(ABSVAR.LE.VLIM+VAR(L)) GO TO 18
2444
           IF(ABSVAR.LE.VARBIG) GO TO 18
2450
           LBIG=L
2460
           VARBIG=ABSVAR
2470#18
            CONTINUE
2480
           VRATIO=1.0
           IF(LBIG.GT.0) VRATIO=VLIM+VAR(LBIG)/VARBIG
2490
25 00
           FRRAVE=0.0
2510
           VMTAVE=0.0
           DELAVE=0.0
2520
25 30
           DO 19 L=1.6
DELVAR(L)=VRATI()=VMAT(L)
2540
2550
           ERRAVE=ERRAVE+ABS(AMAT(L))
2560
           VMTAVE=VMTAVE+ABS(VMAT(L))
25.70
2580#19
           DELAVE=DELAVE+ABS(DELVAR(L))
VAR(L)=VAR(L)+DELVAR(L)
2599
           FRRAVE=ERRAVE/6.
           VMTA VE=VMTA VE/6.
2699
           DELAVE=DELAVE/6.
IF (MISMAT.GT.Ø) GO TO 32
2610
26 20
           IF(NOMISS.EQ.O) MISMAT=4
IF(MISMAT.EQ.O) IGO=1
2630
2640
2650#20
            WRITE(8, 102) LOOPER
2660
           DO 21 I=1,6
2670#21
            WRITE (8, 103) AMAT(1), (EMAT(1,L),L=1,67,VMAT(1),DELVAR(1),VAR(1)
           WRITE(8, 104) ERRAYE, VMTAVE, DELAVE
IF(LOOPER, LT. ITRYS) GO TO 10
2680
2699# 22
2700
           CALL ERROR
```

Table 5. Sample Listing of Subroutine ENGBAL (with Analytical Derivative Logic) (Subroutine Not Checked Out) (Concluded).

```
RETURN
2710
            VMTAVX=VMTAVE
2720#30
           DO 31 I=1.6
2730
2740#31
           AMAT(I) = ERR(I)
2750
           GO TO 17
2760#32
            WRITE(8, 105) AMAT, ERRAVE, DELVAR, DELAVE, VMAT, VMTAVE, VAR
           MISMAT=MISMAT+1
2770
2780
           IF(VMTAVE.I.T. VCHNGE *VMTAVX) GO TO 22
           WRITF(8, 106)
2790
2800
           IF(MISMAT.LT.NOMISX) NOMISS=1
2810
           MISMAT=0
28 20
           L(X)P=0
2830
           IG()=2
         GO TO 55
2840
2850#100
            FORMAT(4HØROW, 12, 16H IS ZERO IN EMAT)
2849#191
            FORMAT(7HOCOLUMN, 12, 16H IS ZERO IN EMAT)
2879#192
            FORMAT (8HB
                         ERRB, 28X 23HERROR MATRIX AFTER LOOP, 14, 29X4HVMAT.
2880
          16X6HDELVAR, 7X14HVARIABLES$$$$$)
2890#103
            FORMAT(1H0.F8.4.8X6F10.4.10XF10.4.F11.4.4XF11.4.6H$$$$$$)
            FORMAT( 1H0, F8.4,32X 14HAVERAGE VALUES,31X,2F11.4,6H$$$$$$)
2966#104
            FORMAT( 12H0---- AMAT, 7F16.6, 6H$$$$$$, 12H -----DELVAR, 7F16.6, 6H$$$$$$$.
2910#105
          1/.
2920
          2/, 12H ---- VMAT, 7F16.6, 6H$$$$$$, 3/, 12H ---- VAR, 6F16.6, 6H$$$$$$)
2930
2940
          FORMAT( 1H0,50x22HCHANGE TOO SMAIL $$$$$$)
2950#106
2969
```

4.2 MAIN COMPRESSOR SUBROUTINE DERIVATIVES

A listing of the main compressor subroutine (COCOMP) is given in Table 6. A flowpath showing the inputs and outputs required on the derivative path is shown in Figure 4. As can be seen from the figure, the inputs to the subroutine (COCOMP) are obtained from four different sources. These sources are:

- 1) Calculations from the upstream components. These calculations determine the derivatives of the thermodynamic properties, i.e., dP21, dT21, dH21, and dS21.
- 2) Inputs from the control logic (subroutine ENGBAL). This logic will increment the independent deck variables.
- 3) Derivatives calculated from the compressor map. The derivatives of all the dependent map variables (PRC, WACC, ETAC) with respect to the independent variables (ZC, CNC).
- 4) Values of thermodynamic properties and derivative values returned from the thermo-subroutines.

All of these input values could be returned either through expanded argument lists or through labeled common. The outputs from the subroutine include the derivatives of the outlet thermodynamic properties as well as the flow derivatives (including parasitic flow derivatives).

The procedures for differentiating the subroutine will now be given. The source equation to be differentiated will be given first; the differentiaton will then follow together with a FORTRAN statement of the derivative formula. A listing of the subroutine (COCOMP) with analytic derivatives is given in Table 7.

Note that in the equivalent FORTRAN statements an X prefix has been used to indicate a log derivative (i.e., XT = dT/T), a trailing U to indicate a differential (i.e., HU=dH), and an imbeded U to indicate a derivative (i.e., $PRCUZC = \partial PR/\partial ZC$).

1) THETA = SQRT (T21/518.668)

Equation

 $\frac{\text{dTHETA}}{\text{THETA}} = \frac{1}{2} \frac{\text{dT21}}{\text{T21}}$

Derivative

THETAU = 0.5 * THETA * XT21

FORTRAN Statement

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

Table 6. Listing of Subroutine COCOMP (Main Compressor).

1	000	SUBROUTINE COCOMP
	010	COMMON / AIL/
	1020 1	WORD .IDFS .JDFS .KDFS .MODF .INIT .IDIMP .IAMTP .
	030 2	PIGASMX, IDBURN, IAFTBN, IDCD , IMCD , IDSHOC, IMSHOC, NOZFLT,
	040 3	BITRYS , LOOPER, NOMAP , NUMMAP, MAPEDG, TOLALL, FRR(6)
	1050	COMMON /DESIGN/
	969 1	PCNFGU, PCNCGU, T4GU , DUMD, DELFG , DELFN , DELSFC,
1		PZFDS PCNFDS PRFDS FTAFDS WAFDS PRFCF FTAFCF WAFCF
1	280 3	BZCDS ,PCNCDS, PRCDS , ETACDS, WACDS ,PRCCF ,FTACCF, WACCF .
		T4DS .WFRDS .DTCODS.FTARDS.WA3CDS.DPCODS.DTCOCF.FTARCF.
	100 5	TFHPDS.CNHPDS.ETHPDS.TFHPCF.CNHPCF.ETHPCF.THPCF.T2DS
	1110 4	STFLPDS.CNLPDS.FTLPDS.TFLPCF.CNLPCF.FTLPCF.DHLPCF.T21DS
	1120	7T 24DS .WFDDS .DTDUDS.ETADDS.WA 23DS.DPDUDS.DTDUCF.ETADCF.
		BT7DS , WFADS , DTAFDS, ETAADS, WG6CDS, DPAFDS, DTAFCF, ETAACF,
		A55 ,A25 ,A6 ,A7 ,A8 ,A9 ,A28 ,A29 .
		APS55 .AM55 .CVDNOZ.CVMNOZ.ABSAV .A9SAV .A28SAV.A29SAV
	1150	COMMON / FRONT/
		T1 .P1 .H1 .S1 .T2 .P2 .H2 .S2 .
		PT21 .P21 .H21 .S21 .T3 .P3 .H3 .S3 .
		3T4 .P4 .H4 .S4 .T5 .P5 .H5 .S5
		FIDS PDS PRO SSS BLF BLC BLDU BLOB
		SCNF .PRF .ETAF .WAFC .WAF .WA3 .WG4 .FAR4 .
		SCNC .PRC .ETAC .WACC .WAC .ETAB .DPCOM ,DUMF .
		CONHP .FTATHP.DHTCHP.DHTC .BLHP .WG5 .FAR5 .CS .
		SCNLP ,ETATLP, DHTCLP, DHTF ,BLLP ,WG55 ,FAR55 ,HPEXT .
		PAM ALTP FTAR ZE PCNF ZC PCNC WFB
	1260 A 1270	TFFHP .TFFLP ,PCBLF ,PCBLC ,PCBLDU,PCBLOB,PCBLHP,PCBLLP
		COMMON / COMP/CNX(15), PRX(15,15), WACX(15,15), ETAX(15,15), NCN, NPT(15)
	290	DIMENSION WLH(2)
	300	DATA AWORD WILH/6HCOCOMP,6H (LO) .6H (HI) /
	1310	WORD=AWORD
	320	THETA=SORT(T21/518,668)
	1330	CNC=PCNC/(100.*THETA)
	340	IF(ZC.LT.0.) ZC=0.
	350	IF(ZC.GT.1.) ZC=1.
	1360	CNCS=CNC
	1370	CALL SEARCH(ZC, CNC, PRC, WACC, ETAC,
		ICNX(1),NCN,PRX(1,1),WACX(1,1),ETAX(1,1),NPT(1),15,15,1G()
	1390	IF (MODE.EO.1) GO TO 1
-	400	IF ((CNC-CNCS).GT.0.0005*CNC) MAPEDG=1
	4.10#1	IF(IGO. EQ. 1.0R. IGO. EQ. 2) WRITE(8, 1000) CNCS, WIR (IGO)
	1470#1000	FORMAT(19H0* * # CNC OFF MAP.F10.4, 2X A6, 11H* # #\$\$\$\$\$\$)
	430	WAC=WACC*P21/THETA
	440	IF(IDES.NF. I) GO TO 2
	1450	PRCCF=(PRCDS-1.)/(PRC-1.)
	1469 1470	ETACCF-ETACDS/ETAC
	1480	WACCF-WACDS/WAC
	1490#100	WRITE(6, 100) PRCCF, ETACCF, WACCF, T2 IDS FORMAT(18H0COMPRESSOR DESIGN, 6X8H PRCCF=, E15, 8, 8H ETACCF=, E15, 8,
		FORMAT(18H0COMPRESSOR DESIGN.6X8H PRCCF=,E15.8,8H ETACCF=,E15.8,18H WACCF=,E15.8,8H T24DS=,E15.8)
	510#2	PRC=PRCCF*(PRC-1.)+1.
	15 20	ETAC=ETACCFAETAC
	530	WAC=NACCF+NAC
	540	CALL THCOMP(PRC, ETAC, T21, H21, 521, P21, T3, H3, S3, P3)
	550	IF(PCBLC.GT.0.) BLC=PCBLC+MAC
	560	WA3=WAC-BLC

Table 6. Listing of Subroutine COCOMP (Main Compressor) (Concluded).

	36	
	MRTTER BUTGOT PROCES PROCES TO IDS	6821
		622
	V 1.161 86, 10.11 88, 980503865818, gloss 1113	1945
1 49 A 1 7 A	RETURN END	
1670#3 1680#4	PCNC=100.*THETA*CNC CATL COCOMB	
1669	CALL ERROR	
1640#200 1650		
1420 1430	IF(ABS(CNC-CNCS).LE.0.001*CNCS) G() T() 4 WRITE(8,2000)CNCS,CNC	
1610	IF(MODE.NE.1) GO TO 3	
1590	BILP=PCBILP*BLC BILP=PCBILP*BLC	
1580	BLOB=PCBLOB*BLC	
1570	BIDU=PCBIDU*BLC	
	the state of the s	

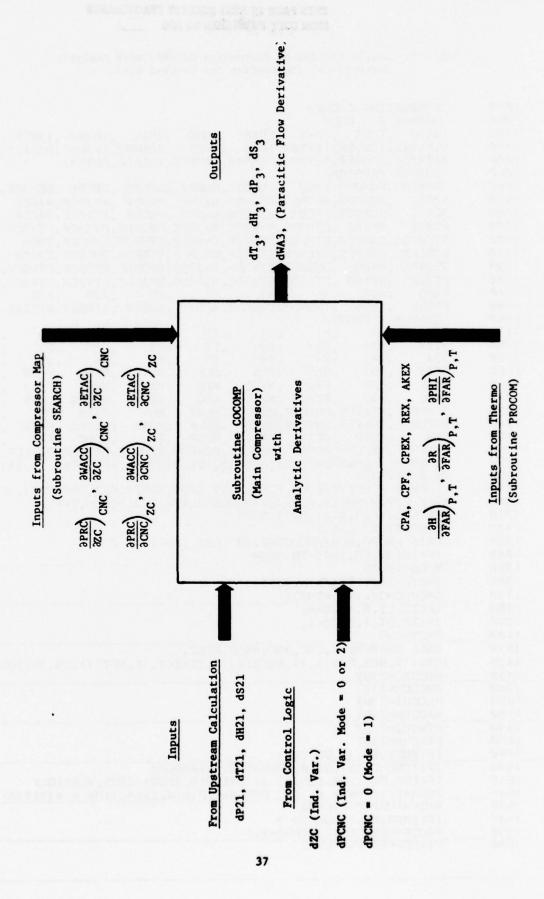


Figure 4. Flowpath for Main Compressor with Analytic Derivatives (SMOTE).

THIS PAGE IS BEST QUALITY PRACTICABLE

Table 7. Sample Listing of Subroutine COCOMP (with Analytic Derivatives) (Subroutine Not Checked Out).

```
1000
                SUBROUTINE COCOMP
   1010
                COMMON /
                              ALL/
               IWORD .IDES .JDES .KDES .MODE .INIT .IDUMP .IAMTP .
2IGASMX.IDBURN.IAFTBN.IDCD .IMCD .IDSHOC.IMSHOC.NOZFLT.
    1020
    1030
               SITRYS .LOOPER. NOMAP . NUMMAP, MAPEDG, TOLAIL, ERR(6)
    1840
    1050
                COMMON /DFSIGN/
               IPCNFGU.PCNCGU.T4GU .DUMD1 .DUMD2 .DELFG .DELFN .DELSFC.
2ZFDS .PCNFDS.PRFDS .FTAFDS.WAFDS .PRFCF .FTAFCF.WAFCF .
3ZCDS .PCNCDS.PRCDS .ETACDS.WACDS .PRCCF .FTACCF.WACCF .
    1760
    1070
    1080
    1790
                        .WFRDS .DTCODS, FTABDS, WA3CDS.DPCODS, DTCOCF, FTABCF.
               4T4DS
    1100
               5TFHPDS, CNHPDS, ETHPDS, TFHPCF, CNHPCF, ETHPCF, DHHPCF, T2DS
    1110
               6TFLPDS, CNLPDS, FTLPDS, TFLPCF, CNLPCF, ETLPCF, DHLPCF, T21DS
    1120
               TT24DS .WFDDS .DTDUDS.ETADDS.WA 23DS.DPDUDS.DTDUCF.ETADCF.
    1130
               8T7DS
                        , WFADS , DTAFDS, ETAADS, WG6CDS, DPAFDS, DTAFCF, ETAACF.
                                . 46
                                .A6 .A7 .AB .A9 .A28 .A29 .CVDNOZ, CVMNOZ, A8SAV .A9SAV .A28SAV .A29SAV
    1140
                        .A25
               9A55
                        , AM55
    1150
               APS55
    1150
                COMMON / FRONT/
                        .PI
                                 .HI
                                         .51
    1170
               ITI
                                                  .T2
                                                           P2
                                                                    ,H2
                                                                             ,52
                        .P21
                                                           .P3
                                         .521
    1180
               2T21
                                 .H21
                                                  .T3
                                                                    .H3
                                                                             ,53
                        .P4
                                         . S4
. S55
                                                           .P5
    1190
               3T4
                                 .H4
                                                 , T5
                                                                   .H5
                                                                             . 55
                        .P55
                                 .H55
                                                  . BLF
                                                           .BLC
               4T55
    1200
                                                                    , BLDU , BLOB
                        .PRF
                                 .FTAF
                                         . WAFC
                                                  . WAF
                                                                    . WG4
                                                                             .FAR4
                                                           .WA3
    1210
               5CNF
                        .PRC .ETAC .WACC
                        .PRC
                                                  . WAC
                                                          . ETAB
    1220
                                                                    . DPCOM . DUMF
               6CNC
    1230
               7CNHP
                                                  . BLHP
                                                           . WG5
                                                                             .CS
                                                                    .FAR5
    1240
                                                  . BLLP
               8CNLP
                        ,ETATLP, DHTCLP, DHTF
                                                                    FAR55 , HPEXT
                                                           , WG55
               9AM ALTP FTAR ZF PCNF ZC PCNC WFB
ATFFHP TFFLP PCBLF PCBLC PCBLDU PCBLOB PCBLHP PCBLLP
    1250
    1260
    1270
                COMMON / COMP/CNX(15), PRX(15,15), WACX(15,15), ETAX(15,15),
    1280
               INCN. NPT(15)
    1290
                COMMON /DERI VX/Z IUX, Z 2UX, Z IUY, Z 2UY, Z 2UZ I, CPA, CPF, CPEX, AK EX.
    1300
               &REX, HUFAR, RUFAR, PUFAR, ZFU, PCNFU, XT4, ZCU, PCNCU, TFFHPU,
               &TFFLPU, XP2 1, XT2 1, H2 1U, S2 1U
    1310
    1320
                DIMENSION WLH(2)
    1330
                DATA AWORD, WLH/6HCOCOMP, 6H (LO), 6H (HI) /
    1340
                IF(IDERV.EQ. 1)GO TO 3000
    1350
                WORD = A WORD
    1360
                THETA=SQRT(T21/5 18.668)
                CNC=PCNC/(199. *THETA)
    1370
                IF(ZC.LT.Ø.) ZC=Ø.
    1380
    1390
                IF(ZC.GT.1.) ZC=1.
    1400
                CNCS=CNC
    1410
                CALL SEARCH( ZC, CNC, PRC, WACC, ETAC,
    14 20
               ICNX(1), NCN, PRX(1,1), WACX(1,1), ETAX(1,1), NPT(1), 15, 15, IGO)
  1430
                PRCUZC=Z JUX
PRCUCN=Z JUY
    1440
    1450
                WACCUZ=Z2UX
 1460
                WACCUN=Z2UY
    1470
                FTACUZ=Z3UX
                FTACUN=Z3UY
    1480
    1490
                IF (MODE LEO. 1) GO TO 1
   1500
                IF ((CNC-CNCS).GT.0.0005*CNC) MAPEDG=1
    1510
                IF(IGO.EQ. 1.OR. IGO.EQ. 2) WRITE(8, 1000) CNCS, WLH(IGO)
___ 1520
                FORMAT(19HO# # # WAC=WACCAP21/THETA
                                      CNC ()FF MAP. F10.4. 2XA6. 11H+ + +$$$$$$)
    1530
                IF(IDES.NF.1) GO TO 2
PRCCF=(PRCDS-1.)/(PRC-1.)
    1540
    1550
    1560
                FTACCF=FTACDS/ETAC
```

38

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

Table 7. Sample Listing of Subroutine COCOMP (with Analytic Derivatives) (Subroutine Not Checked Out) (Concluded).

5/WAC
7) PRCCF, ETACCF, WACCF, T21DS
COMPRESSOR DESIGN, 6x8H PRCCF=, F15.8,8H FTACCF=,
NACCF=,F15.8,8H T21DS=,F15.8)
(PRC-1.)+1
F*FTAC
NAC
P(PRC,ETAC,T21,H21,S21,P21,T3,H3,S3,P3)
T.O.) BLC=PCBLC#WAC
U*BLC
B*BLC
P*RLC
PABLC
.1) GO TO 3
-CNCS).LE.0.001 *CNCS) O() T() 4
aa) CNCS, CNC
OCNC WAS= .E15.8.11H AND NOW= .F15.8.
PCNC INPUTSSSSSS)
THETA *CNC
0.471
PATH
ATURTA AVTO 1
*THETA*XT21 (PCNCU/PCNC-0.5*XT21)
*(PRCUZC*ZCU+PRCUCN*CNCU)
CF*(WTACUZ*ZCU+ETACUN*CNCU)
F*(WACCUZ*ZCU+WACCUN*CNCU)
/WACC+XP21-THETAU/THETA
ANGE AP 21 - INEIAUX INEIA
T.Ø)BLCU=PCBLC+WACU
ATIVE
BLCU
FLOW DERIVATIVES
DU*BLCU
ØR*BLCU
HP ABLCU
LP*BLCU
S OF EXIT THERMODYNAMIC PROPERTIES
RCU/PRC
AKFX3-1.0)/AKEX3*PRCU/(PRC-EXP(1.0/AKEX3*
)-ETACU/ETAC
3*XT3
T3-REX3*XP3
B

Equation

$$\frac{\text{dCNC}}{\text{CNC}} = \frac{\text{dPCNC}}{\text{PCNC}} - \frac{\text{dTHETA}}{\text{THETA}}$$

$$\frac{\text{dCNC}}{\text{CNC}} = \frac{\text{dPCNC}}{\text{PCNC}} - \frac{1}{2} \frac{\text{dT21}}{\text{T21}}$$

Derivative

$$CNCU = CNC * (PCNCU/PCNC - 0.5 * XT21)$$

FORTRAN Statement

3) The following compressor map derivatives are returned from SEARCH

4) The total differentials are then obtained as follows:

$$dPRC = \frac{3PRC}{3ZC}\Big|_{CNC} dZC + \frac{3PRC}{3CNC}\Big|_{ZC} dCNC$$

The efficiency and flow differentials are obtained in a similar manner.

5) WAC = WACC*P21/THETA

$$\frac{\text{dWAC}}{\text{WAC}} = \frac{\text{dWACC}}{\text{WACC}} + \frac{\text{dP21}}{\text{P21}} - \frac{\text{dTHETA}}{\text{THETA}} = \frac{\text{dWACC}}{\text{WACC}} + \frac{\text{dP21}}{\text{P21}} - 0.5 \frac{\text{dT21}}{\text{T21}}$$

$$WACU = WAC*(WACU/WACC + XP21 - 0.5*XT21)$$

6) The correction (or scale) factors must now be applied to pressure ratio, efficiency, and flow.

7) The parasitic flow derivatives are obtained as follows:

$$dBLC = 0$$

$$(BLCU = 0)$$

8) The derivatives of the compressor exit thermodynamic properties can be obtained in the following manner.

$$\frac{dP3}{P3} = \frac{dP21}{P21} + \frac{dPRC}{PRC}$$

$$T3 = T21 \left(\frac{\frac{\gamma-1}{\gamma}}{\eta_c} \right)$$

$$\frac{dT3}{T3} = \frac{dT21}{T21} + \frac{\frac{\gamma-1}{\gamma}}{\frac{\gamma}{PR-PR}\frac{1}{\gamma}} - \frac{dh_c}{Rc}$$

$$XT3 = XT21 + \frac{(AKE3-1)/AKEX3 * PRCU}{PRC-EXP(1.0/AKEX3 * ALOG(PRC))} - \frac{ETACU}{ETAC}$$

dH3 = Cp dT3

H3U = CPEX3 * T3 * XT3

 $dS3 = Cp \frac{dT3}{T3} - \frac{RdP3}{P3}$

S3U = CPEX3 * XT3 - REX3 * XP3

4.3 MAIN COMBUSTOR SUBROUTINE

A listing of the main combustor subroutine (COCOMP) is given in Table 8. A flowpath showing the inputs and outputs required on the derivative path is shown in Figure 5. As was the case with the main compressor inputs are obtained from four different sources. Note that the combustor inputs from upstream are the outputs from the main compressor subroutine. A listing of the subroutine (COCOMP) with analytic derivatives is given in Table 9.

The procedure for differentiating the subroutine will now be summarized. As was the case with the compressor the source equation will be given first followed by the derivative formula and its FORTRAN equivalent:

1.
$$P3PSI = 14.696 * P3$$

(Source Equation)

dP3PSI = 14.696 * dP3

(Derivative)

P3PSIU = 14.696 * XP3 * P3

(Equivalent FORTRAN Equation)

2. WA3C = WAC * SQRT (T3)/P3PSI

$$\frac{\text{dWA3C}}{\text{WA3CC}} = \frac{\text{dWAC}}{\text{WAC}} + \frac{1}{2} \frac{\text{dT3}}{\text{T3}} - \frac{\text{dP3PSI}}{\text{P3PSI}}$$

WA3CU = WA3CC * (WA3U/WA3 + 0.5* XT3 - XP3)

3. DPCOM = DPCODS * (WA3C/WA3CD)

dDPCOM = DPCODS/WA3CDS * dWA3C

DPCOMU = DPCODS/WA3CDS * WA3CU

4. IF(DPCOM .GT. 1) DPCOM = 1

IF(DPCOM .EQ. 1) DPCOMU = 0.0

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

Table 8. Listing of Subroutine COCOMB (Main Combustor).

1	aaa	SUBROUTI NE COCOMB
	1010	COMMON / ALL/
	020	IWORD .IDES .JDES .KDES .MODE .INIT .IDUMP .IAMTP .
	030	2IGASMX, IDBURN, IAFTBN, IDCD IMCD IDSHOC, IMSHOC, NOZFLT
	340	3ITRYS , I OOPER, NOMAP , NUMMAP, MAPEDG, TOLAIL, FRR(6)
	950	COMMON /DESIGN/
	1969	
	970	
	080	2ZFDS PCNFDS PRFDS ETAFDS WAFDS PRFCF FTAFCF WAFCF
		3ZCDS ,PCNCDS,PRCDS ,ETACDS,WACDS ,PRCF ,FTACCF,WACCF
	090	4T4DS .WFBDS .DTCODS, ETABDS, WA3CDS, DPCODS, CTCOCF, ETABCF.
	100	STEHPDS, CNHPDS, ETHPDS, TEHPCE, CNHPCE, ETHPCE, DHHPCE, T2DS
	1110	6TFLPDS, CNLPDS, FTLPDS, TFLPCF, CNLPCF, ETLPCF, THIPCF, T21DS
	1120	7T24DS .WEDDS .DTDUDS .ETADDS .WA23DS .DPDUDS .DTDUCF .ETADCF .
	1130	8T7DS ,WFADS ,DTAFDS, ETAADS, WG6CDS, DPAFDS, DTAFCF, ETAACF,
	1140	9A55 ,A25 ,A6 ,A7 ,A8 ,A9 ,A28 ,A29 .
	1150	APS55 ,AM55 ,CVDNOZ,CVMNOZ,ABSAV ,A9SAV ,A28SAV,A29SAV
	1160	COMMON / FRONT/
	1170	1T1 .P1 .H1 .S1 .T2 .P2 .H2 .S2 .
	1180	2T21 ,P21 ,H21 ,S21 ,T3 ,P3 ,H3 ,S3 .
	1190	3T4 ,P4 ,H4 ,S4 ,T5 ,P5 ,H5 ,S5
	1200	4T55 ,P55 ,H55 ,S55 ,BLF ,BLC ,BLDU ,BLOB ,
	1210	5CNF ,PRF ,ETAF ,WAFC ,WAF ,WA3 ,WG4 ,FAR4
	220	6CNC .PRC .ETAC .WACC .WAC .ETAB .DPCOM .DUMF .
	1230	7CNHP ,ETATHP,DHTCHP,DHTC ,BLHP ,WG5 ,FAR5 ,CS
	1240	SCNLP .FTATLP.DHTCLP.DHTF .BLLP .WG55 .FAR55 .HPEXT .
	1250	9AM ,ALTP ,ETAR ,ZF ,PCNF ,ZC ,PCNC ,WFB .
	1260	ATFFHP .TFFLP .PCBLF .PCBLC .PCBLDU.PCBLOB, PCBLHP, PCB1LP
1	270	COMMON / COMB/PSI(15).DELT(15.15).ETA(15.15).NPS.NPT(15)
1	280	DIMENSION Q(9), DUMBO(15,15)
-	290	DATA AWORD/6HCOCOMB/
	1300	WORD=AWORD
	1319	Q(2) =A.
	1320	Q(3) = 0.
	1330	P3PS I=14.696*P3
	1340	_ WA3C=WA3*SQRT(T3)/P3PSI
	1350	IF(IDES.EQ.1) WA3CDS=WA3C
	1360	DPCOM=DPCODS*(WA3C/WA3CDS)
	1370	IF(DPCOM.GT.1.) DPCOM=1.
	1380	P4=P3*(1DPCOM)
	1390#1	IF(T4.GT.3999.) T4=3999.
	1400	IF(T4.GF.1000.) GO TO 2
	1410	T4=1000.
	1420	IF(MODE.EO.1) MAPEDG=1
	1430#2	DTC0=T4-T3
	1440	IF(IDES.NE.I) GO TO 3
	1450	DTCOCF=DTCODS/DTCO
	1460#3	DTCO=DTCOCF *DTCO
	1470	P3PSIN=P3PSI
	1480	CALL SEARCH(-1P3PSIN.DTCO.ETAB.DUMMY.
	1490	1PSI(1), NPS, DELT(1, 1), ETA(1, 1), DUMBO(1, 1), NPT(1), 15, 15, 150)
	1500	IF(IGO. FQ. 7) CALL ERROR
	15 10#4	IF(IDES.NE.1) GO TO 5
	1520	FTABCF=ETABDS/FTAB
	15 30#5	ETAB-ETABCF ÆTAB
	1540	HV=((((4.44594317F-19*T4)2034116E-15)*T4+'.2783643F-11)*T4
	1550	1+.2951501E-07)+T42453116E-03)+T49433296E-01)+T4+.1845537E+05
	1560	CALL THERMO(P4.HA.T4.XXI.XX2.0.0.0.0)
		49

43

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

Table 8.	Listing of Subroutine COCOMB (Main Combustor) (Concluded).
1570	FAR4=(HA-H3)/(HV*ETAB)
1580	IF(FAR4.LT.0.) FAR4=0.
1590	WFBX=FAR4*WA3
1400	IFCMODE.NF.2) GO TO 8
1610	FRRW=(WFB-WFBX)/WFB
1420	DIR=SORT(WFB/WFBX)
1630	CALL AFQUIR(Q(1), T4, ERRW, 0., 20., 0.0001, DIR, T4T, IG()
1640	GO TO (6,9,7),IGO T4=T4T
1660	GO TO 1
1470#7	CALL FRROR
1680#8	WFB=WFBX
1690#9	CALL THERM()(P4,H4,T4,S4,XX2,1,FAR4,Ø)
1700	WG4= WFB+ WA 3
1710	IF(IDES. EO. 1) WRITE(6, 100) WA3CDS, FTABCF, DTCOCF
1720#100	FORMAT(17HØCOMBUSTOR DESIGN.7X8H WA3CDS=,F15.8,8H FTABCF=,E15.8,18H DTCOCF=,E15.8)
1740	CALL COMPTB
1750	RETURN
1760	END
	and growing the contract of th
	a poste control of the second
	A DECEMBER OF THE RESIDENCE OF THE PROPERTY OF
	The second of th
	THE PARTY OF THE P
	The same with the same and the

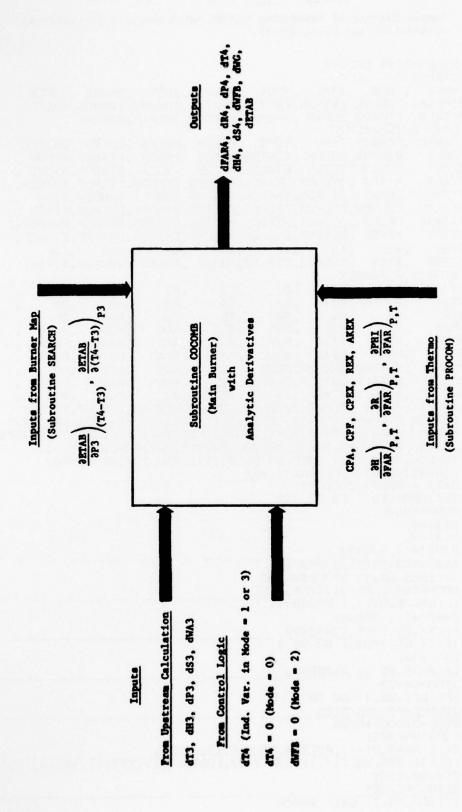


Figure 5. Flowpath for Main Combustor with Analytical Derivatives.

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DD.C

Table 9. Sample Listing of Subroutine COCOMB (with Analytic Derivatives) (Subroutine Not Checked Out).

1000	SUBROUTINE COCOMB
1010	COMMON / ALL/
1070	IWORD .IDES .JDES .KDES .MODE .INIT .IDUMP .IAMTP .
1030	2IGASMX, IDBURN, IAFTBN, IDCD , IMCD , IDSHOC, IMSHOC, NOZFLT.
1949	SITRYS . I. (X) PER. NOMAP . NUMMAP. MAPEDG. TOLALL. ERR(6)
1250	COMMON /DESIGN/
1660	IPCNFGU, PCNCGU, T4GU . DUMD1 . DUMD2 . DELFG . DELFN . DELSFC.
1079	2ZFDS .PCNFDS.PRFDS .FTAFDS.WAFDS .PRFCF .FTAFCF.WAFCF .
1080	37CDS .PCNCDS.PRCDS .ETACDS.WACDS .PRCCF .FTACCF.WACCF .
1700	4T4DS ,WFBDS ,DTCOPS, FTABDS, WA3CDS,DPCODS, CTCOCF, ETABCF.
1100	5TFHPDS, CNHPDS, ETHPDS, TFHPCF, CNHPCF, ETHPCF, DHHPCF, T2DS
1110	ATFI.PDS.CNI.PDS.ETLPDS.TFLPCF.CNLPCF.ETLPCF.DHI.PCF.T21DS .
1120	7T 24D S .WFDDS .DTDUDS.ETADDS.WA 23DS.DPDUDS.DTDUCF.ETADCF.
1130	8T7DS ,WFADS ,DTAFDS,ETAADS,WG6CDS,DPAFDS,DTAFCF,ETAACF.
1140	9.455 .4.25 .4.6 .4.7 .4.8 .4.9 .4.28 .4.29 .
1150	APS55 ,AM55 ,CVDNOZ,CVMNOZ, ABSAV ,A9SAV ,A28SAV,A29SAV
1169	COMMON / FRONT/
1170	ITI .PI .HI .SI .T2 .P2 .H2 .S2 .
1180	2T21 .P21 .H21 .S21 .T3 .P3 .H3 .S3 .
1190	3T4 .P4 .H4 .S4T5 .P5 .H5 S5
1200	4T55 ,P55 ,H55 ,S55 ,BLF ,BLC ,BI.DU ,BLOB ,
1210	5CNF .PRF .ETAF .WAFC .WAF .WA3 .WG4 .FAR4 .
1220	6CNC , PRC , ETAC , WACC , WAC , ETAB , DPCOM , DUMF ,
1530	7CNHP .ETATHP.DHTCHP.DHTC .BLHP .WG5 .FAR5 .CS .
1240	BCNLP .ETATLP.DHTCLP.DHTF .BLI.P .WG55 .FAR55 .HPEXT .
1250	9AM ,ALTP ,FTAR ,ZF ,PCNF ,ZC ,PCNC ,WFB ,
1260	ATFFHP .TFFLP .PCBLF .PCBLC .PCBLDU.PCBLOB.PCBLHP.PCBLLP
1270	COMMON / COMB/PSI(15), DELT(15, 15), ETA(15, 15), NPS, NPT(15)
1280	COMMON /DFRIVX/ZIUX, ZZUX, ZIUY, ZZUY, ZZUZI, CPA, CPF, CPEX, AKEX,
1290	&REX, HUFAR, RUFAR, PUFAR, ZFU, PCNFU, XT4, ZCU, PCNCU, TFFHPU, &TFFLPU, XP21, XT21, H21U, S21U, XP3, XT3, H3U, S3U, WA3II, WFBU
1310	DIMENSION Q(9), DUMBO(15, 15)
1320	DATA AWORD/AHCOCOMB/
1330	IF(IDERV.EQ.1)GO TO 150
1340	WORD=AWORD
1350	$Q(2) = \emptyset$
1360	0(3)=0.
1370	P3PS I=14.696*P3
1380	WA3C=WA3*SORT(T3)/P3PSI
1390	IF(IDES.EO.1) WA3CDS=WA3C
1400	DPCOM=DPCODS+(WA3C/WA3CDS)
1410	IF(DPCOM-GT.1.) DPCOM=1.
1420	P4=P3*(1DPCOM)
1430	1 IF(T4.GT.3999.)T4=3999.
1440	IF(T4.GE.1000.) GO TO 2
1450	T4=1000.
1460	IF (MODE. EO. 1) MAPEDG= [
1470	
1480	IF(IDES.NE.1) GO TO 3
1490	DTCOCF=DTCODS/DTCO
1500	
1510	P3PSIN=P3PSI
1530	CALL SEARCH(-1.,P3PSIN.DTCO.ETAB.DUMMY. IPSI(1).NPS.DELT(1,1).ETA(1,1).DUMBO(1,1).NPT(1).15.15.1GO)
1540	FTABUP=Z2UY
1550	ETABUD=Z2UZ1
1540	IF(IGO.FQ.7) CALL FREOR

Table 9. Sample Listing of Subroutine COCOMB (with Analytic Derivatives) (Subroutine Not Checked Out) (Continued).

```
1570 4
            IF(IDFS:NF.1)GO TO 5
           ETABCF=ETABDS/ETAB
 1580
 1590 5
           FTAB=ETABCF*ETAB
 1600
           HV4 = (((((-.4594317E-19*T4)-.2034116E-15)*T4+.2783643E-11)*T4
 1510
           1+.2051501E-U7)*T4-.2453116E-03)*T4-.9433296E-01)*T4+.1845537F+05
 1620
           CALL THERMO(P4. HA.T4. XX1. XX2.0.0.0.0)
 1630
           HA4=HA
 1540
           FAR4=(HA-H3)/(HV*ETAB)
 1450
            IF(FAR4.LT.P.) FAR4=0.
 1660
           WFBX=FAR4 *WA3
           IF(MODE.NF.2) GO TO 8
 1670
 1680
           ERRW=(WFB-WFBX)/WFB
 1690
           DIR=SQRT(WFB/WFBX)
 1700
           CALL AFQUIR(Q(1),T4,ERRW,0.,20.,0.0001,DIR,T4T,IG())
           GO TO (6,9,7), IGO
 1710
 1720 6
           T4=T4T
 1730
           GO TO 1
 1740 7
           CALL ERROR
 1750 8
           WFB=WFBX
           CALL THERM()(P4, H4, T4, S4, XX2, 1, FAR4, 0)
 1760 9
 1770
            WG4=WFB+WA3
 1780
           HUFAR4=HUFAR
 1790
            RUFAR4=RUFAR
 1800
            PUFAR4=PUFAR
 1810
            REX4=REX
           CPEX 4=CPEX
 1820
 1830
           CPA4=CPA
            IF(IDES.EQ.1) WRITE(6,100) WA3CDS, ETABCF, DTCOCF
 1840
 1850 100 FORMAT (17HOCOMBUSTOR DESIGN, 7X8H NA3CDS=, F15.8.8H FTABCF=, ____
 1860
           1E15.8,8H DTCOCF=,E15.8)
 1870
           GO TO 200
            DERIVATIVE PATH
 1880C
 1890 150
            P3PSIU=14.696*XP3*P3
 1900
            WA 3CU= WA 3C*( WA 3U/WA3+0.5*XT3-XP3)
 1910
            DPCOMU=DPCOM*DPCOM*WA3CU/WA3C
 1920
            IFIDPCOM.EQ. 1) DPCOMUSO.0
 19390
            EXIT PRESSURE DERIVATIVE
            XP4=XP3-DPC()MU/(1.0-DPC()M)
 1940
 1950
            IF(T4.EQ.3999.) XT4=0.0
 1960
            IF(T4.EQ.1000.)XT4=0.0
 1970
            DTC()U=DTC()CF+(T4+XT4-T3+XT3)
 1980C
            EFFICIENCY DERIVATIVE
            ETABU=ETABCF *(ETABUP *P3PSIU+ETABUD*DTC()U)
 1990
 2000C
            FUEL HEATIN VALUE DERIVATIVE
            HVUT4=(((((-0.2756590E-18) +T4-0.4017058E-14)+T4
 2010
 2929
           &+0.1113457E-11) *T4+0:6154503E-07) *T4-0.4906232E-03) *T4
           8-9.9433296E-01
 2030
 2040C
            FUEL TO AIR RATIO DERIVATIVE
 2050
            FAR4U=FAR4*((CPA4/(HA4-H3)-HVUT4/HV4)&T4*XT4-
2060
           &H3U/(HA4-H3)-ETAB)U/ETAB
            IF(FAR4.FO. 0) FAR4U=0.0
 2070
 2080
            IF (MODE.NE.2)GO TO 170
 2090
            FAR4U=-FAR4+WA3U/WA3
            XT4=T4±(H3U/(HA4-H3)+ETABU/ETAB)/(CPA4/(HA4-H3)-HVUT4/HV4)
 21 00
 2110 170
            CONTINUE
            WFBU=FAR4+WA3U+WA3+FAR4U
WG4U=WFBU+JA3U
 2129
 2130
```

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

Table 9. Sample Listing of Subroutine COCOMB (with Analytic Derivatives) (Subroutine Not Checked Out) (Concluded).

2140C 2150 2160 2170 2180 200 2190 2200	DERIVATIVE OF THE EXIT THERMODYNAMIC PROPERTIES H4U=CPEX4*T4*XT4+HUFAR4*FAR4U S4U=CPEX*XT4/(1.0+FAR4)-REX4*XP4+(PUFAR4-RUFAR4* &ALOG(P4))*FAR4U CALL COHPTB RETURN FND
	48

5.
$$P4 = P3 * (1 - DPCOM)$$

$$\frac{dP4}{P4} = \frac{dP3}{P3} - \frac{dDPCOM}{1 - DPCOM}$$

XP4 = XP3 - DPCOMU/(1 - DPCOM)

IF(T4 .EQ. 3999.) XT4 = 0.0

T4 = 1000.

IF(T4 .EQ. 1000.) XT4 = 0

8. DTCO =
$$(T4 - T3) * DTCOCF$$

dDTCO = (dT4 - dT3) * DTCOCF

DTCOU = DTCOCF * (T4 * XT4 - T3 * XT3)

The following combustor map derivatives are returned from subroutine 9.

SEARCH

ETABUP = aETAB/aP3PSIN) DTCO

ETABUD = QETAB/QDTCO) P3PSIN

$$dETAB = \frac{\partial ETAB}{\partial P3PSIN}) dP3PSIN + \frac{\partial ETAB}{\partial DTCO}) dDTCO$$

ETABU = ETABUP * P3PSIU + ETABUD * DTCOU

10. ETAB = ETABCF * ETAB

ETABU = ETABCF * ETABU

11. HV4 = -0.4594317E-19 * T46 - 0.2034116E-15 * T45+0.2783643E-11 * T4⁴ + 0.2051501E-07 * T4³
-0.2453116E-03 * T4² - 0.9433296E-01 * T4

+0.1845537E+05

$$HVUT4 = (((((-0.2756590E-18) * T4 - 0.1017058E-14) * T4 + 0.1113457E-11) * T4 + 0.6154503E-07) * T4 - 0.4906232E-03) * T4 - -0.9433296E-01$$

12. FAR4 = (HA - H3)/(HV4 * ETAB)

$$\frac{dFAR4}{FAR4} = \frac{d(HA4-H3)}{HA4-H3} - \frac{d(HV4 * ETAB)}{HV4 * ETAB}$$

$$\frac{dFAR4}{FAR4} = \frac{dHA4}{HA4-H3} - \frac{dH3}{HA4-H3} - \frac{HV4 * dETAB}{HV4 * ETAB} - \frac{ETAB * dHV4}{HV4 * ETAB}$$

$$\frac{dFAR4}{FAR4} = \frac{CPA4}{(HA4-H3)} - \frac{dH3}{(HA4-H3)} - \frac{dETAB}{ETAB} - \frac{dHV4}{dT4} \frac{dT4}{HV4}$$

$$FAR4U = FAR4 * (CPA4/(HA4-H3) - HVUT4/HV4) * T4 * XT4$$

-H3U/(HA4 - H3) - ETABU/ETAB

IF(FAR4 . EQ. 0) FAR4U = 0

13. IF(MODE .NE. 2) GO TO 170

FAR4 = WFB/WA3 (Constant WFB)

$$\frac{\text{dFAR4}}{\text{FAR4}} = -\frac{\text{dWA3}}{\text{WA3}} \left[= \frac{\text{CPA4} \text{ dT4}}{\text{(HA4-H3)}} - \frac{\text{dH3}}{\text{(HA4-H3)}} - \frac{\text{dETAB}}{\text{ETAB}} - \frac{\text{dHV4}}{\text{dT4}} \right]$$

FAR4U = - FAR4 * WA3U/WA3

$$dT4 = \left(\frac{dH3}{(HA4-H3)} + \frac{dETAB}{ETAB} - \frac{dWA3}{WA3}\right) / \left(\frac{CPA4}{(HA4-H3)} - \frac{dHV4}{dT4} + \frac{1}{HV4}\right)$$

XT4 = T4*(H3U/(HA4-H3)+ETABU/ETAB-WA3U/WA3)/(CPA4/(HA4-H3)-HVUT4/HV4)

14. 170 CONTINUE

WFB = WFBX = FAR4 * WA3

dWFB = FAR4 * dWA3 + WA3 * dFAR4

WFBU = FAR4 * WA3U + WA3 * FAR4U

- 16. The derivatives of the tnermodynamic properties of the exit are obtained as follows:
 - a) Enthalpy Derivative

$$H = (Ha + fHf)/(1 + f)$$

$$\frac{\partial H}{\partial f}\Big|_{P=T} = \frac{Hf - H}{1 + f} = HUFAR$$

$$dH = \frac{\partial H}{\partial T}\Big|_{P,f} dT + \frac{\partial H}{\partial P}\Big|_{T,f} dp + \frac{\partial H}{\partial f}\Big|_{P,T} df$$

$$\frac{dH}{dT} = \frac{1}{1+f} \frac{dHa}{dT} + \frac{f}{1+f} \frac{dHf}{dT} + e^{Hf-H} \frac{df}{dT}$$

$$\frac{dH}{dT} = \frac{CPA}{1+f} + \frac{f}{1+f} CPf + \frac{Hf-H}{1+f} \frac{df}{dT}$$

$$\frac{dH}{dT} = \frac{CPA + f*CPf}{1+f} + \frac{Hf-H}{1+f} \frac{df}{dT}$$

$$dH = CpdT + \left(\frac{Hf-H}{1+f}\right) df$$

where HUFAR and CPEX4 are returned from the thermo subroutine PROCOM.

b) Gas Constant Derivative

The above equations define the molecular weight and gas constant and appear in subroutine PROCOM.

$$\frac{\partial REX}{\partial f}$$
_{P,T} = $\frac{0.946186*REX}{AMW}$

$$RUFAR4 = \frac{\partial REX}{\partial f} \Big|_{P,T}$$

where RUFAR4 is returned from thermo subroutine PROCOM

c) Entropy Derivative

$$s = \phi - R * ALOG(P) = S(P,T,f)$$

where
$$\phi = \frac{\phi a + f \phi f}{1 + f} = \phi(T, f)$$

$$\frac{\partial \phi}{\partial f}$$
_T = $\frac{\phi f - \phi}{1 + f}$ = PUFAR

$$d\phi = \frac{\partial \phi}{\partial T} \Big|_{f} dT + \frac{\partial \phi}{\partial f} \Big|_{T} df$$

$$d\phi = \frac{d\phi_a + f d\phi f}{1 + f} + \frac{\partial \phi}{\partial f} df$$

But $d\phi = cpdT/T$ (by definition)

$$d\phi = \frac{Cpa + fCpf}{1+f} \frac{dT}{T} + \frac{\partial\phi}{\partial f} df$$

$$d\phi = \frac{Cp}{1+f} \frac{dT}{T} + \frac{\partial \phi}{\partial f} df$$

$$dS = d\phi - \frac{Rdp}{p} - ALOG(P) \frac{\partial R}{\partial f} df$$

$$dS = \frac{Cp}{1+f} \frac{dT}{T} + \frac{\partial \phi}{\partial f} \int_{T} df - \frac{Rdp}{P} - \frac{\partial R}{\partial f} ALOG(P) df$$

where PUFAR4 is calculated in the thermo subroutine PROCOM

5.0 COST ADVANTAGES OF THE ANALYTICAL DERIVATIVE METHOD

5.1 SELECTION OF FLIGHT ENVELOPE AND MATRIX OF TEST POINTS

The engine data matrix used in the current Analytical Derivative program is shown in Figure 6. The data matrix is a modification of a similar matrix found to be useful in a typical military customer deck. It contains a total of 411 operating points. The figure shows the flight envelope with the matrix of data superimposed. Each of the locations indicted by a circle consists of seven points while those identified by a triangle consist of five points. All of the designated locations were run at the following power levels:

- (1) Maximum Afterburner Power
- (2) Roughly 50 Percent Afterburner Fuel Flow
- (3) Intermediate (Max Dry) Power
- (4) Idle

In addition, the locations indicated by triangles were run at one part power level roughly equally-spaced between Idle and Intermediate (maximum dry) power. At the locations designated by circles, three Intermediate part power levels were run so as to divide the range between Idle and Intermediate power into four approximately equally spaced intervals.

All points were run at standard day conditions, and the ram recovery was in accordance with MIL Spec 5008B.

5.2 COST COMPARISON FOR INTERNAL DECKS

Computation cost comparisons were made between runs using analytical derivatives and runs using a reference deck which had not been modified for analytical derivatives. Valid comparisons could not be made using the same deck, even though numerical derivative capability was retained in the modified deck, since the computation and storage of partial derivatives in the low-level subroutines extended the time for computing base passes significantly. The comparisons were made using the 411-point matrix of flight conditions, with both the primary (Engine 1) and alternate (Engine 2) engine models.

Processor time was measured over an interval that included all the actual engine cycle calculations, but not the program initialization or input-output processing. The analytical derivative model required 62 percent less time than the numerical derivative model using Engine 1, and

	No. of Power Settings	
Symbol	Aug	Dry
0	2	5
Δ	2	3

Note: Aug - Max and 50% A/B

Dry - Intermediate, Idle,
and Part Power

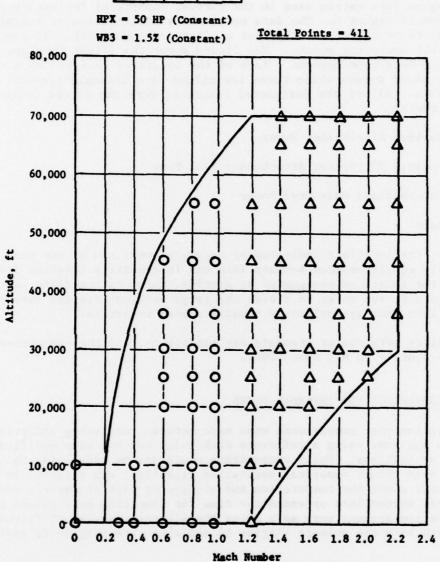


Figure 6. Engine Data Matrix.

61 percent less time using the Engine 2. Processor time is not a complete measure of the relative total cost of running the models, as the analytical derivative model requires 25% more computer memory.

The majority of the time gain (54%) was directly attributable to the inclusion of the analytic derivatives. About 8% was due to the rewriting and inclusion of a new and faster version of the subroutine COFFEX. This was a relatively new subroutine, and the coding had not been optimized. The remaining subroutines were not new and the coding had already been optimized.

A total cost comparison was made between the two models, each run from loader output files without any subroutine recompilation, and using Engine 2. The total cost of the run using the analytical derivative deck was 44% lower than the run using the numerical derivative deck (38% due to analytic derivatives and 6% due to the new subroutine COFFEX. The total cost includes not only the processor time and memory residence charges associated with performing the actual cycle calculations, but also the model initialization, input processing, and output formatting and conversion charges. The output processing cost alone has been measured to be 30% of the total cost of running the analytical derivative deck.

It is estimated that the first method (i.e., the complete set of analytic derivatives) if completely implemented internally would result in an (AEG Evendale) computations cost savings of about \$100,000 annually. However, the many second order effects which are included in production cycle decks result in nonstandard logic in the higher level subroutines. For this reason, about \$10,000 per deck is estimated for inclusion of the complete derivative set. In addition, continued modification of component logic would require continual updating of derivatives and a cost gain would be hard to realize.

The second method (low level derivative) would result in a cost savings of approximately \$75,000/year. Moreover, it would require only about \$500 in total cost per deck to implement the method. Method 2 is the one of choice for all but the most heavily used parametric customer decks.

5.3 COST COMPARISON FOR EXTERNAL (CUSTOMER) DECKS

A total cost comparison between the base deck and the deck with full analytical derivatives included was made at Wright Patterson Air Force Base on a CDC 6600/CYBER-74 computer. Both Engine 1 and Engine 2 were compared. Engine 1 showed a 51.6% savings in cost while Engine 2 showed a 52.2% savings. If these numbers are taken as fairly typical, a cost savings of about 52% should result from the inclusion of the method in an external customer deck. The difference in cost savings between the external and internal decks can be attributed to the greater number of output parameters printed out with internal decks.

As described in the previous section, the majority of this gain (i.e., approximately 45%) is due to analytic derivatives. The remaining 6% is due to the inclusion of the new faster version of the subroutine COFFEX.

6.0 ASSESSMENT OF THE CENERALITY AND UTILITY OF THE APPROACH

The analytic derivative method can be applied to any cycle deck which uses numerical derivatives. Based upon the experience at AEG, the best approach is to differentiate that portion of the deck for which the coding remains constant; for example, the subroutines used to evaluate thermodynamic properties are usually good candidates since their structure is fairly constant and they are called frequently. This approach should result in the greatest savings per unit cost.

For the Air Force Deck (SMOTE) the deck coding appears to be relatively constant (based upon a comparison of the current coding and that given in Reference 3). This is due largely to the neglect of second order effects such as tip clearances, etc. Since this deck represents the principal engine simulation model used by the Air Force, the entire deck should be differentiated.

It is difficult to estimate cost savings, since different computer installations use different cost algorithms. However, it is possible to estimate processor time gains. An approximate formula for estimating processor time gain which can be obtained from analytic derivatives was derived during this program. If no other information is available, processor time gains can be used as a rough estimate of cost gain. The derivation of this formula together with several examples of its use is given below.

In order to estimate the balanced point time gain due to the inclusion of analytical derivatives in a gas turbine engine cycle deck, the following information is required:

- 1. The number of base points per cycle balance point.
- 2. The number of derivative points per cycle balance point.
- 3. Ratio of the time required to execute an analytical derivavtive pass to the time required for a base point.

Items 1 and 2 can be obtained from the iteration history of the deck averaged over a typical flight envelope. The third item may be estimated based upon past experience. For example, for the parametric VCE deck, the ratio is known to be about one-tenth (0.1).

The estimating formula is obtained as follows:

Let NBP = number of base points

TBP = processor time required to execute one base point

NDP = number of derivative points per cycle balance point

TDP = processor time required to execute one analytic derivative point

- Assume 1. The time required to execute a base point is 10% greater after analytic derivative logic is included (due largely to curve and thermo derivatives which must be evaluated on base points).
 - 2. The time required to execute a base point is the same as the time required for one numerical derivative pass.

Then,

Time for Balanced Pt. with Analytic Derivatives
Time Required with Numerical Derivatives

$$= \frac{NBP * TBP * 1.1 + NDP * TDP}{NBP * TBP + NDP * TBP}$$

After simplification,

Time Ratio =
$$\frac{1.1 + \left(\frac{\text{TDP}}{\text{TBP}}\right) + \left(\frac{\text{NDP}}{\text{NBP}}\right)}{1 + \left(\frac{\text{NDP}}{\text{NBP}}\right)}$$

The maximum possible time savings can be obtained by assuming that the time for an analytical derivative pass is zero, and that the time to run the base point is unchanged by the inclusion of the analytical derivative code (i.e., the 10% increase in base point run time does not exist). With these two restrictions, the above equation reduced to:

Maximum Time Ratio =
$$\frac{1}{1 + \left(\frac{NDP}{NBP}\right)}$$

These relationships have been plotted in Figure 7. The percent reduction in run time in the present deck is about 62% over the 411 point flight matrix. The ratio of derivative passes to base points averages about 2.3. The approximately relationship shown in Figure 7 would predict a reduction of about 60% which is within two percentage points of the actual value. The maximum time gain possible would be 70%. Therefore, about 90% (62%/70%) of the possible time reduction has been obtained with the present deck setup. For engines and/or flight envelopes having a greater ratio of derivatives passes to base points, considerably greater time gains can be achieved with analytic derivatives.

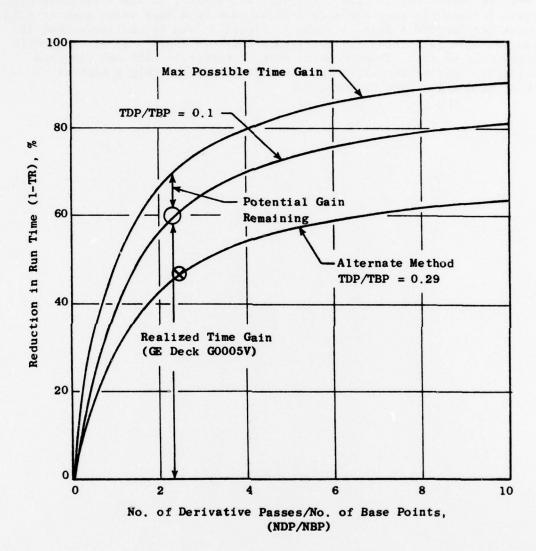


Figure 7. Estimated Reduction in Run Time Due to Analytic Derivatives.

For iteration algorithms which evaluate derivatives after every base point, the ratio of derivative passes to base point passes is equal to the number of independent variables. For the VCE computer program file, the number of independent variables is 9. Had derivatives been taken after every point, the reduction in time would have been 80% or about five to one.

For the second method (low level derivative set), it was determined that the ratio between the time for a derivative pass to a base point pass is 0.29. The curve for TDP/TBP = 0.29 is shown on Figure 7; and it indicates that if derivatives were calculated for every base point (NDP/NBP = 9) the theoretical gain would be 63%. These results compare favorably with the complete analytical derivative technique and the method requires only a minimal amount of time and effort to implement.

7.0 CONCLUSIONS

It can be concluded that in any engine simulation model using numerical derivatives to obtain balanced cycle points, a considerable savings in both computer time and cost can be obtained by the inclusion of analytic derivatives. The greatest return per dollar of cost results when only that portion of the model for which the coding remains relatively constant is differentiated. For the Air Force engine simulation model (SMOTE), the entire deck should be differentiated since coding changes do not appear to occur frequently.

The cost savings obtained during this study were 44% of a deck run internally and 52% of the same deck run externally (the difference is due to the use of a larger set of output parameters on the internal deck).

REFERENCES

- 1. Powell, H.N.; Shafter, A.; Suciu, S.N.; "Properties of Combustion Gases, System C_n H $_{2n}$ -Air, Volume 1. Thermodynamic Properties; Volume 2. Chemical Composition of Equilibrium Mixtures," Published by McGraw Hill.
- McKinney, John S., "Simulation of Turbofan Engine. Part I. Description of Method and Balancing Technique," Report No. AFAPL-TR-67-125, Pt. 1, Air Force Systems Command, November 1967. (Available from DDC as AD-825197.)
- 3. McKinney, John S., "Simulation of Turbofan Engine, Part II. User's Manual and Computer Program Listing," Report No. AFAPL-TR-67-125, Pt. 2, Air Force Systems Command, November 1967. (Available from DDC as AD-825198.)