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NOMENCLATURE

area
particle diameter

blowing parameter

driving force

bluntness parameter

Chapman-Rubesin parameter (= pu/peue)
skin friction coefficient

drag coefficient

roughness elements drag coefficient
heat and mass transfer Stanton numbers
sub-layer Stanton number

specific heat

molar concentration

atoms/molecule

multicomponent diffusion coefficient
reference binary diffusion coefficient
binary diffusion coefficient

thermal diffusion coefficient

Mach number parameter (= ueZ/ZHe)
Eckert number

force/mole; diffusion factor

force/1b; dimensionless stream function

sensible enthalpy; characteristic roughness height

total enthalpy; shape factor
heats of reaction, dissociation

mass diffusive flux




Ep—

e

Re

molar diffusive flux

mass fraction

equilibrium constant

thermal conductivity; kinetic energy of turbulence
Boltzmann constant

equivalent sandgrain roughness
thermal diffusion ratio

Lewis number (= Pr/Sc)

mean free path

mixing length

molecular weight

mass of molecule

mass transfer rate

absolute mass flux

absolute molar flux

number fraction

number density

pressure

heat flux

Prandtl number (= Cpu/k)

gas constant/1b

gas constant/mole

nose radius

shock radius

body radius; recovery factor; stoichiometric ratio
mass species generation rate

Reynolds number

source term




streamwise coordinate; entropy

' Sc Schmidt number (= v/D,,)

; T temperature

E _ U oncoming air speed

: é u,v streamwise and transverse velocities
' § v absolute velocity

1 v* friction velocity ( = fﬂ;ﬁﬁ

: é v diffusion velocity

: X mole fraction; streamwise coordinate
; y normal coordinate

F Z altitude

3 ] 7z compressibility; z-fraction; axial coordinate

; Greek Symbols

o thermal diffusion factor; mass fraction of an element in a species
é B pressure gradient parameter; Clauser equilibrium parameter
‘
é Y adiabatic exponent
% A shock stand-off distance
3 8 boundary layer thickness
g oF displacement thickness
é € intermolecular force law parameter; eddy diffusivity
: & similarity variable; static density ratio across shock
n similarity variable
3 ) normalized temperature; momentum thickness; body angle
] K von Karman constant
A mixing length model parameter
& M viscosity
HysHasHg multicomponent mixture properties
.

vii
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D €& B

kinematic viscosity

similarity variable

parameter in Cole's ''law of the wake"

density

collision diameter

stress

mixture rule parameter

intermolecular force potential; normalized mass fraction
stream function

collision integral

exponent in viscosity-enthalpy power law relationship; normalized

stream function

Subscripts

a

bl

ablation

boundary layer

char or surface material

drag

edge of boundary layer

edge gas composition at wall temperature
equilibrium

effective

skin friction

pyrolysis gas

heat transfer

incompressible, chemical species i
chemical species j

element k

modified Newtonian

A i 0 G o0




Lo Bvw

mixture

reservoir condition; stagnation point
reference state

shock

turbulent, transferred state

adjacent to an interface in condensed phase
adjacent to an interface in gas phase
location along surface

zero mass transfer limit

upstream of shock; ambient

Superscripts and Overscores

~

elemental

fluctuating component
standard state
average; normalized

conduction




CHAPTER 1

INTRODUCTION

Commencing in the 1950's the analysis of thermal protection systems

for re-entry vehicles has been an important activity of aerospace engineers.

Various types of re-entry vehicles have been of concern, including, for

example, ICBM nose cones, the Apollo command module, and probes into

atmospheres of other planets. Such analysis must include consideration ;

of the trajectory, the inviscid flow field, radiative heat transfer, ;

convective heat and mass transfer, surface chemistry, and heat shield %
i
{

thermal response. Each of these aspects of the problem has received

e

considerable attention, and has a vast technical literature. The
objective of this report is to review the basic theory of just one

aspect, namely convective heat and mass transfer, with particular emphasis

on re-entry into the earth’s atmosphere of ballistic missiles.

It has been the author's experience that the practicing aerospace
engineer engaged in the analysis of re-entry vehicle thermal systems has
usually a good training in fluid mechanics and heat transfer, but is
lacking in formal training in mass transfer. Furthermore, whereas
numerous appropriate and excellent texts on fluid mechanics and heat
transfer are available, no appropriate text on mass transfer exists.
Correspondingly the development in this report assumes that the reader
has an advanced training in fluid mechanics, and to a lesser extent in
heat transfer, but requires little prior exposure to the principles of
mass transfer.

Perhaps the most notable omission in this report is any mention of the
phenomenon of boundary layer transition, despite the fact that knowledge

of the location of transition is usually of critical importance to the




successful calculation of convective heat and mass transfer to a re-entry

vehicle. The author did n': consider himself qualified to wri'e a useful

account of this aspect of the subject.
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CHAPTER 2

INVISCID FLOW FIELD

2.1 INTRODUCTION

Prediction of the inviscid flow field is essential to the determination
of the aerodynamic and thermal response of a re-entry vehicle during flight.
In order to determine convective heat and mass transfer rates to the re-entry
vehicle heat shield, the edge of the boundary layer properties must be
specified, i.e., velocity, pressure, enthalpy and mass species concentra-
tions. Usually the two independent thermodynamic properties, required to
determine the edge gas thermodynamic state, are taken to be pressure and
entropy. For this purpose we require from the inviscid field a description
of (i) the pressure distribution around the vehicle, and (ii) the shape

of the bow shock, since curvature of the shock causes an entropy gradient

{
along the boundary layer edge. 1
f
Many methods and correlations are available for the determination g
of the inviscid flow field around a re-entry vehicle. These methods vary
in their degree of sophistication and range from exact solutions of the
Navier-Stokes equations, to simple engineering correlations. In practice
the choice of one method over another depends on accuracy requirements
as well as computer time and storage limitations. In this Chapter the
intent is to present only some simple engineering correlations for the
rapid calculation of boundary layer edge gas conditions for conventional

re-entry applications; these can be utilized in later Chapters in

numerical examples of the calculation of convective heat and mass transfer

to re-entry vehicles.

2.2 THE EARTH'S ATMOSPHERE




Altitude Temperature Pressure Density Accel. due Mean free Molecular
Ratio+ to gravity path weight
(ft) (°F) (atm) (p/p)  (ft/sec?) (ft)
0 59.000 1.00000+0 1.0000+0 32.174 2,1761-7 28.964
500 57.217 9.82063-1 9.8545-1 32.173 2,2082-7 28.964
1000 55.434 9164389-1 9.7107-1 32.171 2.2410-7 28.964
1500 53.651 9.46974-1 9.5684-1 32.169 2,2743-7 28.964
2000 51.868 9.29815-1 9.4278-1 32.168 2.3082-7 28.964
2500 50.086 9.12910-1 9.2887-1 32.166 2.3427-7 28.964
3000 48.303 8.96255-1 9.1513-1 32.165 2,3779-7 28.964
3500 46.521 8.79848-1 9.0154-1 32.163 2.4138-7 28.964
4000 44,738 8.63686-1 8.8811-1 32.162 2.4503-7 28.964
4500 42.956 8.47766-1 8.7483-1 32.160 2.4875-7 28.964
5000 41.173 8.32085-1 8.6170-1 32.159 2.5254-7 28.964
6000 37.609 8.01430-1 8.3590-1 32.156 2.6033-7 28.964
7000 34.045 7.71698-1 8.1070-1 32.152 2.6842-7 28.964
8000 30.482 7.42868-1 7.8609-1 32.149 2.7683-7 28.964
9000 26.918 7.14920-1 7.6206-1 32.146 2.8556-7 28.964
10000 23.355 6.87832-1 7.3859-1 32.143 2,9463-7 28.964
15000 5.546 5.64587-1 6.2946-1 32.128 3.4571-7 28.964
20000 -12.255 4.,59912-1 5.3316-1 32.112 4.0816-7 28.964
25000 -30.047 3.71577-1 4.4859-1 32.097 4.8510-7 28.964
30000 -47.831 2.97544-1 3.7473-1 32.082 5.8072-7 28.964
35000 -65.606 2.35962-1 3.1058-1 32.066 7.0067-7 28.964
40000 -69.700 1.85769-1 2.4708-1 32.051 8.8074-7 28.964
45000 -69.700 1.46227-1 1.9449-1 32.036 1.-189-6 28.964
50000 -69.700 1.15116-1 1.5311-1 32.020 1.4213-6 28.964
60000 -69.700 7.13664-2 9.4919-2 31.990 2.2926-6 28.964
70000 -67.424 4.42898-2 5.8565-2 31.959 3.7157-6 28.964
80000 -61.977 2.76491-2 3.6060-2 31.929 6.0347-6 28.964
90000 -56.535 1.73793-2 2.2360-2 31.898 9,.7321-6 28.964
100000 -51.098 1.09971-2 1.3960-2 31.868 1.5588-5 28.964
137000 - 0.295 2.24146-3 2.5308-3 31.755 8.5986-5 28.964
150000 19.403 1.34291-3 1.4539-3 31.716 1.4967-4 28.964
197000 0.559 2.20348-4 2.4833-4 31.575 8.7630-4 28.964
200000 - 2.671 1.95371-4 2.2174-4 31.566 9.8140-4 28.964
250000 -107.84 2.0074-5 2.959-5 31.42 7.353-3 28.964
278000 -134.50 4.,2751-6 6.819-6 31.33 3.191-2 28.964
300000 -126.77 1.2489-6 1.946-6 31.27 1.118-1 28.96
350000 -24.53 1.1210-7 1.327-7 31.12 1.629+0 28.69
360000 0.70 7.5133-8 8.350-8 31.09 2.572+0 28.57
400000 233.94 2,1071-8 1.522-8 30.97 1.381+1 27.97
450000 734.10 8.3036-9 3.399-9 30.83 6.032+1 27.29
500000 1203.81 4.6117-9 1.333-9 30.68 1.513+2 26.86
U o, = 0.076474 1b/£t°
Table 2.1. 1962 U.S. Standard Atmosphere




Given a planned trajectory the re-entry vehicle speed U_ and altitude

Z are known as a function of time; corresponding to the altitude Z, the
air temperature T, pressure P_ and density p_ are required for flow field
calculations. Although these atmosphere properties are continuously
varying, mainly due to solar influence, a single standard atmosphere can
be used for re-entry application since (i) during significant re-entry
heating the stagnation enthalpy is far larger than the ambient static
enthalpy, and (ii) uncertainties in parameters such as density correspond
to altitude intervals which are negligibly small compared to the altitude

range over which re-entry heating occurs.

In current engineering use is the U.S. Standard Atmosphere of 1962 [1],

an abstract of which is given in Table 2.1.

2.3 PRESSURE DISTRIBUTION

Stagnation pressure

For Mach numbers less than unity the isentropic formula applies,

y-1
. y-1,2.1=
Po = Path =+ = M) Y (2.3-1a)
or for y = 1.4,
2. L
Po =P (1 + M_/S5)2 (2.3-1b)
To good approximation the Mach number M_ is given by i
qn(ft/s) :
M (2.3-2) i

e 49.1/T_(C°R)
For M > 1 the Figure on the next page may be used: this graph is based
on calculations of a normal shock for equilibrium air and is valid for
T < 530 R.

Pressure distributions

Detailed data for the pressure distributions around sphere-cone
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geometries can be found in References [2, 3, 4]: the ratio of local static
to stagnation point pressure, and the local pressure coefficient =

(P - %)/%mei can be found as a function of the normalized surface co-
ordinate s/RN, for a range of Mach number M from 3 to infinity, and cone
half-angles from 0 to 40 degrees. Ellett [3] tabulated and plotted the
results given in [2] after converting the data to British engineering
units. Robert, Lewis and Reed [4] reported Mach numbers and Reynolds
numbers around the body in addition to the pressure distribution. These
pressure distributions were obtained by using the method of characteristics |
in the supersonic region, and direct or inverse methods in the subsonic

region. Detailed descriptions of these methods may be found in (5, 6, 7].
Most of the reported data are for ideal gas and equilibrium air. Also
mostly only a zero angle of attack has been considered.

The pressure distribution in the subsonic region (where most of the .

pressure drop occurs) can be approximated by a modified-Newtonian
distribution as

& = = e
PMN =P + (1-~ Bn) sin” 9 (2.3-3)

where 0 is the body angle (90° at the stagnation point) and the bar
denotes normalization with respect to pressure behind a normal shock wave,
i.e., at the vehicle stagnation point. Eq. (2.3-3) is used extensively for
engineering calculations, and agrees very well with exact solutions for

spheres, prolate ellipsoids and oblate ellipsoids, for 6< 30° [5, 8, 9].

5 oS SO e "

Note that if the body angle becomes constant, Eq. (2.3-3) gives a constant
pressure.

For © <30° the pressure distribution can be calculated using the
Prandtl-Meyer flow assumptions, giving the change in pressure (or Mach
number) corresponding to the change in surface angle. References [9, 10]

show that this approach gives good agreement with exact solutions. On

&
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the conical sections of blunt cones, the pressure distribution can be
obtained using blast wave theory [4, 11]; the pressure coefficient is
correlated in terms of the nose drag coefficient (integrated pressure
coefficient over the nose), nose radius, cone half-angle and axial location.

A useful complete pressure distribution correlation has been developed
by the Aerotherm Corporation [12, 13, 14], and has been extensively used
for a variety of shapes and degrees of bluntness. The nosetip surface is
divided into three regions as shown in the Figure, and a different calcu-
lation procedure is used in each

region. The location of the "

sonic point depends on Mach

Aft shoulder

number M _, the isentropic

exponent behind the shock Y,

and the overall bluntness of
Region I. The location is
always in the vicinity of 6 = 50°: its approximate location can be
obtained using the modified Newtonian distribution with y = 1.4. A more
precise location requires accounting for Mach number and real gas effects
and involves an iterative preocedure [14].

Region I. Love [15] proposed a correlation which was a synthesis of the
modified Newtonian correlation, valid for spheres, and a correlation for

flat faced cylinders. Dahm [14] improved the representation of the

stagnation point velocity gradient, and the subsonic region pressure
distribution on very blunt bodies; also the correlation was extended to

be valid at lower freestream Mach numbers. The final result was

P, - P*
P = ﬁMN w (1 - ﬁFD) A i +( - iNRM—A;) (1 - Si*)(l - ﬁm)cosze

Py = P*
1 s |- S - 2 - MN
+ L pFD -1+ pry (1 - PQ)COS 6+ (1 - PFD) —1—!_)—*) (2.3-4)




where P = P/Po
Po = stagnation pressure
ﬁw = freestream pressure ratio

stagnation point radius of curvature

& £

= max (RN, R*)

R* = distance from sonic point to body axis, measured normal to
the surface at the sonic point

s = surface stream length from stagnation point

6 = angle local tangent makes with body axis

¥ = denotes sonic point

o &

= 2

Pep =1-¢ - -2 (D - ass meTe

Region II. Here the modified Newtonian distribution Eq. (2.4-3) is used.
If the sonic point angle does not agree with the angle predicted by the
modified Newtonian expression an appropriate smoothing must be employed:
an example is given in [14].

Region III. The correlation for aft cone pressures was developed at the

Aerospace Corporation and has the form

2
C 6
3. fn(_zE_R_c_ ,ec) (2.3-5)
G v/
c D
where Gc = cone half angle

z axial distance from the start of the aft cone

R = radius at start of aft cone

(@]
"

drag coefficient of the forebody

- P)/CDp 02

(]
n
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The function fn was determined by polynomial curve fitting of exact | §
numerical solutions for cones of varying bluntness, with cone half angle
as a parameter.
The boundary between Regions II and III is taken to be where the
pressure distributions intersect; iteration is required since CD is a
function of its position. Eq. (2.3-5) is based on hypersonic flow theory
) and is strictly valid only when M_ > 5. For M_ < 4 the calculation
procedure for Region II should be extended into Region III. For 4 <M < §
interpolation between M_ = 4 and M_ = 5 predictions is recommended.

du
e

Stagnation Point Velocity Gradient ds |o

Often we are interested only in the stagnation point velocity gradient,
for which some simple formulae follow. For subsonic flow over a sphere or
cylinder the recommended expressions were developed using the Rayleigh-
Janzen method of expansion in powers of Mach number; for y = 1.4,

du
e

ds

=
8

(1 - 0.252 Mi - 0.0175 M:) sphere (2.3-6a)

N| »

Ry

u_ 4

2-2(1-0.416 M
Ry

n

- 0.164 M:) cylinder (2.3-6b)

oo

For supersonic and hypersonic flow over axi-symmetric bodies generated by

a hyperbola, parabola, prolate ellipse or circle, the stagnation point
velocity gradient can be obtained by combining the Euler equation

applied at the outer edge of the boundary layer with the modified Newtonian
pressure distribution,

I WO WA, T
s e e

o
where ¢ is the density ratio across the normal shock. For very tlunt

du
e

ds

(2.3-7)
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axisymmetric bodies, e.g., oblate ellipsoids etc., and three dimensional

bodies, it is necessary to use experimental data: Boison and Curtiss [33]
have provided some useful data.

A convenient correlation of ¢ to be used in conjunction with Eq. (2.3-7)
valid for altitudes from sea level to 60,000 ft., is

1
z=1+8.8 (M:-1) (2.3-8)

2.4 SHOCK SHAPE

As was the case for the pressure distribution, the shock shape
associated with supersonic and hypersonic flow over re-entry vehicles can
be obtained using exact or approximate methods. The exact methods usually
involve determining the full inviscid flow field by some appropriate
numerical method (16, 17, 18, 19, 20]. Some analytical methods are also
used [21, 22, 23]. A useful approximate method assumes a thin shock layer
[11, 14, 24, 25]. Shock shape correlations may be found in, for example,
[26, 27, 28]. For practical engineering calculations of re-entry vehicle
heat shield response along a trajectory the exact methods are impractical
and correlations must be used.

Wilkinson [28] presents a simple correlation method based on the results
of several workers (29, 30, 8, 31, 32] which describes the bow shock shape
and location ahead of axi-symmetric bodies with various degrees of bluntness.
These correlations apply for M_ > 5, account for real gas properties, and
relate the shock directly to the body shape and the free-stream conditions.
Both the body shape and the shock shape between the stagnation point and

sonic point are assumed to be represented by conic sections of the form

r2 = 2RNz - 822 (2.4-1)
r2 = 2R (z + A) - Be(z + 8)2 (2.4-2)
S S S '
where RN and RS are radii of curvature of the body and shock respectively;
11




B and BS are bluntness parameters for the body and shock respectively;

A is the shock stand-off distance. The relation between A, RS and BS

is given by two universal functions fl and f2 in terms of z, the static

density ratio across the shock:

0.9
éL 1+ llg = £, = 1+ 0.55/(%z - 1) (2.4-3a)
s Ry (1 + /8730)
du
1 A e 0.778
NIRRT | (Y (2.4-3b)
U, T+ 4&/R ds Jo~ ©2 s e e

Wilkinson correlated the data of [32] to obtain an expression for the shock

bluntness parameter in terms of the body bluntness,

BS = %{B + 2,232 -\I(B+2.232)2 ~ 4(2.086B-0.719)] (2.4-4)

The asymptotic shock bluntness
for B » « (flat faced bodies)
is 2.09.

The calculation procedure g v

to determine the bow shock

Body sonic point

location and shape is then as

follows:

1. From Eq. (2.4-1), the body
stagnation radius of curvature,
and the sonic point coordinates, the body bluntness parameter B is obtained
(B = 1 for hemispheres).

2. The shock bluntness parameter BS is obtained from Eq. (2.4-4).

3. Eq. (2.4-3), in conjunction with Eqs. (2.3-5 and 6) determine A and
RS.
4. Eq. (2.4-2) defines the shock shape.

Boundary layer edge gas state

12
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Near the stagnation point an isentropic expansion of the boundary

layer edge gas can be assumed, so that once the pressure distribution is
known the thermodynamic state of the edge gas follows directly. Further

away from the stagnation point the curvature of the bow shock wave gives

rise to an entropy gradient along the boundary layer edge. From a simple mass
balance between the boundary layer flow at any streamwise location and that
of a free-stream shock tube, the entropy of the streamline crossing the
boundary layer edge at that location can be determined. Via an isentropic
expansion along this streamline from the pressure behind the oblique shock

to that at the boundary layer edge, one can determine the edge values he

and u,- Then knowing Pe and Se such quantities as pe, ¥ etc. can be

calculated.
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CHAPTER 3

DIFFUSION PHENOMENA

3.1 INTRODUCTION

The analysis of mass transfer requires an understanding of the movement
of a chemical species through a mixture or solution, and across phase bound-
aries. There are a number of physical mechanisms which cause mass transfer,

the most important being ordinary diffusion and convection. The essential

G e

features of these two mechanisms of mass transfer are well illustrated if
we consider a crystal of potassium permanganate placed in a beaker of :?
stagnant water. As the permanganate dissolves it may be seen to diffuse
through the water. The local concentration of permanganate is indicated by
color, the deepest purple being adjacent to the crystal. The diffusion is
always in the direction of decreasing concentration. This process of

ordinary diffusion occurs whenever there is a concentration gradient in a

liquid solution: it occurs also in solid solutions and gas mixtures.
According to the kinetic theory of gases, gas molecules are in a state of

random motion. If an imaginary plane is placed normal to the concentration

gradient of the species in question, it follows that more molecules of that
species cross from the side with the higher concentrations of that species
than from the other side. Consequently, there is a net transfer of species
across the plane in the direction of decreasing concentration. This transfer
is simply due to the difference in concentrations on each side of the plane:
there may be no movement of the mixture as a whole. If the water in the
beaker is now stirred, the rate of dispersion of the permanganate is greatly

increased. This increase is due to the bulk motion of the water bodily

transporting the permanganate; such transfer due to bulk motion is called

convection.
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Other mechanisms of diffusion result from gradients of temperature or
pressure, and from external force fields. In addition, concentration
gradients cause energy transport due to interdiffusion of species, as well
as by the Dufour effect. Apart from energy transport by interdiffusion,
these phenomena give rise to second order effects in the present context,

and are usually ignored.

3.2 DEFINITIONS OF CONCENTRATION

In a multicomponent mixture the local concentration of a species can

be expressed in a number of ways. The Figure shows an elemental volume

dV surrounding the location under

Molecules of Species |

consideration: the problem is to
describe the composition of the
material within the volume. One
method would be to determine
somehow the number of molecules
of each species present and
divide by dV to obtain the number of molecules per unit volume; hence a

number density can be defined.

Number density of species i = number of molecules of i per unit volume

Ni (3.2-1)
Alternatively, if the total number of molecules of all species per unit volume

is denoted as N, then the number fraction of species i is

n =g (3.2-2)

Equations (3.2-1) and (3.2-2) are microscopic concepts; they are essential
when the kinetic theory of gases is employed to describe transport processes.

It is usually more convenient to treat matter as a continuum; the
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smallest volume considered is sufficiently large so that macroscopic properties
such as pressure and temperature have their usual meaning. Thus macroscopic

definitions are required, first on a mass basis:

Mass concentration of species i = partial density of species i

5 mass/unit volume (3.2-3)
The total mass concentration is the density p = Zpi, where the summation
is over all species in the mixture, i = 1, 2,...n. The mass fraction of

species i is defined as
P.
i
K. = 5 (3.2-4)

Second, on a molar basis:

Molar concentration of species i = number of moles of i per unit volume

p.
i p
i < ﬁ; moles/unit volume (3.2-5)

(g]
|

where Mi is the molecular weight of species i. The total molar concentration
is the molar density c = Zci. Then the mole fraction of species i is

defined as

(¢]

.

i
X, =& (3.2-6)
A number of important relations follow directly from these definitions

and are listed below. The mean molecular weight of the mixture is denoted M

and is given by:

o
= — = M. ™
M = ZXi 5 (3.2-7)
1 Ki
also, " L R (3.2-8)
1

By definition the following summation rules hold true:

ZKi =1 (3.2-9)
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Ix, =1 (3.2-10)

It is often necessary to have the mass fraction of species i expressed
explicitly in terms of mole fractions and molecular weights; this relation

may be derived to be

g oo
i IxM, 32
J3J
The corresponding expression for mole fraction is
o it
Xi T IK./M, (3.2-12)
I ]
Example 3.1

(a) A mixture of noble gases contains equal mole fractions of helium,
argon, and xenon. What is the composition in terms of mass fractions?
(b) If the mixture contains equal mass fractions of He, A, and Xe,
what are the corresponding mole fractions?

MHe =M = 4.003

1
MA = M2 = 39.95 ZMj = 175.3 i
Mxe = M3 = 131.30 Zl/Mj = 0.283
a) X, = X, = X
1 2 3 xiMi Mi
- - 0'
From Eq. (3.2-11) Ki = g = e for equal x;'s
J ] J
K1 = 4.003/175.3 = 0.023
K2 = 39.95/175.3 = 0.228
K3 = 131.3/175.3 = 0.749
b) K. =K, =K
LAl AR K /MM,
- = = 1
From Eq. (3.2-12), X5 ZK./Mj Zl/Mj for equal Ki S.
x; = (1/4.003)/(0.283) = 0.884 1
x2 = (1/39.95)/(0.283) = 0.088

4
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Xy = (1/131.30)/(0.283) = 0.028

3.3 DEFINITIONS OF VELOCITIES AND FLUXES

In a multicomponent system the various species may move at different 1
velocities. Let V; denote the absolute velocity of species i, that is,
the velocity relative to stationary coordinate axes. In this sense the

velocity is not that of an individual molecule of species i, but rather it

is the local average of the species, that is, the sum of the velocities of

molecules of species i within an elemental volume divided by the number of

such molecules. Then the local mass-average velocity, v, is defined as i

Zpiyi Zpiv
‘_’ = Zpi = p = ZKiV' (3.3‘1) 4

The quantity pv is the local mass flux; that is, the rate at which mass
passes through a unit cross-section placed normal to the velocity vector v.
From Eq. (3.3-1), pv = Epiyi; that is, the local mass flux is the sum of

the local species mass fluxes. The velocity v is the velocity which would

be measured by a Pitot tube, and corresponds to the velocity v used when

considering pure fluids. Of particular importance is that velocity v is
the velocity field described by the Navier-Stokes equations and thus orig-
inates in Newton's second law of motion.

The local molar-average velocity, Y*’ is defined in an analogous manner:

o 1
* = = -
v Zci inyi (3.3-2)

The quantity cv* is the local molar flux; that is, the rate at which moles
pass through a unit area placed normal to the velocity v*. In general v* # v;
in particular one of these average velocities may be zero when the other is
not. The question then arises as to how to define a stationary mixture.

The velocity of a particular species relative to the mass or molar-




I
| average velocity is termed a diffusion velocity. We define two such

| velocities:
f ¥ ~ ¥ diffusion velocity of species i relative to v (3.3-3)
= 9,
i -1
v, - v* = diffusion velocity of species i relative to w* (3.3-4)

i We shall see that a species can have a velocity relative to v or v* only

| if diffusion is taking place.

‘ Next we turn to definitions of fluxes. The mass (or molar) flux of
species i is a vector quantity given by the mass (or moles) of species i
that passes per unit time through aunit areanormal to the vector. Such
fluxes may be defined relative to stationary coordinate axes, or to either
% j of the two local average velocities. We define the absolute mass and molar

} fluxes, that is, relative to stationary coordinate axes, as

mass flux n, = Pv, (3.3-5)
-i i-i
molar flux N. = c.v, (3.3-6)
-i i-i
The mass flux relative to the mass average velocity v is
j. = R(v.-v) = PV .3-
&y =YY = g (3.3-7)
The molar flux relative to the mole-average velocity v* is
* = _v* =
91 ci(Yi v¥) (3.3-8)

From a mathematical viewpoint any one of these flux definitions is adequate
for all diffusion situations; however, in a given situation there is usually
one definition which, when employed, leads to minimum algebraic complexity.

The most important such situation is when the convective transport present

requires a solution of the conservation of momentum equation; the solution
yields the mass-average velocity field, and it is then most convenient to

use the mass flux relative to the mass-average velocity, that is, ii'
Conditions of constant pressure and temperature, often encountered by chemical

engineers, have usually led tothe choice of the absolute molar flux Ni to ‘
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take advantage of the constant molar density c which results in such

situations.

The definitions of fluxes lead directly to a number of useful relations

as follows:
B = Zgi = pv (3.3-9)
N= Z§i = cv* (3.3-10)
1 = * = o~
Zli nEgi 0 (3.3-11)
_ -i
LN (3.3-12)
i
n, = piY"ii = Kig s (3.3-13)
N. = c.v* + J.* = x,N + J_* (3.3-14)
-i i- -i i- -i
Example 3.2
A gas mixture at 1 atm pressure and 300°F contains 20% Hz, 40% 02,

and 40% HZO by weight. The absolute velocities of each species are

-10 ft/sec, -2 ft/sec, and 12 ft/sec, respectively, all in the direction
of the z-axis. Calculate v and v* for the mixture. For each species
calculate n., ii’ Ni’ and gi*.

Sy

v = IKv, = (0.2)(-10) + (0.4)(-2) + (0.4)(12) = 2 ft/sec

Ky/M; 0.2/2

. B TR/ XHZ = 0.2/2 + 0.4/32 + 0.4/18

= 0.75

Similarly xo2 = 0.09, XHZO = 0.16.

v¥* = ExiYi = (0.75)(-10) + (0.09)(-2) + (0.16)(12) = 5.7 ft/sec

o= p= P (ExM) = %%%j%%%%%%% (0.75(2) +0.09(32) + 0.16(18))

0.013 1b/ft>

L Rl Wl
ny = (0.2)(1.3x107%) (-10) = -0.026 1b/ft® sec
2
Similarly, n, = -0.0104 lb/ft2 sec; n = 0.0625x10-2 lb/ft2 sec
-0, “H,0
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33 = 03 (V570 = Kyply;-v)

jH 0= (0.2)(0.013)(-10-2) = -.031 lb/ft2 sec
50
Similarly, j, = -.021 1b/ £t sec; iy o = 0052 1b/ £t sec
S g
N. = c.v. = n./M,
-i i-i -i" i
NH = -0.026/2 = -0.013 lb-mole/ft2 sec
2
Similarly, N0 = -3.2x10 5 lb-mole/ft2 sec; NH 0= 3.5x10 3 lb-mole/ft2 sec
=9 K.p 2
* = = — i i -yv*
g el =g

ge = (82 Q-003) (1045.7) = -5.6x.07> Ib-mole/ft” sec

2
Similarly, J§ = 0.60x10™° lb-mole/ft’ sec; J
15 J

* = 5.0)(10.3 lb—mole/ft2 sec
HZO

3.4 FICK'S LAW OF DIFFUSION AS A PHENOMENOLOGICAL RELATION

It is convenient to introduce Fick's law of diffusion as a phenomenological
relation, and defer examination of its physical basis. In 1855 Adolph Fick
proposed a linear relation between the rate of diffusion and the local
concentration gradient. The concept of a linear relation between a flux and
the corresponding driving force had already been introduced by Newton in his
law of viscosity, by Fourier in his law of heat conduction, and by Ohm in
his law of electrical conduction.

We have noted how a chemical species may be transported by convection
and diffusion. Convection is of its nature a bulk motion and thus transports
the mixture as a whole. A given species can be transported relative to this
bulk motion by ordinary diffusion only if concentration gradients exist. Thus
a precise definition of Fick's law must describe diffusion relative to an
average velocity of the mixture. For a binary mixture of species 1 and 2 we
now propose that the law should be written as

i = -e0,9K (3.4-1)

where the measure of concentration has been chosen to be the mass fraction

of species 1 and the diffusive flux is relative to the mass average velocity.
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The constant of proportionality has been separated into a product of local
mixture density and a coefficient 012’ called the binary diffusion coefficient

with dimensions of (length)z/time. The corresponding law written for species

2 is

12 = -pDZIVK2 (3.4-2)
Since VK1 = -VKZ, and from Eqn. (3.3-11) 21 + 12 = 0, it follows immediately
that

012 = 021 (3.4-3)

The equivalent law on a molar basis may be obtained by algebra as follows.

~

By definition, iy =Py s pl(y =¥}
B i B
x,M x,M
" 11 i
e el
x,M
M . M 10
il Pl 2 e LS T
M2 1 1 M2 M2 -1 2-2 |
x, M, + (1-x,)M M
2 11 | A
=Pl M W N - N
2 2
0y eny - Ny - R
o - v*
=0 lv, -9
= j¥*
1
4 M :
® = IR * = »
But J7 = ji/M;, J] TR i (3.4-4)
Kl/Ml A
Also Vx., = V( ) i
1 Kl/Ml + K2/M2 %
2 |
M :
.. T (3.4-5) |
MIMZ 1 |
Substituting the results in Eqn. (3.4-1), with c = %3 gives
* - -
91 = cDIZVxl (3.4-6)
Notice that J7 is the molar flux relative to the molar average velocity.

It is now possible to give a correct interpretation of what we mean by a

stationary medium. If we are working in mass units, we require that the mass
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average velocity be zero; if we are working in molar units, we require that

the molar average velocity be zero. Since a Pitot tube or anemometer measures
the mass average velocity, the interpretation of stationary as zero mass
average velocity is more in accord with our physical intuition.

It cannot be demonstrated in a simple manner that Eq. (3.4-1) is the
most appropriate mathematical statement of Fick's law. There is no single

physical mechanism of ordinary diffusion; in particular there are radical

differences between the mechanisms in gases, liquids, and solids. However
the kinetic theory of gases shows that this expression is appropriate for
gas mixtures at low pressures, while experiment has shown it is valid for
dilute liquid solutions as well.
Substitution of Fick's law into Eqs. (3.3-13) and (3.3-14) written for
a binary system, yields two important relations:
n, =PV - leZVKl = Kl(gl+g2) - pleVKl (3.4-7)

51

CIY* - chZVx1 = xl(Nl+N2) - cDIZVx1 (3.4-8)
We see that the absolute flux of a species can always be conveniently
expressed as the sum of two components, one due to convection, and the other
due to diffusion.

Binary diffusion coefficient of gases at low pressures are composition
independent, increase with temperature, and vary inversely with pressure.

Liquid and solid diffusion coefficients are markedly concentration dependent

and increase exponentially with temperature.

Strictly speaking, Fick's law is valid only in binary systems, however

it is often applied in an approximate manner to multicomponent mixtures. For
example, for water vapor diffusing through air the oxygen and nitrogen are
considered to be a single "air' species: since 02 and N2 molecules are

physically not too different the error incurred is small. Alternatively, !

when a number of species are in small concentration in nearly pure species 1,




than an effective binary diffusion coefficient for species i is simply Dil'

If appreciable error can be tolerated in an engineering calculation involving
a mixture of many species of not too different molecular weights, then we
might simply assume equal diffusion coefficients for all species pairs, at

some average value.

3.5 TRANSPORT IN MULTICOMPONENT GAS MIXTURES

For gas mixtures at low pressures the Chapman-Enskog kinetic theory of
gases yields results which have proven satisfactory over a wide range of
conditions. Not only does this theory rigorously describe multicomponent
diffusion, and provide accurate formulae for the transport properties, that
is, viscosity, thermal conductivity and diffusion coefficients, but also
it exhibits the following additional physical phenomena:

(1) Thermal diffusion or Soret effect which is a movement of species

resulting from a temperature gradient in the mixture.

(ii) Pressure diffusion which is a movement of species resulting from a
pressure gradient.

(iii) Forced diffusion, which results from force fields acting on the
molecules of the mixture.

(iv) The diffusion thermo or Dufour effect (also called diffusional
conduction) which is an energy transport resulting from concentra-
tion gradients in the mixture.

The most suitable reference work from which the results of the Chapman-
Enskog theory may be obtained is the treatise authored by J. 0. Hirschfelder,
C. F. Curtiss and R. B. Bird entitled '""Molecular Theory of Gases and Liquids"
[1], and hereafter referred to as H.C.B. In particular we first require the
diffusion and energy flux vectors, but before presenting these it is of
importance to discuss some aspects of the physical model so as to indicate

possible restrictions on the validity of the results.
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1.) The density of the mixture must be low enough for three body collisions
to occur with negligible frequency.

2.) The model assumes monatomic molecules but little error is introduced
by applying the results to polyatomic gases. The momentum flux and diffusion
flux are not appreciably affected by the internal degrees of freedom. The
heat flux vector on the other hand contains both the translational energy
and the energy of the internal degrees of freedom; the so called '"Eucken
correction'" will be introduced to take this into account.

3.) The flux vectors are general in the sense that they do not explicitly
contain the force law which is assumed to characterize the molecular inter-
action. The various transport coefficients do however depend on the par-
ticular force law.

4.) The solution of the Boltzman Equation involves an expansion in terms
of Sonine polynomials. Chapman and Cowling [2] in their solution used an
infinite series of these polynomials with the result that the transport
coefficients are expressed in terms of ratios of infinite determinants.
However to obtain numerical values it is necessary to consider only a few
elements of the determinants since convergence is rapid as additional rows
and columns are included. For viscosity, thermal conductivity and ordinary
diffusion one term gives a good approximation. For ordinary diffusion
however, one term does not describe the dependence of the coefficient on

concentration, two terms show a slight dependence. Thermal diffusion and

the diffusion thermo-effect only appear when the second term is included,
indicating that they are usually second order effects.

5.) The expressions for the flux vectors contain only the first spatial
derivatives of temperature, pressure, concentration, and so on. Thus the
results are inapplicable when gradients change abruptly, for example,

within a shock wave.
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The Diffusion Flux Vector

H.C.B. Eqn. (8.1-1) gives the mass flux vector relative to the mass

average velocity for the i'th species in a mixture of n components as:
~

j. = N.m.v.
=i ii-i

N2 B T
=2 ¢ m.mD,.d, - D,VAnT 13.5-1)
¥ oy A FAFEH

where gj includes the gradients of the number fraction Nj/N, pressure P and

also the external forces X, acting on the molecules,

k
N. N. N.m, N.m. o n
d; = Vg + 7 - —%—lavznp - -%qfl [~ X - I NX] (3.5-2)

M7 k=1

The mass of a molecule of species i is m, while X, is the external force per

k

molecule: thus Kk = mkfk where fk is the force per unit mass. For a gravitational
force field the force per unit mass is constant: substitution in the last
term of Eqn. (3.5-2) gives

N.m, n

d3J . =~ 0 i ‘
Po [pfj )3 pkfk] 0 if £, is a constant.

However a gravitational field does produce a pressure gradient and thus
indirectly yields a contribution to the diffusion flux as pressure diffusion.
The Dij are multicomponent diffusion coefficients. Except in binary

mixtures, for which D., =D ._, D.. #D.., and D.. = 0. The D,. are concen-
12 12" ij ji ii ij

tration dependent. The Dij satisfy the following summation rule:
? [M;M D, -MMD. ]=0 (3.5-3)
H.C.B. relates the Dij to the binary diffusion coefficients Dij; as mentioned

above, for a binary mixture, D_, = 012’ while for a ternary mixture,

12
-

N G- D13 - Dp2)
i 3%

1+
12 12 N1023 + N5013 + N3012

] (3.5-4)
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with similar relatioms for 921, DZS’ 932, 913 and 931. The calculation of
the binary diffusion coefficients will be dealt with in §3.6.

The DI are the multicomponent thermal diffusion coefficients and
depend in a complex manner on temperature, concentration, molecular weights
and the force law of the molecular interaction. For a binary mixture it is
important to note that the DI defined here does not reduce to the coefficients
of Chapman and Cowling [2], but the difference arises only due to a difference
in definitions.

Because the Dij are concentration dependent it is convenient in some

situations to replace the n relations given by Eqn. (3.5-1) by a set of (n-1)

independent equations:

n NN n NN, D§ 0}
P o= (v.-v)) =d, - VT I == (77 WD) (3.5-5)
§=1 szij e LN T3y i

These are the so called Stefan-Maxwell equations in their most general form;

their derivation is presented in H.C.B. §7.4.

The Energz}Flux Vector

H.C.B. Eqn. (8.1-23) gives the energy flux relative to the mass average

velocity in a multicomponent mixture as:

s n ~ pr M M N.DI
q=-kVT + > kTZ Nv, += & I L2 (v. - v,) (3.5-6)
=t z i-i N . .m0 =1 =
i=1 i=1 j=1 "i'ij

The first term is ordinary thermal conduction. The second term is the inter-

|
!
!

diffusion energy flux since NiYi is the diffusion flux of species i relative .

to the mass average velocity in molecules/unit time-unit area, and each
monatomic molecule carries, on. an average, a quantity of thermal energy equal
to % kT. For polyatomic molecules the interdiffusion term becomes

n A
z Nimihiyi’ where hi is the enthalpy per unit mass of species i. H.C.B. §7.6b
i=1




presents a description of this modification for polatomic molecules which
is part of the so called '"Eucken correction'. The last term in Egn. (3.5-6)

is the Dufour effect.

Example 3.3
n
The relation Z j. = 0 is easily proven. For a multicomponent system
i=1 =

show that similar summation rules are valid for the ordinary, pressure, forced
and thermal diffusion components separately.

Sum Eqn. (3.5-1) over all species,

n N2 n n nooo
Z j.=— Z X mnmD,.d. - Z D.VET
E i=1 * f=) 31 * 3 3I°L gy E
2 n n
X 3 g 2 owmp, - T 0Vaar
ok A e e
N2 n n n T
= T = i =
B gj(.§ mithih) .§ DiVRnT using Eq. (3.5-3)
j=1 i=1 i=1
NZ n n nooo
=— (% mmD.) I d.- I D.V&nT
R - e
n
Now consider each term in I q in turn:
3=l
N.
; v Nl-= ; ij = 0, since ? xj =1
] J J
N. N.m.
L (- - 51 VP = VanP [T x, - I K]
1 (0] -] &
J J J
= VanP (1 - 1]
=0
N.m, 0 1 Ei |
z [E-X, -2 NX]1=%[ENX, -INX I
. P - -k Ll & k=k %
j p mj J k k j ¥ 3 j P
2= ENX ~ TRX] '
P j i=] K k-k
=0
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Thus summation rules have been proven for ordinary, pressure and forced

diffusion in turn. For thermal diffusion the rules follows immediately

from the relation X DI = 0, or by subtraction.
i

Simplifications for a Binary Mixture

While still dealing with the flux vectors expressed in terms of micro-

scopic parameters it is useful to write down some ot the simplified forms

which obtain for a binary system. The diffusion flux Eq. (3.5-1) reduces

to: i
A f

J =N1m\_/1 i

1

2

N T
ET'mlmzv12§z - D1V2nT (3.5-7)

while Eq. (3.5-2) reduces to:

N N N,m N, N 1
P, S S LN . 3 !
92 =V T + (N 5 )VenP > [ml)_(2 m2§1] (3.5-8) |
The coefficient of V&nP in this equation is simply the difference between
the mole fraction and the mass fraction, hence it follows that
d, = -4, (3.5-9)
Also, since il = -12, it follows that
<) e T
0,, =D, and D, = -D, (3.5-10)
By writing Eqns. (3.5-7) for 11 and 12 respectively and subtracting, the
Stefan-Maxwell equations become
2
vy - yz) = - NIN; 012 [gl + kTvznT] (3.5-11)
where the thermal diffusion ratio kT has been introduced, and is defined as
e 0
kT = - (3.5-12)
N m,m, 12
Thus kT is a measure of the relative importance of thermal and ordinary diffusion.
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The Flux Vectors for a Binary Mixture Expressed in Continuum Parameters

The foregoing flux vectors contain microscopic parameters such as the
mass of a molecule and number density. For purposes of engineering analysis
we prefer to have these vectors expressed in terms of appropriate continuum
parameters. The microscopic parameters can be eliminated from Eqs. (3.5-7),

(3.5-8) and (3.5-12) by introducing Avogadro's number, A, in the following

identities:

m1=M1/A; N = Ac
The three equations become, respectively,

-~ 2
T ey o e |
: (B plv1 ; Mlevlzg2 DIVQnT (3.5-13) 1
KIKZ
92 = sz - (xz-Kz)VEnP - 'ﬁi"(fz'fl) = -gl (3.5-14)
; DI 2 DI
ko = = (3.5-15)
T c2M M 012 Mleo 012
k2 i
jooo iy =N
where R = R/M and = = — + . If Eqn. (3.5-14) is written for d. and sub-
M M1 M2 -
stituted in Eq. (3.5-13), then after some manipulation,
M M M. M_ K K M .M

Lo b o s PO 12 i

i = pvlz [VK1+ M (1 v )K1V2nP M RT (fl £,) + —ai_kTVEnT] (3.5-16)
By using Eqn. (3.4-4) the equivalent molar form is obtained,

o 2
*:— - — B — - -
41 chz [Vx1 # (1 M )xIVZnP MZRT (le_?1 Mlgz) + kTVRnT] (3.5-17)

where F is the external force per mole.

To obtain the binary mixture energy flux vector in terms of continuum
parameters, the first step is to rewritely. (3.5-6) for a binary system, and
then replace the microscopic parameters by their macroscopic counterparts,
yielding final forms in terms of either mass or molar units. For a polyatomic

gas Eqn. (3.5-6) becomes
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R SR e W T S 3.5-18
- R i;(hy-hy o, mz(‘-’z‘-’l (3.5-18)

A

Nymyvy = -3,

further the relation R = R/A = RM/A is introduced, after some manipulation

where the relations 11 , and DI = -Dg have been used. If

Eqn. (3.5-18) in terms of mass becomes

2
. ; X : o g
q = kVT + 1 (hl hz) + llkTRT plpz (3.5-19)
3 or
kTRT
q = -kVT + il (hl - hz) + il K (3.5-20)
12

An alternative form is obtained by introducing the thermal diffusion factor

alZ = kT/xlxz. With 1 denoting the heavier species, alZ

the heavier species diffuses down the temperature gradient. Substitution

is positive, i.e.,

in Eq. (3.5-19) gives

2

e " : M
g = -kVI + j, (b - b)) + ja KT W (3.5-21)

The merit of this last equation is that whereas kT is strongly dependent on ‘

composition, o, is essentially independent of composition. Thus data for

12

thermal diffusion coefficients are more conveniently expressed in terms of

alz.

In molar terms Eq. (3.5-21) becomes

M, o
q= K0T+ EH - L) gt v a RTJ (3.5-22)

where H is the enthalpy per mole.
Example 3.4

Two bulbs are connected by a small diameter tube and filied with a
helium-air mixture with 60% by volume helium. One bulb is maintained at
60°F while the other is at 580°F. If convection is entirely suppressed
estimate the steady state difference in composition for the two bulbs.

Take a12 = 0.51.




dx1 d&nT
Eqn. (3.5-17) reduces to g; = -cvlz [E;_ + kT —EE~] with coordinate z

taken along the connecting tube. At steady state JI = 0, thus

dx

-k d&nT
dz T dz
TH
Integrating, xl,H - xl,C = —szn TE for kT constant, where subscripts H and C

refer to the hot and cold bulbs respectively. With kT = X X005 the separation
is

1040
-(0.4)(0.6) (0.51)&n ~555

>
|
»
n

1,H 1,C

-0.085

i

i.e., the mole fraction of air in the hot bulb is 0.085 less than in the
cold bulb. Note that kT should be evaluated at a suitable average temperature

composition for an accurate result.

3.6 CALCULATION OF GAS TRANSPORT PROPERTIES

The Chapman-Enskog kinetic theory of gases described in 3.5 gives
formulae for the transport properties of pure gases as well as for multi-
component mixtures. In order to calculate these properties a potential
energy of interaction ¢ must be chosen to characterize the forces acting on
a pair of molecules during a collision. A realistic model should embody a
weak attractive force between the two molecules at distances several times the

distance at which strong repulsive forces start to come into action. The

weak forces will cause a noticeable effect on two relatively slowly moving
molecules, but will have a negligible effect on two relatively fast moving
ones: the shorter range repulsive forces remain effective for the fast
pairs. The potential energy ¢ is the integral of the interaction force F,
thus F = -d¢/dr, where r is the separation distance. To the left of minimum

in the potential energy curve the molecules repel each other, while to the




right there is an attractive force.

An empirical representation of the

potential energy function which has
proven fairly successful, is the

Lennard-Jones 6-12 potential model,

SEPARATION
DISTANCE

and € is the maximum energy of attraction between a pair of molecules. This

POTENTIAL ENERGY

0(r) = 4D - O G.e-n)

where @, the collision diameter, is

the value of r for which ¢(r) = 0,

model exhibits the required weak attraction, due to London dispersion forces,
at large separations (like r_6) and strong repulsion, due to electron cloud
overlapping, at small separations (nearly like r_lz). Table 3.1 lists values
of 0 and € for a number of pertinent chemical species.

The Lennard-Jones model describes a spherically symmetrical force field
and hence is intended for use with nonpolar, nearly symmetrical molecules (for

example, O He, CO). Indeed, the Chapman-Enskog theory is, strictly speaking,

2,
only valid for molecules with spherically symmetrical force fields. Molecules

with appreciable dipole moments (for example, H_ O, NHS) or which are highly

2

3H6’ n - C6H14) interact with potentials which are

angle dependent. For polar molecules the Stockmayer potential model, which

elongated (for example, C

adds an angle dependent factor to the Lennard-Jones expression, has been
successfully used. However, polar interactions have little effect at high
temperatures, and for many practical purposes it has been found adequate to

use the Lennard-Jones potential even for polar and elongated molecules. The
usual practice is to determine the parameters ¢ and € by matching theoretical
viscosity predictions with experimental data. In this way experimental viscosity

data are extrapolated outside the original temperature range; also the same
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L Table 3.1. Force Constants for the Lennard-Jones Potential Model+

Species o e/k Species g €/k Species o e/K
A K R K R K
Al 2.655 2750  CH,CCH 4.761 252 Li,0 3.561 1827
Al0 3.204 542 C3H8 5.118 237 Mg 2.926 1614
Al2 2.940 2750 n-C3H70H 4.549 577 N 3.298 71
Air 3.711 79 n-C,H, o 4.687 531 NH, 2.900 558
A 3.542 93 iso-C4H10 5.278 330 NO 3.492 117
C 3.385 31 n-CsH12 5.784 341 N2 3.798 71
CCl2 4.692 213 C6H12 6.182 297 N20 3.828 232
CC1,F, 5125 253  n-CcH,, 5.949 399 Na 3.567 1375
CC14 5.947 323 (1 3.613 131 NaCl 4.186 1989
CH 3.370 69 Cl2 4.217 316 NaOH 3.804 1962
CHC13 5.389 340 H 2.708 37  Na, 4.156 1375
CHSOH 3.626 482  HCN 3.630 569 Ne 2.820 33
CH4 3.758 149 HC1 3.339 345 0 3.050 107
CN 3.856 7S H2 2.827 60 OH 3.147 80
CO 3.690 92 HZO 3.737 32 O2 3.467 107
co, 3.941 195 H,0, 4.196 289 S 3.839 847
Cs, 4.483 467  H,S 3.623 301 SO 3.993 301
C, 3.913 79 He 2.551 10 S0, 4.112 335
C,H, 4.033 232 Hg 2.969 750 Si 2.910 3036
CoHy 4.163 225 1, 5.160 474  SiO 3.374 569
C,He 4.443 216 Kr 3.655 179 Sio0, 3.706 2954
C,H:OH 4.530 363 L8 2.850 1899  UF( 5967 237
C,N, 4.361 349 LiO 3.334 450 Xe 4.047 231
CZHZCHCH3 4.678 299 Li, 3.200 1899 Zn 2.284 1393

~i'Taken largely from R. A. Svehla, NASA TR R-132, 1962.
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values of 0 and € usually prove to be the best available for the estimation

of thermal conductivity and mass diffusivity.

Formulae Based on the Lennard-Jones Potential

Use of the Lennard-Jones potential in the Chapman-Enskog kinetic theory

of gases gives the viscosity of a pure monatomic gas as

W= C —%Ei (3.6-2)
o°Q,

With T in kelvins, C, = 2.67x10_6 gives U in N s/mz. With T in °R, C, =

Il

1
-8 . 3 2 Y . e -10
4.16x10 = gives U in lbf sec/ft” and 0 is in Angstrom units (1 A = 10 "~ m).

The quantity Qu is the collision integral and is tabulated in Table 3.2; it
is a weak function of temperature, becoming very nearly constant at high
temperatures.

The Chapman-Enskog kinetic theory shows that, for a monatomic gas,

the relation between thermal conductivity and viscosity is

5 . - 3R
k = 5 CyH (cv =3 M) (3.6-3)
thus
k - M (3.6-4)
monatomic 10
oQ
K
With T in kelvins, C, = 8.32x107° gives k in W/mK; with T in °R, C, =

2 2
o
3.58x10 : gives k in Btu/hr ft °F, and again o is in A. The collision
integral for thermal conductivity is identical to that for viscosity,

Qk = Qu. For polyatomic gases the modified Eucken correction is recommended,

- 5R
¥ = Kerwtomte * 174 (Cp T2 M)u

(3.6-5)
we see that data for specific heats is required for the calculation of thermal
conductivity in polyatomic gases.

The binary diffusion coefficient is given by
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Table 3.2. Collision integrals for the Lennard-Jones Potential Model
%I' Qu . Qk QD %I' Qu i Qk QD %I' U = Qk QD
0.30 2.785 2.662 1.60 12279 1.167 3.80 0.9811 0.8942
0.35 2.628 2.476 1.65 1.264 1.153 3.90 0.9755 0.8888
0.40 2.492 2.318 1.70 1.248 1.140 4.00 0.9700 0.8836
0.45 2.368 2.184 1.75 1.234 1.128 4.10 0.9649 0.8788
0.50 2.257 2.066 1.80 1221 1.116 4.20 0.9600 0.8740
0.55 2.156 1.966 1.85 1.209 1.105 4.30 0.9553 0.8694
0.60 2.065 1.877 1.90 1.197 1.094 4.40 0.9507 0.8652
0.65 1.982 1.798 1.95 1.186 1.084 4,50 0.9464 0.8610
0.70 1.908 1.729 2.00 1.175 1.075 4.60 0.9422 0.8568
0.75 1.841 1.667 2.10 1.156 1.057 4.70 0.9382 0.8530
0.80 1.780 1.612 2.20 1.138 1.041 4.80 0.9343 0.8492
0.85 1.725 1.562 2.30 1.122 1.026 4.90 0.9305 0.8456
0.90 1.675 1.517  2.40 1.107 1.012 5.0 0.9269 0.8422
0.95 1.629 1.476  2.50 1.093 0.9996 6.0 0.8963 0.8124
1.00 1.587 1.439  2.60 1.081 0.9878 7.0 0.8727 0.7896
1.05 1.549 1.406 2.70 1.069 0.9770 8.0 0.8538 0.7712
1.10 1.514 1.375 2.80 1.058 0.9672 9.0 0.837¢ 0.7556
1.15 1.482 1.346 2.90 1.048 0.9576  10.0 0.8242 0.7424
1.20 1.452 1.320 3.00 1.039 0.9490 20.0 0.7432  0.6640
1.25 1.424 1.296 3.10 1.030 0.9406 30.0 0.7005 0.6232
1.30 1.399 L.273  3.20 1.022 0.9328 40.0 0.6718 0.5960
1.35 1.375 1.253 3.30 1.014 0.9256 50.0 0.6504 0.5756
1.40 1.353 1.233  3.40 1.007 0.9186 60.0 0.6335 0.5596
1.45 1.333 1.215 3.50 0.9999 0.9120 70.0 0.6194 0.5464
1.50 1.314 1.198 3.60 0.9932 0.9058 80.0 0.6076  0.5352
1.55 1.296 1.182 3.70 0.9870 0.8998 90.0 0.5973  0.5256
100.0 0.5882 0.5170

For 4 < (%gb < 400; QD = 1,07 (

525-0.159
€

Taken from J. 0. Hirschfelder, R. B. Bird and E. L. Spotz, Chem. Revs.,

Vol. 44, p. 205, 1949.
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T (%r— + %rq
1

D =¢C

12 (3.6-7)

3 3
01, P

With T in kelvins, C, = 1.86)(10-7 gives DlZ in mz/s; with T in °R, C3 =

3
¥ . T ! i
8.28x10 gives 012 in ftZ/sec, P is in atm, and 0 is in A. The intermolecular

potential field for a pair of unlike molecules, species 1 and species 2, is

approximated as

%12.6

g
12,12
=97 - 97 (3.6-8)

6,(0) = 4, (97 - ¢

The collision integral for mass diffusion QD differs from Qu; values for

QD are given in Table 3.2. The Lennard-Jones parameters 915 and €12 must be
obtained from the empirical relations
o . 5 (o, + 0,.) (3.6-9a)
122 ] 2 )
€yg = /elez (3.6~9b)

where, as was mentioned before, the values of ¢ and € for the individual

species have usually been estimated from viscosity data.

Mixture Rules

The rigorous kinetic theory of Chapman and Enskog gives a prescription
of how to calculate the viscosity and thermal conductivity of a gas mixture
from the values for the pure species. C. R. Wilke simplified the rigorous
result by introducing elements of the rigid sphere model; the resulting

formulae are simple and adequate.

R 3 S (3.6-10)
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koo = I —;-i—i-—- (3.6-11)
i=1 j x.0, .
i=1 J 1)
h M 172 M5 1742
iy I+ G oG]
e ; L (3.6-12)
1 i.,1/2
Bl + )
j

The important feature of these mixture rules is that the weighting is essentially
with mole (number) fraction, as we would expect from simple kinetic theory.

Example 3.5

Determine the binary diffusion coefficient of methane in air at 80°F

and 1 atm pressure.

For methane M 16, © 3.758, El/k = 148 K.

| i 1
; For air M, = 29, 0, = 3.711, ezlk.= 79 K.
? e ,/k = (149x79) /2 = 108.5, kT/€,, = (540/1.8x108.5) = 2.77
| 2 = 0.970; (G— + 1,12 _g.3115 0.2 =L (s.75845.711)% = 13.95
TR 12 ° 2
2
. thus 012 = 0.86 ft"/hr.
t
3. {E BIFURCATION APPROXIMATION FOR MULTICOMPONENT DIFFUSION

A convenient approximate treatment of multicomponent diffusion has been
used extensively for re-entry vehicle boundary layer analysis. The idea E
i was first suggested by Bird [3], and was successfully implemented by Bartlett,

Kendall and Rindal [4]. The approximation is developed as follows. Eqgns.

(3.5-1 and 2) may be rewritten in terms of macroscopic parameters as: g
T 9nT p o,
j. + D, =L= = g MM.D,, —L (3.7-1)
i i 9y MZ j#i ijij 9y

or in the Stefan-Maxwell form,

! e i
L‘ﬁ»«*o‘; e T il S, . S




T AT T 3T
i oy, Ji T Yi Ty

» K. - K. ] (3.7-2)
e j i

ox. xX. %, 3. %
dy P

where pressure and forced diffusion have been ignored, and the V operator
has been replaced by 9/dy in anticipation of application to re-entry vehicle
boundary layer analysis. Each of the (n-1)n multicomponent diffusion
coefficients Di' depend on local concentrations and upon the (1/2) (n-1)n
symmetric binary diffusion coefficients Dij' In terms of the Lennard-Jones

potential model,

M, + M.
2.628x10 > 1°/2 (Eﬁ—ﬁ—-l)l/z
.

e & 0 J cmz/s (3.7-3)
1] Po ;%0 (15)

R. B. Bird first showed that a bifurcation of the effects of species i
and species j in Eq. (3.7-2) permits explicit solution of the Stefan-Maxwell
relations for j in terms of gradients and properties of species i and the

i
system as a whole. The approximation is used in the form

(3.7-4)

where
D: reference diffusion coefficient
Fi: diffusion factor for species i
Eq. (3.7-4) is exact for ternary systems, but approximate for n> 3; it

should be viewed as a correlation equation for the actual binary diffusion

coefficient data. One method to obtain this correlation is as follows.
First D is defined:

T(T/Mr)%

3 2

cm/s (3.7=5)

D = 2.6280x10" 5 :
PO Qv(rr) |

where r refers to a reference species, often chosen to be 02; D is thus the

self diffusion coefficient of that species. The Fi are then determined by a
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least-squares correlation for the Dij for all diffusing pairs in the chemical
system of interest. With this approach the pressure dependence and the
majority of the temperature dependence of the Dij is absorbed into D so that
the Fi are independent of pressure and have only a slight secondary temperature
dependence. All species are weighted equally in the correlation; hence the
Fi are independent of concentration and can be determined a priori for a
given set of chemical species. In fact to take Fi independent of both
temperature and chemical system has proven to be a good approximation in many
ablation problems.

Substituting Eqn. (3.7-4) in Eqn. (3.7-2) and eliminating mole fractions

in favor of mass fractions on the r.h.s. gives

Bxi 2 KiFi- JJOdFj FiJiOd .F.
e T E T TR W o (=70
oD i j ] 1 J 2,
where
. od : T
d = j. + D.oanT/d
3 3 ; /3y

Multiplying Eq. (3.7-6) by Mi/Fi and summing over i, and noting that the sum
of diffusive fluxes is zero, and the sum of mass fractions is unity,

3,59 b M 5 M ax
e et Z'F_'S"‘ LF dy e
J j M i 3

Substituting back in Eq. (3.7-6) gives

o KF M a2 F od KF,
o 5 5 (3.7-8)
3 N, -7, N T
" L BT S W W
Now define
Mixi M.x,
z, = uEE—J—l
i Fiu2 2 j Fj
Y o,
Wy & 50, Wy 2L oy
J j F.
j
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then

3 azi Buz Mi axi Mixi aFi
3y (i) =Wt Z 5y < F. oy ;2 9 (3.7-49)
i
Substituting in Eq. (3.7-8), noting X zj = 1 and Fi = Fi(T) only, then
% j
i + ———Di EI. = Bg EZ_ azi + (Zi—Ki) 8“2 + K (L _dF_i - U ) ﬂ_] (3 7_10)
33 T TV 3y W M 3y M dy i e 4’ 3y .
1

which is the desired explicit relation for ji in terms of gradients and
properties of species i and of the system as a whole. The z, is a quantity
relating to species i which sums to unity and has between the mass and the

mole fraction; U, M, and M, are properties of the system as a whole. If

1

we further assume the Fi to be independent of temperature, Eq. (3.7-10) reduces

to -
iy o+ D—,}?-;- - - SD;:Z [zzi sy :uz} (3.7-11)
1 y My y
Finally, if we assume thermal diffusion is negligible, and assume Bzi/By
large compared to [(zi—Ki)/uz]Buz/ay, Eq. (3.7-11) becomes
= %‘2‘;—1 (3.7-12)

Eq. (3.7-12) suggests that the driving potential for multicomponent dif-
fusion is the z-fraction, rather than the mass or mole fraction.

In order to establish the adequacy of the correlation of binary diffusion
coefficients, a number of different chemical systems have been investigated
including the C-N-0, C-H-N-O and H-O systems [4]. The results show average
absolute errors in the Dij (defined as the value calculated from Eq. (3.7-3)
minus the value calculated from Eq. (3.7-4), ranging from 1.3 to 10.8 percent.
Additional calculations have shown that to assume the Fi to be temperature
independent introduces a largest single error of 0.7 percent and average

3bsolute error of 0.13 percent; hence, it is consistent with the level of

44




AR b

approximation to assume the Fi temperature independent.

Table 3.3 shows typical

Fi values. For use in crude calculations a simple correlation of these Fi

values is
M
i,0.461
Fi = (26) (3.7-13)
Table 3.3. Diffusion factors Fi for three chemical systems as calculated by
Bartlett, Kendall and Rindal [4], at 12,000°R, 1 atm.
| Chemical Chemical System
Species OXYGEN-NITROGEN- OXYGEN-NITROGEN- | OXYGEN-HYDROGEN
CARBON-HYDROGEN CARBON
Force data, Ref. Force data, Ref. Force data, Ref.
r [5,6] [5] [6]
0 0.739 0.740 0.732
0, 1.000 1.000 1.000
N 0.791 0.738
N 1.076 1.033
C 1.065 1.022
€O, 1.308 1.270
€ 0.722 0.664
Cs 1.129 1.093
CN 1.082 1.035
H 0.203 0.221
H, 0.296 0.303
H,0 0.810 0.836
OH 0.777 0.819
CHy 0.999
C,H 1.187
H%N 1.201 '

3.8 THERMAL DIFFUSION COEFFICIENTS

To complete our treatment of transport in gas mixtures we need to provide

methods for the calculation of thermal diffusion coefficient DI: for binary

mixtures we could equivalently calculate kT or 0q5- To first approximation

alzdepends on the (1, 2) force law, the molecular weight and mole fraction

ratios, MI/MZ and xl/xz, and the temperature T.

Chapman [7] has noted that in the simplest case where the (1, 2) force

: ; -s
law is an inverse power law Kr ~, «

12
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factor (s-5)/(s-1), the reminder of the expression being negative when

suffix 1 refers to the heavier species. Thus for s > 5, a.,and kT are

12
positive for s < 5 the opposite is true. When s = 5, 0y0= 0 and there is

no thermal diffusion: this is the force law of '""Maxwellian' molecules.

For the rigid elastic sphere model s = ® and the above factor has its
maximum value of 1. Usually s > 5 except in a completely ionized gas. When

the molecular weights of two species are nearly equal the larger molecule

will tend to diffuse down the temperature gradient, though in some cases |

0p,€an change sign with concentration variations. The Lennard-Jones force

law shows a temperature dependence for a5 and the weak attractive field
slightly increases oy, |

The calculation of multicomponent diffusion coefficients from the

i
|
1
1
|

rigorous kinetic theory formulae is algebraically complex, and the results
of such calculations are of questionable accuracy owing to the sensitive
dependence on the molecular interaction force law. Furthermore experimental
data for these coefficients are sparse, and are mainly for binary mixtures
of noble gases. Since thermal diffusion and diffusional conduction are

invariably second order effects in re-entry vehicle boundary layer analysis,

simple approximate formulae for DI are desirable. Bartlett, Kendall and
Rindal [4] have developed such formulae in the following manner.
It is postulated that the mean thermal diffusion velocity of a

S s T e A ;
statistical molecule set, Vi must result from some characteristic of this

molecule set as it relates to the system as a whole,

AT _
v, a (Gi - G) (3.8-1)
where G is some mean value of the property Gi for the system as a whole; thus
T <
Di o pki(Gi - G) (3.8-2)

1
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and we can write

T _ =T 0
D; = Dok, (G; ? K;6,) (3.8-4)

where D is some property of the system as a whole. By analogy to the
diffusion factors Fi the Gi are called thermal diffusion factors. For a

binary system, Eq. (3.8-4) reduces to

T _ =T _
D1 =D pKle (G1 Gz) (3.8-5)
and
ﬁT
alZ = E_ (G1 - GZ) Fle (3.8-6)

where the exact relation 012 = 5/F1F2 has been introduced, and species 1 is
the heavier molecule.
In order to determine a suitable expression for the thermal diffusion

factors it was first noted that an expression of the form

1 - (F /F)
%127 S T - [0 - F/FHIT (3-8-7)

with N is a constant, allowed considerable simplification of the diffusion
flux vector. Using the results of exact calculations by Mason [8] for
several binary gas mixtures it was found that Eq. (3.8-7) with c, = -0.5
provided a reasonable correlation above about 1800°R. Comparison of Eqn.

(3.8-7) with Eq. (3.8-6) indicates

1 1
G, =—;G,=>—; D = —/—————roH (3.8-8)
1 F1 2 F2 xlF1 + sz2

The particular form of Eqn. (3.8-8) suggests the ad hoc extension

to multicomponent systems as

5. il s b
i Fi R e T I

(3.8-9)

47

P e e 0 g9 A




and the theoretical work of Laranjeira [9] appears to support this gen-
eralization. Substituting into Eqn. (3.8-4) gives
. c PDK, [1/F, - I Kj/Fj]

k j )
iy = X F. (3.8-10)
5

Using the definitions of Mo Wy and z; given in §3.7 gives

¢, pDu
T _ %P0 )
Di = UIM (Zi - Ki) (3.8-11)

Also, substitution into Eqn. (3.7-11) gives for the diffusive flux of
species i,

pﬁuz 9z,

SE= e RS 5enT
Ji M oy i i

y St 3y

4 )] (3.8-12)

which is particularly simple to use.
Example 3.6
Estimate the thermal diffusion coefficients for the components of

equilibrium dissociated steam at 3500 K and 1 atm pressure.

I
From Eqn. (3.8-11), Di = UIM (zi - Ki)’
x.M, xiMi
where y, = Z x.F.; yuy, =1I - §o, =
1 : o Fs i F.
j J ] 2 j j iH2

The equilibrium composition and thermodynamic properties may be obtained from
Reference [6], and the diffusion factors Fi from Table 3.3. In particular

(14.7x144x11.18/1545x3500x1.8) = 0.00243 lb/ft3

p =

= -2 .2

D = 4.98x10 = ft"/s from Table 3.3 and Eq. (3.7-5).
Sy * -0.5.
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The calculations are summarized in the Table below. J
X.M, T |
Species | M x. F. x. M, %.F, — K. z, D. 1
i i s 1 ii F. i i i
% 2 6
ft"/sx10 |
T i
; H 1 .253 +22% .253 .0559 1.145 .023 .076 -7.5 €
* H2 2 .185 .303 .370 .0561 1.221 .033 .081 -6.8 :
Hzo 18 .234 .836 | 4.212 .1956 5.038 .376 .336 +5.6 f
0 16 .118 732 1.888 .0864 2.579 .169 172 - .4 i
02 32 .059 1.000 | 1.888 .0590 1.888 .169 .126 +6.1 l
OH 17 .151 .819 2.567 L1237 | 3.134 .230 I .209 +3.0 j

1]
—
[
®
L]
=

also, Ix.M,
ii

L 1

n
(%]
~
)}
~

n

=

IX;M./F, = 15.0 = y,

Notice how the z, are inbetween the corresponding X5 and Ki' Negative values

of DI imply diffusion up the temperature gradient.
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CHAPTER 4

SIMPLE MASS TRANSFER ANALYSES

4.1 EVAPORATION AND SUBLIMATION

A Couette flow model, of the mass transfer processes involved in the
evaporation or sublimation of a material into an air-stream,is relatively
simple to analyze, and illus-
trates some of the essential

features of ablative and trans- Water Vapor- '
Air Mixture 0y | yedy

piration cooling. We consider :13,

flow of air over a porous plate,

"y oy

the surface of which is kept wet

by a supply of water through the

plate. Let species 1 be water Liquid Water
vapor and species 2, air. The

mass fraction of water vapor in the air-stream is K, , while adjacent to

1l,e

the wetted plate it is K1 W' Conservation of species applied to a control
b

volume dy thick, cross-sectional area A, requires that at steady state

outflow of inflow of _ production of

species 1 ~ species 1 = species 1 -8 e
or Anlly+dy - An1|y =0
divide by volume Ady (n1|y+dy-n1|y)/dy =0
let dy + 0 -3-)7 (n) =0 (4.1-1)
similarly %;-(nz) =0 (4.1-2)
adding g—y (n +n,) = g—y (n) = g—y (ov) = 0 (4.1-3)

Of course, Eq. (4.1-3) is simply the one-dimensional form of the steady

continuity equation. Now integrate Eq. (4.1-1),

sl
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<“
!
|
|

n = constant = “l,w , the value of n, at y = 0

But the absolute flux n, can be expressed in terms of its convective and

E diffusive components as

dK1

By = Bgn - 00y5 35

dK1
thus Kln - le2 H§—'= nl,w (4.1-4)
Next integrate Eq. (4.1-3) n = constant = n, = (4.1-5)

We give the total absolute mass flux across the w-surface the special distin-

guishing symbol m since it is the all-important mass transfer rate. Substi-

tute Eq. (4.1-5) in (4.1-4),

. dK,
Ko =~ el & ™ M
1 dK
? rearrange as B & 0
. pD
K.m-n 12
1 1,w
K
1 dK y
and integrate %[ ._1__._ =/ p_g}'__
moK K-y o Joo Phre

Assuming the exchange coefficient 0012 is independent of y we obtain

Kp-(n; /m) :
A ¥ —i= exp(B%X—J (4.1-6)
Ky =y /m) 12

Now (nl’w/ﬁ) = (absolute flux of species 1 across w-surface/total absolute
k mass flux across w-surface); if we view the mass transfer processes as a
stream of matter crossing the w-surface, then (nl’w/ﬁ) is the fraction of
the stream which is species 1, and properly might be called the mass frac-
tion of species 1 in the transferred state. For our water evaporation

problem intuition tells us that the only species being transferred is water,

so that the mass fraction of HZO in the transferred state must be unity,

i.e.,; n /ﬁ = 1. However we should rather obtain this result by a formal i

1,w {
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deductive approach:

nz = constant = nz’w

But air is negligibly soluble in water
. " n1,w+n2,w E nl,w
o
or 2— =1 as required
m

Substituting in Eq. (4.1-6) gives

m
= = exp(_x_)
K PD} 2

which is the equation for the concentration profile Kl(y).

at y = 6, Kl = Kl,e’ so that
K 1 o
| & md
= exp( )
Kl, 1 leZ
K -K o
l,e 1,w mé
or 1 + —2—=2— = exp( )
Ky Pl

In order to calculate Kl -

Then assuming an ideal gas mixture,

mole fraction of water vapor

mass fraction of water vapor

where P-ZPi is the total pressure, and
i
weight of the mixture. Hence
P
H20

T 29
2 szo + 5 (p-pHZO)

tables to find the saturation partial pressure of water vapor P

integrating Eq. (4.1-2) gives

so that n

2,w = 0, then

(4.1-7)

In particular,

(4.1-8)

we need to know the water surface temperature Tw;

usually we may safely assume thermodynamic equilibrium and hence use steam

H20,sat(Tw)'
P
H20 P MH
0
%
K = X —_—
H20 HZO M

M= inM.1 is the mean molecular
i

(4.1-9)




Equation (4.1-8) is the solution to our problem: given Tw and § we can

calculate the mass transfer rate m, which is the rate of evaporation since
n; , =M in this problem. However it is instructive to further rearrange
’

Eq. (4.1-8). First we define the mass transfer Stanton number as

Jl,w

C =
M bu K K

) (4.1-10)

1l,e
Note Cy, is a dimensionless form of the diffusive rather than the absolute

component of the flux of species 1 across the w-surface. Then since

nl,w 7 Kl,wnw i Jl,w
and L R m since only water is transferred,
udu Kl,wm by J'l,w
. i
or m = l_i’w (4.1-11)
l,w
Substituting Eq. (4.1-10) in (4.1-11),
K -K
. l,e "1,w
m = peueCM = (4.1-12)
1,w
peueCM = mass transfer conductance, units lb/ftzs
e oM
{ f = B' , the driving force, dimensionless
1,w
o e { -
Thus m peueCMB (4.1-13)
m
or B' = ———— (4.1-14)
DeueCM
Substituting in Eq. (4.1-8) 148 = exp(=2 ,
PD),
» DD12
and solving for m gives m = —jy—-tn(1+B‘)

. PD12 en(1+B

or m= — 5t ) g (4.1-15)
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Comparing Eqs. (4.1-12) and (4.1-15), we can identify

pD '
peueCM ” ;2 Zn(étB ) (4.1-16)

We will find it useful to normalize the Stanton number with its value in
the 1limit of zero mass transfer rate. To obtain this limit we note from

Eq. (4.1-15) that m >0 as B' ~ 0, and that

1 2
B' -=>B' + ....
lim Zn(1+B') _ 2 kg

T 7
B'-0 B B

AT

e

which upon substitution into Eq. (4.1-16) gives

pD

4 12 _
}1m(peuecpp 3 Spnis peueCMO (4.1-17)
m~>0
: e e o . B g
Notice from the definition of B (Kl,e Kl,w)/(Kl,w 1) that B' * 0 as Kl,w 5
] K1 & i.e., as the concentration gradients go to zero, and intuition tells

us that this corresponds to the limit m -+ 0. It is also instructive to see
that as m + 0 the concentration profiles are linear. For m+0, n~+0 so

that Eq. (4.1-1) is

d
] % ;) =0
1 dy 1
dK
integrating j1 = -lez a;—-= constant = C1
integrating again -lezK1 =Cy +Cy

Apply boundary conditions K, = K at y = 0 and K, = K at y = §, and
1 1,w 1 l,e

solve for C1 and C2 to obtain

g S P S %- (a linear concentration profile) (4.1-18)
-K
l,e 1,w
, , " i
i P i e i e W s




j pD
1% = ;2 , as before

l,w-Kl,e

hence p C

ee'™MO T ¥

with the relationship peueCMO = lez/G established, we choose to write Eq.

(4.1-15) as
. 2n(1+B'") ,
m = peueCMO T B (4.1-20)
——— —~—N T~ — N———
conductance in limit "blowing driving
of zero mass transfer correction" force
K, -K
l,e '1,w
1] = bl 3 -
B o A (4.1-21)

1,w

Equation (4.1-20) is simply an alternate form of our original solution to
the problem, Eq. (4.1-8); given peueCMO’ Kl,e and Tw, we can calculate m.
The advantage of Eq. (4.1-20) is that it is in a form suitable for applica-
tion to real boundary layer flows. Recall our Couette flow is only intended
to be a model of a real boundary layer flow, which we analyze to obtain the
effect of mass transfer. We have isolated this effect in Eq. (4.1-20) as
the blowing correction, £n(1+B')/B', and we now postulate that this blowing
correction is approximately correct for real boundary layer flows, laminar
or turbulent. Thus for real boundary layer flows we will use Eq. (4.1-20)

but with the Stanton number C, . calculated from a correlation appropriate to

MO
the wall geometry and flow condition.

Finally we look at concentration profiles plotted from Eq. (4.1-7) as
shown in the figure on the following page. With evaporation (ﬁ > 0), the

effect of mass transfer into the flow (blowing) is to reduce the concentra-

tion gradient of H20 at the w-surface. Since

dKl
1 D12 &
puC = ) = .“;
LA, Kl,w-Kl,e Kl,w_Kl,e

it follows that CM decreases with increasing m; in fact from Eqs. (4.1-15)
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and (4.1-17),

‘M _ en(1+B")
G B

(4.1-22)

Also, since K1+K2 = 1 for this
binary system, the concentration
profile for species 2, air, is as

shown. We see that the air is Kp(Air)

diffusing towards the water sur-

face: but the water surface is

impermeable to air so is there

not a contradiction somewhere? The explanation is as follows: we have shown

that n, = 0, thus

2
dK,

oSl T
dK,
and Kpn = 0D}, 3o

which states that the convective flux of air, K2n, is everywhere equal (and
in the opposite direction) to the diffusive flux, -leszz/dy, resulting in
the air being exactly stationary. On the other hand, the convective flux
of water vapor is in the same direction as its diffusive flux so that the

convection augments the diffusion. This convection is sometimes called the

Stefan flow in the chemical engineering literature.
Example 4.1
At a particular location on a transpiration cooled flat porous wall,

the wall is maintained at 190°F by injection of water at a rate just
sufficient to wet the wall. Dry air at 1000°F and 1 atm pressure flows
past the wall at 300 ft/s, and dry wall heat transfer experiments for

; the same geometry indicate a local Stanton number CHO = 0.0046. Calcu-

late the water supply rate.




We need to use Eq. (4.1-20). For P we take the density of air at
1000°F = 0.0272 lb/ftz. Next we obtain CMO from CHO: the data suggest

a turbulent boundary layer for which

-0.2, -0.4
HO = 0.0296Re Pr

(&

-0.2, -0.4
CMO 0.0296Re Sc

8 0.4
thus — ( )
LHO Sc

- p0A

To approximately account for variable property effects Pr and Sc should
be evaluated at an appropriate reference state; although not well estab-
lished, the 1/3 rule is the best available. Mixture rules (Chapter 3)

are then used to calculate p, Cp’ u and k for the mixture, and also lez

must be evaluated; hence Pr = Cpu/k and Sr = u/le2 are obtained. At 190°F,

PH o= 9.34 psia. For 1 atm total pressure,
2

R 9 34 = 0.52
0% T g 3, __-(14 7-9.34)

o 1 F
Ky p = 0.52 + 3 (0-0.52) = 0.35

and Tr = 190 + %-(1000-1-3) = 460°F

Hence Prr and Scr may be calculated to be 0.85 and 0.56, respectively, and

C 0.4
CMO " (8 ?2) = 1.517%% = 1.18
HO
and Cyo = (1.18)(0.0046) = 0.0054
K X
H.0,e FH.0,
Also B e 20 | 0:0.53 1.09
K = 0.52-1 - 1
H,O,w

Substituting in Eq. (4.1-20),

o £n(1+B")
= Pelelyg — g7 B
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e b — . . e ™ K3 reai

£n(1+1.09)

1b ft
(0.0272 ——39(300 ?;9(0.0054) 109

ft

=]
n

(1.09)

(0.044)(0.67) (1.09)

i a4 Aok P A

0.032, the required water supply rate.
Note that the blowing correction £n(1+B')/B' is only exact for a constant

property Couette flow. The answer obtained above could be refined by

b U el A S Ll Ul B o g

using a blowing correction appropriate to a variable property turbulent

boundary layer. Such matters will be discussed in Chapter 9.

4.2 A SIMPLE CASE OF DIFFUSION CONTROLLED OXIDATION
Many ablation processes involve diffusion controlled oxidation. One

simple example is tungsten according to the reaction

1

W + 4 3

O2 = w309

3 where the free-stream contains undissociated oxygen, the surface is metal

tungsten, and temperatures are high enough for chemical equilibrium to

exist at the w-surface with Ko . 0. Another simple example is graphite
2’

according to the reaction

2C + 02 =+ 2C0O

where again the free-stream contains undissociated oxygen, but temperatures
are high enough for chemical equilibrium to exist at the w-surface with

K ~ 0, and no formation of
Oz,w

carbon dioxide in the boundary @ ~— """~ —-—-—-——~-— T T T ™~
Gas Phase Mixture: 05, Ny, W309
layer.
In both these examples the

reaction is heterogeneous: the

02 u;O9

reaction takes place only at the

wall since O2 is inert in the

. Metal Tungsten
gas phase. Thus if we choose to

CRRRE B can bl




model the real boundary layer with a Couette flow, the governing species
conservation equations are identical to those derived in 84.1 for water

evaporation as H O was, of course, also inert. Denoting 02 as species T,

2
conservation of O d (n;) =0 (4.2-1)
2% dy 1 i
conservation of mass, gy-(n) =0 (4.2-2)
Integrate Eq. (4.2-2), n = constant = B m (4.2-3)
Integrate Eq. (4.2-1), n, = constant = n;

or, expressing the absolute flux of species 1 in terms of its convective
and diffusive components,

dK, : dK,
LTl T Rl R T e

where Dlm is the effective binary diffusion coefficient of O2 in the mixture

of O N2 and W309. Rearranging and integrating,

2’
K
1 dK . [y
[ ___1__,,,/ '
Kl,w Kl-nl’w/m 0 1m
K, -n /ﬁ .
hence n S pgy i PDin is assumed constant.
Kl,w-nl,w/m 1m
K n, /m .
Fory:G’ .L_e__];w—.-.-exp(ga) ‘
K -n P1m
l,w 1,w
ms ms
or 1 + B' = exp( ) 3 Ln(1+B') = (4.2-4)
lem lem
Seyee by
where again B' = ———J—————L—T (4.2-5)
Kl,w-nl,w/m

We see that the algebra involved is identical to that for the water evapo-

ration problem of 84.1; we need only to evaluate K /m for the oxidation
p 1,w
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problem. Recall that this ratio was unity for the water evaporation problem,
and was identified as the transferred state mass fraction of species 1. In
that case we used the fact that air is negligibly soluble in water, i.e.,

n, . =0, to evaluate n, w/m : we used a physical fact toevaluate a boundary
£ ’
condition. For tungsten oxidation the physical fact we use comes from the
stoichiometry of the reaction occurring at the boundary,
1
3w + 4 i 02 -> w309
3x184 +  4.5x32

1 1b W* + 0.26 1b O (W* denotes metal tungsten)

2
i.e., the stoichiometric ratio r is 0.26. By looking at the u-surface we
see that only tungsten is transferred, so that m = Mew o and, from the

b

stoichiometry, for every 1 1b of tungsten transferred, 0.26 1b of 02

crosses the w-surface in the negative y-direction. Thus n0 i -0.26 ﬁ,
2’

or (n /ﬁ) = (n /m) = -0.26 = -r. Substitute in Eq. (4.2-5),

1,w 02,w

K -K
l,e '1,w
f = ) ) o
B A (4.2-6)

1,w
Now Eqs. (4.2-4) and (4.2-6) describe transfer between the e- and w-
surfaces, and apply irrespective of the rate at which the reaction of the

interface proceeds. If the reaction is slow, then the mass fraction of 0,

1w’ is determined partly by chemical kinetics considera-

tions. However, often the temperature and pressure are high enough for

at the w-surface, K

reactions to be very fast and for chemical equilibrium to prevail: then the

concentration K1 W may be determined from thermodynamic considerations only.
’

If, in addition, the backward reaction rate is very small, a thermodynamics

calculation will show that the equilibrium concentration of O, at the w-

2

surface is a very small value indeed. Thus Ki " can be set equal to

’

zero in Eq. (4.2-6) to obtain




For an air free-stream K1 o 0.232 and B' = 0.89. Notice that if the
reaction product were W206 or WOS, B' is unchanged since r is unchanged
(provided thermodynamics again indicates K1 i 0).

Similarly, for the carbon reaction,

g 4 % 0, > €O
12 + 16 -
1w+%1b+ A r=%

Again, for K = 0.232, B' = (0.232)/(4/3) = 0.174.

l,e

As was the case for the water evaporation problem we can rearrange Eq.
(4.2-4) to read

2 PDim n(1+B'

m = — L) g (4.2-8)

and then, recognizing that we have a Couette flow model of a real boundary

layer flow, identify oDlm/G = peueCMo and write

S £n(1+B")
m = peueCMO - B!

(4.2-9)
When we apply Eq. (4.2-9) to real boundary layers we assume that the blow-
ing correction £n(1+B')/B' developed for the Couette flow is a good approxi-
mation for the real flow. Equation (4.2-9) is easier to use for this oxi-
dation problem than was the case for the water evaporation problem inasmuch
B' has a fixed value, rather than being dependent on surface temperature.
For example, in the case of tungsten oxidation Eq. (4.2-9) reduces to m =
O.64peueCMo.
Notice that it is the rate at which 02 can diffuse from the free-stream
to the wall which determines the rate of reaction, hence the characteriza-
tion as a diffusion controlled reaction. Also note that we did not use the

species conservation equation governing transport of the reaction product

away from the wall. If we were to do so, there would again result Eq. (4.2-9)
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but with B' = W 0 ,w/(KW 0 (1+r)). Since we cannot specify Kw 0..u
379 39°% C 379

we cannot use this form of B' to calculate m; in fact, knowing m, Eq -

(4.2-9) allows us to determine Kw 0 . In physical terms the concentra-

e L

tion of product at the w-surface adjusts itself to the value required for

transfer away from the wall at the required rate: diffusion of the pro-

duct away from the wall does not control the rate of reaction in this

situation.

Example 4.2

Develop an expression for the rate of combustion of carbon ejecta

in the flow over the aft heatshield of a missile. The ejecta have sizes

between 1 and 10 u and temperatures in the range 3000-6000 °R.

In this temperature range oxidation to CO and negligible 02 dissocia-
tion may be assumed. Since CMO increases inversely proportional to particle
size chemical kinetics limitations may be important for very small particles:
for the C-O2 reaction such chemical kinetics effects are negligible for

1

particle sizes greater than 10~ p. Thus the carbon combustion rate is given

by Eq. (4.2-8)

fn(1+B') Y0,.e70,
m=p ueCM0 g B! where B' = K =
02,w
For diffusion control KO " = 0, and for the reaction C + O2 = JC0L T =415
2!
and B' = é-K . However now K is the oxygen concentration some dis-
4 02,e Oz,e

tance away from the particle, of the order of a few particle diameters. We

cannot set Ko e 0.232, the 02 concentration in the free-stream, since the
2)

O2 concentration will vary from 0.232 at the boundary layer edge to zero at

the heatshield surface (the heatshield itself will be oxidizing in the dif-

fusion controlled limit). To evaluate the conductance peueCMO we will

assume that the particles follow the flow and use the result for a sphere
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in stagnant infinite surrounds, peueCMO =

diameter. This conductance expression wiil be more accurate for the small-

ZpDozm/ap, where ap is the particle

est particles, and will underestimate the conductance for larger particles,
owing to their longer persisting initial velocity; however, it is the small-
est particles which are more important owing to their higher combustion

rates. The result is thus

ZpDO m
Nw e Pl 4 S .
ap 4 Oz,amblent

)

where the subscript e has been replaced by '"ambient" as a reminder that it
is the Zocal concentration of 02 in the boundary layer. The strongly
dependent temperature product pD02m must be evaluated at some reference
state dependent on particle and ambient temperatures: the 1/3 rule is
probably adequate.

We might also be interested in estimating the life-time of an ejecta

..

particle: a mass balance on a spherical particle is

d 1 35 _ 2.
& (pp a-nap ) = nap m
40D
d . O,m
X ._aE=g."l=___2£n(1+2K )
dt o) ap 4 "0,,ambient
p PP 2

A lower limit on the particle life can be estimated by setting KO ’ =
2,amb1ent

0.232; then £n(1+B') = 0.160, and integrating from t = 0 with initial size

a ., tot =1 when a_ = 0, gives i
po p o

2
T = 0.32ppapo /pD02m

where pDo 8 has been taken to be constant, and chemical kinetics limitations
2

near the end of the particle lifetime have besn ignored.
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Example 4.3

In contrast to a solid graphite or carbon-carbon heatshield the car-
bonaceous surface of a charring ablator is porous, and through the pores
percolates pyrolysis gas. For -
steady state ablation determine
the effect of the pyrolysis gas on
the diffusion controlled surface
oxidation rate. Assume that the
pyrolysis gases are inert with

respect to the boundary layer

gases.

We will again simplify the analysis by assuming that the freestream
contains undissociated oxygen, and that thermodynamic equilibrium prevails

at the w-surface with K0 ik 0. The mass transfer driving force is, from

2’
Eq. (4.2-5),
K -K
B' = ——lLE——lLET where species 1 is 0,
Kl,w n1,w/m
= 0.232
_nl,w/m

For steady state ablation the mass loss rate of pyrolysis gas and char are

=m., and thus m = mc+mg = 2mc.

the stoichiometric ratio r is again 4/3, i.e., for each 1 1b of char crossing

equal, ﬁg Also for the reaction C + O2 =+ 200

the u-surface, 4/3 1b of 02 crosses the w-surface, in the negative direction,

N w 4 1,w Mw 2
=) or = - = - =
m ; B PO
c c
0.232
! = -
and B' = 373 - 0.348
e En(1+B")
From Eq. (4.2-9), m = peueCMO gr—- B'
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m = PoU,Cyo (0.858) (0.348)

= 0.299peueCMO
o-lo_
and m,=>5ms= O.ISOOeueCMO
For a solid carbon surface we have already shown that B' = 0.174 and m =

peueCMo(O.QZZ)(O.174) = 0.1600eueCM0. Hence the reduction in oxidation

rate due to the pyrolysis gas is (0.160-0.150)/0.160 = 7%.

4.3 A MORE COMPLEX CASE OF DIFFUSION CONTROLLED OXIDATION

We now consider oxidation of a graphite surface when significant reac-

tions might occur in the

gas phase, for example:

|
(i) If the free-stream is L//,/””——i
|

at a high enough tempera-

p— c + co, - 200 $—— 200 + 0, ~ 200, _
(heterogeneous, {homogeneous, exothermic)
endothermic)

ture for 02 to dissociate, |
|
and if the surface is much I
|

cooler, there may be re- FLAME

: e

combination 20 ~ 02 occur- co

-

VK,
€0,

layer. (ii) If the sur-

I
|
|
ring in the boundary |
|
|
|

face temperature is in )
0  -s— — %

the range 2000-4000°F, 0 —— e 0,
heat ef— —  heat

and the free-stream is

cool, the surface reaction is C + CO2 =+ 2C0, and there is a gas phase reac-

tion 2CO + 02 <> 2C02, as shown above.

Let us analyze the latter problem. Again we will use a Couette flow
model: conservation of species i in a control volume dy thick, cross-
sectional area A requires that at steady state

outflow of _ inflow of _ production of species i
species i species i  due to chemical reactions
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Ani|y+dy N Anily ¥ I:i.Ady

(g |y pqy |7y = 73

let dy + 0, %;—(ni) = T (4.3-1)
Here fi is the mass rate of production of

species i due to chemical reactions, and
has dimensions mass/unit volume - unit time.

Species i may be 02, COZ’ CO or N thus

2!

TR (4.3-2a)
dy 02 O2

L )i (4.3-2b)
dy "002 s rco2 e

[ (i) = % (4.3-2c)
dy *CO co E
C—1—-(n T = r, =0 since N, is inert (4.3-2d)
dy "N, N, 2 -

The fi's are given by complex expressions involving reaction rates and equi-
librium relations. However, we can solve a problem to determine the carbon
oxidation rate without knowing the }i expressions, provided we are prepared
to assume all the species diffusion coefficients equal, which for this chemi-

cal system is quite realistic. We first multiply Eq. (4.3-2a) by the mass

fraction of element oxygen in 02, aOOZ’ Eq. (4.3-2b) by aOCOZ’ Eq. (4.3-2c)
by %o’ and then add,
%‘ (%0, m0_*T0c0_"co.+%oco™c0’ = %00. %0, *oco.Tco +o‘oco’.‘co
L 2“2 o St 2 V2 2 2
d x D
or ay ?ao.ni = ?ao.ri (4.3-3)
i1 ii

Now the first term on the right hand side of Eq. (4.3-3) is the rate at
which element O appears (or disappears) in the form of O2 as 02 is produced

(or consumed) by chemical reactions; the second term is the rate at which

e




O appears in the form of COZ; etc. Since there cannot be a net creation or

destruction of a chemical element, these terms must sum to zero, ZaOiri = 0.
i

Or, more generally

fakiri =0, any element k (4.3-4)
The absolute flux of element O, ﬁo = ZaOini’ so Eq. (4.3-3) becomes

dil. 2

T (fiy) =0 (4.3-5)
integrate, n, = constant = nO,w (4.3-6)

dKi

or §u01(Kin'pDim P o = no,w (4.3-7)
If we now assume all the Dim equal, i.e., DOzm = DC02m = DCom = D, then

nZo..K.-pD W n

0i™i dy “0ii o,w
" dK

or nKo-pD 3§_'= constant = nO,w (4.3-8)

where KO = FaOiKi is the mass fraction of element oxygen in the mixture,

irrespectiv; of which chemical species it is contained. At this point the
problem has been reduced to a mathematical form identical to those of §4.1
and §4.2, and we nced not repeat the algebra of the previous analyses from

this point forward. The result is

G 1+B'

B = puCyp LB gy (4.3-9)
K, <K

gt = _0:,¢ 0,w (4.3-10)

Notation for the transferred state mass fraction. The quantity ﬁo w/ﬁ has
’

been previously identified as the transferred state mass fraction, i.e.,

is the fraction of the stream of mass crossing the w-surface which is

element oxygen. To introduce notation for this quantity first go back to
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§4.1 where we were dealing with transfer of an inert species, HZO’ denoted

/m Kl,tu' Then since H20 is

species 1, and define n, w/ﬁ =K gt B

, and Kl,tw = Kl,tu = Kl,t i.e., the subscripts tw and

l,u

inert, n =n
> 1,w 1,u

tu may be replaced by t without ambiguity. In 84.2 we dealt with species

i which could react at the surface, then if n. /ﬁ = K. and n. /ﬁ =
i,w i,tw i,tu

For example K = 1, while K =0

K an i goneral K, . £ K W, tu W, tw

tu’

since only metal tungsten crosses the u-surface, while only O2 and W309

=n since a chemical
o,w O,u

element cannot be created or destroyed between the u- and w-surfaces, thus

cross the w-surface. In the present problem n

we define ﬁo w/ﬁ = K without ambiguity. Since IZn; = n, and Zﬁk =n it

o,t
.

follows that the sums of mass fractions in the transferred state of species
or elements are unity. But in contrast to mixture mass fractions, trans-

ferred state mass fractions may take on any value between -® and +.

~

ié0 o 0.
Thus Eq. (4.3-10) becomes B! = ——— —— (4.3-11)

o,t

=~

O,w-K
Now recall that peueCMO is simply a property of the flow and is straight-
forward to calculate. Thus if we can evaluate B' we can determine m. Lets

look at each term in B' in turn:

K = K , and is known from the free-stream composition
O,e 02,

g . X 32 16

B 0.5 “o,,w * 3 Xco,,w * 28 Xco,u

But at the surface temperatures under consideration the forward reaction of
carbon with oxidizing species are very rapid, and thus the concentrations

of 02 and CO2 at the w-surface may be taken to be zero, then

Carbon monoxide is the product of the oxidation reactions and its concen-




tration is finite at the w-surface, and is a priori unknown. So we cannot
use Eq. (4.3-11) directly to evaluate B'. Instead we first perform a little

algebraic manipulation. Rewrite Eq. (4.3-9) as
B' = exp(m/peueCMo) -1

and substitute from Eq. (4.3-11) to obtain

KO,e'KO,w = (Ko,w-Ko,t)[exp(m/peueCMo)-l] (4.3-12)
Now recognize that we could have equally well done our analysis for element

carbon, which would have given

~ ~

KC,e'KC,w = (KC,w'KC,t)[exP(m/peuecMO)'I] (4.3-13)
Multiply Eq. (4.3-12) by ¢ and Eq. (4.3-13) by &, add and rearrange,
Sk & £n(1+B') B!
e e MO B'
_ (8Kg#EKe) - (K EKe)

= = = = (4.3-14)

We are free to choose any values for the multipliers ¢ and &: lets see if
we can choose values such that we can evaluate the terms in Eq. (4.3-14)

from given data. Clearly the e-state gives no problem. For the w-state:

32 16

G 32 12 12
(EKg*eKely, = *Co,,w* 44 Xco,w" 28 Kco,w) * Gz *co,,w* 28 Xco,w’
T - g ]
= Keo,w(z8%* 28 &) since o T

So if we choose ¢ = 12/16 and £ = -1, then (%é-ko-kc)w = 0 and we need not
12 = _ 12
know KCO,w' Also then (TE-KO-KC)e -

looking at the u-surface, ngy = U5 Ne =M so KO

K , and (%§~EO—EC)t = -1 since

= 0 and KC,t = 1. Substi-

02,e

st
tuting in Eq. (4.3-14),

3
TKOZ,e'0 3
' = e —————— O e =
B 0-(-1) 7 KOZ,e 0.174
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which is the same value as was obtained in 84.2. Notice, however, we have
made the additional assumption that all the diffusion coefficients of
species containing C or O are equal, and thus our value of B' may be less
accurate. In fact binary diffusion coefficients for the chemical system
C-0-N are not too different, and the assumption is quite justified.
Example 4.4
As an example of the analysis technique used above, let us investi-
gate the effect of adding water vapor to an air-stream flowing over
combusting carbon. The technological problem might concern heatshield

performance during reentry through a rainstorm.

Relative to carbon, water vapor is an oxidizer and, at temperatures

of concern, chemical equilibrium shows that KH 0% ~ 0. Again we use a r
2t t
B' based on the combination (%%-KO—KC) as follows. &
.
22 12 {3
¢ = 73 *co, * 78 Feo
= 32 16 16 |
Ko = Xo_ * 37 Xco, * 28 Kco * 18 .0 f
2 2 7
12 > =, _ 12 12 12
S (T8 Xo™*c) = 16 %o, * 37 Kco, * T8 ¥
12 = = 12 >~
As before (Tg KO—KC)w (010 (T—- O-Kc)t = -1
122 =, _ 12 12 12 g
and now T Xo™*cle = 16 X0,,e * 97 Kco,,e * 18 Y00 TP

We see that water vapor serves to increase the driving force B' and hence
the carbon oxidation rate. For an increase of 10 percent in B' over the

value for dry air (0.174) the required HZO concentration is calculated to

be EHZ = 0.026.

Note that the carbon-steam reaction is highly endothermic: the analysis

O,e

has assumed that the heat supply requirements of this reaction do not markedly

change the carbon surface temperature. A much lower temperature would




significantly alter the conductance through the transport properties, or could
even cause a change to the kinetics controlled oxidation regime. In the case
of a heatshield the convective heating usually dominates and Tw is little
affected by the oxidation reactions; however for small ejecta particles com-
busting in the boundary layer the particle temperature can be significantly
lowered.
Example 4.5
A solid propellant rocket motor has a graphite lined throat. The
propellant gases contain oxidizing species which cause the throat to en-
large at an appreciable rate. If the elemental composition ¢f the
= 0.560, K. = 0.256, K

propellant is K = 0.028 and kN = 0.156, estimate

0 C H

the mass transfer driving force B'.

We can safely assume that the surface temperature is high enough for
thermodynamic equilibrium, and that CO is the only oxygen containing species
having an appreciable concentration at the w-surface. Thus, as before, the

driving force may be based on the combination (%é—ﬁo-ﬁc) to obtain

However, in contrast to the previous problems, we do not know the molecu-
lar species composition at the e-surface: typically the mixture will be
quite complex. Thus we cannot express KC and K in terms of the K.

5 € 0,e i,e

But fortunately we do not have to since the elemental composition at the

e-surface must be the same as that of the propellant. Hence
gt = 12
= 7¢ (0.560) - (0.256) = 0.164

To obtain the rate of enlargement of the throat we would obtain peueCMO

from an appropriate turbulent boundary layer correlation and determine m

using Eq. (4.3-9).

12




4.4 FLAME SHEET MODEL FOR CARBON OXIDATION
The method of analysis presented in 84.3 allowed determination of the
mass transfer rate, but does not give the concentration profiles, and, in particu-

lar, the location of the flame. We will now re-analyze the problem assuming
that the homogeneous reactions occur at an infinitely thin flame "sheet' as
depicted in the Figure for a carbon sphere of radius RS locased in stagnant air.
Region I lies between the particle e
and the flame, while region II
lies between the flame of

radius Rf and infinity. The

mass transfer rate across the w-
surface is ﬁI, while across the
uf-and wf-surfaces it is m.,. The

IT

reactions are as described in §4.3.

w

Solution of species conservation equations follows the procedure given in

§4.2, except that the spherical geometry must be accounted for. With equal

diffusion coefficients Dim =D,

R
« oD f
mI = -R— ﬁ— ,Q,n(1+Bi) (4.4-1)
s f s
B B2 i
"1 7R, In(1+B3) (4.4-2)

where in region I the integration is from Rf to Rs’ while in region II it is

from Rf to infinity. For region I B' may be based on CO or C02,

K X
ge _ co,uf¥co,w _ CO,,uf "CO,,w
I Keo,w¥co, tw Kcoz,w'Kcoz,tw

But K s 0

. s Ka = 0, and stoichiometry at the w-surface requires
Co,uf CO,,w

s £ = 2D




L 2
§
H
|§
i
i
B
3

" § - - g b gt 3 .um..sw...:mnn—bmmzuq
e = 2 . N—

_ 14 ot 11

11 1b + 3 1b +~ 14 1b or KCO,tw -t KCOZ,tw s
KCO W 3
| — 3 — »
Thus B} s | A IT'KCOZ,uf (4.4-3,4)
3 7 Go,w

For region II B' may be based on 02 and COZ’

K -K K -K
Oz,e 02,wf ' C02,e C02,wf

B! = =
IT K -K K -K
Oz,wf 02,twf COZ,wf COz,twf
But KOZ,wf =0, KCOZ,e = 0, thus
Keo
By, = =232 2 (4.4-5,6)
0,,twf CO,,twf CO,,wf
2 2 2
Continuity of mass flux at the flame requires
™11 7 "o ,uf * "co,uf = "co,,wf * Mo,,uf (4.4-7,8)
while stoichiometry at the flame requires
2C02 + 02 > ZCO2
T
7 1b + 4 1b > 11 1b ; thus nCO,uf = - Z'nOZ,wf (4.4-9)
R2
Also mass conservation requires m, = s m (4.4-10)
I R2 II
i s
while the COZ concentration is continuous, KCOZ,uf = KCOZ,wf (4.4-11)

Lastly oo uf

= (Rz/Rz)n is related to m through stoichiometry as
2 s’ °f COz,w I

=y (4.4-12)

2
R T, Re J
Rﬁ CO,,uf

BYs B

There are 12 equations in the 12 unknowns 61, myps Rf, I

1’ *co,w Xco,,uf’
KCOZ,wf’ noz,wf’ NGO, uf’ nCOZ,uf and nCOZ,wf' The solution proceeds as follows.
e TR T
| From Eqs. (4.4-12) and (4.4-10), R S O -nCOZ,uf’ and substituting in Eq.

! (4.4-7) gives




e SRR
- =

. _ 0.232
From Eq. (4.4-5): BiI = ~8/3 0.087
: From Eq. (4.4-8): m. =n - §-ﬁ thus n e 1 m
A d i II C02,wf 3 kI ? C02,wf 2 ER
¥co, ,ue
From Eq. (4.4-6): BiI = 0.087 = ) = , thus KCOZ,wf = 0.293
3 C02,wf
3 1 From Eq. (4.4-4): Bi = (3/11)(0.293) = 0.080
KCO W
From Eq. (4.4-3): 0.080 =:§§——7Z*——— , thus KCO,w = 0.346
3~ COo,w
' From Eqs. (4.4-1,2 and 10),
m R./R_)/(R.-R ' R
1 _ BRI ReR) onav0.080) _ R
n (1/Rg) &n(1+0.087) ~ 2
II S
; 0.922 _ 1 z
Solving, R-R - R or Rf/Rs = 1.922
E £ s S
From Eq. (4.4-1),
’ D 1 D
mp = ]?{_ 1-(1/1.922) 2n(1+0.080) = 0.160 -ﬁ—
s

s
which is exactly the result obtained in 84.3. Since the assumptions made in
each analysis were identical (particularly that of equal diffusion coefficients) i
{ the result should indeed be identical. Notice that the flame radius is slightly %
less than twice the particle radius. If the analysis is carried out neglecting

radial convection, then m, = 0.174 pD/RS and Rf/RS = 2.0, i.e., the flame has

I

exactly twice the radius of the particle.

4.5 COUETTE FLOW ANALYSIS WITH UNEQUAL DIFFUSION COEFFICIENTS
A number of new concepts were introduced with the bifurcation approxima-

tion for multicomponent diffusion introduced in 83.7. 1In order to become more
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familiar with these concepts let us analyze simple diffusion controlled oxida-
tion of carbon in a high temperature stream of argon and dissociated oxygen,
i.e., the reaction is

C+0~=>Co
where at the e-surface we have A and 0. The carbon surface temperature is
high enough to ensure that O does not recombine in the flow, and for chemical
equilibrium to exist at the w-surface with KO,w 2 0. Three species are thus
present in the gas phase: O, A and CO, species 1, 2 and 3, respectively.

mass conservation

d

aF W= AR e :
integrating -T

n = constant = m (4.5-1) 0 ﬁco
species 1 conservation y

d el aT e VAT :

& =0 77777-77777777777
integrating o

n, = constant = N
or Kln e nl,w (4.5-2)

Substituting for n from Eq. (4.5-1) and for jl from Eq. (3.7-12)

pDu2 dz1

Km - u—lM—F (4.5-3)

1 =

1,w

Since 2y = Mlxl/Fluz, and Kl = MlxllM, we have Kl = Fluzzl/M, and substitut-

ing in Eq. (4.5-3) gives

1,w M

i = K

SRR i & T e
Now K1 o’ the mass fraction in the transferred state, is fixed since it de-
b

pends only on the stoichometry of the reaction, as is Fl, a property of species

1. However M, the mixture molecular weight, and My = Zijj/Fj vary with
j
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composition across the flow. In order to obtain an analytical solution to our

problem, we will now assume the mixture property M/u2 to be constant across

the flow and define z

1,tw = MK} ¢/Fplp, then

dz
dy

pD
m,F )

2 -

1 .

1,tw

The analysis now proceeds in a similar fashion to that of §4.2:

z L
Jl,e dz, mF, j‘é W
: - B
z 1"%1,ew D Jo

1,w
z, -z mSF 1
n(l + Zl,e_zl,w ) = f £ if p/ul is taken constant.
1,w “1,tw pD
2 Za o)
C pD l,e "1,w
m= 7% 2n(1+B') where B! = ——
Fit 5 5 21,w %, tw

(4.5-4)

(4.5-5)

In order to assess the effect of unequal diffusion coefficients on

mass loss rate m, let us compare this result with the result obtained if

effective binary diffusion is assumed; then we would approximate Dlm as

DO A and write

. PP
m = ——%LA 2n(1+B')

Now if the reference diffusion coefficient is chosen to be that of argon,

Comparing Eqs. (4.5-5) and (4.5-6),
munegual -y 2n(1+8é)
: oy ulkn(1+B')
effective
binary

Example 4.6

(4.5-6)

(4.5-7)

Compare the mass loss rate for diffusion controlled oxidation of carbon

in a high temperature stream of 80 percent argon and 20 percent atomic oxygen,

7




by volume, calculated (i) for unequal diffusion coefficients, and (ii) ef-

fective binary diffusion.

First we calculate the Fi's:

Species Mi Fy

1. 0 16 (16/40)°-461 _ o ¢s5
2. X 40 ]

3. CO 28 (28/40)°-461 - o.g48

where we have taken D as the self-diffusion coefficient of argon. Next we {

T ——————

i calculate the edge gas properties we need. |

g My e = IX;F; = (0.2)(0.655) + (0.8)(1) = 0.931
f . g lifie | (16)(0.2) , (40)(0.8) _ 4 g0
Baa ™ F, 0.655 1 i i
M, x
: Mg e aeited
, “l,e = Fpu, , _ (0.655)(36.89) " G5t
X M
N 7o T (0.2) (16) e
1,e M (0.2 (16 +(0.8) (40)

(zl/Kl)e = 1.456.

(Note how the z fraction lies between the mole and mass fractions.) Next we

simplify Eq. (4.5-7) by evaluating the driving forces B' and B;.

K, -k
l,e "1,w _ 0.0909-0
Bt = =2 £7 . & = 0.0682
K v KL, tw 0+4/3
gt o L,e®lw _ 0.1324-0
S e BT O'ZI,tw
M 4 . M 8§~
but z = ——K =-z(F) = -3
1,tw Fluz 1,tw 3 Fluz 3 K1 1/3

where the subscript 1/3 indicates that we will evaluate this variable property
at a 1/3 rule reference state (1/3 e-surface value + 2/3 w-surface value). Re-

call that in the analysis we assumed M/u2 to be constant across the flow in
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taking 21 tw to be constant. Thus
b
0.0324-0
L —
Bz = = 0.0993 (Kl/z1)1/3

2
0+ 3 (z1/K)y 3

Substituting in Eq. (4.5-7) then gives

B s 2k _(15.16) (1+0.0993(K1/zl)1/3)
. - (1y)
meffective 171/5

binary

where we have also evaluated the variable property My at a 1/3 rule reference
state.
We cannot calculate the w-surface composition for unequal diffusion

- - - A
coefficients until we have m

; hence an iterative calculation is re-
unequal

quired, and as a first guess we will use the composition corresponding to the

effective binary solution.

i . e Ky e B,  Pa s e 5
Bottaerive = 5 Wty g ¥ ==l )
; 1,w 1,tw 3,w 3, tw
binary
or L gn(1 + 0.0682) = 2= gn(1 + L“’)
F] Fy Ky - 7/3
solving, Ky | = 0.19; x5 = 0.25.
u = (0.25)(0.848)+(0.75) (1) = 0.962
s
_(0.25)(28) . (0.75)(40) _
Baw ™ “(0.848) 1 = 38.25

(My) /5 = (2/3)(38.25)+(1/3)(36.89) = 37.80

(2/3)(0)+(1/3) (0.0909) = 0.0303

(K13

(2/3)(0)+(1/3)(0.2) = 0.0667

(X1)1/3

(16) (0.0667) _ .
(zl)l/3 = 0.655) (37.80) - 0.04308 and (Kl/zl)l/S = 0.7033

(U1)1/3 = (2/3)(0.962)+(1/3)(0.931) = 0.9516
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_(15.16) (1+(0.0993) (0.7033))

then ¢ 09516 = 1.0754
Let us check our guess for Xz oo We have
1 1
o 2n(1+B; )= T Rn(1+B; )
1 1 3 3
1 Sk . i
m 9,11(1"‘0.06984) = m Zﬂ(l*‘B;S) 5 SOlVll’lg, Bés = 0.09133
But 25 ¢ (28/12) (2)/K}); 5 = (28/12) (1/0.7033) = 3.518
; 0-25 w
i ' = = —————-’ 1 =
thus BZ 0.09133 73318 ° solving, 23w 0277
3 3,w
F3H2,w?3,w _ (0.848)(38.25) (0.277)
and X = 2 — = St : = = 0.321
3,w M3 28
So we see that our first guess of x = 0.25 was a little low. If the calcu-

3,W

lation is now repeated for Xz
3>

1.0748. So within sufficient accuracy we can take ¢ = 1.075.

oxygen, D

computer codes developed for engineering use.
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= 0.321, it is found that the new value of ¢ is

Note that in this simple problem we are able to carefully choose an
appropriate effective binary diffusion coefficient by recognizing that the

argon concentration was large throughout the flow; thus for diffusion of atomic

0.A Was used. In general this is a superior procedure to assuming
b

all effective binary diffusion coefficients equal, as has been done in most




CHAPTER 5

SURFACE CHEMISTRY

5.1 INTRODUCTION
In Chapter 4 we treated mass transfer problems for which the essential
details of the w-surface molecular composition were known. For example, in

the water evaporation problem of §4.1, K was obtained from P

H,0,w }5QSHC%L
an equilibrium relation tabulated in steam tables. In the tungsten oxida-

tion problem of 84.2, K ~ 0, again an equilibrium relation: in the

0,,w
2,
temperature range considered the reaction 3W* + 4.502:? W309 is in equilibrium,

and the equilibrium constant is
4.5

/P
W30 0,

K =p >> 1 (5.1-1)

pw.0, (T
But how did we know that the reaction product was W309? At higher tempera-
tures we would expect w206 and WO5 to appear, and finally even WO2 and WO.
If all these products are to be considered we have numerous equilibrium re-
lations, of the form of Eq. (5.1-1), to consider simultaneously, and the
problem of determining the w-surface composition becomes quite complex.

As another example consider graphite ablation at high temperatures.
In the stagnation region of a missile at peak heating the freestream tempera-
tures are usually very high, and at values of the wall temperature greater

than about 3000°R the reactions are

€C+0>CO and 2C + 02 + 2C0,

and are diffusion controlled with K and K ~ (0. If T is increased
O,w Oz,w w

to about 5500°R the carbon surface begins to sublime yielding vapor species

such as Cl’ C2, C3, etc. Also reactions between carbon and nitrogen take

place and, for example, the cyano radical CN is formed. The figure on the

following page shows the typical mass loss behavior, plotted as the dimen-
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. - ® = '
sionless ratio m/peueCM( B').

Recall from §4.3,

fusion
p— gg:tlv"oﬂed ——— Sublimation

: - ' -
m=pu CMB (exact) (5.1-2)
Pelely

c
B BRI o otte Flow

1
Mo g model) (5.1-3)
X Pty - P = 10 atm
K, -K
B' = :.Ei‘vk_’w (equal D'S)
K, -K
k,w k,t (5.1-4)
In order to calculate the mass 3000 5500 T,(°R)

transfer rate m we must evalu-

~

ate B'. KC &= 0 of course, and since only species carbon crosses the u-
b
surface, K =1, so it remains to evaluate K = Zo. K. , and we see that
Gy E C,w i Ci i,w

we require the molecular composition at the w-surface. If we knew the Ki,wls
we could evaluate B' and hence m. At these high temperatures and pressures
the assumption of chemical equilibrium is good so that we can use chemical
equilibrium relations to determine the Ki’w's. In fact, we shall see that is
convenient to determine B' directly, and since Ki,w = Ki,w(Tw’P)’ we obtain
B'(Tw,P) = ﬁ/peueCM, i.e., a graph of the kind shown in the figure above.
5.2 OPEN SYSTEM EQUILIBRIUM (WITHOUT CONDENSED PHASE REMOVAL)

Texts on chemical thermodynamics usually discuss chemical equilibrium
in the context of a closed system. A closed system equilibrium calculation
involves specification of the relative amounts of each chemical element,
together with two independent thermodynamic variables (e.g., T and P), and
the result is the molecular composition K;. On the other hand the w-surface
is an open system where the elemental composition depends on various mass
transfer and material degradation rates, and surface constraints. Thus in

ablation analysis we are primarily interested in open systems and we focus

attention here on the calculation of open system chemical equilibrium.
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We will develop the theory for boundary layer flow over an ablating
surface and will assume (i) no material is removed from the surface as a
condensed phase, i.e., no melt layer removal, erosion or mechanical fail
removal, and (ii) equal diffusion coefficients for all species. These
restrictions will be removed in a later section. The figure shows a control

volume bounded by the w- and u-

Boundary Layer Edge

surfaces, and the fluxes of
chemical elements. Subscript c
refers to surface material (of-
ten char) and g refers to gas
(often pyrolysis gas) which may
be percolating through the sur-

face material. The fluxes

mch,c and mgKk,g are fluxes

across the u-surface and strictly speaking should be subscripted u. Mass

conservation applied to the control volume requires

mg+mC =m = (pv)w (5.2-1)
. I
by definition K o= ZotkiKi & {5.2-2)
b l=l b
o I
and Yo u .Z:lakijl,w (5.2-3) |
1:

where I is the number of gaseous species. The figure shows the total ele-
ment flux ﬁk W divided into its convective component (pv)ka " and its dif-
b ’
fusive component Ek W Conservation of chemical elements in the control
4

volume requires

Jk,w b (pv)ka,w = a K i mch

¥k, g (5.2-4)

3E

Now the mass transfer Stanton number for species i is defined as
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RO = 1 S K ) (5.2-5)
) I
thus Jk,w = ggiakiJi,w

I
% Eg%akipeueCMi(Ki,w—Ki,e)
In general, CMi = CMi(Re’Sci) and Sci = u/pDim, so for equal diffusion coef-

ici 1 =
ficients all the CMi are equal, CMi CM say, and i

5 J'k,w B peueCM(zakiKi,w L ZO‘kiKi,e)

i peueCM(Kk,w-Kk,e) (520

or peuecM = jk,w/(Kk,w_Kk,e) (5.2-7)

RPN

Substitute Eq. (5.2-7) in (5.2-4),

peuecM(Kk,w—Kk,e) 3 (pv)ka,w i mgKk,g * mch,c (5.2-8) .
We now define dimensionless pyrolysis, char and mass transfer rates as

m m (pv)
. = . B' = w
peueCM = peueCM peueCM

and solve Eq. (5.2-8) for Kk @

l~ '~ v
o B K K,
Ky = — (5.2-9)

which constrains the elemental composition at the w-surface: Eq. (5.2-9) |
gives the relative amounts of chemical elements at the w-surface in terms
of the known elemental compositions of the freestream, pyrolysis gas and
z char, and two of Bé, Bé or B! (Bé+Bé = B') from Eq. (5.2-1)).
Example 5.1
Determine the form taken by Eq. (5.2-9) for graphite ablation into

air.




In this situation B' = 0 so B' = B'. Also K. =1, K. = 0.232,
g c C,c

KN,e = 0.768; KC,e = Ko,c = KN,c = 0. Thus

L R SN T S e
C,w ~I+B" ’ “O,w ~ 1+B" * °"N,w 1I+Bf

K
So we see that the elemental concentrations at the w-surface are unique

functions of the dimensionless mass transfer rate B' = ﬁ/peueCM.

Note that if we lump the pyrolysis gas and char streams into a single

~

stream, it will have an elemental composition Kk " given by,
b

ka,t = mgKk,g + mch,c

e
LB o

¥ Ek e_kk W
substituting in Eq. (5.2-9), Kk o T8 —2= e
b

)

(or B' =

Kk,w'Kk,t
With the elemental composition Ek,w specified by Eq. (5.2-9), we pro-
ceed to develop the relations required to calculate the equilibrium molecular
composition Ki,w' For reactions of gaseous monatomic species with the ablat-

ing surface we write

K
E @ N =N (5.2-10)
=1 k% k f

where Cra is the number of atoms of element k in condensed phase species £,
and Nk represents the symbol for gaseous element k, k = 1,2,...,K. Similarly,
for reactions between the gaseous species i, an independent set will be the
formation reactions from the gaseous monatomic species,

K

chkink > N, 1 ® 1,2, 0euylek (5.2-11)

k=1
We have chosen the monatomic gaseous species as base species for convenience
in developing the theory; in practice these species might be in too small a

concentration, and to avoid numerical problems another set of base species

should be used. The number of independent equations in the set Eq. (5.2-11)
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is equal to the number of gaseous species minus the number of elements. An
exception to this rule is when two or more elements are in the same ratio
in all molecules of a system, e.g., NOZ’ N204.

For thermally perfect gaseous species the equilibrium relations cor-

responding to Eqs. (5.2-11) are

b e

P./ Il Py = Kp; (T) i=1,2,...,I-K (5.2-12)
k=1
K‘
or P, - kéo_kiznpk = LK. (T) AR T R, L (5.2-13)

where Kpi(T) is the equilibrium constant for the reaction and is available
in tabulated form or may be calculated from thermodynamic data. The equili-
brium relation corresponding to Eq. (5.2-10) are, if 2 is the surface species

(assuming only one is present),

K
_kz::lckﬁmpk = ik, (T) (5.2-14)

and for all other candidate condensed phase species,

K
-glck NPy < LK (T) (5.2-15)

if work of compression for condensed phases is assumed to be negligible.

The partial pressures of the gaseous species must add to the total pressure,

I

E P, = P (5.2-16)
: i
i=1

and finally we must relate the K to P‘.1 as follows:

k,w

molar concentration of species i,

(g]
"

cPi/P

molar concentration of element k, Sy = chicPi/P
i

partial density of element k, Bk = c M

mass fraction of element k, kk = 5k/0
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combining, K = (Mk/PM))iIckiPi (5.2-17)
where the mean molecular weight of the gas mixture M = ZMiPi/P (5.2-18)
i
The system of equations to be solved are Eqs. (5.2-9, 13, 14, 16 and
17). We can regard P to be known and Bé and Bé to be specified (these
latter two variables are often varied parametrically for a given P); then
Tw and the Pi are to be determined. The unknowns and equations can be

counted as follows:

Pi I (5.2-13)| I-K
Kk,w K (5.2-14) 1
M 1 (5.2-9) K
Tw 1 (5.2-16) 1
Total | I+K+2 (5.2-17) K
Total I+K+2

With Pi’ P and Tw known, the calculation of other thermodynamic properties,
such as enthalpy, is straightforward. Alternatively we might treat Tw as
known and Bé as an unknown, an approach which is necessary when the Bc':—Tw

plot has a plateau region. Some examples are shown in the following figure.

a) Specify B¢ since double valued B b) Specify T, to obtain plateau
for T,




r Exaggle 5.2

Illustrate the theory presented above for a simplified model of graphite

ablation in argon, with chemical species C* (solid carbon), C, C3 (carbon

vapor species), CO, O, 0, and A.

ﬁ Taking the base species as the monatomic gaseous species C,, 0, and A,

1’

the formation reactions for the remaining species are, from Eqs. (5.2-10
and 11),

€, e

E C, +0~>Co

3C1 > C3

20 » 02

the corresponding equilibrium relations Eqs. (5.2-13 and 14) are

-ZnPC1 = ZnKpc*
LnPng - (ZnPC1+£nPO) = £nKp
LnP. - 38nP. = LnK |
C3 Cl ,PC3

ZnPO - 2£nP0 = anpo

2 2

Eq. (5.2-16) is PO * Py = P * PC + PCO * P, =0
2 1 3

the elemental constraints, Eq. (5.2-9) are

~

= S - ¥ [} X = iy
Ke,w = B'/Q#BY) 5 Ky o= Ky /(+8) , K, Ky of (1+B")

W

element mass fractions in terms of partial pressures, Eq. (5.2-17) are

KC,w = (12/PM)(PCO+PC1+3PC3)
KO,w = (16/PM)(PCO+PO+2P02)
|
|
KA,w = (40/PM)PA ;
number of gaseous species: Cl’ C3, 0, 02, Co I=35




v

number of elements: C, O, A K=3

I+K+2 = 11 equations

~

K K

P A,w’

M, Tw = 11 unknowns (P, B',

Pcor Por Po_» pcl’ c.’ Par Xe,we Ko,w

2 3

KOZ,e’ KA,e specified).
5.3 CONDENSED PHASE REMOVAL

The analysis of §5.2 assumes that all the mass leaving the ablating
surface does so in the form of gaseous species, the flux being (pv)w. We
now wish to consider the situation where some of the mass loss is caused by
material leaving as a condensed phase. Examples include melt layer removal,
mechanical fail, or erosion. Mass transfer problems with condensed phase
removal are encountered in many industrial processes. A well known example
is oxy-acetylene cutting of sheet steel where, after the steel is heated to
a sufficiently high temperature by the oxy-acetylene flame, the oxygen supply
is increased and the steel burns in the oxygen jet. At the temperatures
involved the oxides are mostly molten and flow away under the action of gravity
and shear forces; also chemical equilibrium prevails with 1(02’w ~ 0. The mass
transfer problem is straightforward to analyze, as shown in the following
example.
Example 5.3

Iron burns in a stream of 99% O2 and 1% N2 by mass. Calculate the mass

transfer driving force and burning rate.

Since oxygen is inert in the gas phase we can use the driving force

expression developed in §4.2 for tungsten oxidation. Equation (4.2-5) was

Ko %1,v
B' = —2— where subscript 1 refers to O

o 2
Kl,w'nl,w/m
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Here Kl,e = 0.99, K

crossing the w-surface is 02 and ng and m are in the same direction. Since
2

the oxides leave as condensed phases they

= 0 and n; w/ﬁ = K is unity since the only species
E

1,w 1,tw

(ov),,

do not enter the gas phase, i.e., they do

not cross the w-surface. Condensed phases —_———— e —

D T S A

can be thought of as being removed through
the side of the control volume between the g fi

w- and u-surfaces.

thus B' = (0.99-0)/(0-1) = -0.99
e m = peueCMO &ﬂﬁ%;ﬁll

= DeueCMO(4.651)(-0.99)

= —4.609eueCM0

If the oxide is assumed to be Fe203, the rate at which iron is consumed is

(112/48)m or 10.74peueCMO. The conductance oeueC

impinging jet using a suitable correlation.

Mg Must be evaluated for an
Notice that the '"blowing correction'" is greater than unity, i.e., the
gas phase is under suction, and indeed is under very strong suction. The
lower 1limit of B' is -1 and corresponds to an infinite velocity towards the
surface. We see that the Couette flow formula gives CM = 4.65CMO for this
problem. In fact, exact boundary layer solutions and experiment show that
the logarithmic formula underpredicts CM/CMo when there is strong suction,

and values of Cy as much as 50% yreater can be expected.

Our ability to calculate m in the above example rests on two assump-
tions. Firstly the chemistry was simple: no gaseous oxides were formed,
and KO o 0. If either of these conditions were not met, a detailed equi-

2’

librium chemistry calculation would be required. Secondly, we have assumed

that the heat evolved in the oxidation process is sufficient to melt the

90




oxides, supply the sensible heat to the virgin iron, and balance heat losses
to the environment to give a steady state at the process temperature. If
this condition is met, the burning rate is truly limited by the rate at
which oxygen can get to the surface, and we are not particularly interested
in the precise surface temperature. On the other hand we shall see that,
for oxide or melt removal from heat shields, a transient state is usually
involved, and the coupled heat transfer problem also requires consideration.
The equilibrium surface chemistry codes developed by Aerotherm [1]
have an opticn, the so-called "FAIL" option, to handle condensed phase re-
moval. It will prove convenient to discuss the treatment of condensed phase
removal in the context of use of the FAIL option as applied to a number of
specific situations in turn.

Case 1. One condensed phase species.

Consider, for example, tungsten and ignore details at other than near
the melting temperature for metal tungsten, W*, which is 3681°K. The figure
shows the result of a conven-
tional open system equilibrium

chemistry calculation, with
P = 140 atm

prescribed T, and P, to obtain "
B' as a function of Tw' The \ s
calculation also shows that, at

the pressures of interest, no

condensed phase oxides are pres- T, = 381°K T,
ent near the melt temperature.
So below Tm = 3681°K we have the relatively simple situation of solid tung-

sten being oxidized to gaseous oxides. As the values of Tw input to the code

are increased from below Tm to above we continue to obtain solutions, as shown

TR SR A S s
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by the dashed curve in the figure, but above Tm the surface is liquid tung-
sten. The solutions indicated by the dashed curve are quite valid, but of
little interest to heatshield analysis for the reasons which follow.

When the tungsten surface reaches Tm, the liquid tungsten will form a
film which flows along the solid tungsten surface under the action of

pressure gradient and shear forces. Since these forces are large in a typi-

cal ablation situation, the e
' ((ER
film will be very thin and the , I :I° "

|
liquid will flow back along the

heatshield rapidly. The film

1Y

|
i
may be very wavy, or even may e,
IB
. . ) ||p "b
break up. Assuming a continu- W, »
1% »
| SR
- v
ous film for the present, the I',. >
'ln 'y
o
temperature drop across the '::' ’
' melt
I 3

gas boundary layer layer

e
\ :

film AT = Tw—Tm is a complex
function of the shear and pressure forces, thermal transport processes across
the film, and the melting rate itself. However, since the thermal conduc-
tivity of tungsten is relatively large (V100 Btu/hr ft F) AT is relatively

small. Analysis [2] of the film flow shows that for usual missile reentry

conditions AT does not exceed 20°R and thus can be assumed to be negligibly é
!
small. Thus for modeling purposes, Tw may be approximated by Tm' Then there

is a unique chemical equilibrium solution of interest: corresponding to Tm

we have unique values of B', Ek,w and Pi,w for a given pressure. A higher
heating rate will not lead to a higher value of Tw’ but will simply result in
a higher melting rate.

In the FAIL option a new B' is defined to represent condensed phase

. ' - > . . - .
material removal, BZ = mz/peueCM, and if we retain Bé = mc/peuecM then, when
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melting occurs, we have a choice as how to define a total B', usually un-

subscripted, or subscripted 'a' for ablation. In the FAIL option the
choice is made to have

B' = B} = By + B (5.35-13

a
so that B' no longer described mass transfer into the boundary layer. In
fact

(pv)w/peuecM =B - B =B, (5.3-2)
The figure shows the relationships between

the various B's. Notice that the m in 8y

Example 5.2 should strictly speaking be

subscripted ﬁw.

Since the counting of equations and

unknowns for condensed phase removal is
somewhat tricky we will list the equations

to be solved again:

K
LnP; - égiakiznpk = LnkKp. (T) i=1,2,...(I-K (5.2-13)
K
'£§}°kz‘”Pk = LnKp, (T) (5.2-14)
B'K, +B'K, -B'K, _+K
= e gKkg,g (o k,C 2 k,l k,e ke=1.2 K (5 2_9+)
., w 1+B7 pEgs s :
b1
1
P, =P (5.2-16)
i=1
K w = P ?Ckipi k=1,2,...,K (5.2-17)

where Eq. (5.2-9+) is the original element constraint equation modified to

account for condensed phase removal, and the fact that B; # (pv)w/peueCM
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in the FAIL option. For purposes of comparing the number of equations with

the number of unknowns it is convenient to substitute Eqs. (5.2-17) into

Eq. (5.2-9+) so as to eliminate the Kk W’

l~ v - |~ v
i 3 Zl:ck Ex BeKk, g Bk, e Bik, 2Kk e e
PM &~ ki i 1+B],
and to add the trivial relations,
B! = Bl + Bé (5.3-4)
By + By = Bl + By (5.3-5)

Now let us examine the equation set as it is used to calculate melting of
tungsten. Pressure is always regarded as specified, and Bé = 0; then if

we specify Tw = Tm and B;,

Pi I (5.2-13) I-K
M1 (5.2-14) 1
Bé’Bél’Bk 3 (5.3-3) K
I+4 (5.2-16) 1
(5.3-4 and 5) 2
I1+4

Actually, in the FAIL option, Tw is determined implicitly as follows. A
fail temperature Tfail—l is pre-assigned to any candidate condensed phase
species %; this species will be removed from the surface in condensed form
at a rate ﬁl if the surface temperature is greater than, or equal to,
Tfail-z' For a melting solid the fail temperature is just the melt point;
for a mechanically failing solid the fail temperature may be related to

the stress situation. Also one can specify a maximum fail temperature for
all species: physically this maximum might correspond to the fail tempera-

ture of the substrate. The determination of Tw is then via the restrictions:
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S

Tw % Tfail

for the surface (solid substrate) species

>
" Teann

for any species for which ﬁz > 0.
Thus in the case of tungsten the code determines Tw to be the pre-
assigned fail temperature of W*, 3681°K,

since W* is the surface species and my is

> 0 in order to obtain Bé greater than 0.9.

0.9

Of course, if we did not specify B, > 0.9

we would not be able to obtain solutions

corresponding to condensed phase removal.

Notice that in this case Bél and the

gas phase composition Ki W do not vary along

3681°K

the vertical leg of the Bé vs. T plot. The equilibrium relations being solved
are equivalent to those solved in a conventional open system equilibrium calcu-
lafion, with P and T, = Th specified, which would give the lowermost point on the
vertical leg. Indeed, we could use the Bé
so obtained to calculate Bk for a given Bé
directly from Eqs. (5.3-4 and 5). Note also

that we are free to prescribe a temperature 0.9 s

lower than Tm as a fail temperature, say

based on a solid stress criterion. In the

case of tungsten the Bé - T, plot is shown

Teain m w

in the figure. Again, a conventional open

system equilibrium calculation with P and g8 specified would give

= Tfail
the Bél and K; 'S at the lowermost point of the vertical leg; provided W*
is the only condensed phase species present, these quantities do not vary

along the vertical leg.




Case 2. Two condensed phase species with the substrate having the lower

fail temperature.

Consider, for example, molybdenum close to its melting point 2892°K.
At usual pressures the condensed phase dioxide M00§ may be present. The
dioxide has no liquid phase and, additionally, a decomposition temperature
of the solid has evidently not been observed. Since it is unlikely that
the dioxide could maintain its integrity once the substrate molybdenum had
melted, it is reasonable to assign a fail temperature of 2892°K to MoO7 as
well. This choice is equivalent to having input to the code 2892°K as the
maximum fail temperature.

Clearly we have added another unknown to the problem considered in
Case 1. Instead of one Bk (= Bh*) we have two, Bﬁo* and BMOOE' Thus from
a mathematical point of view we know we must add another equation to our
set. Since we envisage both failing species to be at the surface (even
though our model assumes that they are removed as fast as they are formed)
it seems reasonable to require both to be in equilibrium with the gas phase.

Thus we have two equations (5.2-14), rather than one as before

-lnPMo = z”KPMo* (5.2-14a)

-2£nP0 - tnPMo = I_nKPM[oO5 (5.2-14b)

and write Eq. (5.3-5) as

' ' = R ' = R '
R PR mogy F Al Bb1+Bh‘do*+BMoO§

and our equations and unknowns tally. The surface temperature restrictions
determine Tw = 2892°K in the same way as for Case 1. The table on the
following page summarizes the results of a calculation at 100 atm.

By interpolation B! , = 0 at B; = 0.687. For B; > 0.687 we have two

failing species and the mathematical problem is as described above. Notice
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Base Species w-Surface

B! B! B! B! Mole Fractions Surfgce
bl Mo* MoO% Species
2 Mo 0 N
2 2
5 -.1646 4.3133 0.8514 4.097-07 6.891-05 9.809-01 Mo*
2 -.1646 1.3133 0.8514 4.097-07 6.891-05 9.809-01 Mo*
1 -.1646 0.3133 0.8514 4.097-07 6.891-05 9.809-01 Mo*
0.7 -.1646 0.0133 0.8514 4.097-07 6.891-05 9.809-01 Mo*
0.6 .0687 0.0 0.5323 1.473-08 1.916-03 9.223-01 Mo03
0.5 .320 0.0 0.1758 4.703-09 6.00-03 8.647-01 Mo03
0.46 .46 0.0 0.0 Mo03

that the concentration of gaseous molybdenum is constant in this regime:
this confirms that Eq. (5.2-14a) is being satisfied, since Kp = KP(Tw)
and Tw is fixed at 2892°K. In fact the complete gas phase composition,
as well as Bél are invariant for B; > 0.687.

For B; < 0.687 only MOOE is failing and since Bﬁo* =0, it is no
longer an unknown, and Eq. (5.2-14a) is deleted from the equation set.
Again, inspection of the concentration of gaseous molybdenum shows that
it is no longer constant confirming that Eq. (5.2-14a) is not being satis-
fied. For this reason Mo* is not output as the surface species since,
if Eq. (5.2-14a) is not being satisfied Mo* cannot be exposed to the gas
phase.

The values of B' given in the table are conveniently represented in
what may be called a failing phase diagram as shown in the figure on the
following page. In such a diagram Bﬂl and the Bi's are plotted cumula-

tively vs. B;, together with B; itself (which gives a line of unity slope).

The figure shows such a diagram for molybdenum at 2892°K. It is instruc-

tive to look at how the value of Bﬂl = -0.165 comes about. The quantity

el e ——
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B s

Bél is simply the B' of our
bl

elementary mass transfer Bb1*8ho0s ///

theory. We can assume the

boundary layer inert and

no dissociated oxygen in

. 1
the free stream since we 3

0.687

are looking at equal dif-

fusion coefficient calcu-

0.86 | —— — =

lations for which these

assumptions have no effect.

Then basing Bﬂl on 02, \\ -0.155

KOz,w‘KOz,w
Ba ~ % K
Oz,w Oz,tw

Now K = 0.232; we would expect K to be approximately zero (the code
02’e 02,w
calculates KO = 7x10-5). Thus

=

-0.165 = (0'232'0)/(°‘K02,tw)

x - 7> . . . 1 .
so that Koz,tw = 1.41 (-noz’w/m). Notice that a lower limit for Bbl is

-0.232 which corresponds to K 1, i.e., when the only transferred

Oz,tw

species is oxygen and all this oxygen goes to form condensed phase oxides

which do not enter the boundary layer. In fact we have K = 1.41

Oz,tw

which indicates that part of the oxygen goes to form gaseous oxides which
do reenter the boundary layer. The code printout indicates mass fractions
KMoOS,w = 0.059 and KMoOZ,w = 0.024 showing that there is appreciable for-
mation of gaseous oxides.

Note: (i) For B; > 0.687 both condensed phase species Mo* and MoOE are

in equilibrium with the gas phase; however, we have not re-

quired that they both be in equilibrium with each other. We
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have regarded each as pure condensed phase species which do
not interact with each other directly.

(ii) The dependence of w-surface composition on the mass transfer
situation in an open system equilibrium calculation is well
illustrated by the behavior of B; > 0.687. As Bé is in-
creased from, say, 0.5 to 0.6, the mass fraction of the domi-

nant gaseous oxide MoO3 decreases from K = 0.39 to 0.27.

MoO., ,w

3,
The reason can be seen if Eq. (5.2.97) is written for element
oxygen,
320
3 T§§'BM00§ + 0.232
K =
o,w 1+Bl')1
' - 4 . .
As BMOOE increases so KO,w decreases, in order to increase the
rate of diffusion of O to the surface. Since Ko and K0 "

2’
are already very small at this temperature, KO w can decrease
Ed

only if the concentrations of the gaseous oxides decrease.

(iii) For B; < 0.687 we have noted that Bﬁo* = 0 and that hence Eq.
(5.2.14a) is not used. It follows that only one condensed phase
species is actually present on the surface. However, the
second condensed phase species does play a role via the '"char"

composition: here the char is Mo*; a completely different

result would obtain if the char were MoO%*.

2

The B; vs. T plot is as

shown. At lower pressures the Ba
P =1 atm
w-surface gaseous oxide concen- \Xr -
-~ r— P = 100 atm
——

. . o ———r— ]

trations are higher and hence d:Ac

higher values of Bé are attained

as the melt temperature is ap-

proached: the plot shows this

2892 Ve 'R
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behavior for P = 1 atm.

Case 3. Two condensed phase species with the substrate having the higher

fail temperature.

Consider, for example, tungsten o

in the vicinity of the melting tem-

perature of WO%, 1745.2°K. Calcula- 0.9 —
tions using the FAIL option indicate
a B; VS. Tw plot as shown below. As

in Case 2 we have two equations

(5.2-14), e T, ()
-Lnp, = anPw*
-3knP, - KnPw = Znprog

but now we only have one Bk, so Eq. (5.3-5) is

= 1
Pe * Bg = Bo1 * Pox

There are two distinct regimes of the Bé Vs. Tw plot where condensed
] phase removal of WO% occurs, (i) the plateau, and (ii) the vertical leg.
Let us consider each in turn.

(1) The Plateau. The plateau in this case is not truly a constant B;
curve, Bé does vary slightly along the plateau owing to changes in the gas
) phase composition with temperature. However, this regime can only be cal-

culated by specifying Tw to avoid numerical difficulties. A specification

of Tw > 1745°K is consistent with the surface temperature restrictions in
the FAIL option, but is not determined by these restrictions as was the case

on the vertical legs in Cases 1 and 2. Consistent with the specified tempera-

ture option of the code no B' is specified and indeed need not be as the

following unknowns-equations count showsg

100




W (5.2-13) 1K

{
1
|
|

M 1 (5.2-14) 2

]
B:, B, B!, Bhog 4 (5.3-3) K
I+5 (5.2-16) 1

(5.3-4 and 5) 2
I+5

Somewhere along the plateau the W0§ disappears, the exact temperature being
dependent on pressure. For temperatures higher than this, Bi = 0, and a
conventional open system equilibrium calculation can be made.

(ii) The Vertical Leg. Consider approaching the melting point of WO%,

1745.2°K from below. Below this temperature there is no condensed phase
removal and the calculation is identical to a conventional calculation:
Bé = Bﬁl is prescribed and the unknown Tw is found as one advances up the

B‘,'i—Tw curve. Since WO% is the only surface species only one Eq. (5.2-14)

*

3

At 1745.2°K the FAIL option allows for an additional unknown, BWO*’
3

but need not add another equation since the surface temperature restric-

is satisfied, that for WO

tions in the FAIL option fix the temperature at 1745.2°K. For this pur-
pose the code regards WO; as the surface species as well as the failing
species. So again the only Eq. (5.2-14) is that for WO§ and the vertical
leg is exactly analogous to the vertical leg of molybdenum for B; < 0.687,
discussed under Case 2. Thus similarly, as B; is increased, so the value
of 1(02’w decreases in order to allow more oxygen to diffuse to the surface
in order to supply the oxygen content of the WO%; correspondingly the value
of Bél drops (becomes more negative) as the boundary layer is under suction
because the oxides are predominantly condensed and o not cross the w-
surface. If B; is increased still further there is reached a point where

the concentration of 02 approaches zero, and B!. reaches a minimum value;

bl

101. «




this is the diffusion controlled limit. In contrast to the molybdenum

example, the lower temperature here implies small concentrations of gaseous
oxides. Thus simple mass transfer

theory would give a minimum value of ,///,

0.9

! = - = -
Bbl K & 0.232

in good agreement with FAIL option woy

calculations. The general features T, = 17452

of the failing phase diagram for this 56?\7 %
-0.23

case are shown in the figure.

More complex cases.

One can deduce from our set of equations considered by the FAIL option
that there is a maximum allowable number of condensed phases. Two examples
follow which illustrate a number of interesting implications of this restric-
tion.

As a first example, consider again the ablation of molybdenum. Pre-
viously we considered only behavior near the melt temperature of Mo* (2892°K)
and assumed that the only candidate condensed phase oxide was MoOE. However,
at lower temperatures, we would expect Moog to be present, and should be
allowed as a candidate condensed phase oxide. The melt temperature of MoO%
is 1074°K. Let us see how many condensed phase species are allowed for
this sytem. The gas phase chemistry will be simplified by allowing only O,
02, N, NZ’ NO, Mo and M003. Equations (5.2-13 and 14) for the system corres-
pond to the reactions

2N ~» NZ Mo -+ Mo*

N + 0 =+ NO Mo + 20 - MOOE
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20 ~» 02 Mo + 30 - MoOg

Mo + 30 - MoO3

and the equations are,

LnK, . = &nP - 2&nP I
PN2 N2 N ,en[(P Mo -z'ano

LnKp no = LnPNo - (ZnPN+£nPO) t"KPM00§= _(Kano+2£np0)

M%%=bﬂb-ﬂwo U%M%=4MWJ“W&

ZnKPM00§= !_nPMoO3 - (KnPMO+3£npo)

If we examine the last three equations we see that we have three equations
in only two unknowns, PMo and PO; hence one must be discarded implying that
only condensed phase species are allowed. Aerotherm [3], in using the FAIL
option, handled this problem rather arbitrarily; they eliminate MoOE below
2400°K and MoO% above 2400°K, based on arguments related to an estimate of
the boiling point of MoO%.
As a second example consider the ablation of aluminum. Since nitrogen
reacts with aluminum to form a condensed phase nitride AIN*, it is found
that at the melt temperature of aluminum (934°K) three condensed phase
species Al*, A120§ and AIN* are expected to form. Also at this low tempera-

ture the concentrations of gaseous oxides are very small and can be ignored.

The reactions for this system are

2N > N2 Al - Al*
N + 0 >~ NO 2A1 + 30 » A120§
20~ 0 Al + N »> AIN*

Z

and the corresponding equilbrium relations are

£nK = ZnPN - 2£nPN £nK

2 2
= L"PNO - (ZnPN+£nPO) £ZnK

PN

£nK

P NO




—

£nKP02 = ZnPo2 - 2£nP0 Z"KPAIN*= —(ZnPA1+£nPN)

If we examine the last three equations we see we have three equations in the

three unknowns PAI’ P0

these equations do not appear to cause a problem. However, if we examine

and PN’ and in contrast to the previous example,

the complete set of six equations we see that there are only three additional

unknowns Po . PN and PNO‘ Thus these equations would fix the gas phase

compositionzwithgut using (satisfying) Eq. (5.2-16), which was ;Pi = P.
Thus again the system of equations is overconstrained. But we zan remedy
this particular situation very simply if we recognize that a freestream of
real air contains some argon. If we introduce a small amount of argon into

the boundary layer edge gas, KA 2’ the corresponding element constraint
b

equation is
(5.3-6)

and Eq. (5.2-16) becomes

P + P + P, + P, +P

Al NZ N 0 0+P + P = P

2 NO A

By adding the additional unknown PA,w it is now possible to satisfy Eq.
(5.3-16).

Notice that in the diffusion controlled limit for the formation of
Alzog and AIN*, the gas adjacent to the wall (w-surface) is calculated to
be essentially all argon, as can be explained by simple mass transfer
analysis. Equation (5.3-6) rearranged is

Ka,e Xa,w

B! = -0 _
bl KA,w

(5.3-7)

which is what we would expect from our original definition of B' since

KA ™ 0. The value of Bﬁl obtained in the diffusion controlled limit

s’

is calculated by the code to be -0.999. If we choose I(A o™ 0.00999 (i.e.,
104

e o i i




! g
R R

e R —

a little less than 1 per cent) then -0.999 = (0.00999-KA w)/KA s and solv-

ing, K 0.99, i.e., 99 per cent. So we see that only 1 per cent argon

A,w
in the edge gas is sufficient to give 99 per cent argon at the wall.
Of course this problem is quite similar to the oxy-acetylene cutting

of sheet steel discussed earlier. In Example 5.3 we had 1 per cent N2 in

a stream of oxygen and we were prepared to assume that K 0 in order

02,w
to obtain our result of Bﬂl = -0.99. As a consequence KN - 1. In reality
2,
Ko is a little greater than zero and KN is a little less than unity.

2’w Z’W
Physically what is happening is that the suction on the boundary layer is

very large due to the oxygen going to form condensed oxides. The inert
nitrogen is swept to the surface by this convective flux, but at steady

state the absolute flux of N2 at the w-surface must be zero.

n = (pv) K +j =0
N2,w w N2,w Nz,w

or in terms of a transfer coefficient

K

) =0
Nz,e

(pv)wKNz,w E: peuecM(KNz,w_

The mass velocity (pv) 1is negative, so we see that K > K
w Nz,w Nz,e
the equation. Notice that there is the strong non-linear effect; as the

to satisfy

concentration K2 ¥ builds up to allow the diffusive flux away from the wall

to balance the convective flux towards the wall, so the convective flux

increases as well. At steady state the solution corresponds to a value

of KN w Very close to unity. One can think of the nitrogen '"blanketing"
2’

the surface.

Maximum allowable number of condensed phase species

As mentioned before, we can deduce from the set of equations considered
by the FAIL option thait there is a maximum number of condensed phases allow-

able. We now deduce a general rule. The maximum number follows from the
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requirement that Eqs. (5.2-13), (5.2-14) and (5.2-16) are not overcon-

strained. Recall that these equations are:

K
£npy ~ kgckim’k = &Ky, (T) ; i=1,2,.. 000 (5.2-13)
K,
- Yo Py = K, (T) . Akl (5.2-14)
k=1
1
2P =P (5.2-16)

where I is the total number of gaseous species and L is the number of con-

densed phase species. Looking first at the sub-set Eqs. (5.2-14), we see

that the unknowns are the partial pressures of the gaseous elements, Pk,

and hence L < K if the sub-set is not to be overconstrained. Next look at

the sub-set Eqs. (5.2-13) and (5.2-16): the unknowns appear to be the par-

tial pressures of the (I-K) remaining gaseous species Pi (excluding the

gaseous elements). Since there are (I-K) + 1 equations and only (I-K) Pi's,

at least one of Pk must also be an unknown if the sub-set is not to be

overconstrained. These considerations can be summarized in a simple general

rule for counting the required number of chemical elements: §
"A chemical element is required for each condensed phase species and

must appear in at least one of the condensed phase species; in addition,

one element is required for the gas phase species, giving a total of

K=1L+1."

In this manner the maximum allowable number of condensed phase species is
implicitly determined.

Note that the phase rule of thermodynamics applied to this situation
simply states L < K - 1 and cannot be used to determine the maximum value
of L for a given system. However, the reasoning we have used to develop

our rule is identical to that used to derive the phase rule.
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The reader should now re-examine the tungsten, molybdenum and aluminum

ablation problems previously described, and see if the conclusions reached

are in accord with the general rule.

5.4 MULTICOMPONENT DIFFUSION
The assumption of equal diffusion coefficients is accurate and useful
for most ablation calculations. However, when there are large differences
in species molecular weights, significant errors may be incurred, e.g., if
¥ species such as H or W309 are present in air boundary layers. The Aerotherm
‘ surface equilibrium chemistry codes [1] have an option which allows for
| unequal diffusion coefficients based on the bifurcation approximation for
E ' multicomponent diffusion introduced in §3.7.
| In 83.7 it was shown that an appropriate driving potential for multi-
| component diffusion is the z fraction, rather than the mass or mole fraction.
Thus for a purely diffusive situation, such as a Couette flow, we could attempt

to correlate mass transfer as

Ji,w E peue CM (zi,w - zi,e) (3.4-1)

In a boundary layer flow mass transport is due to both convection and

diffusion; the former contribution is characterized by mass fractions Ki’

so that it is appropriate to define a new z* fraction by the relation

M K./FY

‘Z’:= (i I - 1 1
i kY sk /EY A=)

i . et

where the Schmidt number exponent in boundary layer flows of binary mixtures
suggests Y = 2/3 should approximately account for the respective contributions
of convection and diffusion. Then

5 = * - * -
Ji,w Pele CM(zi,w Zi,e) S}

Modification of the analysis of §5.2 to allow for multicomponent diffusion
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is straightforward. Since CM is independent of species, Eq. (5.2-7)

becomes

~

- g

pu C k’e)

= 3 * =
ee M Jk,w/(zk,w (5.3-4)

~

where zi =1z s z;, while the w-surface elemental constraint Eq. (5.2-9)
i
becomes
= | ~*
PR AL L R T (5.4-5)

which is the desired result.

Evaluation of the bifurcation approximation and z* potential

Data which allow an evaluation of the accuracy of the bifurcation

approximation and the z* potential are available. Some examples follow.

(i) Evaluation of the bifurcation approximation. Exact solutions of the

Stefan-Maxwell equations in axisymmetric stagnation point flow have been
obtained for a limited range of conditions [4]. The Figure which follows
shows exact results for injec-
tion of helium and xenon into

air with K = 0.25 and K
Xe

He, t st

= 0.75, and approximate results

Cui/Cuin

using the bifurcation approxi-

Exact —— —

mation calculated with the o2 b Bifurcation 0 o

BLIMP code [S]. Since the bi- A R | g s T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

furcation, in principle, can be 5

—
(Zneuedue/ds)é

made exact for a ternary system,

this case admittedly does not

represent a severe test. However, the diffusion factors were calculated
from Eq. (3.7-13) and the results do support the use of this simple
correlation.

(ii) Evaluation of the z* potential. The two Figures below show the




results of calculations for multiple species injection into air in high

temperature axisymmetric stagnation point flow of air [5].

The mass trans-

fer Stanton number is defined in the conventional manner, peueC =3j. /

(K. - K. ). For all the injectants Ki

i,w i,e >t

Cui/Cuio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

#ogueluio

The Figure opposite shows the data
recast in the form of Stanton numbers
defined in terms of the z* potential;
from Eq. (5.4-4),

PVl (2°) = f??iifg?—_T

i,w “i,e

It is seen that use of the z* poten-
tial is reasonably successful in collaps-
ing the curves to give a single
CMi(z*)/CMio(z*), for a given injec-

tant composition.
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CHAPTER 6

SIMPLE HEAT TRANSFER ANALYSES

6.1 INERT GAS INJECTION
Some of the fundamental ideas involved in calculating heat transfer
to an ablating surface are well illustrated by the simple problem of
injection of a single inert foreign species into a Couette flow. In
particular, the analysis of this problem shows us how to define heat
transfer to a surface through which mass is being transferred, and demon-
strates the roles played by the inter-diffusion term in the energy flux
vector, the unity Lewis number assumption, and the choice of enthalpy
base states. The figure shows a
control volume, cross-sectional
area A, thickness dy. Energy T

dT|
30 gy T * Gylyrdy
can flow in and out the control i

dy A

volume by conduction, -k %; ot I_' 1 1
nghily X %;

and each species can transport

"

enthalpy, n.h.. At steady state

the principle of energy conser-

vation applied to the control

volume requires

dT dT, _
A(; nihi - k 3§9y+dy - A(?nihi -k a;ay =0
i i
divide by Ady, and let dy » 0 . (imh, - ko) s0 6.1-1)
4 % dy i ii dy '
as before mass conservation requires n = constant = m (6.1-2)
3 dT _ dTy = ¢
integrate Eq. (6.1-1), )inihi -k ay = (iZnihi -k Hw = mht (6.1-3)
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The integration constant defines ht’ the enthalpy in the transferred state.

Now n, = Kim + ji’ thus Eq. (6.1-3) becomes

o . dT _ -
f(Kim+Ji)hi -k & mh
: . : dT _ -
A m?Kihi + ;Jihi -k G mht
i i
mh + Zj.h - k dr = an (6.1-4)
i'i dy t L

— — N s’ — ~— -
convection interdiffusion conduction tothl

i.e., we have three components of the total energy flux: convection,
interdiffusion and conduction.

If we assume the Lewis numbers, Lei = (k/Cp)/(pDim), to be unity for
all species, we can simplify Eq. (6.1-4) and integrate to obtain the en-

thalpy profile and heat transfer rate. Consider the following manipulation:

T
h = ZK.h. where h. = h.° t/ﬁ C_.dT
; 11 i i to Pi
dh = 3K.dh. + Zh.dK.
.11 1 1
[ = IK.C_.dT + Zh.dK.
1 2 1Pl ATl
3 i i
1 dK.
' dh = €.dT + Th.dK, 4itd Ldh g8, X o i
P ;101 Cp dy dy Cp i 1 dy

Unity Lewis numbers require k/Cp = pDim for i, thus

k dh _ dT ks o ;
E; & k 3 + Zhipvim =K 3y - Wy
substitute in Eq. (6.1-4),

dh _ -

k
mh - =— 5— = mh
c_d t
p y
which is to be integrated subject to the boundary conditions y = 0, h = hw;
y =6, h= he' The mathematical problem is now identical to that solved

already for diffusion in a Couette flow, with h replacing Kl’ and k/Cp
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replacing pvlz. On assuming k/Cp is constant across the flow, the result
is
] k/C Ln(1+B)) h_-h
m = =B x —————rll— X B/ where B, = — % (6.1-5)
Bh h h hw-ht
e N ——_—
conductance for 'blowing driving
limit of zero correction' force
mass transfer
or, generalizing to a boundary layer
. Kn(1+BA)
m = DeueCHo _B—l'l— B}'] (6.1-6)

As was the case in the
just a property of the

sideration of only the

mass transfer problem, the Stanton number CHO is
flow, so use of Eq. (6.1-6) requires further con-

evaluation of B!.

h

To look at the evaluation of B! let us consider a model transpiration

h

cooling problem. Helium is injected

from a reservoir at temperature To

into a hot air-stream, and it is re-
quired to maintain the wall tempera-
ture at Tw. In the figure the o-

surface is located far enough back in

the reservoir so that temperature

gradients are negligible there. Re-

call that ht was defined as the integration constant in Eq. (6.1-3); hence
evaluation of ht’ and hence Bﬁ, requires specification of an additional

physical fact: here we specify that the helium in the reservoir has enthalpy

h

o Then an energy balance on the control

, corresponding to a temperature To'

volume located between the w- and o-surfaces gives

dT

dy|w ~ nlhllo SA

Inghy [, -
i
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where species 1 is helium. But from Eq. (6.1-3),

mh

dT
dy |w

Ingh, [, - k
1

thus mht = nlhl,o = mhl,o’ or ht = h h , i.e., for this simple case

1,0 o

the enthalpy in the transferred state proves to be equal to the enthalpy

of the injectant at the reservoir temperature, and

he—hw
! - -
Bh o (6.1-7)
w o
Now he = hZ,e since the free-stream is pure air, and hw = iZKihilw =
Kl,whl,w+K2,wh2,w' So to evaluate hw we apparently need the composition

at the w-surface as well. However we can circumvent this problem through
use of the following manipulation. For an inert mixture we are free to
choose the enthalpy base state for each species, helium and air, such that

the enthalpy of each is zero at Th, then

(6.1-8)

i

T
o

but b, " = hl,o 0 t[; CpldT = hl,o'hl,w
w

where the last equality holds irrespective of datum state, so that the
superscript Ty has disappeared. Also

T T
w

h T
e . i,e i,e

n
£
~

= ¥K. (h. -h, ) irrespective of datum state

]
]
Fal

n
=2

|
=2

where hew is the enthalpy of a mixture of e-composition at the w-temperature,
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then

he'hew _ h2,e 2,w

- (6.1-9)
l,w-hl,o hl,w h1,0

-h

=
B *F

If the specific heats of species 1 and 2 are independent of temperature,

then

B},\ - CPZ(Te'Tw) % Cp air (Te_Tw)
Cpl (Ty=To) Cp He (Tw~To)

(6.1-10)

To gain insight into the significance of Bﬁ, substitute in m = peueCHBﬁ,

and rearrange,

me He (Tw—To) = P

o8 s ST (6.1-11)

i.e., (injection rate)x(coolant enthalpy rise) = (heat transfer coefficient)
x (temperature difference)

Notice that the heat transfer coefficient is obtained by multiplying CH

by peuecpair’ Had we used intuition to write down Eq. (6.1-11) we would

probably have thought some average Cp was appropriate; since C = 0.24

p air
Btu/1b and CpHe = 1.24 Btu/1b, the difference is substantial. We shall

in Eq. (6.1-11) is related to the role

see that the appearance of Cpair

played by the interdiffusion term.
Example 6.1
A transpiration cooled surface is exposed to an air stream at 3000°F.
The coolant is helium and is supplied from a plenum chamber at 100°F. If
the surface must be maintained at 800°F calculate the coolant supply rate
at a location where the impermeable wall heat transfer conductance peueCHo
is 120 1b/ft? hr.

Coair Te W) 0.24(3000-800)

From Eq. (6.1-10) By = C "\ (T, ~T)) 1.24(800 - 100)

= 0.608
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From Eq. (6.1-6) m

Zn(1+Bﬁ)

HO Bﬁ

C B/

P h

eue

(120) (0.781) (0.608)

57.0 1b/£t° hr

In order to see what we mean by "heat transfer to the wall" in this

sort of situation, let us look at an energy balance on a control volume

located between the w-

and u-surfaces,

dT
(Bl ~ & G0
1

. dT
= Gnghy - k@),

but n, = 0 since no air
is transferred at steady

state, thus

dT

(nlhl -k H;)W

. dr

= Uy - K dy)u
since helium is inert, and Tw = Tu; hl,w = hl,u’ so

df| - . dT
-k o e S (6.1-12)

Now -k %; &’ the conduction into the wall is what we usually think of as the
"heat transfer'". To further illustrate this, consider an energy balance be-

tween the u- and the o-surfaces; without introducing any assumptions we have

dT| _ :
"lhl,u -k 3? 5.2 nlhl,o + 0 and since n
dT _0 _o
- dy|u ~ m(hl,u'hl,o) = mcpl(Tw'To)

/ Porous wall back-face

— - — — — — — — —— ——— — O

[

=m,




i.e., k %;-u is equal to the product of m and the enthalpy rise of the coolant
as it flows from the reservoir to the surface, surely what our intuition tells
us should be regarded as the heat transfer. Note then that Eq. (6.1-12)
states that it is the conductive component of the energy flux at the w-surface
which is to be regarded as the heat transfer.

From Eqs. (6.1-3 and 4) we have two alternative forms of the total

energy flux across the w-surface: h
. 2 dT _ dT
mh, - fJihilw ~K gt = zmeho | -k e (6.1-13)
M —— —— — A — N— — & —— —
bulk inter- conduc- absolute conduc- :
convection diffusion tion convection tion i

total diffusion

Many workers regard the total diffusive flux to the 'wall value of the energy
flux" or the ''convective heat flux to the wall''. But we have seen that the
total diffusive flux is not really of interest since the '"heat transfer'" is

given by the conduction component alone. Nevertheless there is merit to

i 2 Rt b4

combining the interdiffusion and conduction fluxes for correlation purposes.

Equation (6.1-5), written at the wall is

dT : _kdh] s
K gyl - Bl T, dylw = "hy)
and m = peueCHBﬂ = peueCH(he-hw)/(hw-ht) |
dT . _ Kk dh} .
thus k a;'w - ?Jihilw E;-E; . peueCH(he—hw) (6.1-14a)
K g;{y 2 Ethilw
or CH = 5.0 b ) (6.1-14b)

Thus, for unity Lewis number, the appropriate driving force for the total

diffusive flux is the enthalpy difference across the boundary layer. But
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let us once again exploit our freedom to choose the enthalpy base state of
each inert species, and set the enthalpy of each equal to zero at Tw, then

Eq. (6.1-14a) becomes

T
w T
dT k dh o W_ oy -
k Sl E;“?‘ W = PeueCyhy ¥-0) = p u Cp(h -h, ) (6.1-15a)
dT
o € = SLIE (6.1-15b)

i.e., the appropriate driving force for the conductive heat flux is the
difference between the free stream enthalpy and the enthalpy of gas of free-

stream composition at the wall temperature. We see now why C appears

p air

in Eq. (6.1-11), and not some average Cp. Use of an average Cp would approxi-
mate the right hand side of Eq. (6.1-14a), and give the total diffusive flux.

Use of C " gives the conduction component, which we have already seen is

p ai

the required "heat transfer'.

The use of choice of base states to derive Eq. (6.1-15) from Eq. (6.1-14)

is a convenient, but not necessary, method. A purely algebraic derivation

proceeds as follows. From Eq. (6.1-15),

dT $j.h

5 dy|w = “i ilw

peueCH(he'hw)

peueCH(he-hew) i3 peueCH(hew_hw)

but for unity Lewis number, CH = CM’ thus

peueCH(hew"hw) E peuecM(izKi,ehi,w = ?Ki,whi,w)
5 fpe“eCM(Ki,e‘Ki,w)hi,w
= -%j. _h,
fiswii,w

dT| _ :
hence k Iylw = peueCH(he-hew) as desired.
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Another point to note is that caution must be exercised when working

with numerical values of the total diffusive flux, since the values depend

on the choice of enthalpy base state. Let us look at the values which ob- %
u tain in Example 6.1. ﬁ
dT

2
Iy lw ;)He (Tw -T ) (57.0) (1.20) (800-100) = 49,500 Btu/ft™ hr

Zthllw jl(hl—hz)w since j, = -j;

e e

If we choose enthalpy base states such that the enthalpies of helium and

air are both zero at T = 0°R, and if we assume constant species specific

T T SR S P PR T T e

heats, then

Zj.h

jidw = Jl,wTw(Cpl-CpZ) 3 Jl,wTw(1'24'0'24) i J1,wTw

To evaluate j1 w e note that since the Lewis number is unity, B' = Bﬂ SO
’

0~l(1 ¥ i
—— . i = .
-1 0.606 ; solving, Kl,w 0.377
1l,w
Also mKl,w + jl,w = mKl,t =m
solving, j1 P ﬁl(l-K1 w) = 57.0(1-0.377) = 35.5 1b/ft2 hr
" : 2
Thus ZJihilw = Jl,wTw = (35.5) (800+460) = 42,600 Btu/ft~ hr

i

The total diffusive flux is then

dT
lehllw dy w

= 42,600-49,500 = -6,900 Btu/ft2 hr

On the other hand if T° = 800°F had been chosen as the enthalpy base state
then the interdiffusion flux would have been zero, and the total diffusive

flux would have been equal to the conduction, -49,500 Btu/ft2 hr.
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6.2 TRANSPIRATION COOLING WITH PHASE CHANGE

Consider now the use of water instead of helium as a coolant, with an
injection rate just sufficient to keep the wall wet. Let water be species
1 and air species 2, and again the water is supplied from a reservoir at
temperature To' The analysis of §6.1 leading to Eq. (6.1-6) considers
only the transport processes occurring between the e- and w-surfaces, and
thus is not altered by a phase change taking place between the w- and u-
surfaces. Furthermore, the analysis leading to Eq. (6.1-7), based on an
energy balance on a control volume located between the w- and o-surfaces,
is also unaffected by a phase change taking place within the control volume,
since enthalpies rather than temperatures were used. Finally the manipula-

tion leading to Eq. (6.1-9) is unaffected since HZO is inert. Thus

h_-h
e ew
B! = (6.2-1)
- hl,w'hl,o
where h1 ” is the enthalpy of water vapor at temperature T, and h1 & is the

b

enthalpy of liquid water at temperature To. Equation (6.2-1) can be re-

written assuming constant specific heats, as

€ e AT
B = pair ‘e 'w (6.2-2)
L hfg+prater(Tﬁ'To)
Substituting in m= peueCHBﬂ and rearranging gives
m[hfg G prater(Tw-To)] 2 peueCHCpair(Te_Tw) (6.2-3)

i.e., (injection rate)x(enthalpy rise of coolant) = (heat transfer coefficient)

X (temperature difference)

Example 6.2

Rework the previous example with helium replaced by water as the coolant,

and a required wall temperature of 400°F. The ambient pressure is 20 atm,

and thus boiling does not occur within the wall.
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_ 0.24(3000-400)

From Eq. (6.2-2) B! = 0.555

h ~ 825+1(400-100)

From Eq. (6.1-6) m = (120) (0.795) (0.555) = 53.0 1b/ft° hr

6.3 SIMPLE DIFFUSION CONTROLLED OXIDATION

We now return to the simple diffusion controlled oxidation problem
for which the mass transfer analysis was done in 84.2. Specifically con-
sider tungsten being oxidized by an air-stream containing undissociated
oxygen, with wall temperatures high enough for chemical equilibrium to
exist at the w-surface with KO . 0. The reaction is assumed to be

1 2

W+ 4 5-02 e W309, and we found that B' = KOZ’

For the heat transfer analysis we can again use Eq. (6.1-6) with the heat

e/r = 0.232/0.26 = 0.893.

transfer driving force given by

dT
he-hw Enchg | * -k dy|w

B! =
h ~ h -h
mh, = Zn.h,| -k 9T
t p i'w dy|w
' Inghsly * i
= b ). -k &
PR dy ju
h_-h
thus B} = - .. il (6.3-1)
hw.(1/m)(§nihi|u -k & "

If we assume quasi-steady state heat conduction in the tungsten,
the evaluation of Bﬁ is straightforward. As was the case with transpira-

tion cooling, we locate an o-surface far enough back in the tungsten for

temperature gradients to be negligible, and an energy balance on the control

volume lying between the u- and o-surfaces gives

dT
nw*hW*Iu - k -

u = Mgyl + 0

dT
dy

= m(h h

but Nys = M, SO k - W, u" W*,o)




h_-h
substitute in Eq. (6.3-1), L (6.3-2)
w  W*,0

Equation (6.3-2) cannot be further simplified unless we are prepared to
make use of the assumption that the O2 and W309 are inert in the gas phase.
However the steady state ablation solution is of limited interest: it was
presented mainly to show that a result analogous to those obtained in §6.1
and §6.2 could be obtained for the oxidation problem. In practice we more
often encounter time-wise unsteady state heat conduction in a heat shield

and proceed as follows. Since m=p_uC,B! Eq. (6.3-1) can be rearranged

e e Hh’
as
. oT| _
wh, - ?nihilu +k Ay|u - PeUeCh(he-hy)
or k& - o uc,(h -h )-mh + In.h,| (6.3-3)
ay [u eeHVve 'w L i“ilu :

where we have replaced dT/dy by 9T/dy to remind us that now T = T(y,t).

The 1.h.s. of Eq. (6.3-3) is the conduction heat flux into the heat shield,
and serves as a boundary condition for the heat coneucticn equation govern-
ing the temperature distribution in the heat shield. We would like to see
a term on the r.h.s. of Eq. (6.3-3) which could be identified as a '"heat of
reaction". In order to proceed we need to assume, as in §4.2 that the boun-

dary layer is inert: then we can use the manipulation following Eq. (6.1-15)

to obtain
k& - puc.(h-h ) - Zj.h|. - mh + In.h, | |
ay [u eeH e ew iJi i'w W ii'u |
but mh + Y.jih.1 = Znihi, thus
L = puCyth -h.) -  (Zn;hi|. - Znihe| ) (6.3-4)
ay |u eeH e ew iilw iilu i
- —— — —— N m——
conduction flux conduction flux heat release between w- and u-
into heatshield across w-surface surface due to surface reactions
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Referring back to our previous examples notice that the '"surface reac-

tion" term is zero for an inert injectant, and equal to the latent heat of

vaporization for a water injectant. Also in the latter case (Znihi e

J = mh

, and we see that the conduction into the
1,w l,u fg

o ® m(h

heatshield is less than the conduction across the w-surface by the amount
3
mhfg.

Let us evaluate the surface reaction term for the tungsten oxidation

problem:
In;h, | = “w*,uhw*,u = mhw*’u
In.h.| = n h h (n = 0)
iilw Wsog,w W309,w 0 SW 02,w N2,w

Since T = T, all the species enthalpies are to be evaluated at temperature

Tw;
Enghy |, - Inghy = m[(“wso WMy o Wt (“oz /m)hoz,w hygx ]
= m[(1+x)h, , -th, -h. ]
W309 02 W*lw
But (1+7)h -th, -h,, = AH
w309 02 W T (W*)
. Tw
thus Znihilw - Znihi[u = mAH ey (6.3-5)
T
where AH (W*) is the heat of reaction per 1lb of tungsten at temperature Ty

for this exothermic reaction AHr is negative. Notice that Eq. (6.3-5) can
be rewritten as

T

. W
Ing h. | - Znihilu = (rm)(AHr(w*)/r)
Ty
= -n AH .3-6
0,,w r(02) (6 )
o
where AH r(0,) is the heat of reaction per 1b of 02. Substituting Eq. (6.3-6)
2

in Eq. (6.3-4) gives the surface energy balance in the familiar form,
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T W
k ot = peueCH(he-hew) + HOZ,WAHr(OZ) (6.3-7)
N—— o~ e~
conduction flux conduction flux heat release in

into heatshield across w-surface oxidation reaction

6.4 TRANSPIRATION COOLING WITH INJECTANT DISSOCIATION

We first look at the situation where the injectant dissociates in the
boundary layer and investigate the effect of dissociation on the surface
heat transfer. For simplicity consider a dimer A2 injected into a high
temperature flow of an inert gas with  _ _ __ __ _ ____ ____ __ gl

temperatures such that no dissocia-

tion of A2 occurs below the wall tem-

&, + 2A dissociation

perature, i.e., the dissociation takes

place wholly within the boundary layer  ___ __ __ _ g
and not in the porous wall. As for
inert gas injection (86.1) the A2 is
supplied from a reservoir at tempera- ‘1:
ture T . Let species 1 be Ays spesbes|
2 be A and species 3 the inert gas. Our analysis of §6.1 leading to Eq.

(6.1-7) is valid for a chemically reacting system provided that the Lewis

number is unity for all reacting species. Thus

2n(1+B}) h_-h
S h . _ e W
e peueCH ___§;_—_'Bﬂ 2 Bﬂ B hw—ho (58-1)

In general we can write for the species and mixture enthalpies, respectively,

T
h.=h.°+[C.dT;h=ZK.h.;
i ) o Pi g 11

and we are free to choose T° = Tw and hi(To) = 0 for species 1 (A2) and

3 (inert), then

I




i oTw
hl = 2 CpldT s h2 = h2

w w w

and we evaluate the mixture enthalpies as follows:

T
= (1)(h3,e) =.I; CpedT = he—hew = CpS(Te'Tw)
w

2K, .h.
e [i,ei,e

h =0 (since K2,w

w 0)

Ty

T
h, =/T CopdT = hy by = € (T-T,)
w

Substitute in Eq. (6.4-1)

B Py e CPS(Te'Tw)
hl,o Cpl(Tw'To)

(6.4-2)

W

e e e -

1,w

T

which is identical to the result obtained for an inert injectant, Eq. (6.1-10).
Thus we conclude that dissociation of a transpirant in the boundary layer has
no direct effect on the surface heat transfer. Of course, dissociation does
lower temperatures in the boundary layer and there are second order effects
on the heat transfer via temperature dependent transport properties. The
above result was first obtained in the early paper by Cohen, Bromberg and
Lipkis [1].

We now look at the situation where dissociation takes place within
the wall, i.e., we postulate that the A2 dissociation takes place wholly

below the wall temperature so that no A2 is present at the w-surface. Equa-

tion (6.4-1) still applies and again we choose = Tw’ but now we put

(0}

hio(T ) = 0 for species 2 (A) and 3 (inert),
of,, ~/"T ~’.T J[1‘
h, = h + C_.dT ; h, = G_<dT : h, = G tT
1 1 T pl 2 T p2 3 T P3
w w w
Then he = CpS(Te'Tw) again,
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=
1]

0 (since K s 0)

substitute in Eq. (6.4-1)

C (T -T
B = p3( e w)
h oT, ~
Cpl(Tw—To)—h1
oT T T

Now h, Yis just AHy ¥ where AH, " is the heat of dissociation of A, at
Tw; to the level of approximation of the analysis we can ignore the tem-

perature dependence of AHd and then

G (T =)
3 e 'w
Bl = L ; (AH, is positive) (6.4-3)
h Cor (T,-T,) +AH, d

Heats of dissociation are often large; in such cases B! calculated from Eq.

h
(6.4-3) will be much less than the value calculated from Eq. (6.4-2).

Example 6.3
A candidate passive transpiration cooling system is the combination
of a copper fluoride infiltrant and a tungsten matrix. Evaluate the ef-

fect of dissociation on the capacity of the infiltrant to absorb heat.

We must determine the effect of heat of dissociation on the enthalpy
difference (hCqu,w_hCqu,o)' Take T, to be the melt temperature of
tungsten (6624°R), then the required thermodynamic data are (JANAF tables):

100 atm boiling temperature = 4266°R

Enthalpy increase from solid at 536°R to vapor at 4266°R = 2056 Btu/1b

Enthalpy increase of vapor from 4266°R to 6624°R = 369 Btu/lb

Heat of dissociation, CuF2 + Cu+2F,= 3324 Btu/lb

a) without dissociation

h h = 2056+269 = 2425 Btu/lb

Cqu,w' CuF,,0
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b) Assuming dissociation to be complete at Tw (quite a good assump-
tion)

CuF w_hCuF e 2056+369+3324 = 5749

2% 22
percentage improvement = Ezégﬁéggé-x 100 = 137%

h

Note however that passive transpiration cooling system operation is
usually strongly transient in nature, thus the expression for m in Eq.

(6.4-1) is not appropriate for this situation.

6.5 THE RECOVERY ENTHALPY CONCEPT

We now use a Couette flow model to introduce the concept of recovery
enthalpy and recovery factor. Previously we assumed a low speed flow where
viscous dissipation effects are negligible; in order to include such ef-
fects we will now have our e-surface at a plate, temperature Te and moving
with velocity Uy - For simplicity we will consider a pure fluid of constant
specific heat. Conservation equations are derived by applying the principles
of mass, momentum
and total (mechani-

cal plus thermal)

energy conservation

& P %
ytdy Y
to an elementary 4 ﬁ
dy A
yr
u

control volume Ady; _{_

'
~
=]
<=
<
+
o
<
3
o
+
IS,
=
gle
<
<
+
=S
<

the figure shows

details for total

energy.
mass: q_ (n) =0 (6.5-1)
: & ,
: d_ du, _ ’
momentum: dy (nu-u dy) =0 (6.5-2) ‘
. d dT du, _ .
total energy: Iy (n(CpT+u}2) - k &y - Hu Ey) =0 (6.5-3)

127

i D — e SR SR TR oo i —




We will first obtain a solution for the simple case of zero mass trans-

fer (n = m = 0); then the momentum equation is easily integrated to give

a linear velocity profile,

e

Stk o Y
u §

The energy equation integrated once 1is

dT du _
H?'+ Hu =— = constant,

k &

but u = ue(y/6) and du/dy = ue/G, thus

2
dT Huey
a; + i = constant
k6

It is now useful to introduce dimensionless variables T*

and y* = y/§, then

2
Cu u /2
dT* e =
o z%my* RIS RECES

where Pr is the Prandtl number, Cpu/k and Ec is the Eckert number, (ui/Z)/

Cp(Tw—Te). Integrating again gives

¥ = PrEcy*2 + Cly* + C2

The boundary conditions to be satisfied are:

y=0, T=T or y* =0, T* =0

w
y=$, T=T, or y*=1, T =1
hence T* = PrEcy*2 4+ (1-PrEc)y*

The heat transfer to the wall is given by Fourier's law,

_ 4T
a, = 2 dy w

. k(Te'Tw) ng
T 8§ dy*|y=0
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(6.5-5)

(T-T,)/(T,-T,)

(6.5-6)




e — o ? S v— i -

k(T,-T,)
g = - ——— (2PTEcy* + l—PrEC)y*=o
k(T _-T.)
e W
= - ——— (1-PrEc)
2
K Ue
qw o 3_ [(Te+PI‘ Z_C_) ! Tw] (6.5-7)
P

In a low speed flow with negligible viscous dissipation the wall heat trans-

fer is simply the conduction through a slab ¢ thick,
-k (6.5-8)
G =7 F Vg ly e

Thus we see that the effect of viscous dissipation can be accounted for by
replacing Te by the '"'recovery' temperature Tr = Te * Pr(uez/ch) in the
driving potential for heat transfer. The temperature Tr is the temperature

corresponding to the enthalpy hr = CpTr recovered from the total enthalpy of

a unit mass of fluid at the e-surface, CpTe + %-uez, when the wall is adia-

batic. In other words, when 4y ™ 0, Tw = Tr'

More generally it is convenient to work in terms of enthalpy and

uez
hl‘ = he + Pr —2— (6.5—9)

The Couette flow is of course a simple model of real flows; we may further

generalize our result by writing

2
u

e
h, + r(Pr) = (6.5-10)

1/

where the recovery factor r = Pr for a Couette flow, r = Pr 2 for laminar

Prl/3

flow, and r = for a turbulent flow, all for an impermeable wall

(m = 0).

Effect of mass transfer

To determine the effect of blowing or suction on the recovery factor

we now obtain the solution to Eqs. (6.5-1) through (6.5-3) for m#o.
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Eq. (6.5-1) n = constant = m

Eq. (6.5-2) m = M g§-+ constant

or

Q-IQ-
<|e
]
==K
c
]
(g

Integrate subject to the boundary conditions u = 0 at y = 0, and u = u,

at y = § to obtain the velocity profile

Wy

u g L]
F e m/Ws_,

IC

Since we now have transport of mechanical energy by the transverse mass

flux it is convenient to solve the thermal energy equation to obtain the

resulting mechanical energy equation from the total energy equation, Eq.

(6.5-3) to obtain, after some algebra,

2 2
d°T . dT du, = _
X ;;E'_ me ay * U(ayﬂ ok s

The viscous dissipation term is evaluated from Eq. (6.5-11),

. ue(ﬁ/u)e(m/u)y

Iy -
(e(m/U)G—l)
qu 2 Mg (/) 22 (MY
U(a; = -
(e(m/U)a_l)z

Substituting Eq. (6.5-12)

-(/k)u 2 /iy 22 (VY

dz_T_éPr.d_T_
Rl R (m/n)6 .2
(e -1)
2 2
2 (Pr/C_)u %o
dy Y (e*°-1)
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(6.5-11)

temperature field. We multiply the momentum equation by u and subtract the




C

solving T = ——5:2———— eZO‘y + ag; eaPry + C2 (6.5-13)
20.7(2-Pr)

To obtain the recovery temperature we can simply obtain a solution for an

adiabatic wall at y = 0.

11 . W) . B .
dylo “alipe TG =9 bhemee € S omes

Tt 02w, €5
o~ (2-Pr)Pr 207 (2-Pr)
R IO, RE (zeaPry - Prezay) + C

20 (2-Pr)Pr 2

Apply a second boundary condition, T = Te at y = 8, giving

T = () (ZeaPrG 5 Pre2a5

= ) + C, , hence C,.
¢ 2a2(2-Pr)Pr § e

Finally the temperature distribution is
T-T, = -—TT—EL——-—-[2(e“pry-eapr6) - Pr(e®-¢2%%)] (6.5-14)
20" (2-Pr)Pr

and the adiabatic wall temperature results on putting y = 0 in Eq. (6.5-14)

to obtain
T, T, = ——2— [201-¢"""%) - pr1-¢2*%);
20.°(2-Pr)Pr
Substituting for ¢ and rearranging gives
2 2
u oPr§ 208 u
Taw'Te 5 22 [2(1-8 ) —agr(lée )] 5 28 F(ad) 16.3-35)
P (2-Pr) (e -1) p

Now ad = % §, and to see more clearly the effect of mass transfer we obtain
a solution for small m (small ad) by expanding F(ad) in a Taylor series
about od = 0,

F = F(0) + (a8)F'(0) + ...
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Repeated use of L'Hopital's rule together with considerable algebra yields
F(0) = Pr
F'(0) = 3 Pr(Pr-1)

2
Ue Pr 1 mé

TaW-Te = _EE;— [l + 3-7r-(Pr-1) + ...] (6.5-16)

a result which was obtained by Knuth [2]. For gases Pr < 1, so that the

effect of blowing is seen to be a decrease in the adiabatic wall tempera-

ture.




REFERENCES FOR CHAPTER 6

1. C. B. Cohen, R. Bromberg and R. P. Lipkis, "Boundary layers with

chemical reactions due to mass addition', Jet Propulsion, 28,
659-668 (1958).

2. E. L. Knuth,"Use of reference states and constant property solutions
in predicting mass-, momentum-, and energy-transfer rates in high
speed laminar flows", Int. J. Heat Mass Transfer 6, 1-22 (1963).

133

Am e e e e




e :...MMW”:MMM, =

CHAPTER 7

THE SURFACE ENERGY BALANCE

7.1 INTRODUCTION
In ablation calculations a surface energy balance is required in order

to evaluate the conduction heat flux into the heat shield, -k BT/aylu, which
is then used as an input into a conduction code. Thus we require a surface
energy balance similar in form to Eq. (6.3-1), but of more general appli-
cability. The surface energy
balance is a balance on a con-

3T

k y;i. Inihily
trol volume located between the
w- and u-surfaces, as shown in =

the Figure. We shall consider

stagnation regions, and ignore
thermal radiation and mechanical
removal, for the time being so
as to focus more clearly on the effects of chemical reactions.

Following common practice we will separate the u-surface mass fluxes
into two components, corresponding to the pyrolysis gas and the char, such
that 1

% +m «In  =In _ =m (7.1-1)

The energy balance on the control volume bounded by the w- and u-surfaces

is then

K %f. o g—;|w 4 fnihi|w ¢ mh + b (7.1-2) ]
or, since iZnihi = mh + )iijihi

k-g%u=kg—';w- Zjihy |, -y + dho s Rch (7.1-3)
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The approach used by Aerotherm/Acurex Corporation [1,2] in rearrang-
ing Eq. (7.1-3) is typical of good current practice and is as follows.

First, for a Lewis number of unity, we have the exact result that

aT . . .
k 3ylu ° peueCH(he-hw) - mhw+mghg+mchC (7.1-4)
then adding and subtracting peueCHhew’
L R e T L 0T U S T
dy|ju e eH'e ew e e“H' 'ew w w gg cc
= 2K. |k thus

but for Le = 1, CH = CM; also hew : $ et w

aT
k dylu ~ peueCH(he'hew) = peueCME(Ki,e'Ki,w)hi,w

- mhw + mghg + mchc (7.1-5)
and this equation holds irrespective of whether or not reactions occur
within the boundary layer.

For all species diffusion coefficients assumed equal but Le # 1, Aero-

term recommends use of Eq. (7.1-5) but with CM/CH = Lez/s, 156
oT( _ 2/3
dylu - Pty -Be,) + pu le CHE(Ki,e_Ki,w)hi,w
- mhw + mghg + mchc (7.1-6)

For unequal diffusion coefficients, Eq. (7.1-5) is replaced by

oT|
§§1u = Pl -hy ) + peueCM§¥z;,e_Z;,w)hi,w
- mhw + mghg + mchc (7.1-7)

Equations (7.1-4, 6 and 7) are the three forms of the surface energy
balance in general use by Aerotherm.

Comments on Equations (7.1-4, 6 and 7)

1. Use of these equations requires various quantities which may be

calculated by, for example, the ACE code [3].
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For Eq. (7.1-4): hw, and the surface thermochemistry calculation

is sufficient.

For Eq. (7.1-6): hw’ hew = ZKi,ehi,w’ so that in addition we

now require a frozen edge gas calculation.

For Eq. (6.1-7): hw, hew’ Zz;,whi,w’ Zz;,ehi,w and again the

frozen edge gas calculation is required.

Thus clearly Eq. (7.1-4) is the simplest of the three to use in

practice.

When Le = 1 the three equations will give identical values for the
conduction flux into the heat shield.

We have seen that for Le = 1 there are two equivalent heat transfer
Stanton number definitions, Eqs. (6.1-14b) and (6.1-15b). For

Le # 1 these heat transfer Stanton numbers are no longer equal.

When applying Eq. (7.1-4) the consistent definition of Stanton

number is
oT :

i * pu (R (7.1-8)
ee e w

while applying Eqs. (7.1-6) or (7.1-7) the consistent definition f

is

oT
k2
C ay |w

- (7.1-9)
- peue(he-hew)

Unless T° = Tw’ these Stanton numbers will have different numerical
values when Le # 1. In addition CH defined by Eq. (7.1-8) will de-
pend on the choice of enthalpy datum state when Le # 1.

For engineering analysis, Eqs. (7.1-4), (7.1-6) and (7.1-7) should

be viewed as alternative correlation schemes, and the merits of
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each should only be judged according to their success in correlat-
ing numerical or experimental data.

5. It is quite incorrect to use a Stanton number formed out of the
numerator of Eq. (7.1-8) and the denominator of Eq. (7.1-9), or
vice versa. Such an error was made by, for example, Meroney and
Giedt [4].

6. Notice that the use of peueCM(z{’e-zI,w) to describe transport of

species i to the surface in Eq. (7.1-7) is only practical for an

inert boundary layer. But in line with Comment No. 4 above, there
is little to be gained from attempting to refine this representa-

tion if Eq. (7.1-7) satisfactorily correlates the data in ques-

e P

I —

tion.

7. Blowing corrections in the form CH/CHO developed from experimental

or numerical data for real ablation problems will differ according

to whether Eq. (7.1-8) or Eq. (7.1-9) is used to define CH' Care

must be taken when obtaining correlations from the literature.

In ablation situations where the surface chemistry is dominated by a

single oxidation reaction, the surface energy balance has been often writ-

ten in the forin

T

9E; w o : :

k —~| = peueCH(he—hw)equilibrium + Ny WAHr 5 (AHr is negative) (7.1-10)
b air ¢ (02)

where n02,w is calcuiated assuming equal diffusion coefficients for O and 02.
The implied model includes the assumptions that (i) the only reactions in

the boundary layer are those involving air species, and (ii) the wall tem-
perature is low enough for O recombination to be complete. The question

again arises as to the appropriate definition of CH' As before we should

regard Eq. (7.1-10) as an engineering correlation scheme and evaluate its
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suitability by examining the ability of the scheme to correlate numerical

or experimental data.

7.2 THE EFFECT OF STANTON NUMBER DEFINITION ON BLOWING CORRECTIONS

For inert foreign gas injection into a laminar boundary layer numeri-
cal data is readily available for investigating the consequences of choice
of Stanton number definition. We shall use here data of Mills and Wortman
[5] for axi-symmetric stagnation point flow.

Case (i). H2 into air injection, TwLTe = 0.1

£, e onnOh o K o

P 27 Eq. (7.1-8) Eq. (7.1-9)
0.0 0.6509 0.6509 0.0 1.0 1.0
0.05 0.5773 0.6403  0.0459 0.950 0.984
0.1 0.4534 0.5699 0.1171 0.842 0.876
0.15 0.3302 0.4841 0.2231 0.754 0.744
0.2 0.2295 0.3969 0.3661 0.763 0.610
0.25 0.1597 0.3120 0.5492 1.265 0.479
0.3 0.1219 0.2398 0.7021 negative 0.368

; 0.35 0.0994 0.1761 0.8341 " 0.271
0.4 0.0812 0.1237 0.9195 1 0.190
0.45 0.0625 0.0831 0.9653 W 0.128
0.5 0.0444 0.0533  0.9866 t 0.082
In the Table and Figure fw is the wall value of the dimensionless stream

function and is directly proportional to the mass transfer rate m and
' i .
Bh (= m/peueCHo).
We see that CH/CHO given by Eq. (7.1-9) decreases monotonically with

increasing m. On the other hand, CH/C given by Eq. (7.1-8) has a mini-

HO’

mum at a moderate value of m and after going to infinity finally takes on

negative values. This anomalous behavior is due to the high specific heat




of the injectant hydrogen; I
at moderate blowing rates i ;
the wall enthalpy h  be- == (6. {7 1R)
comes larger than the

free stream enthalpy he'

even though we have Tw/Te

Ch/Cho

= 0.1, a "cold wall" situ-
ation. The inflections

in the CH/CHO curves near
m = 0 are real and may be

explained as follows.

Foreign gas injection

0 i i i i 1

] 0 0.1 0.2 0.3 0.4 0.5
gives values of CH/CHO -f, (= constant x f)

different from those for air into air injection due to the effect of composi-
tion on mixture transport and thermodynamic properties, essentially through
the ratio k/Cp. Now mixture values of Cp vary with mass fractions of the
components whereas mixture values of k vary approximately with mole frac-
tions. For a given mass injection rate (—fw or ﬁ) the wall mole fraction of
a light injectant is much larger than its mass fraction, until cf course

the mass fraction approaches unity. Both the k and C_ of H2 are greater
than the corresponding values for air (kHZ/kair

at low injection rates the effect of composition is mainly through k, and

2 6; cpHZ/Cpair = 14). Thus

values of CH/C are greater than those for air injection, while at high

HO

injection rates Cp dominates and CH/C

HO is less than for air injection, i.e.,

more effective blockage.

Case (ii). C into air injection, TWLTA = (0.1 and 0.5

As a second example we consider injection of monatomic carbon into air,

also at an axi-symmetric stagnation point. The table shows CH/CHO calculated

139




C4/Cho Ch/Cyo
-f i N
w for Tw/Te = 0.1 for T@/Te = .5
Eq. (7.1-8) Eq. (7.1-9) Eq. (7.1-8) Eq. (7.1-9)
0.0 1.0 1.0 1.0 1.0
0.1 0.782 0.792 0.748 0.772
0.2 0.596 0.595 0.607 0.576
0.3 0.437 0.434 0.615 0.411
0.4 0.304 0.294 0.530 0.275
0.5 0.192 0.182 0.444 0.172

according to Egs. (7.1-8) and (7.1-9) for a '"cold wall", Tw/Te = 0.1, and

|

for a somewhat hotter wall, Tw/Te = 0.5. It can be seen that for Tw/Te =

0.1 there is no significant difference between the values of CH/CHO calcu-

lated from the two formulae. However at Tw/Te = 0.5 there is a marked dif-
ference, especially at higher blowing rates. In addition, CH/CHO calculated
from Eq. (7.1-8) again does not exhibit a smooth monotonic behavior, and
hence would be more difficult to correlate.

The preceding examples give some insight into the general problem,

although clearly H2 is an extreme case of a very light injectant gas.
Also the enthalpy datum state is 0°R in these calculations and recall that
CH/CHO given by Eq. (7.1-8) is dependent on the datum state. Different
numerical values would be obtained if the JANAF datum state, 298.15°K, i
were used. If the datum state was chosen to be Tw then Eq. (7.1-8) would
give a result identical to that given by Eq. (7.1-9), even for Le # 1.

We conclude that CH/CHO calculated from Eq. (7.1-9), i.e., based on
the conduction component of the wall energy flux only, is better behaved and
hence easier to correlate than CH/CHO calculated from Eq.‘(7.1-8), = 18

based on the total diffusive flux. It follows that for bohndary layers which

+
are inert, or for which gas phase reactions are of minor importance, the
L
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surface energy balance in the form of Eqs. (7.1-6) or (7.1-7) is to be pre- |

ferred since the correlations of CH/CHO are easier to develop. However,
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