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NOMENCLATURE

A area

a~ particle diameter

B blowing parameter

B’ driving force

8 bluntness parameter

C Chapman-Rubesin parameter 
~

CF skin fr iction coefficient

C
D 

drag coeff icient

Cd roughness elements drag coeffic ient

CH,CM heat and mass transfer Stanton numbers

C
h 

sub-layer Stanton number

C specif ic heat
p

c molar concentration

a atoms/molecule

D... multicomponent diffusion coefficient

reference binary diffusion coefficient

V binary diffusion coefficient

DT thermal diffusion coefficient

E Mach number parameter (= ue /2He)

Ec Ecker t number

F force/mole; diffusion factor

f force/ib; dimensionless stream function

h sensible enthalpy; characteristic roughness height

H total enthalpy; shape factor

AH ,~H heats of reaction, dissociationr d
j mass diffusive flux
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J molar diffusive flux

K mass fraction

K equilibrium constant
p

k thermal conductivity; kinetic energy of turbulence

Boltzmann constant

equivalent sandgrain roughness

k
T 

therma l diffusion ratio

Le Lewis number (= Pr/Sc)

I mean free path

mixing length

M molecular weight

m mass of molecule

mass transfer rate

n absolute mass flux

N absolute molar flux

n number fraction

N number density

P pressure

q heat flux

Pr Prandtl number (= C p/k)

R gas constant/ lb

R gas constant/mole

RN 
nose radius

R5 shock radius

r body radius ; recovery factor; stoichiometric ratio

r mass species generation rate

Re Reynolds number

S source term
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s streamwise coordinate; entropy

Sc Schmidt number (= v/Vu)

T temperature

U oncoming air speed

u,v streamwise and transverse velocities

v absolute velocity

v* friction velocity ( = /T~ /p )

V diffusion velocity

x mole fraction; streaniwise coordinate

y normal coord inate

Z altitude

z compressibility; z-fraction; axial coordinate

Greek Symbols

a thermal diffusion factor; mass fraction of an element in a species

pressure gradient parameter; Clauser equilibrium parameter

adiabatic exponen t

shock stand-off distance

iS boundary layer thickness

displacement thickness

c intermolecular force law parameter; eddy diffusivi ty

similarity variable; static density ratio across shock

similari ty var iable

0 normalized temperature; momentum thickness; body angle

K von Karman constant

A mixing length model parameter

U viscosity

p1,p 2,p3 multicoinponent mixture properties
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v kinematic viscosity

similarity variable

II parameter in Cole ’s “law of the wake”

p density

a collision diameter

T stress

mixture rule parameter

intermolecular force potential; normalized mass fraction

stream function

collision integral

w exponent in viscosity-enthalpy power law relationship; normalized

stream function

Subscr ipts

a ablation

bi boundary layer

c char or surface material

O drag

e edge of boundary layer

ew edge gas composition at wall temperature

eq equilibrium

eff effe ctive

F skin friction

g pyrolysis gas

H,h heat transfer

i incompressible , chemical species i

j  chemical species j

k elemen t k

MN modified Newtonian
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in mixture

o reservoir condition; stagnation point

r reference state

S shock

t turbulent, transferred state

u adjacen t to an interface in condensed phase

w adjacent to an interface in gas phase

x location along surface

O zero mass trans fer limit

upstream of shock; ambient

Superscripts and Overscores

elemental

fl uctuating component

o standard state

— average; normalized

c conduction
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CHAPTER 1

INTRODUCTION

Commencing in the 1950’s the analysis of thermal protection systems

for re-entry vehicles has been an important activity of aerospace engineers.

Various types of re-entry vehicles have been of concern , including, for

example, ICBM nose cones , the Apollo command module , and probes into

atmospheres of other planets. Such analysis must include consideration

of the trajectory , the inviscid flow field , radiative heat transfer,

convective heat and mass transfer, surface chemistry, and heat shield

thermal response. Each of these aspects of the problem has received

considerable attention, and has a vast techn ical literature . The

objective of this report is to review the basic theory of just one

aspect, namely convective heat and mass transfer, with particular emphasis

on re-entry into the earth ’s atmosphere of ball istic missiles.

It has been the author ’s experience that the practicing aerospace

engineer engaged in the analysis of re-entry vehicle thermal systems has

usually a good training in flu id mechanics and heat transfer , but is

lack ing in formal training in mass transfer. Furthermore, whereas

numerous appropriate and excellen t texts on fluid mechan ics and heat

transfer are available, no appropriate text on mass transfer exists.

Correspondingly the development in this report assumes that the reader

has an advanced training in fluid mechanics, and to a lesser extent in

heat transfer, but requ ires l ittle pr ior exposure to the pr inciples of

mass transfer.

Perhap s the most notable omission in this repor t is any mention of the

phenomenon of boundary layer transition , desp ite the fac t tha t knowledge

of the location of transition is usually of critical importance to 
the1
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successful calculation of convective heat and mass transfer to a re-entry

vehicle. The author did n consider himself qualified to write  a useful

account of this aspect of the subject.
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CHAPTE R 2

INVISCID FLOW FIELD

2.1 INTRODUCTION

Prediction of the inviscid flow field is essential to the determination

of the aerodynamic and thermal response of a re-entry vehicle during flight.

In order to determine convective heat and mass transfer rates to the re-entry

vehicle heat shield , the edge of the boundary layer properties must be

specified, i.e., velocity, pressure, enthalpy and mass species concentra-

tions. Usually the two independent thermodynamic properties, required to

determine the edge gas thermodynamic state, are taken to be pressure and

entropy. For this purpose we require from the inviscid field a description

of (i) the pressure distribution around the vehicle, and (i i) the shape

of the bow shock , since curvature of the shock causes an entropy gradient

along the boundary layer edge.

Many methods and correlations are available for the determination

of the inviscid flow field around a re-entry vehicle. These methods vary

in their degree of sophistication and range from exact solutions of the

Navier-Stokes equations, to simple engineering correlations. In practice

the choice of one method over another depends on accuracy requirements

as well as computer time and storage limitations. In this Chapter the

intent is to present only some simple engineering correla tions for the

rapid calculation of boundary layer edge gas condi tions for conven tional

re-entry applications; these can be utilized in later Chapters in

numerical examples of the calculation of convective heat and mass transfer

to re-entry vehicles.

2.2 THE EARTH’S ATMOSPHERE

3 
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Altitude Temperature Pressure Density Accel . due Mean free Molecular
Ratio t to gravity path weight

( f t )  ( O F) (atm) (p /p
0) (ft/see 2) (f t)

0 59.000 1.00000+0 1.0000+0 32.174 2.1761—7 28.964
500 57.217 9.82063—1 9.8545—1 32.173 2.2082—7 28.964
1000 55.434 9164389—1 9.7107—1 32.171 2.2410—7 28.964

• 1500 53.651 9.46974—1 9.5684—1 32.169 2.2743—7 28.964
2000 51.868 9.29815—1 9.4278—1 32.168 2.3082—7 28.964
2500 50.086 9.12910—1 9.2887—1 32.166 2.3427—7 28.964
3000 48.303 8.96255—1 9.1513—1 32.165 2.3779—7 28.964
3500 46.521 8.79848—1 9.0154—1 32.163 2.4138—7 28.964
4000 44.738 8.63686—1 8.8811—1 32.162 2.4503—7 28.964
4500 42.956 8.47766—1 8.7483—1 32.160 2.4875—7 28.964
5000 41.173 8.32085—1 8.6170—1 32.159 2.5254—7 28.964
6000 37.609 8.01430—1 8.3590—1 32.156 2.6033—7 28.964
7000 34.045 7.71698—1 8.1070—1 32.152 2.6842—7 28.964
8000 30.482 7.42868—1 7.8609—1 32.149 2.7683—7 28.964
9000 26.918 7.14920—1 7.6206—1 32.146 2.8556—7 28.964
10000 23.355 6.87832—1 7.3859—1 32.143 2.9463—7 28.964
15000 5.546 5.64587—1 6.2946—1 32.128 3.4571—7 28.964
20000 —12.255 4.59912—1 5.3316—1 32.112 4.0816—7 28.964
25000 —30.047 3.71577—1 4.4859—1 32.097 4.8510—7 28.964
30000 —47.831 2.97544—1 3.7473—1 32.082 5.8072—7 28.964
35000 —65.606 2.35962—1 3.1058—1 32.066 7.0067—7 28.964
40000 —69.700 1.85769—1 2.4708—1 32.051 8.8074—7 28.964
45000 —69.700 1.46227—1 1.9449—1 32.036 1.—189—6 28.964
50000 —69.700 1.15116—1 1.5311—1 32.020 1.4213—6 28.964
60000 —69.700 7.13664—2 9.4919—2 31.990 2.2926—6 28.964
70000 —67.424 4.42898—2 5.8565—2 31.959 3. 7157—6 28.964
80000 —61.977 2.76491—2 3.6060—2 31.929 6.0347—6 28.964
90000 —56.535 1.73793—2 2.2360—2 31.898 9.7321—6 28.964
100000 —51.098 1.09971—2 1.3960—2 31.868 1.5588—5 28.964
137000 — 0.295 2.24146—3 2.5308—3 31.755 8.5986—5 28.964
150000 19.403 1.34291—3 1.4539—3 31.716 1.4967—4 28.964
197000 0.559 2.20348—4 2.4833—4 31.575 8.7630—4 28.964
200000 — 2.671 1.95371—4 2.2174—4 31.566 9.8140—4 28.964
250000 —107.84 2.0074—5 2.959—5 31.42 7.353—3 28.964
278000 —134.50 4.2751—6 6.819—6 31.33 3.191—2 28.964
300000 —126.77 1.2489—6 1.946—6 31.27 1.118—1 28.96
350000 —24.53 1.1210—7 1.327—7 31.12 1.629+0 28.69
360000 0.70 7.5133—8 8.350—8 31.09 2.572+0 28.57
400000 233.94 2.1071—8 1.522—8 30.97 1.381+1 27.97
450000 734.10 8.3036—9 3.399—9 30.83 6.032+1 27.29
500000 1203.81 4.6117—9 1.333—9 30.68 1.513+2 26.86

t p0 = 0.076474 lb/f t3

Table 2.1. 1962 U.S. Standard Atmosp
here4
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Given a planned trajectory the re-entry vehicle speed U~ and altitude

Z are known as a function of time; corresponding to the altitude Z, the

air temperature T ,, pressure 
~~,c, 

and density p
~ are required for flow field

calculations. Although these atmosphere properties are continuously

varying, mainly due to solar influence, a single standard atmosphere can

be used for re-entry application since (i) during significant re-entry

heating the stagnation enthalpy is far larger than the ambient static

enthalpy, and (ii) uncertainties in parameters such as density correspond

to altitude intervals which are negligibly small compared to the altitude

range over which re-entry heating occurs.

In current engineering use is the U.S. Standard Atmosphere of 1962 [1),

an abstract of which is given in Table 2.1.

2.3 PRESSURE DISTRIBUTION

Stagnation pressure

For Mach numbers less than uni ty the isentropic formula applies,

1 2 11
P0 

= P (l + ~j_ M~) -~
‘ (2.3-la)

or for y = 1.4,
• 7

• P = P C i  + M2/5)~ (2.3-ib)

To good approximation the Mach number Me,, is given by

U,~,(f t/s)
• M = 

______ 
(2.3-2)

49.1/ç(°R)

For M > 1 the Figure on the next page may be used : this graph is based

on calculations of a normal shock for equilibrium air and is valid f.r

T < 530 R.

Pressure distr ibutions

Detailed data for the pressure distributions around sphere-cone5
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geometries can be found in References [2, 3, 4]: the ratio of local static

to stagnation point pressure, and the local pressure coefficient =

(P- P)/½p U2 can be found as a function of the normalized surface co-

ordinate s/R
N, 

for a range of Mach number M from 3 to infinity, and cone

half-angles from 0 to 40 degrees. Ellett [3] tabulated and plotted the

results given in [2] after converting the data to British engineering

units. Robert, Lewis and Reed [4] reported Mach numbers and Reynolds

numbers around the body in addition to the pres~ure distribution. These
p

pressure distributions were obtained by using the method of characteristics

in the supersonic region, and direct or inverse methods in the subsonic

region. Detailed descriptions of these methods may be found in [5, 6, 7].

Most of the reported data are for ideal gas and equilibrium air. Also

mostly only a zero angle of attack has been considered .

The pressure distribution in the subsonic region (where most of the

pressure drop occurs) can be approximated by a modified-Newtonian

distribution as

• = + (1 - 
~~~~ 

sin2 0 (2.3-3)

where 0 is the body angle (90° at the stagnation point) and the bar

denotes normalization with respect to pressure behind a normal shock wave,

i.e., at the vehicle stagnation point. Eq. (2.3-3) is used extensively for

engineering calculations, and agrees very well with exact solutions for

spheres , prolate ellipsoids and oblate ellipsoids , for 0 < 30° [5, 8, 9].

Note that if the body angle becomes constant, Eq. (2.3-3) gives a constant

pressure.

For 0 < 30° the pressure distribution can be calculated using the

Prandtl-Meyer flow assumptions, giving the change in pressure (or Mach

number) corresponding to the change in surface angle. References [9, 10]

show that this approach gives good agreement with exact solutions. On

7
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the conical sections of blunt cones, the pressure distribution can be

obtained using blast wave theory [4, 11]; the pressure coefficient is

correlated in terms of the nose drag coefficient (integrated pressure

coefficient over the nose), nose radius, cone half-angle and axial location .

A useful complete pressure distribution correlation has been developed

• by the Aerotherm Corporation [12 , 13, 14] , and has been extensively used

for a variety of shapes and degrees of bluntness. The nosetip surface is

divided into three regions as shown in the Figure , and a different calcu-

lation procedure is used in each

sonic ;oint depends on Mach
I I  

~< ‘—..........— ‘I t t  - h . .  Ide,—

number M,,,, the isentropic

exponent behind the shock y, 
.‘fl,. pelIlt

and the overal l bluntness of - - - _ _ _ _ _-  _____ - ____ - —

Region I. The location is

always in the vicinity of 0 = 50° : its approximate location can be

obtained using the modified Newtonian distribution with y = 1.4. A more

precise location requires accounting for Mach number and real gas effects

• and involves an iterative preocedure [14].

Region I. Love [15] proposed a correlation which was a synthesis of the

modified Newtonian correlation, valid for spheres, and a correlation for

flat faced cylinders. Dahm [14] improved the representation of the

stagnation point velocity gradient, and the subsonic region pressure

distribution on very blunt bodies; also the correlation was extended to

be valid at lower freestream Mach numbers. The final result was

= ~~~~~~~ - (1 - PFD)[l 

;~*] 
+ 

(1 
- ~~~~~~~~~ - 4~) (i  - P )cos20

+ 
~~~~~ 

[~~~ 

- 1 + ~~ (1 - ~~)cos
2
0 + (1 - PF~~~~~~~~~~)] ~ (2.3-4)

~~~~~~~~~~~~~~ - - -  

~~~~~~~~~~~~~~~ ~~~ _________  ~~~~~~~~~~~~~~~
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where P = p/p

P
0 

= stagnation pressure

P,~ = freestream pressure ratio

RN = stagnation point radius of curvature

~HAX 
= max (RN, R*)

R* = distance from sonic point to body axis, measured normal to

the surface at the sonic point

s = surface stream length from stagnation point

0 = angle local tangent makes with body axis

* = denotes sonic point

I
—
* = ~ 

2 ~y—l
~~

~FD 1 - e~~(l - ~*) - ~~~~~ [(5~~2 - e~~]; A = 5 /~n(s */ s)

Region II. Here the modified Newtonian distribution Eq. (2.4-3) is used.

If the sonic point angle does not agree with the angle predicted by the

modified Newtonian expression an appropriate smoothing must be employed :

an example is given in [14].

Region III. The correlation for aft cone pressures was developed at the

Aerospace Corporation and has the form

C o2
= ~ (z 

; R 
~~~~~~~~ ~°c) (2.3-5)n

where O
~ 

cone half angle

z = axial distance from the start of the aft cone

R = radius at start of aft cone

CD = drag coefficient of the forebody

C = (P - P) / (
~~~ ) 

p 1 J~,

9
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The function f was determined by polynomial curve fitting of exact

numerical solutions for cones of varying bluntness, with cone half angle

as a parameter.

The boundary between Regions II and III is taken to be where the

pressure distributions intersect; iteration is required since CD is a

function of its position. Eq. (2.3-5) is based on hypersonic flow theory

and is strictly valid only when M,,, > 5. For Mc, < 4 the calculation

procedure for Reg ion II should be extended into Region III. For 4 < M,,, < 5

interpolation between M,,, = 4 and M0, = 5 predictions is recommended .
du
e

Stagnation Poin t Velocity Grad ient ds o

Often we are interested only in the stagnation point velocity gradient,

for which some simple formulae follow. For subsonic flow over a sphere or

cylinder the recommended expressions were developed using the Rayleigh-

Janzen method of expansion in powers of Mach number; for 1 = 1.4,

= (1 - 0.252 M2 - 0.0175 M~) sphere (2.3-6a)

= 2 —
~~~ ( 1 - 0.416 M,,, - 0.164 M,) cylinder (2.3-6b)

For supersonic and hypersonic flow over axi-symmetric bodies generated by

a hyperbola, parabola, prolate ellipse or circle, the stagnation point

v~1ocity gradient can be obtained by combining the Euler equation

applied at the outer edge of the boundary layer with the modified Newtonian

pressure distribution,

~~ ~~ (P- P
\
½ V ~~U (1 ) ½ 

(2 3 7)ds RN k RN
where ç is the density ratio across the normal shock. For very blun t
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axisyinmetric bodies, e.g., oblate ellipsoids etc., and three dimensional

bodies, it is necessary to use experimental data: Boison and Curtiss [33]

have provided some useful data.

A convenient correlation of ç to be used in conjunction with Eq. (2.3-7) 
-

valid for altitudes from sea level to 60,000 ft., is

1 + 8.8 (M~ - 1) (2.3-8)

2.4 SHOCK SHAPE

As was the case for the pressure distribution, the shock shape

associated with supersonic and hypersonic flow over re-entry vehicles can

be obtained using exact or approximate methods. The exact methods usually

involve determining the full inviscid flow field by some appropriate

numerical method [16, 17, 18, 19, 20]. Some analytical methods are also

used [21, 22, 23]. A useful approximate method assumes a thin shock layer

[Il , 14, 24, 25]. Shock shape correlations may be found in, for example,

[26, 27, 28]. For practical engineering calculations of re-entry vehicle

heat shield response along a trajectory the exact methods are impractical

and correlations n~ist be used.

Wilkinson [28] presents a simple correlation method based on the results

of several workers [29, 30, 8, 31, 32] which describes the bow shock shape

and location ahead of axi-symnietric bodies with various degrees of bluntness.

These correlations apply for M~ > 5, account for real gas properties, and

relate the shock directly to the body shape and the free-stream conditions.

Both the body shape and the shock shape between the stagnation point and

sonic point are assumed to be represented by conic sections of the form

= 2RNz - 8z2 (2.4-1)

r~ = 2Rs(z + - 

~~~ 
+ (2.4-2)

where RN and Rs are radii of curvature of the body and shock respectively;

11



-

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
-————

~~~~~
-
~ 

- 
~~~~

- 
T~~~~~~~~i~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

8 and are bluntness parameters for the body and shock respectively;

~ is the shock stand-off distance. The relation between 
~~
, Rs and 85

is given by two universal functions f1 and f2 in terms of C, the static

density ratio across the shock:

0.9
(1 + —

~~
—) = f

1
(C) = 

1 + 0.55/ (r  - 1) (2.4-3a)
s RN (1 +

1 ~ 
du
e 

— — 
0.778

U~ 1 + ° 
- f

2~~~~ - 

- 1) o.~~~[1 + 0.55/Cc - 1)0.9] 
(2.4-3b)

Wilkinson correlated the data of [32] to obtain an expression for the shock

bluntness parameter in terms of the body bluntness,

= ~~-[B + 2.232 _ %J(8+2.232)2 - 4(2.0868-0.719)] (2.4-4)

The asymptotic shock bluntness

for B ÷ (flat faced bodies) 
-

is 2.09. 
r~ - 2R

~
I- ,- -6~ II.- I

The calculation procedure ~~~~~~ 
~~~~~~~~~~~~~~~

to determine the bow shock
Rod. 0~iI~ ‘ 010?

location and shape is then as 
— -  -____ ____ _____—____

follows: 
I

1. From Eq. (2.4-1), the body

stagnation radius of curvature,

and the sonic point coordinates, the body bluntness parameter S is obtained

(8 = 1 for hemispheres).

2. The shock bluntness parameter 8
s 

is obtained from Eq. (2.4-4).

3. Eq. (2.4-3), in conjunction with Eqs. (2.3-5 and 6) determine A and

R
5
.

4. Eq. (2.4-2) defines the shock shape.

Boundary layer edge gas state

12
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H.
Near the stagnation point an isentropic expansion of the boundary

layer edge gas can be assumed, so that once the pressure distribution is

known the thermodynamic state of the edge gas follows directly . Further

away from the stagnation point the curvature of the bow shock wave gives

rise to an entropy gradient along the boundary layer edge. From a simple mass

balance between the boundary layer flow at any streamwise location and that

of a free-stream shock tube, the entropy of the streamline crossing the

boundary layer edge at that location can be determined. Via an isentropic

expansion along this streamline from the pressure behind the oblique shock

to that at the boundary layer edge, one can determine the edge values he

and U .  Then knowing 
~e 

and 5e’ such quantities as ~
)
e~ 
1e etc. can be

calculated.
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CHAPTER 3

DIFFUSION PHENOMENA

3.1 INTRODUCTION

The analysis of mass transfer requires an understanding of the movement

of a chemical species through a mixture or solution , and across phase bound-

ar ies. There are a number of physical mechan isms which cause mass transfer ,

the most important being ordinary diffusion and convection. The essential

features of these two mechan isms of mass transfer are well  illustrated if

we consider a crystal of potassium permanganate placed in a beaker of

stagnant water. As the permanganate dissolves it may be seen to diffuse

through the water. The local concentration of permanganate is ind icated by

color , the deepest purple being adjacent to the crystal. The diffusion is

always in the direction of decreasing concentration. Th is process of

ordinary diffusion occurs whenever there is a concentration grad ient in a

li quid solution : it occurs also in sol id sol utions and gas mixtures .

Accord ing to the kinetic theory of gases , gas molecules are in a state of

random motion . If an imaginary plane is placed normal to the concentration

grad ient of the species in question , it follows that more mol ecules of that

species cross from the side with the higher concen trations of that spec ies

than from the other side . Consequen tly , there is a net transfer of spec ies

across the plane in the direction of decreasing concentration. Th is transfer

is simply due to the difference in concen trations on each side of the plan e :

there may be no movement of the mixture as a whole. If the water in the

beaker is now stirred , the rate of dispersion of the permanganate is greatly

increased . This increase is due to the bulk motion of the water bodily

transporting the permanganate; such transfer due to bulk motion is called

convection.
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Other mechanisms of diffus ion resul t from gradien ts of temperature or

pressure , and from external force fields . In addition , concen tration

gradients cause energy transport due to interdiff usion of species , as well

as by the Dufour effect . Apart from energy transport by interd iff usion ,

these phenomena give rise to second order effects in the present context,

and are usual ly ignored .

3.2 DEFINITIONS OF CONCENTRATION

In a mul ticomponent mixture the local concentration of a species can

be expressed in a number of ways. The Figure shows an elemental volume

dV surround ing the location under
0? Sp.oo. I

consideration : the problem is to a o o
describe the composition of the 

• a

material within the volume. One 
~ 

0

0
method would be to determine o • 

0

somehow the number of molecules o

of each species present and

divide by dV to obtain the number of molecules per unit volume; hence a

number density can be def ined .

Number dens ity of species i = number of molecules of i per unit volume

= N. (3.2—1)

• Alternatively, if the total number of molecules of all species per unit volume

is denoted as N, then the number fraction of species i is

bt. = (3.2-2)

Equations (3.2-1) and (3.2-2) are micro8copic concepts; they are essential

when the kinetic theory of gases is employed to describe transport processes.

It is usually more convenient to treat matter as a continuum ; the

18
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smallest volume considered is sufficiently large so that macroscopic properties

such as pressure and temperature have their usual meaning. Thus macroscopic

def initions are required , f irst on a mass bas is:

Mass concentration of species i = partial density of species i

= p. mass/unit volume (3.2-3)

The total mass concentration is the density 
~~ 

= 
~~~~~~~~

‘ 
where the summation

is over all species in the mixture, i = 1, 2,.. .n. The mass fraction of

species i is def ined as

p
i

K. = — (3.2-4)

Second , on a molar basis :

Molar concentration of species i = number of moles of i per unit volume

pi
C. = 

~~~
— moles/unit volume (3.2-5)

where M. is the molecular weight of species i. The total molar concentration

is the mo lar density c = Ec1. Then the mole fraction of species i is

def ined as

x~ = (3.2-6)

A number of important relations follow directly from these definitions

and are listed below . The mean molecular weight of the mixture is denoted M

and is given by:

M = = Ex.M. (3.2-7)c i i

K.
also , (3.2-8)

By defini tion the follow ing summa tion rules hold true :

EK.  = 1 (3.2-9)
1
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Ex. = 1 (3.2-10)

It is often necessary to have the mass fraction of species i expressed

explicitly in terms of mole fractions and molecular weights; this relation

may be der ived to be

x1M~
K. = 

Zx.M. (3.2-li)
J 3

The corresponding expression for mole fraction is

K. /M.
— X~ = EK /M (3.2-12)

3 3

Example 3.1

(a) A mixture of noble gases contains equal mole fractions of helium ,

argon , and xenon. What is the composition in terms of mass fractions?

(b) If the mixture contains equal mass fractions of He, A , and Xe ,

wha t are the corresponding mole fractions?

M. = M  = 4.003
iie 1

M = M = 39.95 EM. = 175.3A 2

M
X 

= M
3 

= 131.30 El/M. = 0.283

a) x
1 x2 x

3 x.M. M .
From Eq. (3.2-11) K~ = 

Ex.M. 
= ~~~~~

— for equal x
i
’s

3 3  3

K
1 

= 4.003/175.3 = 0.023

K = 39.95/175.3 = 0.2282

K
3 

= 131.3/175.3 = 0.749

b) K = K  = K1 2 3 K./M. l/M .
1 1 3From Eq. (3.2-12), x1 EK./M . 

= 
El/M. for equal K. 

5.

3 3  3

x1 = (1/4.003)/(0.283) = 0.884

x = (1/39.95)1(0.283) = 0.088 
•
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x
3 

= (1/131.30)/(0.283) = 0.028

3.3 DEFINITIONS OF VELOCITIES AND FLUXES

In a multicomponent system the various species may move at different

veloc ities . Let V~ denote the absolute velocity of species i, that is,

the velocity relative to stationary coordinate axes. In this sense the

velocity is not that of an individual molecule of species i, but rather it

is the local average of the species , that is, the sum of the velocities of

molecules of species i within an elemental volume divided by the number of

such molecules. Then the local mass—average velocity , v, is defined as

Ep.v. Ep.v .
1-1 

= ~~
‘=EK.v. (3.3-1)

The quantity pv is the local mass flux; that is, the rate at wh ich mass

passes through a unit cross-section placed normal to the velocity vector v.

From Eq. (3.3-1), pv = Ep.v.; that is, the local mass f lux  is the sum of

the local species mass fluxes . The velocity v is the velocity which would

be measured by a Pitot tube , and corresponds to the velocity v used when

con sidering pure f lu ids. Of par ticular importance is that veloc ity v is

the velocity field described by the Navier-Stokes equations and thus orig-

m a tes in Newton’s second law of motion .

The local molar—average velocity , v~ , is def ined in an analogous manner:

Ec.v.
v * = 

1~~1 = Ex.v. (3.3-2)
- Ec. i-i

1

The quantity cv~ is the local molar flux; that is , the rate at wh ich moles

• pass through a unit area placed normal to the velocity v~ . In general y * ~

• in particular one of these average velocities may be zero when the other is

not. The question then arises as to how to define a stationary mixture .

The veloc ity of a particular species relative to the mass or molar-

• 21
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average velocity is termed a diffusion velocity. We define two such

velocities :

v. - v = diffusion velocity of species i relative to v (3.3-3)

- = diffusion velocity of species i relative to v~ (3.3-4)

We shall see that a species can have a velocity relative to v or v~ only

if diffusion is taking place.

Next we turn to definitions of fluxes. The mass (or molar) flux of

species i is a vector quantity given by the mass (or moles) of species i

that passes per unit time through a unit area norma l to the vector. Such

fluxes may be defined relative to stationary coordinate axes, or to either

of the two local average velocities. We define the absolute mass and molar

fluxes, that is, relative to stationary coord inate axes , as

mass flux n. = P.v. (3.3-5)
—1 1—1

molar flux N. = c.v. (3.3-6)
-1 1—1

The mass flux relative to the mass average velocity v is

~~i 
= 

i~~!i~~~~~ 
= (3.3-7)

L 

The molar flux relative to the mole-average velocity v* is

= c
1

(v~-.v~’) (3.3-8)

From a mathematical viewpoint any one of these flux def ini tions is adequate

for all diffusion situations; however, in a given situation there is usually

one def inition which , when employed, leads to minimum algebraic complexity.

The most important such situation is when the convec tive transport presen t

requires a solution of the conservation of momentum equation ; the solution

yields the mass-average velocity field , and it is then most convenien t to

use the mass flux relative to the mass-average velocity, that is, j~~.

Conditions of constant pressure and temperature , of ten encoun tered by chemical

eng ineers , have usually led tothe choice of the absolute molar flux to
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take advantage of the constant molar density c which results in such

situations .

The definitions of fluxes lead directly to a number of useful relations

as follows :

= En. = pv (3.3-9)

N = ZN . = cv * (3.3- 10)

Ej
~ 

= Z.J.* = 0 (3.3-11)

N. = . -
~

- (3.3-12)-i. M.
1

= = K.n + 
~i 

(3.3-13)

N. = c.v* + J~* = x.N + J~ * (3.3-14)
— 1 1— —1 1— —1

Example 3.2

A gas mixture at 1 atm pressure and 300°F contains 20% H2, 40% 02,

and 40% H20 by weight . The absolute velocities of each species are

-10 ft/sec, -2 ft/sec, and 12 ft/sec, respectively , all in the direction

of the z-axis. Calculate v and v* for the mixture . For each species

calculate n., j . ,  N., and J.~~.
— 1 —1 —1 , — 1

v = EK.v. = (0.2)(-10) + ( O . 4 ) (-2)  + ( 0 . 4 ) ( l 2 )  = 2 f t/ sec

K./M.
1 i 0.2/2Xi = 

EK./M . xH 
= 
0.2/2 + 0.4/32 + 0.4/18 

=

Similar ly  x
0 

= 0.09, xH ~ 
= 0.16.

2 2

v~ = Ex.v. = (O.75)(-1O) ÷ (O .09)( -2)  + (O.l6)(l2) = 5.7 ft/sec

p = = (Ex.M.) = (0.75(2) + 0.09(32) + 0.16(18))

= 0.013 lb/ft3

n. = p.v. = K.pv.
— 1 1—1 1 -1

= (0.2)(1.3x10
2
)(-10) = -0.026 lb/ft

2 
sec.

2 2Similarly , n0 
= -0.0104 lb/ft sec; n

H ~ 
= 0.0625xl0 ’ lb/f t

L sec
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j .  = p~ (v~-v) = K
~

p(v
1

-v)

2H
2
0 = (O.2) (O.013)(-1O-2) = - .031 lb/ft

2 sec 
2Similarly , 

~~~ 
= - .021 lb/ft sec; 3H 0 

= 0. 052 lb/f t sec
2 2

N. = c.v. = n./M.

-0.026/2 = -0.013 lb-mole/ft
2 sec 

3 2Similarly, N
0 

= -3.2x10 lb-mole/ft sec ; N
H ~ 

= 3.SxlO lb-mole/ft sec
K .p 2

J.” = c . (v ._v* ) = ~~~~~ (v. _v *)
—1 1 -1 — M. — i  -

1

H
2 

= 
(0.2)(O.0l3) (10+57 ) = -5.6x.0

3 
lb-mole/ft

2 sec 
2Similarly, J~ = 0.60x10 3 lb-mole/ft sec; J~ ~ 

= 5.OxlO lb-mole/ft sec

3.4 FICK’S LAW OF DIFFUSION AS A PHENOMENOLOGICAL RELATION

It is convenient to introduce Fick ’s law of diffusion as a phenomenological

relation , and defer examination of its physical basis. In 1855 Adolph Fick

proposed a linear relation between the rate of diffusion and the local

concentration grad ient . The concept of a linear relation between a f lux and

the corresponding driving force had already been introduced by Newton in his

law of viscosity , by Four ier in his law of heat conduction , and by Ohm in

his law of electrical conduc tion.

We have noted how a chemical species may be transported by convection

and diffusion. Convection is of its nature a bulk motion and thus transports

the mixture as a whole. A given species can be transported relative to this

bulk motion by ordinary diffu8ion only if concen tration grad ients exist . Thus

a precise definition of Fick’s law must describe diffusion relative to an

average velocity of the mixture . For a binary mixture of species 1 and 2 we

now propose that the law should be written as

= -pV 12VK
1 

(3.4-1)

where the measure of concen tra tion has been chosen to be the mass frac tion

of species 1 and the diffusive flux is relative to the mass average velocity .
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The constant of propor tional ity has been separated into a product of local

mixture density and a coefficient V12 , called the binary diffusion coefficient

with dimensions of (length)
2
/time. The corresponding law written for species

2 is

= -pV 21~7K2 
(3.4-2)

Since 7K
1 

= -7K
2
, and from Eqn. (3.3-11) 

~1 
+ 

~~2 
= 0, it follows immediately

that

V12 
= V21 

(3 .4-3)

The equivalent law on a molar basis may be obtained by algebra as follows.

By defini tion , 
~~~ 

= = pl~~ l 
-

= p
1

(v
1 

- K
1
v
1 

- K2v2 )

x M  x M
i l

~~ 
2 2 v )

M .  M x1
M1

= p
1

(v
1 
~~ 

- 

M
2 ~l 

- x
2
v
2)

x
1
M
1 

+ (l-x
1

)M
2 

M
1

= M
2 

- x
1 ~

— v
1 

- x
2
v2)

= p
1(v 1 

- x
1
v
1 

- x
2
v
2)

= - y*)

—

But J~ j~ /M 1
, J~ = 

~~~~~~~ 
(3.4-4)

Also Vx
1 

= 7
~K / M  + K

2/M2~

H
2

M M 7K 1 
(3 .4 5)

1 2
Substituting the results in Eqn. (3.4-1), with c = ~-, gives

= -cV12
Vx

1 
(3.4-6)

Notice that is the molar flux relative to the molar average velocity.

It is now possible to give a correct interpretation of what we mean by a

stationary medium . If we are work ing in mass units, we require tha t the mass
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average velocity be zero; if we are working in molar units, we require that

the molar average velocity be zero. Since a Pitot tube or anemometer measures

the mass average velocity, the interpretation of stationary as zero mass

average velocity is more in accord with our physical intuition.

It cannot be demonstrated in a simple manner that Eq. (3.4-1) is the

most appropriate mathematical statement of Fick ’ s law. There is no single

physical mechanism of ordinary diffusion; in particular there are radical

differences between the mechanisms in gases , liquids , and solids . However

the kinetic theory of gases shows that this expression is appropriate for

gas mixtures at low pressures , while experiment has shown it is valid for

dilute liquid solutions as we l l .

Substitution of Fick ’s law into Eqs. (3.3-13) and (3.3-14) written for

a binary system, yields two important relations :

= p
1V 

- pV12VK1 = K1(n 1+n 2 ) — pV 12VK 1 (3.4-7)  
-

= c
1v
* - cV12Vx

1 
= x

1
(N

1
+N
2) 

- cV12Vx
1 (3.4-8) -

We see that the absolute flux of a species can always be conveniently

expressed as the sum of two components, one due to convection , and the other

due to diffusion.

Binary diffusion coefficient of gases at low pressures are composition -

independen t, increase with temperature , and vary inversely with pressure .

Liquid and solid diffusion coefficients are markedly concentration dependent

and increase exponentially with temperature .

Strictly speak ing , Fick ’ s law is val id only in binary systems , however

it is often applied in an approximate manner to multicomponent mixtures . For

• example , for water vapor diffusing through air the oxygen and nitrogen are

considered to be a single “air” species : since 0
2 and N2 molecules are

physically not too different the error incurred is small. Alternatively,

when a number of species are in small concentration in nearly pure species 1,

26

I... ~~~~~ 
- -  - -. • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~ -~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -
~
---

~~~~~~~~



• - -—- ,.
~

-.,. 
-~~~~~~~~~~~~~~~~~~~ -~~~~~~ :: :~~~~~~~~~

z_
~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

than an effective binary diffusion coefficient for species i is simply V~1.

If appreciable error can be tolerated in an engineering calcula tion involving

a mixture of many species of not too different molecular weights, then we

might simply assume equal diffusion coefficients for all species pairs , at

some average value.

3.5 TRANSPORT IN MULTICOMPONENT GAS MIXTU RE S

For gas mixtures at low pressures the Chapman-Enskog kinetic theory of

gases yields results which have proven satisfactory over a wide range of

condi tions. No t only does this theory rigorously descr ibe mul ticomponen t

diffusion, and prov ide accurate formulae for the transport properties , that

is, viscosity, thermal conductivity and diffusion coefficients, but also

it exhibits the following additional physical phenomena:

(i) Thermal diff usion or Soret effect which is a movement of species

resul ting from a temperature gradien t in the mixture .

(ii) Pressure diffusion which is a movement of species resulting from a

pressure gradient.

(iii) Forced diffu sion, which results from force f ields acting on the

molecules of the mixture.

(iv) The diffusion thermo or Dufour effect (also called diffusional

conduction) which is an energy transport resulting from concentra-

tion gradients in the mixture.

The most suitable reference work from which the results of the Chapman-

Enskog theory may be obtained is the treatise authored by J. 0. Hirschfelder,

C. F. Curtiss and R. B. Bird entitled “Molecular Theory of Gases and Liquids”

[1], and hereafter referred to as H.C.B. In particular we first require the

diffusion and energy flux vectors , but before presen ting these it is of

importance to discuss some aspects of the physical model so as to ind icate

possible restrictions on the validity of the results.
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1.) The density of the mixture must be low enough for three body collisions -

to occur wi th negligible frequency .

2.) The model assumes monatomic molecules but little error is introduced

by applying the results to polyatomic gases. The momentum flux and diffusion

f lux are not apprec iably affected by the internal degrees of freedom . The

heat flux vector on the other hand contains both the translational energy

and the energy of the internal degrees of freedom; the so called “Eucken

correction” will be introduced to take this into account .

3.) The flux vectors are general in the sense that they do not explicitly

contain the force law which is assumed to characterize the molecular inter-

action . The various transport coefficients do however depend on the par-

ticular force law.

4.) The solution of the Boltzman Equation involves an expansion in terms

of Sonine polynomials. Chapman and Cowling [2] in their solution used an

infinite series of these polynomials with the resul t that the transport

coefficients are expressed in terms of ratios of infinite determinants.

However to obtain numerical values it is necessary to consider only a few

elements of the determinants since convergence is rap id as add itional rows

and columns are included . For viscos ity , thermal conductivity and ordinary

diffusion one term gives a good approximation. For ord inary diffusion

however , one term does not describe the dependence of the coeffic ient on

concentra tion , two terms show a slight dependence. Thermal diffusion and

the diffusion thermo-effect only appear when the second term is included ,

indicating that they are usually second order effects.

5.) The expressions for the flux vectors contain only the first spatial

der ivatives of temperature , pressure , concentration , and so on. Thus the

results are inapplicable when gradients change abruptly, for example ,

L_ 

within a shock wave.
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The Diffusion Flux Vector

H.C.B. Eqn. (8.1-1) gives the mass flux vector relative to the mass

average veloc ity for the i’th species in a mixture of n components as:

h = N.m.v.

N2 n  T
= — Z m. m .D . .d . - D.72.,nT (3.5-1)

~ j=l 
1 

~ 13— 3 1

where includes the gradients of the number fraction N ./N , pressure P and

also the externa l forces 
~k 

acting on the molecules ,

d. = V~~- ÷ - ~,
3)V2.nP - -3

~~~

- [~~
.-_ X~ 

- 

~ 

N~X~] (3.5-2)

The mass of a molecule of species i is in . wh ile is the external force per

molecule: thus 
~k 

= in
k~k 

where is the force per unit mass. For a gravitational

force field the force per unit mass is constant : substitution in the last

term of Eqn. (3.5-2) gives

N~rn . 
- 

k l  ~k!k 1 = 0 if is a constant.

However a gravitational field does produce a pressure gradient and thus

indirectly yields a contribution to the diffusion flux as pressure diffusion .

The 
~~ 

are multiconrponent diffusion coefficients. Excep t in binary

mix tures , for which D = V , D . .  ~ D . . ,  and D . .  = 0. The D . .  are concen-12 12 i~ 31 11 13

tration dependent. The 
~~ 

satisfy the following summation rule:

E [Mi
M
h
Dih - M.M

kD.k] 
= 0 (3.5-3)

H.C.B. relates the D. . to the binary diffusion coefficients V . .; as mentioned
13 13

above, for a binary mix ture , D12 = V 12. while for a ternary mi xture ,
a

N (~~~~~
- v13 

- v12
)

12 
— 

12 + A11V23 
+ N2013 ÷ N V  . -
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with similar relations for V21 , V23 , V
32~ 

V
13 

and V31 . The calculation of

the binary diffusion coefficients will be dealt with in §3.6.

The D~ are the multicomponent thermal diffusion coefficients and

depend in a complex manner on temperature, concentration , molecular weights

and the force law of the molecular interaction. For a binary mixture it is

important to note that the D~ defined here does not reduce to the coeff icients

of Chapman and Cowling [2], but the difference arises only due to a difference

in def ini tions .

Because the D.. are concentration dependent it is convenient in some
13

situations to replace the n relations given by Eqn . (3.5-1) by a set of (n-l)

independent equations :

T T
n N . N .  n N.N. D. D .
Z (v. -v.)  = d . - V~.nT E ~ - N m  (3.5-5)

j=l N V.. ~ 
- j = 1 N V.. j j ii.

13 13

These are the so called Stefan-Maxwell equations in their most general form;

their derivation is presen ted in H . C . B .  §7 .4 .

The Energy Fl ux Vec tor

H.C.B. Eqn . (8.1-23) gives the energy flux relative to the mass average

velocity in a multicomponent mixture as:

n ,.~ n n .D.
q = -kVT + izT E W .v . + -

~~~~ Z E ~~~~~~~~~~~~~ Cv. - v . )  (3.5-6)- 2 i-i N . . m.V. . -‘ -Ji 1  i 1  j 1 1 13

The first term is ordinary thermal conduction . The second term is the inter-

diffusion energy flux since N
~
v
~ 

is the diffusion flux of species i relative

to the mass average velocity in molecules/unit time-unit area , and each

mona tomic molecule carries , on.an average, a quantity of thermal energy equal

to ~~- !zT. For polya tomic molecules the interdiff usion term becomes

E N .m . h ~v1. where h
~ 

is the enthalpy per unit mass of species i. FI.C.B. §7.6b
i=1 1
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presents a descr iption of this modification for polatomic molecules which

is part of the so called “Eucken correction”. The last term in Eqn. (3.5-6)

is the Dufour effect.

Example 3.3
n

The relation E j .  = 0 is easily proven . For a multicomponent system
i=l

show that similar summation rules are valid for the ordinary, pressure, forced

and therma l diff usion components separately.

Sum Eqn . (3.5-1) over all species,

n ~(~2 n n
Z j .  = ~~— Z E m .m .D. .d. - Z D~VlnT

i=l —1 p 
i=l j=1 1 3 13— 3 .

~~~~ 
1

• 
N2 ‘~ ~‘

= — E d. Z m .m .D.. - E D
’
~V2,nT

j=l ~ i=l 1 
~ 13 i=l 1

N 2 ~‘ ‘~ T
= — Z d.( Z m .m.

hD.h) 
- E D.V 9,nT using Eq. (3.5-3)

j=l i=l i=l

N2 ~ T
= — 

( E m.m.~D. ) E d. - E D.VP0nT
i=l ‘ ih •

~~~~~ i=l

Now consider each term in E d. in turn :
j=l ~

N .
E V 

~~~~~ 
= E Vx.  = 0, since E x. = 1.

3 . 3
3 3 3

N. N .m.
E 

~~~~~~~ 
- ~~ 3) 72.nP = V&nP [E x. - Z K.]

3 j  j

= V2.nP [1 - I]

= 0

N.m . 

~~~~~~~ 
- L NkXk] = 

~ [~~~ 
N

J
X

J 
- 

~~ 
N
kXk E 

1
1

~~
- 

[~~~ 
N .X. - Z N

k
X
k]

= 0

L~. ~~T~~~~~~
- . 
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Thus summation rules have been proven for ordinary , pressure and forced

diffusion in turn. For thermal diffusion the rules follows immediately

from the relation E D
T 

= 0, or by subtraction.
i

Simplif ications for a Binary Mixture

While still dealing with the flux vectors expressed in terms of micro-

scop ic parameters it is useful to wr ite down some ot the simpl if ied forms

which obtain for a binary system. The diffusion flux Eq. (3.5-1) reduces

to:

=

N 2 T
= — m1m2V 12 d 2 

- D
1
V90nT (3.5-7)

while Eq. (3.5-2) reduces to:

N2 N2 N2m2 N1N2
= V -

~~~~ 

+ (-
h- 

- )V20nP - Pp 
[m
1~2 

- m2~ 1
] (3.5-8)

The coefficient of V9.nP in this equation is simply the difference between

the mole fraction and the mass fraction , hence it follows that

~l = 

~~2 (3.5-9)

Also , since 
~l 

= 

~2 ’ it follows that

V 12 = V21 and D~1
’ 

= -~D~ (3.5-10)

By writing Eqns. (3.5-7) for 
~l 

and 
~-2 

respectively and subtracting, the

Stefan-Maxwell equations become

- y2 ) = - 
N

1
N

2 
12 ~ 

+ k
T
VLnT] (3.5-11)

where the thermal diffu sion ratio k..
~
. has been introduced , and is def ined as

DT

kT 
= 

~
j—
~
- (3.5-12)

N m
1
m
2 12

Thus k
T 

is a measure of the relative importance of thermal and ordinary diffusion.
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The Flux Vectors for a Binary Mixture Expressed in Continuum Parameters

The foregoing flux vectors contain microscopic parameters such as the

mass of a molecule and number density . For purposes of engineering analysis

we prefer to have these vectors expressed in terms of appropr iate continuum

parameters. The microscopic parameters can be eliminated from Eqs. (3.5-7),

(3.5-8) and (3.5-12) by introducing Avogadro ’s number , A , in the fol low ing

identities :

N = A c

The three equations become, respectively,

~-l 
= P1~ 1 

= .2- M
1
M
2V12d2 

- D~1
’
V9.nT (3.5-13)

= Vx
2 

- (x
2
-K
2

)V~nP - 

K
1
K
2 

2~~1~ 
= 

~~ 
(3.5-14)

DT 2 DT

T 2 V M M ’~ Vc M
1
M
2 

12 1 2 ” 12

K K
where R = R/M and = j~

- + ~~~
-
~

-—. If Eqn. (3.5-14) is written for d
1 
and sub-

1 2
stituted in Eq. (3.5-13) , then af ter some manipulation ,

= 

~~~12 
[VK 1

÷ ~~ (l - ~~-)K1
V~nP - 

1 2  
K
1
K
2 + 

N 

(3.5-16)

By using Eqn. (3.4-4) the equivalent molar form is obtained,

= -cV12 [Vx
1 

+ (1 - ~~-)x
1

VLnP - 
2 1  

+ kT
V
~
nT] (3.5-17)

M R T  -

where is the external force per mole.

To obtain the binary mixture energy flux vector in terms of conti nuum

param eters , the first step is to rewrite fil. (3.5-6) for a binary system, and

then replace the microscop ic parameters by their macroscop ic counterparts,

yield ing final forms in terms of either mass or molar units . For a polyatomic

gas Eqn. (3.5-6) becomes
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frT DT N N
q = -kVT + j

1
(h

1
-h
2
) + 

~~~~~~~~~~~~~~~ ~m1~
Y1~~ 2~ 

+ 

~~~ 

(3.5-18)

where the relations = N~m1
v~ = 

~~2 ’ and D~ = -D~ have been used . If

fur ther the relation (~ = R/A = RN/A is introduced, af ter some manipula tion

Eqn. (3.5-18) in terms of mass becomes

or 

q = -k~~ ÷ 
~-l (h 1 

- h2 ) + J 1kTRT p~~ 
(3.5-19)

k RT
= -kVT + 

~-l 
(h

1 
— h 2 ) + 

‘~ K1K~ 
(3.5-20)

An al ternative form is obtained by introducing the therma l diffusion factor

a12 = k
T

/x
l
x
2
. With 1 denoting the heavier species, a

12 
is positive , i.e.,

the heavier species diffuses down the temperature gradient . Substitution

in Eq. (3.5-19) gives

M2
q = -kVT + 

~l (h 1 
- h

2
) + j

1
a
12

RT 
M1
M
2 

(3.5-21)

The merit of this last equat ion is that whereas k
T 

is strongly dependent on

compos ition , a12 is essential ly independen t of compos ition. Thus data for

thermal diffusion coefficients are more conveniently expressed in terms of

a12 .

In molar terms Eq. (3.5-21) becomes

q = -kVT + (1. H
1 

- 
~~~

-
~
_ H 2 ) J~ + a

12
RTJ

1
* (3.5-22)

where H is the enthalpy per mole.

Example 3.4

Two bulbs are connected by a small diameter tube and f illed wi th a

helium-air mixture with 60% by volume helium. One bulb is maintained at

60°F while the other is at 580°F. If convection is entirely suppressed

estima te the steady state difference in composi tion for the two bulbs.

Take a12 = 0.51.
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dx
Eqn. (3.5-17) reduces to = -cV12 [~~.-_L + k

T 
d9,nT

1 with coordinate z

taken along the connecting tube. At steady state = 0 , thus

= -k d9.nT
dz T dz

T
Integrating, X

1 H 
- x1 C 

_k
T
2on ~~ for k

T 
constant, where subscr ipts H and C

C
refer to the hot and cold bulbs respectively. With Ic~ = x

1
x
2a12, the separation

is

X 1 H  
- x

1~~ 
= -(0.4)(0.6)(0.5l)~ n 

~~~~

= -0.085

i.e., the mole fraction of air in the hot bulb is 0.085 less than in the

cold bulb. Note that k
T 

should be evaluated at a suitable average tempera ture

composition for an accurate resul t .

3.6 CALCULATION OF GAS TRANSPORT PROPERTIES

The Chapman-Enskog kinetic theory of gases descr ibed in 3 .5 gives

formulae for the transport properties of pure gases as well as for multi-

component mixtures. In order to calculate these properties a potential

energy of interaction ~ must be chosen to characterize the forces acting on

a pair of molecules during a collision . A realistic model should embody a

weak attractive force between the two molecules at distances several times the

distance at which strong repulsive forces start to come into action . The

weak forces will cause a noticeable effect on two relatively slowly moving

molecules , but will have a negligible effect on two relatively fas t moving

ones : the shorter range repulsive forces remain effective for the fast

pairs. The potential energy ~ is the integral of the interact ion force F ,

thus F = -d~/dr , where r is the separation distance . To the left of minimum

- • in the potential energy curve the molecules repel each other, while to the
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right there is an attractive force.

An empirical representation of the

potential energy func tion wh ich has

proven fa irly successfu l, is the
z

Lennard-Jones 6-12 potential model ,

~ (r) = [(0)12 - (
~~~) 
6~ (3.6-1)

where a, the collision diameter, is

the value of r for which 4 (r) = 0,

• and c is the maximum energy of attraction between a pair of molecules . This

model exhibits the required weak attraction , due to London dispersion forces ,

at large separations (like r 6) and strong repulsion , due to electron cloud

• overlapp ing, at small separations (nearly like r 12
). Table 3.1 lists values

of a and c for a number of pertinent chemical species.

The Lennard-Jones model describes a spherically symmetrical force field

and hence is intended for use with nonpolar , nearly sym metrical molecules (for

example , 02, He , CO) . Indeed , the Chapman-Enskog theory is, strictly speak ing ,

only val id for molecules with spherically symmetrical force fields . Molecules

with apprec iable dipole moments (for example , H
2
O, NH

3
) or which are highly

elonga ted (for example , C
3
H
6
, n - C

6
H
14
) interact with potentials wh ich are

angle dependen t . For polar molecules the Stockmayer potential mode l , wh ich

adds an angle dependent factor to the Lennard-Jones expression, has been

successfully used . However , polar interactions have little effect at high

temperatures , and for many prac tical purposes it has been found adequate to

use the Lennard-Jones potential even for polar and elongated molecules. The

usual practice is to determine the parameters a and c by matching theoretical

viscosity predictions with experimental data. In this way experimental viscosity

data are extrapolated outside the original temperature range ; also the same
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Table 3.1. Force Constants for the Lennard-Jones Potential Modelt

Species a c/K Species a c/K Species a c/K
A K A K $. K

Al 2.655 2750 CH3CCH 4.7 61 252 Li20 3.561 1827

3.204 542 C3H8 5.118 237 Mg 2 .926 1614
Al 2 2.940 2750 n-C 3H 7OU 4.549 577 N 3.298 71
Air 3.711 79 n-C4U10 4.687 531 NH3 2.900 558

A 3.542 93 iso-C4H10 5.278 330 NO 3.492 117
C 3.385 31 n-C5H12 5.784 341 N 2 3.798 71
Cd 2 4.692 213 C6H12 6.182 297 N20 3.828 232

CC12F2 5.25 253 n-C6H14 5.949 399 Na 3.567 1375

Cd 4 5.947 323 Cl 3.613 131 NaCl 4.186 1989
CH 3.370 69 Cl 2 4.217 316 NaOH 3.804 1962
CHC13 5.389 340 H 2.708 37 Na 2 4 .156 1375
CH
3OI-1 3.626 482 HCN 3.630 569 Ne 2.820 33

CH
4 3.758 149 HC1 3.339 345 0 3.050 107

CN 3.856 7S H 2 2 .827 60 OH 3.147 80

CO 3.690 92 H 20 3.737 32 02 3.467 107 -

CO2 3.941 195 H 202 4.196 289 S 3.839 847
CS2 4.483 467 H2S 3.623 301 SO 3.993 301

• C2 3.913 79 He 2.551 10 SO2 4.112 335
C2H2 4.033 232 Hg 2.969 750 Si 2.910 3036
C2H4 4.163 225 12 5.160 474 SiO 3.374 569

C2H6 4.443 216 Kr 3.655 179 Si02 3.706 2954

C2H5OH 4.530 363 L8 2.850 1899 UF5 5.967 237

C2N2 4.361 349 LiO 3.334 450 Xe 4.047 231

C2H2CHCH3 4.678 299 Li2 3.200 1899 Zn 2.284 1393

t
Taken largely from R. A. Svehla , NASA TR R-l32 , 1962 .
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values of a and c usually prove to be the best available for the estimation

of thermal conductivity and mass diffusivity .

Formulae Based on the Lennard-Jones Potential

Use of the Lennard-Jones potential in the Chapman-Enskog kinetic theory

of gases gives the viscosity of a pure monatomnic gas as

p = C (3.6-2)

p 
6 2With T in kelvins, C1 

= 2. 67xl0 gives U in N s/rn . With T in °R , C 1 
=

-8 2 ° -10
• 4.l6xl0 gives p in lbf sec/ft and a is in Angstrom units (1 A = 10 in).

The quantity ~ is the collision integral and is tabulated in Table 3.2;  it -

is a weak function of tempera ture , becoming very nearly constan t at h igh

temperatures.

The Chapman-Enskog kine tic theory shows that, for a monatomic gas ,

the relation between thermal conductivi ty and viscosi ty is

5 3 Rk = 
~~

- c~~p ; (c
v 

= -
~~

-
~~~~~) 

(3.6-3)

thus

k = C  (3 6-4)monatomic 12 
a
2

With T in kelvins , C2 
= 8.32x10 

2 gives k in W/mK; with I in °R, C
2 

=

3.58xl0
2 gives k in Btu/hr f t °F, and again a is in A. The collision

integral for thermal conductivity is identical to that for viscosity ,

= ~~ For polyatomic gases the modified Eucken correction is recommended ,

k = k . + 1.32 (c - 
~~

-
~~~~~) 

(3.6-5)monatomic p 2 M p

we see that data for specific heats is required for the calculation of thermal

conduc tivi ty in polya tomic gases .

The binary diffusion coeffic ient is given by
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Table 3.2. Collision integrals for the Lennard-Jones Potential Model

~~ ~p~~~~k

0.30 2.785 2.662 1.60 1.279 1.167 3.80 0.9811 0.8942
0.35 2.628 2.476 1.65 1.264 1.153 3.90 0.9755 0.8888

0.40 2 .492 2.3 18 1.70 1.248 1.140 4.00 0.9700 0.8836
0.45 2.368 2.184 1.75 1.234 1.128 4.10 0.9649 0.8788

0.50 2.257 2.066 1.80 1.221 1.116 4.20 0.9600 0 .8740

0.55 2.156 1.966 1.85 1.209 1.105 4.30 0.9553 0.8694

0.60 2.065 1.877 1.90 1.197 1.094 4.40 0.9507 0.8652

0.65 1.982 1.798 1.95 1.186 1.084 4.50 0.9464 0.8610

0 , 0  1.908 1.729 2.00 1.175 1.075 4.60 0.9422 0.8568

0.75 1.841 1.667 2.10 1.156 1.057 4 .70  0.9382 0.8530

0.80 1.780 1.612 2.20 1.138 1.041 4.80 0.9343 0.8492

0.85 1.725 1.562 2.30 1.122 1.026 4.90 0.9305 0.8456

0.90 1.675 1.517 2.40 1.107 1.012 5.0 0.9269 0.8422

0.95 1.629 1.476 2.50 1.093 0.9996 6.0 0.8963 0.8124

1.00 1.587 1.439 2.60 1.081 0.9878 7.0 0.8727 0.7896

1.05 1.549 1.406 2.70 1.069 0.9770 8.0 0.8538 0.7712

1.10 1.514 1.375 2.80 1.058 0 .9672 9.0 0.8379 0.7556
1.15 1.482 1.346 2.90 1.048 0.9576 10.0 0.8242 0.7424

1.20 1.452 1.320 3.00 1.039 0.9490 20.0 0.7432 0.6640

1.25 1.424 1.296 3.10 1.030 0.9406 30.0 0.7005 0.6232

1.30 1.399 1.273 3.20 1.022 0.9328 40.0 0.67 18 0.5960

1.35 1.375 1.253 3.30 1.014 0.9256 50.0 0.6504 0.5756

1.40 1.353 1.233 3.40 1.007 0.9186 60.0 0.6335 0.5596

1.45 1.333 1.215 3.50 0.9999 0.9 120 70.0 0.6194 0.5464

• 1.50 1.314 1.198 3.60 0.9932 0.9058 80.0 0.6076 0.5352

1.55 1.296 1.182 3.70 0.9870 0.8998 90.0 0.5973 0.5256

100.0 0.5882 0.5170

For 4 < (~~~~~
) < 400 ; 1.07 (~~~~E

Y.O 159

Taken from J. 0. Hirschfelder, R. B. Bird and E. L. Spotz, Chem . Revs.,
Vol .  44 , p. 205 , 1949.
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1
T 

~~~~~~~ 

+ 
~~~~~~~

V12 = C
3 2 

1 2 (3 . 6— 7)
a12

With T in kelvins, C3 
= l;86x10

7 
gives V12 in m2/s; with T in °R, C3 = H

8.28x 10 gives V 12 in f t  /sec , P is in atm , and a is in A. The intermolecular

potential field for a pair of unl ike molecules , species 1 and spec ies 2 , is

approx imated as

= 4c 12 [( 12
)

12 
- (

12
)
6
] (3.6-8) H

The collision integral for mass diffusion differs from Q~; values for

are given in Table 3.2. The Lennard—Jones parameters 012 
and £12 must be

obtained from the empirical relations

012 = -
~~

- (a i + 0
2

) (3.6-9a)

£ 12 = (3.6-9b)

where, as was mentioned before , the values of a and c for the individual

species have usually been estimated from viscos ity data.

Mix ture Rules

The rigorous kinetic theory of Chapman and Enskog gives a prescription

of how to calculate the viscosity and thermal conductivity of a gas mixture

from the val ues for the pure species . C. R. Wilke simp lif ied the rigorous

resul t by introducing elements of the rigid sphere model; the resulting

formulae are simple and adequate .

n x . P .
= ~ 

1 1 (3.6-10)
mix . ni=l 

~
j = l  -~ ‘~
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n x.k.
k . = E 

1 1 (3.6-11)
mix . ni l  

~ x.è.
i=l ~ 

13

where 
÷

= 
~i. 

(3.6—12)

+ (
1)}l/2

3

The important feature of these mixture rules is that the weighting is essentially

with mole (number) fraction, as we would expect from simple kinetic theory .

Example 3.5

Determine the binary diffusion coefficient of methane in air at 80°F

and 1 atm pressure.

For methane M
1 

= 16, 01 
= 3.758, £i/~ 

= 148 K.

For air M
2 

= 29 , 02 = 3.7 11, c2/!a = 79 K.

= (l49x79)~~
2 

= 108.5, lzT/612 = (540/1.8xl08.5) = 2.77

= 0.970; (
~~ ÷ 

1 ) 1/2 
= 0.311; 012

2 
= + (3.758+3.711)2 = 13.95

thus V 12 = 0.86 ft
2/hr.

3. ’~ IE BIFURCATION APPROXIMATION FOR MIJLTICOMPONENT DIFFUSION

~‘ convenient approximate treatment of multicomponent diffusion has been

used extensively for re-entry vehicle boundary layer analysis . The idea

was first suggested by Bird [3], and was successfully implemented by Bartlett ,

Kendall and Rindal [41. The approximation is developed as follows. Eqns.

(3.5-1 and 2) may be rewritten in terms of macroscopic parameters as:

j .  ÷ ~~~ ~~nT 
= M .M .D.. (3.7-1)

1 1 3y M 2 j~~i 
i 3 i j ay

or in the Stefan-Maxwell form,

L ~~~~~~~~
- -  -. - - -  

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~:H~L. ~~~~~~~~~~~~~~~~~~~ 

.
• •  -

~~~~~~~~~
-
~

-
~~~~~~~~

- A
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- T~~QnT . T~~ &nT
~x. x.x j .  ÷ D. 

~~~
. + D.

‘~~~~~~ ~- J r 3  3 3)’ _ 1 1 3Y
3y .p V ..~ K. K.

3 13 3 1

where pressure and forced diffusion have been ignored, and the V operator

has been replaced by 3/3y in anticipation of application to re-entry vehicle

boundary layer analysis. Each of the (n-l)n multicomponent diffusion

coefficients D.. depend on local concentrations and upon the (1/2) (n-1)n

symmetric binary diffusion coefficients V~~. In terms of the Lennard-Jones

potential model ,
N. + N.

2.628x10
3 
T3”2 

(2~
.M. 
)

- = 2 
1 

~ cm2/s (3.7-3)
13 Pa.. c~ (ij)

R. B. Bird first showed that a bifurcation of the effects of species i

and species j in Eq. (3.7-2) permits explicit solution of the Stefan-Maxwell

relations for j in terms of gradients and properties of species i and the
1

system as a whole. The approximation is used in the form

V~~~j  F. F . 
(3.7-4)

where

b: reference diffusion coefficient

F.: diffusion factor for species i

Eq. (3.7-4) is exact for ternary systems, but approximate for n> 3; it

should be viewed as a correlation equation for the actual binary diffusion

coefficient data. One method to obtain this correlation is as follows .

First 0 is defined:

- 3 
T(T/Mr) 2

D = 2.6280xl0 2 
cm /s (3.7-5)

~
0
r ~

lp (rr)

where r refers to a reference species, often chosen to be 02; 0 is thus the

self diffusion coefficient of that species . The F. are then determined by a
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least-squares correlation for the ~ for all diffusing pairs in the chemical

system of interest. With this approach the pressure dependence and the

majority of the temperature dependence of the V1~ is absorbed into D so that

the F~ are independent of pressure and have only a slight secondary temperature

dependence. All species are weighted equally in the correlation; hence the

F1 
are independent of concentration and can be determined a priori for a

given set of chemical species. In fact to take F1 
independent of both

temperature and chemical system has proven to be a good approximation in many

ablation problems .

Substituting Eqn. (3.7-4) in Eqn. (3.7-2) and eliminating mole fractions

in favor of mass fractions on the r.h.s. gives

. o d  . o d
3x. ,~,2 K.F. 3 .  F .  F .j .  K . F .

= ~ i 1 1- 
E ~~ 3 - 

1 1 3 3~ (3 7-6-~~~~M . . M. M. . N. ’ ‘. .

pD 1 3 3 1 3 3
• where

j .  +
3 3 3

Multiplying Eq. (3.7-6) by M~/F~ and summing over i, and noting that the sum

of diffusive fluxes is zero, and the sum of mass fractions is unity,

j.°~
’F. - M. 3x. - M . 3x.

E ~ = E —i- —
~~

- E ~~ .J .~~.J.. (3 7_7
- N. 2 - F. 

~ >‘ 2 . F.
3 j  M u  M j  3

Substituting back in Eq. (3.7-6) gives

od3x . K.F . M . 3x. 2 F .j. K .F .
= 

1 1 
Z ~~~~~ __J•~ - ~

!_ 1 1 (3 7-8
3>’ M. - F.  3>’ - M. . M.• 1 3 3 pD 1 3 3

Now define

M.x. M x .
z pi F 1P2 ~~~~ F.

K. dF .

~~~~x F‘l .  j j  1.’4 . 2dT
• 3 3 F .
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then
3z .  3p M. 3x . M .x . 3F.

3 1 2 1 1 1 1  1•~.— (z . p~ ) p2 + z. -
~~~~

-— = ~~
—

~~~~~~~
— - —

~~
.-- 

~~~~~
— (3 .7-9)

Substituting in Eq. (3.7-8), noting ~ z. = 1 and F
~ 

= F . (T) only, then

÷ 

D
’
~~~ 1, 

- 
~~ p~~3z. (z.-K .) 

~~~~ K.(—~-~~-~~ - - p4) ~~~~~ ] 
(3.7-10)

which is the desired explicit relation for j. in terms of gradients and

properties of species i and of the system as a whole. The z1 is a quantity

relating to species i wh ich sums to unity and has be tween the mass and the

mole fraction; p
1. 

p
2 
and are properties of the system as a whole. If

we further assume the F. to be independent of temperature, Eq. (3.7-10) reduces

p~ p 3z. (z . - K . )  3p
÷ = - p

1
M ~~

-
>~

- + (3.7-11)

Finally, if we assume thermal diff usion is negl igible , and assume

large compared to [(z~~K~ ) / U 2]3p2/3y~ Eq. (3.7-11) becomes

pñp 3z.
- 

2 (3 .7-12)
1 p 1M 3y

Eq. (3.7-12) suggests that the driving potential for multicomponent dif-

fusion is the z-fraction, rather than the mass or mole fraction .

In order to establish the adequacy of the correlation of binary diffusion

coefficients, a number of different chemical systems have been investigated

including the C-N-O , C-H-N-O and H-O systems [4]. The results show average

absolute errors in the V .. (defined as the value calculated from Eq. (3.7-3)

minus the value calculated from Eq. (3.7-4), ranging from 1.3 to 10.8 percent .

Add itional calculations have shown that to assume the F. to be temperature

independent introduces a largest single error of 0.7 percent and average

absolute error of 0.13 percent; hence, it is consistent with the level of

- .~~~~~ 
~~- H  - ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~ ~~~~~ _ _ _ _ _ _ _ _ _ _ _ _
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approximation to assume the F1 temperature independent . Table 3.3 shows typical

F. values . For use in crude calculations a simple correlation of these F
~

values is

M.
F. = (

1
)
0.461 (3.7-13)

1 26

Table 3.3. Diffusion factors F. for three chemical systems as calculated by

Bartlett, Kendall and Rindal [4], at 12 ,000°R, 1 atm.

Chemical 
___________________ 

Chemical System
Species OXYGEN-NITROGEN- OXYGEN-NITROGEN- OXYGEN-HYDROGEN

CARBON-HYDROGEN CARBON
Force data , Ref. Force data , Ref.  Force data , Ref .

• 
__________ 

[5 ,6] [5] [6] -

O 0.739 0.740 0.732
02 1.000 1.000 1.000
N 0.791 0.738

1.076 1.033
CO 1.065 1.022
CO2 1.308 1.270
C 0.722 0.664
C3 1.129 1.093 -

CN 1.082 1.035 -

H 0.203 0.221
H2 0.296 0.303
H20 0.810 0.836
OH 0.777 0.819
dH4 0.999
C,H 1.187
H~N 1.201

3.8 THERMAL DIFFUSION COEFFICIENTS

To complete our treatment of transport in gas mixtures we need to provide

methods for the calculation of thermal diffusion coefficient D”: for binary

mixtures we could equivalently calculate k
T 
or ct•12. To first approximation

cz12depends on the (1 , 2)  force law, the molecular we ight and mole fraction

ratios, M1/M2 and x1/x2, and the temperature I.

Chapman [7] has noted that in the simplest case where the (1, 2) force

law is an inverse power law Kr
S
, a12

is independent of I and contains the
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factor (s-5)/(s-l), the reminder of the expression being negative when

suffix 1 refers to the heavier species. Thus for s > 5, ct12
and k1 are

positive for s < 5 the opposite is true. When s = ~~, 
~12 = 0 and there is

no thermal diffusion: this is the force law of “Maxwellian” molecules .

For the rigid elastic sphere model s = ~ and the above factor has its

maximum value of 1. Usually s > 5 except in a completely ionized gas . When

the molecular weights of two species are nearly equal the larger molecule

will tend to diffuse down the temperature gradient, though in some cases

a12-can change sign with concentration variations. The Lennard-Jones force

law shows a temperature dependence for 
~12’ 

and the weak attractive field

sl ightly increases

The calculation of multicomponent diffusion coefficients from the

ri gorous kinetic theory formulae is algebraically complex , and the results

of such calculations are of questionable accuracy owing to the sensitive

dependence on the molecular interaction force law . Furthermore experimental

data for these coefficients are sparse, and are mainly for binary mixtures

of noble gases. Since thermal diffusion and diffusional conduction are

invariably second order effects in re-entry vehicle boundary layer analysis,

simple approximate formulae for D’!’ are desirable. Bartlett, Kendall and

Rindal [4] have developed such formulae in the following manner.

It is postulated that the mean thermal diffusion velocity of a

statistical molecule set, must result from some characteristic of this

molecule set as it relates to the system as a whole ,

ct ( G .  - 
~~ ) 

(3.8-1)

where ö is some mean value of the property G. for the system as a whole; thus

c~ pk . (G . - 
~~ ) 

(3.8-2)

Since it is required that ~ D~ = 0 , it follows that
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= E K . G . (3.8-3)
j 3 3

and we can write

D
’
~
’ 

= ~
TpK (G. - E K.G.) (3.8-4)

1 1 1

where ~
T is some property of the system as a whole. By analogy to the

diffusion factors F. the G. are called thermal diffusion factors . For a
1 1

binary system, Eq. (3.8-4) reduces to

= ~I pK
1
K
2 
(G

1 
- G2 ) (3.8-5)

and

~ l2 = — (G1 
- G2 ) F1F2 ( 3.8-6)

where the exact relation V12 
= ~/F1

F
2 
has been introduced, and species 1 is

the heavier molecule.

In order to determine a suitable expression for the thermal diffusion

factors it was first noted that an expression of the form

1 - (F 1/F 2 )

~12 
= c

~ ~~~ x1 [l - (F 1/F 2) ] }  (3.8-7)

with c
~ 

is a constant, allowed considerable simplification of the diffusion

flux vector. Using the results of exact calculations by Mason [8] for

several binary gas mixtures it was found that Eq. (3.8-7) with c~ = -0.5

provided a reasonable correlation above about 1800°R. Comparison of Eqn .

(3.8-7) with Eq. (3.8-6) indicates

_ 1 _ 1 ~~-T _ c
~
D

G1 
— j~

— G
2 

— D — F + x F (3.8-8)
1 2 1 1  2 2

The particular form of Eqn. (3.8-8) suggests the ad hoc extension

to multicomponent systems as

• 1 c D
G. = r 0

T 
= 

E x .  (3.8-9)
1
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and the theoretical work of Laranjeira [9] appears to support this gen-

eralization. Substituting into Eqn. (3.8-4) gives

c
~
pDK . [1/F . - E K ./F .]

3 8-10i — ~x .F .

Using the definitions of p1, p2 
and z . given in §3.7 gives

T c p D p
2D. = (z .  — K.) (3.8-11) 31 p1M 1 1

Also, substitution into Eqn. (3.7-li) gives for the diffusive flux of

species i,

p~ p2 3z . 32np2 3~, T= p~M ~~~ 
— (z~ — Kj)( 3y + c

~ 3y
fl )] (3.8-12)

which is particularly simple to use.

Example 3.6

Estimate the thermal diffusion coefficients for the components of

equilibrium dissociated steam at 3500 K and 1 atm pressure.

T c
~
PD]J2From Eqn. (3.8-li), D. = 

p M  (z. - K.),

where p1 = E x .F .; p2 = z. =

The equilibrium composition and thermodynamic properties may be obtained from

Reference [6], and the diffusion fac tors F. from Table 3.3. In particular

p = (l4.7xl44xll.18/l545x3500xl.8) = 0.00243 lb/ft
3

o = 4.98x10
2 
ft
2
/s from Table 3.3 and Eq. (3.7-5).

c
~ 

= -0.5.
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The calculations are summarized in the Table below .

x.M.
Species M x. F. x.M. x.F. ~~~~~~~~ K. z. DT

____________ — 

1 1 i 1 i i F .  i i

14 1 .253 .221 .253 .0559 1.145 .023 .076 -7.5

H2 2 .185 .303 .370 .0561 1.221 .033 .081 -6.8

1120 18 .234 .836 4.212 .1956 5.038 .376 .336 +5.6

O 16 .118 .732 1.888 .0864 2.579 .169 .172 - .4
02 32 .059 1.000 1.888 .0590 1.888 .169 .126 +6.1

OH 17 .151 .819 2.567 .1237 3.134 .230 .209 +3.0
___________ —1- _______ _______ _______ J _______ ______ -j

also , ~x.M. = 11.8 = M1 1

~x.F. = .5767 = p
1 1

~x .M ./F . = 15.0 = p2

Notice how the z . are inbetween the corresponding x
1 

and K .. Negative values

of D~ imply diffusion up the temperature gradient.
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CHAPTER 4

SIMPLE MASS TRANSFER ANALYSES

4.1 EVAPORATION AND SUBLIMATION

A Couette flow model , of the mass transfer processes involved in the

evaporation or sublimation of a material into an air-stream, is relatively

simple to analyze , and i l lus-
• 

~~ 
ue , 

~1trates some of the essential

features of ablat ive and trans- water  Vapor-
A l r M~ot~re °i~y.~y

piration cooling . We consider ]~~~~dy

flow of air over a porous plate, I I ly y
the sur face of which is kept wet

by a supply of water through the L _ _ _ _ ._ _ ~• ___

p late.  Let species 1 be water L~qu 1d~~.t~r

vapor and species 2, air. The

mass fraction of water vapor in the air-stream is K 1 e~ whi le  adjacent to

the wetted plate it is K 1 w ~ 
Conservation of species applied to a control

volume dy thick , cross-sectional area A , requires that at steady state

F outflow of inflow of production of .- . = . = 0 (species 1 is inert)species 1 species 1 species 1

or A n i  - A n I = 0l y+dy l y

divide by volume Ady (n
1 I y÷dy

_n
l l y
)/(

~>’ 
= 0

let dy -
~ 0 ~~- (n 1) = 0 (4.1-1)

dsimilarly ~~ (n 2) = 0 (4.1-2)

adding 
~~ 

(n
1
+n
2) = (n) = (pv) = 0 (4.1-3)

Of course , Eq. (4.1-3) is simply the one-dimensional form of the steady

continuity equation . Now integrate Eq. (4.1-1),
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n1 = constant = n1~~ , the value of n1 at y = 0

But the absolu te flux n
1 can be expressed in terms of its convective and

diffusive components as
dK 1

= K1n - p1?12 a—
dK

thus K
1n - pD12 a~

- = 
~~~~~~~ 

(4.1-4)

Next integrate Eq. (4.1-3) n = constant = n~ E in (4.1-5)

We give the total absolute mass flux across the w-surface the special distin-

guishing symbol m since it is the all-important mass transfer rate . Substi-

tute Eq. (4.1-5) in (4.1-4) ,

• dK 1K1m - pD
12 ~~ 

= ni w
— 

dK 1 drearrange as 
• =

K m-n
1 1,w

rK
i 1 dK C>’

and integrate -
~
-j 1 

= j
m Kl,w 

K1
_ (n

1~~
/m) JO p 12

Assuming the exchange coefficient pD12 is independent of y we obtain

K
i
_ (fl

i,w
/rn) 

____= exp ( D (4. 1-6)
K1,w

_ (n
1,w/m) 12

Now (n
i~~

/rn) = (absolute flux of species 1 across w-surface/total absolute

mass flux across w-surface); if we view the mass transfer processes as a

stream of matter crossing the w-surface, then (n 1 w /rn) is the fraction of

the stream which is species 1, and properly might be called the mass frac-

tion of species 1 in the transferred state. For our wa ter evapora tion

problem intuition tells us that the only species being transferred is water ,

so that the mass fraction of H20 in the transferred state must be unity,

i.e., ni~~
/m = 1. However we should rather obtain this result by a formal
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deductive approach: integrating Eq. (4.1-2) gives

n = constant = n2 2,w

But air is negligibly soluble in water so that n 2 w  = 0, then

m = n  = n  ÷n = nw l ,w 2 ,w l ,w

or 
•

~~~q 
= 1 as required

Substituting in Eq. (4.1-6) gives

K - l

K 
1 

-l 
= exp ( ~~>‘ ) (4.1-7)

l,w ~~l2

which is the equation for the concentration profi le  K 1(y) . In particular ,

at y = S , K 1 = Kl e i so that

K -11,e — m 5
• K l

_ exp(,~D• l,w ~
‘ l2

or 1 + 

K i , e
_K

i ,w 
= exp( ) (4.1-8)

1,w p 12

In order to calculate K1~~ we need to know the water surface temperature T
~
;

usually we may safely assume thermodynamic equilibrium and hence use steam

tables to find the saturation partial pressure of water vapor I~ 
~2 ,sat

Then assuming an ideal gas mixture,

~H20mole fraction of water vapor XH O  =

~~ 20
mass fraction of water vapor KH O  = xH O  M

where is the total pressure , and M = Ex
~
M
~ 

is the mean molecular
i i

weigh t of the mixture . Hence

- 

PH
20

• ~~20 - p + ~~ ~~
-pH O ~ 

(4.1-9)
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Equation (4.1-8) is the solution to our problem: given T~ and ~ we can

calculate the mass transfer rate i , which is the rate of evaporation since

ni w  = in in this problem. However it is instructive to further rearrange

Eq. (4.1-8). First we define the mass transfer Stanton number as

wCM = p u (K -K ) (4. 1- 10)
e e  l ,w l ,e

Note CM is a dimensionless form of the diffusive rather than the absolute

component of the flux of species 1 across the w-surface. Then since

n = K  n + jl,w 1,w w l ,w

and n = n = in since only water is transferred ,1,w w

r n = K l ,w 1,w

~l ,wor m = 
i-K (4.1-11)

l ,w

Substituting Eq. (4.1-10) in (4.1- 11),

= Pe
u
e
C
M 

e 1 ~ w 
(4.1-12)

Pe
u
eCM 

mass transfer conductance, units lb/ft2s

K -K1,e 1,w — . .
-l B’ , the driving force, dimensionless

l,w

Thus in = PeUeCMB’ (4.1-13)

or B’ = 
~ 

(4.1-14)
e e M

Substituting in Eq. (4.1-8) 1 + B’ = exp( )p
12

PD
and solving for in gives m = —~ -~- tn( 1+B ’)

or = ~~l2 £n(i+B’) B’ (4.1-15)
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Comparing Eqs . (4.1-12) and (4.1-15), we can identify

Pe
U
eCM 

= 

pD
12 £n(1÷B’) (4.1-16)

We will find it useful to normalize the Stanton number with its value in

the limit of zero mass transfer rate . To obtain this limi t we note from

Eq. (4.1-15) that rn -‘- 0 as B’ -~- 0, and that

B’ - ~~ B’2 +

F 
.~n (l+B’) — 2 — 1

B’-’O B’ — B’ —

which upon substitution into Eq. (4.1-16) gives

p1312l i m ( p u C M) = E Pe11eCMO (4.1-17)
m-*O

Notice from the definition of B’ = (K1 -K1 )/(K1 -1) that B’ -~ 0 as K 1,e ,w ,W

Ki e  i.e., as the concentration gradients go to zero, and intuition tells

us that this corresponds to the limit i -
~~ 0. It is also instructive to see

that as i~ -~ 0 the concentration profiles are linear. For -
~~ 0, n -~ 0 so

that Eq. (4.1-1) is

d -
= 0

dK1
integrating j1 

= -pD 12 ~~ — = constant = C1

integrating again -pD 12K 1 = C1y + C2

Apply boundary conditions K1 = Ki~~ 
at y = 0 and K1 = K

i e  
at y = 6 , and

solve for C
1 and C2 to obtain

K -K1 i,w . .

K -K 
= (a linear concentration profile) (4.1-18)

l ,e l ,w

dK1 pD 12and i 1,~ = -pD 12 dy y=0 
= 

~ 
(K1,w

_K
1,e
) (4.1- 19)
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w p1312hence Pe~ eCMO = 
K -K 

= , as before
1,w 1,e

with the relationship Pe~eCMO = pD 12/6 established , we choose to write Eq.

(4.1-15) as

•in = PeueCMO B’ 8 (4.1-20)

conductance in limit “blowing driving
of zero mass transfer correction” force

K -K
B ’ = 

l , e l ,w (4 .1 — 21)
l ,w

Equation (4.1-20) is simply an alternate form of our original solution to

the problem, Eq. (4.1-8); given peueCMO, Ki e  and Tw~ 
we can calculate m.

The advantage of Eq. (4.1-20) is that it is in a form suitable for applica-

tion to real boundary layer flows. Recall our Couette flow is only intended

to be a model of a real boundary layer flow , which we analyze to obtain the

effect of mass transfer. We have isolated this effect in Eq. (4.1-20) as

the blowing correction, £ri(l+B’)/B’, and we now postulate that this blowing

correction is approximately correct for real boundary layer flows, laminar

or turbulent. Thus for real boundary layer flows we will use Eq. (4.1-20)

but with the Stanton number CMO calculated from a correlation appropriate to

the wall geometry and flow condition .

Finally we look at concentration profi l es plotted from Eq. (4.1-7) as

shown in the figure on the following page . With evaporation (iii > 0), the

effect of mass transfer into the flow (blowing) is to reduce the concentra-

tion gradient of 1420 at the w-surface. Since

dK 1
j 

-pP 12 ~—

— I , w — _ _ _  
w

-K K - K  
—

1,w 1 ,e l ,w 1,e

it follows that CM decreases wi th increasing m; in fact from Eqs. (4.1-15)
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and (4.1-17),

• CM 
— 
.tn(1÷B’) (4 1-22) 

K

CMO B’ .

K 1(H 20) I
Also , since K1+K2 = 1 for this ‘~ ,~~~~~~~~

. ......I
’ I

binary system , the concentration

profile for species 2, air, is as

shown. We see that the air is I K 2 ( A i r )  I

diffusing towards the water sur-

face: but the water surface is y 6

impermeable to air so is there

• not a contradiction somewhere? The explanation is as follows : we have shown

that n2 
E 0, thus

dK 2n
2 = K

2n -p D 12~~-— — = O

dK2and K 2n = PD 12 ~—

which states that the convective flux of air , K 2n , is everywhere equal (and

in the opposite direction) to the diffusive flux, -pD12dK
2/dy, resul ting in

the air being exactly stationary. On the other hand , the convective flux

of water vapor is in the same direction as its diffusive flux so that the

convection augments the diffusion . This convection is sometimes called the

Stefan flow in the chemical engineering literature.

Example 4.1

At a particular location on a transpiration cooled flat porous wall ,

the wall is maintained at 190°F by injection of water at a rate just

sufficient to wet the wall. Dry air at 1000°F and 1 atm pressure flows

past the wall at 300 ft/s, and dry wall heat transfer experiments for

the same geometry indicate a local Stanton number C
110 

= 0.0046. Calcu-

late the water supply rate.

_ 
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We need to use Eq. (4.1-20) . For we take the density of air at

1000 °F = 0.0272 lb/ f t 3 . Next we obtain C~~ from C110: the data suggest

a turbulent boundary layer for which

C140 = O. O296Re ° 2 Pr °~
4

CMO = O.O296Re °’2Sc °4

C 0.4MO Pr 0. 4thus — =  (~
—) = Le

HO

To approximately account for variable property effects Pr and Sc should

be evaluated at an appropriate reference state ; although not well estab-

lished , the 1/3 rule is the best available. Mixture rules (Chapter 3)

are then used to calculate p, C~ , p and k for the mixture , and also pD12

must be evaluated; hence Pr = C p/k and Sr = p /p D12 are obtained . At 190°F ,

~~ o= ~~~~ psia. For I atm total pressur e ,
2

K = __________________ = 0.52H 2O,w 
~~~~~ + .

~~ - ( 14.7-9.34)

K1r  = 0.52 + ~ - (0-0 .52) = 0.35

and T = 190 + -~
. (1000-L3) = 460 °F

Hence Prr and SCr may be calculated to be 0.85 and 0.56 , respectively , and

~ (g~
) = 1.517 0. 4 

= 1.18

and CMO = (l . 18) (O .O046) 0.0054

K -KH 20,e H 2O ,w 0 ~ 52Also B’ = 
1 

= O S ~ 1 = 1.09KH O w

Substituting in Eq. (4.1-20) ,

rn = P u C £n( l+B’)  B ’e e M O  B’
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= (0.0272 J.~~~(3OO ~~-)(0.0054) ~~~~~~~ 09) (1 .09)
ft

= (0.044) (0.67) (1.09)

= 0.032, the required water supply rate .

Note that the blowing correction £n(l+B ’)/B’ is only exact for a constant

property Couette flow . The answer obtained above could be refined by

using a blowing correction appropriate to a variable property turbulent

boundary layer . Such matters will be discussed in Chapter 9.

4.2 A SIMPLE CASE OF DIFFUSION CONTROLLED OXIDATION

Many ablation processes involve diffusion controlled oxidation . One

simple example is tungsten according to the reaction

3 W + 4 ~~- O 2
-~~W309

where the free-stream contains undissociated oxygen , the surface is metal

tungsten , and temperatures are hi gh enough for chemical equi l ibr ium to

exist at the w-surface with K0 ~ 
0. Another simple example is graphite

2’
according to the reaction

2C + 02 
-

~~ 2C0

where again the free-stream contains undissociated oxygen , but temperatures

are high enough for chemical equilibrium to exist at the w-surface with

K 0, and no formation of02, w

carbon dioxide in the boundary — — — e

Gas Phase Mi,ture~ 0~. N2, W 309

layer .

In both these examples the

reaction is heterogeneous: the 
~2 ~3~ 9

reaction takes p lace only at the K

_ _ _ _ _ _ _ _ _ _ _ _ _  

wall since 02 is inert in the tt,f rt/ r t 7’ttttl
Metal Tungsten

gas phase. Thus if we choose to

_ _



-—--
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

------ - ---

~~~
—-

~~~~ ~~~~~~~~~~~~~~~~~
_-

~~~ 
-- --- -

~~~~~~
-
~~~~~~~r.T~ 

---- -- - -  -

model the real boundary layer with a Couette flow, the governing species

conservation equations are identical to those derived in §4.1 for water

evaporation as 11
20 was, of course, also inert . Denoting °2 as species 1,

conservation of 02~ ~~~- (i t
1

) = 0 (4 .2-1)

conservation of mass , ~~~~~
- (n) = 0 (4.2-2)

Integrate Eq. (4.2-2), n = constant = = (4.2-3)

Integrate Eq. (4 .2 -1) ,  n 1 = constant = n1~~

or , expressing the absolute f lux of species 1 in terms of its convective

and diffusive components ,

dK dK
K n pD —~- = K m - p D  — 2 - = n1 lm dy 1 lm dy l ,w

where 13lm is the effective binary diffusion coefficient of 02 in the mixture

of 02, N 2 and W 309. Rearranging and integrating,

1
K1 dK 1 

= ; dy

-
: 

JK i~~ K 1
_n

1~~ /rn JO PDim

K 1-n 1_~ /m 
____hence Lii. ‘ 

• 
= m>’~ if pD is assumed constant.

K -n /m pDi~ 
lm

l ,w l ,w

K -n /il , e l ,w 
____F o r y = 6  , = exp( ,, )

K -n /m ~‘lm1,w 1,w

or 1 + B’ = exp( ) ; Zrt (1 +B ’) = i~6 (4 .2 -4)
• ~~lm ~~1m

K -K
— 1,e l ,wwhere again B (4.2-5)

K i~~
_n

i ~~~~~~~~

We see that the algebra involved is identical to that  for the water evapo-

ration problem of §4.1; we need only to evaluate K 1~~ / r i  for the oxidation
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problem. Recall that this ratio was unity for the water evaporation problem ,

and was identified as the transferred state mass fraction of species 1. In

that case we used the fact that air is negligibly soluble in water , i . e . ,

n2 ,w = 0, to evaluate n1w /1
~ 

: we used a physical fact to eval uate a boundary

condition. For tungsten oxidation the physical fact we use comes from the

stoichiometry of the reaction occurring at the boundary,

3W + 4 4 0 2 ~~~ 309

3x184 + 4.5x32

1 lb W~ + 0.26 lb 02 (W* denotes metal tungsten)

i . e . ,  the stoichiometric ratio r is 0.26 . By looking at the u-surface we

see that only tungsten is transferred , so that rn = 
~~~~~ 

and , from the

stoichiometry, for every 1 lb of tungs ten transferred , 0.26 lb of 02

crosses the w-surface in the negative y-direction . Thus n0 w = -0 .26 rn ,
2’

or (n 1 / i )  = (n0 ~
/m) = -0.26 = -r. Substitute in Eq. (4 .2-5) ,

2 ’
K -K

B’ = 
l,e l ,w (4 .2-6)K +rl ,w

Now Eqs . (4 .2-4)  and (4.2-6)  describe transfer between the e- and w-

surfaces , and apply irrespective of the rate at which the reaction of the

interface proceeds. If the reaction is slow, then the mass fraction of 02

at the w-surface, Ki w a is determined part ly by chemical k inet ics  considera-

tions. However, often the temperature and pressure are high enough for

reactions to be very fast and for chemical equi librium to prevail : then the

concentration K1~~ 
may be determined from thermodynamic considerations only.

If , in addition , the backward reaction rate is very small , a thermodynamics

calculation will show that the equilibrium concentration of 02 at the w-

surface is a ver ’  small  value indeed . Thus 
~~~~ 

can be set equal to

zero in Eq. (4 .2~ 6) to obtain

B’ = (4.2-7)
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For an air free-stream K1 e = 0.232 and B ’ = 0.89. Notice that if the

reaction product were W206 or W03, B’ is unchanged since r is unchanged

(provided thermodynamics again indicates K
i~~ 

= 0).

Similarly , for the carbon reaction,

c

12 + 16 -
~

1 l b +~~~lb -l- .~~~~. r = ~~

Again , for K i e  = 0.232 , B ’ = (0.232) / ( 4/ 3) = 0.174 .

As was the case for the water evaporation problem we can rearrange Eq.

(4.2-4)  to read

• 
— 
PD1 tn (1+B’) 

B’ 4 “ 8B’ ~

and then, recogn i z ing tha t we have a Coue tte flow model of a real boundary

layer flow, identify PD1m /6 = Pe(1e~~I0 
and write

in = PeUeC~~ 
bi(i+B’) 

B’ (4.2-9)

When we apply Eq. (4.2-9) to real boundary layers we assume that the blow-

ing correction Lii(1+B’)/B’ developed for the Couette flow is a good approxi-

mation for the real flow . Equation (4.2-9) is easier to use for this oxi-

dation problem than was the case for the water evaporation problem inasmuch

B’ has a fixed value, rather than being dependent on surface temperature.

For example , in the case of tungsten oxidation Eq. (4.2-9) reduces to in =

0. 64peueCMO.

Notice that it is the rate at which 0
2 can diffuse from the free-stream

to the wall which determines the rate of reaction , hence the characteriza-

tion as a diffusion controlled reaction. Also note that we did not use the

species conservation equation governing transport of the reaction product

• • away from the wall. If we were to do so, there would again result Eq. (4.2-9)
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but with B’ = K
~309,~

/(K
~3
09,~

_ (l+r)). Since we cannot specify KW O w

we cannot use this form of B ’ to calculate iii; in fact, knowing i i , Eq.

(4.2-9) allows us to determine 
~~ 

In physical terms the concentra-
3 9’

tion of product at the w-surface adjusts i tself  to the value required for

transfer away from the wall at the required rate: diffusion of the pro-

duct away from the wall does not control the rate of reaction in this

situation.

Example 4.2

Develop an expression for the rate of combustion of carbon ejecta

in the flow over the aft heatshield of a miss i le .  The ejecta have sizes

between 1 and 10 p and temperatures in the range 3000-6000°R.

In this temperature range oxidation to CO and neglig ible 02 dissocia-

tion may be assumed. Since CMO increases inversely propor tional to particle

size chemical kinetics limitations may be important for very small particles:

for the C-O2 reaction such chemical kinetics effects are negli gible for

particle sizes greater than 10
_ i  

p . Thus the carbon combustion rate is given

by Eq. (4 .2-8)

K -K0 ,e 0 ,w• L.n(l+B’) 2 2in = PeueCMO B’ B’ where B’ = K +r
02,w

For diffusion control K
0 0, and for the reaction C + 02 2C0, r = 4/3

3 .and B = 

~ 
K0 & However now K

0 e is the oxygen concentration some dis-2’ 2’
tance away from the particle , of the order of a few particle diameters . We

cannot set K0 e = 0.232 , the 02 concentration in the free-stream, since the
2’

02 concentration will vary from 0.232 at the boundary layer edge to zero at

the heatshield surface (the heatshield itself will be oxidizing in the dif-

fusion controlled limit). To evaluate the conductance p
eueCMO we wi l l

• assume that the particles follow the flow and use the result for a sphere
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in stagnant infinite surrounds, Pe~e
CMO = 2pD0 rn~’

a , where a is the particle
2 P p

diameter. This conductance expression will be more accurate for the small-

est particles, and will underestimate the conductance for larger particles ,

owing to their longer persisting initial velocity; however, it is the small-

est particles which are more important owing to their higher combustion

rates. The result is thus

2
~~ O m

2 
. )a 4 02,ambient

where the subscript e has been replaced by “ambient” as a reminder that it

is the local concentration of 02 in the boundary layer . The strongly

dependent temperature product pD0 ~ 
must be evaluated at some reference

2
state dependent on particle and ambient temperatures: the 1/3 rule is

probably adequate.

We might also be interested in estimating the life-time of an ejecta

particle: a mass balance on a spherical particle is

d 1 3 2.
~~~~~

- (p ~ ira ) = ira in

4pD
or cia 

- 2 - 
02m 

£n~ l + K
dt 

— p - 
a p ‘ 4 0 ,ambient~p p p  2

A lower l imit  on the particle life can be estimated by setting K . =02, ambient
0.232; then L.n(l+B’) = 0.160, and integrating from t = 0 with initial size

a~0. to t = T when a~ = 0, gives

T = 0.32P papo
2

/PD o m

where pD
0 m has been taken to be constant, and chemical kinetics limitations
2

near the end of the particle lifetime have been ignored .
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Example 4.3

In contrast to a solid graphite or carbon-carbon heatshield the car-

bonaceous surface of a charring abiator is porous, and through the pores

percolates pyrolysis gas. For -

to e
steady state ablation determine —e

the effect of the pyrolysis gas on

the diffusion controlled surface
1 0 2 A A c o

oxidation rate. Assume that the I 1
pyrolysis gases are inert with

• respect to the boundary layer I ~~(C )

gases.

We will again simplify the analysis by assuming that the freestream

contains undissociated oxygen, and that thermodynamic equilibrium prevails

at the w-surface with K0 = 0. The mass transfer driving force is, from

Eq. (4.2-5),

K -Kl,e l,wB = 
• 

where species 1 is 02K -n /ml,w l ,w

= 
0.232

-n /ail,w

For steady state abla tion the mass loss rate of pyrolys is gas and char are

equal, mg = mc, and thus m = mc+m g = 2lfl
c~ 

Also for the reaction C + 02 ~ 2C0

the stoichiometric ratio r is again 4/3, i . e . , for each 1 lb of char crossing

the u-surface, 4/3 lb of 02 crosses the w-surface , in the negative direction ,

n n nl,w 4 1 w  l,w 2
- -i ,  or — - -  - -i .

in in 2mc c

0.232and B’ = 2 3 = 0.348

From Eq. (4.2-9), rn = PeUeCMO ~~
, B’

65

_ 
_ _ _ _  A



- - -

in = p u C (O.858)(O.348)e e MO

= O.299p u Ce e MO

and mc = 4m = O .1SO PuC MO

For a solid carbon surf ace we have already shown tha t B ’ = 0.174 and m =
p u C (0.922)(0.174) = O.l6Op u CMO. Hence the reduction in oxidatione e MO
rate due to the pyrolysis gas is (0.l60-0.150)/0.160 = 7%.

4.3 A MORE COMPLE X CASE OF DIFFUSION CONTROLLED OXIDATION

We now consider oxidation of a graphite surface when significant reac-

tions might occur in the

gas phase , for examp le:

(i) If the free-stream is 

~~~~~~~~~~~~~~~~~~
2CO L2C O,O O 2CO2

T

~~~~~~~~~~~~~~~~~~
at a high enough tempera-

ture f o r  02 to dissoc iate ~heterogeneouS. t h~~~~geneous . exothe~~~1C)

, endothermiC)

and if  the surf ace is much I
cooler , there may be re- Vcombination 20 - ‘- 02 occur-

ring in the boundary

~~~~~~~cO~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

layer. (ii) If the sur-

face temperature is in
CO2 —~ —~ Co2

the range 2000-4000°F, co — -~~~~ 
02

heat ~~~ 
heat

and the free-stream is

cool , the surface reaction is C + CO2 ~ 2CO , and there is a gas phase reac-

tion 2C0 + 02 
-

~~ 2CO2, as shown above.

Let us analyze the latter problem. Again we will use a Couette flow

model: conservation of species i in a control volume dy thick , cross-

sectional area A requires that at steady state

outflow of 
- 

i nf l o w  of  
- produc tion of  species i

spec ies i species i — due to chemical reac tions
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~j

1\hhi l y+dy 
- 

~~i ’ y = r1Ady

• ‘iIy~y
(n h ( y+dy

_n
i ( y)/d Y = r

~ I ____

let dy -
~ 0, ~— (n.) = (4.3-1) 1

/ ~ 1 
~~~~~ dy

• Area G
Here r

~ 
is the mass ra te of  produc tion of

spec ies i due to chemical re actions , and

has d imensions mass/ un it volume - unit time.

Species i may be 02, CO2. CO or N 2, thus

~~~ 

(
~~o~~ 

= rO (4.3-2a)

• 

~~

— (n~0 ) = 

~co2 
(4.3-2b)

d
~~
— (n

CO
) = rCO (4.3-2c)

~j 
(n
w

) = = 0 since N2 is inert (4.3-2d)

The ~~~~~~ are given by complex expressions involving reaction rates and equi.-

librium relations. However, we can solve a problem to determine the carbon

oxidation rate without knowing the 
~~ 

expr ess ions , provided we are prepared

to as sume all  the spe cies d if f u sion coef f icients equal , which for this chemi-

cal system is quite realistic. We first multiply Eq. (4.3-2a) by the mass

fraction of element oxygen in 02, ~~o , Eq. (4.3-2b) by 
~OCO , Eq. (4.3-2c)

2 2
by ~~~~ and then add ,

~~ ~~OO2
nO
2 OCO2 CO2+ OCO CO = aOO2~O2

+aOCO2~CO2
+aOCO~CO

cior 
~~ ~~~~~~~~~ 

= (4.3 3)

Now the f i r s t term on the r igh t hand side of  Eq. (4.3-3) is the rate at

which elemen t 0 appear s (or disappe ar s) in the f o rm of  02 as 02 is produced

(or consumed) by chemical reactions; the second term is the rate at which
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0 appears in the f o r m  of  C02; etc. Since there cannot be a net creation or

des truc tion of  a chemical element, these terms must sum to zero, Zcx0~r~ = 0.

Or , more generally

~~kiTi = 0 , any element k (4.3-4)

The absolute flux of element 0, = so Eq. (4.3-3) becomes

~~~~ 
(i~~~) = 0 (4.3-5)

integrate, n~ = constant = ‘tO,w ( 4 . 3-6)

or 
~~oi

(K
i
fl_PDim ~~~ = 

~O,w 
(4.3-7)

If  we now assume all the D. equal , i .e., D = D = P = D , thenurn O m  C O m  CO2 2 m

flEa .K. -pD ~— Eco. .K. = iiOu i  dy O i i  O,w

dK0or nK
0-pD 

~~~ 
= constant = 

~
1O w  (4.3-8)

where Ea0~K~ is the mass fraction of element oxygen in the mixture ,
i

irrespec tive of  which chemical species it is contained . At this po int the

problem has been reduced to a mathematical form identical to those of §4.1

and §4.2 , and we i1c~d not repea t the algebra of  the prev ious analyses f rom

this point forward . The result is

in = PeueCMO 
~~~~~~~~~~~~~ B’ (4.3-9)

K -K
B ’ = 

0,e O,w (4. 3-10)
K
0w

_flO w / rn

Notation for the transferred state mass fraction. The quantity 
~
iO w / rn has

been previously iden tif i e d  as the transferred state mass f rac tion , i.e.,

is the fraction of the stream of mass crossing the w-surface which is

element oxygen. To introduce notation for this quantity first go back to
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§ 4.1  where we were dealing with t ransf er  of  an iner t species , H20, deno ted

spec ies 1, and def ine 
~~~~~~~~~~ 

K1~~~
; ni~~

/m K1~~~ . Then since H 20 is

inert , n1~~ = 

~l u ’ and Kltw = Ki t ~ 
K
i t  i.e., 

the subscripts tw and

tu may be replaced by t without ambiguity . In §4.2 we dealt with species

i which could reac t at the surf ace , then if n. /ii K. and n. /m =i,w i,tw i ,tu

K. , in general K. ~ K. . For example K = 1, whi le  K = 0
i,tu i,tw i,tu W,tu W ,tw

since only metal tungsten crosses the u-surface, while only 02 and W309

cross the w-surface. In the present problem ii = i~ since a chemicalO,w O ,u

element cannot be created or destroyed between the u- and w-surfaces , thus

we define tI O ,w/’m E Ko t  without ambiguity . Since = n , and Eii
k = n it

follows that the sums of mass fractions in the transferred state of species

or elements are unity . But in contrast to mixture mass fractions, trans-

f erred state mass f r ac tions may take on any valu e between -~~ and +~~~ .

K0 -K0Thus Eq. (4.3-10) becomes B ’ = 
,e ,w ( 4 .3 -i l )

KO,w
_K
O,t

Now recall that Pe~
1eCMO is simply a property of the flow and is straight-

forward to calculate . Thus if we can evaluate B’ we can de termine i .  Lets

look at each term in B’ in turn:

e 
= K

0 e and is known from the free-stream composition
‘ 2’

KO w  = IcL
0

K. = K
o w  

+ 
~~~ 

KC O w  + 
~~~~

But at the surf ace  tempera tures under considera tion the f orward reac tion of

carbon with oxidizing species are very rap id , and thus the concentra tions

of 02 and CO2 at the w-surface may be taken to be zero, then

161~0w  - 
~~~~ 

KC O w

• Carbon monoxide is the product of the oxidation reactions and its concen-
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tration is finite at the w-surface, and is a priori unknown. So we cannot

use Eq. (4.3-11) directly to evaluate B’ . Instead we firs t perform a l i t t l e

algebraic manipulation. Rewrite Eq. (4.3-9) as

B ’ = exp (11 / p u C MO) - 1

and substitute from Eq. (4 . 3-11) to obtain

K0e~
K0w = o,w o ,t exp( Peue~~io~~h1 (4.3 l2)

Now recognize tha t we could have equal ly well done our analys is for element

carbon , wh ich would have given

KC e
_ K

C w  = C ,w
_K

C , t ) [exp eueCM&_ ~~1 (4.3- 13)

Multiply Eq. (4.3-12) by ~ and Eq. (4.3-13) by ~~, add and rearrange,

= ~~ ~ 
Lii.( l +B’ )  

B ’
~e e M 0  B’

( ? K 0+ F K c) 
~~~~~~~~~~~~~~~~~~~~B’ = 

e w (4. 3-14)
(CKo~~KC)W

_ (t;Ko+~Kc)

We are free to choose any values for the multipliers ~ and ~: lets see if

we can choose values such that we can evaluate the terms in Eq. (4.3-14)

from given data. Clearly the e-state gives no problem . For the w-state:

KO+
~

KC) w = r (K0~~~
+ 
~~ 

K~0~~~
+ 

~
j  K~~0~~~~) + 

~~~(~~~~~
- K
~o~~~

+ 
~~ 

K~~~~)

= KC O w (4~~ 
+ 

~~
) since KO w  = KC O w  = 0

So if we choose ~ = 12/ 16 and ~ = -1 , then (.
~
-

~
- KO

_ K
C ) W = 0 and we need not

know K
C0w~ 

Also then T 1
~0~~C~e 

= #~ 
K0 e ~ 

and (~~~~~~ 
Ko~~c) t = -1 since

looking at the u-surface , 
~O = 0, 

~~ 
= so Ko , t = 0 and KC t  = 1. Substi-

tuting in Eq. (4.3-14) ,

3
4 KO e  0

B ’ = = — K  = 0 1 7 40-(-1) 4 02,e

• • ____________  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
---

~~~
•_ -
. 

_

~~~~~~



which is the same value as was obtained in §4.2. Notice, however , we have

made the add itional assumption that all  the diffusion coeff icien ts of

species containing C or 0 are equal , and thus our value of B ’ may be less

accurate. In fact binary diffusion coefficients for the chemical system

C-O-N are not too different, and the assumption is quite justif ied.

Example 4.4

As an example of the analysis technique used above , let us investi-

gate the effect of adding water vapor to an air-stream flowing over

combusting carbon . The technolog ical problem might concern heatshield

performance during reen try through a rains torm .

Relative to carbon, water vapor is an oxidizer and, at temperatures

of concern, chemical equilibrium shows that KH 0 w 0. Again we use a
2 ’

B ’ based on the combination (-
~
-
~~
. K0-i~~) as follows .

~ .. i2~~ ~~l2C 4 4  CO2 ~~
KCO

32 16 16
K0 = K0 

+ 
~~~~ 

K~o + 
~~~~ 

K~o + 
~~~~ 

K~~o

1 2 —  — 12 12 12thus (
~~ 

Ko
_K
c) = 

~~~~ 
K~ + 

~~~~~ 
K~j + y~ 

KH O

As before (~~~~~~ 
Ko—K~)~ = 0 ; (~~~~~~ 

KO~
KC)t 

= -l

l 2 - ~ — 12 12 12and now (ii. KO
_K
C)e 

= 
T~~ 

KO e  ~ 4T KC O e  + 
~~~~ 

K~jo~~ = B ’

We see that water vapor serves to increase the driving force B’ and hence

the carbon oxidation rate. For an increase of 10 percent in B’ over the

value for dry air (0.174) the required H20 concentration is calculated to

be K = 0.026 .H
20 , e

Note that the carbon-steam reaction is highly endo thermic: the analys is

has assumed tha t the hea t supply requiremen ts of this reaction do not markedly

change the carbon surface temperature. A much lower temperature would
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significantly alter the conductance through the transpor t properties , or could

even cause a chang e to the kinetics controlled oxidation regime . In the case

of a heatshield the convective heating usually dominates and T~ is l i t t l e

affected by the oxidation reactions; however for small ejecta particles coin-

busting in the boundary layer the particle temperature can be si gni f icant ly

lowered .

Examp le 4.5

A solid propellant rocket motor has a graphite lined throat . The

propellant gases contain oxidizing species which cause the throat to en-

large at an appreciable rate. If the elemental composition cf the

propellant is K0 = 0.560 , 
~~ 

= 0.256, KH = 0.028 and KN = 0.156, estimate

the mass transfer driving force B’ .

We can safely assume that the surface temperature is high enough for

thermodynamic equilibrium, and that CO is the only oxygen containing species

having an appreciable concentration at the w-surface . Thus , as before , the

driving force may be based on the combination (-
~

-
~~
- K~ -K~) to obtain

B’ = — K -K16 0,e C ,e

However , in contrast to the previous problems , we do not know the molecu-

lar species composition at the e-surface: typical ly the mix ture will be

quite complex . Thus we cannot express KC e  and 1
~0,e in terms of the K i e •

But fortunately we do not have to since the elemental composition at the

e-surface must be the same as that of the propellant . Flence

B’ = .
~~~
. (0.560) - (0.256) = 0.164

To obtain the rate of enlargement of the throat we would obtain PeUeCMO

from an appropriate turbulent boundary layer correlation and determine m

using Eq.  (4.3-9) .
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4.4 F LAME SHEET MODEL FOR CARBON OXIDATION

The method of analysis presented in §4.3 allowed determination of the

mass transfer rate , but does not give the concentration profiles, and, in particu-

lar , the location of the flame . We wi l l  now re-analyze the problem assuming

that the homogeneous reactions occur at an inf ini te ly  thin flame “sheet” as

depicted in the Fi gure for a carbon sphere of radius R5 located in stagnant air.
Flame

Region I lies between the particle -... \ \
\ \

and the f lame, wh ile region II 
R~

lies between the flame of R \
“\ ~

K 
S \  

1 ’

radius R
f and infinity . The

CO l
mass transfer rate across the w- I co , 0,

I N ,

surface is l1
I~ 

wh ile across the / I
/

uf-and wf-surfaces it is in . The / “ /
II / I, —

reactions are as described in §4.3. V

Solution of species conservation equations follows the procedure given in -
~

§4.2 , except that the spherical geometry must be accounted for. With equal

diffusion coefficients V. =im

v R f
111
1 

= 
~~ R -R 

2n (l+B~) (4.4-i)
s f s

= 9~n(i+B’ ) (4.4-2)II

where in region I the integration is from R f to R 5 , whi le  in reg ion II  it is

from R f to i n f in i ty .  For region I B ’ may be based on CO or CO 2 ,

K -KK -K CO uf C0 ,w
= 

C0,uf C0,w 
= 

2 2
Kcow~

KCO tw KCO2,W
_K

CO2,tW

5 0 , Kco = 0, and stoichiometry at the w-surface requires

• C •

1 —~~~~~~
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11 lb + 3 lb + 14 lb or KCO tw = 
3 ~~~~~~ 

- 
T

Thus B~ = 
i±

KCo
;
w 

= -i~r~ 
KC0 U f  (4.4-3,4)

3~~ G0,w r

For region II B’ may be based on 02 and C02,

B’ = 

KO2,e
_K
O2,wf 

= 

KCO2,e
_K

CO2,wf

II K02, wf
_ K

02, twf KCO2, wf
_ K

CO 2, twf

— But K = 0, K = 0, thus02, wf C02, e
Kco

B’ — 
0.232 

= 
2 (4 45 6)II - _ K

O2, twf KCO2, twf
_ K

CO2 , wf

Continuity of mass fl ux at the flame requires

rn 11 = nC0 uf + nCo uf = 
~C02, wf + 

~O2, wf (4 .4-7 ,8)

while stoichiometry at the flame requires

2CO
2 

+ 02 2C02

7 lb + 4 lb -
~ 11 lb ; thus n = - n (4.4-9)

C0,uf 4 O2,wf

R~Also mass conservation requires m1 = —~~
- in11 (4.4-10)

R
5

wh ile the CO . concentration is continuous, K = K (4.4-11)C02,uf C02,wf

Lastly n
C0 U f  

= (R
~

/R
~
,)nco is related to 

~~ 
through stoichiome try as

= - 
_
~~~

nCO uf (4 .4-12)

There are 12 equations in the 12 unknowns m1, m11, Rf~ Bi, B~ 1. Kco~~, KCO uf~
K , n , n , n . and n . The solution proceeds as follows .C02, wf 02,wf CO ,uf C02,ut CO2,wf

From Eqs. (4.4-12) and (4.4-10), ~ m11 = _n
CO ~ 

and substituting in Eq.
2k ”

(4.4-7) gives

____

~~
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-
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= - -r m 1 + nCO uf ; thus nCO Uf = 
T 

rn 11

From Eq. (4.4-9) : no f  = 
~7

) (T)m II = -

From Eq. (4.4-5) : B~1 = 
0.232 

= 0.087

From Eq. (4.4-8): rn11 = 
~CO2,Wf 

- 
~~~

l II thus ‘1C02 , wf = Tm II

KCO wf
From Eq. (4.4-6): Bli = 0.087 = u K 

thus KC0 W f  
= 0.293

T 
- CO2,wf

• From Eq. (4.4-4): B~ = (3/ll)(0.293) = 0.080

From Eq. (4.4-3): 0.080 = 
14

CO ,w thus KC O w  = 0.346

3

From Eqs. (4.4-1 ,2 and 10),

- 

R
f/R 5) / ( R f

_R
5) 

~n(l+0.080) - 
R

f
— (1/R f) 2.n(l+O.087) 

— 

R2II 5

0.922 1Solving, 
R -R 

= or Rf/R 5 = 1.922
f s  5

From Eq. (4.4-1),

rn1 = R5 l-(l/l.922) 
9.n(1+0.080) = 0.160

which is exactly the result obtained in §4.3. Since the assumptions made in

• each analysis were identical (particularly that of equal diffusion coefficients)

• the result should indeed be identical. Notice that the flame radius is slightly

less than twice the particle radius. If the analysis is carr ied out neglecting

radial convection , then m 1 = 0.174 pV/R5 and Rf/R 5 = 2.0, i.e., the f lame has

exac tly twice the radius of the particle.

4.5 COUETTE FLOW ANALYSIS WITH UNEQUAL DIFFUSION COEFFICIENTS • 

-

A number of new concepts were introduced with the bifurcation approxima-

tion for multicomponen t diff usion introduced in §3.7 .  In order to become more
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familiar with these concepts let us analyze simple diffusion controlled oxida-

tion of carbon in a hi gh temperature stream of argon and dissociated oxygen ,

i. e. ,  the reaction is

C + 0 -
~~ CO

where at the e-surface we have A and 0. The carbon surface temperature is

high enough to ensure that 0 does not recombine in the flow , and for chemical

equilibrium to exist at the w-surface with Ko~~ 
0. Three species are thus

present in the gas phase: 0, A and CO. species 1, 2 and 3, respectively.

mass conservation

(n) =

integrating

n = constant = (4.5-1)

species 1 conservation

~~
.— (n1) = 0

integrating IC.

= constant = ~l w

or K1n + = 
~~~~~~~~ 

(4.5-2)

Substituting for n from Eq. (4.5-1) and for from Eq. (3.7-12)

pD p2 dz 1K1m - 
p1M d37 

= 
~l,w 

(4.5 3)

Since z 1 M1x 1/F 1p2, and K1 M1x 1/M , we have K1 = F1ii2 z 1/M , and substitut-

ing in Eq. (4.5-3) gives

~~ 
dz 1 M ~1,w M K1 

- 

m1J1F 1 
dy - 

F1p2 
~~~ 

— 
F
11i2 

1,tw

Now K1 t ~ , the mass fraction in the transferred state, is fixed since it de-

pends only on the stoichometry of the reaction, as is F1, a proper ty of species

1. However M, the mix ture molecul ar weigh t, and EM.x~/F. vary with
;J J 3
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composition across the flow. In order to obtain an analytical solution to our

problem, we will now assume the mixture property M/~ 2 to be constant across

the fl:w 
:nd

;

fi

~~~~~~:w 

= MK1 t ~ /F1u2, then 

(4.5-4)1 • dy 1, tw

The analysis now proceeds in a similar fashion to that of §4. 2:

fz l e  dz 1 inF1 (
~i5 

~
‘l

i = —  
I -~- d yz 1

_ z
1~~~ D Jol ,w

z -z môF~~i
Zn( 1 + z

l
~

e l,w 
~ 

= 
1 1 if P/311 is taken constant .

PD
- z -z

= 
PD 9.n( l+B ’) where B ’ = 

l,e l ,w (4 5 5)F p ~~ z z z -z1 1 l,w l,tw

In order to assess the effect of unequal diffusion coefficients on

mass loss rate in, let us compare this resul t with the resul t obtained if

effective binary diffusion is assumed; then we would approximate V~1~ as

V0 A and write
‘ 

• PVO,A
~ 2~n(l+B )

Now if the reference diff usion coeff icient is chosen to be that of argon ,

then VO,A = ~/F 1F2 = ~/F 1, and

= ~~~ 9.n(l+B’) (4.5-6)

Comparing Eqs. (4.5-5) and (4.5-6),

m £n(l+B’)unequal ,~ z 4 5 7• 
— — 

U1~n(l+B’) 
-

ineff t
i

binary

Example 4.6

Compare the mass loss rate for diffusion controlled oxidation of carbon

in a hi gh temperature stream of 80 percent argon and 20 percent atomic oxygen,

_ _  — _
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by volume , calculated (i) for unequal diffusion coefficients, and (ii) ef-

fective binary diffusion.

First we calculate the F.’s:
i

Species M
~ 

F
~

1. 0 16 (16/40)0.461 = 0.655

2. A 40 1

3. CO 28 (28/40)0.461 = 0.848

where we have taken ~ as the self-diffusion coefficient of argon. Next we

calculate the edge gas proper ties we need.

= Xx
~
F
~ = (0 .2 ) (O .6 55)  + (0.8) (l) = 0.931

- 

Mixi e  - ( l 6 ) ( O . 2 )  
+ 
(40)(0.8) - 6

~ 2 ,e — F. — 0.655 1 -

i

- 
M1x1 e 

- 
(l6) ( 0.2) 

- 0 1324zl e  — F
i1.12 e  

— 
(0.655)(36.89) 

—

K - 

x1 eMi 
- 

(O.2)(16) 
- 0 0909l,e 

— 
M 

— (O .2 ) ( 16 ) + (O.8 ) (40) —

• (z1/K 1) = 1.456 .

(Note how the z fraction lies between the mole and mass fractions.) Next we

simplify Eq. (4.5-7) by evaluating the driving forces B’ and B~ .

- 

Ki,e
_K

i,w 
- 
0.0909-0 

-— 
K -K 

— 0+4/3 — 0.0682
l ,w l , tw

B’ = 

zl ,e
_ z

l,w 
= 

0.1324-0
z — z 0~zl ,w l , tw l , tw

M 4 M 4 z1but z 1~~~ = 
F
1~

.i
2 

Kltw 
= - 

3 ~F1
p
2~ 

= - 
~~ 1(11/ 3

where the subscript 1/3 indicates that we will evaluate this variable property

at a 1/3 rule reference state (1/3 e-surface value + 2/3 w-surface value). Re-

call that in the analysis we assumed M/~ 2 to be constant across the flow in

L ~~~ 
. . -• .•,

~~~~~~~~
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taking z
1~~~ 

to be constant. Thus

B’ = 
0.0324-0 

= 0.0993 (K /z  )

•~• ~l 1 1/3

Substituting in Eq. (4.5-7) then gives

‘
~unequal 

= 
~ (15.16) (l+0.0993(K 1/z 1)1/3)

— 

~~l~ l/3effective
binary

where we have also evaluated the variable property ji
1 

at a 1/ 3 rule reference

state.

We cannot calculate the w-surface composition for unequal diffusion

coefficients until we have ii ; hence an iterative calculation is re-unequal

quired, and as a first guess we will use the composition corresponding to the

effective binary solution.

• 
pV12 K1 -K1 pV 

2 
K3 -K3

m . = 2.n(l + 
,e 

= 9~ (~ + 
, e

effective S K -K K -Kl,w l ,t.w 3,w 3,tw
binary

-K
or 

~~~~ 
9~.n(l + 0.0682) = 

~J— 2.n(l + 
~ 

3~~
3)1 3 3,w ’

solving , 1(3,w 0.19; x3~~ 
0.25.

~l ,w = (0.25) (0 .848)+ (0 .75) ( i)  = 0.962

— 
(O .25) (28 )  (0 .75)(40)  

-

~2 ,w — 
(0.848) 

+ 
1 

— 38.25

~~2~l/3 
= (2/3)(38.25)+(l/3)(36 .89) = 37.80

(K
1)1113 = (2/3) (O)+ ( l / 3 ) (0.0909) = 0.0303

(x 1) 1/3 = ( 2 / 3 ) ( O ) + ( l/ 3 ) (0 .2)  = 0.0667

(z l ) l/3 = ______________ = 0.04308 and (K
1/ z 1)113 

= 0.7033

~~1~ l/3 
= (2/3)(O.962)+(l/3)(0.93i) = ‘.95l6

_ _  - ~~~~ _
~;~~•~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(15.16) (l+(0.0993)(0.7033)) 
—t en 0 9516 1.0754

Let us check our guess for x3~~
. We have

~~
— £n(l+B~ ) = ~~~

.- R.n(l+B~
1 1 3 3

o.~ ss £n(l+0.06984) = 
O~~48 £n(l+B~~) , solving, 

~ 
= 0.09133

But z
3~~ 

= (28/ l2 ) (z 1/K 1)1113 = (28/l2)(l/0.7033) = 3.318

0-
thus B~ = 0.09133 = 

~ -3.318 
solving, z3,w = 0.277

and — 

F3li2 w Z3 w  
— (O.848)(38.25)(0.277) = 0 3213,w M3 
— 28

So we see that our first guess of x3~~ 
= 0.25 was a little low. If the calcu-

lation is now repeated for x3,w = 0.321, it is found that the new value of ~ is

1.0748. So within sufficient accuracy we can take 4’ = 1.075.

Note that in this simple problem we are able to careful ly choose an

appropria te effe ctive binary diffusion coeff icient by recogn izing that the

argon concentration was large throughout the flow; thus for diffusion of atomic

oxygen , VO A  was used. In general this is a superior procedure to assuming

all effective binary diffusion coefficients equal , as has been done in most

computer codes developed for engineering use.
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CHAPTE R 5

SURFACE CHEMISTRY

5.1 INTRODUCTION

In Chapter 4 we treated mass transfer prob lems for which the essential

details of the w-surface molecular composition were known. For example, in

the water evaporation problem of §4.1 , KH O w  was obtained from PH O s a t (Tw)
~

an equilibrium relation tabulated in steam tables. In the tungsten oxida-

tion problem of §4. 2, K0 w 
0, again an equilibrium relation: in the

2’
temperature range considered the reaction 3W* + 4 .50 2 .~~ W3O9 is in equilibrium ,

and the equil ibr ium constant is

1(
PW 0 (T) = 

~W 0 ~~~~~ 
>> 1 (5.1-1)

39 39 2

But how did we know that the reaction product was W3O9? At higher tempera-

tures we would expect W
206 and WO3 to appear , and f inally even W02 and WO.

If all these products are to be considered we have numerous equilibrium re-

lations , of the form of Eq. (5.1-1), to consider simultaneously , and the

problem of determining the w-surface composition becomes quite complex .

As another example consider graphite ablation at high temperatures.

In the stagnation region of a missile at peak heating the freestream tempera-

tures are usually very high, and at values of the wall temperature greater

than about 3000°R the reactions are

C + O - ’~C0 and 2 C + 0
2
+ 2C0,

and are diffusion controlled with K and K 0. If T is increasedO,w O2,w w

to about 5500°R the carbon surface begins to subl ime yielding vapor spec ies

such as C1, C2, C3, etc. Also reactions between carbon and nitrogen take

place and , for example , the cyano radical CN is formed . The figure on the

fol low ing page shows the typical mass loss behavior , plotted as the dimen-
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sionless ratio rn/P U CM(=B’).

Recall from §4. 3,
I DiffaSioll I

• Contro lled Subl i mat i on
lB = PeUeCM B’ (exact) (5 . 1-2)

CM 
= 

£n(1+B ’) (Couette flowCMO model) (5.1-3) 
0 174 

p .  lO aOn

K -K
B’ = 

k,e k ,w (equal D’ s)
Kk,w

_K
k,t (5.1-4)

In order to calculate the mass 3000 5500 T u (~ P )

transfer rate in we must evalu-

ate B’. KC e  = 0 of course , and since only species carbon crosses the u-

surface, KC t  = 1, so it remains to evaluate 
~C,w 

= 
~~C~

Ki,w and we see that

we require the molecular composition at the w-surface. If we knew the K
1~~

’s

we could evaluate B’ and hence in. At these high temperatures and pressures

the assumption of chemical equilibrium is good so that we can use chemical

equi l ibrium relations to determine the ~~~~~~ In fact, we shall see that is

convenient to determine B’ directly, and since ~~~ = Ki ,w
(Tw~P)n we obtain

B ’(T ,P) = in/PeUeCMO i.e., a graph of the kind shown in the figure above.

5.2 OPEN SYSTEM EQUILIBRIUM (WITHOU T CONDENSED PHASE REMOVAL)

Texts on chemical thermodynamics usually discuss chemical equilibrium

in the context of a closed system. A closed system equilibrium calculation

involves specification of the relative amounts of each chemical element ,

together with two independent thermodynamic variables (e.g., I and P) , and

the result is the molecular composi tion K~ . On the other hand the w-surface

is an open system where the elemental composition depends on various mass

transfer and material degradation rates, and surface constraints. Thus in

ablation analysis we are primarily interes ted in open sys tems and we focus

attention here on the calculation of open system chemical equilibrium.
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We will develop the theory for boundary layer flow over an ablating

surface and will assume (i) no material is removed from the surface as a

condensed phase , i.e., no mel t layer removal , erosion or mechanical fail

removal , and (ii) equal diffusion coefficients for all species. These

restrictions will be removed in a later section . The figure shows a control

volume bounded by the w- and u-
Bou ndary L ayer Edge

surfaces, and the fluxes of —— 

chemical elements. Subscript c

refers to surface material (of-

ten char) and g refers to gas f ~~~~‘

(often pyrolysis gas) which may __...._ L L__ _ _
~ttt,Vtttt/t4

77
~ 
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’ 
7
’

be percolating through the sur- ch ar

face material. The fluxes

in K and in K are fluxesc k ,c g k,g

across the u-surface and strictly speaking should be subscripted u . Mass

conservation appl ied to the control volume require3

‘~g~~ c = = (Pv)~ 
(5.2- 1)

I
by definition 

~~~ 
= 

~~
akiKi,w (5.2-2)

i=l

and 3k,w = (5.2-3)

• where I is the number of gaseous species. The figure shows the total ele-

ment flux ‘
~k,w 

divided into its convective component (PV)wKk W , and its dif-

fusive component 
~~~~ 

Conservation of chemical elements in the control

volume requires

j + (pv) K = K + i i  K (5.2-4)k,w w k ,w g k ,g c k , c

Now the mass transfer Stanton number for species i is defined as
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PeUeCMi J i,w/ (K i,w
_K

i,e
) (5.2-5)

thus 
~k,w 

=

= 
~~1~~ iPeueCM i i ,w~~ i ,e)

In general , CMi = CM.(Re,Sc
~

) and Sc
~ 

= P/p D
~~

, so for equal diffusion coef-

ficients al1 the CM. are equal , CM . = C
M say, and

3k,w 
= PeueCM ~~i

Ki w  
- 

~~~~~~~~

= PeUeCM (Kk,w~Kk e ) (5.2-6)

or PeueCM = 

~k,w’ k,w~~k,e~ 
(5.2-7)

Substitute Eq. (5.2-7) in (5.2-4),

PeueCM k ,w
_K
k,e) 

+ (PV) W Kk w  = rn
g
Kk g  + 1

~c
Kk c  (5.2-8)

We now define dimensionless pyrolysis, char and mass transfer rates as

in (pv)
B E  g . B E  c w

g PehleCM 
‘ c Peh1

eCM Pe~e
CM

and solve Eq. (5.2-8) for Kk w o

B’K +B’K +K
— 

g k,g c k,c k ,e 5 2 9
~k,w 

— 
1+B’ . -

which constrains the elemental composition at the w-surface: Eq. (5.2-9)

• gives the relative amounts of chemical elements at the w-surface in terms

of the known elemental compositions of the frees tream, pyrolysis gas and

char , and two of B~ , B1~ or B’ (B~+B,~= B’) from Eq. (5.2-1)).

Example 5. 1

Determine the form taken by Eq. (5.2-9) for graphite ablation into

air.
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In this situation B’ = 0 so B’ = B’ . Also K = 1, K = 0.232,g c C,c O,e
K. = 0.768; K = K = = 0. ThusN,e C,e O,c N ,c

— B’ — 0.232 . - 
— 

0. 768
C,w 

— l+ B ’ KO w  — 
1+B’ KN W  

— 
1+B’

So we see that the elemental concentrations at the w-surface are unique

functions of the dimensionless mass transfer rate B’ = rn/PeUeCM.

Note that if we lump the pyrolys is gas and char streams into a single

stream, it will have an elemental composition K
k t  given by,

mK = m K  + m Kk,t g k,g c k ,c

substituting in Eq. (5.2-9) , Kk = 
B’Kk,t+Kk,e 

(or B’ = 
k~e k ~w)

Kk ,w
_ K

k ,t

With the elemen tal compos ition Kk w  specified by Eq. (5.2-9) , we pro-

ceed to develop the relations required to calculate the equilibrium molecular

compos ition Ki w ~ For reactions of gaseous monatomic species with the ablat-

ing surface we write

K
-

~ N~ (5.2-10)
k=l

where is the number of atoms of element k in condensed phase species i,

and N
k represents the symbol for gaseous element k , k = 1,2,...,K. Similarly,

for reac tions between the gaseous species i , an independent set w ill be the

formation reac tions from the gaseous monatomic species ,

K

k=l~~
i k  

+ N1 i = 1,2,...,I-K (5.2-11)

We have chosen the monatomic gaseous species as base species for convenience

in developing the theory; in practice these species might be in too small a

concentration, and to avoid numerical problems another set of base species

should be used . The number of independent equations in the se t Eq. (5.2- 11)
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is equal to the number of gaseous species minus the number of elements. An

exception to this rule is when two or more elements are in the same ratio

in all molecules of a system, e .g . , NO2, N204 .

For thermally perfect gaseous species the equilibrium relations cor-

responding to Eqs. (5.2-11) are

K c ~ .
P./ ~ ‘~k 

~ = K~ .(T) I = l,2,...,I-K (5.2-12)i k i

K
or £nP 1 - L~~~~~~

’k 
= £VLKpj(T) i = l,2,...,I-K (5.2-13)

k~1

where Kpj(T) is the equilibrium constant for the reaction and is available

in tabulated form or may be calculated from thermodymami c data. The equili-

brium relation corresponding to Eq. (5.2-10) are, if 2~ is the surface species

(assuming only one is present) ,

~~1
ck2Jb~ k = £itK~~ (T) (5.2-14)

and for all other candidate condensed phase species ,

< £~tK~~(T) (5.2-15)

if work of compress ion for condensed phases is assumed to be negl igible.

The partial pressures of the gaseous species mus t add to the total pressure ,

I
= P (5.2-16)

1=1

and finally we must relate the K to P. as follows:
k,w i

molar concentration of species i , c1 cP~ /P

molar concen tration of element k , C k = 
~~k~

cP
~

/P

partial density of eleme nt k , 
~k 

= ckMk

mass fraction of element k, Kk =

L ~~~ 
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combining, K.K 
= (Mk /PM)E ck . P .  (5.2-17)

where the mean molecular weight of the gas mixture M = ZM~P~/P (5.2-18)

The system of equations to be solved are Eqs. (5.2-9, 13, 14, 16 and

17). We can regard P to be known and B~ and B~ to be specified (these

latter two variables are often varied parametrically for a given P); then

T
~ 
and the are to be determined . The unknowns and equations can be

counted as follows:

P~ I (5.2-13) I-K

Kk w  I K (5.2—14) 1

M 1 (5.2-9) K

1 (5.2-16) 1

Total I+K+2 (5.2-17) K
Total I+K+2

With P~ , P and T~ 
known, the calculation of other thermodynamic properties,

such as enthalpy, is straightforward. Alternatively we might treat Tw as

known and B~ as an unknown, an approach which is necessary when the B~~
Tw

plot has a plateau region. Some examples are shown in the following figure.

a) Specffy S~ since double valued B~ b) Specify 
~ 

to obtain plateau

fo rT ~
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Example 5.2

Illustrate the theory presented above for a simplified model of graphite

abla tion in argon, with chemical species C* (solid carbon) , C, C~ (carbon

vapor species) , CO. 0, 02 and A.

Tak ing the base species as the monatomic gaseous species C1, 0, and A,

the formation reactions for the remaining species are, from Eqs. (5.2-10

and 11) ,

c1 +o-,. co
3C
1 

-
~~ C3

20+02

the corresponding equilibrium relations Eqs. (5.2-13 and 14) are

= enKp~~*

1
~~CO (

~~c1~~’~o
) = £nKpCo

£flPc - = enK
~~3 1 3

£nP0 
- UnP0 = £rLK~ 02 2

Eq. (5.2-16) is P0 + + P~ + P
c 

+ 
~CO + 

~A 
=

2 1 3

the elemental constraints, Eq. (5.2-9) are

KC w  = B’/(l+B’) K
O,w 

= K
o e /(l+B ) ~~~ = KA e /(l+B )

element mass fractions in terms of partial pressures , Eq. (5.2-17) are

= (12/PM) 
~~~~~~ ~

3
~C ~

KO w  = Clo/PM)(Pco+Po+2Po )

KA w  = (4 O/PM) PA

number of gaseous species: C1, C3, 0, 02, CO I = 5
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number of elements: C, 0, A K = 3

I+K+2 = 11 equations

P
~0~ 

P0~ “02
’ PC1

’ 1’C3
’ ~A’ KC,w a ‘

~O,w’ 
KA,w~ 

M, T
~ 

= 11 unknowns (P, B’ ,

e’ 
KA specified) .

2’ ,e

5.3 CONDENSED PHASE REMOVAL

The analysis of §5.2 assumes that all the mass leaving the ablating

surface does so in the form of gaseous species , the flux being (PV)w~ We

now wish to consider the situation where some of the mass loss is caused by

material leaving as a condensed phase. Examples include melt layer removal ,

mechanical fail , or erosion. Mass transfer problems with condensed phase

removal are encountered in many industrial processes. A well known example

is oxy-acetylene cutting of sheet steel where, after the steel is heated to

a suff iciently high temperature by the oxy-acetylene flame, the oxygen supply

is increased and the steel burns in the oxygen jet. At the temperatures

involved the oxides are mostly molten and flow away under the action of gravity

and shear forces; also chemical equilibrium prevails with K0 0. The mass

transfer problem is straightforward to analyze , as shown in the following

example.

Example 5.3

Iron burns in a stream of 99% 02 and 1% N2 by mass. Calculate the mass

transfer driving force and burning rate.

Since oxygen is inert in the gas phase we can use the driving force

expression developed in §4.2 for tungsten oxidation. Equation (4.2-5) was

IC -K
B’ = 

1,e 1,w where subscript 1 refers to 02
K -n /ml,w l ,w
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Here Ki e  = 0.99, Ki w  = 0 and nl,w/rn = Kitw is uni ty since the only species

crossing the w-surface is 02 and n0 and i~ are in the same direction . Since
2

the oxides leave as condensed phases they
(pu)

do not enter the gas phase , i.e., they do

not cross the w-surface. Condensed phases u _ ——
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

can be thought of as being removed through

the side of the control volume between the

w- and u-surfaces.

thus B’ = (0.99-0)/(0-i) = -0.99

and m = PeUeCMO B’

= PeUeCMO (4
~
6Sl) (-0.99)

= _4
~
6
~~e

)1
eCMO

If the oxide is assumed to be Fe,103, the rate at which iron is consumed is

(ll2/48)~ or lO.74 p~~ CMO. The conductance PeUeCMO must be evaluated for an

impinging jet using a suitable correlation .

Notice that the “blowing correction” is greater than unity, i.e., the

gas phase is under suction, and indeed is under very strong suction. The

lower limit of B’ is -l and corresponds to an infinite velocity towards the

surface . We see that the Couette flow formula gives CM = 4.ÔSCMO for this

problem. In fact, exact boundary layer solu tions and experiment show that

the logarithmic formula underpredicts CM/C
~~ 

when there is strong suction ,

and values of CM as much as 50% greater can be expected .

Our ability to calculate in the above example rests on two assump-

tions. Firstly the chemistry was simple:  no gaseous oxides were formed ,

and K0 w 0. If ei ther of these condi tions were not met, a detailed equi-
2’

librium chemistry calculation would be required. Secondly, we have assumed

that the heat evolved in the oxidation process is sufficient to melt the
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oxides, supply the sensible heat to the virgin iron, and balance heat losses

to the environment to give a steady state at the process temperature. If

this condi tion is met, the burning rate is truly limited by the rate at

which oxygen can get to the surface, and we are not particularly interested

in the precise surface temperature . On the other hand we shall see that,

for oxide or melt removal from heat shields, a transient state is usually

involved , and the coupled heat transfer problem also requires consideration .

The equilibrium surface chemistry codes developed by Aerotherm [1]

have an option, the so-called “FAIL” option , to handle condensed phase re-

moval . It will prove convenient to discuss the treatment of condensed phase

removal in the context of use of the FAIL option as applied to a number of

specific situations in turn.

Case 1. One condensed phase species.

Consider, for example, tungsten and ignore details at other than near

the melting temperature for metal tungsten , W*, which is 368l°K. The figure

shows the result of a conven-

tional open system equilibrium

chemi stry calculation, with
P = 140 atm

prescribed T and P , to obtain 09 _____ ___________w - — 

I
,— —

~~ /
B ’ as a function of T . The /calculation also shows that, at

the pressures of interes t, no

condensed phase oxides are pres-

ent near the melt temperature .

So below T
m = 368l

°K we have the relatively simple situation of solid tung-

sten being oxidized to gaseous oxides. As the values of Tw input to the code

are increased fr om below Tm to above we cont inue to obtain solutions , as shown
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by the dashed curve in the figure, but above Tm the surface is liquid tung-

sten. The solutions indicated by the dashed curve are quite valid, but of

little interest to heatshield analysis for the reasons which follow .

When the tungsten surface reaches Tm~ 
the liquid tungsten wil l  form a

film which flows along the solid tungsten surface under the action of

pressure gradient and shear forces. Since these forces are large in a typi-

cal abla tion situation , the e

II’~ ’

I I ~~36Sl t

may be very wavy, or even may II”~
”

~~gas b u da y aye I 1a~e~~° SO~~~~~~/~~~~~~~~~~~~~~~~~~/

fun ction of the shear and pressure forces , thermal transport processes across

the fi lm , and the mel ting rate itself.  However , since the thermal conduc-

tivity of tungsten is relatively large (‘1~lO0 Btu/hr ft F) t~T is relatively

small. Analysis E2 1 of the f ilm flow shows that for usual missile reentry

conditions tsT does not exceed 20°R and thus can be assumed to be negl igibly

small. Thus for modeling purposes, Tw may be approximated by Tm~ Then there

is a uni que chemical equilibrium solu tion of interest: correspond ing to

we have unique values of B’, 1
~k,w 

and P1~~ for a given pressure . A h igher

heating rate will not lead to a higher value of T , but will simply resul t in

a higher melting rate.

In the FAIL option a new B’ is defined to represent condensed phase

material remova l , B~ I
~~
/peueCM, and i f we retain B~ = I

~c
/peu C M then , when
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melting occurs, we have a choice as how to define a total B’, usually un-

subscripted, or subscripted ‘a’ for ablation. In the FAIL option the

choice is made to have

B’ = B’ = B’ + B’ (5 3-])a g c

so that B’ no longer described mass transfer into the boundary layer. In

fact

(Pv) w/PeueCM = B~ - B~ = B~,1 (5.3-2)

The fi gure shows the relationships between

the various B’s. Notice that the m in 1
Example 5.2 should strictly speaking be u ____ L__ ...__~ ./

~
subscripted m

~
. TBC ~~1g

Since the counting of equations and

unknowns for condensed phase removal is

somewhat tricky we will list the equations

to be solved again:

K
- 

ki~~~
’k 

= £flKp~~
(T) i = 1,2,.. .(I-K) (5.2-13)

k= 1

= £nK~~ (T) (5.2-14)

B’K +B’K -B’K +K
= 

g k ,g c k ,~ k,e k = 1,2,... ,K (5~~2_ 9 t)

I
LP. = P (5.2-16)
i=l ~

= P~ ~~ki~i 
k = 1 ,2,. ..,K (5 .2-17)

where Eq. (5~2_9t) is the original elemen t constrain t equa tion mod ified to

account for condensed phase removal , and the fact that B~ ~ (pv) w/p eueCM

~~~~~~ _~~~
= -

~~~~~~~ ~~~_~~~~~~~~
‘- :

~~~~~~~~~~~~~~ ~~~~~~~~~~~ _ ~~~~~~~~~~~~~~~~~ - -~~~~~~~ -
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in the FAIL option. For purposes of comparing the number of equations with

the number of unknowns it is convenient to substitute Eqs. (5.2-17) into

Eq. (5•2_ 9
t) so as to elimina te the

M. I B’K +B’K -B’K +K
K ‘ç’ 

~ 
— 

g k,g c k ,c 2~ k,9~ k,e (5 3 3PM~~_,
1
Ckii

_ 
l+B~,1 

‘- =

and to add the trivial relations ,

B ’ = B’ + B’ (5.3-4)a c g

B ’ + B’ = B’ + B’ (5.3-5)c g b l 2.

Now let us examine the equation set as it is used to calculate mel ting of

tungsten. Pressure is always regarded as specified , and B~ = 0; then if

we specify T = T and B’,w m a

I (5.2- 13) I-K

H 1 (5.2-14) 1

~~~~~~~~ 3 (5.3-3) K

1+4 (5.2-16) 1

(5.3-4 and 5) 2

1+4

Actually , in the FAIL option, Tw is determined imp licit ly as follows . A

fail temperature Tfajl...9, is pre-assigned to any candidate condensed phase

species 9,; this species will  be removed from the surface in condensed form

at a rate rn9, if the surface temperature is greater than , or equal to,

Tf~j 19 ,~ For a melting solid the fail temperature is just the melt point;

for a mechanically failing solid the fail temperature may be related to

the stress situation. Also one can specify a maximum fail temperature for

all species: physically this maximum might correspond to the fail tempera-

ture of the substrate. The determination of T
~ 

is then via the restrictions :
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Tw 
< Tf i 1  for the surface (solid substrate) species

T > T . for any species for which ii > 0.w fail

Thus in the case of tungsten the code determines Tw to be the pre-

assigned fail temperature of W~, 368l°K,

since W~ is the surface species and m2, is

> 0 in order to obtain B~ greater than 0.9.

Of course , if we did no t specify B~ > 0.9

we would not be able to obtain solutions

correspond ing to condensed phase removal .

Notice that in this case B~,1 and the 
_________________ -

3681~~gas phase compos ition K
i w  do not vary along

the vertical leg of the B~ vs. Tw plot. The equilibrium relations being solved

are equivalent to those solved in a conventional open system equilibrium calcu-

lation, with P and Tw = Tm specif ied , which would give the lowermost point on the

vertical leg . Indeed, we could use the B~

so obtained to calculate B~ for a given B~
directly from Eqs. (5.3-4 and 5). Note also

that we are free to prescribe a temperature 0.9

lower than Tm as a fail temperature , say

based on a sol id stress cri terion . In the

case of tungsten the B~ - Tw plot is shown
Tfai l m

in the figure. Again , a conventional open

system equi librium calcula tion with P and Tw = Tfail specified would g ive

the B~,1 and K
~~~

’s at the lowermost point of the vertical leg; provided W*

is the only condensed phase species presen t, these quan tities do not vary

along the vertical leg. 

I 1 - ~~~~~ — ~~~~~~~~ ~~j - -  . ~~~~~~~~~~~



Case 2. Two condensed phase species with the substrate having the lower

fail temperature.

Consider , for example , molybdenum close to its melting point 2892°K.

At usual pressures the condensed phase dioxide Mo0~ may be present. The

dioxide has no liquid phase and , additionally, a decomposi tion temperature

of the solid has evidently not been observed . Since it is unl ikely that

the dioxide could maintain its integrity once the substrate molybdenum had

melted, it is reasonable to assign a fai l temperature of 2892°K to Mo0~ as

well. This choice is equivalent to having input to the code 2892°K as the

maximum fail temperature.

Clearly we have added another unknown to the problem considered in

Case 1. Instead of one B~ (= B~~) we have two , B~ * 
and B~ o~

. Thus from
0 0

2
a mathematical point of view we know we must add another equation to our

set . Since we envisage both failing species to be at the surface (even

though our model assumes that they are removed as fast as they are formed)

it seems reasonable to require both to be in equil ibrium with the gas phase.

Thus we have two equations (5.2-14) , rather than one as before

= £nKPMO * (5.2-l4a)

-2biP0 
- 

~
e
~
fl’Mo = £J1KP MOO* (5.2-l4b)

and write Eq. (5.3-5) as

B’ + B’ = B’ + EB ’ = B ’ + B~ + B’c g bl 9, b i Mo* Mo0~

and our equations and unknowns tally. The surface temperature restrictions

determine Tw = 2892°K in the same way as for Case 1. The table on the

following page summarizes the results of a calculation at 100 atm .

By interpolation 
~~~ = 0 at B~ = 0.687. For B~ > 0.687 we have two

fa il ing species and the mathemat ical problem is as descr ibed above . Notice
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Base Species w-Surface

B’ B’ B’ B’ Mole Fractions Surface
a bi Mo* MoO~ Mo 02 N2 

Species

5 -.1646 4.3133 0.8514 4.097-07 6.891-05 9.809-01 Mo*

2 -.1646 1.3133 0.8514 4.097-07 6.891-05 9.809-01 Mo *

1 -.1646 0.3133 0.8514 4.097-07 6.891-05 9.809-01 Mo*

0.7 -.1646 0.0133 0.8514 4.097-07 6.891-05 9.809-01 Mo *

0.6 .0687 0.0 0.5323 1.473-08 1.916-03 9.223-01 MoO~

0.5 .320 0.0 0.1758 4.703-09 6.00-03 8.647-01 MoO~
0.46 .46 0.0 0.0 Mo0~

that the concentration of gaseou s molybdenum is constant in this reg ime:

this confirms that Eq. (5.2-14a) is being satisfied, since K~ = Kp (T~)

and is fixed at 2892°K. In fact the complete gas phase composi tion ,

as well as B~,1 are invariant for B’ > 0.687.

For B~ < 0.687 only MoO~ is fail ing and since B~0~ = 0, it is no

longer an unknown, and Eq. (5.2-l4a) is deleted from the equation set.

Again , inspection of the concentration of gaseous molybdenum shows that

it is no longer constant confirming that Eq. (5.2-l4a) is not being satis-

fied . For this reason Mo* is not output as the surface species since,

if Eq. (5.2-l4a) is not being satisfied Mo* cannot be exposed to the gas

phase.

The values of B’ given in the table are conveniently represented in

what may be called a failing p hase diagram as shown in the fi gure on the

following page . In such a diagram B~,1 and the B~,’s are plotted cumula-

t ively vs. B~ , together with itself (which gives a line of unity slope).

The fi gure shows such a diagram for molybdenum at 2892°K. It is instruc-

tive to look at how the value of ~~ = -0.165 comes about. The quantity
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B~ 1 is simply the B ’ of our
tbI 

2

elementary macs transfer

theory. We can assume the 
a

boundary layer inert and

no dissociated oxygen in

the free stream since we S -

0.687

are looking at equal dif- 
—

fusion coefficient calcu- 
B

lations for which these 0. 46

assumptions have no effec t.
1 2

Then basing B’ on 0 , -~

K — K -0.2 - 
hI

0~,,w 02,w
B’ — ____________

b l K  -K02, w 02, tw

Now K0 e = 0.232; we would expect K0 ~ 
to be approx imately zero (the code

2’ 2’
calculates K = 7x10 5) .  Thus02, W

-0.165 = (O.232-O)/(0-K
0 ~2’

w

so that = 1.41 (=n0 ,‘ii) . Notice that a lower limit for B~~ ~~

-0.232 which corresponds to K
0 tw 1 , i .e . , when the only transferred
2’

species is oxygen and all this oxygen goes to form condensed phase ox ides

which do not enter the boundary layer . In fact we have K0 ~ 
= 1 .41

2’ w

which indicates tha t par t of the oxygen goes to form gaseous oxides wh ich

do reenter the boundary layer. The code printout indicates mass fractions

1
~Mo03,w 

= 0.059 and KMoO2, w 
= 0.024 showing that there is appreciable for-

mation of gaseous oxides.

Note: (1) For B~ > 0.687 bo th condensed phase species Mo* and Mo0~ are

in equilibrium wi th the gas phase; however , we have not re-

quired that they both be in equilibrium with each other. We

L - - - 
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have regarded each as pure condensed phase species which do

not interact with each other directly.

(ii) The dependence of w-surface composition on the mass transfer

situation in an open system equilibrium calculation is well

illustrated by the behavior of B~ > 0.687. As B~ is in-

creased from , say, 0.5 to 0.6 , the mass fraction of the domi-

nant gaseous oxide MoO3 decreases from KMOO w = 0.39 to 0.27.
3,

The reason can be seen if Eq. (S.2.9T) is written for element

oxygen,

- T~i 
8
~ o* + 0.232

Ko w  
= __________________

As B~ 0* increases so I(~ ~ 
decreases , in order to increase the0

2
rate of diffusion of 0 to the surface . Since K and K02,w 0,w

are already very small at this temperature , Ko~~ 
can decrease

only if the concentrations of the gaseous oxides decrease .

(iii) For B~ < 0.687 we have noted that B~0~ = 0 and that hence Eq.

(5 .2.14a) is not used. It fol lows that only one condensed phase

species is actually presen t on the surface. However , the

second condensed phase species does play a role via the “char ”

composition : here the char is Mo *; a completely different

result would obtain if the char were MoO~ .

The B~ vs. T plo t is as

shown . At lower pressures the

w-surface gaseous oxide concen- 
~~~~~~~~~ 

r . 180 ,, I- _

trations are higher and hence 046

higher values of B~ are attained

[ 
as the melt temperature is ap-

proached : the plo t shows this
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behavior for P = 1 atm.

Case 3. Two condensed phase species with the substrate having the higher

fail temperature.

Consider , for example , tungsten

in the vicinity of the melting tem-

perature of WO~, l745.2°K. Caicuia- 0.9

tions using the FAIL option indicate

a B~ vs. T~ plot as shown below . As

in Case 2 we have two equations

(5. 2—14) , 1145 I~ (~~K)

~~~~~~~~ 
= £nK~, W*

-3~enPo - t
~”W = £nK~ ~~~

but now we only have one B~ , so Eq. (5.3-5) is

B~ + B~ = B~1 + B~0~

There are two distinct regimes of the B~ vs. Tw plot where condensed

phase removal of W0~ occurs , (i) the plateau , and (ii) the vertical leg.

Let us consider each in turn .

(i) The Plateau. The plateau in this case is not truly a constant B~

curve , B~ does vary slightly along the plateau owing to changes in the gas

phase composition with temperature. However, this regime can only be cal-

culated by specifying T
~ to avoid numerical diff icul t ies. A specification

of T > l745°K is consistent wi th the surface temperature restrictions in

the FAIL option, bu t is not determined by these restrictions as was the case

on the vertical legs in Cases 1 and 2. Consistent with the specified tempera-

ture option of the code no B’ is specified and indeed need not be as the

following unknowns-equations count shows:
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I (5.2-13) I-K

M 1 (5.2-14) 2

B~, B~, ~~~ 
B~0~ 4 (5.3-3) K

1+5 (5.2-16) 1

(5.3-4 and 5) 2
‘+5

Somewhere along the plateau the WO~ di sappears, the exact temperature be ing

dependent on pressure. For temperatures higher than this , B~, = 0, and a

conventional open system equilibrium calculation can be made .

(ii) The Vertical Leg. Consider approaching the melting point of W0~ ,

1745.2 °K from below. Below this temperature there is no condensed phase

removal and the calculation is identical to a conventional calculation :

B~ = B~,1 is prescribed and the unknown Tw is found as one advances up the

B
~
_T
w curve . Since WO~ is the only surface species only one Eq. (5.2-14)

is satisfied, that for W0~ .

At l745.2°K the FAIL option allows for an additional unknown , ~~~~3
but need not add another equation since the surface temperature restric-

tions in the FAIL option fix the tempera ture at l745 .2°K. For this pur-

pose the code regards WO~ as the surface species as well as the failing

species. So again the only Eq. (5 .2- 14) is that for W0~ and the vertical

leg is exactly analogous to the vertical leg of molybdenum for B~ < 0.687,

discussed under Case 2. Thus similarly, as B~ is increased , so the value

of K0 w decreases in order to allow more oxygen to diffuse to the surface2’
in order to supply the oxygen content of the WO~ ; correspondingly the value

of B~,1 drops (becomes more negative) as the boundary layer is under suction

because the oxides are predominantly condensed and ‘o not cross the w-

surface. If B~ is increased still further there is reached a point where

the concentration of 02 approaches zero , and 
~~~ 

reaches a minimum value ;
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this is the diffusion controlled limit. In contrast to the molybdenum

example, the lower temperature here implies small concentrations of gaseous

oxides. Thus simple mass transfer

theory would give a minimum value of
0.9

B~1 as
K -0

B’ = = - K  = -0.232bi 0-1 02,e

in good agreement with FAIL option wo~

calculations . The general features IW .174 5 .2

of the failing phase diagram for this B;

case are shown in the figure .

More complex cases.

One can deduce from our sot of equations considered by the FAIL option

that there is a maximum allowable number of condensed phases. Two examples

follow whi ch illustrate a number of interesting implications of this restric-

tion.

As a first example , consider again the ablation of molybdenum . Pre-

viously we considered only behavior near the melt temperature of Mo* (2892°K)

and assumed that the only candidate condensed phase oxide was MoO~ . However,

at lower temperatures, we would expect MoOs to be present, and should be

allowed as a candidate condensed phase oxide. The melt temperature of Mo0~

is l074 °K. Let us see how many condensed phase species are allowed for

this sytem. The gas phase chemistry will be simplified by allowing only 0,

02, N, N2, NO, Mo and MoO3. Equations (5.2-13 and 14) for the system corres-

pond to the reac tions

2N~~~N2 Mo + Mo*

N + 0 + NO Mo + 20 + Mo0~
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20+02 Mo + 30~~~MoO~
Mo+ 30 -’- Mo03

and the equations are ,

enKPN = 
~~~N2 

- 2LnP
N tnKpMo* = 

~~~~Mo

NO = bIPNO - (
~

nPN+~enPO) e~ p Mo0~ 
= - (

~
bzPMO ÷2 1nP&

tnK~ 02 
= £JIP0 - 2-e~iP0 ~~~ MoOs 

= -

£nKP MOO* = £nPMOO - 

~~~~~~~~~~~~~

If we examine the last three equations we see that we have three equations

in only two unknowns, 
~Mo and P0; hence one must be discarded implying that

only condensed phase species are allowed . Aerotherm [3], in using the FAI L

option , handled this problem rather arbitrarily; they eliminate MoO~ below

2400°K and MoOs above 2400°K, based on arguments related to an es timate of

the boiling point of MoOs.

As a second example consider the ablation of aluminum . Since nitrogen

reacts with aluminum to form a condensed phase nitride A1N*, it is found

that at the melt temperature of aluminum (934°K) three condensed phase

species A1*, Al 20~ and A1N* are expected to form . Also at this low tempera-

ture the concentrations of gaseous ox ides are very small and can be ignored.

The reactions for this system are

2N~~~N2 Al + Al *

N + 0 + NO 2Al + 30 + Al
20~

20+02 A 1 + N + A 1N*

and the corresponding equilbriuin relations are

£nK~ N2 
= 1

~~N2 
- 2 ’

N £nK~ Al * = 
~~~~Al

NO = 1
~~N0 - (enPN+enPO) ~~~~ Al 203 

= -
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£nK~ 02 
= tflP0 - 21nP0 £nK~ A 1N* = -

If we examine the last three equations we see we have three equations in the

three unknowns PAl’ P0 and 
~N ’ and in contrast to the previous example ,

these equations do not appear to cause a problem. However , if we examine

the complete set of six equations we see that there are only three additional

unknowns p~ 
~N 

and 
~NO~ 

Thus these equations would fix the gas phase
2 2

composition without using (satisfying) Eq. (5.2-16) , which was EP~ = P.
1

Thus again the system of equations is overconstrained . But we can remedy

this particular situation very simply if we recognize that a freestream of

real air contains some argon. If we introduce a small amount of argon into

the boundary layer edge gas, KA e J the corresponding element constraint

equation is

M KA 0 - A ,e
~j r A W  l+B ,1

and Eq. (5.2-16) become s

t’Al + 
~
‘N
2 

+ 
~~~~ ~~~~ ~O2 

+ 
~N0~~ ~A 

~

By adding the additional unknown it is now possible to satisfy Eq.

(5.3-16) .

Notice that in the diffusion controlled limit for the formation of

A1 2O~ and A1N* , the gas adjacent to the wall  (w-surface) is calculated to

be essentially all argon , as can be explained by simple mass transfer

analysis.  Equation (5.3-6) rearranged is

K — K
B’ — 

A ,e A ,w
bl KA ,w

which is what we would expect from our original definition of B’ since

KA ~ 
= 0. The value of Bb 1 obtained in the diffusion controlled limit

is calculated by the code to be -0.999. If we choose KA ,e = 0.00999 ( i . e . ,
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a l i t t le  less than 1 per cent) then -0.999 = (O.OO 999_ K A ,w )/ K A ,w , and solv-

ing, KA W  = 0.99, i .e., 99 per cent . So we see that only 1 per cent argon

in the edge gas is sufficient to give 99 per cent argon at the w a l l .

Of course thi s problem is quite similar to the oxy-acetylene cutting

of sheet steel discussed earlier. In Example 5.3 we had 1 per cent N 2 in

a stream of oxygen and we were prepared to assume that K0 ~ 
= 0 in order

2’
to obtain our result of B~,1 = -0.99 . As a consequence KN = 1. In reality

K is a l i t t le greater than zero and K is a l i t t le  less than unity.O2, w N 2 , w

Physically what is happening is that the suction on the boundary layer is

very large due to the oxygen going to form condensed oxides. The inert

nitrogen is swept to the surface by this convective flux , but at steady

state the absolute flux of N2 at the w-surface must be zero.

n = (pv) KkT + 5  = 0N2,w w o 2,w N2,w

or in terms of a transfer coefficient

(Pv) WKN w  + PeueCM~~N2,w
_
~
(
N2,e
) = 0

The mass velocity (pv)
~ 

is negative , so we see that KN > KN e to satisfy2’
the equation. Notice that there is the strong non-linear effect ; as the

concentration K 2~~ builds up to allow the diffusive flux away from the wal l

to balance the convective flux towards the wall , so the convective flux

increases as wel l .  At steady state the solution corresponds to a value

of KN ~ 
very close to unity. One can think of the nitrogen “blanketing”

2’
the surface .

Maximum allowable number of condensed phase species

As mentioned before , we can deduce from the set of equations considered

by the FAIL option that there is a maximum number of condensed phases allow-

able. We now deduce a general rule. The maximum number follows from the
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requirement that Eqs . (5.2-13) , (5.2- 14) and (5.2-16) are not overcon-

strained . Recal l that these equations are :

£nP . - 

1 ki~~”k = ~nK~1(T) ; i = 1,2 , . .  . (I~-K) (5.2- 13)

= LnK~ 9,(T) ; = 1,2,. ..,L (5.2-14)

I
= P (5.2-16)

i=1

where I is the total number of gaseous species and L is the number of con-

densed phase species. Looking first at the sub-set Eqs. (5 .2- 14) , we see

that the unknowns are the partial pressures of the gaseous elements , 
~k ’

and hence L < K if the sub-set is not to be overconstrained . Next look at

the sub-set Eqs. (5.2-13) and (5.2- 16) : the unknowns appear to be the par-

tial pressures of the (I-K) remaining gaseous species P. (excluding the

gaseous elements) . Since there are (I-K) + 1 equations and only (I -K)  P1’s ,

at least one of 
~k must also be an unknown if the sub-set is not to be

overconstrained . These considerations can be summarized in a simp le general

rule for counting the required number of chemical elements:

“A chemical element is required for each condensed phase species and

must appear in at least one of the condensed phase spec ies; in addi tion ,

one element is required for the gas phase species , giving a total of

K = L + 1. ”

In this manner the maximum allowable number of condensed phase species is

implicit ly determined .

Note that the phase rule of thermodyn amics applied to this si tua tion

simply states L < K - 1 and cannot be used to determine the maximum value

of L for a given system . However , the reasoning we have used to develop

our rule is identical to that used to derive the phase rule.
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The reader should now re-examine the tungsten , molybdenum and aluminum

ablation problems previously described , and see if the conclusions reached

are in accord with the general rule.

5.4 MULTICOMPONENT DIFFUSION

The assumption of equal diffusion coefficients is accurate and useful

for most ablation calculations. However , when there are large differences

in species molecular weights , significant errors may be incurred , e . g . ,  if

species such as H or W 309 are present in air boundary layers . The Aerotherin

surface equilibrium chemistry codes [1] have an option which allows for

unequal diffusion coefficients based on the bifurcation approximation for

multicomponent diffusion introduced in §3.7.

In §3. 7 it was shown that an appropriate driving potential for mult i -

component diffusion is the z fracti on , rather than the mass or mole fraction .

Thus for a purely diffusive situation, such as a Couet-t e flow , we could attempt

to correlate mass transfer as

j. = p u C (z .  — z. ) (5.4-1)i,w e e  M i ,w t ,e

In a boundary layer flow mass transport is due to both convection and

diffusion; the former contribution is characterized by mass fractions ~~~

so that it is appropriate to define a new z~ fraction by the relation

zYK~~~11 
= 

1 1

~ ~zTK~~
’
~
’ EK ./F1 

(5 .4-2)
3 3  3 3

where the Schmidt number exponent in boundary layer flows of binary mixtures

suggests y = 2/3 should approximately accoun t for the respective contributions

of convection and diffusion . Then

j. = p u C (z~ -z~ ) (5. 4— 3)i ,w e e  M 1, W i ,e

Modification of the analysis of §5.2 to allow for multicomponent diffusion
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is straightforward . Since CM is independent of species, Eq. (5.2-7)

becomes

p u C = j / ( z * - z~ ) (5.4-4)e e  M k ,w k ,w k ,e

where z~ = Z c~~. z 1~!, while the w-surface elemental constraint Eq. (5.2-9)

becomes

+ B’K = B’K + B ’K 1 + z~ (5.4-5)k,w k,w g k,g C is ,c ~~~

which is the desired result.

Evaluation of the bifurcation approximation and z~ potential

Data which allow an evaluation of the accuracy of the bifurcation

approximation and the z~ potential are available. Some examples follow.

(i) Evaluation of the bifurcation approximation. Exact solutions of the

Stefan-Maxwell equations in axisymmetric stagnation point flow have been

obtained for a limited range of conditions [4] . The Figure which follows

shows exact results for injec-

tion of helium and xenon into

air with KHe,t = 0.25 and K x e t  :: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= 0.75, and approximate results 0 .6 -

using the bifurcation approxi- 0.4 

Exact
mation calculated with the Bifo rcat i on o ~

BLIMP code [5]. Since the bi- ,
0 0. 1 0.2 0.3 0.4 0.5 0 .B 0.7 0.8

furcation , in principle , can be - - -~~- - - - -(28eoedue /d s )
~

made exact for a ternary system,

this case admittedly does not

represent a severe test. However , the diffusion factors were calculated

from Eq. (3.7-13) and the results do support the use of this simple

correlation.

(ii) Evaluation of the z~ potential. The two Figures below show the
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results of calculations for multiple species injection into air in high

temperature axisynunetric stagnation point flow of air [5]. The mass trans-

fer Stanton number is def ined in the conventional manner , p U C . = 5 .e e M i  i,w
(K i w  - K i e )

~ For all the inj ectants K 1~~ 
= 1/3.

0 . 0

0.9

0.9

0.8

O 0 1 02 O~3 

::
0 1 7. 0 c a  a S G O  — -

The Figure opposite shows the data

recast in the form of Stanton numbers .0

defined in terms of the z~ potential;

from Eq. (5.4-4), 
0 1

peueCMi~~*) = 

~~~~~~~~
It is seen that use of the z~ poten-

tial is reasonabl y successful in collap s-

ing the curves to give a single ~.

CMi (z )/cM i o (z ) ,  for a given injec— 
~~. 

- 

~~ l~

tan t composition .
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CHAPTER 6

- SIMPLE HEAT TRANSFER ANALYS ES

6.1 INERT GAS INJECTION

Some of the fundamental ideas involved in calculating heat transfer

to an ablating surface are well illustrated by the simple problem of

injection of a single inert foreign species into a Couette flow . In

particular, the analysis of this problem shows us how to define hea t

transfer to a surface through which mass is being transferred , and demon-

strates the roles played by the inter-diffusion term in the energy flux

vector, the unity Lewis number assumption , and the choice of enthalpy

base states. The fi gure shows a

contro l volume , cross-sectional

area A, thickness dy. Energy A
I d!

I 
0r 1 h 1 ~~ 

-k 
~~ yody

can flow in and out the contro l ~~~d y l  I• dTvolume by conduction , -k ,

and each species can transport -B

enthal py, ~~~~~ At steady state

the princip le of energy conser-

vation applied to the control

volume requires

A(Z n .h .  - k ~~!) - A(En .h. - k ~~
) = 0

1 1 dy y+dy i. 1 dy y

divide by Ady, and let dy + 0, ~~ (En
~
h
~ 

- k 
~~~~~ ) 

= 0 (6.1-1)

as before mass conservation requires n = constant = ( 6 . 1 - 2 )

integrate Eq. (‘~.l -l) ,  En
~

h
~ 

- k = (En
~
h
~ 

— k 
~~~~ ~~t 

(6.1-3)
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~ ~~~~~ . .. . - --
~~
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The integration constant def ine s ht, the enthalpy in the transferred state.

Now n~ = K
~
m + j~, thus Eq. (6.1-3) becomes

- k nth~

rn~K.h. + ~j .h. - k =
. 1 1  . 1 1  dy t
1 1

ith + ~j.h. - k~$~ 
= I Ilh

t (6 .

convection interdiffusion conduction tot~ l

i.e., we have three components of the total energy flux : convection ,

interdiffusion and conduction .

If we assume the Lewis numbers , Le1 = (k/Cp )/(PV im)x to be unity for

all species, we can simplify Eq. (6.1-4) and integrate to obtain the en-

thalpy prof ile and heat transfer rate. Cons ider the following man ipula tion :

fT
h = ~K.h. where h. E h.° +1 C •dT

i
ii 1 1 JT 0 P 1

dh = ~K.dh. + ~h.dK .
. 1  1 1 1
1

= EK.C .dT + ~h.dK.ip i • 1 1
1 1

dK.
dh = C dT + ~h.dK. and -~~- ~1 = k + —~~-- Eh. —

~
-

i i C~ dy dy C~ 
~ 

i dy

Unity Lewis number s require k/ C
r 

= PVim for i, thus

= k + th 1 pV~ 
1 

= k - 
~
j

substitute in Eq. (6.1-4),

• k d h  •mh - — — = mh
C~~dY t

which is to be integrated subject to the boundary conditions y = 0, h = h
~
;

y = iS , h = he~ 
The ma thema tical problem is now identical to tha t solved

already for diffusion in a Couette flow , with h replacing K1, and k/ C
r
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replacing pV12. On assuming k/C
r 

is constant across the flow , the result

is

k/ C ~~ (l+B~) h -h
m = ._.-~ -P~ x 

B~ 
X Bj~ where B

h h
~
_h
~ 

(6.1-5)

conductance for “blowing driving
limit of zero correction” force
mass transfer

or, general iz ing to a boundary layer

•m = PeueCHO B~ 
Bj~ (6.1-6)

As was the case in the mass transfer problem , the Stanton number CHO is

just a property of the flow , so use of Eq. (6.1-6) requires further con-

sideration of only the evaluation of Bh.

To look at the evaluation of Bj~ let us consider a model transpiration

cool ing problem. Hel ium is injected
+ .n 5h 9~ 0 4 ~~

-

from a reservoir at temperature T0 I I
into a hot air-stream, and it is re-

quired to maintain the wall tempera-

ture at T
~
. In the figure the o-

surface is located far enough back in

the reservoir so that temperature I 
~ 

n 0h~~

gradients are negligible there. Re-

call that h
t 

was def ined as the in tegration cons tan t in Eq. (6.1-3) ; hence

evaluation of ht ,  and hence Bj~, requires specif ication of an add itional

physical fact: here we specify that the helium in the reservoir has enthalpy

h0, corresponding to a temperature T0. Then an energy balance on the control

volume located between the w- and o-surfaces gives

dT
~~i

hi I w k
~~~~w

_ f l
l~ l 1 o 0
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where species 1 is helium. But from Eq. (6.1-3),

• dTmh = En.h .  - k - - —t . i i w  dy w

thus 
~
1ht = n1h1 

= 1Ih i o ~ 
or ht = h 1,0 = h0, i.e., for this simple case

the enthalpy in the transferred state proves to be equal to the enthalpy

of the inj ectant at the reservoir temperature , and

h - h
B ’ —  O W  

-
h h - hw o

• Now he = h2 e since the free-stream is pure air, and h
~ 

= 
~~~~~~ 

=

Kl w h1w +K 2 w h2 w ~ 
So to evalua te h

~ 
we apparen tly need the composi tion

at the w-surface as well. However we can circumvent this problem through

use of the following manipula tion. For an iner t mixture we are free to

choose the enthalpy base state for each species, hel ium and air, such that

the enthalpy of each is zero at T
~
, then

B
1~ 

= h w/ h  W 
(6.1-8)

but h0
W 

= h
1 0

w 
= o +L

T
°
CPldT = hi,o

_h
i ,w

where the last equal ity holds irrespective of dat um state, so that the

superscript T
~ 
has disappeared . Also

T T
h W

~~~~~~K h.
e i,e i,e

= 
~
Ki,e(h i,e

_h
i,w

) irrespective of datum state

= EK. h. - EK . h.
. i,e i,e . i,e i,w

= h - h

where hew is the enthalpy of a mixture of e-composition at the w-tentperature ,
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then 

h -h h -h
B’ - 

e ew 
— 

2,e 2,w
h h  -h h -h

1,w 1,0 l,w l ,o

If the specific heats of speci es 1 and 2 are independent of tempera ture ,

then

= 

Cp2
(Te_Tw) 

= 

C~ air (Te-T)~~ (6 1-10)Bh C
~i (T

~
_T
0) C H (T

~
_T
0)

To gain insight into the signif icance of B~,, substitute in in = peueCHB~!,
,

and rearrange,

I1C
H (T

~
-T
0) = PeUeCp air CH(Te-Tw) (6.1-il)

i.e., (injection rate)x(coolant enthalpy rise) = (heat transfer coefficient)

x (temperature difference)

Notice that the heat transfer coefficient is obtained by multiplying CH
by PehleCp air had we used intuition to write down Eq. (6.1-11) we would

probably have thought some average C~ was appropriate; since Cp a ir = 0.24

Btu/ lb  and C
PHe 

= 1.24 Btu/ lb , the difference is sub stantial .  We shall

see that the appearance of Cp a ir in Eq. (6.1-11) is related to the role

played by the interdiffusion term.

Example 6.1

‘ A transpiration cooled surface is exposed to an air stream at 3000°F.

The coolant is helium and is supplied from a plenum chamber at 100°F. If

• the surface must be maintained at 800°F calcula te the cool ant supply rate

at a loca tion where the impermeable wall  hea t transfer conduc tance peueCHO

is 120 lb/f t2 hr.

~p air (Te
_T

w) 
- 
0.24(3000-800) 

- 0 608From Eq. (6.1-10) Bj~ = Cp He (T
~
-T0) 

- 
1.24(800- 100) 

-
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~n(l+B)~~

From Eq. (6.1-6) m = PeueCHO Bj1 
Bj~

= (120) (0.781) (0.608)

= 57.0 lb/ft
2 hr

In order to see what we mean by “heat transfer to the wall” in this

sort of situation, let us look at an energy balance on a control vol ume

located between the w-

and u-surfaces, °1
i

dT I ‘~~° / - “J I
(~h.h. - k —) i ///  ~ I I
. 1 1  d y w  I ‘ / / / - A  I1 

I —1~~
-
~~~/ I-k ,2 1 0 1 1 - k ,05 //

• dT /
= (~ n1h~ - k 

I 

~~~~~~~~ / / Poroos wall back -face

but n2 = 0 since no air

is transferred at steady I 
i

state, thus 
~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(nh - k — )  I1 1  d y w  I l ,v~~~ —~~-~
I ~ -~--1 — ----

~~~~
-
~~~~ ---

- I
dT I I ~~~~~~~~~~~~~~~~~

= (n
1h1 

- k dy~u

since helium is inert, and T
~ 

= Tu; h 1~~ 
= h l u ~ 

so

-k = —k (6.1-12)dy w  dy u

Now -k 
~~~u’ 

the conduc tion in to the wall  is what we usually think of as the

“heat transfer”. To fur ther i l lus trate this, consider an energy balance be-

tween the u- and the 0-surfaces; without introducing any assumptions we have

-k dy~u 
= n1h1 ~ 

+ 0 and since n 1 
=

dT • •k 
~~ u 

= m(h i ,~~
_h

i ,0) = mC
~ i (T

~
_T
0)
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i.e., k is equal to the product of m and the enthalpy rise of the coolant

as it flows from the reservoir to the surface, surely what our intuition tells

us should be regarded as the heat transfer. Note then that Eq. (6.1-12)

states that it is the conductive component of the energy flux at the w-surface

which is to be regarded as the heat trans fer.

From Eqs. (6.1-3 and 4) we have two alternative forms of the total

energy flux across the w-surface:

+ ~j .h . I - k = En 1h1I~ 
- k (6.1-13)

bulk inter- conduc- absolute conduc-
convection diffusion tion convection tion

total diffusion

Many workers regard the total diffusive flux to the “wall value of the energy

flux” or the “convective heat flux to the wall” . But we have seen that the

total diffusive flux is not really of interest since the “heat transfer” is

given by the conduction component alone. Nevertheless there is merit to

combining the interdi ffusion and conduc tion fluxes for correlation purposes.

Equation (6.1-5) , written at the wal l is

dT . k d h
k 

~~~~~ w 
- EJ

~
h
~ ~ 

= 
~~~~ 

= m(h
~

_h
~

)

and = PeUeCHB~ 
= PeueCH e w )/ w -ht)

thus k 
~~~w 

- lj
~
h
~ I~ 

= 

~~1~1w 
= PeUeCu (he~hw) (6.l-14a)

k ~~~~~ 
- ~j.h.c - 

d y w  1 1 1wor H 
— 

PeUe (he
_h
w) 

(6.l-l4b)

Thus, for unity Lewis number , the appropr iate driving force for the total

diffusive flux is the enthalpy difference across the boundary layer . But
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let us once again explo it our freedom to choose the enthalpy base state of

each inert species, and set the enthalpy of each equal to zero at T
~
, then

Eq. (6.l-l4a) becomes

k 
~~~~ 

= 

T 
= PeueCH (h e -0) = p

OuOCH(hO~hOW) (6.l-lsa)

or C
~ 

= 
Pe~

1eO~e
_l
~
1ew) 

(6.l-lsb)

i.e., the appropriate driving force for the conductive heat f lux  is the

difference between the free stream enthalpy and the enthalpy of gas of free-

stream composition at the wall temperature . We see now why Cp air appears

in Eq. (6. 1-11), and not some average C~ . Use of an average C~ would approxi-

mate the right hand side of Eq. (6.l-l4a) , and give the total diffusive flux.

Use of Cp a ir gives the conduction component, which we have already seen is

the required “heat transfer”.

The use of choice of base states to derive Eq. (6.1-15) from Eq. (6.1-14)

is a convenient, but not necessary , method . A purely algebraic derivation

proceeds as follows. From Eq. (6.1-15),

k - Ej~ h1 I~ = Pet1eCHO1e~
41w)

= PehieCHOle hlew) + PeUeCHObew~~w)

but for un ity Lewis number, CH = CM, thus

Pe
ueC~

(l
~ew~~w

) = 2eue~M
(
~~i,e

hhi,w 
- EK i w hi w )

=~~p u C  (K. -K. )h.
t e e M  i,e i,w i,w

= -~j. h.i,w i,w

hence k = Pehb
eCHU~e

_hew ) as desired .
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Another point to note is that caution must be exercised when working

with numerical values of the total diffusive flux, since the values depend

on the choice of enthalpy base state. Let us look at the values which ob-

tain in Example 6.1.

k 
~~~~ 

= rnCpH e  (T
~

-T0) = (57.0) ( l . 20 ) (800-l00) = 49,500 Btu/ft
2 hr

= j~~(h 1
_h~ ) ,~q since = -j1

If we choose enthalpy base states such that the enthalp ies of hel ium and

air are both zero at T = 0°R, and if we assume constant spec ies specif ic

heats, then

Ej.h. = j  T (C -C ) = j  T (1 .24-0 .24)  = j  T
i 1 w l ,w w p1 p2 l ,w w l ,w w

To evaluate we note that since the Lewis number is unity, B ’ = By!, so

0-K 1
K = 0.606 ; solving , Ki~~ 

= 0.377
l ,w

Also rnK + 5  = r n K  = r nl ,w l ,w l , t

solving, j1~~ = rn (l-K~~~) = 57.0(1-0.377) = 35.5 lb/f t2 hr

Thus Ei
~
h
~ I~ 

= j1 ~~~ = (35.5) (800+460) = 42 ,600 Btu/ft2 hr
1

The total diffusive flux is then

- k 
~~~~~ 

= 42 ,600-49,500 = -6,900 Btu/ft2 hr

On the other hand if T° = 800°F had been chosen as the enthalpy base state

then the interdiffusion f l ux would have been zero , and the total diffu sive

flux would have been equal to the conduc tion , -49,500 Btu/ft2 hr .

119

- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ -:~~~~~~L~~~ - ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~



____ ________ _____ -~~ ~~~—

6.2 TRANSPIRATION COOLING WITh PHASE CHANGE

Consider now the use of water instead of helium as a coolant, with an

injection rate just sufficient to keep the wall wet. Let water be species

1 and air species 2, and aga in the water is supplied from a reservo ir at

temperature T
0. The analysis of §6.1 leading to Eq. (6.1-6) considers

only the transport processes occurring between the e- and w-surfaces, and

thus is not altered by a phase change taking place between the w- and u-

surfaces. Furthermore , the analysis leading to Eq. (6.1-7) , based on an

energy balance on a control volume located between the w- and o-surfaces,

is also unaffected by a phase change tak ing place within the control volume ,

since enthal pies rather than temperatures were used . Final ly  the mani pula-

tion leading to Eq. (6.1-9) is unaffected since H20 is inert . Thus

h - h
= 
h 

e ew 
(6.2-1)

l,w l ,o

-• where h1~~ is the enthaipy of water vapor at temperature Tw and h 1 0  is the

enthalpy of liquid water at temperature T0. Equation (6.2-1) can be re-

written assuming constant specific heats, as

C . (T -T )
B’ — 

p air e w 
~6 2-2h h  +C (T -T )fg pwa ter w 0

Substituting in in = P0U~C~Bj~ and rearranging gives

+ C (T -T )]  = p u C C . (T -T ) (6.2-3)fg pwater w o e e H pair e w

i.e., (injection rate)x(enthalpy rise of coolant) = (heat transfer coefficient)

x (temperature difference)

Example 6.2

Rework the previous example with helium replaced by water as the coolant,

and a required wall temperature of 400°F. The ambien t pressure is 20 atm,

and thus boil ing does not occur within the wal l .
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0. 24(3000-400)From Eq. (6.2-2) Bh 825+1(400-100) 
= 0.555

From Eq. (6.1-6) in = (120) (0.795)(0.555) = 53.0 lb/ft2 hr

6.3 SIMPLE DIFFUSION CONTROLLED OXIDATION

We now return to the simple diffusion controlled oxidation problem

for which the mass transfer analysis was done in §4 .2 .  Specifically con-

sider tungsten being oxidized by an air-stream containing undissociated

oxygen, with wall temperatures high enough for chemical equilibrium to

exist at the w-surface with K 0. The reaction is assumed to be02, W

3W + 4 .

~~
- 0~ 

+ W309, and we found that B’ = K0 /r  = 0.232/0 . 26 = 0.893 .

For the heat transfer analysis we can again use Eq. (6.1-6) with the heat

transfer driving force given by

B’ — 

he
_h
w j Zn 1 h , 0

h h
~~
h
~ L J._____

mh = 1n.h. I - k~~
.1

t . i i w  dyw
1 di

On~ h~ ~ 
— B 

~~ 8

Zn.h j - k~~
1

d y u
he

_h
w

thus B’ = (6.3-1)
hw

_ (l/m)(1
~
nihi I u 

- k 
~~~~~

If we assume quasi-steady state heat conduction in the tungsten,

the evaluation of Bj~ is strai ghtforward. As was the case with transpira-

tion cooling , we locate an 0-surface far enough back in the tungsten for

temperature grad ients to be negli gible , and an energy balance on the control

volume lying between the u- and a-surfaces gives

dT
- k 

~~~~~ 
u = n

~ *h~ *j 0 + 0

but 
~~~ 

E rn , so k = rn(h
~*,~

_h
~* 0)
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substitute in Eq. (6.3-1), Bj ~ = h h  (6.3-2)
w~ W*,o

Equation (6.3-2) cannot be further simplified unless we are prepared to

make use of the assumption that the 02 and W309 are inert in the gas phase.

However the steady state ablation solution is of limited interest: it was

presented mainly to show that a resul t analogous to those obtained in §6.1

and §6.2 could be obtained for the oxidation problem. In practice we more

often encounter time-wise unsteady state heat conduction in a heat shield

and proceed as follows. Since i = Peh1eCH~~ 
Eq. (6.3-1) can be rearranged

as

i
~
h
~ 

- Eflihi l u + k = Pe~1eCH(h1e41w)

or k 3y f u  = Pe~
1eCHO1e

_h1
w)_h1th

w + En
~
h
~ I~ 

(6.3-3)

where we have replaced dT/dy by aT/ny to remind us that now T = T(y,t).

The l.h.s. of Eq. (6.3-3) is the conduction heat flux into the heat shield ,

and serves as a boundary condition for the heat coneuction equation govern-

ing the temperature distribution in the heat shield. We would like to see

a term on the r.h.s. of Eq. (6.3-3) which could be identified as a “heat of

reaction”. In order to proceed we need to assume , as in §4.2 that the boun-

dary layer is inert: then we can use the manipulation following Eq. (6.1-15)

to obtain

k 
~~~u 

= Pe
ueCH

(I
~e

_h
ew) - Ej

~
h
~ I~ 

- Ili w + Enihi l u

but ih + Zj.h~ = En
~
h
~
, thus

= Pe CH the~~ew) - ihi I w
_
~~~i

hi lu~ 
(6. 34)

conduction flux conduction flux heat release between w- and u-
into heatshield across w-surface surface due to surface reactions
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Re ferring back to our prev ious examples notice that the “surface reac- - -

tion” term is zero for an inert injectant, and equal to the latent heat of

vaporization for a water injectant. Also in the latter case (En ihjI~ 
-

En.h. ) = ii(h -h ) = ~ih , and we see that the conduction into the
i i u  l ,w l ,u fg - •

heatshield is less than the conduction across the w-surface by the amount

i~h .fg

Let us evaluate the surface reaction term for the tungsten oxidation

problem :

~
nihi I u = flW*,uhw*,u 

= ;hW* u

~~~~~ 
= flW3O9,w

hW3O9,w 
+ no2,w

ho2,w ~~~N 2, W 
= 0)

Since Tw = T
~ 

all the species enthalpies are to be eva luated at tempera ture

T~w’ 

~~i
hi I w 

- 
ihi t u 

= [(n
~~0

/
~

)h
~~0 

+ (no~~~
/
~
)ho~~~

hw*~~]

= 1i[(1+r)hW 0 -rh0 hw*]
3 9  2 W

But ( l+r )h
~~ 0 _rh 0

_h
~ * = 

~~r( W *)

thus En .h .  I - ~n.h. = 
•
~H 

W (6.3-5)
1 1 W 1 1 U r(W )

wher e 
~“r (W*) is the hea t of reaction per lb of tungsten at temperature T

~
;

for this exothermic reaction 
~~r 

is negative . Notice that Eq. (6.3-5) can

be rewritten as

En
~
h
~ I~ 

- En
~
h
~ I~ 

=

= _ fl
0 

AH (6.3-6)r~ 2~
I

where L
~
Hr~o ~ 

is the heat of reac tion per lb of 02. Substituting Eq. (6.3-6)
2

in Eq. (6.3-4) gives the surface energy balance in the familiar form,
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k~~i~ = PehleCH (hl e4Zew) + n0~~~~H~~ 0 )  (6 .3-7)

conduction flux conduction flux heat release in
into heatshield across w-surface oxidation reaction

6.4 TRANSPIRATION COOLING WITh INJECTAN T DISSOCIATION —

We first look at the situation where the injectant dissociates in the

boundary layer and investigate the effect of dissociation on the surface

heat transfer . For simp licity cons ider a dimer A2 injected into a high

temperature flow of an inert gas with

temperatures such that no dissocia-

tion of A occurs below the wall tern- ____________________________
2 28

perature , i.e., the dissociation takes

place wholly within the boundary layer _____ _ 
and not in the porous wall. As for

inert gas injection (~ 6. l )  the A2 is

supplied from a reservoir at tempera- 
b l O c

ture T0. Let species 1 be A2, species

2 be A and species 3 the inert gas . Our analysis of §6.1 leading to Eq.

(6.1-7) is valid for a chemically reacting system provided that the Lewis

number is unity for all reacting species. Thus

• £.n( l+ B 1)~ he
_h
wm = PeUeCH Bj1 

Bj~ ; B~ = hw
_h
o 

(6.4-1)

In general we can write for the species and mixture enthalpies, respectively,

fT
h. = h. ° + I C .dT ; h = ~K.h .
1 1 JT 0 P’

and we are free to choose T° = T
~ and h

~~
(T0) = 0 for species 1 (A 2) and

3 (inert) , then
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h 1 = 

fT~~
Pl ; h 2 = h2

W 
+ 

ITW
P2 ; h~ 

fT:
P3

and we evaluate the mixture enthalpies as follows:

f T
h = EK. h. = (l)(h ) = I C dT = h -h C (T -Te .i ,e i ,e 3,e JT pe e ew p3 e w

h = 0  (since K =0 )w 2 ,w

f T
h = 1  C d T = h  -h ~~C (T -T )
° 

~~~ 
p1 l ,o l ,w p 1 o w

Substitute in Eq. (6.4-1)

h - h  C (T -T )
— 

e ew p3 e w

l,w l ,o p1 w 0

which is identical to the result obtained for an inert injectant, Eq. (6.1-10) .

Thus we conclude that dissociation of a transpirant in the boundary layer has

no direct effect on the surface heat transfer, Of course, dissociation does

lower temperatures in the boundary layer and there are second order effects

on the heat transfer via temperature dependent transport properties . The

above resul t was firs t obtained in the early paper by Cohen , Bromberg and

Lipkis [1].

We now look at the situation where dissociation takes place within

the wall , i.e., we postulate that the A2 dissociation takes place whol ly

below the wall  tempera ture so tha t no A
2 is present at the w-surface. Equa-

tion (6.4-1) still applies and again we choose T~ = T~, but now we put

h1
0 (T°) = 0 for species 2 (A) and 3 (inert) ,

oT fT  f T  fT
h 1 = h 1 JTw

P1 ; h
2 JT p2 ; h.. 

JT~~~~

Then he = Cp3 (Te
_T
w) aga in ,
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h = 0  (since K = 0 )w l ,w

oT 1
T0 oT

h = h  
w 

C d T = h  
W~~~~~ (T -T )0 1 T

~ ~
1 1 p1 o w

substitute in Eq. (6.4-1)

C (T -T )
B ’ —  ~3 e w
h oT

C
~1

(T
~

-T0) -h 1 
w . 

-

oT
~ 

T T
~Now h1 is just 

~~d 
~ where 

~~~ 
is the hea t of dissociation of A2 at

T ;  to the level of approximation of the analysis we can ignore the tern-

perature dependence of 
~~d 

and then

C 3(T~_ ’f )
Bj1 = 

Cpl (Tw_To)+~Hd ~~ d is positive) (6.4-3)

Heats of dissociation are of ten large; in such cases ~~ calculated from Eq.

(6.4-3) will be much less than the value calculated from Eq. (6.4-2).

Example 6.3

A candidate passive transpiration cooling system is the combination

of a copper fluoride infiltrant and a tungsten matrix. Evaluate the ef-

fect of dissociation on the capacity of the infiltrant to absorb heat .

We must determine the effect of heat of dissociation on the enthal py

difference (hCuF 2, w
_h

CuF 2, o)~ Take T
~ 

to be the melt temperature of

tungsten (6624°R), then the required thermodyn amic da ta are (JANAF tables) :

100 atm boiling temperature = 4266°R

Enthalpy increase from sol id at 536°R to vapor at 4266°R = 2056 Btu/lb

Enthalpy increase of vapor from 4266°R to 6624°R = 369 Btu/lb

Hea t of dissociation , CuF 2 + Cu+2F,= 3324 Btu/lb

a) wi thou t dissociation

h hr p = 2056÷269 = 2425 Btu/lbCuF 2, w ¼.U 2, 0
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b) Assuming dissociation to be complete at Tw (quite a good assump-

tion)

h -h = 2056+369+3324 = 5749CuF 2, w CuF 2, o
5749-2425percentage improvement = 2425 x 100 = l37-&

Note however that passive transp iration cooling system operation is

usually strongly transient in nature, thus the expression for ~ in Eq.

(6.4-1) is not appropriate for this situation . - -

6.5 ThE RECOVERY ENThALPY CONCEPT

We now use a Couette flow model to introduce the concept of recovery

enthalpy and recovery factor. Previously we assumed a low speed flow where

viscous dissipation effects are negligible; in order to include such ef-

fects we will now have our e-surface at a plate, temperature Te and mov ing

wi th velocity ue. For simplicity we will consider a pure fluid of constant

specific heat . Conservation equations are derived by applying the princi ples

of mass , momentum

and total (mechani- ~/ / / / / // / / // ~~~/

cal plus thermal) I

energy conservation 1 2

~ d~~y+dy 
n(C~ 

~~yody 
a ~~

to an elementary
dy 

I 
A

control volume Ady; T ~ di 4 ~ du
-k n(C~ + -a- ) ~~ uI~

the fi gure shows

details for total j
~/ / // / / / / / / / / / // /  7~~~~~/ / / / / /~~energy. 

~‘, Is

mass: (n) = 0 (6.5-1)

d dumomentum: (nu-p ~~
) = 0 (6.5-2)

total energy: 
~~ 

(n(C ~ T+u32 ) - k - pu ~~) = 0 (6.5-3)
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We wil l  f irst obtain a solution for the simple case of zero mass trans-

fer (n = in = 0); then the momentum equation is easily integrated to give

a linear velocity profile,

• 

—

~~

-- = (6.5-4)

The energy equa tion integra ted once is

dT duk — + ~.iu 
— = constant,dy dy

but u = u~ (y/iS) and du/dy = Ue/lS~ 
thus

2
dT uu~y

÷ 
2 

= constant (6.5-5)
y kiS

It is now useful to introduce dimensionless variables T* = (T_Tw) / ( T e
_T
w)

and y* = y/ iS , then

dT* C~ i u / 2
= 2 

~~ C
p

(Tw_Te) 
y* + C1 = 2PrEcy* + C1

where Pr is the Prand tl number , C p/k and Ec is the Ecker t number , (u~/2 ) /

Cp (Tw
_ T

e)
~ 

Integrating again gives

T* = PrEcy~
2 

+ C
1y
* + C2

• The boundary conditions to be satisfied are:

y = 0 , T = T w or y* = 0 , T* = 0

y = i S , T = T ~~~o r y * = l , T * l

hence T* = PrEcy*2 + (l_PrEc) y* (6.5-6)

The hea t transfer to the wall is given by Fourier ’s law ,

- -k 4~~~~~~~~~~ d y w

- 

k(T e
_ T w) dT*

F 

- -  
~~
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k(T -T )
q = - 

W (2PrEcy* + l-PrEc)
y*0

k(T -T )
= - 

e w (1-PrEc)

2
U

= - 
~ 

[(T~ +Pi’ .~~—) - T~,,J (6.5-7)
p

In a low speed flow wi th neglig ible viscous dissipation the wall heat trans-

• fer is simply the conduction through a slab iS thick ,

q = - 

~ lTe Tw) (6.5-8)

Thus we see that the effect of viscous dissipation can be accounted for by

replacing T
e by the “recovery” temperature Tr = Te + Pr( ue

2
/2C

p
) in the

driving potential for heat transfer . The temperature Tr is the temperature

corresponding to the enthalpy hr = C
p
Tr recovered from the total enthalpy of

a unit mass of fluid at the e-surface , C T + u 2, wh en the wall is adia-p e  2 e

batic. In other words , when q = 0 , T = Tw W r

More generally it is convenient to work in terms of enthalpy and
2uehr = h + Pr (6.5-9)

The Couette flow is of course a simple model of real flows ; we may further

generalize our result  by wri t ing
2

h + r (P r )  —

~~~~

— (6.5-10)

where the recovery fac tor  r = Pr for a Couette flow , r Pr 1”2 for laminar

flow , and r ~ Pr ’~
’3 for a turbulent f low , a l l  for an impermeable wall

( i  = 0).

Effec t  of mass trans fer

To determine  t h t -  effe , t of b lowing  or suct ion  on the recovery factor

we now ob ta in  the s o l u t i o n  to  F.q.i . ( ( - .5 - 1)  through (6 .5-3) for in ~ 0.
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Eq. (6.5-1) n = constant in

Eq. (6.5-2) mu = ~i ~~~~~ 
+ constant

du mor — - — u = Cdy p 1

Integrate subject to the boundary conditions u = 0 at y = 0 , and u =

at y = iS to obtain the velocity profile

u 
_________— = 
e (6 .5-il )

ue e (m
~~

1
~~_i

Since we now have transport of mechanical energy by the transverse mass

F flux it is convenient to solve the thermal energy equation to obtain the

temperature field. We multiply the momentum equation by u and subtract the

resulting mechanical energy equation from the total energy equation, Eq.

(6.5-3) to obtain, after some algebra,

k - + = 0 (6.5-12)

The viscous dissi pation term is evaluated from Eq. (6.5- 11),

• d 
= 
ue(~/p)e (m/~~~

dy 
~~~~~ 

•‘iSe~
m/ .

~ —1)

= 
pu

2
(~/p)

2e2~~~
1h
~

(e (in1’~~
t5
~ l) 2

Substituting Eq. (6.5-12)

d 2T i dT ~(p/k)u 2
(;/u)

2e2(rn
~
’
~~~

T

—i - — Pr = 

(e (m/
~~~~l) 2

2 22 (Pr/C )u ad T  dT 2ay p eor —a- - aPr = -c~e = 

(e~~-1)
2
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solving = 
2 

~2ay 
+ 

C 1 ~aPry 
+ C 2 (6.5-13)

2ct (2-Pr) a

To obtain the recovery temperature we can s imply obtain a solution for an

adiabatic wall  at y = 0.

dT -
~~ ________

a = 
a(2-Pr) 

+ C1 = 0 hence C1 = 
a(2-Pr)

T = 2 
~aPry 

- 
2 

2ay 
+

a (2-Pr)Pr 2a (2-Pr)

= 
2 (2ec

~~ >~ Pre 2
~~ ) + C22a (2-Pr)Pr

Apply a second boundary condition , T = T
e at y = 8, giving

= 
2 

(2e~~~~ - Pre 2
~~ ) + C2 , hence C2.e 2ct (2-Pr)Pr

Finally the temperature distribution is

T_T
e = 

2 [2(e~~~~_e~~
1’iS) - pr( e 2ay_ e 2alS) l  (6.5-14)

2a (2-Pr)Pr

and the adiabatic wall temperature results on putting y = 0 in Eq. (6.5-14)

to obtain

Taw
_ T

e = 2 [2( l -e~~
”5) - Pr( l -e 2°

~ ) J
2ct (2-Pr)Pr

Substituting for ~ and rearranging gives

2 2u aPriS 2acS u
Taw

_ T
e = 

~~~~~~~ [2 ) ~~~~~~~1 e  )~ = ~~~~
— F(aiS) (6.5-15)

Now aiS = ~~
- 8, and to see more clearl y the effect of mass transfer we obtain

a solution for small i1  ( small  aiS) by expanding F(acS) in a Taylor series

about atS = 0 ,

F = F(0) ÷ (atS)F’(O) ÷
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Repeated use of L’Hopital’ s j.ule together with considerable algebra yields

F(0) = Pr

F’ (0) = -
~~‘ Pr (Pr-i)

2u Pr
T _ T

e = 
~~~ 

[1 + (Pr-i) + ...] (6. 5-16)

a result which was obtained by Knuth [2]. For gases Pr < 1, 50 that the

effect of blowing is seen to be a decrease in the adiabatic wall tempera-

ture.
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CHAPTER 7

ThE SURFACE ENERGY BALANCE

7. 1 INTRODUCTION

In ablation calculations a surface energy balance is required in order

to evaluate the conduction heat flux into the heat shield , -k ~T/~ yI~~, which

is then used as an input into a conduction code. Thus we require a surface

energy balanc e similar in form to Eq. (6 .3-1),  but of more general appli-

cability. The surface energy

balance is a balance on a con-
-k ~~

trol volume located between the L I
w- and u-surfaces, as shown in

the Fi~~re. We shall consider -k ~~ 

f

~ 9h9

stagnation regions , and ignore

thermal radiation and mechanical

removal , for the time being so

as to focus more clearly on the effec ts of chemica l reactions.

Following common practice we will separate the u-surface mass fluxes

into two components, corresponding to the pyrolysis gas and the char, such

that

+ = En. = Zn. = (7 . 1- i)g c i,u i,w

The energy balance on the control volume bounded by the w- and u-surfaces

is then

k~~~
I = k ~~’ - En.h. I + r n h  + i h  (7.1-2)
~y u  ~y w  

~~~~~~ 
g g  c c

or , since E n .h .  = inh + Ej.h.
‘ i i  . 1 1
1 1

k~~ T = k ~~1 - Zj . h . ~ - iih ÷ r n h  ÷ m h  (7 .1-3)
• ~~~u ~y w  

~~
i i w  w g g  c c
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The approach used by Aerotherm/Acurex Corporation [1 , 2] in rearrang-

ing Eq. (7.1-3) is typical of good current practice and is as fol lows.

First , for a Lewis number of unity,  we have the exact result that

k = PeUeCH (he
_h

w) - 

~~w +mghlg+mc1~c ( 7.1-4)

then adding and subtracting PeUeCHhew~

k 
~3~u 

= PeueCH(I
~e

_l
~ew) + PeueCH(hew~

hw) - I
~
hw+1;Ighg+1;chc

but for Le = 1, CH = CM ; also hew EK~~~h~~~, thus

k 
~~~~ 

= PeueCH(he
_h

ew ) + PehieCM~
(’(i,e~

’l(i,wThi,w

- nih + m h  + m h  (7.1-5)w g g  c c

and this equation holds irrespective of whether or not reactions occur

within the boundary layer.

For all spec ies diffusion coeff icients assumed equal but Le ~ 1, Aero-

term recommends use of Eq. (7.1-5) but with CM/CH = Le 2”3 , i . e . ,

k 
~~~~ 

= Pe~e
CH(l1e

_l
~ew) + peue~~

21
~
CH~~~i,e

_1(
i,w

)1hi ,w

- lih w + ;ghg + 
~c
hc (7.1-6)

For unequal diffusion coeffic ients, Eq. (7.1-5) is replaced by

k 
~3~u 

= PeUe(}~e
4tew) + Pet

~e
CM (~~,e

_
~~ ,wThi,w

- 

~
hw + ~ghg 

+ 
~c
hc (7. 1-7)

Equations (7.1-4 , 6 and 7) are the three forms of the surface energy

balance in general use by Aerotherm .

Comments on Equations (7.1-4 ,  6 and 7)

1. Use of these equations requires various quantities which may be

calculated by, for example , the ACE code [3] .
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For Eq. (7.1-4) : hw~ and the surface thermochemistry calculation

is sufficient .

For Eq. (7 .1-6) : hw~ h ew = EK i e h i w ~ so that in addition we

now require a frozen edge gas calculation.

For Eq. (6.1-7) : hw~ hew i Ez
~~ whi w j ZZ

~~ eh i w  and again the

frozen edge gas calculation is required .

Thus clearly Eq. (7. 1-4) is the simplest of the three to use in

practice.

2. When Le = 1 the three equations wi l l  give identical values for the

conduction flux into the heat shield.

3. We have seen that for Le = 1 there are two equivalent heat transfer

Stanton number definitions, Eqs. (6 .i- 14b) and (6.1-15b) . For

Le ~& 1 these heat transfer Stanton numbers are no longer equal .

When applying Eq. (7. 1-4) the consistent definition of Stanton

number is

c — 

k 
~~Lw - Z 3~ h~~j~ 

(7 1 8Fl - 

Pe~
1e (l

~e41w) -

while applying Eqs. (7.1-6) or (7 . 1-7) the consistent defini t ion

_ _ _ _ _ _ _ _ _

H p u ( h -h ) (, - )
e e  e ew

Unless T° = these Stanton numbers wi l l  have different numerical

values when Le ~ 1. In addition CH defined by Eq. (7 .1-8) wi l l  de-

pend on the choice of enthalpy datum state when Le ~ 1.

4. For engineering analysis , Eqs. (7.1-4) , (7.1-6) and (7.1-7)  should

be viewed as alternative correlation schemes , and the merits of
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each should only be judged according to their success in correlat-

ing numerical or experimental data.

5. It is quite incorrect to use a Stanton number formed out of the

numerator of Eq. (7.1-8) and the denominator of Eq. (7.1-9), or

vice versa. Such an error was made by, for example , Meroney and

Giedt [4] .

6. Notice that the use of PeUeCM (Z
~~ e~

Z
~~ w) to describe transport of

species i to the surface in Eq. (7 . 1-7) is only practical for an

inert boundary layer. But in l ine wi th Comment No. 4 above , there

is l i t t le  to be gained from attempting to refine this representa-

tion if Eq. (7.1-7) satisfactorily correlates the data in ques-

tion .

7. Blowing corrections in the form CHIC110 developed from experimental

or numerical data for real ablation problems will differ according

to whether Eq. (7 .1-8) or Eq. (7.1-9) is used to define CH . Care

must be taken when obtaining correlations from the literature .

In ablation situations where the surface chemistry is dominated by a

single oxidation reaction, the surface energy balance has been often writ-

ten in the form

T
k -

~~~~~ = p u C (h -h ) . . . + n i~H W (MI is negative) (7.1-10)
u e e H e w equilibrium 0

2 
w r(0 ) r

air 2

where n0 w is calcuiated assuming equal diffusion coefficients for 0 and 0,.2’
The implied model includes the assumptions that (i) the only reactions in

the boundary layer are those involving air species, and (ii) the wall tem-

perature is low enough for 0 recombination to be complete . The question

again arises as to the appropriate definition of CH. As before we should

regard Eq. (7.1-10) as an engineering correlation scheme and evaluate its
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suitabil i ty by examining the abi l i ty  of the scheme to correlate numerical

or experimental data.

7.2 THE EFFECT OF STANTON NUMBER DEFINITION ON BLOWING CORRECTI ONS

For inert foreign gas injection into a l aminar boundary layer numeri-

cal data is readily available for investigating the consequences of choice

of Stanton number definition . We shall use here data of Mills and Wortman

[5] for axi-symmetric stagnation point flow .

Case (i). l
~
l2 into air injection, TwLTe = °!

0°R ~T 
C
H/CHO

-f (k— -E j.h. ) k —  Kw ~y i i w ~y w H 2, w Eq.  (7.1-8) Eq.  (7. 1-9)

0.0 0.6509 0.6509 0.0 1.0 1.0

0.05 0 .5773 0.6403 0.0459 0.950 0.984

0.1 0.4534 0.5699 0.1171 0.842 0.876

0.15 0.3302 0.4841 0.2231 0.754 0.744

0.2  0 .2295 0.3969 0. 3661 0. 763 0.610

0.25 0.1597 0.3120 0.5492 1.265 0.479

0.3 0.1219 0.2398 0.7021 negative 0.368

0.35 0.0994 0.1761 0.8341 “ 0.271

0.4 0.0812 0.1237 0.9195 “ 0.190
0.45 0.0625 0.0831 0.9653 “ 0.128

0.5 0.0444 0.0533 0.9866 “ 0.082

In the Table and Figure 
~~ 

is the wall  value of the dimensionless stream

function and is directly proportional to the mass transfer rate i and

B~ (= m/PeUeCHO).

We see that CH/CHO given by Eq. (7.1-9) decreases monotonically with

increasing i i .  On the other hand , CU/CU0, given by Eq. (7.1-8) has a mini-

mum at a moderate value of i and after going to infinity finally takes on

negative values. This anomalous behavior is due to the high specific heat
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1.4 -

of the injectant hydrogen;

1.2 ’at moderate blowing rates

the wall  enthalpy hw be- t” Eq. (7 . 1-8)

1.0 I
comes larger than the /
free stream enthalpy he~ 0.8 ‘ \

even though we have Tw/Te ~

= 0.1, a “cold wall” situ- 0.6
Eq. (7.1-9)

ation. The inflections

in the CH/CHO curves near 
0.4

rn = 0 are real and may be

explained as foll ows. 
0.2

Foreign gas injection
0

0.1 0.2 0.3 0. 4 0.5
gives values of CU/CHO -

~~~ 
(= constant x ii)

different from those for air into air injection due to the effect of composi-

tion on mixture transport and thermodynamic properties , essentially through

the ratio k/C
r
. Now mixture values of C~ vary with mass fractions of the

components whereas mixture values of k vary approximately with mole frac-

tions. For a given mass injection rate 
~~~~~~~~~ 

or ii) the wall mole fraction of

a light injectant is much larger than its mass fraction, until cf course

the mass fraction approaches unity . Both the k and C~, of H2 are greater

• than the correspond ing values for air (k
~~

/kair 6; CpU /Cpa i
r 14). Thus

at low injection rates the effect of composition is mainly through k, and

values of CH/CHO are greater than those for air injection, wh ile at high

injection rates C dominates and CH/CHO is less than for air injection, i.e.,

more effective blockage.

Case (ii). C into air injection, T
wLTe 

= 0.1 and 0.5

As a second example we consider injection of monatomic carbon into air,

also at an axi-symmetric stagnation point . The table shows CHIC110 
calculated
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CH/CHO Cu/CUo

for T /T =0 .1 for T /T = 0.5w e w e

Eq. (7.1—8) Eq. (7.1-9) Eq. (7.1-8) Eq. (7.1-9)

0.0 1.0 1.0 1.0 1.0

0.1 0.782 0.792 0.748 0.772

0.2 0.596 0.595 0.607 0.576

0.3 0.437 0.434 0.615 0.411

0,4 0.304 0.294 0.530 0.275

0.5 0.192 0.182 0.444 0.172

according to Eqs. (7.1-8) and (7.1-9) for a “cold wall” , TwIT = 0.1, and

for a somewhat hotter wall , Tw/Te = 0.5. I t can be seen tha t for Tw/Te =

0.1 there is no signif icant difference between the values of C
H/CHO calcu-

lated f-ram the two formulae . However at T /T = 0.5 there is a marked dif-

ference , especially at higher blow ing rate:. 

e

lfl addition , CU/CUO calcu lated

from Eq. (7.1-8) again does not exhibit a smooth monotonic behavior , and

hence would be more diff icult to correlate.

The preceding examples give some insight into the general problem ,

al though clearly H2 is an extreme case of a very light injectant gas.

Also the enthalpy datum state is 0°R in these calculations and recall that

CH/CHO given by Eq. (7.1-8) is dependent on the datum state . Di fferent

numerical values would be obtained if the JANAF datum state, 298.15°K ,

were used. If the datum state was chosen to be T
~ 

then Eq. (7 .1-8) would

give a result identical to that given by Eq. (7.1-9), even for Le ~ 1.

We conclude that CH/CHO calculated from Eq. (7.1-9), i.e., based on

the conduction component of the wal l  energy flux only , is better behaved and

hence easier to correlate than C
U/CHO calculated from Eq. (7.1-8), i.e.,

based on the total diff usive f l ux . It follows that for bo~indary layers which

are inert, or for which gas phase reactions are of minor importance , the
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surface energy balance in the form of Eqs. (7.1-6) or (7 .1-7) is to be pre-

f erred since the correla tions of  CH/CHO are easier to develop . However ,

use of  CM/CH = Le2”3 in Eq. (7.1-6) is not satisfactory if variable property

ef f e c ts are impor tant; ra ther CMi can be correlated as a function of injec-

tant molecular weight. Such correlations will be developed in Chapter 8.

On the other hand , when gas phase reactions are significant, the mass trans-

f e r  Stanton numbers CMi can behave erratically and use of the surface energy

balance in the form of Eq. (7.1-4) is the only feasible approach , and CH/CHO

is more dif f i cult to correla te. In add ition, care must be taken to use the

• same enthalpy datum state for developing the correlations as will be used in

the ablation calculations though, in a given problem , expe rience might show

that errors introduced by use of  inconsi stent da tum states are negl igible .

7.3 THE SURFACE ENERGY BALANCE FOR TUNGSTEN OXIDATION

To illustrate the concepts introduced in Sections 7.1 and 7.2 we shall

examine in de tail the resul ts of  B L I M P  cal cula tions f o r  tungs ten oxida tion

at 6600°R, i.e., just below the melt temperature of W’~ (6625.8°R). The

Aerotherm BLIMP code solves exactly the nonsimilar boundary layer equations

for equilibrium chemically reacting laminar or turbulent flows over an

ablating surface. The calculations were performed for a sphere-cone geometry

wi th nose rad ius 0.725 inch and cone h a lf  angle of  11 °. The stagna tion

pressure and total enthalpy are 147.06 atm and 7403.6 Btu/lb , respectively.

Transition was taken to occur at a momentum thickness Reynolds number of

50. The boundary layer edge gases were assu med to expand isen trop ically.

For the non-ablating flow wi th equal di ffusion coefficients (nae) the chemiii-

cal species cons idered were 02, N2, 0, N and NO. For ablating f l o w s  with

equal (edc) and unequal (udc) diffusion coefficients the additional species

were W, WO, WO 2, W03, W206, W308, W309, W4012 and W~ . The pressure distri-

bution around the vehicle was obtained from the SAANT [6] code .
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a. Laminar boundary layer: s = 3.8x10 2 ft, P~ = 91.10 atm , he = 6814.5

Btu/ lb , Me = 0.9712. Detailed tabulations follow .

F irs t let us recon struc t the surf ace energy balance in the f orm of

Eq. (7.1—2) , v i z . ,

k = k - ~n.h. I + m h + m hi i w  g g  c c

but i h = En.h. I and h = 0,c c  i i u  g g

thus k ~~~~~ = k ~
T 

- 
~n.h. + En.h.

~y u  ~~~w i i w  i i u

k .~1 = 5726 - (-1934) + 279
~y u

= 5726 + 2193 = 7939 Btu/ft
2 sec

the conduction into the heat shield. Note also that -En.h. + En.h. =i i w  i i u

2193 = -EniMif T - Alternatively, let us use the form given by Eq. (7.1-4)- ,, w
noting tha t in the BLIMP code 

~e~
’e~~ 

- q~.ff/ (H ~~h~) .

k 
~~~u 

= peueC~~~e~~w
) = 1

~
1h
~ 

+ ~;8
h
8 

+ I chc

f o r  the edc case ,

k = 1.167(7403.6-448.9) = 456 + 279 = 7939 Btu/ft2 secay u

Also le t us check the def ini tion of

= k 
~~~w 

+ Ei~ h~ I~ 
- 11h

~
(= k 

~~~w 
- En1h~ I~

)

For the edc case ,

= 5726 + 2390 - 456 = ‘7660 Btu/ft
2 sec

Note that, in contradistinction to k(~T/ ~y) ‘w’ ~~~~ depends on choice of

enthalpy base states.

Next let us compare the edc and nae results. We see that the Stanton

number is reduced by 22%. Recall that Pe~
1eCH q~~ f f /(H _h

~), and observ e
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that 
~~~~~ 

changes but slightly even though hw decreas es cons iderably ;

this is the expected blowing ef f e c t. However , the conduc tive hea t f l ux

k(~T/ ~y )  
~ 

ac tual ly  increases by 9%, even though the thermal conduc tivity

at the wall decreases by 17%. This anomally is possibly due to (i) van -

able property effects, or ( ii )  gas phase reactions , and cannot be s imply

explained . We also see that heat liberated at the wall  -En 1L~h f ~
-. actual ly

decreases from the nae case to the edc case , even though in the lat ter  case

we have exothermic heterogeneous tungsten oxidation . The reason for this

behavior lies in the formation of NO at the wall in the nae case; this

latter reaction is strongly exothermic and the mole fraction of NO at the

wall is relatively large (7.9%). In the edc case the tungsten preferentially

consumes the oxygen in a less strong exothermic reaction and the mole frac-

tion of NO at the wall decreases to 0.62%.

Next let us compare the udc results with the edc results. First ob-

serve that the mole fraction of W
206 at the wal l  increases from 7% to 19%

when we account for multicomponent diffusion; since the heavy W2
0
6 molecul e

has a low effective binary diffusion coefficient , a hi gher concentration

at the wall  is required for the W 2O6 to diffuse away as fast as it is formed .

The rate of formation of W 206 is of course l imited by the rate at which 02 ,

O and NO can diffuse to the wall , since these species have hi gher than the

average effective binary di ffusion coefficients , the rate of formation of

tungsten oxides is 19% higher for the udc case . The blowing associated wi th

the hi gher mass lass rate reduces the Stanton number to 9% less than the edc

case. However care must be taken to account for variable properties in

interp reting these trends since we wee tha t Cw more than doubles  as we go

from edc to udc .

F i n a l l y  let us compare the various values calcula ted for k (
~T/ ~y)I 0

the conduction in to  the heat shield .  For the nae case this is s imply
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= 8.29 Btu/ft2 sec; for the edc case we have already calculated a

value of 7939 Btu/ ft 2 sec . For the udc case ,

k = k -a-— - En.h. + En.h.ciy u d y w  i i w  i l u

= 5274 - (-2854) + 331

= 8459 Btu/ft
2 sec

i .e . ,  an increase of 7% over the edc case and 4% over the nae case. This

last comparison of heat shield conduction values is the most significant

for engineering purposes.

7.4 UNEQUAL DIFFUSION COEFFICIENT EFFECTS FOR GRAPHITE ABLATION

As another illustration of the concepts introduced in §7.1 and §7.2,

and for the purpose of inves tigating some unequal diff usion coeff icient

effe cts, we will examine in detail some calculations of graphite ablation .

The K-BLIMP code [7] was used and results obtained for the following condi-

tions: total enthalpy = 7000 BtuIlb , wal l temperature = 8450°R, pressure =

140 atm, nose rad ius = 0.5 inch . Four runs were made : a) air, equal dif-

fus ion coeff icients, (b) air, unequal diffusion coefficients, c) carbon

abla tion with equal diffu sion coefficients, and d) carbon ablation with un-

equal diffusion coefficients. The results of the stagnation point are sum-

mari zed in the Tables.

Effect of unequal di ffusion coefficients for the air boundary layers.

Firs t let us check the Stanton number values :

k~~
T E ’h

edc~ u r - 
ay w 3 i i ’ w 

- 
4980-(-4740) 

- 2 4e H — 
H -h 

- 
7000-3010 

-

e w

k~~
T

udc U c — 
w - 3~ h~ w 

— 
4670-(-4740) 

- 2 62e H — He
_h

w 
— 

7000-3050 
-

which check . The heat fl ux into the  heat shield for the edc case is
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4980-(-4760) = 9720 Btu/ft2 s, and for udc it is 7.4% higher . This result

is to be compared with the conclusions reached by Bartlett and Grose [8],

who performed calculations w ith an earl ier version of the BLIMP code for

P = 0.1-100 atm, He = 2000-13,000 Btu/lb , Tw = 1000-8000°R, and RN = 1

and 0.5 inch. They found that PeUeCH is increased by 3 to 4 percent except

at low enthalp ies and low pressures where the effect is less. Thus it

appears that K-BLIMP predicts more marked udc effects than those reported

earlier.

Effect of uneQual diffusion coefficients for graphite ablation.

The mass loss rates may be calculated from the data in the Tables.

For edc rn = 0.919 lb/ft2 s and for udc it is identical . Thus unequal dif-

fussion coefficients have negligible effect on the rate at which the carbon

containing species diffuse from the surface.

The heat flux into the heat shield is given by

k -~3j~ = PeUeCH
(H
e
_h
w) - rnh

~ 
+

which is evaluated for edc and udc as follows :

edc : k -~‘ = 1.89(7000-4410) - 4053 + 3431 = 4273 Btu/ft2 Su

udc : k -~~-~~ = 2.48(7000-4490) - 4126 + 3431 = 5530 Btu/ft2 su

so we see that the heat f lux into the heat shield for udc is 29% hi gher

than for edc. Looking at the tables we see that this increase is main ly

due to the decrease in Ej . h j  from 1290 for edc to 250 for udc.

Comparison with Scala and Gilbert [91
It is of interest to compare the K-BLIMP results with the correlations

based on the Scala and Gilbert [9] multicomponent diffusion ana lysis. First

the mass fraction of element carbon at the w-surface is given by
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4
KC w  = 0.15 + 2

~
4Xl06(P

e atm) ”67exp [11.1 x 4~
P
~(o R)

]

4
= 0. 15 x 2.4xl 06(l4 0) ”

~
67exp[1l.l x

= 0.3228 c.f. 0. 342 for K-BLIMP

Next we calculate the heat flux into the heat shield for the diffusion

control led regime ,

k ~T D (R /P ) l/2  
= 33.3 + 0.0333 [H -h . ]

~~~u N e e w ,air

k ~~~l D (O. S/ l2xl 4 O) l/2 
= 33.3 + 0.0333[7000-3050]

hence k = (l65) (57 .96) = 9563.4

The mass loss in the sublimation reg ime is given by

rn = KC w (Pe/RN)
1’2(0

~
04235)

= (0.3228) (57.96)(0.04235)

= 0.839 lb/ f t 2 s c .f .  0.919 for K-BLIMP

Finally the heat flux into the heat shield is given by

k = k 
~~~~~

l s (
~ c w 0 . l 5 ) I

s = a + b H e e e e e

a = l.868xl0 d = l.l46x10~~
2

b = -4.418x10 3 e = -2.057xl0’
~~
5

c = 3.945xl0 ’7 f = 8.333xl0 20

For He = 7000 Btu/lb, s = 3.93 , thus

k 
~~ ju  = 9563.4

~
l-3.93(0.3228-0.ol5)I

= (9563.4) (0.321)

= 3066 Btu/ f t 2 s
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This value is only 55% of the BLIMP udc result .  The discrepancy must be

attributed to differences in the thermochemical model , thermodynami c and

tra nsport properties, and the treatment of multicomponent diffusion .

Comparison with Bartlett and Grose [8]

In the K-BLIMP calculations described above the udc case was calculated

for steady state ablation and the edc case subsequently calcul ated for the

same wall temperature obtained in the udc case . In th is manner udc effec ts

correction factors for use in coupled flow field-in depth conduction codes

are correctly obtained . Bartlett and Grose [8] however calculated both the

udc and edc cases assuming steady state ablation so that the wall tempera-

tures differed , being typically 50-75°R higher for udc. The ablation rates

were found to typically increase 2 to 8 percent, while the diffusive heat

flux increased 3 to 10 percent, with the largest effect occurring at high

pressures and modera te to high enthalp ies.

A comparison with the Bar tle tt and Grose resul ts was made by mak ing a

set of BLIMP-K runs for identical parameter values and steady state abla-

tion. The total enthalpy was 13,000 Btu/ lb and the nose rad ius 1 inch . A

comparison of the results is shown in the Table which follows . Looking

first at the mass loss rate we see that both Bartlett and K-BLIMP predict

an increase in m due to udc , though Bartlett  predicts a 2-4% increase and

K-BLIMP a 5-6% increase. However the Bartlett ~ val ues are consistent ly

about 12-15% higher than K-BLIMP.

The comparison of heat transfer conductance predictions is more com-

plex . K-BLIMP predic ts increases in peueCH for udc of 7 to 20% while

Bartlett pred icts decreases from~~0 to 13%. For edc the K-BLIMP values are

consis tently about 13% les s than those of Bar tlett, bu t for udc, as a conse-

quence of the above mentioned discrepancy , K-BLIMP values range from 9%

lower than Bartlett  at 0.01 atm to 21% higher at 30 atm .
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P edc udc

atm Bartlett K-BLIMP Bartlett K-BLIMP

Mass loss rate m lb/f t2s

.01 2.49-3 2.22-3 2.55-3 2.33-3

.1 8.81-3 7.69-3 9.33-3 8.19-3

1 5. 18-2 4 .38-2 5.48-2 4.71-2

10 2.33-1 1.99-1 2 .4 2 - 2  2 .12- 1

30 4.43-1 3.76-1 4 .56-1 3.99-1

100 8. 71-1 7.39-1 8.90-1 7 .70-1

Heat transfer conductance peueCH lb/ f t 2 s

.01 1.41—2 1 .22—2 1.43-2 1.30-2

.1 4 .44-2  3.85-2 4 .44-2  4.11-2

1 1.23-1 1.10-1 1.13-1 1.24-1

10 3.66-1 3.18-i 3.22-1 3.80-1

30 6.19-1 5.39-1 5.40-1 6.54-1

100 1.12 9 .72-1 9 . 62—1 1.19

Diffusive heat f lux k ( 2~T/~ y ) J ~ 
_ E j . h . I ~

.01 177 154 187 163

.1 524 460 554 486

1 1211 1080 1290 1160

10 2882 2560 3111 2820

30 4582 4050 4972 4500

100 7859 6880 8545 7700
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The source of the discrepancies discussed above is thought  to be due

to differences in therinophysical properties since there is no good reason

for questioning the numerical accuracy of the calculations . Unfortunately

nowhere in the Bartlett and Grose report do they document their values or

sources of thermophysical property data; based on the date of the report

(May 1968) it can be presumed that the original version of BLIMP was used.

On the other hand K-BLIMP has thermophysical properties identical to those

of a later version, BLIMP-C which incorporated a number of improvements in

the methods used to calculate properties . There are also improvements in

the JANAF data and data curve f i ts  incorporated in currently used thermo —

dynamic property tables.

7.5 ThE GENERAL SURFACE ENERGY BALANCE

To complete §7 we
p u C  (H -h ) (caT 4-czq )

need to extend the dis- e e H e w w r

cussion of the surface
w

energy balance to in- 
- Ern~h~

d ude other than stag- • — — — — — — — — — 

nation region s, thermal

radiation , and mech- -k 
~~ 1u 

i;
ghg rnchc

anical surface removal.

(i) Recovery entha~py

The recovery enthalpy concept was introduced in §6.5: the textbook

approach to calculate heat transfer in high speed flows is to replace

the static enthalpy he 
by the recovery enthalpy hr in the driving potential

for convective heat transfer, to wri te

k -

~~~~~~ 

- Zj1
h
1~ 

= Pe
U
eCH

(h
r
_h
w) 

(7.5-1)

Although the recovery factor is relatively easily correlated for air
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boundary layers, even when thermophysical properties vary appreciably across

the boundary layer, e.g., [1OJ , it is a function of pressure grad ient, and

more important is a strong function of blowing rate (see §6.5 and also [10]).

With foreign gas injection the adiabatic wall temperature, and hence the

recovery enthalpy, is significantly affected by diffusional conduction :

since by def inition q = 0 for an adiabatic wall , this usually second-

order contribution to q becomes important. Also fore ign gas injection is

usually associated with ablation and transp iration cool ing and associated

large wall heat fluxes. Thus there have been very few reliable calculations

of recovery enthalpy with foreign gas injection; also pertinent experimental

data is almost non-existent.

In light of the above there have been few attempts to develop engineer-

ing correlations of heat transfer data for high-speed boundary layers with

foreign gas injection using the recovery enthalpy concept. Rather, common

practice [11 , 12] has been to develop correlations of CH 
based on the edge

gas total enthalpy H , as

k - Ej.h. = p u C (H -h ) (7.5-2)
i i  e e H  e ww w

In so doing the discrepancy between H
e 

and h
r 

is absorbed in the resul ting

expression for C
H
.

(ii) Thermal radiation

Thermal radiation is usually included in the surface energy balance

on a gray body basis, with an appropriate emissivity and absorptivity.

Since a finite depth of material is required for emission and absorption,

these processes take place below the u-surface, and the radiative fluxes

are unchanged between the w- and u- surfaces. Rigorously, we should now

define a new surface, say a rn-surface, sufficiently below the u-surface

such that all emission and absorption takes place between the u- and
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rn-surfaces: the distance between these -two surfaces depends on the

transmissivity of the wall material . Then the surface energy balance would

resul t from applying the first law of thermodynamics to the control volume

located between the w- and rn-surfaces. However, in most practical

circumstances , the wall material is sufficiently opaque for the u- and m-

surfaces to essentially coincide , and thus we can simp ly retain the u-suffix

on ~T/ay and the implied u-suffix on hg and h
~
, as shown in the Figure. The

net radiation flux across the w-surface is

q = caT - a q (7.5-3)r,net w r

and will be included in the surface energy balance .

(iii) Mechanical removal of material

Material may be mechan ically removed from an abla ting surface either

• as a melt layer swept away by aerodynamic forces, as ejecta due to erosion

• by dust or ice particles, or by other mechan ical failure modes. Such

F material leaves the wall at the u--surface state but does not cross the w-

surface: as in §5. 3 we dep ict mechanically removed material as leaving

— through the side of the control volume located between the w- and u-surfaces.

The rate at which enthalpy leaves the control volume in this manner is thus

where the sum suggests that more than one distinct componen t of the

surface could be removed mechanically. Often h~ will be written h~ to

emphasize that mechanically removed material is always a condensed phase.

Eq. (7.1-4) can therefore be rewritten in the more general form as

k 

~~~~~~ 

= Pe
u
e
C
H~

l
e
_h
w
) - 1Ih

~ 
+ 1~g

h
g 

+ 
~~~~ 

- ~i t~h~ - (caT~ - a

(7.5-4)
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CHAPTER 8

LAMINAR BOUNDARY LAYER ANALYSIS

8.1 TIlE CONSTANT PROPERTY BOUNDARY LAYER ON A FLAT PLATE

Laminar boundary layer convective heat and mass transfer is conven-

iently introduced by analyz ing the constant property boundary layer on a

flat plate. Attention will be restricted to the low velocity flow of an

inert binary mixture . Thermal, pressure and forced diff usion as well

as diffu sional conduction will be ignored . The flu id proper ties , i.e. ,

densi ty , specific heat, viscosi ty , thermal conductivity and diffusion

coeff icient will be assumed constant: as a consequence there can be no

energy transpor t by interdiff usion. The particular physical problem to be

considered is the same as that of §4.1 ,

namely evaporation or sublimation . The

porous plate is taken to be isothermal , —~~~~~~~

$

and liqu id 1 is suppl ied at a rate just L’~.. I
suff icien t to maintain a wet surface. A

mixture of gas and vapor flows over the

the plate; gas 2 is assumed to be insol-

uble in liquid 1. With these restrictions the conservation equations in

boundary layer form reduce to:

mass conservation -~~~ + ~~~~ = 0 (8.1-1)aX ay

momentum conservation u + v -~~~ = v— !~- (8.1-2)x y

a 2
energy conservation u + v -~-- = a ~~~~~~~~ (8.1-3)x y 

ay

3K 1 3K
spec ies conserva tion u -~-—— + v V 12 2 

(8.1-4)
X y
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The boundary conditions are:

At y = or x < 0: u = u ; T = T ; K1 = K
1 

(8.1-5)
— e e

At Y = 0: u = 0; T = T
w

; K
1 

= K1~~
; 
~2,w 

= 0 (8.1-6)

where K lw = K
i w  

(T
~
,P) from vapor pressure data, and = 0 follows from the

requirement that gas 2 is insoluble in the liquid.

Eqs. (8.1-1 through 4) are partial differential equations; Eq. (8.1-2) is

nonl inear, and the boundary condition ~~~~ = 0 leads to a nonlinear coup l ing

of Eq. (8.1-2) to Eqs. (8.1-3 and 4). No direct analytical solution is

possible. One method of attack is to attempt to f ind a transformation wh ich

will reduce the equations to ordinary differential equations. An appropriate

transformation is suggested by the scaling of the Navier-Stokes equations which

lead to the boundary layer equations under cons ideration. Recall that the

boundary layer th ickness ~ at location x is of order

cS = xRe
~ 

2 
= (vx/u ) 2 (8.1-7)

and variations in the y direction scale according to y/S , where , of course ,

= ~(x). We suspect that in some situations the dependent variables such as

u, T and K1 suitably normalized if necessary , are functions of y/S only,

irrespective of x location. Thus the coordinate transformation x,y -~ s,~ wil l

be mad e, where s = x and i~ = y(u /2vx) 2 : the factor of 2 2  has been introduced

for future conven ience . The mass conservation equation wi l l  be automatically

satisf ied if we use a stream function:

1et u = ~~~ v = - -~~3y
2 1

then -
~~~~~ + ~?~.Y- = 

a 
- ____ = 0

ax ~y 3y3x 3xay

The required differential operators are

L L  ~~~~~~~~+ L ~~~~~~~~-L~ ~~~~
3x 3s 3x 3i—i Dx 

- 

~~ 
- 2x ~~

~~
— = i-

p ~~~~~ + ~~~~~ - 
~~ 

U
e ½ 3

3y Ds 
~ 

Dy ~~~ 
- + 

~~-i:~ ~~~~~~
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Now let ij~ = g (x ) f (~)

= = g(x) (~~~)½ ft (~)

Then if gix) is set equal to (2ue
vx)½ , ~~— = f’(i-~) 

(8.1-8)

= (2u vx) ½f(fl) (8.1-9)

Also -~~~ = u ( e )½fI~ = -u —a-- ~• Dy e 2vx Dx e2x

2 u u v 1
= u ( ~!_-) f’’’ ; v = 2x ~~

Dy

Substituting in Eq. (8.1-2) and rearranging gives

f ’ ’ ’  -‘. f f ’ ’  = 0 (8.1-10)

If the normalized variables 0 = (T_Te
)/ (T w

_T
e

) and c~ =

are introduced , Eqs. (8.1-3 and 4) similarly transform into

0” + Pr f 0’ = 0 (8.1-11)

+ Sc f ~ = 0 (8.1-12)

where Pr = v/a is the Prandtl number, and Sc = v/V 12 
is the Schmidt number.

Notice that there is no x-dependence in Eqs. (8.1-11 and 12), a consequence of

Te’ T5
. Ki e ~ 

and K 1,w being independent of x. The boundary cond itions become:

As r~ -“ ~ ; f ’  = 1; 0 = 0; ~ = 0 (8.1-13)
K -K

At n = 0; f’ = 0; 0 = 1; ~ = 1; f ( 0) = i,e 1,w 
Sc (8.1-14)

l,w

The last cond ition is derived as follows :

3K 1
- n = K pv - p V  —

l,w 1 w 12 Dy w

but n = 0, thus pv = n = n + n = n , hence
2,w w w 1,w 2 ,w l ,w

-V 3K
v =  — (. -S)

w l
~
Ki w  Dy w

Equation (8.1-15) expresses the coupling between the momentum and species

equations, and shows how the net mass transfer across the w-surface gives
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rise to a blowing effect on the boundary layer. In terms of the transformed

variables:

3K u 1

—.‘ = (K -K ) -
~~~ = (K -K )(—~

-—)
~~~~

‘ hence
Dy l,w l,e Dy l,w 1,e 2vx

u v 1e -~~vw = - 
~ 2i~ 

f(O)

u v 1 V u
thus - (--i-’) 2 f( 0) = - 

1-K 
(K

l,w
_K

l,e
)(•~~~)

2 q~’( 0)
l,w

or

f( 0) = ~~~~~~~ ~~~0) (8.1-16)
1,w

In the notation of Chapter 4, f(0) = ~~
— ~‘(O) where B’ is the mass transfer

driving force, and is a constant as consequence of Ki,e 
and K

1~~ 
be ing

independent of x.

We see that the mathematical problem has been reduced to the solution of

a set of ordinary differential equations containing two parameters , Pr and Sc ,

with a third parameter B ’ in the boundary cond itions. For prescr ibed values -

of Pr , Sc and B’ the equations must be integrated numerically. As an end

resul t we are interested in rates of mass and heat transfer, and the wall

shear stress:

DK 1
l,w w , e ~pue

cM = 
K -K K -K = -pV 12 c~ ~~~~~~• 1,w l ,e l ,w 1, e

Rearrang ing~C~ = 
-4 ’(O) (8.1-17)
,‘~~Re 2Sc

_ _ _ _ _ _  
k 

U

PUe
C
H 

= 
C
p

(T
w
_T
e) 

= - ~~— 0’ (0)(-~
.
~~-) 

2
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Rearrang ing, C
H 

= 
-0’(0) (8.1-18)

/1 Re 2 Pr
x

(4 PUe2)C F = T = 
~~~~~~ 

=

Rearranging

C /2 = 
f” ( 0~~ (8.1-19)

F
x

Thus we require CM, C1~ 
and CF as functions of B’ , Sc and Pr.

To effect the numerical solution of the ordinary differential equations

it is convenient to uncouple the set and consider first the solution of Eq.

(8.1-10) for various values of f(0). For f(0) = 0 we have of course the classical

Blas ius problem . Solutions for a range of values of f ( 0) were f irst obtained

in 1953 by Emmons and Leigh [1] and are commonly referred to as solutions of

the laminar boundary layer equations with blow ing or suction . A number of

numerical methods have subsequently been used for this problem : since the

boundary cond itions are spl it , integration using a Runge-Kutta technique

requ ires guess ing f’(0) and adjusting the guess until the condition f’ = 1

as n -
~ is attained. Such “shooting” methods are simple and qui te adequate

for this problem : however , for more complex boundary layers , involv ing pressure

gradients and proper ty varia tions , shooting methods are troublesome , and are

not recommended . Superior methods include finite differencing of the quasi-

linearized equation [2],or formal integration followed by iteration [3]. The

last mentioned method is particularly simple : rearranging Eq. (8.1-10),

f’’’ _ 
f _

0
Jfd n

integrating , f ’ ’  = C 1e

-ffdn
integrating , f ’  = C

1 
e d~ + c2
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at ri = 0, f’ = 0, thus C2 
= 0

~~ _ f f l f~~
a s n - - oo~~f ’ - ~- l ~~t h u s l = C 1 0j 

e

fn -0
f11fdn

~
J e

f ’  = (8.1—20)

f~ - f ~fdr~e d~

integrating,

fn j?i -0f”
fdii

~J ~ 
e dn dri

f = .“ f(0) (8.1-21)
f’ - f ~fdr~

d~

and 

-0f~fdn

= 
e (8.1-22)

f~ 
-0
f1fdri

e

The calculation procedure can be set up as follows :

1. Choose a value of 
%ax’ less than (say 10) , a number of integration

steps (say 100), and hence a step size ~n = 0.1.

2. Specify f ( 0) .

3. Choose an initial guess, e.g., f” = 0, f ’ = 1 and f = n .

-0f~fdn4. Evaluate e at each step from n = 0 to ri = umax

r~ - f~fdn5. Evaluate e dri using the trapezoidal rule.

6. Evaluate f” at each step us ing E~~. (8.1-22).

7. Evaluate f’ at each step using Eq. (8.1-20).

8. Evaluate f at each step using Eq. (8.1-21).
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9. Use the new values of £ in (4) and repeat (4) through (9) until convergence

is attained .

For a specified value of f ( 0) and the correspond ing sol ution of the

momentum equation , the solutions of the energy and species equations are found

by direct integration. For example Eq. (8.1-11) becomes

= -Pr f

integrating,

-Pr
0f~

fd~0’ = C
1
e

integrating ,

~ñ -Pr
0f~ fdr~

e d n + C 2
at r~ = 0, 0 = 1, thus C

2 = 1

~~ -Pr
0f
’
~fdnas 

~ 
-+ 

~~, 0 -
~ 0, thus 0 = C1 

J 

e d~ + 1

f~ 
-Pr0

f11fdn
j e d~

then 1- 0 = (8.1-23)
f~

° -pr~f0 fdr~ —

J e  d~

or using Eq. (8.1-10), f = -f’’’/f’’, then

(f~)Pr~
1 - 0 = (8.1-24)

(f,,) Pr
d

Similarly ,

(f,,) SC
d

1 - = (8.1—25)

cf 
(f,,) Sc

d

If Pr = Sc = 1 then f’ = 0 = 4 .  That is, for a given value of f(0) the shapes of

the velocity, temperature and concentration profiles are identical . Typical
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temperature (or concentration) profiles are shown in the Figure: there is a -

set of profiles for each value of

Prandtl or Schmidt number. The 
I

thickness of the thermal/d iffus ion - -

boundary layer decreases with ( — )  I
increasing Pr/Sc. Since for gas ~~~~~ - °-~ -

mixtures both Pr and Sc are of order -

unity , a value of umax sui table for I 
‘ - 

I
I

the accurate sol ution of the -

momentum equation is also

satisfactory for solution of the energy and spec ies equations .

The numerical solution therefore gives

f”(O) = function of f(0); (~ .4696 for f ( 0) = 0)

0 ’ ( O )  = function of f ( 0) , Pr

= function of f(0), Sc

in tabular or graphical form . In some problems the mass transfer rate rn = Pvw

may be specif ied , and from the derivation preceding Eq. (8.1-16) ,

f ( 0) = - 

~~e 
Re~~/2 ½ (8.1-26)

Then the appropriate value of f(0) may be evaluated using Eq. (8.1-26) and

f’’(O), 0’(O) and 4’(O) obtained. However for the evaporation problem under

cons ideration m is an unknown , and hence an iterative procedure appears to be

required to obtain a solu tion . The pioneer ing paper of Hartnett and Eck ert

[4] proposed such a procedure . However it is clear that such an iterative

procedure should be performed once and for all , and the results presen ted in

a convenient form. Eq. (8.1-16), viz., f(0) = c~’(0) connects f(0) with

the spec if ied data of the evaporation problem , since wi th K
1 

and K
1~~

• given, B’ = (K
i e  

- K
i,w

) / ( K
i,w 

- 1) is known . Combining Eqs . (8.1—16 , 17 and
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26) gives

I = pu C B’ (8.1-27)e M

= P~
1
e
Cp~~

’ (~~L) (8.1 28)
MO

C
M - ______

‘0 
( .12 )

f(0 )= O

C~~ 0.332 Re~~~~
2 sc 21

~ (8.1-30) 
it-

where we have used our analysis of §4.1 to indicate a convenient form of

presentation . Eq. (8.1-29) is shown in the Figure for var ious value s of the

Schmidt number. The Couette flow model of §4.1 of course gave

CM — 
2~n(l+B’)C B ’ _______________________________

MO 1~~~

- which is also shown in the Figure . • •

Negative values of B’ (corresponding 
~~~~~~~~~

\ / ~~~~~~F

to suction) are not shown in the 
• -

Figure. The effect of Sc is seen •~~

to be small for values of Sc

• characterizing gas mixtures (0.2-  -~~ 
-

2.0) . Furthermore , as wi l l  be seen •

later in Chap ter 8, the effects of

variable properties on CM/CMO for 
1

real gas mixtures are cons iderably

larger than the Sc effect; thus any discussion of the effect of Sc on CM/CMO
is of academic interest only.

Example 8.1

Rework Example 8.1 using the exact boundary layer solution to obtain

CM/CMO
.

B’ was evaluated to be 1.09; from the Figure C
M/CMO 0.52 for Sc = 0.56.
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Also C was evaluated as 0.0054. Thus
C
Mm pu CMOB (~~
.—.)

e MO

(0. 0272 lb/f t3) (300 ft/s) (0.0054) (1.09) (0.52)

= 0.025 lb/f t2s

8.2 THE HOWARTH AND MANGLER TRANSFORMATIONS

The Howar th Transformation

Due to large differences in temperature Letween the free-stream and wal l ,

real gas boundary layers on re-entry vehicles have large thermophysical

proper ty variations , particularly that of density . Before attempting numerical

solution of the equations governing such boundary layers, it is advantageous

to make use of a transforma tion usually attribu ted to Howarth or Dorodni tsyn .

To demonstrate the underly ing pr inciple we wi l l  consider again the boundary

layer on a flat plate, for which the mass and momentum conserva tion equations

are

3 3(pu) + -
~~~~~ (pv) = 0 (8.2-1)

(8.2-2)

to be solved subject to the boundary condi tions ,

y = 0: u = 0, v = 0
(8.2-3)

x = O , y + c o : u = u
e

Mass conservation is satisfied by introducing a stream function ~ such tha t

pu = (D~/Dy); pv = -(34/3x). Then we let

‘P = Pe
(2U

eV e
)C f(~)

d~ =

½n = y(u /2v x)

where now i4, and n have been defined in terms of free-stream properties. The

differential operators for the transformation x , y -
~ x, ~ are
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Af ter some rearrangemen t the transformed momentum equa tion is

~
1
~~ e 

f~~)~ + ff~~ = 0 (8.2-4)

For gases p ~ T ’ and ji ~ T~~
7 approximately , so that “~e~e 

~ T °~
3
, a

rather weak dependence. Thus taking /‘1)e~e 
= a constant C (the Chap m an constant)

was a procedure followed in early analyses of variable property boundary layers.

Then Eq. (8.2-4) becomes

C ~~~ + ff~~ = 0 (8.2-5)

Now let d~~= C  
2d~

F(~ ) = C
_ 

~~~~~~~ then Eq. (8.2-5) becoiaes

~~~~ 
+ FF~~ = 0 (8.2-6)

• The wall shear stress is then obtained as

T
w “

~~~ ~~~ 

= 

~~~~ ~~~~ ~~~~ ~o 
= 

~~ 
Pe
U

2
CF

thus
C 1 P U 1

Pe
u
e
2 
~~ 

= Pw
U
e
F
~~ 

~ 

C~ ~ 
~~

CF (_!_..~~) 
0.4696 

(8.2-7)2 
~~~ v’1c½ Re 2

x,e

and

C P M  ~.

= ~~~~~ -~~- = ~~~ 
2 

(8.2-8)

where i refers to constant property flow . If it is reasoned that proper ty

variations are more important near the wall then C = 
~
D
wMw/P eMe would be a good

approxima tion , then
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~L. = 
w M~V l/2 

= (_!L) 0 ’5  (8 . 2-9)
Fi ~e11e e

that is , the shear stress wil l  increase as the wall  is cooled below the

free-stream temperature . Eq. (8.2-9) also suggests a correlation scheme for

exact numerical solutions , as will be seen in §8.4.

The Mangler Transformation

Mangler in 1945 discovered a v

transformation which results from a

general equivalence of axisynimetric and

planar boundary layers. For the axi-

symmetric boundary layer mass and I - ____-

momentum conservation equations are:

(pur) + ~~— (pvr) = 0 (8.2-10)

3u dP DT
Pu ~~

— + Pv ~~
— = - + -

~j  (8.2-1 1)

where u, v, s, y are the axisymmetric flow variables for a given dP/ds and

r(s), as shown in the Figure. The mass conservation equation is satisfied by

introducing a stream function ‘P such that,

pur = -
~

-
~~
-; -pvr =

Let y’ = ~~y where L is a reference length, and transform var iables s , y + s ’ , y ’

where s’ is as yet undefined except s ’ ~ f(y). Then

pur = ~~~~
— -

~~
-

~
--- + —1P-_ ~Z = ~~ ~1LDs ’ Dy Dy ’ Dy L Dy ’

- V - ~~ + = + �~. ~~~~p r — 
Ds ’ Ds Dy ’ 3s Ds ’ ds L ds Dy ’

Now let ’P ’ =~~~-, then pu =~~~-~~; ~~~~~~~~~~~~~~~~~~~~~~~~L 3y rDs ds rds dy

• Substituting in the convective operator and rearranging gives
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+ v - ~~~~~ i-~ - 
~~~~~~~~ 

i-~) ~~- (8 2-12Pu Ds P Dy 
— (3y 1 Ds ’ 3s ’ Dy ’ ds 

. )

3,P ’which suggests the definitions Pu’ = 
~~~ 

pv ’= _ -~~-,- ; then the momentum

equation becomes

Du Du ds’ — dP ds ’ r DT 8 2(Pu ~~~~~
-

~
- + pv -~~~-~-) a— - - 

~~~~~~~~ ~~~~
— - ( . -13)

3u r3u
For laminar flow -t = = 11-i: -~~

---
~
- Hence if we let

ds ’ r 2
~~~~~~~ 

; u = u ,then

Du’ D ‘ dP 3 3u’pu ’ -
~~

-
~~

-— + pv ’ -
~~
----

~
- = - 

~~
—

~
-- + 

~~~~~
-
~
- (i-i -

~~
----

~
-) (8. 2-14)

and the transformation is successful since the planar form of the momentum

equation has been obtained. For constant property flow and using the Euler

relation dP/p = -u due e
du ’ 2

Du’ e 3 u’
— + v ’ —  = u + v (8.2-15)
3s Dy ’ e ds ’

Summarizing, the Mangler transformation can be written:

1 1~~ 2
s’ = —

~~

- r ds y ’ =

(8.2—1 6)

u’ = u  v ’ r r ds

As a particular example consider constant property flow over a cone,

Evans [5] gives the details of the potential flow past a cone of half angle ~:

the freestream velocity is of the form 
- 

n 4 , deg

u = C n 
(8.2-17) 0.0 0.0

0.1 27.73

where values of n for various values of ~ are shown

in the Table opposite. There is not a simple

relation between 4 and n , as there is for

Falkner-Skan wedge flows, viz.,

F 1.0 90.00
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for u = C5
m

For a cone r = ssin~~, and the Mangler transformation gives

3 . 2s sin $
3L2

that is sas ’~
”3 . Since u

e a 5
n for a cone, u ’ a ~~~~~~ for the equivalent

planar flow. For n = 1 we have the important case of axisymmetric stagna-

tion point flow : the corresponding wedge flow is therefore u~ a ~~~~~ i.e.,

m = l / 3.

8.3 THE GENERAL EQUATIONS

Calculation of convective heat and mass transfer to heat shields requires

analys is of the boundary layer flow over the hea t sh ield. The starting point

for such analysis is taken to be the equations of conservation of mass , momentum

chemical species, and energy , all in boundary layer form. The Figure shows the

coord inate system , and the equations are:

+ ~~~ (pur C) + ~~~~ (pvr
6
) = 0

(8.3-1)

where c = 0 for a planar flow,c 1 for ~

an axisymmetric flow .

momentum conservation:

dPDu Du e Dp -
~~~~

- + pu ~~
-
~~
- + ~v 

-
~~

-
~~~ = - a~

- + ~~ (T~~
y

) (8.3-2)

species conservation :

3K. 3K. DK.
p + pu + P~’ = 

5~~ ~~~~~ 
+ i = 1,2,... ,n (8.3-3)

total enthalpy conservation :

DH Dl-! 3p -
~~~~

- + Pu ~~
-
~~
- + pv 

~~ 
(-q~ 

+ uT
5y) (8.3-4)

For laminar flows sy ’ ~iy 
and q

~ 
are given by diffusive flux laws

obtained from the kinetic theory of gases , as described in §3. For turbulent
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flows the conservation equations must be first time-averaged and the

resulting turbulent diffusive fluxes modeled .

Appropriate boundary conditions for the above set of equations are

y+~~: u = u ;  K. = K .  ; H = H
e 1 i,e e 

(8.3-5)

y = 0: u = O ;  p v = ~~i; H = h ;  rnK. =~~iK. + j .
w i,tw i,w iy w

where the precise manner in which the transferred state mass fraction K.
1 , tw

i~ specified depends on the particular problem under consideration (see §4.3).

Transformation of the Laminar Boundary Layer Equa tions

For our present purpose it is convenient to assume steady laminar flow

of an effective binary mixture with negl igible second order diffusion effects.

Upon introduction of the appropr iate diff usive f lux laws (see § 3) the boundary

layer equations , Eqs. (8.3-1) through (8.3-4) become:

}-_ (pur C) + }— (pvr6) = 0 (8.3-6)

pu -

~~~~~~~

+ pv 

3K. 
~e
”e 

+ 

~K. 

-
~~

-
~~

-
~ 

(8.3-7)

pu -
~~
--

~~
- + pv -

~~

—

~~

- = 
f— (pV .,~, 

-
~~
---

~~
-) + r. i = 1 ,2,. . .  ,n (8.3-8)

DH 3H D P 3H 1 3 U
2

pu ~~~~
- + pv -

~~
— = .

~~
— [ p — -

~~
- + p (l - -

~~
—-

~ 
-
~~

— 
(~~
—

~

n 3K.
1 1

+ E (1 - -t--.—
~ 

h~pV. i—] (8.3-9)
i=l 1

where the Euler equation, (l/p) (dP/ds) = u(du/ds), has been applied at the

boundary layer edge to obtain Eq. (8.3-7) .

-\ first step in obtaining solutions to the above system of partial

diff erentia l equations is to investigate the possibility of obtaining self-

a.tla r -.ol uttons . Thus we seek a transformation which will yield a system

U 
~i •rdina r~ different ial equations . The most commonly used has been a

.
~~~~ ~~~~~~ •

~~ he t e !.v and Mangler transformations with the Howarth-Dorodnitsyn

-
~~~~~~ 

- •  • torn -ted by Lees. A variety of names have been

~~~~lIII ULd~~~~~~~~~ 

--  
- 

--
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used for this transformation, and also sl ightly different forms have been

used. We shall use the desi gnation “ Lees transformation” . The new coor-

dinate system ~~~~~~~ is related to the original system (s ,y) by the rela-
‘ V

tions

= J u p u r
2eds (8.3-lOa)

= ~ fpdy (8.3-lob)
(2~)

1 J0

(sometimes 
~~~~~ 

is replaced by 
~~~~~ 

in the definition of ~~~, e .g .  [6]).

The associated differential operators are:

- ~~~~~~ D D~ - 
Puer 

(8 3-h a)Dy D~ Dy + 

~ i Dy 
(2~)

1 
~~

D _ D D~~~~ D . Dfl _ D~~~( D ~~Dn . D )Ds — D~ Ds D~ Ds — Ds D~ D~ an

= 
~e~e

uei
2
~~k 

+ 
~~~~~~~~~~~ 

(8.3-llb)

We choose a stream function iP(~,n) = (2~)~ f(~ ,n); the velocity components

are then obtained as

pur6 = = 
puer

C 
~~ 

= 
e 

(2~)
½ 
~~ ; or u = u

ef’ (8.3-12)y (2~)½ n (2~)
1 n

-pvr = = ~~ — [(2~~~f(n,~ )}

= 2e~e
r2
~~h 

[(2~ ) ½
~f} + ~ll-. i [(2~)

’
~f]}

or pv = _ P
eueMe ~(2~)

½ -

~~f 

+ f(2E~)~~ + -~~~~~ (2~)
½ft } (8.3-13)

The convective operator is therefore

pu -
~~~~- + pv -~~~~ = pu

ef’ ~e
ue~e

r2
~~h 

+ •}_
~

pu r
- PeuePe~~~[ t 2 ~~~ 

.

~~f 

+ f(2~)~~ + .~~~~~ (2
~
y
~
f
~

] [ !—½ 

~&
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D 3 2 2c , B Df f Bor Pu ~~~~
- + pv = eue~

le~ 
[f -

~~~~
- 

(~~~~~
. + -

~~
-
~~
-) 

~~çI (8.3-14)

and the diffusive operator for any coefficient P(s,y) is

c c 2 2 cpur pur ~ p u r

~ 1..) = 
e 

~ 
e 

~~~~~~ 
= 

e 
~~~~•• (p1’ ~~ (8.3-15)

Dy Dy (2~)½ 
D~ (2~)

½ D~ 2~ an

In order to transform the momentum equation , Eq. (8.3-7), we first note that

(due/ds) = peueper
2 du

e/dc) since ue 
= u

e(~
) alone . Substituting in

Eq. (8.3-7) with Eqs. (8.3-14 and 15) and rearranging gives ,

2 Df’ Df(Cf”) ’ + ff” + ~[ 2 - ( f ’)  ] = 2 ( f ’  Dln~ 
- 

Bln~ 
f”) (8.3-16)

where C 
~~~~e~e’ ~ 

= 2(d 1nu /dln~ ) .  Next we define a dimens ion less mass

fraction z
~ 

= Ki/K i w ~ 
and substituting in Eq. (8.3-8) with Eqs. (8.3-14 and

8.3-15), and rearranging gives
Dz. dlnK.

(~~ zp’ + fzl = 2(f’ B1n~ 
- z~ ,.~~) + 2f’z

~ dln~
2
~
r
~

- 

PueKjw (dF
~
/dsT 

(8.3-17)

Finally we define a dimensionless total enthalpy , g = H/Hey and substituting

in Eq. (8.3-9) with Eqs. (8.3-14 and 15), and rearranging gives
2

(~jg ’) ’  + f g’ + -
~
f— [2C(1 - ~~-)f’f”]’ + 

~~
-r ~~~~~~~~~~~~~~~~~~

d m 1 1
= 2(f’ 

~~~ 
g’ 

~~~~ 
+ 2f’g dln (8.3-18)

Notice that the residual viscous work term is scaled by u
~
/2He E wh ich

may be viewed as an Eckert number. Alternatively, for a perfect gas we

have the relation
2

U
E —  e _ 1

2He (1+ 2 
2~(Y_l)M
e

and E may be viewed as a Mach number parameter .

171 

• -—~~~~~~~~~ - • - -—~~~~~~~~~~~

- 

~~~ --~~~~~~~
• 

~~~~~ -~~~~ - -  

- 

~~- --~~~~-



--
~~~~

--—-
~~~~~~~~~~~~

_

~~~ 
-

- 
— 

~~~~~~~~~~~~~~~ 
- - •,

~~~ 

-

The right-hand sides of Eqs. (8.3-16 through 18) contain derivatives

with respect to ~~~. For self-similar solutions we require the dependent

variables f , z~ and g to be functions of n alone, and thus the ~ deriva-

tives must be zero. In real flows this condition is only satisfied gener-

ally at planar and axi-symmetric stagnation points. The condition is also

met for hypersonic attached flows over a cone or wedge for which and Ue 
-

•

are constant [7]: however, such fl ows are turbulen t under cond itions of

importance to reentry vehicle aerodynamic heating, thus the laminar flow

is of little concern to us. Notwithstanding the above limitations , many

essential characteristics of laminar boundary layers can be profitably

examined by simply setting the c-derivatives equal to zero to get a family

of mathematically self-similar solutions . The c-derivatives have been re-

tained in Eqs. (8.3-16 through 18) for future use, because the complete

equations form the basis of the l-lartree- Wormersley method of solving non-

similar boundary layers numerically: the c-derivatives are approximated by —

finite difference forms and a set of ordinary differential equations solved

at each step of a forward marchi ng proced ure.

The species generation term in Eq. (8.3-17) requires special attention ,

since it too must depend on n alone . Since 
~~ 

depends only on the local

thermodynamic var iable s, P. 1 and z1, this condition may be met i.n three

distinct ways: (i) = 0, i.e., frozen flow ; (ii) 
~~~ 

= cons tant and

U dlnEjds = constant , which is met at a stagnation point ; or (iii) the reac-

tion rates are fast enough to maintain conditions sufficiently close to

chemical equ il ibr ium , in which case the reaction conductivity method may be

used , or more generally, the species equations may be reduced to conserva-

tion equations for the chemical elements.

For self-similar solutions the boundary conditions Eq. (8.3-5) trans-

form into

172 

a- - —— -~~~~~~- -~~~~~~~~~~~



— 

-- _ • _____ - — — - 
~~~~~~~~~~~~~~~~ -.

K.
+ co f ’ = 1 ; z

1 = 
K ; g = 1 (8.3-19)
i,w

K. fi,tw 0n = O : f ’ = 0 ;  f = f  ; g = g  , K. =
0 f + (- - - z !)0 Sc

The Reaction Conductivity Method [8,9,10,111

The reaction conductivity method was widely used in the 1960’s for the

analys is of laminar hypersonic air boundary layers . Two assumptions are

necessary : (i) the air is in local thermodynamic equil ibrium , and (ii) the

elemental composition is invariant . In addition it is usually assumed that

pressure diffus ion , thermal diffusion , and diffusional conduction are

negligible. With these assumptions the multicomponent heat flux vector , Eq.

(3.5-6), may be written in the form

q = 
_ (k+kr)Vf (8.3-20)

where kr is called the reaction conductivity and accounts for the interdif-

fusion contribution; keq= k+kr is called the equi l ibr ium or total thermal

conductivity.

The underlying pr inciple is simply that local thermodynamic equilibrium

and invariant elemental composition implies K1 = K~ (T ,P). and thus ‘7K1 =

(D K 1/DT)~7r. Furthermore, for the e lemental composi tion to be invar iant all

the binary diffusion coefficients must be equal , thus

q = -kVT + Ej1h~

= -k7F - p V Eh1VK~
3K.

= -kVT - p V VT Eh.~~~~.

= -(k + PVEh~ -~~~-)VT (8.3-21)
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The reaction conductivity k
r P

~~
th
~
(aK 1/DT) may be evaluated once and for

all as a function of T and P.

With this approach the species equation Eq. (8.3-3) is not required and

the total energy equation , Eq. (8.3-4) for steady laminar flow, becomes

DH 311 3 DT Du
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Rearranging with Pr
e 

= C p/k gives ,

~u -~~ + ~v 
-
~~~~~ = -

~~~~~ 
[•
~~

_

q
~~~ 

+ - 
P~

_

q
) -

~~~~~ (~~~
—)] (8.2-18)

The total or equilibrium Prandtl number Pr must be defined in terms of theeq
equilibrium specific heat, which is derived as follows .

h = Ek
~
h
~ 

; h1 = h~

C~~~~~~~peq dT
dK.

= Eh. —.
~~
- + EK.C.i d T  . ip i

where C~ is the conventional “frozen” specific hea t . Tabula tions of p (T ,P)

a.id P1~q
(T P )  for air are given by Hansen [10] and Bennet et al. [11].

It is important to note that the assumption of invariant elemental

compos ition is only valid for a true binary mixture in the absence of mass

addition at the wall of a gas mixture of different elemental composition .

Thus the reaction conductivity method cannot be used for general ablation

and transpiration cooling analyses. However for the dissociated air boundary

layer it has proven to be quite adequate.
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8.4 STAGNATION POINT HEAT TRANSFER

Of considerable importance in the aerothermochemical analysis of reentry

is the calculation of heat transfer at the stagnation point of the reentry

vehicle. Since the flow is laminar and the boundary layer self-similar ,

analysis is relatively straightforward and rel iable. In addition to direct

use in des ign procedures , the results of such analys is are also used , for

example , to calibrate arc-jet test facilities . On a typical missile trajec-

tory significant heating occurs only in a regime where the boundary layer

temperatures and pressures are high enough to make chemical equil ibrium a

good assumption. Thus most of the analyses found in the literature assume

chemical equi l ibr ium, and many explo it th is assumption by using the reaction

V conductivity method . There have been a variety of approaches and representa-

• tive examples follow .

1. Idea l Gas. The undissociated air boundary layer may be simply

• -1 (A)modeled by ; l c -~~u m i n~~~ p h , u ~ h and Pr = constant . The governing equa-

tions for axisy1~~t1tric stagnation point flow then reduce to

• (Cf”)’ + ff” = ( f ’ ..g) (8.4—1)

(-p ~ g ’) ’  + fg’ = 0 (8.4-2)

n = 0 :  f 0 , f ’ O , g = g 0

n -~~~: f’ = 1 , g = l

For Pr = 0.7 exact numerical solutions were obtained by Dewey and Gross [6]

and Wortman [12,13] for ~ = 0.5, 0.7 and 1.0, and 0.05 < g0 
= h

w/H
e < 1 .1.

The Figure shows the results for g
0 < 1, which are well correlated by

(Nu/v’~~) = 0
~
665(PeUe/PwPw)°~

43 
(8.4-3)

q~s p u s  du
where Nu = (P

~
/Pr

~
) (H

e
_
~
W
~~ 

; Rew = ; ue = 

~~~~~
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If we assume a Pr°~
4 dependence

for Nu based on constant property ________________________________
1.0

0.5 0.7 1. 0
solutions [14], then • £ U W ORTMAN

0 A 0 DEW EY AND GROSS

= O.767Pr~~
4 

(-~ )~
x 

~~~~~~~~~~~~~~~~~ 

:

The corresponding value of the heat 
I I I

trans fer rate is
cw (

~~~uw

-0.6 0.07
= O.7 67Pr~ ~~~~~

x 
~~e~

’e~
°
~

43 
We~”w

) (du /ds~~ (8.4-5)

Not ice that the freestream values , rather than the wall  values , have the

dominant effect on heat transfer . Equation (8.4-4) should be compared to

the famil iar solution for a cons tant property wedge flow with ~ = 0.5; from

[14] Nu/V’~~ = O.76Pr°~
4.

2. Fay and Ridell, 1958 [15]. This work considered both the equilibrium

and non-equilibrium dissociated air boundary layer. In the former case solu-

tions were first obtained for Le = 1 with Pr = 0.71 , a constant. For Le # 1

solutions were obtained using a model gas comprising of “air” molecules and

“air” atoms only, with an appropriate average heat of formation. Pertinent

parameter values were : Le = 1.0, 1.4 , 2.0; 5,800 < U~ < 22 ,800 ft/s; 25,000

< altitude < 120,000 ft; 540 < T~ < 5400 R. Equilibrium air properties were

based on NBS data . The numerical results were correlated as

(Nu//~~) = 0.76Pr°~
4(p p / p p )°~

4[1 + (Le0~
52
-l) ~~ (8.4-6)

where hD is the enthalpy of dissociation of the free stream. The correspond-

ing value of the heat transfer rate is
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= 
~~~~~ wMw)

°
~
’

eMe)
°4 [1+ e°

~
52
~~
) ~~J(H -h )(du /ds~~ (8.4-7)

For a frozen boundary layer wi th a ful ly  cataly tic wall  the only change

in the correlation is in the Lewis number exponen t, which becomes 0.63.

For a finite recombination rate and a non-catalytic wal l the heat transfer

is cons iderably reduced when the reaction time becomes much longer than the

time for an atom to diffuse through the boundary layer. The ratio of these

times depends on the altitude and nose radius.

Convenient use of the Fay and Ridell correlations requires formulae

and/or graphs for 11e ’ h~ , (p 11) , h D , Pr and Le. Some examples in British

5 -- units follow .

Total enthalpy He

He = h,,, + U~,/2g0J = 0.25T~ + U~,/50,l0O Btu/lb 1(R) (8.4-8)
V ( f t/ s )

Wall enthalpy h~
A Curve fit to the NBS data [16], which is also in agreement with the

calculations of Moeckel and Weston [17], is

T
h = T

~
(0.234 + 0.01 .

~~~~~~~~~ 

; < 5000 R (8.4-9)

Density-viscosity product (pp)

The data of [10 ,16 ,17] has been used to develop a correlation of (pj4

with h,

= 52.06xl0 10h °~
358 slug2/ft4 s atm (8.4-10)

where h is in Btu/lb. The correlation is valid for mo
2 < h < 2.5x 104 Btu/ lb ,

and 0.1 < P  < 100 atm.

Dissociation enthalpy hD
In order to estimate h D, the dissociation enthalpy per unit mass of air

in the free stream , the following assumptions are made (i) prior to dissoci-
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ation air is comprised of 21% 0
2 and 71% N2 by volume , (ii) the heats of

reaction are 6650 Btu/lb for 0
2 ~ 20 and 14 ,400 Btu/ lb for N 2 Z 2N , (iii)

dissociation of 0
2 is complete prior to any dissociation of N2, (iv) no

ionization occurs . Then

= 6650(K~~-K0) for K
N = 0

and hD = 6650K~5 + l4 ,400(K ~ 
_K
N 

) for K0 = 0
2 2 2 2

where K ’ and K are the mass fractions at the boundary layer edge prior to ,

and after , dissociation. Thus K ’ = 0.233 and K’ = 0.767.02 N 2
K.i _ v  1

i i

and H = 28.84/z where z is the compressibility factor and 28.84 is the molecu-

lar wei ght of undissociated air. Thus

z r i
28.84 4W

where KO: 
=

‘

l.342 - 
28.84 z ; K

N
2 

= 1.942 - 
28.84 

Z

Complete dissociation of 0
2 and N 2 occurs at z = 1.21 and z = 2.00 , respec-

tively. The final expressions for h D are :

liD = 738(z-i) Btu/lb z < 1.21

-
• 

= 1550 + 13,980(z-l.2l) 1.21 < z < 2 (8.4-11)

= 1 2 ,595 z > 2

z = z(h ,P) can be obtained from the Figure and is based on the tables of

Hansen [10].

Partial Prandtl and Lewis numbers , Pr , Le

These may be read from the Fi gure , which is based ma in ly  on Hansen [10] .
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The Figure shows a compari- ~~~~ -- - -

600 - _ ..-~~~ ALT 20 25 000

son of predictions using the 400 - - 

CALO R IM E T E R G A GES

Fay and Ridde 11 theory and 
- ,,

-“ 
~~~~~~~~ 7~~ V A L T 7O 000

shock tube data for stagna- N --/ ~~~~~~~~~~

_~~ 100 - 
,
~ ~~~~~~~~~~

5 8 0 -  
,
,.• ,I-tion point heat transfer to 

~ 60 - _-~~;-~A LT-12o ooo ”

a sphere of radius 0.66 cm 40 -

- — 

Le= 1 0 — — — —
[18]. The agreement be- 20 — 

-~

tween theory and experiment 
- 

- 

SATELL I TE
vELocITY

is seen to be quite satis- 
I I

4 I I
8 10 12 14 16 18 20 22 ?4 26factory. U .. ft /o x iC 3

3. N. B. Cohen, 1961 [19]

An equilibrium air boundary layer was assumed and the reaction conduc-

tivity method used. For < 29,000 ft/s the properties are from [20] and

are based on the 1956 NBS data [16] incorporating the Sutherland viscos ity

law . For 29 ,000 < < 41,000 ft/s the properties of Hansen [10] were used.

The wall temperature was in the range 540 < T~ < 3150 R. Cohen first assumed

Le = 1 and obtained for U ,, < 29,000 ft/s,

(Nu/ v~~) = 0.767Pr
~~
4(Pepe)/(p pw)

°
~
43 (8.4-12)

which is identical to Eq. (8.4-4). Correspondingly ,

= 0.766Pr °6 (p
wpw)

°
~
°7(p

e
p
e)
°43 (H

e
_h
w

) (d u
e/ds)

~ 
(8.4-13)

Cohen investigated the effect of Le ~ 1. Le > 1 increases while Le < 1

decreases 
~~~~~~ 

However Le vades from 1.4 at low enthalpies , to 0.6 at the

enthalpy for complete dissociation , i.e., across the boundary layer in a

typical situation. Cohen found a weak Le dependence : q~/q~ (Le=l) varied

between 0.98 to 1.08, which he concluded was a negli gible eff ect .

For 29,000 < U~ < 41,000 ft/s Cohen was able to correlate h is resul ts

by mul tiplying Eqs . (8.4-12 and 13) by
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H (Btu/ lb) 2
[ 1  + O. 075( e 

8468 
- 2) ] (8.3-14)

4. Hoshizaki, 1962 [1.~~~ An equi librium boundary was assumed and the

reaction conductivity method used wi th Hansen’s properties [10]. Pertinent

parameter values included : 6000 < U ,, < 50,000 ft/s; 540 < T < 5400 R;

0.001 < P~ < 100 atm. Hoshizak i correlated the heat transfer rate direct ly

as 

~~ 
= 4. 24xl04(T

~
(R)/1000)°2 (U

~
(f t/ s)/ l 04)’

~
69(l -

due 2 4 2~~X (p
~~~ ~~~~~

— slugs /f t s ) (8.4-15)
s=0

and is independent of altitude . One cannot obtain a correlation for Nu/s~~

which corresponds exactly to Eq. (8.4-15); specific values may however be

calculated . Fay [22] suggested an approximate correlation for Nu/V~~ based

on Hoshizaki’s results, viz.,

(Nu/,/~I) = 0.478(T~
(R)/900)°2 (U ,,,(ft/s)/10

4
Y°~

3’ (8.4-16)

which is accurate to within 5%.

5. BLIMP, 1968 [23]. Mills and Gomez [24] used the Boundary Layer

Integral Matrix Procedure (BLIMP) code developed by Bartlett and Kendall

[23], to solve the laminar boundary layer equations for a multicomponent

gas mixture. Multicomponent diffusion is modeled using the bifurcation ap-

proximation described in §3.7. Chemical equilibrium is calculated at each

node point of the finite difference grid . The formulae used for the trans-

port properties in this early version of BLIMP are based on the Lennard-

Jones potential model but involve a number of approximations . Two options

are ava ilable: (a) equal diffusion coeffic ients, which suppresses multi-

componen t diffusion effec ts, and yields a constan t elemen tal composi tion

across the boundary layer; and (b) unequal diffusion coefficients accounting
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for multicomponent diffusion . Sample calculations showed differences of

the order of 1% in Nu/v’~~ using the two options so that the results pre-

sented here were obtained with option (a) only. Selected results are shown

in Table 8.1. The nose radius was 1 ft  and the stagnation point velocity

gradient was calculated using modified Newtonian theory as discussed in

§ ; however Nu/s’~~ is essentially independent of these quantitie~s.

Table 8.1 (Nu/v’
~~)~ calculated using the equal diffusion

coefficients of the BLIMP code [24]; RN = 1.0 ft.

T
~~
= 540 R  T

~~
= 4000 R

P = 1  P = 0.1 P = 1  P = 0.1e e e e
ft/s atm atm atm atm

10,000 .444 .446 .607 .607

20,000 .356 .360 .497 .502

30,000 .302 .304 .426 .428

40,000 .272 .276 .385 .392

Comparison of the analyses

The Figure shows a 0 . 7  - 
______ 

C o h e n

compar ison of pred ictions Hos h1z a k~

of (Nu/
~~~~~ 

according to 0.6 - 

o Riddel l  (Le = 1 )

the various analyses de- 
- 

‘
\.. ~~~~~~~~~~~~

scribed above . The pres- ~~ s,,~~ 
• 4000

sure is 1 atm and the wall  
~ - 

I

temperatures are 4000 R

and 540 R. The analyses 0 . 3  — c ~:
of Cohen , and Fay and

I I I I I
Ridell for Le = 1, give 0 . 2  

~
- 

20 30 40 50

essentially the same re- U , ft I .I’I
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suit. At high wall temperatures the Hoshizaki prediction is somewhat higher

than the others.

8.5 LAMINAR BOUNDARY LAYERS WITH FOREIGN GAS INJECTION

Both ablation and transpiration thermal protection systems rely on mass

injection into the boundary layer to significantly reduce convective heat

transfer to the vehicle: often this phenomenon is called the “heat blockage”

effect. A graphite heat shield in the sublimation regime will have injec-

tant mass mainly in the form of carbon vapor, C1, C2, C3, etc. For a char-

ring ablator a variety of chemical species may be involved, such as H2, H,

CO. C1, etc., while for transpiration cooling the injectant might be He gas

or H20 vapor. Of course, even in the case of oxidation to gaseous oxides ,

for example, oxidation of graphite, or of tungsten at high temperatures , there

is a net mass injection into the boundary layer , since the mass flux of

oxides leaving the surface is larger than the incident flux of oxygen .

Thus laminar boundary layers with foreign gas injection have been the

subject of numerous analytical studies , with primary focus on the reduction ,

due to mass injection , of the wall shear stress, the mass transfer conductances

and the heat transfer rate. The simplest situation is that of an inert binary

mixture where species 1 is injected at the wall , and the free-stream contains

species 2 only: it is this problem which has received most attention . How-

ever a considerable portion of the literature is devoted to flow over a flat

plate , a geometry of little relevance to reentry vehicle thermal protection.

In practice we are interested primarily in laminar boundary layers at and

near axisymmetric stagnation points. Thus here we will first examine axi-

symmetric stagnation point flows , and then subsequently examine addi tional

effects due to changes in ~ (the pressure gradient parameter) and non-zero

E (the Mach number parameter) , as the flow moves away from the stagnation
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point until it undergoes transition to a turbulent boundary layer. We shall

ignore thermal diffusion and diffusional conduction since many studies,

e.g. [25,26,27] have shown their effects to be of little consequence.

The governing equations are then, from Eqs. (8.3-16 through 18),

2 
p

(Cf”)’ + ff” = ~(f’ - ~2) (8.5-1)

(I- z~ ) + fz~ = 0 (8.5-2)

(f g’) + fg’ = E[2C(~~
. - l)f’f”]’ + [~~~

. (g
1
-g~) ~~~ 

- l)K
i w Zj]’ (8.5-3)

At the stagnation point we set E = U
~

/2He = 0, and 8 for the axisymmetric

case is

2edinu 2 
du 2 j  p ~.i u r ds du

8 = 2 dln = _•

~~~

_ o e e c  •a—~ 
with ~~1, u =os, r=s,

e e  e

— 
2 P M ( s 4/4)c? 

— 1
— 2 2 2  2

Pe~ea 5 S

and similarly for the planar case , with c = 0 there is obtained 8 = 1.

The boundary conditions are from Eq. (8.2-16) with K
1 t~ 

=

f ’ = 1, z1 
= 0, g = 1 (8.5—4)

f
= 0 : P = 0, f = f , 0 = 0 , K1 = (8.5-5)o 0 i ,W 

~~ + ~
o ~Sc l o

where 0 = T/(He/Cp e) i.e., T/Tt t i  
where T

t t 1  
is total temperature

of the free stream. Use of this boundary condition allows the study of

the effect of injection rate at a fixed wall temperature .

The most comprehensive set of solutions to the above equation set was

obtained by Wortman [12,13,28]. Some of the more important features of his

results will be discussed here, as will their correlation for engineering

application . The mixture thermodynamic properties were calculated assuming

an ideal gas mixture and constant species specific heats. The species
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viscosity, thermal conductivity and binary diffusion coefficients were based

on a rigid sphere molecular interaction model, and the mixture rules were

those recommended by Hirschfelder et al. [29]. With these model properties ,

temperature level is eliminated as a parameter of the problem. The free-

stream gas was air while the injectants included H, H2 , He , C, CH4, 0, H20,

Ne, air, Ar , CO2. Xe , CC14 and 12 . Synthetic injectants were also constuc-

ted by arbitrarily varying specific heat and collision cross-section for a

fixed molecular weight. Parameter values considered were 00 = 0.1, 0.5, 0.9

(for E = 0, 0
0 

= Tw/Te); 8 = 1.0, 0.5, 0.25, 0; and E = 0, 0.5, 0.9, 0.95.

In all, over 1500 solutions were obtained. In [12] can be found complete

tabulations of the quantities

Ci) the wall shear stress function

(ii) the wall conductive heat flux function C C 0’/Prw p w w w
(iii) the mass transfer conductance function C

~zj~~
/Sc

~
;

(iv) K
i~~

, C~ , Pr~ and Sc
~
.

The skin friction coefficient, and heat and mass transfer Stanton num-

bers , are obtained from the tabulated dimensionless functions using

T ,.,
~~

. , ~~c f” = ~~~ ~~~~~~~~ = — (8.5-6)w w  2 ~ 2 ~
~e~

1e 
r p e rji

C C  
, = 

~~~ (2~)
½ 

= ~ ~ e~~
’ew~ (2~)½ 8 5-7)

• Pr W Peue e r~ i e r~~ie e

~ - 

-i l,w (2~)
½ 

- 
(2~)½ -• Sc l,w p u z  C 

CM C  (8.5 8)
W e e l ,w r 

~e r

(For example , Eq. (8.5-8) is derived as follows :

ak.
= -(p V

12 ~~~)y=Ø 
= _ (p V 12K i,~ 

~~~~~~y=O

rCu p
= -(p V ) I(~ ~~ e w

12 w ± ,w l ,w 2
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which can be rearranged into the required form.) It is also necessary to

relate the mass transfer rate to f0 through the definition of the stream

function

C Cpvr = - , thus mr = -

or = ~
f

~~r~ds = (2~)½f

., nir ds
• thus -f =

• ° (2f~~p i i u r 2~ds)

• Evaluation for an axisymmetric stagnation point with c = 1, rn = constant,

r =  S, U
e 

=n s gives

p u s ½  R e ½
= 
p:ue ~ 

= 
PU e 

(~~~~~~~~) (8.5-9)

The Figures which follow show the skin friction coefficient, heat and

mass transfer Stanton num-

bers , each normalized by

• their respective zero

mass injection values at 
~~x.

an axisyinmetric stagna- •~ CO2

A ~ Ip

::::~::: ‘;

~~~~e 

_ _ _ _ _ _ _ _ _ _= 0.1). In [13] Mills and
0 I 2 3 .6 5 6 7 ~

Wortman present a de-

tailed explanation of the

behavior shown in the Figures. Here it suffices to note that (i) there is

a dominant molecular weight effect on the reductions due to injection of

~~ CH and CM, and (ii) for CH the injectant spec ific heat also plays a
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significant role. The

anomalous behavior of CH

for H and H2 at low injec- a

tion rates is due to an

increased mixture thermal 1 CCI I

conductivity near the 

• 

A I~

wall. For light injec-

tants the wall mole frac- ~ 6

tion x
1~~ is much larger 

0 1 5 7

than the mass fraction

since mixture 10

transport properties vary 
• \

7 Ia

essentially with mole 
6 

•

fraction whereas the

thermodynamic properties ,

Sa O

vary with mass fraction ,

k is markedly affected 0 ‘ Ia II.

• W 6 1 ~3 3 4 5 6 ~ 8 . 5

while p
~ 

and Cp, w remain

essentially unaffected.

At higher injection rates

K~~~~approaches x~~~~and

number CE) on CF/C , aFO 0 2 3 4 5 6 7 8~~~~4
J
f)
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C/C and C /C are

discussed in

M

de il in ~ _:..~~

[13,28]. The Figures show

:::~:: :~~:::to:r::~er ~!at axisymmetric and plan - -: • •~O—~ \ ‘s~~~~~~~ ..~~~~~~~ 2

ar stagnation points , (ii) 
•

the effect of pressure o a I a a a a a a

o .2 .3 4 .5 .6 .7 8

gradient on heat transfer ~

for a cold wall (E = 0,

I /T = 0.1), and (iii) the ~~~~~~~~ 0~ Ew e /,—.so
effect of Mach number on 1.0 • I :~ —-- Xe

9 • ~~~~~~~ —.— Aj r
heat transfer for a flat - 

~~~~~~~
.... He

8 • 
— —-- 

— — — —

plate and cold wall (8 = 
• ~~~

- ,7 ~~~~~~~~~~~~~~ —.. _

0, 0~ = 0.1). -: 
• 

E~ O

Finally the Figure 
~~~~ .~~ 

• .

be low shows some repre- 
- 

N.N..%

sentative velocity profiles .2 - ~~~~ 
‘

.

95~~~... 90
at an axisynunetric 1

0 I I I

stagnation point 0 .1 .2 .3 .4 .5 .6 .7 .8

for Tw/Te = 0.5 and 
6 0  

—

~~~

-f 0 = 0.5. Note
50

that there are
40

marked velocity

H

cooling . 0 0.2 0.4 0.6 0 0 1.0 I 2 p.4 e i.e 20

f ’ u/u,
1 II;
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Correlation of Results

The engineering calculation of boundary layers over ablation and

transpiration cooled surfaces is often accomplished by first calculating

the boundary layer for zero mass transfer, and subsequently the effe cts

of mass injection are accounted for through use of local “blockage” fac-

tors for the reduction in shear stress , mass transfer conductances and

heat transfer rate. Convenient correlation functions for this purpose are

the exponential functions suggested by Couette flow modeling of the boun-

dary layer :

C a . BF 
= 

F,i F 
— B — - 

m (8 5-10)
CFO exp(a F ,~~BF)_ l  ‘ F — 

Pe~
1eCFO

CMi 
— 

aM~~
BM~ B - 

m 8 5 11— exp(aM,~ BM~
)_l ‘ Mi 

— 

PeUeCMiO 
-

C a, .BH 
= 

ii ,i H B = ~~~~~~~~~~~~~~~ (8.5-12)
CHO exp (aH,~

BH
)_l ‘ H PeUeCH

The weighting factors ‘a’ were determined by least square fitting of the

numerical results. Correlations for a were first developed for 8 = 0.5 ,

E = 0, 0~ = 0.1 which is the situation of greatest engineering importance .

aF~~ 
= l

~
38(Mair/Mi)

5/ 12 (8.5-13)

aM~~ 
= 1•65(Mair/Mi)

’°”2 (8.5-14)

aH~~ 
= l•30(Majr/Mi)

3”2(Cp i /(5/2)(oM’/Mj)) (8.5-15)

In fact Eqs. (8.5-13 and 14) are quite adequate for 00 = 0.5 and 0.9 , as

well as for 8 = 1, i.e., for general use at stagnation points.

Next, values of a normalized with the corresponding value at 8 = 0.5 ,

E = ~~~, = 0.1 , i . e . ,  as given by Eqs. (8.5-13 through 15) were calculated .

Denoting the resulting functions as GF j ,  ~~~~ and GH j ,  the values are tabu-

lated in Tables 8.2, 8.3 and 8.4.
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aF .~~Table 8.2 Values of G =
F ,i aFi I~~O S  E 0 , 0~=0 .l

0 = 0.1 0 = 0.5 0 — 0.9
0 0 0B Species

E=0 .5 .9 .95 0 .5 .9 .95 0 .5 .9 .95

0 H 1.30 1.32 1.42 1.44 1.64 1.74 1.88 1.38 1.79 1.90 1.81 1.72

H2 1.19 1.21 1.19 1.22 1.44 1.44 1.63 1.59 1.49 1.59 1.79 1.62

He 1.34 1.33 1.33 1.31 1.49 1.51 1.55 1.56 1.56 1.58 1.62 1.69

Air 1.22 1.24 1.29 1.35 1.27 1.27 1.37 1.43 1.27 1.27 1.41 1.44

Xe 1.38 1.40 1.48 1.50 1.35 1.39 1.41 1.43 1.34 1.34 1.39 1.43

CC14 1.00 1.05 1.07 1.09 1.03 1.03 1.08 1.09 1.03 1.04 1.10 1.15

0.25 He 1.13 1.19 1.24 1.24 0.89 193 1.01 1.01 0.72 0.78 0.85 0.85

Air 1.07 1.11 1.16 1.17 0.99 1.04 1.10 1.12 0.94 0.98 1.01 1.02

Xe 1.11 1.16 1.28 1.31 1.08 1.10 1.16 1.18 1.06 1.09 1.14 1.14

0.5 H 1.00 -- -- -- 0.62 -- -- -— 0.45 —- -- --

112 1.00 —— —— —— 0.70 —— —— —— 0.62 —— —— ——
He 1.00 1.09 1.15 —— 0.66 0.74 0.84 —— 0.56 0.63 0.69 ——
C 1.00 —— —— —— 0.79 —— —— —— 0.69 —— —— ——
Cu 4 1.00 —— —— —— 0.88 —— —— —— 0.84 —— —— ——
0 1.00 — —  —— — —  0.79 —— —— —— 0.70 —— —— ——

H
2
0 1.00 —— —— —— 0.82 —— —— —— 0.73 —— —— ——

Ne 1.00 —— —— —— 0.83 —— —— —— 0.75 —— —— ——

Air 1.00 1.02 1.12 —— 0.87 0.95 0.99 —— 0.82 0.90 0.94 ——
A 1.00 —— —— —— 0.93 —— —— —— 0.91 —— —— ——
CO2 1.00 —— —— —— 0.96 —— —— —— 0.94 —— —— ——
Xe 100 1.08 1.16 —— 0.96 1.05 1.10 —— 1.05 1.05 1.08 ——
Cd 4 1.00 —— —— —— 1.03 —— —— —— 1.07 —— —— ——
12 1.00 —— —— —— 1.02 —— —— —— 1.05 —— —— ——

• 1.0 He 0.85 —— —— —— 0.53 - - —— —— 0.47 —— —— — —

Air 0.94 —— — —  —— 0.84 —— —— —— 0.81 —— — —  ——

Xe 0.90 —— —— —— 0.93 —— —— —— 0.95 —— —— ——
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Table 8.3 Values of G = 
M,i

M,i a
M~~,B O 5  E=0, 00=0.1

00 = 0.1 0 = 0.5 O
~ = 0.9

B Species
E=0 .5 .9 .95 0 .5 .9 .95 0 .5 .9 .95

0 H 1.14 1.12 1.23 1.32 1.36 1.40 1.59 1.72 1.47 1.53 1.69 1.72

112 1.03 1.04 1.16 1.21 1.25 1.32 1.53 1.58 1.36 1.45 1.66 1.63

He 1.05 1.08 1.12 1.15 1.18 1.23 1.36 1.43 1.25 1.30 1.47 1.54

Xe 1.21 1.26 1.42 1.40 1.13 1.19 1.36 1.32 1.15 1.19 1.25 1.25

Cd 4 1.03 1.10 1.25 1.23 0.95 1.13 1.28 1.30 1.00 1.18 1.23 1.18

0.25 He 1.08 1.07 1.07 1.17 1.12 1.15 1.28 1.33 1.12 1.15 1.29 1.34

• Xe 1.02 1.06 1.17 1.23 0.94 0.98 1.06 1.06 0.91 0.92 0.96 1.00

0.5 H 1.00 —— —— —— 1.04 —— —— —— 1.09 —— —— —— t
H2 1.00 —— —— —— 1.06 —— —— —— 1.06 —— —— ——
He 1.00 1.04 1.11 —— 1.04 1.09 1.20 —— 1.03 1.09 1.20 ——

C 1.00 —— —— —— 1.01 —— —— —— 1.00 —— —— ——
CH4 1.00 —— —— —— 1.01 —— —— —— 1.00 —— —— ——

0 1.00 —— —— —— 0.98 —— —— —— 0.97 —— —— ——
H20 1.00 —— —— —— 1.01 —— —— —— 1.00 —— —— ——

Ne 1.00 —— —— —— 1.00 —— —— —— 0.98 —— —— ——

A 1.00 -- -- -- 0.97 -- -- -- 0.94 -- -- --

CO2 1.00 —— —— —— 0.97 —— —— —— 0.95 —— —— ——
Xe 1.00 1.00 1.04 —— 0.98 0.92 0.92 —— 0.96 0.87 0.89 ——

Cd 4 
1.00 —— —— —— 0.90 —— —— —— 0.83 —— —— ——

12 1.00 —— —— —— 0.91 —— —— —— 0.85 —— —— ——

1.0 He 0.96 —— —— —— 0.98 —— —— —— 0.98 —— —— ——

Xe 0.92 —— —— —— 0.87 —— —— —— 0.83 —— —— ——
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aH ~Table 8 .4 Values of G =H~i aH i IB 0 5  E=0, 0 =0.1

0 = 0.1 0 = 0.5 0 = 0.9
0 0 0

B Species
E=O .5 .9 .95 0 .5 .9 .95 0 .5 .9 .95

0 H 1.15 1.22 1.57 1.64 1.32 1.92 2.85 3.43 —— —— —— ——

H2 1.07 1.20 1.22 1.28 1.30 1.52 2.05 2.07 —— —— —— ——
He 1.18 1.25 1.32 1.34 1.32 1.53 1.78 1.85 —— —— —— ——
Air 1.17 1.13 1.10 1.14 1.21 1.11 1.08 1.10 —— —— —— ——

Xe 1.19 1.24 1.33 1.34 1.18 1.20 1.20 1.20 —— —— —— ——
CC14 1.04 1.06 1.09 1.09 1.04 1.04 1.02 0.99 —— —— —— ——

0.25 He 1.02 1.19 1.34 —— 1.05 1.59 2.32 —— —— —— —— ——

Air 1.05 1.04 1.01 —— 1.03 0.99 0.97 —— —— —— —— ——
Xe 1.04 1.10 1.20 —— 0.98 1.05 1.15 —— —— —— —— ——

0.5 H 1.00 —— —— —— 0.94 —— —— —— 0.54 —— —— ——
H2 1.00 —— —— —— 1.00 —— —— —— 1.01 —— —— ——

He 1.00 1.14 1.36 — — 1.00 1.70 2.62 —— 0.95 —— —— ——
C 1.00 —— —— — — 0.99 —— —— —— 0.97 —— —— ——

CR4 1.00 —— —— —— 1.00 —— —— — 1.00 —— —— ——

0 1.00 —— — —  —— 0.98 — —  —— — —  0.95 —— —— ——

H20 1.00 —— —— —— 1.00 —— —— —— 0.99 —— —— ——
Ne 1.00 —— —— —— 0.97 —— —— — —  0.95 —— — —  ——

Air 1.00 0.99 0.99 —— 0.99 0.97 0.95 —— 0.97 —— —— ——

A 1.00 —— —— —— 0.96 — —  ——  —— 0.95 —— —— ——

CO2 1.00 —— —— —— 0.99 —— —— —— 0.97 —— —— ——
Xe 1.00 1.05 1.14 —— 1.06 1.04 1.19 —— 0.99 —— —— ——
Cd 4 1.00 — —  — —  — —  0.96 —— — —  — —  0.93 —— —— ——

12 1.00 —— —— —— 0.97 —— —— —— 0.94 —— — —  — —

1.0 He 0.93 —— —— —— 0.91 —— —— —-- —— —— —— ——

Air 0.96 —— —— —— 0.94 —— -- —- —— -- —— ——

Xe 0.96 —— —— —— 0.93 —— —— —— —— —— —— ——
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Example 8.2

Rework Example 6.1 accounting for variable property effects.

Bj~ = 0.608 is unchanged. With rn = PeL
~e

CHOBH 
= PeueCHBh , Eq. (8 .5- 12)

may be rearranged as

CH 9..n( 1 + a
H 

.Bj1)
B ’HO aH~~ h

and from Eq. (8.5-15),

aH~~ 
= l~ 3O (Mair/MHe) 3/12 (Cp He’ (5/2) (R/M He )

= 1.30 (29/4) 3/12 since the second term is unity for a monatomic gas .

= 2.13.

= 
£n( 1 + (2. 13) (O.608)) 

— 0 642CHO (2 .l3) (0 .. 608) 
—

111 = Pe
U
eCHO (CH/CHO) BiI

= (120) (0 642) (0 .608)

= 46.8 lb/f t 2 hr

Alternative Correlation Schemes: Reference States

The reference state approach , wherein constant property solutions are

used with properties evaluated at some reference state , has been often

boundary layers . Baron [30], and subsequently Gross et al. [31] showed that

for a given geometry (8 = 0) and injectant , CF/CFO and CH/CUO was a unique

function of a modified flowing parameter 
~~~~~~~ 

(Re 5/C~) irrespective

• of wall cooling or Mach number . Cr = 
~~~~~ ~~e11e) is evaluated for the

• free stream gas at the Eckert reference enthalpy, hr = O.5(h
~ 

+ h
e)

+ 0 .22r 0 (u 2
/2) . Gross et al.  [31] and more recently Simon et al .  [32 ,333

further correlated the effec t of inj ectant species by introduction empiri-

cal factors involving the molecular weights of the injectant and free stream

gases. Thus the final correlations for foreign gas injection are not truly
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the result of using a reference state approach since property variations

due to mixture composition are not included in the reference state formula-

tion. To illustrate the success of the C~ approach for air injection the

results of Wortman for 8 = 0 are shown correlated in t ’~e Figures that fo l-

low. For skin friction the correlation is excellent for all the parameter

values calculated.
1.0 - ___________________________

0 .5 .9 .95 I
For heat transfer the ° 

.1 o ~ e •

8 -  
.5 A A A A

data points for 00 = ° ~ I ~

0.9 and E = 0. 5, 0.9 .6 - 4

and 0.95 did not cor-
. 4 -  44

C

relate and have been A 

~~
. 2 -  

A’ O

omitted. At these C

0 I I I A

parameter values the 0 .1 .2 .3 .4 .5 .6 .7 .8 9

Im/p.aI.I R6 5
V2,C,V2

heat transfer is small

and can change sign 
10 - 

C 
~ •~ •~ ~~w

.1 0 3 0
with blowing : the re- .8 - S A A A

A .9 0
0 _____________________

sultant behavior of 
6 

A

A

CH/CUO can be quite 
- 

0

erratic. 
A

A true reference 2 - 
0 o

A
A

state formulation for - £~~

foreign gas inj ection ~

,

was developed by Knuth

[34]. The reference state was based on a Couette flow analysis of foreign

gas injection in which thermodynamic properties were allowed to vary wi th

composition, but transport properties were held constant. For species 1 injec-

tion and a free-stream of pure spec ies 2,
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hr = O.S(h +h ) + 0.2r0r (u
~/2) + O . l [ B H -2BM ) P i P  (8.4- 16)

K1r = 1 - 
M1-M2 2 w l w 1 ~~~~~~

1 (8.4-17)

At the time this for- 
______________

1.0 - 
0 .5 .9 95

mulation was developed 1 lo  • I
(1965) the numerical .8 - •LJ 0 

~~
]

data with which to evalu- 
0. 6 -

ate it , was sparse. The

numerical data obtained - 0

by Wortman [12] can now 
- 

0

be used for a more thor-

ough test of the formula- ° 

B F, 

‘

tion . The Fi gures show

an evaluation of skin 
_______________, 

1.0 -
C 0 .5 .9 .95

friction and heat transfer 6,

0 0 0 0 0 •
. 8 -  •~ ~~respec tively, for a flat 

9 0

plate with air into air 
-

2
injection. It is seen 8

~2

0 
~ athat the correlation is

much inferior to the C~ - 0

scheme shown in the Fig-
I I I

ures . It seems that the 0
o 1 2 3

8Hr

model is an inadequate

representation of the blown high speed laminar boundary layer.

The reference state approach has the attractive feature that the refer-

ence state should be independent of the precise property data used, and

independent of the combination of injectant and free-stream species. On

the other hand the resulting calculation method is somewhat complex since
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the wall composition must be used : in the case where this is known from

thermodynamic considerations the problem is straightforward , but for inert

gas injection K1~~ must be obtained using a correlation of CM1, i . e . ,  an

iterative scheme is required .
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CHAPTER 9

TURBULENT BOUNDARY LAYER ANALYSIS

9.1 INTRODUCTION

The engineering analysis of turbulent flows is based on time-averaged

conservation equations of mass , momentum , chemical species and energy . The

time-averaging procedure for variable density boundary layer equations is

algebraically very complex , as can be seen , for example , in the developments

of van Driest [1] and Cebeci and Smith [23 . Here we will present a rather

simplified development , which will be sufficient to illustrate some essential

features of the procedure , and allow discussion of results pertinent to re-

entry vehicle turbulent boundary layer analysis. The simplifying assumptions

are (i) binary inert gas mixture , (ii) zero pressure gradient , (iii) hydrau l-

ically smooth wall , (iv) no body forces , and (v) no second-order diffusion

effects. Then the boundary layer forms of the equations of mass , momentum ,

chemical species and static enthal py, are

-

~~~~~ 

+ f- (pu) + -
~~~~~ ( p v )  = 0 (9.1 1)

9u 9u 3u 9
• p -

~~~~
. + pu -~~~~~ + pv -

~~~~~ 

= 
~~ 

(Txy) (9.1-2)

9K 9K 9K
p ~

5
~
f

!:. + pu ir-1 + pv = }
~ 

(-i 1~) (9.1-3)

p .
~~~~~ + pu + pv = .~_ [(_ q C) + (_ ~1y )(h

1
_h
2
)]+ Tx>, 

-
~~~~~ (9.1-4)

Each of the conservation equations can be cast in the general form

p -
~~~~~ 

+ pu + pv -
~~~~~ = ~~~~~ F + S (9.1-5)

• 9t x y 9y

accumulation convection diffusion source

Multiply ing the mass conservation equation by 4 gives

• -~~~~~ + -~~
._. (pu ) + ~ -

~~~~~ 
(pv) = 0 (9.1-6)

which when added to Eq. (9.1-5) results in
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(p4,) + }— (pu4 ) + -
~~~~

. (pvq) = -
~~~~~ F + S (9.1-7)

Now for simplicity we take p = constant and express each dependent

variable as a sum of a mean and a fluctuating component ,

4, = 4, + 4,’; u = U + u ’ , v = v + v ’ , etc.

where ~ = ~ 
J

~~dt~ and -r is sufficiently long for the average to be

meaningful .  Substituting in Eq. (9.1-7) and time-averaging,

f~ 
p(~ + 4,’) + ~~~~ p(ü + u’)(3 + 4,’) + (V + v ’) ( ~ + 4,’)

= .~~
_ (P + F ’)  + + S’ (9.1-8)

Noting, for example , that

.
~
-j. pü = -

~
j p

uu ’ = U u ’ = 0

F’ = 0

and also that 9~ /9t = 0 if the mean flow is steady, Eqn . (9.1-8) becomes

• f. (pü~) + (pu’4’) + f (p~~ ) + }- (pv ’4,’) = -
~~~~~ P + (9.1-9)

However boundary layer scaling indicates -
~~~~~ (pu ’4,’) << f- (pv ’4,’), and can

be neglected . Then subtracting the mean mass conservation equation times

4 gives

p -
~~~~~ + ~~;; -~~-~~~ = (~~~ 

- pv ’4 ,’) + (9.1-10)

The term v ’4, ’ is often called the Reynolds f lux (Reynolds stress when

4,’ = u ’) and must be modeled in order to proceed . We define turbulent eddy

diffusivit ies as

-PU ’V ’ = PC M~5~ 
(9 .l- l la )

p uX
1 

= PCD ~~~ (9.1-lib)
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-pu ’h’ = PCH 
-
~~~~~ (9.l-llc)

The turbulent Schmidt number is Sc
~ 

= C
M/CD3 

and the turbulent Prandtl

number is Pr
~ 

= CM/CH~ 
Also flux laws are defined as

= (9.l-l2a)

3ly 
= 

~~~l2 ~~7 (9 .l- l2b)

= -i~ -~~~~~ (9.l- l2c)

where ~~ and k are molecular transport properties. The conservation

equations are then

(pu ) + f- ( pv) = 0 (9.1-13)

9u 9u 9 9upu -
~~

-— + pv 
~~~~~ 

= -

~~
—- [(

~
+pcM) 

-
~~
---] (9.1-14)

~~~~ 
- -L  + ~~~ 

-~~~~.L = -
~~~~~ ~~~~~~~~~ 

+ 
~~~~~~~~~ ~~ 1j (9.1-15)

9h 9h 9 p PEM 9hp u - ~--+  Pv~~~~~~~~- [(p~~ +~~~~ ) 
~~~~~ ]

+ -
~~

_ f [ (
~~~

_. + -~~_�!) - (f.— + 
~
_

~~~
)] ~~~~~~~~ (h 1-h2)} + (p+pc M) (I!)

2 (9.1-16)

where u , v , k , h , p, etc . are now time-averaged quantities.

• Some controversy exists concerning the viscous dissipation term in

Eq. (9.1-16) . In the time-averaging of the static enthalpy equation we had

9 u 2S = p ( - ~~)

= [ acu+U ’) ] 2 
= [( 911) 2 

+ 2 -
~~~~~~~~

— +  (
9U ’

)
2
] = ( 911) 2 

+ (
9U ’

)
2

Most prev ious workers studying high speed turbulent boundary layers have

used
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- 3 u 2S = (p+pc M
)( .

~
_) (9.1-17)

which implies PCM (
~~)

2 
= 

~~
(.
~~
_ )

2 
(9.1-18)

Van Driest [1] established Eq. (9.1-17) by time-averaging the total enthalpy H

equation rather than the static enthalpy equation , and in the process neglected

several terms based on order of magni tude arguments , and physical intuition .

Rubin [3] proposed that the proper form of the viscous dissipation term

should be

= ~ (
911

)
2 (9.1-19)

therefore implying that the term p(9u ’/9y) 2 is negligible. But this term

physically represents the dissipation of kinetic energy stored in turbu lent

eddies by molecular viscosity, and cannot be ignored . In fact calculations

by Landis [4] show that use of Eq. (9.1-19) in boundary layer flows leads

to poor agreement with experiment .

A clearer understand ing can be obtained through examination of the

conservation equation for kinetic energy of turbulence. This equation is

obtained (see , for example , Hunt [5]) in the following manner. Let M denote

the instantaneous momentum equation , and K the kinetic energy of turbulence

• equation , then

K = iN - uM = 0 (9 .1-20)

• The resulting equation can be cast in the form 16]

pü . + p~ .~~~~~ = PCM (
911)

2 
+ [(p + PE K).~3

] - (
911
)
2 (9.1-21)

~~~~~~~~~~~~
-

~~~
-

~~~~~~~~- —~~~~~ - ~~~—~~-~~~~~--~~~~---
convection production apparent diffusion dissipation

1 2 2 2  . .where k = -
~~- (u ’ +v ’ +w’ ), and is an eddy diffusivity for transport of

kinetic energy of turbulence. It can be seen that, if the turbulen t energy

produced from the mean flow is dissipated at the same location in flow
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(no convection or apparen t diffusion) , then

9ü2 3u’2P C M ( ay )  = p ( - ~ ---)

which is Eqn . (9.1-18) . Such a turbulent flow is said to be in “local

equilibrium” , and flows near walls always approximate this condition . For

the engineering calculation of turbulent boundary layers on re-entry vehicles

the local equilibrium postulate is quite adequate.

An alternative, and more compact , way to represent the diffusive terms

in the Eqs. (9.1-14 , 15 and 16) is to define an effective viscosity, and

effective Schmidt and Prandtl numbers ,

~‘eff = + (9.1-22)

~‘eff 
= 
p 

+ ~~M . ~‘eff 
= ~~~~~ + f~—�~ (9.1-23)Sc ff Sc Sc~ ‘ Pr eff Pr Pr

~

To complete the mathematical formulation there is required a specification

of EM 3 Sc
~ 

and Pr
~
. The most widely used specifications of C

M 
are based on

Prandtl’ s mixing length model [7] , which leads to

2 9uCM = C~~l 1 5 1 (9.1-24)

with R~ proportiona 1 to distance from the wall in the inner reg ion , and

constant in the outer reg ion of the boundary layer. Sc
~ 

and Pr
~ 

are

usually taken to be constants across the entire boundary layer. Specification

of C
M 

will  be discussed in detail in §9.4.

9.2 REVIEW OF VELOCITY PROFILES AND SKIN FRICTION FOR INCOMPRESSIBLE

FLOW ALONG A SMOOTH FLAT PLATE [8 , 91

Velocity Profiles

In contrast to laminar boundary layers , a turbulent boundary layer has

a rather well defined edge, and hence thickness 6. When turbulent velocity
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profiles are plotted in the form U/U
e 

vs. y/6 they do not plot as a single

curve, but depend on Re = u X/v . (Recall that for a laminar boundary

layer u/U vs. y/6 with 6 appropriately scaled , v iz .  ó(U eA)X ) 2 
= constant,

does plot on a single curve.) The 10 _____

Figure shows typical velocity pro- 
8

walls) 

some for rough 

6
,7 /

If we look for a scaling 

~ / /.4 ~~~~.—- KL EBANOFF & DIEHL
• • / SMOOTH WALL — R.6. 152.000factor which depends on wall shear 

/ HAMA - SMOOTH WALL - Re5. 25.000
j  . HAMA 28 MESH SCREEN

HAMA 1 MESH SCRI.ENstress, or equ ivalen tly the skin 2 -1
friction coefficient CF = T

~
/½ Pu 

2
e 

0 I
we find that (u/u ) (2/C r) 2 does 0 .2 .4 .6 .8 1.0

e r

bring the profiles into co-incidence, except very near the wall. If v~

(Tv/P) ½ and u~ E u/v * then we find it convenient to represent this result

as a plot of u~ - U vs. y/6 , as shown in the Figure . The equation of such

a universal curve is called a

“velocity defect law”. (Note that 0 •~ .4 .6 8 -- 10

~~~~~~~~~~~~
.. E_n. . .

rough and smooth walls obey the .~~~:‘

+ +same defect law.) We term ~-1e - u )

and y/ 6 the “outer variables” and empha- •.,- /• 1 .10 
~ FR EE MAN

size that they do not bring the profiles /
HA MA
J.H .U. - ROUGH WALLinto co-incidence very near to the wall .  HAMA - ROUGH WALL
MOORE - VERY ROUGH WALL

If we now turn to the near wall
20 - — -.

reg ion we note from experiment that

F for an impermeable wall the shear stress is constant near the wall. The

momentum equation Eq. (9.1-14) may be writ ten

p u . + p v - =~~i (9.2-1)
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thu s we see that a constan t shear stress implies that the convective terms

on the l .h . s .  of Eq. (9. 2-1) are negligible near the wall. In the viscous

sublayer, where molecular viscosity domina tes , we have

-r = = (9 .2-2)

i .e ., u~*y or  u~ = >,~ where u~ = (9 .2 -3)

y+ =
V

If velocity profiles are plotted

in terms of these “inner var-
40 -

iables” , as is done in the ~. 
-

Figure , we see that there is a 30 -

• 
-

good correlation , even outside + - u~~~ 2 43 Qn y ’ + 4-9 4~

the viscous sublayer, and indeed 

20 

LAMINAR 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

in a region where the outer 
- 

: ~
R 

GRUNOW ]
variables also correlate the 1 2 5 10 20 50 100 200 500 1000 2000 5000 10 000

profiles, and there must thus be

a unique relationship between the parameters involved. The “overlap law”

can be derived using only this fact , as follows . The velocity profiles are
+ + x_ + y +outer region: u - U

e 
= f (

~
) or u = f (~-) +

inner region : u~ = g(y 4
) or u 4 

= g(~

Comparing the two we see that the effect of an additive factor outside the

function f must be the same as an multiplicative factor inside g. The

logarithm is the only function which has this property . Thu s in the overlap

region we have

11 - U = A~n + 8 (9.2-4)

= A1n y4 
+ C (9 .2 -~5)

and B + U ~~~ = C + A t h -~~---
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But 11 = 4 = (2/C F) 

~~

thus (2/C F) ½ = A9.n Re 6 (C F/2) ½ 
+ C - B (9.2-6)

and in fact it is the skin friction law CF = CF (Re 6) which relates the

inner and outer variables. From experiment ,

(A ,C) ~~~ 5.5) Nikuradse , 1930 (pipe flow)

1
~0.4l’ 

5.0) Coles, 1955

The constan t B is different for pipe flows and external flows :

f lat  plate B -2.35 Schultz-Grunow , 1940

pipe flow B -0.65 Laufer , 1951

The Figure shows flat plate 
40

velocity profiles as a ~o — 

C~ Re 5

.0024 160.000 — _____________________

fun ction of Re , and shows :~~ ~~~ —,~~~~~
-

+ .0040 10.000 —
20 — .0048 5.000 -

that a relatively small

region is actually fit ted 10 -

by the logarithmic law.

• . . . C 
10 100 1000 10000

• Skin Friction 
*

Eq. (9.2-6) is a local skin friction law inasmuch as it relates CF!2

to the local value of Re6. In order to obtain CF!2 as a function of

position along the plate, the momentum conservation equation in some form

must be used. First we will  use the integral momentum equation , which

reduces to

0 C

• f- = -f (9.2-7)

• where 0 = r ~!_.(l - ~!_) dy is the momentum thickness. Refining Re
~ 

= U
e
X/\)

and Re
0 

= u O/v, then Eq. (9.2-7) becomes

dRe
CF 

= 2 
dRe: 

(9.2-8)

207

_ ~~~~~~~ - - — . - - . - - - —. --  -
~~~~~~~~~~ •



- • 
•.-. ___  

‘.•.• • - .  ••

~

-

~~

• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~~j~~~~

c
Dimensional analysis suggests CF = C~ (Re

0
) only , thus

i 0 dRe
Re = 2 J  0 (9.2-9)
x 

~, 
CF (Re O)

We require CF (Re O) .  Our starting point is the outer region defect law

which for a f la t  plate an appropriate correlation is

+ + .

u = A9~n y + C + 2.5 sin (9.2-10)

Integration of Eq. (9.2- 10) to give the displacemen t and momentum thicknesses

• yields, for A = 2.5,

6* 375 +where ue = (2/C
f
) 2 (9 .2-11)

ue

0 
- 
3.75 24.8

+ 
- 

+2 
( . — l )

u ue e

The skin friction in the form of U
e~ 

is related to Re
6 

by substituting y = 6,

U = U
e 
in Eq. (9.2-10) , for C = 5.5,

= 2.5 2,n (Re 6!ue~
) + 8.0 (9.2-13)

liminating 6 between Eqs . (9 .2- 12 and 13) gives

Re 0 = u~~~ (
3.75 

- ~~~~~~~~~~ (9.2- 14)

Table 9.1 shows some u + C Re Re 11=6*10
e F 0 6

numerical values. Power 20 0.00500 305 2,430 1.493

25 0.00320 2 ,480 22 ,450 1.359
law approximations to the

30 0.00222 19,400 199 ,000 1.282
numerical data are : 35 0.00163 149 ,000 1,716 , 000 1.233

40 0.00125 1, 134 , 000 14 ,890 ,000 1.198

C F 0.012 Re 0
4”6 0.018 Re 6

416 0.0128 Re 6~
4”6 (9.2- 15)

which are accurate to within 4%. Also 6 “~ 86 “~ 110. Now substituting in
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Eq. (9.2-9) :

(~Re 0 dRe 0Re = 
0.012 Re 0

416

or Re 0 = 0.0142 Re
6’
17 (9.2-16)

thus CF = 0.025 Re 4
~
’7 (9.2- 17)

which agrees well with experiment (a l i t t le  low) in the range lO~ < Re < 1O 9 .

Also

Re 6 = 0.14 Re 6”7 ; Re 6~ = 0.018 Re 6”7 (9.2-18,19)

Notice that 6 , 6* and 0 grow almost linearly with x , in contrast to the

laminar boundary layer growth rate of x

If we now neglect the outer wake , i . e . ,  by deleting sin 2 (
~~

) in

Eq. (9.2- 10) , and repeat the analysis, then we obtain

CF = 0.027 Re ”~
7 (9.2-20)

which is about 8% higher than Eq. (9.2-17) . Actually the experimental data

are bracketed by the two expressions , and is best represen ted as

CF = 0.026 Re~~~~
7 (9.2-21)

Thus for a flat  plate we see that the outer wake contributes l i t t le  to the

skin friction calculation .

Guided by the above result which showed the wake region to be of minor

importance, we now develop an approach based on the differential form of

momentum conservation equation, and inner variables.

continui ty: -
~~~~

. + .~~!- = 0 (9.2-22)

momentum : u -
~~~~~ + v -~

-
~~

- = -~~- ~~! (9.2-23)
9x 9>’ p 9y

Assume that u (x ,y) is correlated by the inner variables throughout the

boundary layer ,
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u~ = = g(y~ ) only (9.2-24)

i .e . ,  the wak e region is neglected so that 6 does not appear as a parameter

of the velocity profile. Then for the transformation x ,y -
~~ x,y~ ,

• 9 — 
9 9 9y~ — 

9 ~~ dv* 9
-

~~~~~ 

- -

~~~~~ ~~~~ 
+ ~~~~~ 

~5~•1y+ 
+ v~ ~~~

+

Using Eq. (9 .2-22)  and integrating by parts g ives

(‘y 3u v (.
~

4 

~ 
+ + v dv* + +

v = _ j  r d > ’ = _~~ - j  ~ _ ( v *u ) d y  = - -~~~— u y

9u 9u dv* +
and u — + v — = v~ — u3x 9y dx

• ,~~~* + * +1
Eq. (9 .2-23) becomes v* — u  = —

~~~~ -—dx 
~~~dy~

+ 2

Integrating, ~ - = 
dv~ u~ dy~

But as y ÷ 6, T ~ 0, u4 9- thus

= Pv*~~ - pfô

+

u+
2 

:~~~~~ 
: cl’J G(u ~~ )

or v~ = -v a-.—- G(u ) ;  but U =

so that

U du~~
-

~~~
. =  G(u

4 ) 
~~~~

Separating variables and integrating assuming 6 = 0 at x = 0 g ives ,

+

Re = —
~~~-— = ~[e G(u~~) du

e~ 
(9.2-25)

We now need an expression for the velocity profile valid throughout the

inner region ; there are many available but Spalding ’ s expression is
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both accurate and has a particularly convenient algebraic form ,

y~ = u~ + e 
/A

[e1~~/~~ - 1 - u
4

!A - 
(u~ /A) 2 

- 
(u~/A) 3

1 (9 .2-26)

where we will  take A = 2 .5 , C = 5.5 , to give ~~~~~ = 0.1108 . Then with

Z = U
e /A ,

G(u 4) = ~~~~~ + ~~~~~ A2 [e1 (z 2 -2z+z)  - 2 - - ~
] (9.2-27)

• 
Re = U~~ + e

_ C
~~ A3 [e Z (z 2 -4z+6) - 6 - 2z - - ~

] (9.2-28)

Eq. (9 .2-28) is an implicit formula for C
f

(Re
x

) .  An approximate explicit

formula may be obtained if we note that in the practical range of 20 < U~ < 40 ,

+ 0.48u
• G(u ) 8.0 e e (9 .2-29)

Substituting in Eq. (9.2-25) and integrating gives

C
F = 

0.455 
2 (9.2-30)

[Zn 0.06 Rex ]

which agrees with experiment to ±2% over the whole range.

The total drag of a f la t  plate of length L is most easily calculated

from the power law expression Eq. (9. 2-21) , namely C F = 0.026 Rex
”7 . Then

CD = 

~ f 
C~ (x) dx = 

1 reL 
CF

(Re
X
) dRe = 0.0303 Re

L~~~
7 
(9.2-31)

or C0 = 
~ 
C
F

(L) (9.2-32)

9.3 EFFECT OF PRESSURE GRADIENT , WALL COOLING , MACH NUMBER , BLOWING AND

WALL ROUGHNESS ON VELOCITY PROFILES AND SKIN FRICTION

Turbulent boundary layers on re-entry vehicles are complicated by the

presence of pressure gradients , density variations due to wall cooling ,

viscous dissipation and forei gn gas injection , blowing effects and wall

roughness . Our purpose in this section is to review briefly the effects of

these factors on the velocity profile and skin friction : each factor wil l
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be discussed separately in order to demonstrate the essential effects of

each factor on the characteristics of turbulent boundary layers.

Pressure Grad ient

In general a pressure gradient significantly affects the velocity

profile in the outer region only. We would expect the outer law to be

dPu - u = 
~ y’ 6,

or u~ - ue~ 
= ~~~~ ~~~~~~~~~~~~~~ by dimensional analysis (9.3- 1)

Clauser [8] suggested that 6 be replaced by the more precisely defined 6*

to obtain

6* dP
= -

~ --~~~~ --— Clauser ’s “equilibrium” parameter (9.3-2)

Clauser showed experimentally that a boundary layer with ~ constan t was ii~

turbulent equilibrium in the sense that all the gross properties of the layer

can be scaled with a single parameter. Clauser further suggested use of

the defect thickness ,

= (u~~ -u~ )dy = 6*u~~ (9.3-3)

(= 3.66 for a flat  plate)

for scaling velocity profiles, and a shape factor G which rema ins constant

in an equilibrium layer ,

G = 

cr1 
(u e~

_u
~

) 2 dy (9.3-4)

from which it follows that H = ( l_ G/u
e~Y

1
. Since u~~ = u~~ (x) , H is not

constant in an equilibrium layer. Nash developed a curve fit for G,

G 6.1(8+ l.8l)½ - 1.7 (9.3-5)
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The Figure shows some equilibrium y/6
0 05 10

velocity profiles in outer co- 0

ordinates. But the curves do not ,Y”~
have an easily recognizable shape . 18

Coles [10] noted that the devia- 10

tions of the velocity from the 
+~~ 2’overlap law , when normalized by +

~~~~20
the maximum deviation (at y = 6)

was a function of y/6 only, .

u~~-2 .5 t h y~~- 5.5 
~~~~~~~+ + 2 ~ 

30
u - 2.5 Zn 6 - 5.5e (9.3-6)

W is the ‘wake function ’ and has

the value 0 at the wall and 2 at

y = 6. The Figure shows the

original plots prepared by 
-

Coles , who proposed 
—

= 2 sin2 
(~~~~~~~~

-) (9.3-7) •. • •. .- - . -“
~~~~ a-;- .

• - :-. • - - • .

or more generally we write 
• - - 

•0

U = A2~n y + C + A1iW(~) (9.3-8) • 
- 

- 
,:~~

- :
where H = 8/2A; II should be 

•~
F
~ YV~ /ó’u

constant in an equilibr ium layer , e.g., . •~ *

for a f lat  plate 8 = 2.35 and hence

TI 0.5. A crude curve fi t  of experimental data gives

1-I = (
~ 

+ .)3/’4 (9 3 9)

Notice that the wake vanishes for ~ = -1/2, which corresponds to an

asympo tically large favorable pressure gradient. Integrating Eq. (9.3-8)

gives
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6* 
= 

1 ll (9.3-10)
u IAe

0 _ l + 1 1  2 + 3 . 1 7 9 1 1+ 1 . 5 1 12 
9 3 1- 

u
k

/A 
- 

(u~~ /A) 2 . -1

The essential effect of pressure gradient on skin friction can be seen

in the integral momentum equation ,

du C
(2+H) ~~~~~~~ (9.3-12)• dx u dx 2e

• A favorable pressure gradient accelerates the free-stream (the Euler relation

gives u
e
dU
e 

= -dP/p) and hence increases C~ . However the practical

problem is one in which the pressure gradient changes along the surface and

we need to calculate the growth of the boundary layer by some forward

marching procedure and hence find C F. For the simple case of incompressible

• f low along an impermeable wall , very many calculation methods have been

developed , either based on the integral or differential momentum equations:

White [9] gives a good review of these methods .

Density Variation

Density variations may be caused by temperature and concentration

• gradients. In this section we will  be concerned only with the effect of

temperature gradients, wh ich may be caused by wall cooling, or by viscous

dissipation at high Mach numbers . The effect of concentration grad ients,

due in particular to foreign gas injection associated with ablation , wil l

be dealt with in §9.6.

On a re-entry vehicle the wall cooling ratio T
W/Te and Mach number

vary considerably along the wall , and as a result so does the shape of

the temperature profile. The Figure (on the following page) shows the

observed trends where it is seen that the effect of a cold wall is to

drive u~ (y4) above the incompressible logarithmic law, while the effect of
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increasing M, by itself, is the opposite. Many

attempts have been made to develop a compressi-

ble law of the wall , the most successful being

that of van Driest [1] and White and Christoph .. _ —

both , however , are of complex algebraic ~~~~~~~~~~~~~ •

Of more interest is the effect of wall

cooling and Mach number on sk in fr iction

where the essential effect is an increase of C
F 

with increase of density near

the wall. The Figure shows calculated

trends , which are in general agreement 10 ’

with experiment. For M = 0 an approx- 
0.8 

A d i a b a t i c  w a l l

• imate correlation is [12] • 

I = T~,/L

F ~~w) -l/ 3 (9.3-13) 0.4

Fj  e

• Blowing 0 .2

In the near wall region the Couette
0 I I I

flow assumptions are good , so that we can 
0 2 

~~~~ number 

8 10

write

mass: -
~~~~~ (pv) = 0 (9.3-14)

momentum : pv -
~~~~~ = (9.3-15)

Integrate Eq. (9.3-14) : pv = constant = pv (9.3-16)

Substitute in Eq. (9.3-15) , PVw P = (9.3-17)

integrating, pv
~
u = - (9.3-18)

and the effect of blowing on the shear stress distribution is seen. To see

how this shear stress distribution may affect the velocity profile consider
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a simple two-layer model of the inner region . Writing T = neff ~~~~~
- and

making Eq. (9.3-18) dimensionless in the usual way gives

+ +  1’eff du1 + v u = — (9.3-19)W 
~~~dy~

In the laminar sub-layer assume 11eff = 
~
i and integrate to obtain

u~ = 
l (e w 

-1); 0 <  y~ < y
~~ 

(9.3-20)

+ + - 
neff 2 2 d u ~For y > y~ assume 

~
1eff >> p. with = K y — - , then

dy
+ +

+ l+v u
W

dy 
~

2
~~

2 du~
dy~

integrating, ~~~~~~~~ [(l+u +v +) ½ 
- 1] = 9~i~ y~ + C (9.3-21)

Stevenson [13] showed that experimental velocity profiles were well correlated

with C taken to be the same as the unblown value . Alternatively if we let

u ’ = u~~ at >‘ = >‘a~ 
and using Eq. (9.3-20) ,

_i_ [(l+u~v~~) - (l+u +v +) ½] = £n ~~~~~~~~ (9.3-22)

Simpson [14] showed that if U = 11 was assumed then y 4 
= 11 correlated his

experimental data. The Figure on the following page , shows ~ defined as

= — [(l+u~v~~)~ 
- (l+llv~

.
~)

½] = _1— 9n f~- 
(9.3-23)

for various flows measured by Simpson .

Other laws of the wall with blowing may be found in the literature,

e.g., Black-Sarnecki, etc., but the differences are probably not greater than

the uncertainties in the experimental data. Pimenta [15] has shown that

velocity profiles on rough walls with blowing are also well correlated by

Stevenson ’s law of the wall.
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Stevenson also accounted for I4~~i~~~~~v = con stant  
-

~ 

• -

1* 
,ee

the variation of shear stress with -

blowing to develop a velocity defect 8

law which was valid with blowing, -‘ 
0 0 0~4 0

r = —
~~

- -  [ ( l+v ~~u +) ½ 
- ,

w y Y 
~~~~~

- 0 • z,~ 
0 0038 0

+ +~~~
- Q • z x D

- (l+u v ) 2~ -

-8
___ •_••__t__ I I ~?t  ~~~~~~~~~~~ I? I I I L I I (I .J

— ~~~ 6~ 
(9.3—24) 10 10 ’

and found good agreement with

experiment. Simpson found good O Klebanoff  y/6
• Simpson 0-05

agreement with his data for 10 
• .~~. .....

Re
0 

> 6000; for lower Reynolds . •

numbers Simpson suggests K = 0.40 7 0•2

1/8be replaced by 0.4 0(Re
0
/6000) 

r : ‘
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

as in fact he recommended for the •~~~ 04

inner region law as well.

As is the case for laminar 2

flows , blowing of course reduces 
1

I i , ? ,  I 2 2 1 1 1 1 ? ?  2

10 ’ 10 1

skin friction. The Figure shows Re
0

experimental skin friction _______________________________
8 . ‘ -O OI) (

• coefficients for a flat plate o -

— 
. . ~~~-~---— ~~~~~~

for various values of the 
~~~~~~~~~~~~~~~~~~~~

—.~~~~~0 (m24

. 2 — 
-0 . 1)0 1 1

blowing parameter F ( = m
~
/pe

u
e
) .  (I

The data are well correlated by lxi) ) : ~~~~~~~~~~~~~~~~~~~~

C 0 7B 5 — 11 111135

F 
- 

F • - 4 -

CFO Re 
- 
exp(O.7BF) 

- 1’
0 

. 2 -

B = 
m (9.3-25)F p u C  i ~~~e e FO 

2 4 5 IO~ 2 I
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Roughness

The simplest case is a roughness pattern which can be characterized

by a single size parameter, e.g., h, the mean protuberance height. Then

dimensional analysis suggests that the velocity near the wall should have

the following dependence :

u = f (y , v, h, T )

or u~ = f(y~, h~) (9.3-26)

As was the case for a smooth wall, experiment shows that the inner correlation

extends into an overlap region where the outer variables also correlate the

velocity profiles. Also the outer region correlation has been shown to be

independent of roughness. Thus it follows that the overlap region again has

a logarithmic form and the slope A is identical to that for a smooth wall.

Hence referring to Eq. (9.2-5), the sole effect of roughness is to change the

intercept as a function of h4; we write
+ + + +
u = A2,n y + C - t~u (h ) (9.3-27)

where ~~~ is the vertical shift of

the logarithmic portion caused by 3° -

50 GRIT
25 - 0 36 GRIT

roughness. The Figure shows 24 GRIT
OPEN P1k. 1 AT M

20 SOLID p~~~.2  ATM
typical rough wall velocity ~~~~

profiles measured by Reda [16]. 
,

‘~ 
- / ~~~~~~~~~~~~~~~~~~ d

5/

Following Nikuradse ’s 
1

work on pipe flow [17] a fully ~~../

rough wall flow is def ined as a ° 
-

5 • I ~~~l l l l 1 l  I l I l • l l ~ •I I I l” I~Ii

flow for which C
F 

is independent of 
- 

10 ~~ IO~

Re, which requires that the inner •

region law must be independent of viscosity. Thus L~u
’ must have a form

+ +which eliminates v from Eq. (9.3-27) , viz., s~u = A log h + D, so that

u~ = A2+n (~
) + C - D (fully rough) (9.3-28)
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By combining Eq. (9.3-27) with the outer region defect law we obtain

the skin friction law for rough walls ,

(2/CF) = Mn Re6 
(CF/2)

~ 
+ B - C - ~~~ (9 .3-29)

which for a fully rough wall becomes

(2/C F) = A log (6/h) + B - C - D (9 .3-30)

Notice that (C - D) can be inter-

preted as the velocity at y = h, u~ 
t’ —
~
y_ _ .---

~
_ _

and is of ten referred to as the roughness 
~~~~

.
• -_

~~~~ ‘~., #4......,A..4~...

~~~~ 8 -  ~~ 
I

functwn. For both fully and transition- U
k J

7~~~~ 
_ _ _ _ally rough walls we can write 

6 
SMOoTH TRANSI TRJN COMP LETE L Y ROU GH

= A91n(y/h) + u~ (h~) (9.3—31) %.2 0.6 
I 
i~o 

I 

1.4 
I 

2.2 2.6 
I 

3.0

1og k~

For fully rough flows over sand grain

roughness of size k5 Nikuradse ’s velocity

profiles were

u~ = 2 .5  9.n(y/k ) + 8.5 (9.3-32)

The Figure above shows u~ ( k )  for smooth , t ransitional iy rough and fully rough

walls as determined by Nikuradse [17]. Mi analytical expression for u~ (h~)

given by White [9] is more applicable to commercially rough surfaces is

= 5.5 - Mn [h ~/( 1 + 0.3h~ )J (9.3-33)

As was the case for the smooth ___________________________

flat  plate , derivation of a skin
I~ ~~~~~~ • IS

friction relation CF = C
F

(x) requires I I  
~~~~~~~~~~~~~~~~~~~~~~ Ill

of

results using Eq. (9.3-33) and the

inner variables method .
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9.4 MIXING LENGTh MODELS

The Mixing Length Hypothesis

Pran dtl [18] noted that the kinetic theory of gases gives [19]

4 p2.v (9 .4-1)

where 2. is the mean free path and v is the mean molecular speed , and by

analogy

au/~y 
~~ PZmVt (9.4-2)

where the Prandtl mixing length, is the distance a turbu lent eddy is

imagined to travel before it loses its identity by mixing with surrounding

fluid. Also from the “Boussinesq hypothesis”, Eq. (9.1-11)

T
t 
a -

~~~~~ (9.4-3)

Pran dtl fur ther suggested that Iu ’ I ~ v ’ J ,  and that u ’ ci 2.~.~u/~ y (see , for

example [7]) :  tak ing the proportionality constant equal to unity gives

= 
~~I-~~I (9.4-4)

thus
2 au ~u

T
t 

= 

~‘t W 
= 

~
2.m ~~~ 

(9 .4 5)

Finally Prandtl proposed that was proportional to the distance from the

nearest wall.

Escudier [20] analyzed a lot 3f experimen tal data and concluded that

in the turbulent core and wak e 2. is distributed as shown .
in

= K~~ (9. 4-6) 

-i > — :  -~- = X  (9. 4-7) 
r

with K =0.41 , X = 0.09. The boundary layer 
~ /

• thickness 6 is defined here to be the location

where the velocity reaches 1% of the free

stream value.

_ ~~~~ _ •~~~~•~~~~~•~~~~~J
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Very near the wall we write

2 ~u
~eff = + ~ 2.m ~~~ (9.4-8)

van Driest [21] proposed a damping of 2. close to the wall ,
m

= ~~ - exp (- i-)] (9.4-9)

with A = 26. There have been many modifications of the van Driest damping

• factor proposed in the literature, in order to accoun t for shear variations

near the wall due to a pressure gradient of mass injection. Close to the

• wall streamwise convection is negligible and integration of the momentum

equation gives

T = T + pv u  + y~~~ (9.4-10)

Defining T = ~~~~
-, v~ = ~~~~~~, P~ = 

~~~~ 
various proposed arguments of the

exponential in van Driest’ s damping factor have been :

+

argument = - patankar and Spald ing , 1970 [22]

= - Launder and Jones , 1969 [23]

= - ~~~~- ~~ (1 - e 8i
~ ) + ef l 8 i

~~] Cebeci , 1970 [2]

= - ~j -  e~”~w Landis and Mills , 1972 [12]

Transport of scalar quantities

Here we are concerned with the specification of Pr
~ 

and Sc
~

. Consid-

erable research has been carried out in order to determine Pr
~

. For air

boundary layers Pr
~ 

= 0.9 is widely used . The Figure shows data for Pr
~

measured at Stanford [24]: a recommended empirical correlation is

Pr
~ 

= 1.43 - 0.17 y~ ¼ (9.4-11)

(if Pr
~ 

< 0.86 then set equal to 0.86)
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3.0 —

Experimental data for Sc
~ 

in external Flat plate

~O. 001 < F *1 0 008
boundary layers is extremely sparse , 2. 0  -

and common practice is to set Pr~
1 0

Sc
~ 

= 1 or Sc
~ 

= Pr
~~

. — 
s.

t S.

o I I
1 10 102 io 3 io 5

9.5 N UMERICAL CALCULATION METhODS

FOR BOUNDARY LAYERS

In an external boundary layer flow there is a single predominan t

direction of flow , and shear stresses, heat fluxes and diffusion fluxes

are significant onl y in a direction perpendicular to the predominant

direction . Mathematically the partial differential equations are parabolic

in form which implies that the equations can be solved using a forward

marching procedure . Physically this means that downstream effects cannot

affect upstream behavior.

A number of f inite difference schemes for the numerical solution of

boundary layer flows are currently in use . Four schemes in particular have

been widel y and successfully used , and these will be deal t wi th in turn.

1. A. M. 0. Smith, T. Cebeci, et al. [2]

The method is one first proposed by Hartree and Womersly wherein

the boundary layer equations are first transformed using the usual

transformation for laminar compressible boundary layer equations given in

§8.3. For example , the momentum equation becomes

( 1 + _!)f ~] ’ + f f”  + B[_.!.. - f ’ 2 ] = 2~~( f ’  .
~~~~

._ - f” .
~~~~~) 

(9.5-1)

In earlier versions of this method , the transformed equations were solved by

Runge-Kutta “shooting” at each ~ location , after f in i t e  differenc ing the

derivatives and treating these as source terms. Later shooting was replaced
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by quasi-linearized finite differencing . In current versions full  f in i te

differencing using Keller ’ s “box” method is used .

• 2. S. V. Patankar and D. B. Spalding (25], R. B. Landis [4], A. T. Wassel [26]

The essential feature of the numerical procedure is a normalized von

Mises transformation of the independent variables before finite differencing,

as follows :

x,y -
~~ x,u with = =

e w

The conservation equations take the common form ,

+ (a+b~) ~~~~~
- = (c -p-) + d (9.5-2)

where a = 
~~~~~~~

- c 
r2Cpu U:ff aeff = 1, Pr ff.Sc ff .

1 dAiL’b = - ~~ ~~~
-
~~

-- d = source terms
dli) e dli) c.

also — = -r P v  ; —s- = r mdx w w  dx e

where 
~e is the rate of entrainment into the boundary layer: the e-surface is

located through use of an appropriate expression for the entrainment rate.

A feature of the Patankar-Spalding codes is the use of Couette flow

analyses for the reg ion adjacen t to the wall , jus tified by the fact that

streamwise convection is indeed negligible there; also in turbulent flows

grad ients are steep near the wall the the number of node points necessary for

an accurate calculation can be reduced cons iderably. Actual ly  it is d i f f i cu l t

to apply boundary conditions at w = 0 because = -
~~

-
~~

-
~~~~~~~~~

- = , and all

hi gher deriva tives with respec t to w, become infini te as y -‘ 0. Denny and

Landis [46 ] showed that using the transformation

2 2 
_____x,y -‘ x,w ; w = 
~~ 

(9.5-3)
e w

removed the s ingular i ty  at the wall , provided u = 0 at the w-surface . If
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u ~ 0 at the u-surface, which might occur in two phase flows for example , then

the w-transformation is satisfactory, but the w2-transformation gives singular

behavior atw= 0.

3. A. Wortman [27]

This method is very similar to Method No. 1 above. The essential differ-

ence is that the transformed equations are f irst formally integrated with

respect to r~, treating the ~ derivatives in finite di fference form as source

terms , and solved by iteration at each c-step of the forward marching procedure.

• 4. The Aerotherm “BLiMP” Codes [28,291

The BLIMP ser ies of codes developed by E. P. Bartlett, R . M. Kendall

and Andersen were intended specif ically for calculating boundary layers on

re-entry vehicles, initially for the Apollo command module , and subsequently

for general re-entry vehicles. Features which are absent in the previously

mentioned schemes are an approximate treatment of multi-component diffusion

using the bifurcation approach , and general equilibrium or non-equilibrium

chemistry. The chemistry calculations are time consuming and are carried out

at every node-point; hence a numerical scheme using a minimum number of node

points was sought. The Hartree-Womersly approach is again used and the trans-

formed equations solved using a “parametric integral” method wi th step we ight-

ing functions. Sets of connected cubics are used to represent velocity, en-

thalpy and species concentration var iables : the first and second der ivatives

of these cubics are made continuous at the connecting poin ts. At var ious

times 7, 11 and 18 node-points across the boundary layer have been used.

9.6 HEAT TRANSFER

The Temperature Law of the Wall

We consider f irst low speed , incompressible, constant property flow ,

wi th Pr t = constant. It follows that a law of the wall for temperature must
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exist, including a logarithmic overlap layer which does however vary with

molecular Prandtl number. von Karman noted that although q and t vary across

a boundary layer , their ratio remains approximately constant,

k+k q• a _  tuT W 
9 6 1I 1-l+J

~
1t d u T

w
1(1 ji+p~

or T-T = du (9.6-2)W C T  I 1.1p w  U) P + 
t

Pr Prt

where q has been taken p~ssitive for a cold wall. In dimensionless form,

T~ 

(T
~TW

)PC V* 

= 
~~~ 

du~
Pr Pr

~ 
p

+

or T~ = 
1 

C 

+ 
du~ (9.6-3)

+ ~~where e

To proceed we need a prof ile c~ (y~) .  If we assume constant shear, which

is at least val id near the wall , then

=

dy

i .e . ,  = (9.6-4)du

and if we use Spalding ’s law of the wall , Eq. (9.2-26),

= 1 + (e /A)[eu / A  
- 1 - uk/A - 

(u~/A) 2
1 (9.6-5)

The figure on the following page shows results for Pr > 0.7. The analysis

fails for small Pr , since then the temperature profile extends far into a
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reg ion where c~ is not suff iciently 
(0)

accurate. 
Pr~ = 1 0

In the sub-layer where 
;,

while : :h:Lo::~~t
S:: :7. 3)

where the additive constant is from

numerical data (and equals 5.5 for 
10 1~ o soo

Pr = 1) .

The Extended Reynolds Analogy

If we use inner variables only, then

T~ = ALn 6~ + ( 12.8Pr 0
~

68-7.3)

u Mn 6 + 5~5e

For 0.7 < Pr < 10, 6.
~~ 

6 and we can take £n 2.n iS , thus

T~-u~ = 12. 8(Pr068-l)

But CH = (Tw
_ T

e)PCpue 
= 

~~~~~

- 
~~~~~

- ; u~ = (2/ C F) V2

thus 1 
+ 

- u~ = 12.8(Pr°68-l)
CHu 

e

C F’2or CH = 

l+12 .8(Pr °6 8 - l) (C F/2) ”2 
(9.6-8)

However we have neglected the viscous sub-layer and buffer region : a more

precise result requires use of tabulated solutions of Eq. (9.6-3), which may

be found in the li terature , e.g. [30].

With CF X  calculated for a boundary layer the Reynolds analogy gives

• Cu~ directly. For flat plates or mild pressure gradients , and for slowly
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varying wall temperature, Reynolds analogy methods are satisfactory for engin-

eering use.

Effect of Pressure Gradient

The temperature law of the wall , Eq. (9.6-3) is valid only for zero or

• mild pressure gradients. With a pressure grad ient the shear distribution

• 
1/lw is different to the heat flux distribution q/q~~ and the elementary

Reynolds analogy is invalid. Many approximate methods for calculating heat

• transfer in flows with pressure gradient have been developed, e.g., Ambrok ’s

methods [31], but with limited success. The preferred method today is the

use of finite difference calculation methods, as described in §9.5.

E ffects of Wall Cool ing and Mach Number

As was the case for the effect of pressure gradient, the effe cts of wall

cooling and Mach number are best determined using finite difference calculation

methods. Two results of such calculations are worthwhile mentioning here.

Firstly, for the low speed boundary layer on a flat pla te, an approximate cor-

relation of the effect of wall cooling is [12]

C T -1/4
• 

~~
_

~
_ = ( ;

~~
•) (9.6-9)

Hi e

Also the corresponding Reynolds analogy factor for mass transfer is approxi-

mately correlated as [12]

2C
Sc~~~

13 (9.6-10)CF

Secondly, for hi gh speed constant property boundary layers , the recovery factor

is found to be

r PrV3 (9.6-11)
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9.7 TURBULENT BOUNDARY LAYERS WITH FOREIGN GAS INJECTION

As was the case with laminar boundary layers in §8.5, the primary focus

of analytical studies has been to calculate the reduction, due to mass injec-

tion, of the wall shear stress, the mass trans fer conductances , and the heat

transfer rate. The simplest situation is that of an inert binary mixture

where species 1 is injected at the wall , and the free-stream contains species

2 only. The only comprehensive study has been that of Landis and Mills [32],

and their results will form the basis of this discussion . The conservation

equations, Eqs. (9.1-13 through 16), are written as follows :

(pu) + -
~~

—- (pv) = 0 (9.7-1)

PU~~~~ + P V ~~~~ =~~~~~(Peff ~~~
) (9 .7-2)

3K 1 3K 1 ~ 
neff 3K 1Pu —h-- + pv -

~~~~
-- = 

~~ 
(SCeff ~~~ (9.7-3)

3 neff 3T 1 eff 3T 2
pu + pv = 

~~~~~ 
~~~~~~~ 

-
~~
-_) + 

~~ 
1ir~~~ dT

~eff 3K 1 3T
+ 
SCeff 

(C
r1 

C
r2
) ay 3y

+ 

~eff ~~~~~
1 (9.7-4)

which are to be solved subject to the boundary condi tions :

y = 0 : u = 0 ; ~vç = ; T = T~ ; -p V 12 = ~(1-K 1~~) (9.7-5a)

y -
~ : u + Ue K1 

+ 0 , T -

~~ 
Te (9.7-Sb)

Mixture thermodynamic properties were calculated assuming ideal gas laws .

Species transport properties were calculated according to the kinetic theory

of gases with the Lennard-Jones interaction potential , and mixture transport

properties were estimated using Wilkie’s rule , as described in §3.

Extension of incompressible turbulent boundary layer theory to compres-

sible turbulent boundary layers with foreign gas injection is made on the
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hypothesis that the momentum equation is coupled to the species and energy

equations only through spatial variations of the mean dens ity and viscosity

i.e., mixing length relations established for incompressible flows are appli-

cable. In the inner region Prandtl’s mixing length law was used , together

with the van Driest damping factor modified for blowing, as described in §9 .4.

In the outer region the mixing length expression of Simpson [14] was used.

The resulting expressions for 
~
‘eff are then

~eff j = p + p(0.43 5y) 2 {1-exp[- 
~~ (expv)]}I~~~J (9.7-6a)

inner

~eff l 
= p + p{°

~~
35 iS[l-exp(- (9.7-6b)

outer

For the turbulent transpor t of the scalar quantities , Sc~ = 0.8 and Pr
~ 

= 0.9

was used.

The flows calculated were as follows . For zero Mach number the injec tants

were H2, He, CH4, H20, CO, Air , CO2. Freon 12, Xe and CC14 with Tw/Te = 0.2

and 0.9. The effects of various problem parameters were studied for He, Air,

and Xe injectants, (i) in order to study the effect of temperature ratio addi-

tional resul ts were obtained for Tw/Te = 2.0, (ii) the effect of temperature

level was evaluated by obtain ing Tw/Te = 0.9 as both 295K/ 324K and 1325K/ 1472K ,

(ii i) the effect of Mach number was obtained wi th data at M = 2. 0 and 6.0 for

Tw/Te = 2.0, (iv) the effect of Reynolds number was obtained at Tw/Te = 0.2 ,

M = 0 by calculating as far as Re
~ 

= 108, (v) the effect of an equilibrium in-

jection distribution was studied for air at Tw/Te = 0.2, wi th ii x °2 . For

all cases calculations were made at four or more injection rates. Complete

tabula tions of Re0, C~ /2 . CM, CH, Ki~~
, 

~~~~,
‘ 

Scw and Pr
~ 

may be found in [4 ] .
The fi gures on the following page show the skin friction coefficient ,

the mass trans fer Stanton number , and the hea t transfer Stanton number , each

normal ized by their respective unblown values , at zero Mach number, for “cold
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wall” condi tions, Tw/Te = ~~~~~

0.2. The main features of ~ 

A O .~~~/e . C~~~Of Xe

these results may be ex- \\ “ T~- T ~~~~~~~~~S ~ 
Freon l2

plained in a manner similar ~- .
~ \ \ A 

cc~4

to which the characteristics ~

of binary laminar boundary

layers were assessed in §8.5. .1

In [32] there is presented a 
B,

detailed explanation of the 
-1 .2

behavior shown in the Fig- 1.1 

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ — r r eon 12

more pronounced than for the ~~ 
~ 

2

laminar case since neff is \\
proportional to local den- 

-: \\ ~~~~~~~~~~~~~~~~~
H20

sity. Thus C~ /2 is expected - He

.1 
H2

to be a regular function of
C I I I I n I

• o 1 2 3

molecular weigh t, and the

Figure shows that, except for ~ o cci 4 s . ~~ Of Xe

1 _ c ~~ _~_ __~_ 
U CC ) 4 C~ of Xe

• the heaviest injectants, the A CCI X ;.’. i= .C~ of Xe

effectiveness does vary .8 

~~~~~~~~~~ 
o

CCI 4
regularly with molecular ~ \ \ 12

weight. CM is even more de- z~ : \ \
pendent on injectant molecu- \ \~ co2

He Sir

lar weight since near the CO

CH H
.2  c c

wall the effect of density 12 
2

On SCeff augments that for I -‘
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1’eff ~ 
The behavior of CH is 1.0

Fr ; - ( ~ 2somewhat more complex due to 
dr~ 

PoppaS-Oluma 0 A
.0 

~
‘ 0 ~~~~~~~~~ • Ronanen ko—KharcIle,k o • £

the dependence of Pr on k o~~-.~p .•-~ 4~& \\ ~~
—=--..... .

and C , but the essential .6 .P E 
~~

regular dependence on molecu- }5 ~~ MN.... 
~~~~~~~~~~~~~• ~__~~ Rubes~n- Pappas 0

lar weight is quite apparent. \
A \~~ ~e; ~~~~~~~~~~ -3 “ .__~ Recompute of

A Rubesi n—Papp as

The next two Figures .2

He; Computed .
show comparisons with experi- ~~ T~~~ 09

0 I I I

mental data for skin friction 1 2

and heat transfer in low 
I 

0 
P,ppas and Olu n o

0 
~ 

Freon 12
speed flow; the agreement is A

c~~0 0
reasonable. 0

The effect of Mach • .. 0 0 0 C t

number, on the effectiveness .~ 

0 ~~ 
0

of inj ection in reducing .1
Computed

skin friction has been the .: -

subject of some controversy. 2
3
— 

B 

~ 
1 .2 1. 4 i . o

In the Figure predictions of

skin friction for air injec-

tion are compared with the ~~~~~ ___ 2
- 6

:::: m:tE:r:::: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

wi th increas ing M shown by .~ 
0 .~~~~~~

\N ~~~~~~~~~ .

the experimental data proves . .

to be primarily an effect of

T/T . An examination of the - - 
.

.

ori ginal data sources m di-
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cated that for M = 0 a value of Tw/Te 0.9 is typical; for M = 2, Tw/Te 2;

while for M = 6, Tw/Te may lie between 4.5 and the adiabatic wall value. The

Figure shows that, when appropriate temperature ratios are used the predicted

effect of Mach number is consistent with experiment.

Correlation of Results

The Figures show the re-

sults for impermeable wall ~~~~~~ Consp~ted r

0 2 6 0.87 2.67 4 6

skin friction and heat trans- ~~~~~ - 0.2 S 0 0 x +

~~ 1.01 S G U  I)

fer correlated by the Eckert 4 1  )93 - 

• 
“

~~~ 

L~
.o . e •

D
~~~ 

X 
~~~~~~~~ •

reference enthalpy method [3 41:
3 0 1 0 3 -

0
, H 5

~~~ 3

the correlation is seen to be + H •
2 , 1 0 ~ 

—

good and thus it is relatively

simple to calculate CF O and

CHO in practice. )35 

~:. 
1O~ 2 n 1 O ~

The next Figures show

an attempt to use Knuth’s ref 

-

__________________

i’~
1j 0 2 6 087 26~~~~~~]

erence state method [35] to 0.2 5 0 Q . +

correlate the data for air 3~~~~p 3 - 
. 

::‘ : : :
injection with 0 < M < 6, and 0

2 • io~ 
- 0 * ~ 5 ,5 %

+ x~~~0
0 .2  < T /T < 2.0.  It can be CH,0 

*w e 
~~~~~~~ -

seen that the method appears

not to work, so no attempt was ~~~~~ -

made to evaluate the method _______________________________________________
108 IX~

for foreign gas injection. Re el

Thus the approach used was to obtain species weighting constants in exponential

blockage factors , as defined in Eqs. (8.5-1 0 through 12) for laminar flow. The

constants were correlated as
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a
~ = C(Mai /Mi)

~ 
(9 .7-6) 1.0 - _____________

O 2 6

and the results are presented .8 -

in Table 9.2 below. ____________

. 
0

All data points 
~~
. 0

C n 
6 £ S

aF~~ 0.91 -0.76 .2 - £

a0 . 0.79 -1.33
i”i,i 0 I I I

a11 ~ 
0.86 -0.73 

1 BF, 2 3

Excluding cold walls 1.0 - _____________

0 2 6

C n 3 0 3 5
.8- 0 1.01 ~ £ a

aF ±  0.87 -0.85 .2 0 3 5

::~ 
- 

U 

0

11,1. 

LI

’

Table 9.2. Species weighting a
constants in expon- .2 -

ential blockage
factors for turbu-
lent flow. I I I

0 1 2 3
8Hr

9.8 ROUGH WALLS

The effect of wall roughness on velocity profiles for incompressible

flat plate flow was discussed in §9.3. In this section we outline a proce-

dure for calculating rough wall boundary layers by finite difference methods

and supply the necessary auxiliary realtions, including those required for

heat transfer, and for the effects of blowing. Except in the region very

close to the roughness elements, conventional modeling of turbulent transport,

using for example a mixing length model , may be used . The remaining task is

to characterize the turbulent transport in the vicinity of the roughness
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elements. Some workers have chosen to adapt smooth wall calculation methods

by simply postulating a non-zero value of the mixing length 
~
‘m O at y = 0. For

example , Healzer [36] fitted Nikuradse’s sandgrain friction factor data with

= ~~ (0.4y~) 2 
+ ; = ~ [(~~_46)/39]2~O.05325 (9.8-1)

However such an approach is a poor representation of the physics since the drag

on a fully rough wall is a form drag , and not an eddy transport phenomena .

Also extension to include effects of variable properties , blow ing , etc., is

troublesome; in particular the turbulent Prandtl number required to match heat

transfer data is not of order unity, and is physically meaningless.

An al ternative approach, to be followed here, is to divide the flow region

at y = h, where h is of the order of the height of the roughness elements.

Then for y > h smooth wall mixing length relations may be used . For y < h no

attempt is made to solve the momentum equation; instead a drag coefficient is

defined for the roughness elements via

= Cd
(.
~
- pu~) (9.8-2)

and specification of Cd gives a third kind boundary condition for the momentum

equation in the domain y > h.

There is no analogy to form drag for heat transfer: some laminar sub-

layer exists and constitutes a significant thermal resistance. Again, for the

region y > h the smooth wall specification of Pr
~ 

applies and a “sub-layer”

Stanton number is defined,

Ch = PV *(hw
_ h
h) 

(9.8-3)

A defini tion of C
h corresponding to that for Cd would be in terms of uh, rather

than v*; however , Eq. (9.8-3) has been more widely used, and its continued use

will avoid confusion. Specification of Ch provides a third kind boundary
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condition for the energy conservation in the domain y > h. Boundary conditions

for species conservation equations are handled in an analogous manner. The

density p in the def ini tions of Cd and Ch must be evaluated at an appropr iate

reference value when is significantly different to

The concept of representing the near wall region by auxiliary wal l

relations is not new. For example, Goddard [37] used the concept to explain

Mach number effects on rough wall skin friction; Dipprey and Sabersky [38] cor-

related and interpreted their sandgrain indentation roughness heat tran sfer

data using a sub-layer Stanton number. Jayatilleke [39] made an extensive study

of the effect of roughness pattern and Prandtl number on such wall relations.

Correlations for Cd

Combining Eq. (9.8-2) with the definitions of v~ and u~ gives

Cd = —~~~~
- (9.8-4)

U
h

For both transmissivity and fully rough walls the velocity prof ile was given

by Eq. (9.3-11) as

= Mn(y/h) + u~ (h~) (9.8-5)

For example, N ikuradse found u~ = 8.5 for ful ly rough sand gra in roughness ,

which gives Cd = 0.0277.

Simpson [40] has correlated data for a wide variety of roughness patterns

in terms of a parameter A ,

A - 
total surface area (9 8-6)- 

total roughness frontal area normal to flow

then with the height of the roughness elements as the characteristic height ,

for ful ly rough walls

1 < A < 4.68 : u~ = 5.5-l7.35[1.62Slog X-1 ] (9.8-7a)

A > 4.68 : u~ = 5.5-S.95[1.lO3logA-l] (9.8-7b)
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Note that for sandgrain roughness , A = 3.23. The shift of the logarithmic

region of the rough wall velocity profiles was used to determine B, but the

actual evaluation was done by a number of different workers, and both tube

flows and external boundary layers were considered . Given the scatter in

the data leading to Eqs. (9.8-7), and the uncertainties in data reduction ,

expressions for Cd 
developed for the particular roughness pattern of concern

should be used whenever possible.

For untested roughness patterns Cd may be at least estimated using

data for the drag of indiv idual proturberances , as was done by Lewis [41].

For transi tional ly rough surfaces in the absence of specif ic data, the expres-

sion for u~ given as Eq. (9.3-33) is recommended.

Origin for the y-coordinate

A somewhat troublesome point in the preceding development is to establish

where the y-coordinate should be measured from. If the origin for y is shifted ,

an initial ly straight logarithmic region will become curved. Thus in reducing

experimental data the standard practice has been to adjust the origin to give

the greatest extent of logarithmic region. The origin found in this manner

has always proven to be between the top and bottom of the roughness elements,

and to be independent of wall shear , i.e., indepedent of h~ . For example ,

Reda [16] found for sandgrain roughness that the origin lay at approximately

half the grain-size below the tips. Pimenta, Moffat and Kays [is] showed that,

for spherical ball roughness elements of equivalent sandgrain roughness of

0.031 in., the appropria te origin lay 0.006 in. below the ball tips for un-

transp ired flow , independent of x-location or free-stream velocity.

Correlations for Ch
The commonly used correlations for the sub-layer Stanton number Ch have

been developed from constant specific heat experimental data, for which Eq.

(9.8-3) becomes
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Ch 
= 

pcv*(T -T ) 
(9.8-8)

w h

The most well known correlation of Ch is that for sandgrain indentation rough-

ness developed by Dipprey and Sabersky [38], based on measurements of pressure

drop and heat transfer in tube flow. The flow region was divided into two

regions with Eq. (9.8-8) characterizing heat transfer to the wall from the

location y = h : the thermal resistance of the turbulent core was found by

applying Reynolds analogy and assuming that the bulk velocity and bulk tempera-

• j ture occur at the same value of y. Summing the two thermal resistances in

series gives

1 2 1/2 + + 1
= (c—) [Pr

~
(ub_uh) + c—] (9.8-9)

1-I F h

With the assumption of Pr
~ 

= 1, and noting that u~ = (2/CF)
’
~
”2, there results

1 2 1/2 1 2 +
= (b—) ~~~~~~ 

- b—] + U
h (9.8-10)

F H F

For fully rough flow with u~ = 8.5, Dipprey and Sabersky obtained

1 ~-0.2 -0.44C
h = 5.19 k5 Pr (9.8-li)

However , to the inherent uncertainty in the ori ginal data for heat transfer

and pressure drop must be added the errors incurred by using an approxima te

solution of the energy conservation equation in obtaining Eq. (9.8-9). Such

errors increase with roughness hei ght , as shown in [421.

Available experimental evidence shows that the sub-layer Stanton number

is quite dependent on the nature of the roughness pattern. Although consider-

able data exists for regular patterns of the kind used to artificially roughen

surfaces , data for roughness patterns characteristic of ablating re-entry

vehicles are very sparse.
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Effec t of blowing for fully rough walls

The only comprehensive study of the 9ffect of blowing on rough wall

boundary layers is that of Pimenta et al. [15]. Piznenta found that the effect

of blowing on the logarithmic portion of the velocity profile was well repre-

sented by a Stevenson type law of the wall , Eq. (9.3-21), in the form

1/2-4 (l+v~u~) = 1 9.n 

+ + -l 

(9 8-12)

where z0 is defined as the value of y where u = (v
~
) , y is measured from

the tops of the spherical ball roughness elements, and E~
y was determined to

give the greatest extent of logarithmic velocity profile. For no blowing

= 0.006 in. while the equivalent sandgrain roughness was 0.031 in. With

blowing ~y was found to increase slightly to 0.008 in. at F = (rn/ Peue) = 0.002 ,

and 0.009 in. at F = 0.004. Values of u~, i.e., u~ at y+t~y = k5 calculated

from the measured velocity profiles are presented in Table 9.3. Pla te number

refers to a 4 in. long segment of the total length of 8 ft. It can be seen

that u~ apparently decreases wi th increasing x , though this trend might well be

due to a systematic error. Nevertheless, there is considerable evidence in the

Plate No. 7 10 13 16 19 22

F = 0.000 8.98 8.71 8.75 8.60 8.50 8.35

= 0.002 8.55 8.31 8.17 8.01 7.89 8.03

= 0.0039 8.42 8.06 7.62 6.09 7.16 (7.66)?

Table 9.3. Values of uj~ calculated from the velocity
profiles of Pimenta et al. [15].

literature that Nikuradse’s conclusion of u~ = 8.5 for fully rough unblown

walls irrespective of Reynolds number is not fully warranted . Table 9.4 shows

averaged and derived quantities calculated from the data of Table 9.3. A
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F u~ Cd Cd/ Cdo B
d

0.0 8.65 0.0270 1.00 0.00

0.002 8.16 0.0300 1.11 0.15

0.0039 7.67 0.0340 1.26 0.29

Table 9.4. Roughness drag coefficient as a function
of blowing; Bd = 2F/C dO

suitable correlation for the effect of blowing is

C
1 + O. 8Bd (9.8-13)

dO

Notice that the effect of blow ing is to increase the value of Cd. This is

not a surprising result if we realize that we cannot view C
d as a skin fric-

tion coefficient similar to tha t for a Couette flow or boundary layer: we

are not prescribing the velocity at y = h , rather u,~ results from the inter-

action of the form drag on the roughness elements, the effect of blowing add-

ing zero momentum fluid to the flow, and the characteristics of the turbulent

core. An analysis of the analogous problem for laminar Couette flow over a

smooth wall shows that C
d does increase with blowing : we should expect the

same behavior in the turbulent rough wall case as well since the first order

effect in both cases arises from the addition of zero-momentum fluid to the

flow.

Pimenta found that the temperature profile has a logarithmi c region of

about the same extent as does the velocity profile when the same virtual origin

shift is used. Consequently the dimensionless temperature (Tw
_T)/(Tw

_T
e)

plotted against u/ue is linear and is independen t of the defini tion of virtual

origin for y. The graph has a non-zero intercept with the ordinate axis indi-

cating the expected high thermal resistance adjacent to the wall. The sub-

layer Stanton number C
h calcula ted from Pimen ta ’s velocity profiles is shown
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in Table 9.5. It is very difficult to discern any trends in Ch, and for eng in-

eering purposes it is recommended that

Ch = 0.10 (9.8-14)

Plate 7 10 13 16 19 22

F = 0.000 0.12 0.11 0.11 0.11 0.11 0.11

= 0.002 0.10 0.08 0.08 0.09 0.09 0.07

= 0.0039 0.13 0.10 0.10 0.09 0.07 0.06

Table 9.5. Sub-layer Stanton number as a function of
position and blowing rate.

Aga in , to explain why Ch is essentially independen t of blow ing , a laminar

smooth wall Couette flow analysis gives some insight, since such an analysis

shows that the variation of Ch with blowing should be only one half that of

C
d; since we have already seen that variation of Cd is rather small the near

constant C
h 

is not inconsistent .

Effect of wall boundary condition on heat and mass transfer

Burck [43] classified roughness types into two categories: (i) integral

roughness, e.g., grooves cut into the surface, and (ii) overla id roughness ,

e.g., wire wrap. He demonstrated that for identical geometries the overlaid

roughness gave signif icantly lower heat transfer rates , and attributed this

result to the poor thermal contact between the overlaid roughness elemen ts and

the wall. Thus the thermal conductivity of the roughness elements themselves

must also have an effect on the heat transfer to the wall , and is accounted for
• in the sub-layer Stanton number. Dipprey and Sabersky used a nickel wall , wi th

thermal conductivity k = 50 Btu/hr ft °F. Simple calculations [44] show that

the therma l resistance of the roughness elements was of the same order as the

thermal resistance of the sub-layer, and their ratio was a marked function of

• h ’. It follows that there could be an appreciable significant error in Eq.
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(9.8-11), or in its interpretation. Also it follows that errors will be incurred

when Eq. (9.8-11) is applied to a wall of lower conductivity such as a carbon-

aceous heat shield, or a wall of higher conductivity, such as the copper ball

covered wall of the “PANT” experimental program [45].

Furthermore, once the question of the thermal path through the roughness

elements is raised, it is necessary to carefully examine the ablation processes

occurring on the heat shield , i.e., heat up, oxidation and subl imation , since

there is no longer any simple analogy between the heat and mass transfer pro blem

for the coupled boundary layer-wall response problem. For mass loss by oxida-

tion or sublimation the appropriate wall material for a heat transfer experi-

ment is one of infinite thermal conductivity, as both processes take place at

the surface. Thus the choice of copper ball roughness elements in the PANT

program was fortuitously appropr iate.

j 
241

~~~~Fi6.i. 1~ — - ~~~~~..



— 
— - 

~~~~~~~~p:;-~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

RE FERENCES FOR CHAPTE R 9

1. E. R. van Driest, “Turbulent boundary layer in compressible fluids”
J. Aeronaut . Sci., 18, 145-160 (1951) .

2. T. Cebeci and A. M. 0. Smith, Analysis of Turbulent Boundary Layers,
Academic Press , NY (1974) .

3. S. G. Rubin , “Compressible turbulent boundary layer equations” ,
AIAA Journal , 5 , 1919-1920 (1967) .

4. R. B. Landis , “Numerical solution of variable property turbulent
boundary layers with fore ign gas injection” Ph.D. dissertation,
School of Eng ineering and Applied Science, University of California,
Los Angeles (1971).

5. J. N. Hunt , Incompressible Fluid Dynamics, American Elsevier
Publishing Co. (1964).

6. B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence,
Academic Press , London (1972).

7. H. Schlichting, Boundary Layer Theory, 4th ed. McGraw-Hill Book Co.
Inc. ,  NY (1960) .

8. F. H. Clauser , “The turbulent boundary layer” in Advances in Applied
Mechanics, Vol. IV , Academic Press, NY (1956).

9. F. M. White , Viscou s Fluid Flow, McGraw-Hill Book Co. Inc . ,  NY
(1974) .

10. D. E.  Coles , “The law of the wake in the turbulent boundary layer”
J. Fluid Mech. 1, 191-226 (1956) .

11. F. M. White and G. H. Christoph , “A simple theory for the two-
dimensional compressible turbulent boundary layer” , J. Basic Engr.
94 , 636-642 (1972) .

12. R . B. Landis and A. F. Mills , “The calculation of turbulent boundary
layers with foreign gas injection” tnt. J. Heat Mass Transfer, 15,
1905-1932 (1972) .

13. T. N. Stevenson , “A law of the wall of turbulent boundary layers with
suction or injection” The College of Aeronautics, Cranfield , Aero
Report No. 166 (1963) .

14. R. L. Simpson , “Characteristics of turbulent boundary layers at low
Reynolds numbers with and without transpiration” J. Fluid Mech., 42 ,
769-802 (1970) .

242 

~~~~~ 



-~~ 
- —- 

~~~~~
‘
~~

‘— -. - _ -- -

15. M. M. Pimenta , R. J. Moffat and W. M. Kays , “The turbulent boundary
layer : an experimental study of the transport of momentum and heat
with the effect of roughness” Thermosciences Division , Department
of Mechan ical Eng ineering, Stanford University, Report No. HMT-2l,
(1975) .

16. D. C. Reda , F. C. Kelter , Jr. and C. Fan , “Compressible turbulent
skin friction on rough and rough/wavy walls in adiabatic flow”
AIM Journal , 13, 553-554 (1975).

17 . 3. Nikuradse , “Laws of flow in rough pipes” NACA TM 1292 (1950) .

18. L. Prandtl , “Bericht uber Untersuchungen zur ausgebildeten Turbulen z”
ZA?14, 5, 136 (1925) .

19. D. K. Edwards , V. E. Denny and A. F. Mills, Transfer Processes, 2nd ed.
McGraw-Hill - Hemisphere Press , (1979) .

20. M. P. Escudier , “The distribution of mixing-length in turbulent flows
near walls” Imperial College , Heat Transfer Section Rep . TWF/Th/l
(1966).

21. E. R. van Driest , “On turbulent flow near a wall” J. Aero . Sci.,  23 ,
1007 (1956) .

22. S. V. Patankar and D. B. Spaiding, Heat and Mass Transfer in Boundary
Layers, Morgan-Gramp ian , London (1967) .

23. B. E. Launder and W. P. Jones , “A note on Bradshaw ’s hypothesis for
laminarization”, ASME Paper 69-HT-12 (1969).

24. W. M. Kays and R. J. Moffat , “The behavior of transpired turbulent
boundary layers” in Studies in Convection Vol. 1, ed. B. E.  Launder ,
Academic Press , 1975 .

25. D. B. Spalding, “GENMI X - A general computer program for two
dimensional parabolic phenomena” H!~1F Vol. 1, Pergainon Press (1978) .

26. A. T. Wassel , “A finite-difference aeroheating code for axi-symmetric
re-entry vehicles” Report 75-66 , Science Application s Inc . El Segundo ,
(1975) .

• 27. A. Wortman and G. Soo-Hoo, “Exact operator solutions of general
three-dimensional boundary layer f low equations” J. Aircraft 13,

• 590 (1976).

• 28. R. M. Kendall and E .  P. Bartlett , “Non-similar solution of the
multicomponent laminar boundary layer by an integral matrix method”

• AIM Journal 6, 1039 (1968) .

29. L. W. Anderson and H. L. Morse , “Users Manual - Boundary layer
integral matrix procedure - BLIMP” AFWL TR-69-1l4, Vol. I, October
1971.

243

L --- - - ‘ -. - 
- - _ _ _ _ _  ~~~~~~~~~ i. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~. . ~~~~~~~~~~ 

.. • . ---
~~~~ 

• . . -



-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ________________________

30. D. B. Spalding , “Contribution to the theory of heat transfer across
a turbulent boundary layer” m t .  J. Heat Mass Transfer , 7 , 743-762
(1964) .

31. W. M. Kays, Convective Heat and Mass Transfer, McGraw-Hill , NY (1966) .

32. R. B. Landis and A. F. Mills , “The calculation of turbulen t boundary
layers with foreign gas injection” Int . J. Heat Mass Transfer 15 ,
1905-1932 (1972).

• 33. L. 0. F. Jeromin , “The status of research in turbulent boundary layers
wi th fluid injection” Progress in Aeronautical Sciences, Vol. 10,
edited by D. Kuchemann, pp. 65-189, Pergamon Press , Oxford (1970).

34. E. R. G. Eckert, “Engineering relations for fr iction and heat transfer
to surfaces in hi gh velocity flow” J. Aero . Sci . 22 , 585-587 (1955) .

35. B . L. Knuth and H. Dershin , “Use of reference states in predicting
transport rates in high-speed turbulent flows with mass transfer”
m t .  J. Heat Mass Transfer , 6 , 999-1018 (1963) .

36. J. M. Healzer , R. J. Moffat and W. M. Kays , “The turbulent boundary
layer on a rough porous plate : experimental heat transfer with
uniform blowing” Report No. HMT-l8 , Thermosciences Division , Dept .
Mech. Eng. ,  Stanford University (1974) .

37. F. E. Goddard Jr . ,  “Effect of uniformly distributed roughness on
turbu lent skin-friction drag at supersonic speeds” J. Aerospace
Sci. 26 , 1-15 (1959) .

38. D. F. Dipprey and R. H. Sabersky, “Heat and momentum transfer in
smooth and rough tubes at various Pran dtl numbers” m t. J. Heat
Mass Transfer , 6 , 329-353 (1963) .

39. C. L. V. Jayatilleke , “The influence of Prandtl number and surface
roughness on the resistance of the laminar sub-layer to momentum
and heat-transfer” Progress in Heat and Mass Transfer, Vol . 1, ed.
U. Grigull and E. Hahne, Pergamon Press (1969) .

40. R. L. Simpson , “A generalized correlation of roughness density
effects on the turbulent boundary layer” AIM Journal, 11, 242-244
(1973) .

41. M. J. Lewis, “An elementary analysis for predicting the momentum -

and heat-transfer characteristics of a hydraulically rough surface”
J. Heat Tran sfer , 97 , 249-254 (1975) .

42. A. T. Wassel and A. F. Mills , “Calculation of variable property
turbulent friction and heat transfer in rough pipes” submitted
to the J. Heat Transfer.

43. E. Burck, “Influence of Prandtl number on heat transfer and pressure
drop of artifically roughened channels” Warme und Stoffubertragung,
2 , 87- 98 (1969) .

244



~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. 

-

~~~~~

(

44. A. F. Mills and J. F. Courtney, “Turbulent boundary layers on
rough walls” APOSR-TR-76-1098, March 1976.

45. M. R. Wool , et al .,  Final Summary Report , Passive Nosetip Technology
Program , AerotheriB Report 75-150 , SAMSO TR-74-86 , June 1975 .

46. V. B. Denny and R. B. Landis, “An improved transformation of the

Patankar-Spalding type for the numerical solution of two -
dimensional boundary layer flows” m t .  J. Heat Mass Transfer , 14 ,
1859-1862 (1971).

245

• — --- .• — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

~~~~~
—

~~~ - - - -~~~~~~~~~~~~~~ . .


