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profiles and Reynolds stresses were made in the thick, axisymmetric
boundary layer and the near wake of a low-drag body of revolution.
These measurements shed some light on the joint influence of trans-
verse and longitudinal surface curvatures and pressure gradients

on the boundary-layer development and on the manner in which an

axisymmetric boundary layer becomes a fully-developed wake. The
present data have been used to provide an independent check on the
accuracy of the simple integral method proposed by Patel, and its
extension to the calculation of the near wake made by Nakayama, Patel
and Landweber, Calculations have also been performed using the
differential equations of the thick axisymmetric turbulent boundary
layer and a rate equation fcx the Reynolds stress derived from the
turbulent kinetic-energy equation along the lines suggested by
Bradshaw and others. It is shown that the boundary layer in the tail
region of a body of revolution is dominated by the extra strain

rates arising from longitudinal and transverse surface curvatures.

A new differential method is‘incorporated into the iterative procedure
developed by Nakayama, Patel and Landweber for the solution of the
interaction between the boundary layer, the wake and the external

inviscid flow, The results of the iterative method have been compared
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CHAPTER I

INTRODUCTION

The flow past a body of revolution with a pointed tail is con-
sidered. If the shape of the body is such that there is no separation, |
conservation of mass requires the boundary layer to grow in thickness
up to the tail, For most shapes at large Reynolds numbers, this leads

to a thick turbulent boundary layer over the rear of the body. In

; this region, which may constitute as much as the rear third or quarter
of the body length, the usual thin boundary-layer assumptions fail.
Specifically, it is observed that (a) the boundary-layer thickness

E becomes comparable with, and even larger than, the local transverse

: and longitudinal radii of surface curvature, (b) the component of
velocity normal to the surface is not small compared with the longi-
tudinal component, implying a substantial variation of the longitu-
dinal curvature of the mean streamlines across the boundary layer,

ﬁ (c) the pressure gradient in the direction normal to the surface,
associated with the surface and streamline curvature, cannot be
neglected, and (d) the surface pressure distribution does not conform
with that predicted by inviscid-flow theory. Taken together, these

L flow features indicate a strong interaction between the flow in the

: boundary layer and the external flow. Since the boundary layer

results in a broad wake, the interaction involves the wake also.




These flow features have been documented in the measurements of

Patel, Nakayama and Damian (1974) in the tail region of a modified

spheroid. These measurements also led to the development of a simple
integral entrainment method (Patel, 1974) and a similarity-law
entrainment method (Granville, 1975) for the calculation of thick
axisymmetric turbulent boundary layers. Since the experiments indi-
cated that a proper theoretical treatment of the flow in the %ail
region should consider the interaction mentioned earlier, an iterative
technique was proposed (Nakayama et al., 1976a,b) for the solution

of the viscous and inviscid regions by successive approximations.

This necessitated the incorporation of the body wake in the interaction
process, and therefore a procedure was proposed for the continuation
of the boundary-layer calculations into the wake, The lack of detail-
ed data in the near wake of an unseparated body of revolution, however,
precluded the assessment of the proposed extension of the boundary-
layer calculation method into the wake, and provided the incentive

to perform a new set of experiments.

The selection of the model shape for these experiments was based
on a number of considerations, as well as on the experience gained
from the previous experiments (Patel et al., 1974). First of all, it
was desirable to select a practically important configuration rather
. than a simple geometric shape. Secondly, in order to highlight the
influence of strong tranaverse surface curvature, it was necessary

to maintain a thick boundary layer over an extended region of the body.

Thirdly, it was essential to avoid separation in the tail region so

e o IR
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that the near wake could be explored in detail., Finally, in order to
avoid the experimental (Patel et al., 1974) and theoretical (Nakayama
et al., 1976b) difficulties encountered in the earlier work with a
conical tail, it was thought convenient to consider a cusped-tail
body so that the transition from the boundary layer to the wake would
be smooth, The study of Parsons and Goodson (1972), published at

the time these experiments were being planned, provided a family of

low~-drag forms, from which the so-called F-57 body was selected. The

experimental investigation of the boundary layer and wake of this
body is described in Chapter II,

Although the overall iteration scheme due to Nakayama, Patel
and Landweber (1976a,b) proved quite successful when applied to the
earlier spheroid measurements, the treatment of the boundary layer
using the integral method, and particularly its extension to calculate
the near wake, required many assumptions which remained untested.
The performance of the integral approach is therefore reexamined in
Chapter III in the light of the new data. It is shown that, although
such methods give adequate information on the gross behavior of the

boundary layer and wake, they are not altogether suitable for inter-

active calculations which require more detailed knowledge of the flow
behavior in the tail region.

Chapter IV therefore describes the development of a more rational
procedure in which the differential equations of the thick boundary
layer and the near wake are solved by means of a numerical method.

This procedure provides not only a more reliable vehicle for the

DT o ARl = TRPRIN Wi |- R 1 Y W " v‘aJI-.-idii




extension of the boundary-layer solution into the wake, but also yields

the detailed information on the velocity profiles required for the
interaction calculations.

The new differential method is incorporated in the iteration
scheme of Nakayama, Patel and Landweber (1976a,b), but with a fixed
matching boundary, as proposed by Mahgoub and Bradshaw (1977).
Chapter V describes the various steps in the complete calculation in
which the extermal inviscid flow is matched with the boundary layer
and the wake by successive iterations at a predetermined boundary in
the inviscid~flow region close to the edge of the boundary layer and
wake., The success of the iterative procedure is demonstrated by
comparison with the data obtained from the low-drag body as well as
the modified spheroid.

Finally, the major conclusions drawn from the study are summa-
rized in Chapter VI,

Interactions between viscous and inviscid flow regions occur
in many situations and the associated literature is vast. The
axisymmetric problem considered here is one of a large class of such
problems., However, in most instances, the influence of the boundary
layer on the extermal inviscid flow is represented by adding the
displacement thickness to the body shape and either accounting for
the near wake by somewhat arbitrary extrapolations (Huang et al.,
1976) or, more commonly, ignoring it altogether. A detailed review

of such procedures is not made here since the primary emphasis in the




present work is placed on the detailed exploration of the flow within

the thick boundary layer and near wake.
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CHAPTER II

EXPERIMENTAL STUDY ON THE LOW-DRAG BODY

II.1 Experimental Setup and Instrumentation

IT,1.1 Wind Tunnel and Model.. The experiments were performed in

the large wind tunnel (Patel et al., 1974) of the Iowa Institute of
Hydraulic Research. The coordinates of the F-57 low-drag body of
Parsons and Goodson (1972) selected for the present study are given

by

y
" 1
¢ -1.1723§; + 0.708&5? + 1.0993£f + 0.36425122

. (0=X=<X )

1 1
9 [(-0.11996{; - 2.58278¢, + 3.525%52 * 0-1?730‘5’:)]2

\ (Xms X<L)

where & =X/X, &, = (LX)/(LX ), X is the axial distance measured
from the nose, r, is the local radius, Xm is the axial location of
the maximum radius T and L is the total length of the body. The
location of maximum radius is Xm/L = 0.4446 and the length-to-maximum-
diameter ratio is L/2rm = 4,2735.

A model was constructed with L = 1,219 m, It was made hollow

and in two parts in order to accommodate a scanivalve which was
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connected to forty-seven pressure taps on the surface. Thirty-two
pressure taps lay on a single generator on the surface, while the
other fifteen were spaced circumferentially at three axial locations,
X/L = 0,104, 0,445, and 0.771, for use in model adjustment. The main
body of the model was made of seasoned wood, but metal nose and tail
pieces, 5.08 cm and 12.70 cm in length, respectively, were used to
provide accuracy and durability. The major features of the model are

shown in Figure 1.

I1.1.2 Model Alignment., The model was mounted in the wind tunnel by

means of eight 0.84 mm diameter steel wires in tension (Figure 1).
Each wire was provided with a screw coupling so that its length could
be adjusted to locate the model at the desired position. Several
means were employed to ascertain axial symmetry of the model in the
wind tunnel:

(A) The static pressures measured along the circumference at
three axial locations were used to guide the preliminary
model position.,

(B) Three 1,651 mm diameter Preston tubes were then mounted on
the surface at X/L = 0.771 at 120-degree intervals. Further
adjustments in model location were made until these tubes
gave nearly equal readings.

(C) A total-head tube and a hot wire were traversed across the

wake of the body at X/L = 1,10 and 1.20 as the final check

on axial symmetry. Satisfactory lateral symmetry was




observed in terms of the profiles of total pressure, mean

velocity and turbulence intensity.

IT.1.3 Instrumentation. Basically the same traversing mechanism as

the one described in Patel et al. (1974) was used for the measurements
in the boundary layer and the wake of the model. Suitable extensions
of the mounting rails outside the tunnel were made to continue the
measurements into the wake,

Micro-manometers and probes of standard design were used for
the total- and static-pressure measurements. The static probe was
mounted on a fixture which enabled the probe to be aligned with the
local flow direction. This method provides somewhat improved accuracy
in static-pressure measurements. The wall shear stress on the body
was measured by using different sizes of Preston tubes with the
calibration of Patel (1965). The wall pressure taps mentioned earlier
were used to measure the surface piessure distribution.

Mean-velocities and Reynolds stresses within the boundary layer
and the wake were measured by means of single-wire and cross-wire
probes using the two-channel, constant-temperature, "0l1d-Gold-Model,
Type 4-2H Hot-Wire Anemometer" and "Type 2 Mean-Product Computer"
(Glover, 1972). These instruments were modified to make them
compatible with the gold-plated series of probes made by DISA. 1In
order to ascertain that proper matching had been achieved and, at the
same time, to establish measurement procedures to be used, a series of

preliminary tests was conducted in fully-developed turbulent flow in |




a 5.08 cm diameter pipe. The measurements on the low-drag body were

commenced only after achieving satisfactory agreement (mean velocity

within 2 percent, and turbulence intensities within 15 percent) with

the data of Laufer (1954) at a pipe Reynolds number of 50,000,

II.1.4 Transition Device, The computations of Parsons and Goodson

(1972) had indicated that transition on the low-drag body would occur
naturally at X/L = 0.475 over a wide range of Reynolds numbers.
Surface pressure distributions and other flow diagnostics on the
model, at a Reynolds number (Re = UOL/V) of 1.2 % 106, indicated that,
in reality, transition occurred as a result of laminar separation
followed by a turbulent reattachment, the bubble being in the neigh-
borhood of the predicted location of transition. In order to eliminate
this somewhat unsteady separation bubble and establish well-defined
conditions for the subsequent development of the turbulent boundary
layer, a circular trip wire of 1.664 mm diameter was wrapped around
the body at X/L = 0,475, Subsequent analysis of the data revealed
that the choice of such a relatively large trip wire was somewhat
unfortunate since its downstream influence (say 100 diameters) may
have persisted up to X/L = 0.6, where the first set of detailed
measurements was made. Nevertheless, since the main body of data of
interest here was collected from stations further downstream, the

overall influence of the trip wire may be considered negligible.




I1.2 Mean-Flow Measurements

All measurements reported here were made at a Reynolds number,
based on the approach velocity UO and the body length L, of 1.2 x 106,
which corresponded to a nominal approach velocity of 15.24 m/s. U0
and the static pressure PO at the end of the tunnel contraction were

monitored throughout the experiments and have been used as reference

conditions to nondimensionalize the data.

IT1.2.1 Surface Pressure Distribution. The static pressure distri-

bution on the body surface is shown in Figure 2. Also shown, for
comparison, is the potential~flow pressure distribution computed using
the method of Landweber (1951). The close agreement between the two
over most of the body indicates that the influence of wind-tunnel
blockage is quite small. The departure of the measured pressure
distribution from the theoretical one over the rear 25 percent of the
body length is a result of the large thickness of the boundary layer
in that region and its interaction with the external inviscid flow.

It is seen that the influence of the increasing boundary-layer thick-

ness is to relieve the inviscid pressure gradient.

11.2.2 Upstream Laminar Boundary Layer. A single set of measurements

was made in the laminar boundary layer upstream of the trip wire at
the axial location X/L = 0.433. The velocity profile obtained by
means of a flattened pitot tube is shown in Figure 3 along with two

members of the Pohlhausen family of profiles, the values of the




Pohlhausen parameter A being chosen to span the value of -1.65 esti-

mated from the local boundary-layer thickness, which was 1.93 mm,

and the local pressure gradient.

I1.2.3 Static Pressure Field. Figure 4 shows the variation of statlc

pressure across the boundary layer and the wake at several axial
positions in the range 0.551 < X/L < 2.472. The convex longitudinal
curvature of the body surface in the range 0.45 < X/L < 0.76 apparent-
ly leads to the substantial increase in static pressure along the
outward normal not only within the boundary layer but also for some
distance beyond the edge of the boundary layer (which was determined
from the distribution of total pressure and is indicated by the dotted
line y = 8). As the longitudinal curvature becomes concave and the
boundary layer thickens as a result of the decreasing transverse
radius r, over the rear one-quarter of the body length, the trends of
the static pressure variation are reversed, indicating that the mean
streamlines are concave. The data in the near wake suggest that the
streamlines become nearly straight within a short distance downstream
of the tail.

The axial variation of static pressure at the edge of the bound-
ary layer inferred from these measurements is compared in Figure 2
with the surface pressure distribution. The magnitude of the pressure
difference between the surface of the body and the edge of the bound-
ary layer is apparent from Figure 2.

The present data have been used to assess the importance of the

static-pressure variation across the near wake in the prediction of
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the overall drag coefficient of bodies of revolution using the con-
ventional Squire-Young-type formula (Patel and Guven, 1976), The
importance of this pressure variation in the boundary-layer-prediction

procedures is discussed in subsequent chapters.,

I1.2.4 Mean-Velocity Profiles. Figure 5 shows the mean-velocity

profiles across the boundary layer and wake at several axial stations.
Here U and V are the components of velocity in the directions tangent
and normal to the body surface, respectively, and Q is the resultant
velocity, i.e. (U2 + Vz)%. Q was measured by means of a single hot-
wire probe and was also obtained from the separate pitot and static-
probe traverses, It is seen that the two sets of data are in close
agreement. The U and V components were measured by means of a cross- .
wire probe., It is known that this technique is not altogether satis-
factory insofar as accuracy of the mean-flow quantities is concerned.
Nevertheless, the data show the relative magnitude of the two compo-
nents and indicate that the normal component attains maximum values in
the neighborhood of X/L = 0.92, where it is roughly 12 to 13 percent
of the tangential component. The implication of this with regard to
the validity of the thin boundary-layer assumptions is obvious.

The velocity and shear-stress profiles measured at the most
downstream station in the wake, namely X/L = 2,472, are compared in
Figure 6 with the most downstream measurements of Chevray (1968) and
Schetz and others (Swanson et al., 1974; Chieng et al., 1974), and

with the asymptotic axisymmetric wake profile. It will be recalled
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that the measurements of Chevray were made in the wake of a prolate
spheroid of axis ratio 6 : 1, where the boundary layer separated some
distance upstream of the tail. The measurements of Schetz and others
were made in the wake of an elongated body of axis ratio 12 : 1,
consisting of a parabolic nose, a cylindrical middle body and a point-
ed stern, and it is not clear whether boundary-layer separation was
encountered before the tail. The velocity distribution in the far
wake is assumed to be (Schlichting, 1968)

U /2 2

UZ = 11 - 0.293( L i (1)

max 2

where U, (= U_ - U) is the velocity defect, U is its value at the
d 0 dmax

wake center, and y; is the radial distance to the point where Ud is
2

one-half of the maximum value Udmax' The corresponding shear-stress
profile is deduced by assuming a constant mixing length across the
wake, It is seen from Figure 6 that the present measurements at
X/L = 2,472 may be regarded as those corresponding to a fully-develop-
ed axisymmetric far wake, where the memory of the body which generated
it is almost eliminated. It is, however, known (Rodi, 1975) that the
mean velocity distribution in an axisymmetric wake continues to depend
on body shape for quite large axial distances.

Figure 7 shows the variations of the velocity Qc along the
centerline of the wake and the total velocity Q5 at the edge of the
boundary layer and wake. It is observed that the velocity at the edge

of the wake reaches the freestream value by about X/L = 1.25. This
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is roughly 2.3 initial wake diameters, or one maximum body diameter,
downstream of the tail, The wake develops under the influence of a
small, favorable, axial pressure gradient over this region. The
maximum velocity defect in the wake, QS - Qc' is also seen to decrease
rapidly within this distance. On the basis of these observaticns it
may be conjectured that the so-called near wake is confined to this
region, and we may expect the measurements further downstream to

conform with the asymptotic wake behavior discussed above.

I1.2.5 Integral Parameters. The velocity profiles deduced from the

pitot and static traverses were integrated to determine the various
types of integral parameters discussed earlier in Patel et al. (1974).
The overall shape of velocity profile is best described by the so-

called "planar" displacement and momentum thicknesses:

e ) goe )
a=f<1-—‘l—)dy a=/”’1-U)dy (2)
1 o qs t 2 5 UB \ Ua

which do not take the axial symmetry of the flow into account. On

the other hand, the physical mass- and momentum-flux deficit areas

in the boundary layer and the wake are given by the integrals

) )
A=/(1-U)rdy- A=./‘U’1—U)rdy(3)
S | Us ¢ S & Us

respective1y+. Here, US is the velocity component at the edge of the

+ In view of the inaccuracies in the direct measurements of U, the
integral parameters have been determined using Q. The error is
within 3 percent for the most severe case in the thick boundary layer.

E
E
i
|
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boundary layer and wake (y = §), tangent to the body surface for the
boundary layer and parallel to the axis for the wake, r is the radial
distance from the axis of symmetry and y is measured normal to the
surface of the body. Thus, r = r, + ycos@, where @ is the angle
between the axis and the tangent to the body surface, for the boundary

layer, and r = y for the wake.

The variations of 82 and A2 with X/L in the turbulent boundary

layer and wake, and the corresponding shape parameters, defined by

—_ 8 3
H= . H=— 4
T A, (4)

are shown in Figure 8., It should be noted that the total drag coef-

ficient CD of the body is related to the asymptotic value A u'of the

2

momentum-deficit area in the far wake via

AN R (5)
D %PUgS S

where D is the drag force, S is a representative area of the body and
P is the density of the fluid. The measurements at X/L = 2.472
indicate that the drag coefficient, based on frontal area, of the
present body (with the trip wire) is 0.0092. 5;, on the other hand,
has no special physical significance, but the parameteriﬁ-indicates
the shape of the velocity distributions,

Finally, the normal distance by which the extermal inviscid-flow

streamlines are displaced outward due to the presence of the boundary

e : ity . 4
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*
layer and the wake, i.e., the displacement thickness § , may be obtain-
ed from the relation (Patel et al., 1974)
*
10 5

*
red (1 +-7 T

cos@) = 8,

for the boundary layer, and

o

1 .
26 =4 (7)

for the wake, The displacement surface deduced in this manner is
shown in Figure 9 along with the physical edge of the boundary layer
and wake. It should be emphasized here that this figure was drawn

to scale without any distortion so that it clearly illustrates what
is meant by a THICK BOUNDARY LAYER. It is particularly interesting
to note the magnitude of the displacement effect of the boundary
layer over the rear one-quarter of the body and that in the near wake,
The implication of this with regard to the boundary-layer and near-

wake computation is discussed later on.

I1.2.6 Wall Shear Stress. As mentioned earlier, three different

Preston tubes of external diameters 1.651, 1.270 and 0.711 mm were
used to measure the wall shear-stress distribution on the body.

Figure 10 shows the results obtained with the largest and the smallest
tubes. The data from the intermediate-size tube lay between these,
The use of Preston tubes, of course, presupposes the validity of the

usual law of the wall even in the thick axisymmetric boundary layer.
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The small but systematic variation in the wall shear stress obtained
with the three tubes indicated the need for an alternative approach.
The velocity profile data were therefore replotted in the form suggest-

ed by Clauser, but using the extended law of the wall proposed by

|
|

Patel (1973), to determine the wall shear stress compatible with that
law. These results are also shown in Figure 10. It will be seen

] ‘ that substantial departures from the usual law of the wall (over the
distance occupied by the Preston tube) are indicated only in the

neighborhood of the tail (X/L>0.94, say).

11,3 Turbulence Measurements

i Hot-wire traverses were made at six axial stations in the bound-
ary layer (X/L = 0,60, 0.80, 0.88, 0,92, 0.96 and 1.00) and six
stations in the wake (X/L = 1.02, 1.06, 1.20, 1,30, 1.40 and 2.47).

The mean-velocity profiles obtained in this manner were discussed

i earlier. The distributions of the four nonzero Reynolds stresses,

namely Eé, ;E, w2 and uv, are shown in Figures 11, 12, 13 and 14,

respectively., It will be observed that two sets of data are shown in
each figure for the station X/L = 1.00, which corresponds to the tail
of the body. The only difference between these is the direction of
traverse. Initially, a traverse was made normal to the axis of the
body and the wake (6 = 0°), but since the semi-angle of the body tail
is 5.7 degrees, another traverse was made (6 = 5.?0) in the direction
normal to the surface of the body at the tail. Figures 11, 12 and

14 show that the results of the two traverses differ appreciably in




18

the distributions of ;é and uv, and the data in terms of boundary-layer
coordinates (6 = 5.7°) are more consistent. It is obvious that this
ambiguity would not have arisen had the tail been exactly cusped.
However, the present data indicate the need for a very careful treat-
ment of the flow in the neighborhood of pointed tails where the change
from the boundary-layer to the wake coordinates occurs abruptly.

This will be considered in Chapter V. The data corresponding to

6= 5.7o are used in the subsequent analysis. The estimated uncer-
tainity level in the measured Reynolds stresses is indicated in

Figure 14.

Insofar as the measurements of the Reynolds stresses in the
thick boundary layer are concerned, it is observed that they are
qualitatively similar to those made earlier in the tail region of a
modified spheroid (Patel et al.,, 1974). Quantitatively, however, the
present data are quite different from the earlier set due to the
different pressure-gradient and surface-curvature histories.

The distributions of shear stress Uv were used in conjunction
with the mean-velocity profiles to calculate the variation of eddy

viscosity,

v =e( 2L ) (8)

- = 4 g—g ) (9)
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They are shown in Figures 15 and 16, respectively. The mixing-length
distributions of the boundary-layer data for the modified spheroid
(Patel et al., 1974) are reproduced in Figure 17 for comparison. The
data indicate a substantial reduction of eddy viscosity and mixing
length as the boundary layer thickens towards the tail. They increase

again with axial distance in the wake, The mixing length reaches a

nearly constant value in the range 0.08< 4/§ <0.10 at the most down-

stream station x/L = 2.47, where, as indicated earlier, the wake

approaches a nearly fully~developed state. The major conclusion to
be drawn from these measurements is that the characteristics of the
turbulence in the region where the boundary layer is thick, and in
the near wake, i.e. over 0.75<X/L<1,25, say, are markedly different
from those of a thin turbulent boundary layer and the asymptotic far
wake,

Yet another quantity that is of interest in the discussion of
the characteristics of the turbulence is the so-called structure
parameter a; = -uv/q?, where g2 = w2 + v2 + w2 is twice the turbulent
kinetic energy. It would be recalled that, for most thin, turbulent
shear layers, ay is nearly constant across the flow and equal to about
0.15., The distributions of a; across the boundary layer and wake of
the low-drag body are shown in Figure 18, The corresponding results

deduced from the modified-spheroid boundary layer (Patel et al., 1974)

are shown in Figure 19. From Figure 18, it is seen that ay remains
nearly constant around 0.14 in the inner one~half of the boundary

layer on the low~drag body and indicates some reduction with normal




distance over the outer half. The data in the wake, however, appear
to indicate nearly constant values again. Figure 19 indicates that

By

ified spheroid, the minimum values of a

diminishes with both x and y through the boundary layer of the mod-
4 being reached at X/L = 0.93.

The observed reductions in [ for both bodies and in a, for the
modified spheroid may be explained on the basis of the joint
influence of the transverse and longitudinal surface curvatures on
the turbulence structure if recourse is had to the results of some
recent studies. Consider first the conventional curvature parameters
in the two sets of experiments shown in Figure 20.

The ratio of the boundary-layer thickness to the transverse
radius of curvature, ﬁ/ro, is seen to be more than twice as large in
the low-drag body as in the spheroid. In both cases, however, 8/ro
is less than 0.4 up to X/L = 0.75 so that the boundary layers may be
regarded as thin up to that station. Over the rear one-quarter of
the body length, however, the influence of transverse curvature would
prevail, not only through the geometrical terms in the equation of
motion, e.g. (Az/r o)(dro/dx) in the integral momentum equation, but
also through any direct effect on the turbulence.

The longitudinal surface curvature parameter «§, where K is
the longitudinal surface curvature, is seen to be quite different for
the two bodies. In the case of the modified spheroid, the curvature

is convex upto x/L = 0.933 and zero thereafter due to the conical

tail, while that of the low-drag body is initially convex and becomes

concave for X/L>0,772.

oy e




Now, several recent studies with nominally two-dimensional

turbulent boundary layers (Bradshaw, 1969, 1973; So and Mellor, 1972,
1973, 1975; Meroney and Bradshaw, 1975; Ramaprian and Shivaprasad,
1977, 1978; Shivaprasad and Ramaprian, 1977, 1978) have indicated that
even mild (k§~0.01) longitudinal surface curvature exerts a dramatic
influence on the turbulence structure. In particular, it is noted
that quantities such as the mixing length X the structure parameter
a; and the shear-stress correlation coefficient ﬁ?/({iigjiig) are
influenced markedly, and experiments indicate that convex streamline
curvature leads to a reduction in these, whereas concave curvature
has an opposite effect. While these studies in thin boundary layers,
where the streamline curvature is dictated by that of the surface,
would tend to indicate that the somewhat larger reduction in A
(compare Figure 17 with Figure 16) and the drastic reduction in ay
(compare Figure 19 with Figure 18) observed on the modified spheroid
may be attributed to the large, prolonged, convex longitudinal
curvature of the surface, it should be noted that the rapid growth of
the boundary layer over the tail tends to cancel out some of the
convex curvature of the steamlines. Nevertheless, in view of the fact
that the longitudinal streamline curvature in both experiments is
large, it is possible that a part, if not all, of the changes in
parameters such as £ and a, may be due to that factor.

Bradshaw (1973) has examined a vast array of experimental data,

which include surface curvature, buoyancy, compressibility, rotation

and other effects, to suggest that, whenever a thin shear layer
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experiences an extra rate of strain, i.e., in addition to the usual
one, BU/ay, the response of the turbulence parameters is an order of
magnitude greater than one would expect from an observation of the
appropriate extra terms in the mean-flow equations of momentum and
continuity. Since the convergence of the streamlines, in planes
parallel to the surface, in the present axisymmetric flow introduces
an extra linear rate of strain, which is proportional to dro/dx, we
may expect to see a direct effect of the transverse curvature on the
turbulence. A detailed examination of the relative magnitudes and
sense of these extra rates of strain on the two bodies indeed con-
firmed the observed reductions in the length-scale parameter A

In conclusion, it is noted that the turbulence measurements
indicate, at least qualitatively, the importance of both the longitu-
dinal and transverse surface curvatures. The quantitative description
of these effects is pursued further in Chapter IV, where a simple
heuristic model, due to Bradshaw (1973), is examined in order to
obtain a turbulence closure equation for the solution of the differ-
ential equations of the thick boundary layer and near wake.

The complete set of data obtained from this investigation has

been presented in a report by Patel and Lee (1977).

o
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CHAPTER III

ASSESSMENT OF THE INTEGRAL METHOD

Patel (1974) has developed a simple integral method for the
calculation of the thick axisymmetric turbulent boundary layer.
Nakayama et al. (1976b) extended that to calculate the near wake by
making some additional assumptions. Since only limited data were
available at the time those methods were proposed, it is of interest
to use the data from the low-drag body to verify the assumptions made

in the boundary-layer method as well as those made in its extension

to wakes.
ITI.1 TIntegral Correlations

The method of Patel (1974) is based on that of Head (1958) for
thin two-dimensional boundary layers. It involves the simultaneous
solution of the momentum integral equation for the thick axisymmetric
boundary layer (Patel, 1974; Nakayama et al., 1976b), and an equation
relating the rate of mass entrainment into the boundary layer to the
shape of the velocity profile, together with a number of auxiliary
relations between the planar and axisymmetric integral parameters

deduced from assumed velocity-profile shapes,

(1A2 Az dU5 1
+(H+2)U—6-dx -TCfro-Ik-Ip=O (10)




with =« —Ug— rdy (11)
o U
S
) p - V2
R d 5 5
and Ip = —-UZ fo v — ( - 5 )dy (12)
i d 1 2 +
g (Us(z 8 - A, +—=— §cos)] (13)
E " Ugrsh o dx 5\ To 1 2

with g =Tt dcosg, hy = 1 + k3 and the quantity within the square
brackets represents the mass flux within the boundary layer.

For thick axisymmetric boundary layers, the additional assump-
tions required are: that the empirical correlation between the
entrainment shape parameter;Te = (8 -'E;)/E; and the usual shape
parameter-ﬁ; and the correlation between the entrainment coefficient
CE andrﬁi, are the same as in two-dimensional flow, provided the shape
parameters are based only on the shape of the velocity profile (i.e.
planar definitions are uséd), and that the friction coefficient Cf
is related to H and RSé via a two-parameter family of velocity profiles.

The assumption concerning the shape-parameter correlation was
verified directly in Nakayama et al. (1976b) using the then available
data from boundary layer and wakes. Figure 21 shows that the data

from the low-drag body support this observation. Upon closer

+ This definition of CE differs slightly from that of Patel (1974%) and
is in agreement with™the improvement suggested by Nakayama et al.

(1976b) and Granville (1975).
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examination, however, it is seen that there is a systematic departure i

from the boundary-layer correlation, and that the data from the most

downstream wake stations are in better agreement with the};i vs. H
relation deduced from the asymptotic wake profile of equation (1).
Wake calculations have been performed using both correlations to 5
demonstrate their influence,
An attempt was made to deduce the variation of CE with.;; using
equation (13) and the measured values of the quantities appearing
therein. The inaccuracies associated with the differentiation in
equation (13), however, masked any systematic trend, and therefore
the previous assumption that the correlation of Head continues to
apply in the wake has been retained. The influence of this could then
be determined by the performance of the overall solutions., .
The method of Patel (1974), with the modification of Cp noted
earlier, was used to predict the development of the boundary layer
and the wake of the low-drag body. Since the tail of the low-drag
body is nearly cusped, it was not necessary to change the coordinates
abruptly at the tail and make a special analysis, as in Nakayama
et al. (1976b), in order to continue the calculation into the wake.

The assumption of an exponential velocity-profile family in the wake,

e T T ——

suggested in Nakayama et al. (1976b), namely

i
3
“

U —_ 2
X5 =1 - ucexp[-)\(—g—) ] (14)
P U
where Uc =1 - U;
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Uc is the velocity at the wake center and A is a parameter, was
retained. The inter-relationships between the planar and the axi-
symmetric integral parameters were obtained in Nakayama et al. (1976b)
by using A = 3.22 in equation (14), performing the integrations in
equations (2) and (3) up to y/§ = 1, and curve~fitting, In the
present work, this procedure has been simplified by setting the outer
limit of integration equal to infinity so that the necessary relations

are obtained analytically. These are

k, g )
A = )
1 2 2
Uc(kl " Uc)
N k2 X k3 e £
Bar=i =3 %
Uc(kl 'y Uc)
> (15)
I H = kz
k, - KU
3 k
= _ 1
e T S0,
1 C o

where ky = JE; k, = 4/m, and k, = 2/m. It is of interest to note

3

that these relations are independent of A and therefore a particular

constant value of A is not required.

III.2 Comparison of Calculations with

Experimental Data

The boundary-layer calculation on the low-drag body was started

at X/L = 0,70, where the boundary layer has recovered from the

-
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influence of the trip wire, and terminated at the tail. The initial
conditions for the wake were provided by requiring the continuity of
the physical mass- and momentum-deficits there; i.e, A2 and H remain
continuous in going from the boundary layer to the wake. Since the

integral method is basically a two-parameter method, this leads to a
E discontinuity of the other parameters, such as the boundary layer

| thickness, 8. The calculation was terminated in the far wake, where
the momentum deficit approaches a constant value.,

A set of calculations was first performed using only the pressure

distribution along the body surface and wake centerline (i.e. with

I, =I_=0 in equation (10), as suggested by Patel (1974)), and the

k™ p ey
A
two alternative shape-parameter relations H (H) (Figure 21) in the

wake., The results of these are shown in Figure 22 and identified as ;

e

curves A and B, It is seen that the method predicts most of the

quantities reasonably well in the boundary layer. The performance of

the method in the wake is not as good as that for the boundary layer.

This is due partly to the retention of the boundary-layer entrainment

PR

correlation, and more likely to the inadequacy of the exponential
velocity-profile family used to describe the velocity distribution

in the near as well as the far wake. The difference between curves

A and B, which correspond to the two different shape-parameter
relations, clearly indicates the need for the introduction of another
parameter which would govern the gradual change from the boundary-layer
profile at the tail to the asymptotic profile in the far wake,

Although such an additional parameter would eliminate the discontinuity
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in & (Figure 22a) and improve the prediction of the near wake, it is
not entirely clear what additional equation could be used to determine
its streamwise distribution within the framework of an integral method.
Another possible source of the disagreement between the calcu-
lations and experimental data is the use of the pressure distribution
on the body surface and the wake centerline to compensate for the
neglected static pressure and curvature integrals (IP and Ik) in the
momentum integral equation. An attempt has been made to evaluate
these integrals from the experimental data., The procedure that has
been adopted is described in the Appendix A. Although this involves
several approximations and inaccuracies stemming from the differenti-~
ation of ill-defined quantities, such as the boundary-layer and wake
thicknesses and the normal velocity at the edge of the boundary layer
and the wake, it is seen from Figure 23 that the two integrals are
not small in comparison with some of the other terms in the momentum
integral equation. A similar conclusion was drawn by Patel and Guven
(1976) from their analysis of the same data in order to explore the
importance of the near wake in the calculation of the viscous resist-
ance of axisymmetric bodles using conventional extrapolation formulae.,
A second set of calculations was performed in which the momentum
integral equation was solved using the estimated values of Ip and Ik
and the velocity distribution measured at the edge of the boundary
layer in place of that inferred from the pressure distribution on the
body surface and the wake centerline., The effective value of Ik in

the near wake was estimated simply by fairing the value at the tail
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to zero in the far wake, as shown in Figure 23. The results of these
calculations are shown in Figure 22 as curves C and D, corresponding
again to the two shape-parameter relations for the wake, The
relatively small differences between this and the previous set of
calculations suggest that the use of the pressure distribution on the
surface and wake centerline to account for the effects of IP and Ik'
as recommended by Patel (1974), is a good engineering approximation,
However, the results of the calculations also indicate that such an
approximation can be discarded in favor of the correct momentum
integral equation, equation (10), provided the values of Ip and I

can be determined a priori, as is the case in an interactive scheme

such as that of Nakayama et al, (1976b).

T o LBIOD = THINS TN < S ———




T

e o e e S oo i LA el e SRR

30

CHAPTER IV

DEVELOPMENT OF THE DIFFERENTIAL METHOD

In the previous chapter, the simple integral method of Patel
(1974) and its extension to the wake were re-evaluated in the light
of the experimental data from the low-drag body. Although the method
appears to be adequate for rapid calculations, it involves several
gross assumptions and yet does not give the detailed information that
is necessary to incorporate it in an iterative calculation procedure,
such as that of Nakayama et al. (1976a,b), so that a complete solution
can be obtained for the flow in the tail region. The difficulties of
the integral method arise from the treatment of the static-pressure
variation across the flow and the representation of the velocity
profiles in the boundary layer and wake by a limited number of param-
eters, Nakayama et al. (1976b) used a simple profile family for the
normal component of velocity to evaluate the integrals Ip and Ik in

the momentum equation and thereby introduced additional approximations.

Further complications resulted from the separate integral analysis
that was required to continue the boundary-layer solution into the
wake at the tail of the body. It was therefore decided to explore
the possibility of using a numerical method for the direct solution
of the differential equations of a thick, axisymmetric boundary layer
and wake, since then the information required for the calculation of

the external flow could be obtained much more directly.




e

IV.1 Differential Equations

On the basis of the experimental observations and order-of-
magnitude considerations, it can be shown (Bradshaw et al., 1967;
Nakayama et al., 1976b) that the momentum and continuity equations

of a thick, axisymmetric turbulent boundary layer are

h,rT
U_ U U K i &p__1 3,1 - *
h, ox TV Ay *h P PR o rh, 3¥y' P ) =0 (16)
il 1 1 1
U ¥V, ,, 8V __x 4,2, 1L 8p _ f
h, ax =X ¥y h. L P dy 0 (1?) b
1 1 1
=) 3
E(UI') + Ty(rhlv) =0 (18)

where h1 =1 +ky; T=-puv + #-gly, u being the dynamic viscosity of
the fluid, and the other symbols have been defined earlier. Equation
(17), in which the viscous and turbulence terms have been neglected,
implies that the variation of static pressure across the boundary
layer is associated primarily with the curvature of the mean-flow
streamlines.

Equations (16), (17) and (18) contain four unknowns, namely U,

V, p and uv. Even when a turbulence model is introduced for uv, the

resulting set of equations cannot be solved by a marching technique.

+ In Appendix B the magnitude of each term in equation (16) is
analyzed on the basis of the data from the low-drag-body experiment.
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This is due to the presence of the pressure as an unknown, However,
one approach to the solution of this set of equations is to solve
equations (16) and (18), by a marching procedure, for U and V with

some assumed pressure field p(x,y). The y-momentum equation can then
be used to update the pressure field. This is an iteration scheme in
which the solution of p and the y-momentum equation lags one iteration
behind the velocity field. Since the physical problem under consider-
ation requires the matching of the boundary layer and wake solution
with the external flow, and this is accomplished by an iterative
procedure, the uncoupling of the y-momentum equation from the equations

for x-momentum and continuity does not pose a serious difficulty.
IV.2 Turbulence Model

Before describing the solution procedure, the turbulence model
of Bradshaw, Ferriss and Atwell (1967) that has been adopted for

the present problem is discussed. According to that model, the equa-

tion for the conservation of turbulent kinetic energy is transformed

into one for the Reynolds stress T = -Puv:

1 , U 2T 3Ty _ ., dU _ d 3, T |_"max
2a, ( h, ?x s ay) & y e B BSAIG /2| P )
1\

+—i—pﬂz—=0 (19)

where a1(=-ﬁ;/q2) is a constant (=0.15), G(y/8) is a diffusion function

and £(y/8) is a length-scale function identified with the usual mixing
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length. Bradshaw et al. (1967) have demonstrated that for a variety
of thin two-dimensional boundary-layer flows, G and £ may be regarded
as universal functions of y/§, as shown in Figure 24, and that
a1 = constant is a realistic assumption., As discussed in Chapter II,
the data from the two experiments of thick boundary layer and wake,
on the other hand, suggest that ay is not constant across the boundary
layer and that the distribution of £ changes markedly as the boundary
layer thickens. Numerical experiments performed here and elsewhere
also indicate that the overall prediction of the boundary layer is
primarily dependent on the assumption concerning ¢, but quite insen-
sitive to the value of ay and the diffusion function G, In order to
utilize equation (19) in the thick boundary layer and the near wake
it is necessary to allow for the variation of £ from the universal
distribution in a thin boundary layer.

Bradshaw (1973) has suggested that, for thin shear layers and

small extra rates of strain, a simple linear correction formula for

£ is adequate. Thus, he proposed

£ ae
=1 + 30/37 (20)

[¢]

=

where Lo is the length scale with the usual rate of strain 3U/3y, £
is the length scale with the extra rate of strain e, and a is a
constant of the order of 10, As noted earlier, for the axisymmetric

problem being considered here, there are two extra rates of strain:
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due to the longitudinal curvature, and

Sl L R U (22)
& I ey T % i

due to the convergence or divergence of the streamlines (in planes
parallel to the surface) associated with the changes in the transverse
curvature, The former is a shearing strain while the latter is a
plain strain, and it is not certain whether the two effects can be
added simply in using equation (20), as recommended by Bradshaw (1973).
If this is the case, however, we would expect a greater reduction in
£ in the tail region of the modified spheroid, where & is positive
and dro/dx is negative, than on the low-drag body, where K becomes
negative and would therefore tend to offset the influence of the
negative dro/dx. Although the data shown in Figures 16 and 17

appear to bear this out to some extent, a direct comparison between
equations (20), (21) and (22) and the data was not attempted, in view
of Bradshaw's (Bradshaw and Unsworth, 1976) assertion that equation
(20) should be used in conjunction with a simple rate equation which

accounts for the upstream extra rate-of-strain history. He proposed

£ =1 + aeeff ( 23)
Lo BU7ay

and a L -
ax (Cers) = TT108 (24)
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where e is the actual rate of strain, Corf is its effective value and
108 represents the "lag length" over which the boundary layer responds
to a change in e, In order to determine the merit of this proposal,
it is of course necessary to incorporate it in an actual calculation
and make a comparison between the prediction and measurement. Such

an attempt has been made here,
IV.3 Method of Solution

A numerical method available for the solution of equations
corresponding to equations (16), (18) and (19) for a thin two-dimen-
sional boundary layer was modified to introduce the longitudinal-
and transverse-curvature terms. Changes were made such that a
prescribed variation, across the boundary layer, of the pressure
gradient 3p/3x(y) could be used. This implies that the pressure
field is known a priori. The solution of equations (16), (18) and
(19) together with equations (21), (22), (23) and (24) can then be
obtained through step-by-step integration by marching downstream from
some initial station where the velocity and shear-stress profiles are
prescribed. A staggered-mesh, explicit numerical scheme, similar
to that used by Nash (1969), was used to integrate the equations in
the domain between the first mesh point away from the surface (or the
wake centerline) to some distance, typically 1.258 outside the bound-
ary layer and the wake., The fifteen mesh points across the boundary
layer are distributed nonuniformly to provide a greater concentration

near the wall and the wake centerline, Instead of carrying out the

oy — t& i " o ,W,L i., i i o i
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integration of the equations up to the wall, i.e. through the viscous
sublayer and the blending zone, the numerical solution at the first
mesh point, located in the fully turbulent part of the boundary layer,
is matched to the wall using the law of the wall,

In the extension of the method to the wake, the matching between
the first mesh point and the wake centerline is accomplished by using
the conditions dU/dy = 0 and T = O on the centerline. The main
differences between the boundary-layer and wake calculation procedures
are therefore the treatment of the flow between the first mesh point
and the wall or the wake centerline, and the change in 20 at the tail
(see Figure 24). Note that the local value of 4 in the boundary layer
as well as the wake is different from £ due to the lag equation (23)«
However, the length scale recovers the reference distribution ‘o
asymptotically in the far wake. Since the near-wake data from the
low-drag body indicated that most of the adjustment from the boundary
layer to the far wake is accomplished over roughly five initial wake
thicknesses, the lag length for the wake calculation was taken to be
55, rather than 106 used for the boundary-layer calculation on the
basis of Bradshaw's (1973) suggestion. Since the extra rates of
strain vanish at the tail (x = 0, dro/dx = 0), the length scale
approaches the Lo distribution within about five wake radii downstream

of the tail.,
IV.4 Comparison with Experimental Data

Preliminary calculations performed with the differential method

described above quickly indicated that the extra rates of strain in
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both experiments were much larger than those examined by Bradshaw
(1973) in support of the linear length-scale correction formula of
equation (23). 1In fact, the use of the linear formula led to a rapid
decrease in £ and indicated almost total destruction of the Reynolds
stress across the boundary layer in the tail region and the near
wake, In view of this, recourse was had to the nonlinear correction

formula in the form suggested earlier by Bradshaw (1969), namely

-1

4 . *Coff
iy [1 " 30/ay (23a)
which reduces to the linear one, equation (23), for small extra rates
of strain. Equations (16), (18) and (19), together with (21), (22),
(23a) and (24), were then solved with the following inputs:

A. the measured wall pressure distribution pr (i.e. no normal

pressure variation) and £(y/§) = ‘o(yfb)

B, the measured pr with £(y/§) corrected for only the longi-
gc)
C. the measured C, with £(y/8) corrected for only the stream-

tudinal curvature (e =

line convergence (e = et)
D. as above, but with e = e + ey
E., using e = 8, + oy in equations (23a) and (24), and a

variable 3p/dx across the boundary layer evaluated by assum-
ing a linear variation in 3p/3x from y = 0 to y = 6 and
using the measured values of pr, C_. and &.

PS
Thus, case A corresponds to an axisymmetric boundary layer with thin,




two-dimensional boundary-layer physics. The other cases enable the

evaluation of the relative influence of the extra rates of strain
as well as the static-pressure variation through the boundary layer.
The calculations were started with the velocity and shear-stress
profiles measured at X/L = 0.662 on the modified spheroid and at
X/L = 0,601 on the low-drag body.

The major results of the calculations are summarized in Figure
25(a-m) for the low-drag body and in Figure 26(a-i) for the modified
spheroid. However, in the latter case the calculations are restricted
to the boundary layer since detailed measurements were not made in the
wake., Both figures contain comparisons between the experimental and
calculated velocity, shear-stress and mixing-length profiles at a
few representative axial stations as well as the development of the
integral parameters 5;, AQ, ;i H and Cf with axial distance. In the
interest of clarity, the results of all the calculations (cases A
through E) are shown only at one axial station (Figures 25c and 26c),
those at other stations being qualitatively similar.

Considering the most detailed figures, 25¢ and 26c, first, it
is clear that the predictions are rather poor when the length scale ¢
is assumed to be the same as that in a thin boundary layer (case A).
This is particularly evident in the prediction of the shear-stress
profiles across the boundary layer and the near wake., Incorporation
of the correction to L to account for the extra rate of strain due
to longitudinal curvature (cae B) leads to a marginal improvement in

the case of the low-drag body and a dramatic improvement for the
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modified spheroid. This is to be expected in view of the grossly
different surface~curvature histories of the two bodies as noted
earlier (Figure 20). Nevertheless, it is clear that this correction
by itself is not sufficient to account for the differences between

the data and the calculations with thin boundary-layer turbulence
models (case A). The application of the correction for the extra rate
of strain due to the transverse curvature (case C) appears to account
for a major portion of these differences for both bodies. The
influence of transverse curvature is in fact seen to be somewhat
larger for the low-drag body, as would be expected from the fact that
5/rO is greater in that case (Figure 20). The simple addition of

the effects of the two rates of strain (case D) leads to a significant
improvement in the prediction of both the velocity profiles and the
shear stress profiles. The incoporation of a variable pressure {
gradient across the boundary layer (case E), which is an attempt to ,
account for the normal pressure gradients, appears to make a signif- 3
icant improvement in the prediction of the velocity profile in the
case of the modified spheroid, but its influence is small, and con- ;
fined to the outer part of the boundary layer, in the case of the
low-drag body.

Examination of the velocity and shear-stress profiles at several
axial stations shown in Figures 25(b-g) and 26(b-d) suggests that the
incorporation of the nonlinear length-scale correction of equation
(23a), the associated rate equation (24) and the static-pressure

variation in the equations of the thick boundary layer, which already




include the direct longitudinal- and transverse-curvature terms, leads

to satisfactory overall agreement with the data for both bodies. It
is particularly noteworthy that the velocity and shear-stress dis-
tributions in the far wake (X/L = 2.472) of the low-drag body are
predicted with good accuracy. The level of agreement can obviously
be improved further by appropriate modifications in the empirical
functions in the turbulent kinetic-energy equation and changes in the
lag-length used in the length-scale equation. The predictions of the
shear-stress profiles are consistent with those of the mixing-length
distributions shown in Figures 25(h,i) and 26e insofar as lower shear
stresses correspond to an over-correction in the mixing length. These
comparisons provide further insight into the manner in which the
length scale must be modified to improve the correlation between the
calculation method and experiment. It is apparent that the consistent
discrepancy between the calculated and measured velocity and shear-
stress profiles near the outer edge of the boundary layer and wake
stems from a poor representation of the length-scale distribution.

It is interesting to note that, for both bodies, the calculation
procedure predicts normal components of mean velocity which are of
the same order of magnitude as those measured. The relatively close
agreement between the predictions and experiment for both components
of velocity is perhaps a good indication of the axial symmetry
achieved in the experiments. The large values of the normal velocity
and the influence of static-pressure variation noted above would

appear to indicate that incorporation of the y-momentum equation in

e
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the calculation procedure would be worthwhile., Note that this has
been avoided in the present calculations by using the measured
pressure distributions at the surface and the outer edge of the
boundary layer.

Finally, the comparisons made in Figures 25( j-m) and 26(f-i)
with respect to the integral parameters show several interesting and
consistent features., It is observed that the prediction of the phys-
ical thickness of the boundary layer and the wake is insensitive to
the changes in f as well as the inclusion of static-pressure variation.
The underestimation of the thickness is associated with the discrep-~
ancy, noted earlier, in the velocity profile near the outer edge of
the boundary layer and wake. The planar momentum thickness 3; and
the momentum-deficit area A2 are also insensitive to changes in 4.
The variation of static pressure across the boundary layer appears
to make a small but noticeable contribution to the development of A2

in both cases. However, it is not large enough to account for the

differences between the calculations and experiment. The predictions

of the shape parameters-ﬁ'and H, presented in Figures 251 and 26h,

appear to be satisfactory, especially in view of the rather large

scale of the plots. Nevertheless, there is a systematic difference

between the data and the calculation in the tail region and wake of

the low~drag body. As indicated earlier, this can be improved by

modifications in the empirical functions and the lag length., The

predictions of the wall shear stress, shown in Figures 25m and 26i,

indicate that the present method gives acceptable results for both f

bodies.
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CHAPTER V i

VISCOUS-INVISCID FLOW INTERACTION

The differential method for the calculation of the boundary
layer and wake was described in the previous chapter. Note that the
method involves the solution of the x-momentum, continuity and tur-

bulent kinetic-energy equations to determine the velocity and shear-

stress distributions. Thus far, it has been assumed that the vari-
ation of pressure, p(x,y), along and across the boundary layer and

wake is known, so that the y-momentum equation is not required. The
performance of the method has been assessed by using the measured

pressure distribution.,

In order to solve the problem completely, however, it is
necessary to include the pressure as an unknown and therefore incor-
porate the y-momentum equation into the solution procedure. Since
the pressure boundary condition at the outer edge of the boundary

layer and wake is not known a priori, it is also necessary to solve

: ) for the irrotational flow exterior to the boundary layer and wake,

and match the inner and outer solutions at a prescribed fixed boundary |
! . just outside y = §, i.e. at Yy = 1.258, where § is the boundary-layer ,
i thickness from the first boundary-layer and wake solution. The over-
| all solution strategy is therefore similar to that proposed by

Nakayama et al. (1976a,b). The main difference lies in the method of

h.iL-—-: o ————. St I T e
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solution of the boundary layer and wake, since it is proposed to use
the differential method in place of the integral approach.

Assume that the shape of the body, the Reynolds number and the
location of transition are all prescribed. The objective of the
complete solution is then to determine (a) the pressure distribution
on the surface of the body and along the centerline of the wake, and
(b) the characteristics of the boundary layer and wake., The latter
would include velocity and shear-stress profiles and the variation of
static pressure across the flow. This information can then be used
to obtain the resistance of the body. The solution involves the
following steps:

(A) Calculation of the inviscid flow past the body with the

boundary layer and wake neglected,

(B) An approximate solution of the boundary layer and wake,
using only the surface pressure distribution obtained in
step (A), to determine yﬁ(x) and wh(x), where ¢h is the
stream function at the boundary Yy

(C) Solution of the exterior irrotational flow (y >8) using
the ¢h(x,yﬁ) obtained in step (B) or step (E). This yields
the pressure distribution pM(x) along Yy

(D) Integration of the y-momentum equation (1?) from Yy to
y = 0 using the velocity field determined in the previous
boundary layer and wake calculation. This yields p(x,y)

within the boundary layer and wake. Differentiation yields

ap/ax(y).

—————




(E) A recalculation of the boundary layer and wake using

ap/ax(y) to determine the velocity field as well as ¢h(x).
(F) Repetition of steps (C) through (E) until convergence is

obtained within a specified tolerance level.

In what follows some of the peculiarities of the calculaticns

in the various steps for the low-drag body and the modified spheroid

are described briefly.

V.1 1Initial Inviscid Solution :

The initial inviscid-flow solution may be obtained by one of

several well known methods. Here the method of Landweber (1951),

based on an integral equation of the first kind, has been used. The

results of such a calculation for the low-drag body are shown in

Figure 2. When a rear stagnation point is present (as in the case of
the modified spheroid), the subsequent boundary layer calculation
would predict separation ahead of the tail, although there is no
separation in reality due to the relief of the pressure gradient by
the viscous-inviscid interaction., This difficulty is then overcome

by arbitrarily prescribing a lower tail pressure and fairing it to

the inviscid solution over a short distance upstream of the tail. An

initial guess for the variation of pressure along the centerline of

e e

the wake, required in the calculation of the wake, is also made by

providing an exponential reduction in pressure from the tail to that

in the approach stream over a distance, 0.5L, from the tail.
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V.2 First Solution of the Boundary Layer and Wake

This calculation is started from the nose of the body. The

laminar boundary layer is calculated by an axisymmetric-flow version

of the method of Thwaites (Schlichting, 1968). This calculation is

<oven ey

terminated at laminar separation or the prescribed transition location,

whichever occurs first.

The initial velocity profile for the turbulent boundary layer h
is constructed by using Coles' profile family because the boundary |
layer is still thin immediately after transition, The parameters Cf
and 8 required to determine the profile are obtained through itera-
tion on known values of ﬁ-and gé. With natural transition, gé is
known from the laminar solution and the correspondinglﬁ is obtained

by using the equilibrium boundary-layer relations of Nash (1965).

However, since artificial turbulent stimulators were used in the two
experiments, the above option in the computer program was not exer-

cised. Instead, the values of C_. and § downstream of the transition

£
devices were obtained by trial and error, i.e. by matching the

calculations and experiment at the first measuring station on the two
bodies. Special care was needed for the modified spheroid due to the

rather long distance between the transition device and the first

measuring station. Known results from the iteration scheme of
Nakayama et al. (1976a,b) were used in order to avoid lengthy cal-

f culations in the trial and error process.

; The turbulent boundary-layer and wake calculations are performed

using the differential method described in Chapter IV, Note that this

L}—-———‘:"‘ e TN o T ———
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method is applicable to thin as well as thick boundary layers. In

the first boundary-layer and wake solution, the pressure distribution
obtained from the initial inviscid solution, with the modification
near the tail, is used, and the variation of pressure across the flow

is ignored.

V.3 Solution of the Flow Exterior to the

Boundary Layer and Wake

The method of Nakayama et al. (1976a) has been used for the
calculation of the potential flow in the semi-infinite region exterior
to the boundary layer and wake. It was found that the solution for
the velocity distribution at the edge of the boundary layer and wake
is very sensitive to the input boundary conditions, namely the values
of ¢M(x) and yM(x). This difficulty was alleviated by smoothing the
distributions of ¢N and N obtained from the boundary-layer and wake
calculations in the interval 0.8<X/L<1.2, prior to their use in the

inviscid solution.
V.4 Integration of the y-Momentum Equation

With the introduction of the continuity equation, the y~-momentum

equation (17) can be written

2
d /Py _ _UVsing + V~cos@ 1 2 2 QU a(uv
3P - etng 2 Vocoud , Ali? 4 1) + 2 BY - 2 (a70)

This can be integrated to obtain the pressure field p(x,y) by using




the previously calculated velocity field U(x,y) and V(x,y). This

form is to be preferred over the original form involving BV/ax, since
the differentiation of UV with respect to x is somewhat better behaved
than that of V with respect to x. Nevertheless, the last term in

equation (17a) leads to unavoidable inaccuracies. A central-difference

formula was used to approximate it, and since V: ou is calculated as

ox
part of the previous solution, the integration itself is quite simple.
However, owing to the rapid growth of the boundary layer and the use
of the staggered-mesh scheme in the boundary-layer solution, there
is a substantial loss in the accuracy with which the pressure field
could be determined. This became more apparent when the calculated
pressure field was differentiated with respect to x to determine
ap/ax(y). Since the accuracy of this part of the solution could not
be improved without a complete revision of the numerical scheme for
the boundary-layer calculation, which is an immense task, two sim-
plifications were adopted: (a) The y-momentum equation was integrated
up to y = 0, i.,e, the surface of the body or the wake centerline, to
determine pw(x), and 3p/3x(y) was assumed to vary linearly between
aps/ax and apw/éx. (b) This variation of the pressure gradient
across the boundary layer and wake was introduced into the interaction
procedure only after performing three iterations with the constant
pressure assumption, The first of these represents an approximation,
but the measured pressure distributions (see Figure 4) indicate that
it is realistic., The second assumption simply recognizes the inaccu-

racies occurring in the integration of the y-momentum equation and
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postpones its introduction into the iteration procedure to avoid an
accumulation of errors.

When the above procedure was used on the modified spheroid, the
discontinuity in the surface curvature produced a jump in pw(x).
Since the variation of the pressure across the flow is associated
with the curvature of the streamlines within the boundary layer rather
than that of the surface, recourse was had, in this case, to the
curvature of the displacement surface., In fact, it is felt that this
procedure is more realistic in all cases since the curvature of the
displacement surface is more representative of the mean streamline

curvature,
V.5 Incorporation of the Differential Method

The differential method developed in Chapter IV was incorporated
into the present solution procedure but with a more thorough con-~
sideration of the coordinate discontinuity at the tail of the body.
When the tail angle is nonzero, the coordinate system, which follows
the surface of the body and the centerline of the wake, has to be
changed abruptly at the tail. To account for this, Nakayama et al.
(1976b) performed a separate analysis in a conical region beyond the
tail (see Figure 1 in Nakayama et al., 1976b) and used the conserva-
tions of mass and momentum to obtain the initial conditions for the
wake calculation a short distance downstream of the tail., More
recently, Bradshaw (1978) has suggested the use of interpolation

techniques to resolve the velocity components and Reynolds stresses




calculated at the trailing edge in boundary-layer coordinates into !
those in the wake coordinates. The former neglects the most important ;
region in the near wake and is restricted to the integral approach, !

The latter is sound theoretically, but the associated numerics leads

to inaccuracies. A new approach has therefore been adopted in the
present work, ;

The region of interest is shown in Figure 27. The boundary

layer calculation is continued in the usual coordinates up to station

A so that the velocity and shear stress along AO are known. In oxrder

to start the calculation, however, it is necessary to calculate the

velocity components UWake and Vwake along OC, where C is the tail,

This is accomplished as follows. The distance AC, which can be de-

termined readily from AO and the tail angle 90 (AC is usually of the
order of one-half the local boundary-layer thickness) is divided
into two equal intervals., The boundary-layer solution is then
advanced from AO to BO and then to CO by using the necessary unequal

longitudinal ster size Ax(y). The associated program logic is simple

and will not be described here, After the velocities U and V along

CO0 are found, the components Uwake and vwake are determined by simple
coordinate rotation., Note that the Reynolds stress uv calculated
along CO does not change with the coordinate rotation since, according

to the present turbulence model, it represents the scalar, turbulent

kinetic energy.
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V.6 Convergence

The iterative interaction procedure was performed for the low-
drag body as well as the modified spheroid. In each case, converged
solutions were obtained with five to six iterations. The primary
results are presented in Figures 28(a,b) and 29(a,b). The initial
pressure distribution is shown by the zeroth iteration curve labelled
0, and the successive solutions are indicated by the iteration numbers
1 through 6,

From Figure 28a it is seen that the pressure distribution along
the edge of the boundary layer and wake of the low-drag body converges
rapidly and that the converged solution is in good agreement with the
data., The pressure distribution on the surface of the body and along
the wake centerline, shown in Figure 28b, is the same as that shown
in Figure 28a for the first three iterations due to the initial
neglect of the static-pressure variation. The introduction of the
y-momentum equation after the third iteration rapidly changes the
solution and brings it into satisfactory agreement with the experi-
mental data within two further iterations. However, small changes
continue to occur in the solution. These are attributed to the in-
accuracies in the integration of the y-momentum equation noted earlier,
Figure 28c shows the fixed boundary along which the boundary-layer
solution is matched with the inviscid solution, and the value of the
stream-function, ¢h’ obtained from the successive iterations of the
potential flow, The good agreement with the experimental ¢M indicates

the reliability of the present method.
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The behavior of the solutions for the modified spheroid, shown
in Figure 29(a,b) is qualitatively similar to that of the low-drag
body. The nearly constant pressure at the edge of the wake, predicted
in the range 1.1<X/L<1.2, and the somewhat abrupt change in CP5
and pr around X/L = 1.2 is, however, surprising. An examination of
the boundary conditions used for the calculation of the external flow,
namely ¢ﬁ(x) and rM(x) (see Figure 29c) does not indicate any ab-
normal behavior of the solution, Furthermore, the data in this region
are sparse and restricted to the pressure along the wake centerline.,
The fact that the solution indicates negligible static-pressure

variation in the near wake (compare Cp and pr distributions of

13
Figures 29 a and b), in spite of the large tail angle, appears to
suggest that the source of the discrepancy may lie again in the accu-
racy of the integration of the y-momentum equation in this region,
The changes in pr occurring between iterations 4, 5 and 6 (Figure
29b), in spite of the rapid convergence of the solution with respect
to C__ and ¢h (Figures 29a,c), also suggest that the procedure used

Ps
for the integration of the y-momentum equation to obtain pr from CP8

may not be altogether satisfactory.




CHAPTER VI
SUMMARY AND CONCLUSIONS

The achievements of the present investigation may be summarized

as follows: I

(1) The data from the present experiments have been documented ‘;

(see Patel and Lee, 1977) in as much detail as possible so
that they can be used by others to further investigate the
various aspects of the thick, axisymmetric, turbulent
i boundary layer and near wake of a body of revolution.
(2) The data from the low-drag body and the modified spheroid

have been analyzed to indicate the relative importance of

longitudinal and transverse surface curvatures, and the
interaction between the external inviscid flow and the
thick boundary layer and near wake in the tail region.

(3) A manual describing the computer program for calculating
the thick, turbalent boundary layer on a body of revolu-
tion will be available as a report of the Iowa Institute
of Hydraulic Research.

The major conclusions from the present study are as follows:

(1) The overall reliability of the simple integral method of
Patel (1974) for the prediction of the thick boundary layer

has been demonstrated., Its extension to the wake is not




(3)

(%)
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altogether satisfactory. This method is, however, ideally
suited for rapid calculations to detcimine the state of

the boundary layer in the tail region for some applications.
The present experimental data indicate that both the length
scale and the Reynolds stresses are much less in a thick
axisymmetric boundary layer than in a thin boundary layer,
Systematic study of the parameters involved indicates that
the structure of turbulence in the boundary layer is
affected significantly by the presence of both longitudinal
and transverse surface curvatures. These effects can be
reasonably well predicted by using the present differential
method with (i) the measured pressures at both the wall
and edge of the boundary layer, (ii) incorporation of
Bradshaw's correlations for the extra rates of strain
introduced by the longitudinal and transverse curvatures,
and (iii) consideration of the transverse pressure gradient
in the boundary layer.

The differential method has been applied with reasonable
success into the interaction calculation procedure of
Nakayama et al., (1976a,b) except matching between the
interior and the exterior is made at a fixed, predetermined
boundary a short distance beyond y = 6. It is shown that
this procedure gives convergent solutions in reasonably

good agreement with available data.




Several suggestions can be made for further research:

(1)

(2)

(3)

The rapid changes in the mixing length observed in the
thick boundary layer and the near wake indicate that the
so-called two-equation turbulence models, i.e. providing
an extra equation for the length-scale of the turbulence,
may be desirable, However, the recent work of Launder,
Priddin and Sharma (1977) and Chambers and Wilcox (1977)
shows that even two-equation models require further
modifications to account for the extra rates of strain
stemming from such effects as streamline curvature,
streamline convergence and rotation, two of which are
present in the flow examined here.

The solutions of the differential equations presented here
were carried out by a modification of an available numer-
ical method. The experience gained with the method
suggests that a better numerical scheme is required if the
difficulties associated with the integration of the
y-momentum equation, and the changes in the coordinate
system at the tail, are to be avoided. One possibility is
to use an implicit finite-difference method in conjunction
with a nonorthogonal coordinate system (e.g. (x,r) coor-
dinates, where x is along the body and wake axis while r
is the radial distance).

In continuing the boundary-layer calculation into the wake,

the abrupt change in the inner boundary condition has been
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handled somewhat arbitrarily, A more detailed study of
the response of the inner region of the boundary layer to
the surface discontinuity at the tail is required to make
improvement in this procedure.

(4) The solution of the potential flow exterior to the boundary
layer and wake may be improved by formulating a method
based on the integral equation of the second kind.

(5) 1In the interaction scheme, an alternative would be to use
a displacement-thickness surface as a means for deriving
the outer potential flow. Since a displacement-thickness

surface is also well-defined, a smooth matching between

the exterior inviscid flow and the boundary layer would
be expected. This alternative has been considered by
Preston (1945) and Lighthill (1958) who have proposed
formulas for the displacement effect suitable for thin
boundary layers. An extension of their results to second

order, recently given by Landweber (1978), may be appli-

cable to a thick boundary layer and wake.
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APPENDIX A

ESTIMATION OF INTEGRALS Ik AND Ip FROM DATA

e L i R S e AR

These integrals are defined in the text by the following

equations:

aUV

Ik=xf o 80y (11)
o U
5

2 |
) P-p v

and Ip=—lljz—/r gx( p6 ’zﬁ)dy (12)

s 7o

The evaluation of Ik is straightforward since both U and V have
been measured in the boundary layer and the wake, Since k is the

curvature of the surface, Ik becomes zero everywhere in the wake.

From physical considerations, it may be argued that Ik repre-
sents the influence of the curvature of the streamlines in the bound-
ary layer rather than that of the surface. It may therefore be
preferable to use a representative streamline curvature for k. For
example, an appropriate choice may be the longitudinal curvature of
the displacement surface shown in Figure 9. 1In the calculations
presented in the text, however, the original difinition of Ik has
been retained and an "effective" value has been assigned in the near
wake simply by reducing Ik to zero, from its value at the tail,

exponentially over a distance X/L = 0.20 from the tail.
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In order to simplify the evaluation of Ip, it is first observed
that the measured static-pressure variations across the boundary
layer and wake (Figure 4) may be approximated by linear distributions,

viz

P-ps=(p-p)1 - ) (A-1)

where P, is the pressure at the body surface or the wake centerline.

Substitution of this into equation (12) and integration leads to

2 3r

i G (B 4 %
IPUS— s ( 5 + cosf) - (cpw CPS)
3r
+ —¥E— ( 80 + 2cos@) —%g— (pr - CPS)
2 2r
- —g—— ( 80 + cos@) -%;— (Vg) (A-2) |
Using the Bernoulli equation, V8 can be related to CP8 and U8 as
follows
v 2
v U
) o)
=1 = A-
3 e (a-3)
o o)

Ip can now be evaluated using the measured values of §, U&' CPa and

pr.

The estimated values of Ik

with the axial variation of the terms dAz/dx and 3Ccr  appearing in

and IP are shown in Figure 23, along

the momentum integral equation., It is seen that both Ik and Ip make

a substantial contribution to the rate of growth of the momentum

e : il
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deficit area. It should be noted that the accuracy of the solutions
of the momentum equation using Ik and IP is limited due, not only to
the approximations that are involved in the estimation of these

integrals, but also because they are large and of opposite signs over

a substantial axial distance.

pi
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APPENDIX B
ORDERS-OF -MAGNITUDE OF THE TERMS IN

THE x-MOMENTUM EQUATION

. In equation (16), the streamwise derivative of the normal stress

uz, i.e, —%;—(uz), is omitted. In order to support this, the data

from the low-drag body are reexamined. In Table 1, each term in
equation (16) is evaluated at both the inner and outer regions of
stations X/L =0,92 and 0.96, which are in the thick boundary-layer
region, Owing to lack of accuracy in differentiations, these figures
only provide rough magnitudes for each term, The analyses indicate
that, in the inner layer, the curvature term, —ﬁI—UV, and -%I %%;(;é)
are both negligible when compared with the other terms. But, in

outer layer, both the normal-stress and shear-stress terms are smaller

than the convective acceleration terms., This implies that, for the
I entire boundary-layer calculation, the normal-stress term may be

neglected.




TABLE 1

APPROXIMATE MAGNITUDE OF EACH TERM IN THE
x-MOMENTUM EQUATION FOR THE LOW-DRAG BODY

X/L 0.92 0.96

y/L 0,005 0.040 0.005 0,040
gi gg ~0.147%  -0.3%06  -0.0733  -0.4286

v —gyy— 0.0603 0.6344 0.0653 0.5289
‘:1 uv -0,0001  -0.,0741 -0.0027  -0.0816
%1- ‘2‘% -0.0750  -0.1138  -0,2000  -0.2250
ihl gy( hff T) 0.0606  -0,0212 0.0839  -0.02u4
-%1- ax?) -0.0125  0.0090  -0.0101  0.0166
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