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D~t. A~ S LCIA L

ft ABSTRACT

Detailed measurements of pressure distributions, mean velocity

profiles and Reynolds stresses were made in the thick , axisymmetric

boundary layer and the near wake of a low-drag body of revolution 1

• These measurements shed some light on the joint influence of trans-

verse and longitudinal surface curvatures and pressure gradients

on the boundary-layer development and on the manner in which an

axisymmetric boundary layer becomes a fully-developed wake. The

present data have been used to provide an independent check on the

accuracy of the simple integral method proposed by Patel , and. its

extension to the calculation of the near wake made by Nakayana, Patel

and Landweber , Calculations have also been performed using the

differential equations of the thick axisymmetric turbulent boundary

layer and a rate equation fc~ the Reynolds stress derived from the
• turbulent kinetic-energy equation along the lines suggested by

Bradshaw and others . It is shown that the boundary layer in the tail

region of a body of revolution is dominated by the extra strain

rates arising from longitudinal and transverse surface curvatures .

A new differential method is incorporated into the iterative procedure

developed by Nakayama, Patel and Landweber for the solution of the

interaction between the boundary layer, the wake and the external

inviscid flow . The results of the iterative method have been compared j
I ~~ -~~-~ r~~~ •’ :~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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with the experimental data obtained from the present low-drag body

and those obtained earlier on a modified spheroid to demonstrate the

agreement.
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CHAPI’ER I

INTRORJCTION

The flow past a body of revolution with a pointed tail is con-

sidered. If the shape of the body is such that there is no separation,

conservation of mass requires the boundary layer to grow in thickness

up to the tail . For most shapes at large Reynolds numbers , this leads

to a thick turbulent boundary layer over the rear of the body . In

this region , which may constitute as much as the rear third or quarter

of the body length, the usual thin boundary-layer assumptions fail.

Specifically, it is observed that (a) the boundary-layer thickness

becomes comparable with , and even larger than , the local transverse

and longitudinal radii of surface curvature , (b) the component of

velocity normal to the surface is not small compared with the longi-

tudinal component, implying a substantial variation of the longitu-

dinal curvature of the mean streamlines across the boundary layer ,

(c) the pressure gradient in the direction normal to the surface ,

associated with the surface and streamline curvature , cannot be

neglected, and (d) the surface pressure distribution does not conform

with that predicted by inviscid-flow theory. Taken together , these

flow features indicate a strong interaction between the flow in the

boundary layer and the external flow . Since the boundary layer

results in a broad wake , the interaction involves the wake also .
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These flow features have been documented in the measurements of

Patel , Nakayama and Dainian (1974) in the tail region of a modified

spheroid. These measurements also led to the development of a simple

integral entrainment method (Patel, 1974) and a similarity-law

entrainment method (Granville, 1975) for the calculation of thick

axisymxnetric turbulent boundary layers. Since the experiments indi-

cated that a proper theoretical treatment of the flow in the tail

region should consider the interaction mentioned earlier, an iterative

technique was proposed (Nakayama et al., 1976a,b) for the solution

of the viscous and inviscid regions by successive approximations.

This necessitated the incorporation of the body wake in the interaction

process, and therefore a procedure was proposed for the continuation

of the boundary-layer calculations into the wake. The lack of detail-

ed data in the near wake of an unseparated body of revolution, however ,

precluded the assessment of the proposed extension of the boundary-

layer calculation method into the wake, and provided the incentive

to perform a new set of experiments.

The selection of the model shape for these experiments was based.

on a number of considerations, as wefl as on the experience gained

from the previous experiments (Patel et a.l., 1974). First of all, it

was desirable to select a practically important configuration rather

• than a simple geometric shape . Secondly, in order to highlight the

influence of strong tran~• rerse surface curvature, it was necessary

to maintain a thick boundary layer over an extended region of the body.

Thirdly, it was essential to avoid separation in the tail region so 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ -
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that the near wake could be explored in detail. Finally, in order to

avoid the experimental (Patel et al., 1974) and theoretical (Nakayama

et al., 1976b) difficulties encountered in the earlier work with a

conical tail, it was thought convenient to consider a cusped-tail

body so that the transition from the boundary layer to the wake would

be smooth. The study of Parsons and Goodson (1972), published at

the time these experiments were being planned, provided a family of

low-drag forms, from which the so-called F—57 body was selected. The

experimental investigation of the boundary layer and wake of this

body is described in Chapter II.

Although the overall iteration scheme due to Nakayama, Patel

and Landweber (1976a,b) proved quite successful when applied to the

earlier spheroid measurements , the treatment of the boundary layer

using the integral method , and particularly its extension to calculate

the near wake, required many assumptions which remained untested..

The performance of the integral approach is therefore reexamined in

Chapter III in the light of the new data. It is shown that, although

such methods give adequate information on the gross behavior of the

boundary layer and wake , they axe not altogether suitable for inter-

active calculations which require more detailed knowledge of the flow

behavior in the tail region .

Chapter IV therefore describes the development of a more rational

• procedure in which the differential equations of the thick boundary

layer and the near wake are solved by means of a numerical method.

This procedure provides not only a more reliable vehicle for the

• • •-~ .•,~~
. 
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• extension of the boundary-layer solution into the wake, but also yields

the detailed information on the velocity profiles required for the

interaction calculations.

The new differential method is incorporated in the iteration

scheme of Nakayama, Patel and Landweber (1976a,b) , but with a fixed

matching boundary, as proposed by Nahgoub and. Bradshaw (1977) .

Chapter V describes the various steps in the complete calculation in

which the external inviscid flow is matched with the boundary layer

and the wake by successive iterations at a predetermined. boundary in

the inviscid—flow region close to the edge of the boundary layer and

wake . The success of the iterative procedure is demonstrated by

comparison with the data obtained from the low-drag body as well as

the modified spheroid.

Finally, the major conclusions drawn from the study are suimiia-

rized in Chapter VI.

Interactions between viscous and inviscid flow regions occur

in many situations and the associated literature is vast. The

axisymmetric problem considered here is one of a large class of such

problems. However, in most instances, the influence of the boundary

layer on the external invisoid flow is represented by adding the

displacement thickness to the body shape and either accounting for

the near wake by somewhat arbitrary extrapolations (Huang et al.,

1976) or , more commonly, ignoring it altogether. A detailed review

of such procedures is not made here since the primary emphasis in the

- ‘- - L-~ 
• 

~~~~~~~ • c ~L ”~ ~~~~ 
• • • .
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present work is placed on the detailed exploration of the flow within

the thick boundary layer and near wake .

_ _ _ _ _ _ _  •-
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CHAPTER II

EXPERflVIENTAL STUDY ON THE LOW-DRAG BODY

11.1 Experimental Setup and Instrumentation

11.111 Wind Tunnel and Model. The experiments were performed in

the large wind tunnel (Patel et al., 1974 ) of the Iowa Institute of

Hydraulic Research . The coordinates of the F-57 low-drag body of

Parsons and Goodson (1972 ) selected for the present study are given

by

+ o.7O8~~~ + 1.O993~~ + O.3642~~~
2 J

r ( o �X � X  )m
r 4

[( —o.11996~~ - 2.58278e2 + 3.52544~~ + O.1773O~2
)]2

(x~ �x � L)

where 4 = X/XJ~, ‘~2 = (L_X) / (L_X
~), X is the axial distance measured

from the nose , r is the local radius, Xm is the axial location of

the maximum radius r~ , and L is the total length of the body. The

location of maximum radius is X~/L = O.4L~46 and the length-to-maximum-

diameter ratio is L/2r~ 
= 4.2735.

A model was constructed with L = 1.219 rn It was made hollow

and in two parts in order to accommodate a scanivalve which was

____
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connected to forty-seven pressure taps on the surface. Thirty-two

pressure taps lay on a single generator on the surface, while the

other fifteen were spaced circuinferentially at three axial locations,

X/L = 0.104 , 0.445, and 0.771, for use in model adjustment. The main

body of the model was made of seasoned wood , but metal nose and tail

pieces , 5~O8 cm and 12.70 cm in length , respectively, were used to

provide accuracy and durability. The major features of the model are

shown in Figure 1.

11.1.2 Mode l Alignment. The model was mounted in the wind tunnel by

means of eight 0.84 mm diameter steel wires in tension (Figure 1).

Each wire was provided with a screw coupling so that its length could

be adjusted to locate the model at the desired position . Several

means were employed. to ascertain axial symmetry of the model in the

wind tunnel:

(A) The static pressures measured along the circumference at

three axial locations were used to guide the preliminary

model position.

(B) Three 1.651 nun diameter Preston tubes were then mounted on

the surface at X/L = 0.771 at 120-degree intervals. Further

adjustments in model location were made until these tubes

gave nearly equal readings .

(C) A total-head tube and a hot wire were traversed across the

wake of the body at X/L = 1.10 and 1.20 as the final check

on axial symmetry. Satisfactory lateral symmetry was

~~~iiri.~-i ~~~~~~~~~~~~~~ ±~~~ 
- 

~~~~~ ~~~~~ • ~~~~~~~~~~~~~~~~~
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observed in terms of the profiles of total pressure, mean

velocity and turbulence intensity.

11.1.3 Instrumentation. Basically the same traversing mechanism as

• the one described in Patel et al. (1974) was used for the measurements

in the boundary layer and the wake of the model. Suitable extensions

• of the mounting rails outside the tunnel were made to continue the

measurements into the wake.

• Micro-manometers and probes of standard design were used for

— 
the total- and static-pressure measurements. The static probe was

mounted on a fixture which enabled the probe to be aligned with the

local flow direction. This method provides somewhat improved accuracy

in static-pressure measurements. The wall shear stress on the body

was measured by using different sizes of Preston tubes with the

calibration of Patel (19 65) . The wall pressure taps mentioned earlier

were used to measure the surface pressure distribution.

Mean-velocities and Reynolds stresses within the boundary layer

and the wake were measured by means of single-wire and cross-wire

probes using the two-channel, constant-temperature, “Old-Gold-Model,

Type 4-2H Hot-Wire Anemometer” and “Type 2 Mean-Product Computer”

(Glover , 1972). These instruments were modified to make them

compatible with the gold-plated series of probes made by DISA. In

order to ascertain that proper matching had been achieved and, at the

same time , to establish measurement procedures to be used, a series of

preliminary tests was conducted in fully-developed turbulent flow in
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a 5.08 cm diameter pipe. The measurements on the low-drag body were

• commenced only after achieving satisfactory agreement (mean velocity

within 2 percent , and turbulence intensities within 15 percent) with

the data of Laufer (1954) at a pipe Reynolds number of 50 , 000.

11.1. 4 Transition Device. The computations of Parsons and Goodson

(1972) had indicated that transition on the low-drag body would occur

naturally at X/L = 0.475 over a wide range of Reynolds numbers.

• Surface pressure distributions and other flow dia~~ostics on the

model, at a Reynolds number (Re U0L/i’) of 1.2 x io 6, indicated that,

in reality, transition occurred as a result of laminar separation

• followed by a turbulent reattachment, the bubble being in the neigh—

borhood of the predicted location of transition. In order to eliminate

• this somewhat unsteady separation bubble and establish well-defined

conditions for the subsequent development of the turbulent boundary

layer, a circular trip wire of 1.664 mm diameter was wrapped around

the body at X/L 0.475. Subsequent analysis of the data revealed

that the choice of such a relatively large trip wire was somewhat

unfortunate since its downstream influence (say 100 diameters) may

have persisted up to X/L 0.6 , where the first set of detailed

• measurements was made. Nevertheless, since the main body of data of

interest here was collected from stations further downstream, the

overall influence of the trip wire may be considered negligible.

L •
~ • . •- - - . 

~~~~~~~~~~~~•— — ------ — —---- -- j—- __.I_ - —
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• 11.2 Mean—Flow Measurements

All measurements reported here were made at a Reynolds number,

based on the approach velocity U0 
and the body length L, of 1.2 x io6,

which corresponded to a nominal approach velocity of 15.24 rn/s. U 0

and the static pressure P0 at the end of the tunnel contraction were

monitored throughout the experiments and have been used as reference

• conditions to nondimensionalize the data.

11.2.1 Surface Pressure Distribution. The static pressure distri-

bution on the body surface is shown in Figure 2. Also shown, for

comparison , is the potential-flow pressure distribution computed using

the method of Landweber (195 1) .  The close agreement between the two

over most of the body indicates that the influence of wind—tunnel

blockage is quite small • The departure of the measured pressure

distribution from the theoretical one over the rear 25 percent of the

body length is a result of the large thickness of the boundary layer

in that region and its interaction with the external inviscid flow.

It is seen that the influence of the increasing boundary-layer thick-

ness is to relieve the inviscid pressure gradient.

11.2.2 Upstream Laminar Boundary Layer. A single set of measurements

was made in the laminar boundary layer upstream of the trip wire at

the axial location X/L = 0.433. The velocity profile obtained by

means of a flattened pitot tube is shown in Figure 3 along with two

members of the Pohihausen family of prof iles, the values of the

_________________________ ______ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~ -~~~~~~~~~
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Pohihausen parameter A being chosen to span the value of -1.65 esti-

mated from the local boundary-layer thickness, which was 1.93 mm ,

and the local pressure gradient.

11.2.3 Static Pressure Field. Figure 4 shows the variation of stati~.

pressure across the boundary layer and the wake at several axial

positions in the range 0.551 < X/L < 2.472 . The convex longitudinal

curvature of the body surface in the range 0.45 < X/L < 0.76 apparent-

- 
• ly leads to the substantial increase in static pressure along the

outward normal not only within the boundary layer but also for some

distance beyond the edge of the boundary layer (which was determined

from the distribution of total pressure and is indicated by the dotted

line y = &) .  As the longitudinal curvature becomes concave and the

boundary layer thickens as a result of the decreasing transverse

radius r0 over the rear one-quarter of the body length, the trends of

the static pressure variation are reversed, indicating that the mean

streamlines are concave. The data in the near wake suggest that the

streamlines become nearly straight within a short distance downstream

of the tail.

The axial variation of static pressure at the edge of the bound-

ary layer inferred from these measurements is compared in Figure 2

with the surface pressure distribution. The magnitude of the pressure

difference between the surface of the body and the edge of the bound-

ary layer is apparent from Figure 2.

The present data have been used to assess the importance of the

static-pressure variation across the near wake in the prediction of

_
~~ _ : ~~~~~~~~~ - - •
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the overall drag coefficient of bodies of revolution using the con-

ventional Squire-Young-type formula ( Patel and Guven , 1976) . The

importance of this pressure variation in the boundary-layer-prediction

procedures is discussed in subsequent chapters.

11.2.4 Mean-Velocity Profiles. Figure 5 shows the mean-velocity

profiles across the boundary layer and wake at several axial stations.

Here U and V are the components of velocity in the directions tangent

and normal to the body surface, respectively, and ~ is the resultant
2 2 1

velocity, i.e. (U + V )2 . Q was measured by means of a single hot-

wire probe and was also obtained from the separate pitot and static-

probe traverses. It is seen that the two sets of data are in close

agreement, The U and V components were measured by means of a cross-

wire probe . It is known that this technique is not altogether satis-

factory insofar as accuracy of the mean-flow quantities is concerned.

Nevertheless , the data show the relative magnitude of the two compo-

nents and indicate that the normal component attains maximum values in

the neighborhood of X/L = 0.92 , where it is roughly 12 to 13 percent

• of the tangential component. The implication of this with regard to

the validity of the thin boundary-layer assumptions is obvious .

The velocity and shear—stress profiles measured at the most

downstream station in the wake, namely X/L = 2.472, are compared. in

Figure 6 with the most downstream measurements of Chevray (1968) and

Schetz and others (Swanson et al., 1974; Chieng et al., 1974), and

with the asymptotic axisymmetric wake profile. It will be recalled

~~~~~~~~~~~ ~~
- • • — ~~~~~~~~~~~~~~~~~~ - 

- 
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that the measurements of Chevray were made in the wake of a prolate

spheroid of axis ratio 6 1, where the boundary layer separated some

distance upstream of the tail. The measurements of Schetz and others

were made in the wake of an elongated body of axis ratio 12 : 1,

consisting of a parabolic nose , a cylindrical middle body and a point-

ed stern , and it is not clear whether boundary-layer separation was

encountered before the tail. The velocity distribution in the far

wake is assumed to be (Schlichting , 1968)

2
U 3/2

= 1 - 0.293( —~--) (1)
y~.

U.max

where U (~ 
U — U) is the velocity defect, U is its value at the

d 0 dmax
wake center, and y~ is the radial distance to the point where U is

2 d

one-half of the maximum value U • The corresponding shear-stress
dmax

profile is deduced by assuming a constant mixing length across the

wake. It is seen from Figure 6 that the present measurements at

X/L = 2.472 may be regarded as those corresponding to a fully-develop-

ed axisymnmetric far wake , where the memory of the body which generated

it is almost eliminated. It is, however , known (Rodi, 1975) that the

mean velocity distribution in an axisymxnetric wake continues to depend

• on body shape for quite large axial distances.

Figure 7 shows the variations of the velocity Q along the

centerline of the wake and the total velocity Q~ at the edge 
of the

boundary layer and wake. It is observed that the velocity at the edge

of the wake reaches the freestream value by about X/L = 1.25 . This

___  _ _ _ _  ~~~~~~~~~ • •~~~~~ ~~~~~~~ • • • •~~ ~~~• • • ___
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is roughly 2.3 initial wake diameters, or one maximum body diameter,

F downstream of the tail, The wake develops under the influence of a

small, favorable , axial pressure gradient over this region. The

maximum velocity defect in the wake, - is also seen to decrease

rapidly within this distance. On the basis of these observations it

may be conjectured that the so-called near wake is confined to this

region , and we may expect the measurements further downstream to

conform with the asymptotic wake behavior discussed above.

11.2.5 Integral Parameters. The velocity profiles deduced. from the

pitot and static traverses were integrated to determine the various

types of integral parameters discussed. earlier in Patel et al. (1974).

The overall shape of velocity profile is best described by the so-

called “planar” displacement and momentum thicknesses:

~~ 

L~
1 - -f--)dy , (1 - -~---)dy (2)

which do not take the axial symmetry of the flow into account • On

the other hand, the physical mass- and momentum-flux deficit areas

in the boundary layer and the wake are given by the integrals

= A’ i - .-f--)rdy ‘ ~2 = (1 - -~—)rdy (3)

respectively
+
, Here, U6 

is the velocity component at the edge of the

+ In view of the inaccuracies in the direct measurements of U , the
integral parameters have been determined using Q. The error is
within 3 percent for the most severe case in the thick boundary layer.

_ _ _  - ~~~~~~~~
‘-
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boundary layer and wake (y = 6), tangent to the body surface for the

boundary layer and parallel to the axis for the wake, r is the radial

distance from the axis of symmetry and y is measured normal to the

surface of the body. Thus, r = r0 + ycose, where 0 is the angle

between the axis and the tangent to the body surface, for the boundary

layer , and r y for the wake.

The variations of 6
2 
and with X/L in the turbulent boundary

layer and wake , and the corresponding shape parameters, defined by

(4)

are shown in Figure 8. It should be noted that the total drag coef-

ficient CD of the body is related to the asymptotic value A2~,, of the

momentum-deficit area in the far wake via

4~~
CD 

= 
2c~ (

~ )

where D is the drag force, S is a representative area of the body and.

P is the density of the fluid, The measurements at X/L = 2.472

indicate that the drag coefficient , based on frontal area, of the

present body (with the trip wire) is 0,0092. 8~~, on the other hand,

has no special physical significance, but the parameter H indicates

the shape of the velocity distributions.

Finally, the normal distance by which the external inviscid-flow

streamlines are displaced outward due to the presence of the boundary

• • • • •• ~~~~~~~~~ -~~~ - -—~~ - 
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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*
layer and the wake, i.e. the displacement thickness 6 , may be obtain-

ed from the relation (Patel et al,, 1974)

*
* 1 6

r06 (1 + —
~~ 

j-- cosO) = (6)

for the boundary layer , and

+6
*
~~~~~1 ~~

)

for the wake. The displacement surface deduced in this manner is

shown in Figure 9 along with the physical edge of the boundary layer

and wake. It should be emphasized here that this figure was drawn

to scale without any distortion so that it clearly illustrates what

is meant by a THICK BOUNDARY LAYER. It is particularly interesting

to note the magnitude of the displacement effect of the boundary

layer over the rear one-quarter of the body and that in the near wake .

The implication of this with regard to the boundary-layer and near-

wake computation is discussed later on,

11.2.6 Wall Shear Stress, As mentioned earlier, three different

Preston tubes of external diameters 1.651 , 1.270 and 0.711 mm were

used to measure the wall shear-stress distribution on the body.

Figure 10 shows the results obtained with the largest and the smallest

tubes • The data from the intermediate—size tube lay between these.

The use of Preston tubes, of course , presupposes the validity of the

usual law of the wall even in the thick axisymmetric boundary layer.

lb

-- - — : - .

~ 
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The small but systematic variation in the wall shear stress obtained

with the three tubes indicated the need for an alternative approach .

The velocity profile data were therefore replotted in the form suggest-

ed. by Clauser, but using the extended law of the wall proposed by

Patel (1973), to determine the wall shear stress compatible with that

law. These results are also shown in Figure 10. It will be seen

• that substantial departures from the usual law of the wall (over the

distance occupied by the Preston tube) are indicated only in the

ne~gh’borhood of the tail (X/L>O.94 , say).

11.3 Turbulence Measurements

Hot-wire traverses were made at six axial stations in the bound-

ary layer (X/L 0.60, 0.80, 0.88, 0.92, 0.96 and 1.00) and six

stations in the wake (x/L = 1.02, 1.06, 1.20, 1.30, 1.40 and 2.47) .

The mean-velocity profiles obtained in this manner were discussed

earlier. The distributions of the four nonzero Reynolds stresses,

namely U2, V21 w2 and 1i~, are shown in Figures 11, 12, 13 and 14,

respectively. It will be observed that two sets of data are shown in

each figure f or the station X/L = 1.00, which corresponds to the tail

of the body. The only difference between these is the direction of

traverse • Initially, a traverse was made normal to the axis of the

body and. the wake (6 0°) ,  but since the semi—angle of the body tail

is 5.7 degrees, another traverse was made (0 = 5,7
0

) in the direction

normal to the surface of the body at the tail. Figure-3 11 , 12 and

14 show that the results of the two traverses differ appreciably in

-••~~~~~ 
. • ,.

~~~~~~~~~~ 
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the distributions of v2 and iiV, and the data in terms of boundary-layer

coordinates (0 = 5 7 0

) are more consistent. It is obvious that this

ambiguity would not have arisen had the tail been exactly cusped.

However, the present data indicate the need for a very careful treat-

ment of the flow in the neighborhood of pointed tails where the change

from the boundary-layer to the wake coordinates occurs abruptly.

This will be considered in Chapter V. The data corresponding to

0 = 5,7
0 

are used in the subsequent analysis. The estimated

tainity level in the measured Reynolds stresses is indicated in

Figure 14.

Insofar as the measurements of the Reynolds stresses in the

thick boundary layer are concerned , it is observed that they are

qualitatively similar to those made earlier in the tail region of a

modified spheroid (Patel et al ., 1974). Quantitatively, however , the

present data are quite different from the earlier set due to the

different pressure-gradient and surf ace-curvature histories.

The distributions of shear stress tiV were used in conjunction

with the mean—velocity profiles to calculate the variation of eddy

viscosity,

(8)

and the corresponding variation of mixing length ,

~~~~~~ 2(~~~ U )2 (
~

)

_ _ _ _  
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They are shown in Figures 15 a.nd 16, respectively. The mixing-length

distributions of the boundary-layer data for the modified spheroid

(Patel et al., 1974) are reproduced in Figure 17 for comparison. The

• data indicate a substantial reduction of eddy viscosity and mixing

• length as the boundary layer thickens towards the tail. They increase

again with axial distance in the wake . The mixing length reaches a

nearly constant value in the range 0.08< ~t/6 <0.10 at the most down-

stream station X/L 2.47, where, as indicated earlier, the wake

approaches a nearly fully-developed state. The major conclusion to

be drawn from these measurements is that the characteristics of the

• turbulence in the region where the boundary layer is thick, and in

the near wake, i.e. over 0.75<X/L<1.25, say, are markedly different

fr om those of a thin turbulent boundary layer and the asymptotic far

wake.

Yet another quantity that is of interest in the discussion of

the characteristics of the turbulence is the so—called structure

parameter a1 -uv/q2, where q2 = u2 + v2 + w2 is twice the turbulent

kinetic energy. It would be recalled that , for most thin , turbulent

shear layers, a1 is nearly constant across the flow and equal to about

0.15. The distributions of a1 across the boundary layer and wake of

the low-drag body are shown in Figure 18. The corresponding results

deduced from the modified-spheroid boundary layer (Patel et aJ.., 1974)

are shown in Figure 19. From Figure 18, it is seen that a
1 
remains

nearly constant around 0.14 in the inner one-half of the boundary

layer on the low-drag body and indicates some reduction with normal

______  - —
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distance over the outer half. The data in the wake, however, appear

to indicate nearly constant values again. Figure 19 indicates that

a1 diminishes with both x and y through the boundary layer of the mod-

ified spheroid , the minimum values of a1 being reached at x/L = 0.93.

The observed reductions in L for both bodies and in a1 for the

modified spheroid may be explained on the basis of the joint

influence of the transverse and longitudinal surface curvatures on

the turbulence structure if recourse is had to the results of some

recent studies. Consider first the conventional curvature parameters

in the two sets of experiments shown in Figure 20.

The ratio of the boundary-layer thickness to the transverse

radius of curvature, 6/r0, is seen to be more than twice as large in

the low-drag body as in the spheroid. In both cases, however, 8/r0

is less than 0.4 up to X/L = 0.75 so that the boundary layers may be

regarded as thin up to that station. Over the rear one-quarter of

the body length , however , the influence of transverse curvature would

prevail , not only through the geometrical terms in the equation of

motion , e.g. (~2/r0)(drJdx) in the integral momentum equation , but

also through any direct effect on the turbulence •

The longitudinal surface curvature parameter ~~ where K is

the longitudinal surface curvature , is seen to be quite different for

the two bodies. In the case of the modified spheroid , the curvature

is convex upto X/L = 0.933 and zero thereafter due to the conical

tall , while that of the low-drag body is initially convex and becomes

concave for X/L>O .772.

~~~~ 
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Now , several recent studies with nominally two-dimensional

turbulent boundary layers (Bradshaw , 1969 , 1973; So and Mellor , 1972,

1973, 1975; Neroney and Bradshaw, 1975; Rainaprian and Shivaprasad,

1977, 1978; Shivaprasad and Ramaprian, 1977, 1978) have indicated that

even mild (K&..’O.Ol) longitudinal surface curvature exerts a dramatic

influence on the turbulence structure • In particular, it is noted

that quantities such as the mixing length 2, the structure parameter

a1 
and the shear—stress correlation coefficient ~/(f~1~

) are

influenced markedly, and experiments indicate that convex streamline

curvature leads to a reduction in these, whereas concave curvature

has an opposite effect. While these studies in thin boundary layers,

where the streamline curvature is dictated by that of the surface ,

would tend to Indicate that the somewhat larger reduction in 2.

(compare Figure 17 with Figure 16) and the drastic reduction in a1

( compare Figure 19 with Figure 18) observed on the modified spheroid

may be attributed to the large , prolonged , convex longitudinal

curvature of the surface, it should be noted that the rapid growth of

the boundary layer over the tail tends to cancel out some of the

convex curvature of the steamlines . Nevertheless , in view of the fact

that the longitudinal streamline curvature in both experiments is

large, it is possible that a part, if not all , of the changes in

parameters such as 2 and a1 may be due to that factor.

Bradshaw (1973) has examined a vast array of experimental data ,

which include surface curvature , buoyancy, compressibility, rotation

and other effects , to suggest that , whenever a thin shear layer

~~~~~-~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~ _ _ _ _ _
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experiences an extra rate of strain , i.e. in addition to the usual

one , ~U/~y, the response of the turbulence parameters is an order of

magnitude greater than one would expect from an observation of the

appropriate extra terms in the mean-flow equations of momentum and

continuity. Since the convergence of the streamlines, in planes

parallel to the surface, in the present axisyminetric flow introduces

an extra linear rate of strain, which is proportional to dr /dx, we

may expect to see a direct effect of the transverse curvature on the

turbulence. A detailed examination of the relative magnitudes and

sense of these extra rates of strain on the two bodies indeed con-

firmed the observed reductions in the length-scale parameter 2.

In conclusion, it is noted that the turbulence measurements

indicate, at least qualitatively, the importance of both the longitu-

dinal and transverse surface curvatures. The quantitative description

of these effects is pursued. further In Chapter IV, where a simple

heuristic model, due to Bradshaw (1973), is examined in order to

obtain a turbulence closure equation for the solution of the differ-

ential equations of the thick boundary layer and near wake .

The complete set of data obtained from this investigation has

been presented in a report by Patel and Lee (1977).
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CHAPTER III

ASSESSMENT OF THE INTEGRAL METHOD

Patel (1974) has developed a simple integral method for the

calculation of the thick axisymmetric turbulent boundary layer.

Naicayama et al. (1976b) extended that to calculate the near wake by

making some additional assumptions. Since only limited data were

available at the time those methods were proposed, it is of interest

to use the data from the low-drag body to verif y the assumptions made

in the boundary-layer method as well as those made in its extension

to wakes.

111.1 Integral Correlations

The method of Patel (1974) is based on that of Head (1958) for

• thin two-dimensional boundary layers . It involves the simultaneous

solution of the momentum integral equation for the thick axisymmetric

boundary layer (Patel, 1974; Nakayama et al., 1976b), and an equation

relating the rate of mass entrainment into the boundary layer to the

shape of the velocity profile , together with a number of auxiliary

relations between the planar and axisyinmetric integral parameters

deduced from assumed. velocity-profile shapes,

d~~ ~ dli2 + ( H + 2) —~~— ~~ _ -4- C fxo - I k
_ I

p = 0  (10 )

~~~~..—4 ~~~~~~: ~~~~~~~~~~~ -- —~~~~ - —  .
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with ‘k 
= 

~~ 
—

~~~
— rdy (11)

I~ U
6

2
1 p - p  V

and Ip =~~ -~-_J r - -~~_ (  ~~~ - --~~— )dy (12)
5

CE U
5
r
6
h
15 

dx [U5
(r05 

- A1 + 1 5
2 0)] ( 1 3) ~

with r5 = r0 + ScosO, h1 = 1 + i5 and the quantity within the square

brackets represents the mass flux within the boundary layer.

For thick axisynunetric boundary layers, the additional assump-

tions required are: that the empirical correlation between the

entrainment shape parameter H* = (~~ 
- 

~1 ~
/

~2 and the usual shape

parameter H, and the correlation between the entrainment coefficient

*CE and H , are the same as in two-dimensional flow , provided the shape

parameters are based only on the shape of the velocity profile (i.e.

planar definitions are used), and that the friction coefficient Cf

is related to H and R~ -
2 

via a two-parameter family of velocity profiles.

The assumption concerning the shape-parameter correlation was

verified directly in Nakayaina et al. (1976b) using the then available

data from boundary layer and wakes . Figure 21 shows that the data

f rom the low-drag body support this observation . Upon closer

+ This definition of C
E 
differs slightly from that of Patel (1974) and

is in agreement with the improvement suggested by Nakayama et al.
(1976b) and Granville (1975).
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examination, however , it is seen that there is a systematic departure

from the boundary-layer correlation , and that the data from the most
* —

downstream wake stations axe in better agreement with the H vs • H

relation deduced from the asymptotic wake profile of equation (1).

Wake calculations have been performed using both correlations to

demonstrate their influence.

An attempt was made to deduce the variation of CE with H* using

equation (13) and the measured values of the quantities appearing

therein. The inaccuracies associated with the differentiation in

equation (13), however, masked any systematic trend, and therefore

the previous assumption that the correlation of Head continues to

apply in the wake has been retained.. The influence of this could then

be determined by the performance of the overall solutions.

The method of Patel (1974), with the modification of CE noted

earlier, was used to predict the development of the boundary layer

F and the wake of the low-drag body. Since the tail of the low-drag

body is nearly cusped , it was not necessary to change the coordinates

abruptly at the tail and make a special analysis, as in Nakayama

et al. (1976b) , in order to continue the calculation into the wake .

The assumption of an exponential velocity-profile family in the wake ,

suggested in Nakayaina et al. (1976b), namely

-
~~
— 1 ~~ii exp {-A(~1-~)

2
) (14)U

5 c 5

U
Cwhere U 1 -~~~~C

:‘~~ -~~ 
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U is the velocity at the wake center and A is a parameter, was

retained. The inter-relationships between the planar and the axi-

• symmetric integral parameters were obtained in Nakayama et al. (1976b)

by using A = 3.22 in equation (14), performing the integrations in

equations (2) and (3)  up to y/5 = 1, and curve—fitting. In the

• present work, this procedure has been simplified by setting the outer

• limit of integration equal to infinity so that the necessary relations

• 
• 

are obtained analytically. These are

k2
1 U (k1 

- u~ )2 2

k - k U
A = 

2 3 c
2 u ( k  - U ) 2 2

C 1 C 
(15)

H = 
k
2 

Ic
2

and H k - V1 c

where k1 = ,[
~ 

k2 = 4/n, and k3 
= 2/n . It is of interest to note

that these relations are independent of A and therefore a particular

constant value of A is not required.

111.2 Comparison of Calculations with

Experimental Data

The boundary-layer calculation on the low-drag body was started

at X/L = 0 .70 , where the boundary layer has recovered from the 
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influence of the trip wire, and terminated at the tail . The initial

conditions for the wake were provided by requiring the continuity of

• the physical mass- and momentum-deficits there ; i.e. A2 and H remain

continuous in going from the boundary layer to the wake , Since the

integral method is basically a two-parameter method , this leads to a

discontinuity of the other parameters, such as the boundary layer

thickness , 5. The calculation was terminated in the far wake, where

the momentum deficit approaches a constant value .

A set of calculations was first performed. using only the pressure

distribution along the body surface and wake centerline (i • e • with

‘Ic = I~ = 0 in equation (10), as suggested by Patel (1974)), and the

two alternative shape-parameter relations H (H) (Figure 21) in the

wake. The results of these are shown in Figure 22 and identified as

curves A and B. It is seen that the method predicts most of the

quantities reasonably well in the boundary layer. The performance of

the method in the wake Is not as good as that for the boundary layer.

This is due partly to the retention of the boundary-layer entrainment

F correlation , and more likely to the inadequacy of the exponential

velocity-profile family used to describe the velocity distribution

in the near as well as the far wake • The difference between curves

A and B, which correspond to the two different shape-parameter

relations , clearly indicates the need for the introduction of another

parameter which would govern the gradual change from the boundary-layer

profile at the tail to the asymptotic profile in the far wake ,

Although such an additional parameter would. eliminate the discontinuity 
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in & (Figure 22a) and improve the prediction of the near wake , it is

not entirely clear what additional equation could be used to determine

its streamwise distribution within the framework of an integral method.

Another possible source of the disagreement between the calcu-

lations and experimental data is the use of the pressure distribution

on the body surface and the wake centerline to compensate for the

neglected static pressure and curvature integrals (i~ and 1k ) in the

momentum integral equation. An attempt has been made to evaluate

these integrals from the experimental data. The procedure that has

been adopted is described in the Appendix A. Although this involves

several approximations and inaccuracies stemming from the differenti-

ation of ill-defined quantities, such as the boundary-layer and wake

thicknesses and. the normal velocity at the edge of the boundary layer

and the wake , it is seen from Figure 23 that the two integrals are

not small in comparison with some of the other terms in the momentum

integral equation. A similar conclusion was drawn by Patel and Guven

• (1976) from their analysis of the same data in order to explore the

• importance of the near wake in the calculation of the viscous resist-

ance of axisyminetric bodies using conventional extrapolation formulae .

A second set of calculations was performed in which the momentum

integral equation was solved using the estimated values of I~ and ‘Ic
and. the velocity distribution measured at the edge of the boundary

layer in place of that inferred fr om the pressure distribution on the

body surface and the wake centerline . The effective value of ‘k in

the near wake was estimated simply by fairing the value at the tail

• t - - - -  •~~~~~~~LL _~~~~ -~~~~~~~~~~ L ’—~~~~ ~~~~~~~~ 
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to zero in the far wake, as shown in Figure 23. The results of these

calculations are shown in Figure 22 as curves C and D, corresponding

again to the two shape-parameter relations for the wake • The

relatively small differences between this and the previous set of

• calculations suggest that the use of the pressure distribution on the

surface and wake centerline to account for the effects of I~ and ‘Ic’
as recommended by Patel (1974), is a good engineering approximation.

However, the results of the calculations also indicate, that such an

approximation can be discarded in favor of the correct momentum

integral equation , equation (10), provided the values of I~ and

can be determined a priori , as is the case in an interactive scheme

such as that of Nalcayama et al. (1976b) .

_____________ __________________ 
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CHAPTER IV

DEVELOPMENT OF THE DIFFERENTIAL METHOD

In the previous chapter , the simple integral method of Patel

( 1974 ) and its extension to the wake were re—evaluated. in the light

of the experimental data from the low-drag body . Although the method

• appears to be adequate for rapid calculations, it involves several

gross assumptions and yet does not give the detailed information that

is necessary to incorporate it in an iterative calculation procedure ,

such as that of Nakayama et al. (1976a,b), so that a complete solution

can be obtained for the flow in the tail region. The difficulties of

the integral method arise from the treatment of the static-pressure

• variation across the flow and the representation of the velocity

profiles in the boundary layer and wake by a limited number of param-

eters. Nakayama et al. (1976b) used a simple profile family for the

normal component of velocity to evaluate the integrals I~ and ‘Ic in

the momentum equation arid thereby introduced additional approximations.

Further complications resulted from the separate integral analysis

that was required to continue the boundary-layer solution into the

wake at the tail of the body. It was therefore decided to explore

the possibility of using a numerical method for the direct solution

of the differential equations of a thick , axisynunetric boundary layer

and wake , since then the information required for the calculation of

the external flow could. be obtained much more directly.
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IV.1 Differential Equations

On the basis of the experimental observations and order-of-

magnitude considerations , it can be shown (Bradshaw et al., 1967;

Nakayama et al., 1976b) that the momentum and continuity equations

of a thick , axisyminetric turbulent boundary layer are

h r r
—~ — — ÷ v- ~~~~~÷ — ~~-- uv 

~~~

-

~~~

— -

~~~~ 
- -—-

~~

_ _
~~
_( 1,~ 

~ 
= o (16)~

(17)h1 ~x ~y h1 P ~y

-~~ (Ur) + 4~(rh1V) 0 ( 18)

where h1 = 1 + Ky ; T = -püV + L-~~~--, g~ being the dynamic viscosity of

the fluid, and the other symbols have been defined earlier. Equation

(17) , in which the viscous and turbulence terms have been neglected ,

implies that the variation of static pressure across the boundary

layer is associated primarily with the curvature of the mean-flow

streamlines.

Equations (16) , (17) and (18) contain four unknowns, namely U ,

V , p and IIV. Even when a turbulence model is introduced for ~IV, the

resulting set of equations cannot be solved by a marching technique .

+ In Appendix B the magnitude of each term in equation (16) is
analyzed on the basis of the data from the low-drag-body experiment.

-
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This is due to the presence of the pressure as an unknown. However,

one approach to the solution of this set of equations is to solve

equations (16) and. (18), by a marching procedure , for U and. V with

some assumed pressure field p(x ,y) . The y-momentum equation can then

be used to update the pressure field. This is an iteration scheme in

which the solution of p and the y-momentum equation lags one iteration

behind the velocity field. Since the physical problem under consider-

ation requires the matching of the boundary layer and wake solution

with the external flow, and this is accomplished by an iterative

procedure, the uncoupling of the y-momentuin equation from the equations

for x-momentuin and continuity does not pose a serious difficulty.

IV.2 Turbulence Model

Before describing the solution procedure , the turbulence model

of Bradshaw , Ferriss and Atwell (1967) that has been adopted for

the present problem is discussed. According to that model, the equa-

tion for the conservation of turbulent kinetic energy is transformed

into one for the Reynolds stress T = -Pti~~

2
1
a1 

(+ f + v ~~~
) - r(~~~~ - KU) + 

~~~~~~ a~
/2J 

~~~~

i r3/2

~~~ p1/2 = 0  ( 19)

where a1(=-~~/q2) is a constant (0.15), G(y/5) is a diffusion function

and z ( y/5) is a length-scale function identified. with the usual mixing

/
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length. Bradshaw et al. (1967) have demonstrated. that for a variety

of thin two-dimensional boundary-layer flows , G and I. may be regard.ed.

as universal functions of y/5, as shown in Figure 24, and that

a
1 

= constant is a realistic assumption. As discussed in Chapter II ,

the data from the two experiments of thick boundary layer and wake,

on the other hand , suggest that a1 is not constant across the boundary

layer and that the distribution of 2 changes markedly as the boundary

layer thickens. Numerical experiments performed here and elsewhere

also indicate that the overall prediction of the boundary layer is

primarily dependent on the assumption concerning £, but quite insen-

sitive to the value of a1 and the diffusion function G. In order to

utilize equation (19) in the thick boundary layer and. the near wake

it is necessary to allow for the variation of £ from the universal

distribution in a thin boundary layer.

Bradshaw (1973) has suggested that , for thin shear layers and.

small extra rates of strain , a simple linear correction formula for

£ is adequate. Thus , he proposed

£ ae /7 _ 1 +  EU/ày ~2O

where £~ is the length scale with the usual rate of strain ~U/~y, £

is the length scale with the extra rate of strain e, and a is a

constant of the order of 10. As noted earlier, for the axisymin etric

problem being considered here, there are two extra rates of strain: 
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Ky (21)

due to the longitudinal curvature, and

- U 1 ~r u dx
et - 

I + ~~~~~~~ 
- — ( 22)

due to the convergence or divergence of the streamlines (in planes

parallel to the surface) associated with the changes in the transverse

curvature . The former is a shearing strain while the latter is a

plain strain , and it is not certain whether the two effects can be

added simply in using equation (20),  as recommended by Bradshaw (1973).

If this is the case, however, we would expect a greater reduction in

£ in the tail region of the modified spheroid, where K is positive

and dr0/dx is negative, than on the low-drag body, where K becomes

negative and would therefore tend to offset the influence of the

negative dr0/dx. Although the data shown in Figures 16 and. 17

appear to bear this out to some extent, a direct comparison between

equations (20), (21) and (22) and the data was not attempted, in view

of Bradahaw’s (Bradshaw and Unsworth, 1976) assertion that equation

(20) should. be used. in conjunction with a simple rate equation which

accounts for the upstream extra rate-of-strain history. He proposed

1 + (23)

and d. e - e eff
~~~~~~~~~~ 

(e fl) = 24~

~ 
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where e is the actual rate of strain, eeff is its effective value and

105 represents the “lag length ” over which the boundary layer responds

to a change in e. In order to determine the merit of this proposal,

it is of course necessary to incorporate it in an actual calculation

and make a comparison between the prediction and measurement. Such

an attempt has been made here .

IV.3 Method of Solution

A numerical method available for the solution of equations

corresponding to equations (16) , (18) and (19) for a thin two-dimen-

sional boundary layer was modified to introduce the longitudinal-

and transverse-curvature terms . Changes were made such that a

prescribed. variation , across the boundary layer , of the pressure

gradient ~p/~x( y) could be used. This implies that the pressure

field is known a priori. The solution of equations (16) , (18) and

( 19) together with equations (21), (22) , (23) and (24) can then be

obtained through step-by-step integration by marching downstream from

some initial station where the velocity and shear-stress profiles are

prescribed. A staggered-mesh , explicit numerical scheme , similar

to that used by Nash (1969) , was used to integrate the equations in

the domain between the first mesh point away from the surface (or the

wake centerline) to some distance , typically 1.255 outside the bound-

ary layer and the wake . The fifteen mesh points across the boundary

layer are distributed nonun iforrnly to provide a greater concentration

near the wall and the wake centerline. Instead of carrying out the

1
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integration of the equations up to the wall , i.e. through the viscous

sublayer and the blending zone , the numerical solution at the first

mesh point , located in the fully turbulent part of the boundary layer,

is matched to the wall using the law of the wall .

In the extension of the method to the wake , the matching between

the first mesh point and the wake centerline is accomplished by using

the conditions ~U/~y = 0 and T = 0 on the centerline . The main

• differences between the boundary-layer and wake calculation procedures

are therefore the treatment of the flow between the first mesh point

and the wall or the wake centerline , and the change in at the tail

( see Figure 24) . Note that the local value of 2 in the boundary layer

as well as the wake is different from due to the lag equation (23) .

However , the length scale recovers the reference distribution

asymptotically in the far wake. Since the near-wake data from the

low-drag body indicated that most of the adjustment from the boundary

layer to the far wake is accomplished over roughly five initial wake

thicknesses, the lag length for the wake calculation was taken to be

55, rather than 105 used for the boundary-layer calculation on the

basis of Bradshaw ’s ( 1973 ) suggestion . Since the extra rates of

strain vanish at the tail (K 0 , dr0/dx = 0), the length scale

approaches the distribution within about five wake radii downstream

of the tail .

1V.4 Comparison with Experimental Data

Preliminary calculations performed with the differential method

described above quickly indicated that the extra rates of strain in 

-
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• both experiments were much larger than those examined by Bradshaw

(1973) in support of the linear length-scale correction formula of

equation (23). In fact, the use of the linear formula led. to a rapid

decrease in £ and indicated. almost total destruction of the Reynolds

stress across the boundary layer in the tail region and the near

wake. In view of this, recourse was had to the nonlinear correction

formula in the form suggested earlier by Bradshaw ( 1969), namely

r ae H-i
£ eff

• 
= - 

~U/~y 
f 

( 23a)

• which reduces to the linear one , equation (23),  for small extra rates

of strain . Equations (16) , (18) and. (19), together with (21), (22),

( 23a) and ( 24) , were then solved with the following inputs:

A. the measured. wall pressure distribution C (i.e. no normalpw

pressure variation) and £(y/5) = L0( y/ 5-)

B. the measured Cpw with 2(y/5) corrected for only the longi-

tudinal curvature (e = e
2)

C. the measured. Cpw with L(y/5) corrected for only the stream-

line convergence (e = et )

D. as above, but with e = eg + et

E. using e = e2 + et in equations (23a) and (24), and a

variable ~p/~x across the boundary layer evaluated. by assum-

ing a linear variation in ~p/~x from y 0 to y = 6 and

using the measured values of Cpw~ C~5 
and 8.

Thus, case A corresponds to an axisyrunetric boundary layer with thin ,
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two-dimensional boundary-layer physics. The other cases enable the

evaluation of the relative influence of the extra rates of strain

as well as the static-pressure variation through the boundary layer.

The calculations were started with the velocity and shear-stress

profiles measured at X/L = 0.662 on the modified spheroid and at

X/L = 0.601 on the low-drag body.

The major results of the calculations are summarized in Figure

25( a-m ) for the low-drag body and in Figure 26( a-i) for the modified.

spheroid. However , in the latter case the calculations axe restricted.

to the boundary layer since detailed measurements were not made in the

wake • Both figures contain comparisons between the experimental and

calculated velocity, shear-stress and mixing—length profiles at a

few representative axial stations as well as the development of the

integral parameters 
~2’ A2, H , H and Cf with axial distance • In the

interest of clarity, the results of all the calculations ( cases A

through B) are shown only at one axial station (Figures 25c and. 26c) ,

those at other stations being qualitatively similar.

Considering the most detailed figures, 25c and 26c, first , it

is clear that the predictions axe rather poor when the length scale 2

is assumed to be the same as that in a thin boundary layer (case A).

This is particularly evident in the prediction of the shear-stress

profiles across the boundary layer and the near wake . Incorporation

of the correction to £ to account for the extra rate of strain due

to longitudinal curvature ( cae B) leads to a marginal improvement in

the case of the low-drag body and. a dramatic improvement for the

- •~~~~~~~~~~~~~~~~~~~~~~~~~~
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modified spheroid. This is to be expected in view of the grossly

different surface—curvature histories of the two bodies as noted

earlier (Figure 20). Nevertheless, it is clear that this correction

• by itself is not sufficient to account for the differences between

the data and the calculations with thin boundary-layer turbulence

models (case A). The application of the correction for the extra rate

of strain due to the transverse curvature (case C) appears to account

for a major portion of these differences for both bodies. The

influence of transverse curvature is in fact seen to be somewhat

• larger for the low-drag body , as would be expected from the fact that

5/r0 is greater in that case (Figure 20). The simple addition of

the effects of the two rates of strain ( case D) leads to a significant

improvement in the prediction of both the velocity profiles and the

shear stress profiles. The incoporation of a variable pressure

gradient across the boundary layer (case B), which is an attempt to

account for the normal pressure gradients , appears to make a signif-

icant improvement in the prediction of the velocity profile in the

case of the modified. spheroid , but its influence is small , and con-

fined to the outer part of the boundary layer , in the case of the

low-drag body.

Examination of the velocity and shear-stress profiles at several

axial stations shown in Figures 25( b-g) and. 26( b-d) suggests that the

incorporation of the nonlinear length-scale correction of equation

(23a), the associated rate equation (24) and the static-pressure

variation in the equations of the thick boundary layer , which already

0 
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include the direct longitudinal- and transverse-curvature terms, leads

to satisfactory overall agreement with the data for both bodies. It

is particularly noteworthy that the velocity and shear-stress dis-

tributions in the far wake (x/L = 2.472) of the low-drag body are

predicted with good accuracy. The level of agreement can obviously

be improved further by appropriate modifications in the empirical

functions in the turbulent kinetic-energy equation and changes in the

lag-length used in the length-scale equation . The predictions of the

shear-stress profiles are consistent with those of the mixing-length

distributions shown in Figures 25(h , i) and 26e insofar as lower shear

stresses correspond to an over-correction in the mixing length. These

comparisons provide further insight into the manner in which the

length scale must be modified. to improve the correlation between the

calculation method and experiment. It is apparent that the consistent

discrepancy between the calculated and measured velocity and shear-

stress profiles near the outer edge of the boundary layer and wake

stems from a poor representation of the length-scale distribution.

It is interesting to note that , f or both bodies , the calculation

procedure predicts normal components of mean velocity which are of

the same order of magnitude as those measured. The relatively close

agreement between the predictions and experiment for both components

of velocity is perhaps a good indication of the axial symmetry

achieved in the experiments. The large values of the normal velocity

and the influence of static-pressure variation noted above would

appear to indicate that incorporation of the y-momentum equation in

0 
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the calculation procedure would be worthwhile • Note that this has

been avoided in the present calculations by using the measured

pressure distributions at the surface and the outer edge of the

boundary layer.

Finally, the comparisons made in Figures 25 (j-tn ) and 26(f-i)

with respect to the integral parameters show several interesting and

consistent features. It is observed that the prediction of the phys-

ical thickness of the boundary layer and the wake is insensitive to

the changes in £ as well as the inclusion, of static-pressure variation.

The underestimation of the thickness is associated with the discrep-

ancy, noted earlier, in the velocity profile near the outer edge of

the boundary layer and wake • The planar momentum thickness 
~2 

and

the momentum-deficit area are also insensitive to changes in 2.

The variation of static pressure across the boundary layer appears

to make a small but noticeable contribution to the development of A2
in both cases. However, it is not large enough to account for the

differences between the calculations and experiment. The predictions

of the shape parameters H and H , presented in Figures 251 and 26h,

appear to be satisfactory, especially in view of the rather large

scale of the plots. Nevertheless, there is a systematic difference

between the data and the calculation in the tail region and wake of

the low-drag body . As indicated earlier , this can be improved by

modifications in the empirical functions and the lag length , The

predictions of the wall shear stress, shown in Figures 25m and. 261,

indicate that the present method. gives acceptable results for both

bodies. 
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0
0 CHAPI’ER V

VISCOUS-INVISCID FLOW ThTERACTION

The differential method for the calculation of the boundary

layer and wake was described in the previous chapter. Note that the

method involves the solution of the x-momentum , continuity and tur-

bulent kinetic-energy equations to determine the velocity and. shear-

stress distributions. Thus f ax, it has been assumed that the vari-

ation of pressure , p( x ,y) , along and across the boundary layer and

wake is known , so that the y-momentum equation is not required. The

performance of the method. has been assessed by using the measured

pressure distribution.

In order to solve the problem completely, however, it is

necessary to include the pressure as an unknown and therefore incor-

porate the y-inomentum equation into the solution procedure. Since

the pressure boundary condition at the outer edge of the boundary

layer and wake is not known a priori, it is also necessary to solve

for the li-rotational flow exterior to the boundary layer and wake ,

and match the inner arid outer solutions at a prescribed fixed boundary

just outside y = 5, i.e. at = 1.255, where S is the boundary-layer

thickness from the first boundary-layer and wake solution. The over-

all solution strategy is therefore similar to that proposed by

Nakayama et al. (1976a ,b). The main difference lies in the method of

_ _ _  - ~~.- • ~~~ - •~~~~~- ~~~~~~~
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solution of the boundary layer and wake , since it is proposed to use 
0

the differential method in place of the integral approach.

Assume that the shape of the body , the Reynolds number and the

location of transition are all prescribed.. The objective of the

complete solution is then to determine (a) the pressure distribution

on the surface of the body and along the centerline of the wake, and

(b) the characteristics of the boundary layer and wake • The latter

would include velocity and shear-stress profiles and the variation of

static pressure across the flow. This information can then be used

to obtain the resistance of the body . The solution involves the

following steps:

(A) Calculation of the inviscid flow past the body with the

boundary layer and wake neglected.

(B) An approximate solution of the boundary layer and wake ,

using only the surface pressure distribution obtained in

step (A) , to determine yM ( x) and ct~M ( x) ,  where is the

stream function at the boundary 
~~

(c) Solution of the exterior irrotational flow (y > S)  using

the clIN (x ,yN ) obtained in step (B) or step (B). This yields

the pressure distribution p
N

(x) along 
~N •

(D) Integration of the y-momentuin equation (17) from to

y = 0 using the velocity field determined in the previous

boundary layer and wake calculation. This yields p(x ,y)

within the boundary layer and wake • Differentiation yields

~p/ax(y) .

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

0



—-—
~~~~~~~~~~~

--—--——.- 
~~~~~

- 
_ _ _ _  _ _ _ _

(B) A recalculation of the boundary layer and wake using

~p/~x(y) to determine the velocity field as well as

(F) Repetition of steps (C) through (E) until convergence is

obtained within a specified tolerance level.

In what follows some of the peculiarities of the calculations

in the various steps for the low-drag body and the modified spheroid

are described briefly.

V.1 Initial Inviscid Solution

The initial inviscid-flow solution may be obtained by one of

several well known methods. Here the method of Landweber (1951),

based on an integral equation of the first kind , has been used. The

results of such a calculation for the low-drag body are shown In

Figure 2. When a rear stagnation point is present (as in the case of

the modified spheroid) , the subsequent boundary layer calculation

would predict separation ahead of the tail , although there is no

separation in reality due to the relief of the pressure gradient by

the viscous-inviscid interaction. This difficulty is then overcome

by arbitrarily prescribing a lower tail pressure and f airing it to

the inviscid solution over a short distance upstream of the tail . An

initial guess for the variation of pressure along the centerline of

the wake , required. in the calculation of the wake , is also made by

providing an exponential reduction in pressure from the tail to that

in the approach stream over a distance , 0.5L , from the tail .
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V .2 First Solution of the Boundary Layer and Wake

This calculation is started from the nose of the body. The

laminar boundary layer is calculated by an axisyrunetric-flow version

of the method of Thwaites (Schlichting, 1968) . This calculation is

terminated at laminar separation or the prescribed transition location ,

whichever occurs first.

The initial velocity profile for the turbulent boundary layer

is constructed. by using Coles ’ profile family because the boundary

layer is still thin immediately after transition. The parameters Cf
and S required to determine the profile are obtained through itera-

tion on known values of H and. 
~2’ With natural transition , 

~2 is

known from the laminar solution and the corresponding H is obtained

by using the equilibrium boundary-layer relations of Nash (196 5) .
0 However, since artificial turbulent stimulators were used in the two

experiments, the above option in the computer program was not exer-

cised. Instead , the values of Cf and 5 downstream of the transition

devices were obtained. by trial and. error , i.e. by matching the

calculations and experiment at the first measuring station on the two

bodies. Special care was needed for the modified spheroid due to the

rather long distance between the transition device and. the first

measuring station. Known results from the iteration scheme of

Nakayaina et al. (1976a,b) were used in order to avoid lengthy cal-

culations in the trial and. error process.

0 The turbulent boundary-layer and wake calculations are performed

using the differential method described in Chapter IV. Note that this

_ _ _ _ _ __  _

— - 

0~~~~~ • ~~ _0 - -

.
-~--

.

~~

S 

~~~ -____



____ — 2 ~~~~ ~~~~~~~~~~~~~~~~~~~~ 
-
~ 

•0~~~~~

46

method is applicable to thin as well as thick boundary layers. In

the first boundary-layer and wake solution , the pressure distribution

obtained from the initial inviscid solution, with the modification

near the tail , is used, and. the variation of pressure across the flow 
-

is ignored.

V .3 Solution of the Flow Exterior to the

Boundary Layer and Wake

The method of Nakayama et al. (1976a) has been used. for the

calculation of the potential flow in the semi-infinite region exterior

to the boundary layer and wake . It was found that the solution for

the velocity distribution at the edge of the boundary layer and wake

is very sensitive to the input boundary conditions, namely the values

of ~~~x) and. y~( x). This difficulty was alleviated by smoothing the

distributions of and obtained from the boundary-layer and wake

calculations in the interval 0.8<X/L<1.2, prior to their use in the

inviscid. solution.

V. 11. Integration of the y-Nomentum Equation

With the introduction of the continuity equation , the y-momentum

equation (17) can be written

= 
UVsinO + V2cos~ + _

~~~
_{

~~~oJ
2 + v2) + 2V-~~~~~~ ~(Uv)} ( 17a)

This can be integrated to obtain the pressure field p(x ,y) by using

I
I

~

- ~~~~~~~~~~~~~~~ ~ ~~~~ 
-
-~~~~~~~ - -~~~~~~~~ 

— 
0 •
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the previously calculated velocity field U(x ,y) and V(x,y). This

form is to be preferred over the original form involving ~V/~x , since

the differentiation of UV with respect to x is somewhat better behaved

than that of V with respect to x. Nevertheless, the last term in

equation (17a) leads to unavoidable inaccuracies. A central-difference

formula was used to approximate it , and. since V—b-- is calculated as

part of the previous solution, the integration itself is quite simple .

However , owing to the rapid growth of the boundary layer and the use

of the staggered-mesh scheme in the boundary-layer solution , there

is a substantial loss in the accuracy with which the pressure field

could be determined. This became more apparent when the calculated

pressure field was differentiated with respect to x to determine

~p/~x(y) . Since the accuracy of this part of the solution could not

be improved without a complete revision of the numerical scheme for

the boundary-layer calculation , which is an Immense task , two sin-

plifications were adopted: (a) The y-momentu~n equation was integrated

up to y = 0 , i.e. the surface of the body or the wake centerline, to

determine 
~~ 

x),  and ~p/~x( y) was assumed to vary linearly between

and ~~~~~~ (b) This variation of the pressure gradient

across the boundary layer and wake was introduced into the interaction

procedure only after performing three iterations with the constant

pressure assumption. The first of these represents an approximation ,

but the measured pressure distributions ( see Figure 4) indicate that

it is realistic. The second assumption simply recognizes the inaccu-

racies occurring in the integration of the y-momentum equation and

~~~~~~~ Z~~~.2 -
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postpones its introduction into the iteration procedure to avoid an

accumulation of errors.

When the above procedure was used on the modified spheroid , the

discontinuity in the surface curvature produced a jump in p~( x).

Since the variation of the pressure across the flow is associated

with the curvature of the streamlines within the boundary layer rather -

than that of the surface , recourse was had , in this case , to the

curvature of the displacement surface . In fact , it is felt that this

procedure is more realistic in all cases since the curvature of the

displacement surface is more representative of the mean streamline

curvature.

V.5 Incorporation of the Differential Method.

The differential method developed in Chapter IV was incorporated

into the present solution procedure but with a more thorough con-

sideration of the coordinate discontinuity at the tail of the body.

When the tail angle is nonzero, the coordinate system, which follows

the surface of the body and the centerline of the wake, has to be

changed abruptly at the tail. To account for this, Nakayama et al.

( 1976b ) performed a separate analysis in a conical region beyond the

tail ( see Figure 1 in Nalcayama et al., 1976b) and used the conserva-

tions of mass and momentum to obtain the initial conditions for the

wake calculation a short distance downstream of the tail. More

recently, Bradshaw (1978) has suggested the use of interpolation

techniques to resolve the velocity components and Reynolds stresses
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calculated. at the trailing edge in boundary-layer coordinates into

those in the wake coordinates. The former neglects the most important

region in the near wake and is restricted to the integral approach.

The latter is sound. theoretically, but the associated numerics leads

to inaccuracies. A new approach has therefore been adopted in the

present work.

The region of interest is shown in Figure 27. The boundary

layer calculation is continued. in the usual coordinates up to station -

A so that the velocity and shear stress along AO are known. In order -

to start the calculation, however , it is necessary to calculate the

velocity components Uwake and. Vwake along 00, where C is the tail,

This is accomplished. as follows. The distance AC, which can be de-

termined readily f rom AO and the tail angle 9
(~ (AC is usually of the

order of one-half the local boundary-layer thickness) is divided

into two equal intervals . The boundary-layer solution is then

advanced. from AO to BO and then to CO by using the necessary unequal

longitudinal step size Ax( y). The associated program logic is simple

and will not be described here. After the velocities U and V along

CO are found, the components Uwake and Vwake are determined by simple

coordinate rotation , Note that the Reynolds stress iIV calculated

along CO does not change with the coordinate rotation since , according

to the present turbulence model , it represents the scalar , turbulent

kinetic energy. 

.. ‘ 
-

. 
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v.6 Convergence

The iterative interaction procedure was performed for the low-

drag body as well as the modified spheroid. In each case, converged

solutions were obtained with five to six iterations. The primary

results are presented in Figures 28(a,b) and 29(a ,b) . The initial

pressure distribution is shown by the zeroth iteration curve labelled

0, and the successive solutions are indicated. by the iteration numbers

1 through 6.

From Figure 28a it is seen that the pressure distribution along

the edge of the boundary layer and wake of the low-drag body converges

rapidly and that the converged solution is in good agreement with the

data. The pressure distribution on the surface of the body and along

the wake centerline, shown in Figure 28b, i.s the same as that shown

in Figure 28a for the first three iterations due to the initial

neglect of the static-pressure variation. The introduction of the

y-momentuin equation after the third iteration rapidly changes the

solution and brings it into satisfactory agreement with the experi- 3

mental data within two further iterations. However , small changes

continue to occur in the solution. These are attributed to the in-

accuracies in the integration of the y-momentuin equation noted earlier.

Figure 28~ shows the fixed boundary along which the boundary-layer

solution is matched with the inviscid solution, and the value of the

stream-function, cl’~ obtained from the successive iterations of the

potential flow. The good agreement with the experimental I/I
N 

indicates

the reliability of the present method.

~~~~~~~— - .~~~~~- - -
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The behavior of the solutions for the modified. spheroid, shown

in Figure 29(a ,b) is qualitatively similar to that of the low-drag

body . The nearly constant pressure at the edge of the wake , predicted

in the range 1.1<X/L czl.2, and the sonewhat abrupt change in C~5
and C~~ around X/L = 1.2 is, however, surprising. An examination of

the boundary conditions used for the calculation of the external flow,

namely I/ITI (x) and rN (x) ( see Figure 29c) does not indicate any ab-

normal behavior of the solution. Furthermore , the data in this region

are sparse and restricted to the pressure along the wake centerline.

The fact that the solution indicates negligible static-pressure

variation in the near wake (compare C~ 5 
and 

~~~ 
distributions of

Figures 29 a and b), in spite of the large tail angl6, appears to

suggest that the source of the discrepancy may lie again in the accu-

racy of the integration of the y-momentuin equation in this region.

The changes in Cpw occurring between iterations 4, 5 and 6 (Figure

29b), in spite of the rapid convergence of the solution with respect

to C~5 
and 

~
‘M (Figures 29a,c), also suggest that the procedure used

for the integration of the y-momentuin equation to obtain C~~ from C~,5
may not be altogether satisfactory.
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CHAPTER VI

— SUNNAB Y AND CONCLUSIONS

The achievements of the present investigation may be summarized

a~ follows:

(1) The data from the present experiments have been documented

(see Patel and Lee , 1977) in as much detail as possible so

that they can be used. by others to further investigate the

various aspects of the thick, axisyrninetric, turbulent

boundary layer and near wake of a body of revolution.

(2) The data from the low-drag body and the modified spheroid.

have been analyzed. to indicate the relative importance of

longitudinal and transverse surface curvatures, and. the

interaction between the external inviscid flow and the

thick boundary layer and near wake in the tail region .

(3) A manual describing the computer program for calculating

the thick, turbulent boundary layer on a body of revolu-

tion will be available as a report of the Iowa Institute

of Hydraulic Research.

The major conclusions from the present study are as follows:

(1) The overall reliability of the simple integral method of

Patel ( 1974 ) for the prediction of the thick boundary layer

has been demonstrated, Its extension to the wake is not

ii 

~~~~ - 
~~~~~ 
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altogether satisfactory. This method. is, however, ideally

suited for rapid calculations to detciinine the state of

the boundary layer in the tail region for some applications.

(2) The present experimental data indicate that both the length

scale and the Reynolds stresses are much less in a thick

a.xisyinmetric boundary layer than in a thin boundary layer.

(3) Systematic study of the parameters involved indicates that

the structure of turbulence in the boundary layer is

affected significantly by the presence of both longitudinal

and. transverse surface curvatures • These effects can be

reasonably well predicted by using the present differential

3 method with (i)  the measured pressures at both the wall

and edge of the boundary layer, (ii) incorporation of

Bradshaw ’s correlations for the extra rates of strain

introduced by the longitudinal and transverse curvatures,

and (iii) consideration of the transverse pressure gradient

in the boundary layer.

(4) The differential method has been applied with reasonable

success into the interaction calculation procedure of

Nakayama et al. (1976a,b) except matching between the

interior and the exterior is made at a fixed, predetermined

boundary a short distance beyond y = 6. It is shown that

this procedure gives convergent solutions in reasonably

good agreement with available data.

~~~~~~~-~~--~~~
-

• ~~~~~~-
-

- --- -~~~ ~~~~~~
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Several suggestions can be made for further research :

( 1) The rapid changes in the mixing length observed in the

thick boundary layer and the near wake indicate that the

so-called two-equation turbulence models , i.e. providing

an extra equation for the length-scale of the turbulence,

0 may be desirable. However, the recent work of Launder ,

Priddin and Sharma (1977) and Chambers and Wilcox (1977)

shows that even two-equation models require further

modifications to account for the extra rates of strain

stemming from such effects as streamline curvature,

streamline convergence and rotation, two of which are

present in the flow examined here.

(2) The solutions of the differential equations presented here

were carried out by a modification of an available numer-

ical method. The experience gained with the method

suggests that a better numerical scheme is required if the

difficulties associated with the integration of the

y-momerituxn equation , and the changes in the coordinate

system at the tail, are to be avoided. One possibility is

to use an implicit finite-difference method in conjunction

with a nonorthogonal coordinate system (e.g. (x,r) coor-

dinates, where x is along the body and wake axis while r

is the radial distance).

(3) In continuing the boundary-layer calculation into the wake ,

the abrupt change in the inner boundary condition has been

‘n’
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handled somewhat arbitrarily. A more detailed study of

the response of the inner region of the boundary layer to

the surface discontinuity at the tail is required to make

improvement in this procedure.

(11.) The solution of the potential flow exterior to the boundary

layer and wake may be improved by formulating a method

based on the integral equation of the second kind.

• (5) In the interaction scheme , an alternative would. be to use

a displacement-thickness surface as a means for deriving

the outer potential flow . Since a displacement—thickness

surface is also well-defined, a smooth matching between

the exterior inviscid flow and the boundary layer would

be expected. This alternative has been considered by

Preston (1945) and Lighthill (1958) who have proposed

formulas for the displacement effect suitable for thin

boundary layers. An extension of their results to second

order, recently given by Landweber (1978), may be appli-

cable to a thick boundary layer and wake.

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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APPENDIX A

ESTB’IATION OF INTEGRALS AND I~ FROM DATA

F These integrals are defined in the text by the following

equations :

= rdy (11)

and I~ = ~—~-~-~fr  ~~~~~~~~ ( - ~~&)dy (12)

The evaluation of ‘k is straightforward since both U and v have

been measured in the boundary layer and the wake, Since ‘ is the

curvature of the surface, ‘k becomes zero everywhere in the wake

From physical considerations, it may be argued that ‘k repre-

sents the influence of the curvature of the streamlines in the bound-

ary layer rather than that of the surface. It may therefore be

preferable to use a representative streamline curvature for ,c. For

example , an appropriate choice may be the longitudinal curvature of

the displacement surface shown in Figure 9. In the calculations

presented in the text , however , the original difinition of has

been retained and. an “effective” value has been assigned in the near

wake simply by reducing ‘k to zero , from its value at the tail ,

exponentially over a distance X/L = 0.20 from the tail.

~~~~~~~~~~~~ ~~- ~~~~~~~~ 
- 
_ _ _ _ _ _  - ~~~~~~~~~~~~~ ~~~~~- - -
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In order to simplify the evaluak ion of Ii,, it is first observed

that the measured static-pressure variations across the boundary

layer and wake (Figure 4) may be approximated by linear distributions,

viz

p - p
6
= (p - p

~)(1-f) 
(A-i)

where p~ is the pressure at the body surface or the wake centerline.

Substitution of this into equation (12) and integration leads to

I~u~ = 

~~ 
( s + cosO) ~~~~~ (Cpw 

- c
r6
)

3r
÷ 12 ( 

6 
+ 2cosO) —

~~~~~

— (c~ - c
r6)

2 2r
- -+— ~ + cos~) 

—
~~~~~

— ( v )  (A-2)

Using the Bernoulli equation, V6 can be related to C~6 
and U

8 
as

follows

- 

~~6 u2
0 0

can now be evaluated using the measured values of 8 , U8, C1,6 and

Cpw,

The estimated values of and I~, are shown in Figure 23, along

with the axial variation of the terms dA2/dx and jCfr~ appearing in

the momentum integral equation. It is seen that both ‘k and I~, make

a substantial contribution to the rate of growth of the momentum

~ 

~~~~~~~~~~~~ - -~~ - - - ~~ -~--~ —~~~ ----~~~~ ~
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deficit area. It should be noted that the accuracy of the solutions

of the momentum equation using ‘k and I~ is limited, due, not only to

the approximations that are involved in the estimation of these

integrals, but also because they are large and of opposite signs over

a substantial axial distance.

IIIrir__~ ~ _i_ _~~~~~~
, 
— ~~~~~~~- ~~~~~~ ~- •- 
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APPENDIX B

ORDERS-0F-MAGNITU~~ OF THE TERMS IN

THE x-MOIIENTUM EQUATION

In equation (16) , the streamwise derivative of the normal stress

i.e. 
~~ 

(u2), is omitted, In order to support this, the data

from the low-drag body are reexamined. ln Table 1, each term in

equation (16) is evaluated at both the inner and outer regions of

stations X/L 0.92 and 0.96 , which are in the thick boundary-layer

region . Owing to lack of accuracy in differentiations, these f igures

only provide rough magnitudes for each term. The analyses indicate

that , in the inner layer, the curvature term , -f---uv, and —k-- +-(u2)
1 l~~~~

are both negligible when compared with the other terms. But, in

outer layer, both the normal-stress and shear-stress terms are smaller

than the convective acceleration terms. This implies that, for the

entire boundary-layer calculation, the normal-stress term may be

neglected.

-

~

-

~ 
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TABLE 1

APPROXIMATE MAGNITUDE OF EACH TE~~ IN THE
x—NONENTUN EQUATION FOR THE LOW-DRAG BODY

X/L 0.92 0.96

y/L 0.005 0.040 0.005 0.040

—

~~

— —
~~~~~

— -0.1474 -0.3406 -0.0733 -0.4286 U
,

V -~~~~
— 0.0603 0.63114 0.0653 0.5289

—
~~~

-—- UV —0.0001 —0.0741 -0.0027 -0.0816

-
~~~~~

-- 0.0750 -0.1138 -0.2000 —0 , 2250

1 ~ h1rr,, ) 0.0606 -0 .0212 0,0839 —0.02L~k

—i-— —~-~(?) — 0.0 125 0.0090 —0.0101 0.0166

-— ~~~~. - - - 

0
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Landweber. Calculations have also been performed using the different ial
equations of the thick axisymmetric turbulent boundary layer and a rate
equat ion for the Reyno lds stress derived from the turbulent kinetic-energy
equation along the lines suggested by Bradahaw and others . It is shown that

• the boundary layer in the tail region of a body of revolution is dominated
by the extra strain rates arisii~ from longitudinal and transverse surface
curvatures. A new different ial method is incorporated into the iterat ive
proced ure developed by Nakayama , Patel and Landwebe r for the solution of the
interaction between the boundary layer , the wake and the external inviscid
flow . The restuls of the iterative method have been compared with the exT

-
• periinental data obtained from the present low-drag body and those obtained

earl ier on a modified spheroid to demonstrate the agreement .
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