



BAYES ESTIMATES OF THE VARIANCE OF A NORMAL POPULATION FOR PRIOR CONJUGATE DISTRIBUTIONS OF INDEPENDENT PARAMETERS WITH APPLICATION TO ESTIMATION IN FINITE POPULATIONS.

by

S./Zacks

Technical Report No. 36

10 January 10, 1979

PREPARED UNDER CONTRACT

N 00014-75-C-0529 PROJECT NR 042-276

OFFICE OF NAVAL RESEARCH

DDC
PEB 26 1979
PEB 26 1979
B

(14) TR-36

Reproduction in Whole or in Part is Permitted for any Purpose for the United States Government

DISTRIBUTION STATEMENT A

Approved for public releases

Distribution Unlimited

Department of Mathematics and Statistics
CASE WESTERN RESERVE UNIVERSITY
Cleveland, Ohio

403 901

093 4

Bayes Estimates of the Variance of a Normal Population for Prior Conjugate Distributions of Independent Parameters with Application to Estimation in Finite Populations

by

S. Zacks

1. Introduction

Let X, ..., X, be i.i.d. random variables having a normal distribution $N(\mu, \sigma^2)$, $-\infty < \mu < \infty$, $0 < \sigma^2 < \infty$, where both μ and σ are unknown. Consider the problem of estimating the distribution variance σ^2 . Let \overline{X}_n , S_n^2 be the sample mean and the sample variance, respectively. S_n^2 is an equivariant estimator, with respect to the group & of real affine transformations. It is well known that S_n^2 is inadmissible for the squarederror loss function. Moreover, all equivariant estimators of σ^2 are inadmissible (see Zacks [3; pp. 364]), this is due to the fact that \overline{X}_n and S_n^2 are independent and \overline{X}_n has also some information on σ^2 , that can be utilized to reduce the mean-squared-error (MSE) of the variance estimator. Bayes estimators of σ^2 , with respect to the squared-error loss, for any prior distributions having positive p.d.f. for all points in the parameter space, are admissible estimators (see Zacks [3; pp. 365]). The question is whether such admissible Bayes estimators are substantially more efficient than the minimum-MSE equivariant estimator $\hat{\sigma}_{E}^{2} = \frac{n-1}{n+1} S_{n}^{2}$. In the normal case the proper Bayes estimators of σ^2 have more complicated form than $\hat{\sigma}_{r}^{2}$ and sometimes a computer is needed for their application. However, today the need for using a computer is not an obstacle. The justification for using a complicated estimator is only in substantial improvement of efficiency. Box and Tiao [1] and Zellner [5] provide formulae of formal Bayes estimators of σ^2 , using the improper Jeffery's prior $H(\mu,\sigma) = d\mu d\sigma/\sigma$.

The corresponding formal Bayes estimator is however equivariant and is not better than $\hat{\sigma}_E^2$. DeGroot [2] presents a proper Bayes estimator which is admissible. This Bayes estimator is derived for the prior conjugate distributions so that, given σ^2 , the conditional prior distribution of μ is normal $N(\mu, \kappa^2 \sigma^2)$ and the prior marginal distribution of $1/2\sigma^2$ is the gamma distribution Gamma(ψ, ν), where ψ^{-1} is the scale parameter. The Bayes estimator corresponding to this prior model is

(1.1)
$$\hat{\sigma}_{BD}^{2} = \frac{\psi + (n-1)s_{n}^{2} + n(\overline{X}_{n} - \overline{\mu})^{2}/(1+n\pi^{2})}{n + 2\nu - 2}$$

In the present paper we develop the Bayes estimator suggested by Zacks [3; pp. 366], assuming conjugate distributions of independent prior parameters μ and σ^2 . More specifically, we assume that $\mu \sim N(\mu, D^2)$ and $1/2\sigma^2 \sim \text{Gamma}(\psi, \nu)$. Although the difference between DeGroot's model and the present one seems small, the two models are actually quite different, since in the former the prior normal distribution of μ depends on σ^2 . In the present model of priorly independent parameters we obtain a substantially more complicated Bayes estimator, designated by $\hat{\sigma}_{\rm BI}^2$. In Section 3 we compare the relative efficiencies of the three estimators $\hat{\sigma}_{\rm E}^2$, $\hat{\sigma}_{\rm BD}^2$ and $\hat{\sigma}_{\rm BI}^2$. The Bayesian framework developed here is applied in Section 4 for the derivation of the Bayes estimator of the variance $\sigma_{\rm N}^2$ of a finite population, which is discussed by Zacks and Solomon [4].

2. Derivation of the Bayes Estimator $\hat{\sigma}_{BI}^2$

Let $\theta = 1/2\sigma^2$. The likelihood function of (μ, θ) given the minimal sufficient statistic (\overline{X}_n, S_n^2) is

(2.1)
$$L(\mu,\theta|\overline{X}_n,S_n^2) = \theta^{\frac{n}{2}} \exp\{-n\theta(\overline{X}_n-\mu)^2 - (n-1)\theta S_n^2\},$$

for $-\infty < \mu < \infty$ and $0 < \theta < \infty$. It follows that the posterior p.d.f of (μ, θ) , given (\overline{X}_n, S_n^2) , for the independent conjugate priors is

(2.2)
$$k(\mu, \theta | \overline{X}_{n}, S_{n}^{2}) \propto \theta^{\frac{n}{2} + \nu - 1} \exp\{-n\theta (\overline{X}_{n} - \mu)^{2} - \frac{1}{2D^{2}} (\mu - \overline{\mu})^{2} - \theta [(n-1)S_{n}^{2} + \psi]\}, \quad -\infty < \mu < \infty, \quad 0 < \theta < \infty.$$

It is easy to verify that

(2.3)
$$\int_{-\infty}^{\infty} \exp\{-n\theta(\overline{X}_{n} - \mu)^{2} - \frac{1}{2D^{2}}(\mu - \overline{\mu})^{2}\}d\mu =$$

$$= \sqrt{2\pi} D(1 + 2n \theta D^{2})^{-\frac{1}{2}} \exp\{-\frac{n\theta}{1 + 2n \theta D^{2}}(\overline{X}_{n} - \overline{\mu})^{2}\}.$$

Hence, the posterior expectation of $\sigma^2 = 1/2\theta$, given (\overline{X}_n, S_n^2) , is

$$(2.4) E\{\sigma^{2} | \overline{X}_{n}, s_{n}^{2}\} = \frac{\int_{0}^{\infty} \frac{n}{\theta^{2}} + v - 2}{(1 + 2n\theta D^{2})^{-\frac{1}{2}}} \exp\left\{-\frac{n\theta}{1 + 2n\theta D^{2}} (\overline{X}_{n} - \overline{\mu})^{2} - \theta((n-1)s_{n}^{2} + \psi)\right\} d\theta} = \frac{1}{2} \cdot \frac{0}{\int_{0}^{\infty} \frac{n}{\theta^{2}} + v - 1} (1 + 2n\theta D^{2})^{-\frac{1}{2}} \exp\left\{-\frac{n\theta}{1 + 2n\theta D^{2}} (\overline{X}_{n} - \overline{\mu})^{2} - \theta((n-1)s_{n}^{2} + \psi)\right\} d\theta}$$

This is the Bayes estimator $\hat{\sigma}_{BI}^2$. By making the transformation $X = 2n\theta D^2$ we reduce (2.4) to

(2.5)
$$\hat{\sigma}_{BI}^{2} = \frac{(n-1)s_{n}^{2} + \psi}{n+2\nu-2} \cdot \frac{M_{1}(\lambda, \frac{n}{2} + \nu - 1, \delta^{2})}{M_{1}(\lambda, \frac{n}{2} + \nu, \delta^{2})},$$

where

(2.6)
$$\lambda = ((n-1)S_n^2 + \psi)/2nD^2, \quad \delta^2 = (\overline{X}_n - \overline{\mu})^2/D^2$$

and for each r = 1, 2, ... and $X \sim Gamma(\lambda, \nu)$

(2.7)
$$M_{\mathbf{r}}(\lambda, \nu, \delta^2) = \mathbb{E}\{(1+X)^{-\frac{r}{2}} \exp\{-\frac{\delta^2}{2} \cdot \frac{X}{1+X}\}\}.$$

The function $M_r(\lambda, \nu, \delta^2)$ is determined in the following manner. We make first the expansion

(2.8)
$$M_{\mathbf{r}}(\lambda, \nu, \delta^{2}) = \sum_{j=0}^{\infty} \left(-\frac{\delta^{2}}{2}\right)^{2} \frac{1}{j!} E_{\lambda, \nu} \left(\frac{X^{j}}{(1+X)^{j+r/2}}\right).$$

Let $p(j|\lambda)$ denote the p.d.f. of the Poisson with mean λ . Then,

(2.9)
$$M_{\mathbf{r}}(\lambda, \nu, \delta^2) = \sum_{j=0}^{\infty} p(j | \frac{\delta^2}{2}) R_j(\mathbf{r}, \lambda, \nu, \delta^2),$$

where

$$(2.10) R_{j}(r, \lambda, \nu, \delta^{2}) = (-1)^{j} \frac{\lambda^{\nu} e^{\delta^{2}/2}}{\Gamma(\nu)} \int_{0}^{\infty} \frac{x^{j+\nu-1}}{(1+x)^{j+r/2}} e^{-\lambda x} dx$$

$$= (-1)^{j} \frac{\lambda^{\nu} e^{\delta^{2}/2} + \lambda}{\Gamma(\nu)} \int_{1}^{\infty} \frac{(y-1)^{j+\nu-1}}{y^{j+r/2}} e^{-\lambda y} dy .$$

Suppose that ν is an integer and r = 2m+1, then

(2.11)
$$R_{j}(r, \lambda, \nu, \delta^{2}) = (-1)^{j} \frac{\lambda^{\nu} e^{\delta^{2}/2 + \lambda}}{\Gamma(\nu)} \sum_{i=0}^{j+\nu-1} (-1)^{i} {j+\nu-1 \choose i} E_{\nu-1-m-\frac{1}{2}}(\lambda)$$

where generally

(2.12)
$$E_{\ell-\frac{1}{2}}(\lambda) = \int_{1}^{\infty} y^{\ell-\frac{1}{2}} e^{-\lambda y} dy, \qquad \ell = 0, \pm 1, \pm 2, \dots .$$

These exponential integrals are determined by the recursive formula

$$(e^{-\lambda} + (\ell - \frac{1}{2}) E_{\ell - \frac{3}{2}}(\lambda))/\lambda, \quad \ell \ge 1$$

$$(2.13) \quad E_{\ell - \frac{1}{2}}(\lambda) = \frac{1}{-\ell - \frac{1}{2}}(e^{-\lambda} - \lambda E_{-\ell + \frac{1}{2}}(\lambda)), \quad \ell \le -1$$

where

(2.14)
$$E_{-\frac{1}{2}}(\lambda) = 2\sqrt{\frac{\pi}{\lambda}} \left(1 - \Phi(\sqrt{2\lambda})\right),$$

and $\Phi(z)$ is the standard normal integral. If ν is not an integer other expansions can be attempted or the value of the M-function can be determined approximately by linear interpolation between the values of the M-function corresponding to the two integers adjacent to ν . In the Appendix we provide a FORTRAN subroutine function to compute $M_{\mathbf{r}}(\lambda,\nu,\delta)$ for integer values of ν .

3. Relative Efficiency Comparisons

In the present section we compare the three estimators $\hat{\sigma}_E^2$, $\hat{\sigma}_{BD}^2$ and $\hat{\sigma}_{BI}^2$ with respect to their relative efficiency. For the purpose of comparing the Bayes estimators with the equivariant ones we define the relative efficiency of an estimator $\hat{\sigma}^2$ as the ratio of its MSE to that of $\hat{\sigma}_E^2$. More specifically, the relative efficiency function of $\hat{\sigma}^2$ is defined as

(3.1)
$$RE(\hat{\sigma}^{2}, \omega) = \frac{n+1}{2\sigma} / E_{2} \{ (\hat{\sigma} - \sigma^{2})^{2} \},$$

where $\omega=(\mu,\sigma^2)$. We derive first the relative efficiency of $\hat{\sigma}_{BD}^2$. Notice that $n(\overline{X}_n-\overline{\mu})^2\sim\sigma^2\chi^2[1;\frac{n(\mu-\overline{\mu})^2}{2\sigma}]$, where $\chi^2[1;\lambda]$ designates the noncentral chi-squared with 1 degree of freedom and parameter of non-centrality λ . Let $n'=n+2\nu-2$ then

(3.2)
$$\hat{\sigma}_{BD}^{2} \sim \frac{\psi}{n'} + \frac{\sigma^{2} \chi_{1}^{2} [n-1]}{n'} + \frac{\sigma^{2} \chi_{2}^{2} [1; \frac{n(\mu - \overline{\mu})^{2}}{2\sigma^{2}}]}{n'(1 + n \kappa^{2})},$$

with $\chi_1^2[\cdot]$ and $\chi_2^2[\cdot;\cdot]$ independent. Hence,

(3.3)
$$\mathbb{E}\{\hat{\sigma}_{BD}^2\} = \sigma^2 + \frac{\sigma^2}{n'} \left\{ \frac{1}{1+n\kappa^2} \left(1 + \frac{n(\mu-\mu)^2}{\sigma^2} \right) - (2\nu-1) + \frac{\psi}{\sigma^2} \right\}$$

and

(3.4)
$$\operatorname{Var}\{\hat{\sigma}_{BD}^{2}\} = \frac{2\sigma^{4}}{(n')^{2}} \left[n-1 + \frac{1 + 4n\left(\frac{\mu-\mu}{\sigma}\right)^{2}}{(1 + n\kappa^{2})^{2}} \right].$$

Let $\zeta = (\mu - \overline{\mu})/\sigma$ and $\beta = \frac{1 + n\zeta^2}{1 + n\varkappa^2} - (2\nu - 1) + \frac{\psi}{2}$ then the relative efficiency of $\hat{\sigma}_{BD}^2$ depends only on ζ^2 , $\frac{\psi}{2}$, \varkappa^2 , ν and n and is given by:

(3.6)
$$\operatorname{RE}(\hat{\sigma}_{BD}^{2}; \zeta_{\sigma}^{2}, r, v) = \frac{n+2v-2}{n+1} \left[1 - \frac{2v-1}{n+2v-2} + \frac{1 + 4n\zeta^{2}}{(n+2v-2)(1+n\varkappa^{2})} + \frac{\beta^{2}}{2(n+2v-2)} \right]^{-1}.$$

The estimator $\hat{\sigma}_{BI}^2$ is considerably more complicated and no explicit formula of its MSE can be derived. We can compute its MSE, however, numerically in the following manner. Since $n(\overline{X}_n - \overline{\mu})^2 \sim \sigma^2 \chi^2[1;\lambda]$ with $\lambda = \frac{n}{2} \zeta^2$ we can write

(3.7)
$$E\{(\hat{\sigma}_{BI}^{2} - \sigma^{2})^{2}\} = \sigma^{4} E\left\{\left[\frac{\frac{\psi}{2} + 2W_{1}}{n'}\right] \cdot \frac{M_{1}\left(\left(\frac{\psi}{\sigma^{2}} + 2W_{1}\right) / 2n\kappa^{2}, \frac{n}{2} + \nu - 1, 2W_{2}(J)/n\kappa^{2}\right)}{M_{1}\left(\left(\frac{\psi}{\sigma^{2}} + 2W_{1}\right) / 2n\kappa^{2}, \frac{n}{2} + \nu, 2W_{2}(J)/n\kappa^{2}\right)} - 1\right\}^{2},$$

where $W_1, W_2(J)$ are independent, $W_1 \sim \text{Gamma}\left(1, \frac{n-1}{2}\right)$, $W_2(J) \sim \text{Gamma}(1, \frac{1}{2}+J)$ and J is a Poisson r.v. with mean λ . Let $G(x|\nu)$ be the c.d.f of

Gamma(1,v) at x, let $G^{-1}(p|v)$ be the p-th fractile of Gamma (1,v). Define $\overline{\xi}_1 = G^{-1}(.99|\frac{n-1}{2})$, $\underline{\xi}_2(j) = G^{-1}(.005|\frac{1}{2}+j)$ and $\overline{\xi}_2(j) = G^{-1}(.995|\frac{1}{2}+j)$. The risk function (3.7) is determined by computing first the conditional expectation given J numerically over the range $(0,\overline{\xi}_1)x(\xi_{-2}(J),\overline{\xi}_2(J))$. The conditional expectations are then averaged with respect to the Poisson distribution with mean λ . The range of integration for each J is partitioned into MXM rectangles. Let $\xi_1(i) = i\overline{\xi}_1/M$ for $i = 0,1,\ldots,M$ and let $\xi_2(J,i) = \underline{\xi}_2(J) + i(\overline{\xi}_2(J) - \underline{\xi}_2(J))/M$, $i = 0,\ldots,M$. Furthermore, let $\overline{\xi}_2(J,i) = (\xi_2(J,i) + \xi_2(J,i-1))/2$, $i = 1,\ldots,M$, and let $J^* = Integer$ part of $(\lambda + 4\sqrt{\lambda})$. Then, a numerical approximation to the relative efficiency of $\widehat{\sigma}_{BI}^2$ is given by (3.8) $RE(\widehat{\sigma}_{BI}^2;\zeta,\frac{\psi}{\sigma^2}M,\nu) \cong \frac{2}{n+1} \begin{pmatrix} J^* \\ D \\ J=0 \end{pmatrix} p(j|\lambda)$. $\frac{M}{1} \begin{pmatrix} \frac{\psi}{2} + 2\overline{\xi}_1(i_1) \\ \frac{\psi}{\sigma} + 2\overline{\xi}_1(i_1) \end{pmatrix} - \frac{M}{1} \begin{pmatrix} \frac{\psi}{2} + 2\overline{\xi}_1(i_1) \\ \frac{\psi}{\sigma} + 2\overline{\xi}_1(i_1) \end{pmatrix} - 2n\kappa^2, \frac{n}{2} + \nu, 2\overline{\xi}_2(j,i_2)/n\kappa^2 \end{pmatrix} - \frac{M}{1} \begin{pmatrix} \frac{\psi}{\sigma} + 2\overline{\xi}_1(i_1) \\ \frac{\psi}{\sigma} + 2\overline{\xi}_1(i_1) \end{pmatrix} - 2n\kappa^2, \frac{n}{2} + \nu, 2\overline{\xi}_2(j,i_2)/n\kappa^2 \end{pmatrix}$

$$-1 \left]^{2} \cdot (G(\xi_{1}(i_{1}) | \frac{n-1}{2}) - G(\xi_{1}(i_{1}-1) | \frac{n-1}{2})) \cdot (G(\xi_{2}(j,i_{2}) | \frac{1}{2} + j) - G(\xi_{2}(j,i_{2}-1) | \frac{1}{2} + j)) \right\}^{-1} .$$

The functions $G(x|\frac{1}{2}+j)$, j=0,1,... can be computed recursively according to the formula

(3.9)
$$G(x|\frac{1}{2}+j) = \begin{cases} -\frac{1}{\Gamma(\frac{1}{2}+j)} x^{j-\frac{1}{2}} e^{-x} + G(x|j-\frac{1}{2}), & j \ge 1 \\ 2\Phi(\sqrt{2x}) - 1, & j = 0 \end{cases}$$

69 02 21 093

The function $G(x|\frac{n-1}{2})$ is computed similarly if n is even. If n is odd we apply a similar recursion with $G(x|1) = 1 - e^{-x}$. In Table 1 we provide values of the RE functions of $\hat{\sigma}_{BD}^2$ and $\hat{\sigma}_{BI}^2$ for n = 10, $\frac{\psi}{2} = 2,6,10$; v = 2, $\kappa = 2$ and $\zeta = 0$, .5 and 1. We see that for $\zeta = 0$ $\hat{\sigma}_{BI}^2$ is more efficient than $\hat{\sigma}_{BD}^2$. Furthermore, for $\zeta = 0$ and $\frac{\psi}{\sigma^2}$ small $\hat{\sigma}_{BI}^2$ considerably more efficient than the best equivariant estimator $\hat{\sigma}_{E}^2$. However, when $\zeta \geq .5$ $\hat{\sigma}_{BD}^2$ is generally more efficient than $\hat{\sigma}_{E}^2$ (recall that $\hat{\sigma}_{E}^2$ is minimax!).

Table 1. Relative Efficiency Values of $\hat{\sigma}_{BD}^2$ and $\hat{\sigma}_{BI}^2$ for samples of size n=10.

ν	н	ζ	$RE(\hat{\sigma}_{BD}^2)$	$RE(\hat{\sigma}_{BI}^2)$
2.0	2.0	0.0	1.378	1.640
O'A COLUMN	0.0			3.337 0.969
2.0	2.0	0.5	1.351	0.467
2.0	2.0	0.5	0.933	0.965 0.276
		1.0	1.275	0.072
2.0	2.0	1.0	0.353	0.149 0.043
֡	2.0 2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.0 2.0 0.0 2.0 2.0 0.0 2.0 2.0 0.0 2.0 2.0 0.5 2.0 2.0 0.5 2.0 2.0 1.0 2.0 2.0 1.0	2.0 2.0 0.0 1.378 2.0 2.0 0.0 0.963 2.0 2.0 0.0 0.339 2.0 2.0 0.5 1.351 2.0 2.0 0.5 0.933 2.0 2.0 0.5 0.331 2.0 2.0 1.0 1.275 2.0 2.0 1.0 0.353

4. Estimating the Variance of a Finite Population

Let x_1, \dots, x_N be the values of N units in a finite population. We consider the problem of estimating the variance $\sigma_N^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \mu)^2$, $\mu = \frac{1}{N} \sum_{i=1}^N x_i$ on the basis of a sample of n values x_1, \dots, x_n chosen from that population. Zacks and Solomon [4] presented the form of Bayes estimators of σ_N^2 . We derive here the Bayes estimator for the squared-error loss

when the model is that x_1, \dots, x_N are conditionally i.i.d. $N(\mu, \sigma^2)$ and that $\mu \sim N(\overline{\mu}, D^2)$, $1/2\sigma^2 \sim \text{Gamma}(\psi, \nu)$. This model actually implies that the variates in the population are exchangeable random variables having a distribution which is a mixtrue of normal distributions. Without loss of generality one can assume that the sample consists of the first n variates x_1, \dots, x_n . Let \overline{x}_n be the sample mean and $\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2$ the sample (classical) estimate of σ_N^2 . Let \overline{x}_{N-n} be the mean of the population variates which are not in the sample and $\tau_{N-n}^2 = \frac{1}{N-n} \sum_{i=n+1}^N (x_i - \overline{x}_{N-n})^2$. It is shown in [4] that

(4.1)
$$\sigma_{N}^{2} = \frac{n}{N} \hat{\sigma}_{n}^{2} + (1 - \frac{n}{N}) \tau_{N-n}^{2} + \frac{n}{N} (1 - \frac{n}{N}) (\overline{x}_{n} - \overline{x}_{N-n}^{*})^{2}.$$

We derive here the Bayes estimator $\hat{\sigma}_B^2 = \mathbb{E}\{\sigma_N^2 | \mathbf{x}_n\}$ according to the above model. One should determine the posterior expectations of τ_{N-n}^2 and of $(\bar{\mathbf{x}}_n - \bar{\mathbf{x}}_{N-n}^*)^2$, given the sample values $\mathbf{x}_n = (\mathbf{x}_1, \dots, \mathbf{x}_n)$. Notice first that since $\mathbf{x}_1, \dots, \mathbf{x}_N$ are conditionally i.i.d, given μ, σ^2

$$E\{\tau_{N-n}^{2} | \underline{x}_{n}, \sigma^{2}\} = \frac{N-n-1}{N-n} \sigma^{2}$$

$$(4.2)$$

$$E\{(\overline{x}_{n} - \overline{x}_{N-n}^{*})^{2} | \underline{x}_{n}, \sigma^{2}, \mu\} = \frac{\sigma^{2}}{N-n} + (\mu - \overline{x}_{n})^{2}.$$

Hence,

(4.3)
$$\hat{\sigma}_{B}^{2} = \mathbb{E}\{\sigma_{N}^{2} \mid \mathbf{x}_{n}\} = \frac{n}{N} \hat{\sigma}_{n}^{2} + (1 - \frac{n}{N})(1 - \frac{1}{N})\mathbb{E}\{\sigma^{2} \mid \mathbf{x}_{n}\} + \frac{n}{N}(1 - \frac{n}{N})\mathbb{E}\{\mu - \overline{\mathbf{x}}_{n}\}^{2} \mid \mathbf{x}_{n}\}.$$

We have seen in Section 2 that

(4.4)
$$\mathbb{E}\left\{\sigma^{2} \mid \mathbf{x}_{n}\right\} = \mathbb{E}\left\{\sigma^{2} \mid \mathbf{x}_{n}, \hat{\sigma}_{n}^{2}\right\}$$

$$= \frac{n\hat{\sigma}_{n}^{2} + \psi}{n+2\nu-1} \cdot \frac{M_{1}(\lambda, \frac{n}{2} + \nu - 1, \delta^{2})}{M_{1}(\lambda, \frac{n}{2} + \nu, \delta^{2})} ,$$

where $\lambda = (n\hat{\sigma}_n^2 + \psi)/2nD^2$ and $\delta^2 = (\bar{x} - \bar{\mu})^2/D^2$. To derive the posterior expectation of $(\mu - \bar{x}_n)^2$ we write first (see Zellner [5; pp. 22])

(4.5)
$$\mathbb{E}\{(\mu - \overline{x}_n)^2 | \sigma^2, \overline{x}_n, \hat{\sigma}_n^2\} = \frac{\sigma^2}{n} W + (\overline{x}_n - \overline{\mu})^2 (1 - W)^2,$$

where $W = D^2/(D^2 + \sigma^2/n)$. Finally, since $\frac{\sigma^2}{n}W = D^2(1 + 2n\theta D^2)^{-1}$ and $(1-W)^2 = (1 + 2n\theta D^2)^{-2}$ we obtain

(4.6)
$$\mathbb{E}\{(\mu - \overline{x}_{n})^{2} | \overline{x}_{n}, \hat{\sigma}_{n}^{2}\} = \mathbb{D}^{2} \mathbb{E}\{(1 + 2n\theta \mathbb{D}^{2})^{-1} | \overline{x}_{n}, \hat{\sigma}_{n}^{2}\}$$

$$+ (\overline{x}_{n} - \overline{\mu})^{2} \mathbb{E}\{(1 + 2n\theta \mathbb{D}^{2})^{-2} | \overline{x}_{n}, \hat{\sigma}_{n}^{2}\}$$

and the Bayes estimator of $\sigma_{_{\rm N}}^2$ is

(4.7)
$$\hat{\sigma}_{B}^{2} = \frac{n}{N} \hat{\sigma}_{n}^{2} + (1 - \frac{n}{N})(1 - \frac{1}{N}) \frac{n\hat{\sigma}_{n}^{2} + \psi}{n + 2\nu - 2} \cdot \frac{M_{1}(\lambda, \frac{n}{2} + \nu - 1, \delta^{2})}{M_{1}(\lambda, \frac{n}{2} + \nu, \delta^{2})}$$

+
$$\frac{n}{N}(1-\frac{n}{N})D^2$$
 $\frac{M_3(\lambda,\frac{n}{2}+\nu,\delta^2)+\delta^2M_5(\lambda,\frac{n}{2}+\nu,\delta^2)}{M_1(\lambda,\frac{n}{2}+\nu,\delta^2)}$

Prior risk comparisons of the estimator $\hat{\sigma}_B^2$ with the classical estimator $\hat{\sigma}_n^2$ are given in [4].

REFERENCES

- [1] Box, G.E.P. and Tiao, G.C., <u>Bayesian Inference In Statistical Analysis</u>, Addison-Wesley, Reading, Mass., 1973.
- [2] DeGroot, M.H., Optimal Statistical Decisions, McGraw-Hill, New York, 1970.
- [3] Zacks, S., The Theory of Statistical Inference, John Wiley, New York, 1971.
- [4] Zacks, S. and Solomon, H., Bayes and Equivariant Estimators of the Variance of a Finite Population. Tech. Report No. 35, ONR Project NR 042-276, Department of Mathematics and Statistics, Case Western Reserve University, 1978.
- [5] Zellner, A., An Introduction To Bayesian Inference In Econometrics, John Wiley, New York, 1971.

Appendix: FORTRAN Program for the Computation of $M_r(\lambda, \nu, \delta^2)$

The subroutine function is called BM(IR,AL,V,DS) where IR \leftarrow r, AL \leftarrow λ , v \leftarrow v, DS \leftarrow δ^2 . The subroutine function consists of three main parts (lines 10-170; 180-430 and 440-680). This is then supported by FUNCTION C(1,K) (lines 690-850) which computed the combinatorial function $\binom{K}{L}$ FUNCTION POS(J,AL) (lines 860-1070) computes the Poisson c.d.f. with mean AL \leftarrow λ at J \leftarrow j. Finally, FUNCTION DNDX(X) (lines 1080-1270) computes the standard normal integral $\Phi(x)$. In addition, the gamma function GAMF(W) \leftarrow Γ (W) is utilized in line 300. This function was computed with the computer library subroutine. If such a routine is not available one should supplement a subroutine FUNCTION GAMF(W).

```
00010
            FUNCTION BM(IR, AL, V, DS)
00020
            JR=IR
            BLEAL
00030
00040
            W=V
00050
            ES=DS/2,
00060
            IW=INT(W)
            K=(JR-1)/2
00070
            AS=ES+4.*SQRT(ES)
00080
            JS=INT(AS)+1
00090
            BM=0.
00100
            no 1 J=1,JS
00110
00120
            J.J=J-1
00130
            FJ=POS(J,ES)-POS(JJ,ES)
            BM=BM+PJ*R(JJ,K,BL,W,ES)
00140
          1 CONTINUE
00150
            RETURN
00160
00170
            END
            FUNCTION R(J:K:AL:V:ES)
00180
00190
            I=J
00200
            L=K
00210
            BLEAL
00220
            Hat
            IW=INT(W)
00250
            SS=ES
00250
            CO=1.
            BO 2 M=1 , I
            C0=-C0
00290
          2 CONTINUE
            H=EXF(BL+GS)*(BL**IW)/GAMF(W)
```

```
00310
             H=H*CO
00320
             CO = -1.
00330
             T=0.
00340
             DO 1 I=1, IS
00350
             11=1-1
             00=-00
00340
00370
             IL=IW-L-II
             FI=CO*C(II, IS-1) *E(IL, BL)
00380
             T=T+FI
00390
          1 CONTINUE
00400
            RETRIE
00410
00420
             RETURN
00430
             END
00440
             FUNCTION E(I AL)
00450
             L == I
00460
             BL=AL
             PHI=3.1415927
00470
             Z=SQRT(2.*BL)
00480
             AO=2.*SCRT(PHI/BL)*(1.-CNDX(Z))
00490
00500
             IF(L) 3,1,2
00510
           1 E=A0
            GO TO 10
00520
           2 B0=A0
00530
00540
            DO 5 K=1 rL
00550
             AK=K
             PO=(EXP(-BL)+(AK-.5)*BO)/BL
00530
00570
           5 CONTINUE
             E = B0
00580
             GO TO 10
00590
           3 BO=A0
00600
00610
             Marin
00620
             DO 6 K=1,M
00630
             AK=K
             BO=(EXP(-BL)-BL*BO)/(AK-.5)
00640
           6 CONTINUE
00650
00660
             E=30
          10 RETURN
00670
00680
             END
00690
             FUNCTION C(L,K)
00700
             I == L
00710
             J=K
00720
             IF(J-I) 1,2,3
00730
           1 C=0.
00740
             GO TO 10
00750
           2 C=1.
00760
             GO TO 10
00770
           3 IF(I) 1,2,4
00780
           4 C=1.
00790
             DO 5 M=1 , I
00800
             BL =M
00810
             101. = J-M+1
00820
             C=C*DL/BL
00830
           5 CONTINUE
00840
          10 RETURN
00850
             END
```

```
FUNCTION POS(J,AL)
00860
00870
             I = J
00880
            B=AL
00890
             IF(B.GE.10.) GO TO 8
00900
            IF(I) 1,2,3
00910
           1 POS=0.
00920
             GO TO 10
00930
           2 POS=EXP(-B)
00940
             60 TO 10
00950
           3 POS=EXP(-B)
00960
             F=FOS
00970
             DO 4 K=1, I
00980
             AK=K
00990
             F=F*B/AK
01000
             POS=POS+F
01010
          4 CONTINUE
01020
             GO TO 10
01030
           8 AI=I+.5
             ZI=(AI-B)/SQRT(B)
01040
01050
             POS=CNDX(ZI)
01060
         10 RETURN
01070
             END
01080
             FUNCTION CNDX(X)
01090
             Y ::: X
01100
             ISWTCH=0
01110
             IF(Y) 1,2,2
01120
          1 Y = ABS(Y)
01130
             ISWTCH=1
01140
          2 P=.2316419
01150
            B1=.31938153
01160
             B2=-.35656378
            B3=1.7814779
01170
01180
             B4=-1.8212559
01190
            B5=1.3302744
01200
             T=1./(1.+P*Y)
             R=.3989423*EXP(-Y*Y/2.)
01210
01220
             QMOX=1.-R*(B1*T+B2*T*T+B3*T*T*B4*(T**4)+B5*(T**5))
01230
             IF (ISWTCH) 3,4,3
01240
          3 QNDX=1.-QNDX
01250
          4 CNDX=QNDX
01260
             RETURN
01270
             END
```

REPORT DOCUMENTATION I	READ INSTRUCTIONS BEFORE COMPLETING FORM	
Technical Report No. 36	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Bayes Estimates of the Variance of lation for Prior Conjugate Distribu	S. TYPE OF REPORT & PERIOD COVERED	
pendent Parameters with Application in Finite Populations	6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(+)	8. CONTRACT OR GRANT NUMBER(*)	
S. Zacks		№ 00014-75-C-0529 PROJECT NR 042-276
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK	
Department of Mathematics and Stat Case Western Reserve University Cleveland, Ohio 44106	istics .	AREA & BORK ONLY NOMBERS
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	
OFFICE OF NAVAL RESEARCH	January 10, 1979	
ARLINGTON, VIRGINIA 22217		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II dillerent	15. SECURITY CLASS. (of this report)	
		UNCLASSIFIED
		150. DECLASSIFICATION DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION OF DOCUMENT UNLIMITED

Approved for public release:

Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse eide if necessary and identify by block number)

Normal distribution, Bayes estimation, admissibility, relative efficiency, finite populations.

20. ABSTRACT (Continue on reverse side if necessary and identity by block number)

A Bayes estimator of the variance of a normal distribution $N(u,\sigma)$, when μ is unknown, is developed for squared-error loss and conjugate priors of independent parameters. The estimator was suggested in Zacks [3; pp. 366]. In the present study its formula is developed and its relative efficiency is compared with that of the Bayes estimator given in DeGroot [2] and with that of the best equivariant estimator. Application of the estimator to the estimation of the variance of a finite population is provided.