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Bayes Estimates of the Variance of a Normal Population for Prior |
Conjugate Distributions of Independent Parameters with Application
to Estimation in Finite Populations
by

S. Zacks

1. Introduction

Let Xl,...,Xn be i.i.d. random variables having a normal distribu-
tion N(p,0%), -m<p<® 0< o < @, where both u and o are un-
known. Consider the problem of estimating the distribution variance 02.
Let in’ Sz be the sample mean and the sample variance, respectively. Sﬁ
is an equivariant estimator, with respect to the group & of real affine
transformations. It is well known that Sg is inadmissible for the squared-
error loss function. Moreover, all equivariant estimators of 02 are
inadmissible (see Zacks [3; pp. 364]), this is due to the fact that ‘in and
S: are independent and lin has also some information on 02, that can
be utilized to reduce the mean-squared-error (MSE) of the variance estima-
tor. Bayes estimators of cz, with respect to the squared-error loss, for
any prior distributions having positive p.d.f. for all points in the para-
meter space, are admissible estimators (see zacks [3; pp. 365]). The ques-
tion is whether such admissible Bayes estimators are substantially more

2 _ B=l .2

efficient than the minimum-MSE equivariant estimator GE =131 S,- In the

normal case the proper Bayes estimators of 02 have more complicated form

than Sg and sometimes a computer is needed for their application. However,
today the need for using a computer is not an obstacle. The justification for
using a complicated estimator is only in substantial improvement of effi- ?E;%;T
ciency. Box and Tiao [1] and Zellner [5] provide formulae of formal Bayes ' Eg .
estimators of cz, using the improper Jeffery's prior H(u,c) = dudo/o. Tr— ;
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The corresponding formal Bayes estimator is however equivariant and is not
better than 82. DeGroot [2] presents a proper Bayes estimator which is
admissible. This Bayes estimator is derived for the prior conjugate dis-
tributions so that, given 52, the conditional prior distribution of p is

normal N(ﬂ,u?cz) and the prior marginal distribution of 1/202 is the

gamma distribution Gamma(y,v), where 1 is the scale parameter. The

Bayes estimator corresponding to this prior model is |

_— (n-l)Sfl + n(in-ﬁ)z/(lmuz)
Sgp = ’

(1.1)
n+2ve-2

In the present paper we develop the Bayes estimator suggested by Zacks

[3; pp. 366], assuming conjugate distributions of independent prior para-
meters p and f.Mwewmﬂudw,ma%mem%.u~NGJ% and
1/202 ~ Gamma(§,v). Although the difference between DeGroot's model and
the present one seems small, the two models are actually quite different,
since in the former the prior nommal distribution of u depends on 02.

In the present model of priorly independent parameters we obtain a substan-
tially more complicated Bayes estimator, designated by 8:1 . In Sec-

~

tion 3 we compare the relative efficiencies of the three estimators Op s
GSD and 6:1 . The Bayesian framework developed here is applied in Sec-
tion 4 for the derivation of the Bayes estimator of the variance aﬁ of a

_finite population, which is discussed by Zacks and Solomon [k4].

2. Derivation of the Bayes Estimator

a2
%BI
Let 6 = 1/202. The likelihood function of (u,e) given the minimal

sufficient statistic (in,sz) is




(2.1) L(u, eli_cn,si) - o exp{-ne(in-u)2 - (n-l)esij,

for ~e<p<® and 0<6<w, It follows that the posterior p.d.f of

(p, 6), given (T(n, 31'21)’ for fhe independent conjugate priors is

n
s+v=-1

- 2 2 - 2 —\2
(2.2) k(uy 0]% ,50) = o exp(-no(X -u)? - 25(u-7)
2D

- 9[(n-1)S§ + ]}, ~*<pu<eo 0<O<w,
it is easy to verify that
(2.3) [ expl-no(X, - 1)? - S(u-0)an
- 2D

=+2m D(1+2n 6D2)-% exp(- ————(X -u) L
l+2n6D

2

Hence, the posterior expectation of ¢° = 1/26, given ()_(n,szl), is

®3+v-2 2\-% ne =8 2
J; (1+2nep®) exp{-l—z—eD—z()—(n-u) - 9((n—l)Sn+?9d9
% e - +en o
®5+v-1
J 92 (l+2n6D ) -% exp{ 2(x -p) - 8((n-1)s +@de
0 1+2n6D

This is the Bayes estimator 52 -

BI * By making the transformation X =2n6D

we reduce (2.%) to

2
(2.5) 81 =

e n 2

(n-l)Sn+¢ : Ml(x,§+v-l,5 )
2

n+2v-2 Ml()"Lz1+v’ 8%)




~Ihe

where

(2.6) A= ((n.l)sf1 + w)/ZnDz, A% (in-ﬁ)z/nz

¢ dfor each r =1,2,... and X ~ Gamma(},v)

v
e 2
(2.7) Mr(x,v,sz) = E{(14X) 2 exp{ -% . %(]] b

The function Mr(x,v, 52) 1is determined in the following manner. We make

first the expansion

, gL o f €% g xJ }
z:9) ik £ () J—Ex{m .

Let p(j|n) denote the p.d.f. of the Poisson with mean A. Then,
(2.9) 2y | = 52) 2
2.9 M (%v,87) = ; 2R, (x,25v,87),

where

2
v 8°/2 o el
(2.10) Rj(r,x,v,ﬁz) = (=) Aot X

-\X
r(v) o (l+x)j+r7§ S

dax

2
v 87/2 + A = gy—l)j“"l

= (-1)'j L .e-w dy .
(v) 1 yj+r/2

Suppose that v 1is an integer and r = 2m+l, then

2
v 3°/24%  J+v-1

if§+m1
T(v) 1=0 e (+;- w1mi (M

where generally
-]
(2.12) By 3(0) = j‘ly"'% e Ny, A= GptlydByens «

These exponential integrals are determined by the recursive formula




(e + (- BE, (M)A, 221

(2.1.3) E”_i(l) =

e A E L (), gsa
where
(2.14) E_é(x) = zﬁ (1 - &V210)),

and &(z) is the standard normal integral. If v is not an integer other
expansions can be attempted or the value of the M-function can be deter-
ﬁined approximately by linear interpolation between the values of the M-func-
tion corresponding to the two integers adjacent to v. In the Appendix we
provide a FORTRAN subroutine function to compute Mr(x,v,b) for integer

values of v.

3. Relative Efficiency Comparisons

o 2
%°g» %p

3§I with respect to their relative efficiency. For the purpose of com-

In the present section we compare the three estimators and

paring the Bayes estimators with the equivariant ones we define the rela-

tive efficiency of an estimator 82 as the ratio of its M3E to that of
a2 a2

O More specifically, the relative efficiency function of g is defined
as

a2 +1 x 242
(3.1) RE(G ,w) = E—E/Ez((o - a°)°l,

20

where w = (u,oz). We derive first the relative efficiency of agn. Notice
-2
- 2 s
that n(T(n-u)z ~ Qg xz[lj ELP—%L
20
central chi-squared with 1 degree of freedom and parameter of non-cen-

], where x?[l;x] designates the non-

trality A. Let n’ = n+2y-2 then




T

1J.LEL]

+ ’
s n’ n(1+nu2)

2 Oxz[

22
[n-1]
(3.2) 3 ~—‘7+°X1n

with x]2_[°] and xg[';' independent. Hence,

(3.3) E{& D} = o + —7{ é_ 5 n(u E) ) (2v-1) + _i}
l+nn

and
-2
u-
~ 2 20’* l+hn(—<;g)
(3.11») Var [ BD] 2 n-1 + ———TT .
(n") (1 +nu°)

- 1+nC,2 ¥
Iet ¢ = (u-p)/o and B = s (2v-1) + 5 then the relative effi-
1l+nu o

ciency of 6]23D depends only on (’, 59 uz » v and n and is given by:
o
A2 2% _ n+2v=-2 2v-1
(3.6) RE(GBD’C’UZ’r’v) = Tl [} = ntev-2
1 & hag® g? o
£ 2y T Z(nrevw-2) z
(n+2v-2) (1+nx")

The estimator 6;1 is considerably more complicated and no explicit
formula of its MSE can be derived. We can compute its MSE, however, numer-
ically in the following manner. Since n(T(n-H)z ~ czxz[l; A] with

l=%§2 we can write

L, oow
2.2, L . 1
(5-7) E{(GBI'G ) }J=0c E ———nT— .

Ml(( +2W1)/2nu2, +v=1, 2W (J)/nu) 2
Ml(( 2+2W1)/2nn ,-é- +v o, ng(J)/m{Z) e ’
o

where wl,WZ(J) are independent, W, ~ Gamma (1,5:22) ’ WZ(J) ~ Gamma (1, §+J)

and J 1is a Poisson r.v. with mean A\. Let G(x|v) be the c.d.f of




-

Gamma(l,v) at x, let G‘l(plv) be the p-th fractile of Gamma (1,v). De-
fine & = CH(.991ZD), £,(3) = "005[E+s) ana E(3) = 6TH(.995]E+).
The risk function (3.7) is determined by computing first the conditional
expectation given J numerically over the range (O,El)x(g_z(J),Ez(J)).

The conditional expectations are then averaged with respect to the Poisson
distribution with mean 3. The range of integration for each J is par-

titioned into MXM rectangles. Let §,(i) = i, /M for i =0,1,...,M

1 and let E,(J,1) = §, (3) + i(—gz(J) - £,(I))M 1i=0,...,M. Furthermore,
let T,(3,1) = (5,(3,1) + §,(3,1-1))/2, i=1,...,M, and let J*= Integer part of

(A+4,/X). Then, anumerical approximation to the relative efficiency of 8123

T is
given by J*
02 ~ :
(3.8) RE(oBI;g,—%,M,v)= ;E—l Z o3[ -
I J=0
;%+2€l(il)

n - 2
s 5+ v=-1,28,(3,1,)/nx

M M M\ 5
S —l;(-%wgl(il)) ; enn
Y . 4 ; 2n ~ s 2
Ml (( 2+Zgl(1l)) / 2nn ,2+V,2§2(J,12)/nn)

o

1 2

L e p———— oy oo

2 : n-1 s n-1
-1 e (e(gy (1) [ S7) - e(g (4-0) |S5F)) -

(6(8,(3,1,) | & + 3) - 6(5,(5,1,-1) [ £ + J))

: ' The functions G(x|¥+j), Jj = 0,1,... can be computed recursively accord-
ing to the formula

lj x'j-é . * G(x|5-%), 3 =1

T
i (3.9) G(x|%+3) = -
2@(‘\/-5() -1 9 J =0




e ————————— ——T R —— T

The function G(x]ﬂ'zi‘) is computed similarly if n is even. If n is

odd we apply a similar recursion with G(x]l) T In Table 1 we pro-
vide values of the RE functions of GED and 3;1 for n = 10;

-!2- = 2,6,10; v = 2,' w=2 and € =0, .5 and 1. We see that for (=0
o

02 3 3 A
OBI is more efficient than OBD'

siderably more efficient than the best equivariant estimator

Furthermore, for ¢ =0 and A smann o2 con-
. BI

a2

g However,

is generally more efficient than 821, but both esti-

is minimax!).

62
when C 2 .5 %sp

mators may be less efficient than (recall that &2

-
g E

Table 1. Relative Efficiency Values of GZD and GSI
for samples of size n = 10.
v/ 6o n 4 RE(c i) RE(GSI)
2.0 2.0 2.0 0.0 1,373 1,540
BieeDie VS BENS T 0. 253 S« 237
s o R e SR T 0 0,353
Sl 2 I R DS 1 0. 457
e I 2N i ey H . 265
10,0 2.8 2.0 WS H 1.275
2ol 200wl s 1 0. 073
S I e e SR R ) 2 0. 1343
b (8 = = T LR L i J. 04'31

4, Estimating the Variance of a Finite Population

Let XygeeerXy be the values of N units in a flnlte population. We
consider the problem of estimating the variance c = ?l(xl u)z

—%‘ Ex on thg basis of a sample of n values Xl,...,xn chosen from

that population. Zacks and Solomon [4] presented the form of Bayes estima-

tors of a§. We derive here the Bayes estimator for the squared-error loss

e st o bl i Srn



when the model is that x;,...,x; are conditionally i.i.d. N(u,oz)

1
and that p ~ NG,DZ), 1/202 ~ Gamma(¥,v). This model actually implies

that the variates in the population are exchangeable random variables having
a distribution which is a mixtrue of normal distributions. Without loss

of generality one can assume that the sample consists of the first n

— o | 5
variates XyseeesX . Let x be the sample mean and a, = i?l(xi-xn)
-% G
the sample (classical) estimate of of]. Let Nen be the mean of the

: : . . 2 1
population variates which are not in the sample and TN e n, E (x '}H\I-

It is shown in [4] that

A

2 n
(ll-.l) GN T°

+ (- _)TN n !ﬁl(l -ﬁ) Gn -?{\;-n)z

We derive here the Bayes estimator 8; = E{cﬁ[ggﬂ] according to the above

model. One should determine the posterior expectations of 'Tf; o and

—% 2 i 3 %
of G:n-xN_n) , given the sample values x = (xl,...,xn). Notice first

that since X geeesXy are conditionally i.i.d, given u,cz

2 2 N-n-1 2
E{TN-nllcn’o 3. Nen
(k.2)
G = s )
E( 0 N-n I-)f.n’o L et
Hence,
(4.3) & = Eled |x ) =

*ﬁ + (1-—)(1-1)E[c ]x ) + —(1-—)E{p X ¥ lx ¥ .

-
N




-10-

We have seen in Section 2 that
2 21— .2
(&.%) E{o l?f,n} = E{o” | xn,on]

a2 n 2
nonf}: : Ml()\,-é+v-l,6 )

2

n 2
n+2v-1 M]_()"E + v ,57)

where ) = (né}rz1 + \[t)/ZnDz and 8° = x - E)Z/Dz. To derive the posterior

expectation of (u - ;cn)z we write first (see Zellner [5; pp. 22])

2
(k.5) B((u-%,) |05 %,,55) = < W + & -m)2(-w),

2,2 .2 o 2 2\-1
where W = D"/(D” + o“/n). Finally, since W=D (1 + 2nep®) and

(l-W)2 = (1 + 2n6D2)-2 we obtain
(4.6) B((u-x ) %[ ,82) = p’B((1+2nan®) %, 87)

R 2 2 -2 = 1.2
+ Gcn-p) E{(1+2n6D%) ]xn,cn]

and the Bayes estimator of o§ i's

RO n 2
ng_ + ¢ Ml(x—w-ls)
48 B a2 n I n ) 22 )
) 8 =8 % * -PA-F) maz

o
Ml(')\,%* V;5 )

2 2
o e r«%(x,-‘é‘+v,52)+6 MS(x,-zrfw,s)
+ﬁ(1-ﬁ)D A

n 2
Ml( )\,'5 + \),5 )
Prior risk comparisons of the estimator 8; with the classical estimator

8: are given in [4].
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Appendix: FORTRAN Program for the Computation of Mrjx,v,ﬁz)

- The subroutine function is called BM(IR,AL,V,DS) where IR ¢ r,
AL« ), Vv¢&vy, DS« 62. The subroutine function consists of three main

parts (lines 10-170; 180-430 and LL0-680). This is then supported by

FUNCTION C(1,K) (lines 690-890) which computed the combinatorial function
(i). FUNCTION POS(J,AL) (lines 860-1070) computes the Poisson c.d.f. with

mean AL ¢« A at J ¢ j. Finally, FUNCTION DNDX(X) (lines 1080-1270) com-

putes the standard normal integral &(x). In addition, the gamma function
GAMF(W) ¢ I'(W) 4is utilized in line 300. This function was computed with
the computer library subroutine. If such a routine is not available cne

should supplement a subroutine FUNCTION GAMF(W).

FUMBTTON B¢ TR AL« 40 8D
JRE IR

BlLoang

2 T LR




OOJ,L,'
D0HL0
QDHTO
QO&E0
QR6EZ0
GO700
Qo710
()0/ 20
00730
Q0740
Q0750
0076

0074
00780

1;4) /'1/(
00EO(

]

("”() "J
GORE0

%

10

e (L o B

‘(2" =R ) O AR~ 5 A

10 é) W oo M

IS ‘ ‘.
BO= (EXF (~HL) ~BLRXEO) /(AR 5)
CONT TNUE

E=T0

RE VUM

E

FUNCTION C(L KD

Tl

J=

EERI=LEY LvZsS

(DEEL O IR

L1 380 51 B 50

Cal

G e

EFCLY Lelded

Ce1,

Illl ’f."; Medoe 1

Luwriuuu"
R TURN
END

o e ot ki

i it e e e o e i i, S a5 e S




QOB&E0 FUNCTION FOSCIeAl)
QOR20 N

Q880 SEA N

QOB IFCROE . 10 GO T 8
GO700 EFCYT) lr@vﬁ

00210 1
CQP20
QO30 s Fl=H)
00940 ].()
QQ2uQ0 Ak USF‘I XEC=R)
QOB &EQ g
COR70
00‘4)\.2'\'
QOue0
01O J
O1el1¢ B !LNUI
Q1020 (7(] TU .l.U
QL1030 Fo i

¢1040

10

Q1aH0
01Ga0

FUNCTION GNIN OO
Y X

01100 ISWTCH=0

01110 IF(Y) 1e292
01120 1 Y=ATRGY)

QliZo

Q1140 2
01130

Q1140

01170

01180

QLLQG

QL2260

01210

01220 ; ,."‘-'51 .""f\ LT +E
01 ""'\"i’) '[I"" ( ]: ST l.,H ) Zeded
01 24C Lo =@NIIX
01‘-\.1) [ I!A‘n ANTIX
01260 FE TURN

FEWTCH= 1
04\.\.:1 \.a"“ i
l O g(

= \Cdu

S A A
CTRTHEIETHTETHRARCTHEAI L REE (CTRHG )

L
"3
-

2
—
s

7.
> G

01276 GARAY




@ELURII T LLAISIPILATION OF THIS PAGE “When Nats Fnrerad) 7 '

A N UCTIONS
REPORT DOCUMENTATION PAGE e e it Teiy
i. REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
Technical Report No. 36
4. TITLE (and Subtitle) §. YTYPE OF REPORT A& PERIOD COVE&LVO

Bayes Estimates of the Variance of a Normal Popu-
lation for Prior Conjugate Distributions of Inde-
pendent Parameters with Application to Estimation [6. PERPORMING ORG. REFPORT NUMBER
in Finite Populations
7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(#)

A 00014-75-C-0529
PROJECT NR 0Lk2-276

S. Zacks

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASH
AREA & WORK UNIT NUMBERS

Department of Mathematics and Statistics:
Case Western Reserve University
Cleveland, Ohio L4106

11. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE
OFFICE OF NAVAL RESEARCH N January 10, 1979
ARLINGTON, VIRGINIA 22217 ls.llb:uuun OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(/! dillerent lrom Controliing Ollice) 15. SECURITY CLASS. (of thie report)
UNCLASSIFTIED
1Se. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

DISTRIBUTION STATEMENT A

for public release;
Distribution Unlimited

DISTRIBUTICN OF DOCUMENT UNLIMITED

17. DISTRIBUTION STATEMENT (of the absatract entered In Block 20, il diflereat lrom Report) l

-

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae eide Il necessary and identily by block number)

Normal distribution, Bayes estimation, admissibility, relative efficiency,
finite populations. : .8
- < S 170 €

ML L SS0¢

\

\

20. A“I’RACT (Continue on reverse eide Il necessary and Identily by dlock number) ‘
A Bayes estimator of the variance of a normal distribution N(QLp ), when !

P ol is unknown, is developed for squared-error loss and conjugate priors of in-
dependent parameters. Fhe estimator-was-suggested-in-Zacks- {3§~§§»~566]' In i
the present study its formula is developed and its relative efficiency is ccm- t
b

pared with that of the Bayes estimator givemr—imPe@root—{2PHand with that of the

best equiveriant estimator. Application of the estimator to the estimation of

the variance of a finite population is provided. ‘
\

DD on'sy 1473 c£oimion oF 1 nov es s owsoLeTE |

$/N 0102-014- 6601

SECURITY CLASHFICATION OF THIS PAGE (When Data unters
:




