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I. INTRODUCTION

The main concern when approximating either an ordinary or a partial

differential equation by a discrete equation, either finite difference or

finite element, is the degree to which the discrete equation solution

approximates the solution to the differential equation. The closeness of

this approximation has traditionally been considered from both its

quantitative aspects, such as relative error (Henrici (1963)), and its

qualitative aspects, such as behavior of transients, propagation of fronts,

etc. (Haltiner (1971)). Analyses based primarily on consideration of the

basically qualitative property of numerical dispersion, where the

discretization process causes distortions in the propagation velocities

for different frequencies, are especially prevalent (Arakawa and Lamb

( 1 9 7 7 ) ) .

In this paper , we apply certain ideas derived from the concepts of

transfer functions and digital filters in electrical engineering to the

study of the qualitative behavior of discretization schemes. The

particular model we shall use is based on the linearized, one dimensional

shallow water equations, without mean flow, a model which has iinportan

application to the study of the process of geostrophic adjustment. (It

will be evident that the basic approach , however , is not limited to this

model.) The qualitative effects of discretization schemes on this

equation have been studied by Winninghoff  (1968) ,  Arakawa and Lamb (1977),

Schoenstadt (1977), and others. We shall show that use of the transfer

function concept leads to important insights into the differences caused —

by different discretization schemes — differences that are not fully

evident from phase propagation considerations only.
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I I .  TRANSFER FUNCTIONS

It is well known (Stremler (1977)) that linear, space (or time)

invariant systems can be fully described in terms of their so—called

transfer function. (Figure 1) That is, if we denote the input to the

system as y1(x), and the output as y (x), then the Fourier transforms of

the input and output , denoted respectively as

I -ikx
= j  y1

(x) e dx

-ikx 

(1)

y (k) f y (x) e dx

are related by

I
~~(k) = ~(k)~ 1(k) . (2)

Equation (2) is commonly said to represent the system in the transform

domain. The equivalent representation in the physical (time or space , as

appropriate) domain is

1=

y (x) 41(x — s) y
1

(s) ds . ( 3)

In equation (3), 41(x) is commonly referred to as the impulse response of

the system , and is interpreted as the response of the system to an input

delta function at x = 0, i.e. ~(x).

In general, ~(k) is a complex valued function. The physical interpre—

tation of both the magnitude and phase of ~(k) is easily arrived at by

considering the response of the system to a single sinusoidal input of

arbitrary frequency , i.e.

1k x
y1

(x )  e . ( 4 )

-2—
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It Is very straightforward to show that

1k x
y (x) — ~(k

1
) e

Thus, if we represent ~(k) in polar form as

ik
= I~~

(k
1)l e

equation (5) becomes:

i(k x + k )
y (x) = 

~
(k
1)! 

e

1k (x + (k /k ))
= 

~~
(k

1)I 
e ~ I (5)

Clearly, from (5), we can interpret the magnitude of the transfer function

as the factor by which the amplitude of a sinusoid of a given frequency is

either amplified or attenuated , and the argument of the transfer function

as determining the amount by which the phase of the output sinusoid Is

shifted relative to the phase of the Input sinusoid.

In general, neither ~~
(k)l nor (k

s
/k) is constan t, and hence, the

different frequencies in a given input are amplified/attenuated and shifted

In phase by different amounts. Thus the output signal generally has its

shape (graph) altered from the input signal. (Figure 2) rhis alteration

of shape is commonly called distortion , and , based on our discussion , is

composed of the effects of two actions — commonly called amplitude

distortion, which is due to the deviation of l~~
(k)l from a constant, and

phase (or delay) distortion , due to the deviation of k~ from a linear

function of k. Clearly, to completely understand the effect of a linear

system on an input signal , one must know both of these effects.

-3-
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In electrical engineering, it Is common to call any linear , time

(or space) invariant devtce , which can be described by a transfer function

as dIscussed above , a tilt er. We shall use the terminology hereafter in

this paper .

Lastly we note that the energy in an “output ” is proportional to

1 ‘~~
°‘ o~ 2J y~~(x) dx — i— J Jy 0 

(k)I dk

= 

~~ 
f  ~ (k)  

~~ 
(k)!

2 
dk

(6)

{ f  ~ (k )~
2 dk} ( J  1y 1(k)1 2 dk)

= C j  ~~(k)I
2 
dk} j  y 1

2
(x) dx

and thus one can also use the transfer function to describe the relation

between the energies contained in the “Input” and “output ’ to a linear ,

invariant system. (Note the quantity ~(k)j
2 

is commonly referred to as

the spectra l density of the signal v(x).)

-4-
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III. DISCRETE FILTERS AND TRANSFER FUNCTIONS

A great deal of research is presently directed toward the study of

so—called discrete , or digital filters, which arise when the continuous

processes, such as differentiation and integration , in an invariant linear

filter are rep laced by analogous approximations based on sampled , or

discrete data. Thus, for example,

y(x + A x )  — y(x) + f(x) (Ax) , (7)

is a digital filter approximating , in some sense (specifically by using

an Euler forward predictor), the continuous integrator :

f ( x) . (8)

The transfer functions of such filters can be easily determined using

Fourier transforms, and the observation that

f y(x + A x )  e ’~~ dx = eik( A x )  
~ (k) . (9)

Thus, the transfer function of the process given by (7) is (where f(x) is

considered the “input” and y(x) the “output”), after some algebra,

k = 
(~ x)e’~~~~~

’2

21 s in ( k (A x )/ 2 )

(No te the transfer function of the continuous process is 
~ 

(k) = .)

There is, however, one significant difference between the transfer

functions of a continuous filter and its digital (discrete) analog. This

difference is commonly referred to with the terms aliasing or folding , and

the basic work on it is commonly attributed to Nyquist (Clark (1977)). In

its simplest Interpretation, Nyquist’s work Implies that a samp ling device,

sampling at intervals of (Ax ), is incapable of resolving waves of

frequency greater than (~ /(A x  ) ) ,  and , if any energy is actually present

in a sampled continuous signal at these higher frequencies, it will be

erroneously resolved (aliased) into a frequency lower than (r/(Ax )).

—5—
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Thus, while a continuous filter can, in princi ple , react to any input

frequency, and hence has a transfer function defined for all k, tha t of

a digital filter is considered only for (comp lex) frequencies betwct~n

+(n/ (Ax)), the so—called Nyquist cut—off or Nyquist limit.

Lastly, we note that If a digi tal f i l ter has a significant amplitude

response (i.e. if I~(k)I is not close to zero) near the  Nyquist limit ,

then the output of that system may have a significant portion of its

energy in these high frequency oscillations . These oscillations often

appear to the observer as noise , or “noise—lIke ”, and hence , in discussing

di gita l filter design , many books and articles recommend controlling the

transfer function response near this limit. (This is sometimes referred

to as “windowin g” .)
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IV. TUE SHALLOW ~ \IH~ I ll .\ IIII\’ -~ \S \ ~~[.fl:R

The basic equations we propose to  s t u dy , us ing  the  ideas discussed

above , are the l i n e a r i z e d , one—d imensiona l , shal low water equations in

an I n f i n i t e  r eg ion , w i t h  no mean f l o w :

- fv  + g ~~ =

+ f k l  = 0 (10)

+ H -
~~~~ = 0 ,

where  u denotes  the perturbation velocity in the x direction , v the

p er t u r b a t  ion veloci  tv normal to the x d i r e c t i o n , H and h the  mean and

p e r t u r b e d  heights of the free surface , respect ively, and g > 0 and f ~ 0

the  g r a v i t a t i o n a l  and Cor iol i s  parameters , respect ively .  This model is

especia l ly  impor tan t  in the s tudy of the m e t e o r o l o g i c a l  process called geo—

s t roph ic  ad jus tmen t , which  has been s tudied  in some d e t a i l  f rom several

approaches by Ro sshy (1937) ,  Calm ( 1945) ,  W i n n i n g h o f f  (1968) , Blumen ( 1 9 72 ) ,

Arakawa and Lamb (1977) and Schoenstadt  ( 1 9 7 7 ) .  Th i s  process of geostrophic

a d j u s t m e n t  is  impor tant  because i t  is the pr imary  mechanism by w h i ch  an

atmosp here , modeled by the  so—cal led  meteorolog ical p r i m i t i v e  equations ,

reac ts  to errors (either numerical or due to errors in observationa l da ta)

in the i n i t i a l  data . The dispersive wave nature of (10) is the  pr imary

mechanism by which these errors (commonly referred to as “imbalances”) event-

ually spread out over the domain of intereat , until the system reaches a so—

called “balanced” or “geostrophically adjusted” condition. Forecasts at times

before this balance is reached are generally inaccurate. Thus a primary con-

sideration in numerically modeling (10) is to insure that the numerica l

balance mechanism both fairly accura tely models the physical balancing pro—

—7— 
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cedure , and that it proceeds relatively quickly .

Asd [scussed in Schoenstadt (1977) ,  equations (10) can be easily

solved by using spat~ -~l Fourier  t ransform . If we cont in~ e to denote

Fourier  t ransforms b y an overhead t i lde , e . g . :

u ( k , t) = f u(x,t)e_hl~C dx , (11)

etc. Then (10) reduces directl y to:

du-~j~~~~ fv — ikg h ,

dv
= —f u , (12)

dh
~-~- — i k H u

together with initial conditions :

= u(k ,O) = f u(x,O)e
_1kX 

dx , (13)

e tc .  Then since (12) represents  simp ly a set of coupled , cons tant  coe f f i c i en t

(in the  sense of t) ordinary  d i f f e r e n t ia l  equations , their  solution can be

easily show-n , by the usual elgenvalue/elgenvector approach , to be:

f v . ikg h
1u(k ,t) = u . cos ut + —i sin v t — sin v t

(k,c) = - sin v: + + cos vt} 
~~~~

. ÷ ~~~~~~~~~~ 

{l 
— cos vt }  

~~ 
, (14)

i (k,t) = — sin ut — -
~

j-
~ ~

l — cos vt} ;. + + cos v t~ i i

where:

= f
2 

+ k~gH = f 2(l + A 2k2), A = /~ff/f . (15)

We now consider (14) in view of our discussion of filters and transfer func—

tions. Observe that if we denote

U
i 

u

= v
1 

and = v (16)

h . h
1

-
. - -8-
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r e spec t ive ly,  as the “input ” and “output ” to the “system ” described b y

(10), then we can express (14) as

Y = 4(k,t)y
1 

(17)

wh ere ,
— f 1kg

0 0
COS Vt  ~

— sin Vt  —— -—---- srn vt

~ (k ,t) = - sin Vt + cos vt} ~~~~~ {l — cos vt} (18)

- sin vt - cos Vt} + cos 

-

Immediate comparison of (l7)—(18) with (2) is not possible since 4(k,t)

depends no t only on the transform variable (“k”), but also on one of the

phys ical variables (“ t ”). However , since sin ut and cos u t can be

± ivt
expressed in terms of e , and since k is real , it is easily seen

that the sinusoidal terms in (18) express only the phase rela tionships

(which clearly change with time) , while the other , time independent ,
.1

coefficients reflec t the amplitude effec ts of the “filter”. In fact, it is

fairly easy to show (Schoenstadt (1977)) that the sinusoidal terms in (18)

produce dispersive , transient waves, propagating throughout the region .

(These waves are clearly dispersive since (v(k)/k) is not constant.) The
I-

time independent coefficients in (18) still function as ampli tude dis tor tion

term s in the sense tha t  they red i s t r ibu te  the energy that  is in the input

(initial condition) waves, in a manner that var ies with wave number , into the

output (solution) waves.

A close examination of (18) shows that, In fact , the “amplitude distor-

tion” in this “system” is really governed in each term by precisely one of

-9-
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the three factors ,

k k
— or

v v 2
V

or the square of one of these. The amplitude response curves f~ r these t h re e

expressions are shown in Figure 3. It is clear that the  terms with t l i~. co-

efficient (l/v) have their low frequencies least affected , the terms w i t h

coefficient (k/v) their high frequencies leas t af fe cted , a nd those  w i t h

coefficient (k/v
2
) their frequencies in some middle range least ellcc t e d .

Such responses are often referred , respectively , to as low pass , high ~~ i i ~ s ,

and band pass filters.

Since the “system” described by (10) involves both spatial and t empor a l

variation , it is well known that not only the phase velocity (u(k)/k) , but

also the group velocity (
~~~~

) is impor tant in describ ing till ’ behav ior , since

it is the lat ter which governs the rate at which energy actually propagates .
I

Thus, in Figure 4, we display both of these velocities for the system (10) .

We note that additional insight into some of the qualitative behavior

of the solution to (10) can be obtained by decomposing (18) into its transient

and s teady s tate components , i.e., writing

~S ~
1i 

+ 
~T ~~ 

‘ 
(19)

where and 
~T 

can be ob tained by Inspection , since only time dependent

terms contribute to the transients , however , we shall not pursue t h i s  an a ly s i s

here.

As a final comment, note that the to ta l  energy of the sys tem represented

by (10) is given by:

~2 +~~
2 
+~~~ h

2

Thus the spec tral density of the steady state field can he shown to he

+ v~i 2 
+ ~~ 

= ~~~~ v . I ~ + ~~~~~~~ 
hi . I . (.~~

)

-10- — 
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Since the term ( k/ v )  act s  as a high—pass filter , and the term (fly) as a

low p a s s — t  l i t e r , we see that  the energy in the stead y s t a t e  f i e ld  is deter-

mined  by a c o m b i n a t i o n  depend i ng p r i m a r i l y on the h igh  f r e q u e n c y  energy in

t h e  i n i t i a l  v f i e l d , and t h e  low f requency  energy in th e  i n i t i a l  h f i e l d .

We shall not proceed any f u r t h e r  w i t h  t h i s  analysis , since our main

interest is to analyze how discrete schemes , and the correspond ing “fil ters ”

they produce , approximate  the cont inuous  ( d i f f e r e n t i a l )  model .  However ,

there are c e r t a i n l y  other  ins igh t s  in to  the general behavior of the p hysical

model s t i l l  possible f rom this f i l t e r  point  of view .
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In this sec t j on , we extend t h e  a n a l y s i s  ci  o ur  cent m ucus model  to

the quasi—discr ete cast’, where cent i nuous spa t ha l o p e r a t i o n s  are rep l aced

b y L~~~ c rations en Iv at  sample  po j u t s , w h i l e  t h e  t -o fl~_ m ucus t inc operat ions

~re r e t a i n e d . This approach f o l l o w s  that in \~ i n n in g h i o f  t ( l~ nS’ and Arakawa

and Lamb ( 1 1 ) 7 7 )  . hlowt -vI -r , wo extend our .inalvs I’; to include a more genera l

ca se ot q u a s i — d i s c r e t e  schemes than they consider ed. Sp eci t i c i l  Iv , w&

d e f i n e  .in i n v a r i a n t  l inea r  d i s c ret  i :  t h e n  opera t ‘~~ ab ou t  the  point x as

any  opt-rater hav ing  the ri’i
fl )

L~~f ( x ~~I = ~ c f ( x  + n ( ’ x ) )  , (2l~

where the c denote real colis t ants.
n

fhie d i s c r et i z a t i o n  schemes  Wt shall i t i v 1 - t  i c i t  l r ~- e p t c  i t  i c.ill v t l i I l5~~

s a t i s i v i n g  the  f o l l o w i n g  c o n d i t i o n s :

(a)  A I I  d iscre t i ‘i t  ion opI t or 0 1 r~- I i  nL’ .I r m d  t I me and space i n v a r i a n t .

(b)  A l l  d i o c r e t  i c i t i o n  ope ritors I~p~-~ .it c on ly  on o v m m e t r i c  sets  of

sam p 1 t’ p o i n ts  , i . t .  i n  ( 2 1 )  , n 1 ii -~

(ci  The d l s l - r c t  i z a t i o n  op e r a t e  r~; are b a l an c e d , i.e. in  ( 1 1)  Ic I = I c  I
( d )  T im e opera to rs  are app l i ed  to (3)  —(10) cons i s  tent l v , i . c. 11 one of

t he  d e r i v a t i v e  terms on the  r i g h t  hand s ide  c i  ( 8 ) — ( l 0 )  is rep laced

by a cer t a i n  d i r t  e renec , then all de r i ~ ‘ .i t lye te rms  on the ri ght  hand

s ide of (8)  — ( 1 0 )  are rep I aced by t I l l  same d i i  I e reu - e op& ’i~ l t or

(e) The di  s cr e t  i c - i t i cii mus t  be exact , I . e. p roduce  e x a c t  Iv t h e  same

r e su l t  is the ama 1ogoii s c e n t  i n u o us  o p em - m t ion , on a l l  a t  l e i s t  a r h i —

ir ~’ l i n e a r  I unc t h ()n ~ . I . e. f ( x )  = ax + h • . m , h , ar b i  t r ar v

-12- 
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With these r e s t r i c t i o n s, i t  is f a i r l y s imp le to sh ow t ha t  the

q u a s i — d i s c r e t e  schemes we wish  to cons ide r  can a l l  be reduced to tile

cene  r i  1 form:

ft t u ( x , t )  II = f i. [  (x, t )  — g 1 [ h ( x , t )

~ 
{I ,  [v ( x , t )  1)  = -f I. [u(x ,t )  1 (22)

~~ 
tL ft(x ,t)J } = —H L [u(x,t)]

w h e r e  L [  J ,  L~~[ I, and L [  I , are inva r i an t  l inear  d i s c r e t i z a t i on  opera tors

having  the  Id lowing genera l  form :
a

L ( f ( x ) j  = 1 1(x) + ~ t [ f ( x  + n : x)  + f ( x  —
n= 1n

I [f(x)] = 1(x)  + [ f ( x  + n~x) + f ( x  - n.’x )] - (23)
n 1n

L [f(x) J = 
~~~ 

~~~~~ f(x + flAx) - f ( x  - n:x )J

T hit ’  v a r i o u s  values  of a , , and ~ w i l l  be r e f e r r e d  to as the f i l t e rn n n

wei gh t s .  Thus , fo r  example , the  f i n i t e  d i f f e r e n c e  mesh w h i c h  Ar ikawa and

Lamb (1977)  call Scheme C (F i gure 5 ) ,  and w h i c h  is g iven in f i n i t e  d i f f e r e n c e

4 form as

~u f V(X +d/2 , t )  + v ( x — d / 2 , t )  h (x + d / 2 , t )  — h ( x — d / 2 , t )
2 d

)v 
= —f u (x + d/ 2 , t) + v(x—d/2 ,t)

r fr  
= -H u (x~~~/2 , t )  u ( x - d / 2 , t )

corresponds to the  following f i l t e r  wei gh t s :

1 1 = 
~~ ~~ ‘ 

= , all others zero. (Note t h a t  in t h i s

formula tion Ax = d/2 .)

- 

- Determination of the filter properties of the ‘-ivot I’m il l I r IsInt ed 1w (22)

r e q u i r e s  t ak ing  the  Four ie r  t rans form ( i n  x)  of t ho se equ ations. Howev er , t i m e

~~~~~ -13-
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shif t property of these transforms (equation (9)) simplifies the terms

involving the discretization operators , since , using (9)

ik (~x)~ -’
{LEf(x)J) — ~ c e n 

~ f ( k )  . (24)
~n—.-nl

Thus , the Fourier t ransf orm of (22) is

= f 13(k)v — i g

-f l~(k) u , (25)

= — f H (k)u ,

where n

a (k) = -m + 2~~~a cos(nk~x) , (26)

fl Q

~(k) ~~ 
+ 2 ~ ~ cos(nkAx)  , (27)

n= 1

n

~ ( k )  = 
~~~~ 

sin(nkLix) . (28)

Equations (25) can be solved , using the same eigenvalue/eigenvector approach

as was used for (12), to yield :

A f~v0 A 
iogh() A

U = u cos Vt + sin  V t  — sin Vt
0 V V

J = — — --- ~-~- sin + + 

~r 
cos + g~~ (1 — ~~~ ~t}~~(1 

(29)

ioHu 2 2  2
— 

0 

sin ~t 
— ioHfB { 1 — cos Ct}~ + 

~~ 
+ ~~~~~~~~~~ cos

where now

A 2  — f
2
~
2(k) + g~j o

2
(k)

- — 

cz
2(k)

-14-
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or 

~ A
2
a~ (k), (30)

v(k)
u ( k )

where

V ( k )  = f’~
2(k) + A 2o2(k) . (31)

Comparison of (29)— (31) with (14)-.(l5) show tha t the main impacts

of the quasi—discretization described by (22) are:

(1) The filter coefficients

1 k k
v ’ v ’ 2

V

and the squares of the first two, are replaced , respectively,

0
v ’ V ’ 2

V

and the squares of the first two of these expressions.

(2 )  The phase ‘.‘elocity

v f  t 2 ”T~ T~~I 1 + A k

is replaced by

f ,[2 2 2
kcm (k ) ~ + X G

Since the filter coefficients discussed above determine how the

energy in the initial disturbance is partitioned into the transient and steady

state fields, then the degree to which the discrete filter coefficients approxi—

mate the continuous ones can be viewed as a measure of the degree to which the

discretization accurately protrays the continuous model energy distribution .

Any difference between a continuous (differential) coefficient , and the corres—

ponding discrete coefficient , should be considered as introducing a distor-

tion between the continuous and discrete solutions.

- 1 5-
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Similarly, any differences between the continuous phase and group velocities

and the discrete ones will result in distortion due to spreading of the waves.

This etfect will be especially noticeable if the distortion is pronounced at

(spatial) frequencies that carry significant energy , i.e. for which filter

coefficients are “large”.

Actually, as noted before , the phase velocity is less important than

the group velocity,
dv
dk

in the continuous case, and
A

in the discrete case, since this quantity measures the velocity at which the

energy in the different frequencies propagates.

-16-



- _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - 

~~~~~~~~~~~~ - 
_ _ _ _ _

—
“

I

VT . COKPARISON OF THE ARAKAWA SCHEMES

The spec if ic discre t iza t ton schemes which we shall analyze using

(22)-(30) are based on the arrangements of sample points described in

Arukawa and Lamb (1977) as Schemes A—D. The arrangements of these points

In one dimension is shown is Figure 5. We shall consider both finite

d ifference and finite element formulations of the discrete problem ,

whereas Arakawa and Lamb considered only second order finite differences.

The finite difference formulations are derived for both second and fourth

order approximations to the spatial derivative terms, while the finite

element formulations are derived (for Schemes A—C only) using piecewise

l i n e a r  elements (the so—called “hat” function basis). The filter weights

derived for each of these methods are shown in Tables 1—3. Note that since

each scheme “samples” the initial disturbances at a distance of d , then the

shortest wave that can be resolved in each case is of frequency (rid).

In Figures 6—8 , the amplitude coefficients of the d i s c r e tiz e d  approx i—

mate “ti lters ” are compared t o the “filters ” in the differential model , for

the values of  the physical parameters given In Arakawa and Lamb (1977). The

following qualitative generalizations are clear:

(1) In each of the methods (second order difference, fourth order

difference , or finite elements), the arrangement of points specified by

Scheme A appears to produce the greatest distortion , and , furthermore , thi s

distorti on is most pronounced at high frequencies (short waves).

(2) In each of the methods , Schemes B, C and D ver’ accurately approx-

Lm.,te the transfer function for the  “hi gh pass ” f i l t e r .

(3) In each of the methods , Scheme C understates the amount of energy

d i s t r i b u t e d  into the  short waves by both the low—pass and band pass filters ,

w h i l e  Scheme B overstates this.

-17-
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(4) In all cases, the finite element formulation appears more

“accurate” than fourth order differences , which in turn is more “accurate”

than the second order differences.

(5) The (group) velocity distortion is especially serious in Schemes

A and D, since for short waves there is actually a reversal in the direction

of propagation .

Note that even though Scheme B seems to have the least ~‘distortion” In

each case, there is still significant phase and group velocity distortion

near the cut—off. Thus, we should not conclude immediately that Scheme B

will produce the least “noisy” solutions. This is because the apparent noise

in the solution is a combination of both amplitude and phase behavior , and

~~~ phase distortion may lead to perceived “noise” in the solution if (as

is the case in Scheme B) significant energy is retained (due to the amplitude

distortion effects) in the short waves. In fact, it may be preferable to

tolerate more amplitude distortion, if it acts to reduce the amount of

energy in the shor t waves , which are generally the slowest propagating , and

which produce the appearance of noise in the solutions.

As a final check on our analysis , we compared the height fields for

both the continuous and all the discrete models, using the same methodology

as in Arakawa and Lamb (1977). An initial disturbance given by:

u
1

(x ,0) = 0

h ( x ,0) = 0

fv~ , — a < x < a
v (x,O) =

to , otherwise

was considered , with the physical parameters having the following values

g = 10 m sac 2

H = ~~~ in

—4 —1
f 1 0  sec

a = d = A/2.

-18-
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The transform of the initial v field
2V0 sin(ka)

k

was then band limi ted to the region — 
~~

- < k < ~~, and the exact solution

for h was computed as the inverse transform of

ikHf 2V
0 
sin(ka)

k

in the continuous (differential) case, and the inverse transform of

i - ~~fH ~ 2V
0 
sin(ka)

— -  
2 (l cosç t)H k

in each of the discrete cases. In each instance, the inversion was accom-

plished using Simpson ’s rule on the interval (0, -
~~~

) ,  with 600 subintervals .

The different h fields are shown at Figure 9. Note that these agree

with our predictions, based on the filter analysis, in that:

(1) In the second order finite difference methods, Scheme A displays

a great deal of numerical noise , as predic ted due to the great amplitude dis-

tortion of its filter near (rid) . Schemes B and D show somewhat less noise

than Scheme A , but still more than Scheme C, this due to the manner in which

Scheme C controls the amplitude near (rid) in both the (o/U) and (~~/v
2
) terms.

(2) Similar comm ents hold for the fourth order finite difference methods ,

though, in general, due to be tter phase propagation, the spreading of the

energy in the short waves is not so pronounced , and hence the noise in

Schemes B and D is reduced .

(3) In the finite element methods, Scheme A still remains quite noisy ,

due to its amplitude distortion near (r/d). Schemes B and C are virtually

Identical, since Scheme B seems to compensate for slightly more energy in

the short waves by maintaining better phase relationship.

- 19-
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VII  CONCLUSIONS

In this paper we have adapted concepts that are commonly associated

w i t h  the design of filters in elec trical engineer ing to the analysis of

discre tized representa tions of partial differential equations , and spec—

ifically to the one dimensional shallow water equations . We have shown

that these concepts can provide valuable insights into why certain solution

schemes provide “better” solutions than other , and a useful tool for com-

paring both qualitative and quantative aspects of different schemes.

We have clearly demonstrated that, in contrast to the analysis used in

earlier studies , a complete analysis of the suitability of a certain discrete

scheme to model a physical process, in our case the process of geostrophic

adjustment , depends not only on providing reasonably accurate duplication of

the phase propagation (delay) characteristics of the modeled system , but

also on producing reasonably accurate duplication of the amplitude response

characteristics. Furthermore, because of the phase distortion near the

Nyquist cut—off of discrete schemes, it is often desirable to control the

amplitudes of short waves.

In the process of geostrophic adjustment studies, we have concluded that

schemes that use unstaggered grid points are generally poor, irrespective of

the particular finite difference/finite element method used , due to some in-

herent properties of the model. The difficulties which have been reported

with these methods in the literature, and especially the problem of “noise”

in finite element models, appears directly attributable to the amplitude

response near the Nyquist cut—off methods based on an unstaggered arrange—

ment of points. This is certainly related to the tendency of schemes based

on unstaggered grid points to produce solution separation, and appears to

arise from the fact that the coupling of the fields in the basic differential

-20-
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equation simp ly makes specif ying all the quantities at every grid point an

o ver s p e c i fic at io n  of the  problem .

Las tly, we conclude , tha t , based on the one dimensional evidence only,

the  method identified by Arakawa and Lamb (1977) as Scheme C has been quite

popular , not only due to its good phase propagation characteristics , but

also due to its tendency , in either finite difference or fini te element for—

mulations , to “window” out much of the high frequency noise in the discre—

tized model.

In summary , the concepts we have applied yield ex tremely valuable

insights into the qualitative behavior of discrete methods for approximating

partial differential equations . In many ways, we have only s tar ted to bring

much of the emerging understanding of digital filters to bear on this problem .

A significant , arid interesting outgrowth will be the consideration of two

dimensional problems.

I
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TABLE 1

FILtI R WEI ( WIS FOR SECOND ORI )I R F I N I T I  DII  11 Ri NC I ‘

(A x  = d / 2 )

SCHEME DF;NOTED 8 ~ 0 0
o o 1 1 2

A 1 1 0 0

1 1 (1 (1

C (12 1 0 0

0 02 1 0 (1

-

-

~~~ .—--~- -- -—---- - - 
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TABLE 2

FILTER WEIGHTS FOR FOURTH ORDER FINITE DIFFERENCES

(
~~. = d/ 2 )

SCHEME DENOTED -t 8 0 0 0. 0,

o o 1 1 2 3 -4

A A4 1 1 0 0 -~~~~~ 0 -
~~~~~~~

B B4 1 1 0 ~~~~~ 0 — -~~~~ 0

C C4 1 0 -
~~

- ~~~~~ 0 - -~~-~~ 0

D D4 1 0 0 ~~~~ 0 —~~~~~

-25-

—  ~~~~~~~~~~~~~~~



-~-~~~~ ~~~~~~~~~~~~~~ - 
—---

if 
- -

~~~~~~~~~~ -.-
-~~~~~~~~~~~~~~~~

-- ‘ - -C
b 0 I~—~ —

b ~~~~~~~~ C C

C —~ —4

C-.
’

L1~ -~~ C C ‘—1-

H
— i - -c 1 ’c’ C

z

C C

z

11 ~ -~~~~~~~

‘-i i ‘.0 ‘-~ C’ ~—4 ‘-0

0

—
C C

4-4

-
~~ I ‘.0 -.~ j ‘.~~ 

.-~ I

C

C
Z

Id .-,~ o
Li
rj)

- 
- 

-26-

— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—- - - - - -- - - .  ~~~~~~~~~ - -



7”~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LIST OF FLG ~ RE~

l- ’t~ urt~ I — Filter Rssponses in the physical and transform domains .

Fi gure 2 — Examp le 01 distortion by a li lt er.

Figure 3 — Amp litude coet t icien t s for the continuous t i lL er .

Figure 4 — (a) Phase and (b) group velocities for the c’.mtinuous tilLer .

Figure 5 — The discrete samp ling schemes .

Fi gure t - ( )-(c) Amplitude coefficients , (d) phase and (e) group
velocities for the second—orde r finite difference filters
is compared to the continuous (DIFF) filter.

Fi gure 7 — (i)—(c) Amp litude coefficients , (d) phase and (e) group
velocities for the fourth—orde r finite difference filters
as compared to the continuous (01FF) filter .

F igure 8 - (a)— (c) Amp litude coefficients , (d) phase and (e) group
velocities for the (piecewise linear) finite element filters
as compared to the continuous (DIFF) filter.

Figure 9 — Heigh t field at t = 80 hours as predicted by the continuous
and discrete filter models .

11-

t
-27-

L. . —



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
-—“~ - _ _ _ _ _ _- 

~~1

-
~

_____________ (cc

y~ (x) y (x) = J ~(x—s) Y~ (s) ds

•(x) ]
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— c~, (k)

(b) Transform Domain

Figure 1
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