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I. INTRODUCTION

The main concern when approximating either an ordinary or a partial
differential equation by a discrete equation, either finite difference or
finite element, is the degree to which the discrete equation solution

approximates the solution to the differential equation. The closeness of 1

this approximation has traditionally been considered from both its

quantitative aspects, such as relative error (Henrici (1963)), and its

qualitative aspects, such as behavior of transients, propagation of fronts,

etc. (Haltiner (1971)). Analyses based primarily on consideration of the

basically qualitative property of numerical dispersion, where the !
discretization process causes distortions in the propagation velocities

for different frequencies, are especially prevalent (Arakawa and Lamb

(1977)).

In this paper, we apply certain ideas derived from the concepts of
transfer functions and digital filters in electrical engineering to the
study of the qualitative behavior of discretization schemes. The
particular model we shall use is based on the linearized, one dimensional
shallow water equations, without mean flow, a model which has importan
application to the study of the process of geostrophic adjustment. (It
will be evident that the basic approach, however, is not limited to this
model.) The qualitative effects of discretization schemes on this
equation have been studied by Winninghoff (1968), Arakawa and Lamb (1977),
Schoenstadt (1977), and others. We shall show that use of the transfer
function concept leads to important insights into the differences caused
by different discretization schemes - differences that are not fully

evident from phase propagation considerations only.




IT. TRANSFER FUNCTIONS

It is well known (Stremler (1977)) that linear, space (or time)
invariant systems can be fully described in terms of their so-called
transfer function. (Figure 1) That is, if we denote the input to the
system as yi(x), and the output as yo(x), then the Fourier transforms of

the input and output, denoted respectively as

;‘1(k)=/ y, () o leE G

(1)
$o(k) - / y (%) P T
are related by
¥ (k) = $G0y, () . (2)

Equation (2) is commonly said to represent the system in the transform
domain. The equivalent representation in the physical (time or space, as

appropriate) domain is

yo(x) = / dp(x - s) yi(s) ds - (3)

In equation (3), ¢(x) is commonly referred to as the impulse response of
the system, and is interpreted as the response of the system to an input
delta function at x = 0, i.e. 8(x).

In general, g(k) is a complex valued function. The physical interpre-~
tation of both the magnitude and phase of $(k) is easily arrived at by
considering the response of the system to a single sinusoidal input of

arbitrary frequency, i.e.

ikix
yi(X) = e ’ (4)
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It is very straightforward to show that

f ikix
y () = §(k)) e ;
Thus, if we represent g(k) in polar form as
ik
" Y é
$(k) = |6k e ;
equation (5) becomes: {
i! i(k,x + k)
x
s §
v ) = [§)]| e AR
!
ik (x + (k,/k,)) |
= [Japle G (5)

Clearly, from (5), we can interpret the magnitude of the transfer function

as the factor by which the amplitude of a sinusoid of a given frequency is
either amplified or attenuated, and the argument of the transfer function
as determining the amount by which the phase of the output sinusoid is
shifted relative to the phase of the input sinusoid.

In general, neither Ix(k)} nor (kd/k) is constant, and hence, the
different frequencies in a given input are amplified/attenuated and shifted
in phase by different amounts. Thus the output signal generally has its
shape (graph) altered from the input signal. (Figure 2) This alteration
of shape is commonly called distortion, and, based on our discussion, is
composed of the effects of two actions - commonly called amplitude
distortion, which is due to the deviation of l;(k)| from a constant, and
phase (or delay) distortion, due to the deviation of kd from a linear

function of k., Clearly, to completely understand the effect of a linear

system on an input signal, one must know both of these effects.

-3~

e et s e e o




In electrical engineering, it is common to call any linear, time

(or space) invariant device, which can be described by a transfer function

as discussed above, a filter. We shall use the terminology hereafter in

this paper.

Lastly we note that the energy in an "output" is proportional to
b P

[: y 20 dx = & [: 5, @) a
e /_: 30 ¥, 0] a
i“zlj [: 180 [ dax { /:: Iyi(k)lz dk} 7
= /‘: OIS [: v, ) dx

and thus one can also use the transfer function to describe the relation

(6)

between the energies contained in the "input" and "output" to a linear,
aY
invariant system. (Note the quantity ,y(k)l2 is commonly referred to as

the spectral density of the signal y(x).)




IIT. DISCRETE FILTERS AND TRANSFER FUNCTIONS
A great deal of research is presently directed toward the study of

so-called discrete, or digital filters, which arise when the continuous
processes, such as differentiation and integration, in an invariant linear
filter are replaced by analogous approximations based on sampled, or
discrete data. Thus, for example,

y(x + Ax) = y(x) + f(x) (Ax) . (7)
is a digital filter approximating, in some sense (specifically by using

an Euler forward predictor), the continuous integrator:

& .
5 T i=) ; (8)

The transfer functions of such filters can be easily determined using

Fourier transforms, and the observation that
/ y(x + Ax) e—ikx dx = eik( Ax) ')\"(k) . 9)

Thus, the transfer function of the process given by (7) is (where f(x) is

considered the "input" and y(x) the "output'), after some algebra,

ik (Ax) /2
v e (Ax) e’
(k) = 21 sin(k(Ax)/2)

(Note the transfer function of the continuous process is $C (k) = %E ),
There is, however, one significant difference between the transfer
functions of a continuous filter and its digital (discrete) analog. This
difference is commonly referred to with the terms aliasing or folding, and
the basic work on it is commonly attributed to Nyquist (Clark (1977)). In
its simplest interpretation, Nyquist's work implies that a sampling device,
sampling at intervals of (Ax ), is incapable of resolving waves of
frequency greater than (n/(Ax )), and, if any energy is actually present

in a sampled continuous signal at these higher frequencies, it will be

erroneously resolved (aliased) into a frequency lower than (n/(Ax )).

Py




Thus, while a continuous filter can, in principle, react to any input
frequency, and hence has a transfer function defined for all k, that of
a digital filter is considered only for (complex) frequencies between
+(n/(Ax)), the so-called Nyquist cut-off or Nyquist limit.

Lastly, we note that if a digital filter has a significant amplitude
response (i.e. if |$(k)| is not close to zero) near the Nyquist limit,
then the output of that system may have a significant portion of its
energy in these high frequency oscillations. These oscillations often

"noise-1ike'", and hence, in discussing

appear to the observer as noise, or
digital filter design, many books and articles recommend controlling the
transfer function response near this limit. (This is sometimes referred

to as "windowing".)
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IV. THE SHALLOW WATER EQUATIONS AS A FILTER

The basic equations we propose to study, using the ideas discussed
above, are the linearized, one-dimensional, shallow water equations in

an infinite region, with no mean flow:

Ju dh

s | + 90 — =

ot tv & IxX

av

ey + fu=0 (10)
dh du _

3_t+H BX—O .

where u denotes the perturbation velocity in the x direction, v the
perturbation velocity normal to the x direction, H and h the mean and
perturbed heights of the free surface, respectively, and g > 0 and f > 0
the gravitational and Coriolis parameters, respectively. This model is
especially important in the study of the meteorological process called geo-
strophic adjustment, which has been studied in some detail from several
approaches by Rossby (1937), Cahn (1945), Winninghoff (1968), Blumen (1972),
Arakawa and Lamb (1977) and Schoenstadt (1977). This process of geostrophic
adjustment is important because it is the primary mechanism by which an
atmosphere, modeled by the so-called meteorological primitive equations,
reacts to errors (either numerical or due to errors in observational data)

in the initial data. The dispersive wave nature of (10) is the primary
mechanism by which these errors (commonly referred to as "imbalances'") event-
ually spread out over the domain of interest, until the system reaches a so-
called "balanced" or 'geostrophically adjusted'" condition. Forecasts at times
before this balance is reached are generally inaccurate. Thus a primary con-
sideration in numerically modeling (10) is to insure that the numerical

balance mechanism both fairly accurately models the physical balancing pro-




cedure, and that it proceeds relatively quickly.

As discussed in Schoenstadt (1977), equations (10) can be easily
solved by using spatfal Fourier transform. If we contin:e to denote

Fourier transforms by an overhead tilde, e.g.:

o«

u(k,t) = / u(x,t:)e—1kx dx , (11)
etc. Then (10) reduces directly to:
%% = fv - ikg h ,
%% =-fu, (12)
g§-= -ik Hu ,
together with initial conditions:
u, = u(k,0) = fwu(x,O)e-ikx dx , (13)

i

etc. Then since (12) represents simply a set of coupled, constant coefficient
(in the sense of t) ordinary differential equations, their solution can be

easily shown, by the usual eigenvalue/eigenvector approach, to be:

1 4 f ;, ikg Ei
u(k,t) = u, cos vt + > sin vt - T afn Ve ,
2 2 3
v(k,t) = - % uy sin vt + {E—gﬁ + if cos vt} vy + 33%2»{1 - cos vt} hi » (14)
v v v
~ ikH ~ ikHf ~ f2 kz H ~
h(k,t) = = — u, sin vt - 1 - cos vt} v, +(— + X 8% cos vt .
v i 2 i 2 2 2
v v v
where:
Vs £ e g e B, b = ERIE (15)

We now consider (1l4) in view of our discussion of filters and transfer func-

tions. Observe that if we denote

= v (16)

yi = vi and




e e T

respectively, as the "input" and "output" to the '"system' described by

(10), then we can express (l4) as

_)i” = i(k,t)zi (17) :
i
where, =T £ ikg T
[} (6] ~
cos vt e sin vt sin vt
5 f ksz f2 ikgf !
dp(k,t) = e sin vt -%— + 5 cos vt ——%— {1 - cos vt} (18) ‘
o v v v
ikH i KHF £ ke
- —— sin vt = 22 o das wt) 3 X8R aus vt
L Vv \)2 v2 \)2

Immediate comparison of (17)-(18) with (2) is not possible since z(k,t)
depends not only on the transform variable ("k'"), but also on one of the 1
physical variables ('"t"). However, since sin vt and cos vt can be

4 + jvt : & .
expressed in terms of e , and since k 1is real, it is easily seen

that the sinusoidal terms in (18) express only the phase relationships

(which clearly change with time), while the other, time independent,

coefficients reflect the amplitude effects of the "filter". In fact, it is |
fairly easy to show (Schoenstadt (1977)) that the sinusoidal terms in (18)
produce dispersive, transient waves, propagating throughout the region.
(These waves are clearly dispersive since (v(k)/k) is not constant.) The
time independent coefficients in (18) still function as amplitude distortion
terms in the sense that they redistribute the energy that is in the input
(initial condition) waves, in a manner that varies with wave number, into the
output (solution) waves.
A close examination of (18) shows that, in fact, the "amplitude distor-

|
tion" in this "'system" is really governed in each term by precisely one of f




the three factors,

’

or

< |7

1 k

v v2 2

or the square of one of these. The amplitude response curves for these three
expressions are shown in Figure 3. It is clear that the terms with the co-
efficient (1/v) have their low frequencies least affected, the terms with
coefficient (k/v) their high frequencies least affected, and those with
coefficient (k/v2) their frequencies in some middle range least effected.
Such responses are often referred, respectively, to as low pass, high pass,
and band pass filters.

Since the "system'" described by (10) involves both spatial and temporal
variation, it is well known that not only the phase velocity (v(k)/k) , but
also the group velocity (%E is important in describing the behavior, since
it is the latter which governs the rate at which energy actually propagates.
Thus, in Figure 4, we display both of these velocities for the system (10).

We note that additional insight into some of the qualitative behavior
of the solution to (10) can be obtained by decomposing (18) into its traansient

and steady state components, i.e., writing

O e e AR S J— . : ‘ o -
e T e

if 1

s ¥y Fér ¥y (19)

~
y()

| <2

where $S and $T can be obtained by inspection, since only time dependent
terms contribute to the transients, however, we shall not pursue this analysis
here.

As a final comment, note that the total energy of the system represented

by (10) is given by:
4
u2 + v+ ﬁ h2 <

Thus the spectral density of the steady state field can be shown to be

) 7,
2 2 . g 2 Hk ™ 2 . oef” 2 5
lugl® + Ivgl® + § Ingl® = B fv [® + B n, |7 (20)
v Y

-10-
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Since the term (k/v) acts as a high-pass filter, and the term (f/v) as a

low pass~filter, we see that the energy in the steady state field is deter-

mined by a combination depending primarily on the high frequency energy in

the initial v field, and the low frequency energy in the initial h field.

We shall not proceed any further with this analyvsis, since our main

interest is to analyze how discrete schemes, and the corresponding 'filters"

they produce, approximate the continuous (differential) model. However,

there are certainly other insights into the general behavior of the physical

model still possible from this filter point of view.

=YY




V. TRANSFER FUNCTIONS FOR OQUASTI=-DISCRETE FINITE DIFFERENCE AND FINITE
ELEMENT METHODS

In this section, we extend the analysis of our continuous model to

the quasi-

discrete case, where continuous spatial operations are replaced

by operations only at sample points, while the continuous time operations

are retained. This approach follows that in Winninghoff (1968) and Arakawa

and Lamb (1977). However, we extend our analysis to include a more general

case of quasi-discrete schemes than they considered. Specifically, we

define an

invariant linear discretization operator about the point x as

any operator having the form

where the

LIf(x)] = f c f(x + n(ax)) , (21)

D=1k
1

Cn denote real constants.

The discretization schemes we shall investigate are specifically those

satisfying the following conditions:

(a)
(b)

(c)

(d)

(e)

All discretization operators are linear and time and space invariant.

All discretization operators operate onlv on symmetric sets of

sample points, i.e. in (21), n,o=n, .
The discretization operators are balanced, i.e. in (21) |c | = |c nl -
n =

The operators are applied to (8)-(10) consistently, i.e. if one of
the derivative terms on the right hand side of (8)-(10) is replaced
by a certain difference, then all derivative terms on the right hand
side of (8)-(10) are replaced by the same difference operator.

The discretization must be exact, i.e. produce exactly the same
result as the analogous continuous operation, on all at least arbi-

trary linear functions, i.e. f(x) = ax + b, a, b, arbitrary.

]2
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With these restrictions, it is fairly simple to show that the
quasi-discrete schemes we wish to consider can all be reduced to the

general form:

L {Ld[u(x,t)l}

LB[V(x't)] -g Lo[h(x,t)]

3t 1
;@ }E (L [ve, )]} = ~f L (u(x,0)] (22)

J = -

iy {La[h(x,t)]} = ~H Lo[u(x,t)]

where LL[ | L8[ l, and LO[ | , are invariant linear discretization operators

having the following general forg:

13 Ld[f(x)] = aof(x) + Ziun[f(x + nix} + £{x ~ pAx}] '
REB
L[fGO] = 6 f(x) + Zlan[f(x + nAx) + f(x - nix)) (23)
] O :
L UG = X;-nzlcn[f(x + nax) - f(x - nAx))

The various values of an, Bn’ and sn will be referred to as the filter

weights. Thus, for example, the finite difference mesh which Arakawa and

Lamb (1977) call Scheme C (Figure 5), and which is given in finite difference

form as
du fv(x+d/2,t) + v(x-d/2,t) h(x+d/2,t) - h(x-d/2,t)
A .
ot 2 r
v _ _p ulxtd/2,t) + v(x-d/2,t)
ot 2
Sho oy u(x4d/2,6) - u(x-d/2,t)
ot d

corresponds to the following filter weights:

on = X5 81 = %, 01 = % , all others zero. (Note that in this

formulation Ax = d/2 .)

Determination of the filter properties of the system represented by (22

requires taking the Fourier transform (in x) of those equations. However, the




Vot S A A
e -

| shift property of these transforms (equation (9)) simplifies the terms

involving the discretization operators, since, using (9)
n |

PN s . |
(LIf(x)]} = { I ¢ eikn(Ax)}f(k) : (24) |

n-~n1

Thus, the Fourier transform of (22) is

~

a(E = £ 8OV - 1 g o(OR ,

~

a()q = -f 8GO0 , (25)

~

u(k)g%-= -1 Ho(k)§ ,

as was used for (12), to yield:

where
n
: a
; a(k) = 8. * 2 Z ay cos(nkAx) , (26)
n=1
nt)
B(k) = 8, + 2] 8 cos(nkax) , (27)
n=1
i
n
) a
i o(k) = = Z o sin(nkax) . (28)
| n=1
? Equations (25) can be solved, using the same eigenvalue/eigenvector approach
;

i - = va0 - 1ogh0 a
! u = u, cos vt + sin vt - sin vt
3]
fg8u 2 2.2
v =~ - sin Ct + {9—%ﬂ-+ £ g cos Gt}vO + 12&§§ {1 - cos Gt}h0 (29)
* v v v
ioHu 29 .2
o~ ~ £ o
h = - 2 sin Ct - 1g§£§{1 - cos St}v + (- 8 + gg cos VtSh
v F o 2 2 o
v v v
where now

p2 | £28%00 + gho’ ()

az(k)




'i or
| A_f 2 22
| 5 a“)£<m+xa(m. (30)
| _ v(k)
§ a(k) * E
i where
w(k) = £/8%(k) + 2%0%(x) . (31)

Comparison of (29)~(31) with (14)-(15) show that the main impacts
of the quasi-discretization described by (22) are:

(1) The filter coefficients
1k
v

_k
v 2

’
¥ !

and the squares of the first two, are replaced, respectively,

| 8 o SBo
} Vit Ry v2
% and the squares of the first two of these expressions.

(2) The phase velocity

TR 2

v _f
"k /1 + 242

is replaced by

£ %2 & x202

ka(k)
Since the filter coefficients discussed above determine how the

energy in the initial disturbance is partitioned into the transient and steady
state fields, then the degree to which the discrete filter coefficients approxi-
mate the continuous ones can be viewed as a measure of the degree to which the
discretization accurately protrays the continuous model energy distribution.

Any difference between a continuous (differential) coefficient, and the corres-
ponding discrete coefficient, should be considered as introducing a distor-

tion between the continuous and discrete solutions.

Rl L




Similarly, any differences between the continuous phase and group velocities

and the discrete ones will result in distortion due to spreading of the waves.
This eifect will be especially noticeable if the distortion is pronounced at
(spatial) frequencies that carry significant energy, i.e. for which filter

coefficients are '"large'. i

Actually, as noted before, the phase velocity is less important than

the group velocity,
dv

dk

in the continuous case, and

av v
dk

in the discrete case, since this quantity measures the velocity at which the

energy in the different frequencies propagates.
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VI. COMPARISON OF THE ARAKAWA SCHEMES

The specific discretization schemes which we shall analyze using
(22)-(30) are based on the arrangements of sample points described in

Arakawa and Lamb (1977) as Schemes A-D. The arrangements of these points

in one dimension is shown is Figure 5. We shall consider both finite td

difference and finite element formulations of the discrete problem,

whereas Arakawa and Lamb considered only second order finite differences.
{ The finite difference formulations are derived for both second and fourth 1
order approximations to the spatial derivative terms, while the finite

element formulations are derived (for Schemes A-C only) using piecewise !

linear elements (the so-called "hat" function basis). The filter weights
derived for each of these methods are shown in Tables 1-3. Note that since
each scheme "samples'" the initial disturbances at a distance of d, then the
shortest wave that can be resolved in each case is of frequency (v/d).

In Figures 6-8, the amplitude coefficients of the discretized approxi-
mate "filters" are compared to the "filters'" in the differential model, for
the values of the physical parameters given in Arakawa and Lamb (1977). The
following qualitative generalizations are clear:

(1) 1In each of the methods (second order difference, fourth order
difference, or finite elements), the arrangement of points specified by
Scheme A appears to produce the greatest distortion, and, furthermore, this
distortion is most pronounced at high frequencies (short waves).

(2) 1In each of the methods, Schemes B, C and D very accurately approx-
imate the transfer function for the "high pass" filter.

(3) In each of the methods, Scheme C understates the amount of energy

distributed into the short waves by both the low-pass and band pass filters,

while Scheme B overstates this.




(4) 1In all cases, the finite element formulation appears more
"accurate" than fourth order differences, which in turn is more "accurate"
than the second order differences.

(5) The (group) velocity distortion is especially serious in Schemes
A and D, since for short waves there is actually a reversal in the direction
of propagation.

Note that even though Scheme B seems to have the least 'distortion" in
each case, there is still significant phase and group velocity distortion
near the cut-off. Thus, we should not conclude immediately that Scheme B
will produce the least 'moisy'" solutions. This is because the apparent noise
in the solution is a combination of both amplitude and phase behavior, and
any phase distortion may lead to perceived '"noise" in the solution if (as
is the case in Scheme B) significant energy is retained (due to the amplitude
distortion effects) in the short waves. In fact, it may be preferable to
tolerate more amplitude distortion, if it acts to reduce the amount of
energy in the short waves, which are generally the slowest propagating, and
which produce the appearance of noise in the solutions.

As a final check on our analysis, we compared the height fields for
both the continuous and all the discrete models, uging the same methodology

as in Arakawa and Lamb (1977). An initial disturbance given by:

ui(xco) =0
hl(xvo) =0

Vg » RS xxa
vj(x,O) =

0 , otherwise
was considered, with the physical parameters having the following values

g =10 m sec-2

H = 103 m
£ = 107" gec”?
a=d= /2,
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The transform of the initial v field
2V0 sin(ka)
V, W —————

i k

was then band limited to the region - % <k = %, and the exact solution
for h was computed as the inverse transform of
1KHE 2V sin(ka)

2

St rdE et
V)

{1 - cos vt}{ r

in the continuous (differential) case, and the inverse transform of

2V0 sin(ka)
—_—1
k

ioBfH
z

\V

{1 - cos(é t) H

in each of the discrete cases. In each instance, the inversion was accom-
plished using Simpson's rule on the interval (0, %), with 600 subintervals.

The different h fields are shown at Figure 9. Note that these agree
with our predictions, based on the filter analysis, in that:

(1) In the second order finite difference methods, Scheme A displays
a great deal of numerical noise, as predicted due to the great amplitude dis-
tortion of its filter near (n/d). Schemes B and D show somewhat less noise
than Scheme A, but still more than Scheme C, this due to the manner in which
Scheme C controls the amplitude near (w/d) in both the (o/¥) and (Bo/vz) terms.

(2) Similar comments hold for the fourth order finite difference methods,
though, in general, due to better phase propagation, the spreading of the
energy in the short waves is not so pronounced, and hence the noise in
Schemes B and D is reduced.

(3) 1In the finite element methods, Scheme A still remains quite noisy,
due to its amplitude distortion near (n/d). Schemes B and C are virtually
identical, since Scheme B seems to compensate for slightly more energy in

the short waves by maintaining better phase relationship.
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VIT CONCLUSIONS

In this paper we have adapted concepts that are commonly associated
with the design of filters in electrical engineering to the analysis of
discretized representations of partial differential equations, and spec-
ifically to the one dimensional shallow water equations. We have shown
that these concepts can provide valuable insights into why certain solution
schemes provide '"better" solutions than other, and a useful tool for com-
paring both qualitative and quantative aspects of different schemes.

We have clearly demonstrated that, in contrast to the analysis used in
earlier studies, a complete analysis of the suitability of a certain discrete
scheme to model a physical process, in our case the process of geostrophic
adjustment, depends not only on providing reasonably accurate duplication of
the phase propagation (delay) characteristics of the modeled system, but
also on producing reasonably accurate duplication of the amplitude response
characteristics. Furthermore, because of the phase distortion near the
Nyquist cut-off of discrete schemes, it is often desirable to control the
amplitudes of short waves.

In the process of geostrophic adjustment studies, we have concluded that
schemes that use unstaggered grid points are generally poor, irrespective of
the particular finite difference/finite element method used, due to some in-
herent properties of the model. The difficulties which have been reported

"noise"

with these methods in the literature, and especially the problem of
in finite element models, appears directly attributable to the amplitude
response near the Nyquist cut-off methods based on an unstaggered arrange-
ment of points. This is certainly related to the tendency of schemes based

on unstaggered grid points to produce solution separation, and appears to

arise from the fact that the coupling of the fields in the basic differential

«20=




equation simply makes specifying all the quantities at every grid point an

overspecification of the problem.

Lastly, we conclude, that, based on the one dimensional evidence only,
the method identified by Arakawa and Lamb (1977) as Scheme C has been quite
popular, not only due to its good phase propagation characteristics, but
also due to its tendency, in either finite difference or finite element for-
mulations, to "window' out much of the high frequency noise in the discre-~
tized model.

In summary, the concepts we have applied yield extremely valuable
insights into the qualitative behavior of discrete methods for approximating
partial differential equations. In many ways, we have only started to bring
much of the emerging understanding of digital filters to bear on this problem.

A significant, and interesting outgrowth will be the consideration of two

dimensional problems.
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FILTER WEIGHTS FOR FOURTH ORDER FINITE DIFFERENCES

(hx = d/2)
SCHEME DENOTED ag Bo 81 ol 9y
A Ab 1 1 0 0 5%
B B4 1 1 0 %% 0
c C4 1 0 %— %% 0
D D4 1 0 % 0 5%
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