
882 V IRGINIA PCLTTECI*IIC INST AND STATE UNIV BLACKSBURG —ETC FF6 6/7
STLmIES OF LIMD -OIaOOSING FORCES ACTING ON AN FaCTION SEAT OC—ETC(U)
JAN 79 D 4 SCHNECK AFOSR—77 32%

WI CLASSIFIE D VPZ—E —78—16 AMRL. —1R 78 1O3 NI.

I __!.fl !;fl

~~~

flflMO,
O A T t

—79

II



1 ~
______ 

2.2

LI ~ IIII~°
IIIII~8

H~
1•25 ~~I.4 ~ i.o

MICR OE_ O I’ Y RE ~OL U1EON I t  I f ~~’



-

~~~~

~�LEVEV
_ _ _ _

AMRL-TR-78- 1 03

8
~~a~~a~~

~~~~~~~~ , STUDIES OF LIMB-DISLODGING FORCES
ACTING ON AN EJECTION SEAT OCCUPANT

DANIEL J . SCHNECK, PhD
VIR GINIA POL YTECHNIC INSTITUTE AND STATE UN! VERSITY
BLACKSBUR G, VIR GINIA 24061

cL

D D

JANUARY 1979

[ Approved for public release distribution unlimited.

AEROSPACE MEDICAL RESEARCH LABORATORY
AEROSPACE MEDICAL DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATrERSON AIR FORCE BASE , OHIO 45433



NOTICES

When US Government drawings , specifications~ or other data are used for any purpose other than a definitely related
Government procurement operation , the Government thereby incurs no responsibility nor any obligation what-
soever , and the fact that the Government may have formulated , furnished , or in any way supplied the said drawings,
specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder
or any other person or corporation, or conveying any rights or permission to manufacture, use , or sell any patented
invention that may in any way be related thereto.

Please do not request copies of this report from Aerospace Medical Research Laboratory . Additional copies may be
pu rchased from :

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

Federal Government agencies and their contractors registered with Defense Documentation Center should direct
0:requests for cop ies of this report t 

Defense Documentation Center
Cameron Station
Alexand ria , Virginia 22314

TECHNI CAL REV IEW A ND APPR OVAL
AMRL-TR- 78- 103

This report has been reviewed by the Information Office (01) and is releasable to the National Technical Information
Service (NTIS) . At NTIS, it will be available to the general public , including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Director 
VON GIERKE

Biodynarnics and Btoengtneering Division
Aerospace Medical Research Laboratory

L -- - 

~~~ ~o~ c~ ,ssieo,a February 1979 — 150



___________________________________ --

FF~T

SECURITY CLASSIFICATION OF THIS PAGE (W~,n  Data Ent•~.d) 
- __________________________________

READ INSTRU CTIONSEPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 
—

I P OR T
(2. 

GOVT ACCESSION NO. 3. R E C I P I E N T ’ S  C A T A L O G  N U M B E R

e.g ~~~~~~~~~~~~~TI~~LE_
( td  SubtIll.)

f~~~nmIES 
OF ~~MB-~ISL0DGING FORCES ACTING ON/I 

~ TYP E

Final ,~ep t .
—ii Mar ~7 — 28 Feb 78
~w4..snr.ruiNs One.

EJECTIO~4 SEAT~OCCUPANT• ~
- -- _~~~~~~~~~~~~~~~~~~~ _S__~~~~~~~~ -

7. AUT HO R( .) .—~~~~~
—-

~~~~~ 
- .‘/ ~~~~~~~~~~~ e.

~ M BER (a)

AFOSR Grant Number
______ 77—3296

a. PERFORW.ING ORG IZATION ~~M4E AND ADDRE SS ,,4 %O . PR0GRA ~ ELE MEN T , PRO J E C T . TASK
AR EA & WO R K U N I T  N U M B E R SVirginia Polytechnic Institute and State Univ

Depar tment of Engineering Science and Mechanics 6l1O2F~ 1I~~i2I-V3-ll
Blacksburg, Virginia 24061 ~1~3’ ~‘i7IJP ~lI i . CON~~R O L L I N G O F F I C E N A M E A ND A OORFc ~
Aerospace Medical Research Laboratory , Aerospac~ ~~Jan~ a~~—4~979 /
Medical Division, Air Force Systems Command, —~~~~

Wright—Patterson Air Force Base, Ohio 45433 37
MO NITOR I N Y MAML & AOQRasSQldiJI.r 11 f roa ’ Controlling 0111 C.) IS. SECURITY CLASS. (of IRIS i.pof l)

Unclassified

ii.. DEC L A S SI FI CATIO N/ DO W N G N A O I NG
________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ SCHEDULE 

N/A
IS. 0IS T RIB U T ~~~jj~~~Ia5&~I T (a! this R.pori)

fat public release; distribution unlimited

D DC
17. DIST R IBUTION STATEMENT (of 1,. abstract .nt.,. d in Block 20. ii dif tsrent ho.. R.po,i) j~~j ~JPJ].P~ 171?j

FEB 26 1919

6
IS. S U P P L E M E N T A R Y  NOTES 

I] tI L5U~L6Ll U L61

IS. 
~~~~

Y WO RpS (ço..tsnu~ on ,.v .,.. aid. If n.c.aa y a,d id.ntIiy b~ block n. .b.r)
iologicai. ane Medical Sciences Windblast Injuries

Biodynamic Modeling Flail Injury
Mrodynamic Forces h igh—Speed Ejection
Invi scid Flow Theory Potential Plow Theory
human Body Model Flow Separation

SO. ~~S$T~~A
1

CT (Continu. an r.vsr.. aide if n.c...~~v ond id.nIlIy by block n. bac)
in tn s report, the forces tending to dislodge the limbs of an ejection seat
occupant from one another, or from a restraining surface, are calculated in the
absence of flow separation. For a simulated ejection taking place at an
altitude of 10,000 feet, the results show that, based on published data for
a pilot’s average grip retention capability, the probability of his letting go
is 100% if the ejection occurs at Mach numbers exceeding 0.72. Moreover, the
probability of major flail injury is around 100% if the ejection Mach number
exceeds around 1.25. One major factor which contributes to these large limb—

DD FORM 1473 . E D I T I O N  OF I NOV 65 IS OBSOL E TEI J A N  73

S E C U R I T Y  C L A S S I F I C A T I O N  OF T W I S  P A G E  ( I13,en r~.. F~’ r ..d)

~-o ,1 r)~~~ /~,

L S S - , . S 

S 

- -



— ~~~~~~~ ~~ -~~-----_—-.— ..----—

_ _ _ _ _

..~~~~ S E C U R I T Y  CLASSIFICATION Of THIS  PAG E(W h.n Dat a 1nl.ro ~~
Block ZU. Abstract (cont~d.)

_..~~~ dislodging forces is the generation of stagnation points in the flow. In order
-‘ to examine further the role played by flow separation around the blunt body

segments, a complex velocity potential is developed to describe a stationary
vortex pair located in the wake region of the flow. It remains to super—impose
this vor tex pair on the unseparated cross flow in order to ascertain the drag
forces which contribute to limb dislodgement.

-

AecEssIo~~frr 
___________

NTI S V ~e Section V
DOC Section 0
UNA NNOY’ ’~” 0
JUST IF ICA T C -._________

BY
BISTRIBUTIONIAVAIIABILIIY CODESS Dsst. ,

~ .Ai . and/ or SPECIAL

A EL

L 

~FCIIRITY C L A S S I F I C A T I O N  O F rHIS PAGEI153 ,.n Data EnI.rod) S

S 

-
~~ - . 5

- - .  ~~~~ ._~~~~~~~~

•

~~~~~~~~~ - - ~~~~~~~~~ 

S 
~~~~~ . . )~~~‘i ~~~~~



PREFACE

The work described herein was accomplished with the financial sup—
port of the Air Force Office of Scientific Research under grant number
77—3296. This was a mini—grant program follow—up to the author’s par—
ticipation in the 1976 USAF/ASEE Summer Faculty Fellowship Research
Program, which was held at the Aerospace Medical Research Laboratory
(AMRL) at Wright—Patterson Air Force Base, Ohio.

The author wishes to express his gratitude and appreciation to
Dr. P. F. lampietro, Director of Life Sciences, and Lt Col D. E.
England, Program Manager (Mlni-Crant Program), of AFOSR; and
Dr. H enning E. von Gierke , Director of the Eiodynainics and Bio—
engineering Division, Dr. Hans L. Oestrelcher , Chief of the Mathe-
mat ics and Analysis Branch , and Mr. Ints Kaleps , Research Scientist ,
of M4RL for their support , encouragement and review of this material .

SUMMARY

Problem

Statistical data show tha t vindblast forces increase with aircraft
speed to the point where an overall five or ten percent limb—flail injury
rate rises to 40 percent or more. This is far from negligible, but control
of the forces that produce excessive motion of the limbs of an ejection
seat occupant can only be achieved if we increase our understanding of the
aerodynamic loading to which a pilot is exposed during high—speed ej ect as.
Toward this end , a mathematical model is being developed which is expe ed
to provide aerodynamic data that can be used as input information to the
Aerospace Medical Research Laboratory ’s Articulated Tota l Bod y Model. The
latter can then be used to assess the kinematics of limb motion under the
action of specific aerod ynamic forces. In this report , the forces tend ing
to dislodge the limbs of an ejection seat occupant fran one another , or
from a restraining surface , are calculated in the absence of flow separa-
tion. The results are then modified to show how the mor e realistic physical

S ef fec ts  of separation of flow around the blunt body seg1’~ents m a y  be taken S

into consideration.

Approach S

Limb—dislod ging forces in the absence of flow separation are computed
by integrating the pressure coefficient which was derived in an earlier
report for the cross—flow over a limb—to—limb or limb—to—restraining surface
contact configuration. Modifications to include the effects  of separa—

S tion of flow are then introduced by describing a distribution of inviscid
vortices which originate from the separation of shear layers , and which
can be superimposed on the unseparated potential flow solutions obtained
thus far.
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Results

For a simulated ejection taking place at an altitude of 10,000 feet,
the results show tha t , based on published data for a pilo t ’s average grip
retention capability, the probability of his letting go is 100% if the
ejection occurs at Mach numbers in excess of 0.72. That is , the aerody-
namic forces are such that the pilot ’s enusculo—skeletal system is not
likely to withstand the tendency for dislodgement from a restraining sur-
face if he is ej ecting at Mach numbers exceeding 0.72. Moreover , the
probability of major flail injury is around 100% if the ejection Mach
number exceeds 1.25. One major factor which contributes to these large
limb—dislod ging forces appears to be the generation of stagnation points
in the flow. In order to examine further the role played by flow separa—
don around the blunt body segments , a complex velocity potential is
developed to describe a stationary vortex pait located in the wake region
of the flow. It r ema ins to superimpose this vortex pair on the unseparated
cross flow in order to ascertain the drag forces which contribute to limb
dislodgement.

Conclusions

To the level of approximation in this report, one would have to con-
clude that the generation of stagnation points in the flow produces forces
that can cause limb—dislodgement (with subsequent flail and possible serious
injury) . Moreover, these forces are sensitive to the angle at which the
limb intercepts the flow , such tha t the higher the angle , the greater the
tendency for dislodgertent. &nd f inally , the forces increase rap idly with
speed of ejection , which correlates well with the finding that windblast
injuries increase dramatically as a function of airspeed . S

Recommendations

It is desirable to examine the time—course of the limb dislodging forces
after the onset of windblast. That is, the forces computed in this report
exist at the onset of ejection and are peak forces that prevail so long
as the limb is in contact with a restraining surface. Once contact with
the surface is broken, there follows a redistribution of forces, and this
information is desirable input to the ATB simulation which provides kine-
matic data. The added complications resulting from separation of the
flow and limb interactions need also to be further elucidated in an effort
to define design criteria for safer ejections. There is interest in extend-
ing the analysis to include the head/neck configuration in order to shed
some light on the factors that contribute to an oscillatory fore—aft head
vibration. And finally, the effects of surface roughness (which may be
due, in part, to the type of clothing being worn by the pilot), and
compressibility effects of the flow (such as shock waves) should be
assessed as to their first or second order influences on the factors
tha t contribute to vindblast injuries. S
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SECTION I

INTRODUCTON

Statistical data accumulated from f ive nations has brought to light
the devastating effects of high—speed ejections from aircraft (Glaister,
1975). That is, the data show that vindblast forces increase with air-
craft speed to the point where an otherwise 5—10 percent limb—flail
Injury rate rises to 40 percent or more. This is far from negligible,
but control of the forces that produce excessive motion of the limbs of
an ejection seat occupant can only be achieved if we increase our under—
standing of the aerodynamic loading to which a pilot is exposed during 

S

high—speed ejections. In a recent report (Schneck , 1976) it was shown
that it is feasible to formulate a mathematical model which can predict
such aerodynamic loading. Results from this model can then be incor-
porated into the Aerospace Medical Research Laboratory ’s modified Calspan
Model of the Articulated Total Body (ATE) in order to assess the kinematics
of limb motion under the action of specified aerodynamic forces. In the
earlier report, potential flow solutions were presented for estimating
the pressure distribution around the forearm of a human body subjected
to windblast. The work which follows expands these preliminary results,
and extends them to include some effects of flow separation.

The body model used here for the analysis of windblast forces is
represented again by the 15—linkage system of spherical, circular—
cylindrical, truncated—conical and flat—plate segments shown in Figure 1
(see Schneck, 1976, for a complete description). Moreover, specific
attention is focussed on the events which take place where a body
segment is either in contact with a restraining surface, such as the
forearm in contact with an arm rest, or, equivalently, where two body
segments are in contact with one another, such as the upper arm pressing
against the thorax. For this situation, the complex velocity potential
for the aerodynamic cross—flow over the limbs (in the absence of flow
separation) has been shown to be given by:

w waV coth ~~~~
-
, (1)

which corresponds to the cross—flow streamline pattern depicted in
Figure 2 for the cross—sectional geometric configuration shown, with x =

y + iz and w = ~ + IV. The streamlines illustrated are non—dimensionalized
with respect to V and a.

In the section which follows, the forces tending to dislodge the
lImbs from one another, or from a restraining surface, are calculated in
the absence of flow separation , i.e., for the situation depicted in
Figure 2. In subsequent sections, the results are then modified to allow
for the inclusion of the more realistic physical effects of separation
of flow around the blun t body segments.

5
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1 Figure 1. 15—linkage body model used\ for the analysis of windblas t
fo rces.

‘4

- 
_ _  

_ _L . 
S 5~~ 5~ 5 5 5 S ~ .~ 

_ _



0
LI) LI) If) LI) LI) LI) LI) LI) ‘() LI) LI - 

~ LI) LI) LI) LI) LI) I!) LI) LI) LI)
o tf) 0 LI) 0 LI) 0 LI) ~ ) LI) C 0 LI) 0 LI) 0 LI) 0 LI) 0
11) C’.) 0 ~~ LI) C’.) 0 ~~~. LI) C’.) C I f)  t.. 0 C’.) LI) ~~~. 0 C’.) 11)
. . . . . . . . S S • • • • ~ ~ • ~ S ~

C’.) C’.) (‘3 —‘ -4 —. — 0 0 0 C 0 0 ‘-4 -4 -4 -4 C’) C’) (‘3
I I I I I I I I I

1 1 1 , 1 1 1 1  I S I  l u l l  S I ll

I I I

~

I I J 1 , I I

~

% ”

~

II I IJ I I I I I I1 I ? I t 1 ~~~ I~~~~~l 1 I
I I  I I l l I l I l I l l I  I I % ( 1 1 1 1  ‘~ 1
ii 1 1 1 1 1 1 1 1 1 1 1 1  l ll l~~~l l 1  I I
I I  I I l l I l l I l l I l  1 1 1 1 1 1 1 %  ‘ ‘I -

~I I  I 1 1 1 1 1 1 1 1 1 1 !  1 1 1 1 1 1 1 1  1 I C
I I  I i l I l l I l l I l l  1 1 1 1 1 1 1 1  1 1 ---4
I i  I I l l I l l I l l i l  1 I I % % \ I ~~ I 1 ‘—4
I I  I I J I l l I l l i l l  \ I I \ \ ~~~~~ I 1
I I  I 1 1 1 1 / / I l  i l l  \ \ ‘ \ \ \l ~I I  / / 1 1 1 / / I l l  I I  \ \ ‘~\ \\ \~ \ ~

______

( 

‘ ‘ ‘ ‘ \ \ \
I I  ‘ ‘~ \ \ ‘ \ \ t ‘—I -~II ‘ ~~~~~~~~~~~~1/ \ \\ \ \ \ \ \

I I  \ \ ‘t ’ \ ’~ 
-

I I  U
I I  V V\ \\ \ ’ ~\I I  V C C

II ~ 0

~) )))}))))

~~j j /J /l l
\\ \ \\\\ \ - 9 /7/7//Ill / / I 2
\\ \ \\\\ / / / /7/11/ / / /

1 1~~\\ 1 / 1 / 1 1 1 1  / / /
I 1~~~I 1  1 1 1 1 1 1 1 1  I I I

II 1 l I I \  I l l / I / i  I I I
I I  I F i l l / I !  I l l
1 1  1 1 1 1 1  1 1 1 / ! ! !  I I I -‘-I

L~?~

7

- -t~~__ _ 
-~~~~~~~~-~~~~~~~~~~ — S-—~~~~~~

--— -~~~ 5~~~~~~~~~



SECTION II

LIMB DISLODGING FORCES IN ThE ABSENCE OF FLOW SEPARATION

Let p designate the aerodynamic pressure existing at a point along
the cylindrical surfaces illustrated in Figures 2 and 3. If y defines

the azimuthal coordinate such that tan ‘y’ = ~
- -

~~ (non—dimensionalized

radius a = 1 in Figure 2), then the differential surface element a(d~’)
having unit length along the axis of the limb has a force on it of
magnitude df = p(a)(dy) directed radially inward (see Figure 3) The
component of this force tending to push the cylinders together (or pull
them apart) is thus given by df

~ 
= —(p sin y)(a dy), so that the net

vertical force becomes:

.3ir/2

/ —ap sin y dy per unit length. (2)

Now, the pressure, p, was obtained earlier (Schneck, 1976) in the form
of a pressure coefficient which, for the cylindrical configuration

S 
illustrated in Figure 2, is given by:

c = 

— 

sin 2 a 1 — 
a
7
~
4 

sech4 (3)
~ -1 pU~~ 4z

2 2z1
2 o

Before substituting equation (3) into equation (2) and performing the
indicated integration, it is convenient to make some transformations and
redefine certain variables. Referring to Figure 3, we note that the

equation of the circle is r
2 

= 2az, while r = 2a sin 0 and y = r cos 0.
Thus,

= 
ir(2a sin O)(cos !i = cot 0 = 6, and,
4a sin 0

a (4)

ii 2 ~i dod6 = — -~ cosec 0 dO = — 
2 2

S sin 0

z — a z r2 4a
2
sin

2 0 - 2
Furthermore, sin y = 

a 
= — 1 — 

2 
— = 

2 — 1 = 2sin 0 — 1
2a 2a

= sin2 0 + (sin2 o — 1) = sin2 e — cos
2 0 = —cos20

so, y = 20 + -~-
~
-, and d-1- 2 dO. (5)

8
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2 4  2 4  4 4  4 3a n  a n  a i r  iT n 1 dó
Finally, 2 

= 
4 

= 4 4 = 
2 2 

= — 8 2 ~~ (6)
4z 4r 16a sin 0 16 sin 0 sin 0 sin 0

2
4a

2 2 2
And , 5itl 0 — c o s  ° l — c o t2 O — l — -~-~~- ( 7)

sin 0 iT

Putting equations (3) through (7) into (2) gives: (Limits are on 6)

~~ 
-(a) pU 2sin2 

41 
- 

~~
- 

~~2 
~ ~ sech4 61+ p~~

[—cos 2 0 ]2  dO (8)

Now , f — [ -
~~ 

pU
2sin2 n + p0] [— cos 2012 dO = 0, so, with q0 

= -
~~ pU0

2sin2a

and the use of equation (7), equation (8) simplifies to:

f f 2(aq~~~) sech
4 6 [~~~~~~~~ 

— 1] d6 = _ aqn f sech46fd
2 

- d6 (9)

Equation (9) contains integrals which are special cases of the general form
(see Gradshteyn and Ryzhik, page 124) :

f 6m~6 
= 

m6m
~~cosh 6 + (n_ 2)6 msi~~~~ — 

m(m—l ) I 6m—2~6
J n n—i (n—i)(n—2) J
cosh 6 (n—l)(n—2)cosh 6 cosh 6

(10)

+~ a
n—i J n—2

S 
cosh 6

In the first integral of equation (9), m = 2 and n = 4. In the second
integral, n is again equal to 4, but this time m = 0. Noting that the
integrals are symmetric, we may write, for the case m = 2:

f 62 sech4 6 dS = [ 6 cosh 6 + 62 sinh ~~~ — if
o 3cosh3 6 ° ~ o cosh 6

2 
(11)

~~~~
-
~~~~

1 6d 6
3J  2o cosh 6

10
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The first term on the right hand side of equation (11) evaluates to
zero by application of L’Hospital’s rule. The second integrates to

tan 6~
°’ = 1 (see Gradshteyn and Ryzhik, page 99) and the third integral

S 

~~

is of the form (Gradshteyn and Ryzhik, page 353): f 
2.‘o cosh b6

2k 2k 2
(2 — 2)ir it

= 2k I B 2k~
, which , for k l b  evaluates to -

~~~ with the Bernoulli
b (2b )

number 1B 2 1 = -

~~
. Putting all of this together , the f irs t  integral of

- 2equation (9) may be evaluated in closed form to yield (it — 6 ) 19 .  Now,
for the case in = 0, equation (10) becomes:

( 4 sinh6 2 r d6
j  sech 6 d6 = [ I + 

~ 
j  2 

(12)
o 3cosh 6

0 o cosh 6

As before , the first term on the right hand side of equation (12)
evaluates to zero , and the second term integrates to unity . Thus , the
second integral of equation (9) may be evaluated in closed form to y ield

(4/3)(—-s2/4). We may then write:

2 2 —aq ir-ir —6 4ir o 2
= —aq~,Ir[ 9 

— = (—2n — 6] = 9aq0 (13)

Note the positive resultant sign of equation (13), indicating that the
net force per unit length of limb is in the positive z—direction , or
tending to cause dislodgement of the limb from a restraining surface (which
could also be another limb).

In order to evaluate equation (13) further, we need to say something
about q and a. As a reasonable approximation, we may begin by assuming
that the radius of the human forearm is on the order of 1.5 inches (average)
and that the length of this portion of the arm is about one foot .  Thus ,
the total force acting on the forearm can be approximated by the relation

= -
~~ q .  Now, consider an ejection taking place at an altitude of

10,000 feet. At this height, the density of air relative to a known

standard is given by (Shames, page 540) f— = 0.7385, where p = 0.002378

s lug/ f t  , and the speed of sound , c = 1,078 feet per s .cond . Thus,

q = -
~~ 

-
~ --- p 0 [U 0

2/c2 )c 2sin2 a = lO2OM2sin 2 a , where M 1rresponds to the

Mach Number of the flow. Substituting this result into the equation for

S 
gives the total limb—dislodging force as a function of Mach Number

11
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and Angle of Attack at the specified altitude of 10,000 feet. The final
equation is:

= 1148 M2 sin2a (14)

Figure 4 shows equation (14) plotted as limb dislodging force vs.
Mach Number with the angle of attack appearing as a parameter. Although
the figure illustrates force behavior in che supersonic range as well as
the subsonic , it is recognized that the results past M = 1 are not realistic,

S since the analysis has thus far neglected the presence of any shock waves
in the flow. In any case , the subsonic values for f are, in themselves,
very revealing. For example, at the higher angles o~ attack one observes
a rapidly increasing limb—dislodging force. The significance of these
large forces may be appreciated by examining them in relation to the
super—imposed ordinate axis which is a measure of several published pro-
bability results. That is, in a study conducted by Hom er and Hawker (1973)
it was found that a pilot’s average grip retention is such that the pro-
bability of his letting go is 100% if the dislodging force exceeds some
600 pounds. From Figure 4, we see that = 600 pounds when M = .72 for
a = 90° and when M = .83 for a = 60° . Thus, at these higher angles of
attack a pilot’s musculo—skeletal system is not likely to withstand the
tendency for dislodgement from a restraining surface if he is ejecting
at Mach Numbers in excess of around 0.7. Similarly, in a study conducted
by Payne (1975) it was found that the probability of major flail injury
is around 100% if the ejection Mach Number exceeds 1.25. This would
appear to be self—consistent with the predicted limb dislodging forces
as interpreted above together with the results of Hom er and Hawker. To
this level of approximation, therefore, one would have to conclude that
the generation of stagnation points in the flow produces forces that can
cause limb—dislodgement (with subsequent flail and possible serious
injury). Moreover, these forces are sensitive to the angle at which the
limb intercepts the flow, such that the higher the angle, the greater
the tendency for dislodgement. And finally, the forces increase rapidly
with speed of ejection, which correlates well with the finding that
windblast injuries increase dramatically as a function of airspeed
(Glaister , 1975). Figure 5, taken from Payne, Hawker and Euler (1975)
is a photograph of an ejection seat occupant sitting in the ACES—Il Seat
at -15° Yaw and -15° Pitch , during a wind—tunnel simulation of an
ejection from the F—l05. The arrows point out several critical regions
of the pilot—ejection—seat configuration where flow stagnation, with its
consequent limb—dislodging force distribution, is likely to occur.
Observe, in particular, those regions where the pilot is gripping the
seat, where his upper arms are in contact with his torso, where the
lower legs are in contact with the seat pan and where his head is in
contact with the back of the seat. All of these represent sites of
potentially serious windblast and flail injury . Based on these results,
one is therefore encouraged to pursue the mathematical analysis with a
certain degree of assurance that the approach is faithfully describing
events as they have been experimentally observed to take place . With
this in mind , we now proceed to modify the theory to include flow
separation effects.
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SECTION III

VORTEX MOTION IN A REGION OF SEPARATION

In aerodynamic flow theory, two simplifications have been conveniently
and commonly employed to investigate separated flows over arbitrary
three dimensional bodies of revolution (Marshall and Deffenbaugh, 1975).
The first asserts that there is a direct analogy between three—dimensional
steady flow and two—dimensional unsteady flow (Allen and Perkins, 1951) ——

5 such that a three—dimensional steady separated flow problem can be
analyzed as a two—dimensional unsteady separated flow problem. The
second is based upon the observation (verifie~-( experimentally) that atwo dimensional unsteady wake can be described by a distribution of
inviscid vortices , or iginating f r om the separation of shear layers and
super imposed on the unseparated potential flow solution (Mello , 1959 ,
Sarpkaya , 1968 and Marshall and Deffenbaugh , 1975). These vortices are
modified by diffusion. It is the second of these two assumptions that we
shall exploit here, since arguments have already been presented for
considering flow over the forearm in contact with a restraining surface
to be two—dimensional (Schneck, 1976).

Thus, to examine the separated flow patterns around the geometric
configuration illustrated in Figure 2 , consider the situation depicted
in Figure 6. A Vortex pair has been placed on the lee or downstream
side of the two cylinders as shown. Neither the location, y0 ± iz , nor

the strength, K , of these two vortices can be specified at this time.
In fact, the location of the vortex pair can not be determined uniquely S

f rom potential flow theory alone (see later discussion). However, the
vortex strength can be computed if we say something about how these
vortices move relative to the cylinders. In this respect , reasoning
developed in the earlier report (Schneck, 1976) has suggested that,
during the first few milliseconds of high—speed flow development around
a blunt body of revolution, the separated wake stays confined to the
immediate region of the body, and consists essentially of two thin
vortex—layers, symmetrically situated. One may thus model this separated
flow analytically by super—imposing stationary vortex filaments upon the
linear inviscid flow solutions obtained earlier. The condition of
stationarity then allows the vortex strength to be determined as described
later in this report.

Derivation of Complex Velocity Potential for a Vortex Pair
Downstream of Two Tangent Cylinders with Parallel Axes

In order to super—impose the vortex layers on the earlier solutions,
as described above, we must first develop a complex velocity potential
to describe the vortex pair illustrated in Figure 6. The analytic form
f or this potential can be deduced in part by examining the transformation
that maps the double cylinder configuration of Figure 6 into a single
unit circle centered at the origin of the transformed plane (see Carrier ,
Krook and Pearson , 1966 , pgs. 132—134) . Consider the bilinear trans—
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formation :

+ ~~~, — 
i~~ — 2 

— 
2x i(y2 

+ a2) — 2(y — iz) (15)
y + z

On the upper cylinder of Figure 6, with a 1, the equation of the
circle is y2 

+ z2 
= 2z . Substituting this into equation (15) , we f ind

that v = 2 — constant for any value of u. Similarly, on the lower
2 2cylinder , y + a — —2z , yielding v 0 for any value of u. The bilinear

transformation (15) thus maps the two tangent circles, S1 and 
~2 of

Figure 6 into the parallel lines v 2 and v 0, respectively, in the
u , v plane . This is illustrated in Figure 7A.

Next, consider the exponential transformation:

it if ii 11— (u + iv) — u  — i v  — u2 2 2 2 ii it
x + i a— e  — e  e — e  (coa~~~v+isin -~~v). (16)

For v = 2 , a — 0 and x _e~~~’2~~
1 which maps S

1 onto the negative real

axis of the x,s plane. Likewise, for v 0, a 0 and x = +e (
~~

2)U

which maps S2 onto the positive real axis of the x,s plane. The

exponential transformation (16) thus maps the two parallel lines of
Figure 7A onto the real axis of the x,s plane, as illustrated in Figure
7B.

Finally, consider the inverse bilinear transformation:

x + is + i x + i ( x + i)(x + i) x 2 + 2 i x - l  (17)
x + i s — i  x — i  (x — i)(x + i) x

2 + l

where s has been set equal to zero in accordance with the discussion of
2 2equation (16). From equation (17) we get ~ = (x — l )/ ( x  + 1) and

2 2 2 x4 —2x
2 + l + 4 x 2 

x4 +2x 2 + 1
n — 2x/(x + 1). Thus, ~~ + ~ 2 2 

= 
4 2 

= 1,
(x + 1)  x + 2 x  + 1

so that , for s — 0 equation (17) defines the equation of a circle of radius
1 in the 

~~~~~~ 
plane. The inverse transformation (17) thus maps the real axis

of the x,s plane into a unit circle centered at the origin in the ~,n plane ,
as illustrated in Figure 7C.

17
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Figure 7. Transformation of Two Unit Cylinders tangent on the real axis to
a Sing le Unit Cylinder centered at the Origin.
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Now, putting together the transformations (15), (16) and (17), one
obtains the single function that maps the two unit cylinders of Figure 7A
into the single unit circle of Figure 7C. Thus,

-~~(u+iv) 
.!L (ix-2)

~~~~~~~~~ = x + i s + i = e + i = e X + e
x + i s — i  it -it i x — 2  it-~~ ( u + i v) ~~~~ ( 

~ 
)

e — i  e — e
it (18)
x

e +1
it

e

By multiplying the top and bottom of the quotient in equation (18) by

the quantity e
+
~~

1’2
~~ the mapping function may be put into the form:

¶ 
+

1T

~~~~~~~
= — 

e e 
= — coth (iL) (19)

~~~!_~ - IL 2x

e 2X _ e  2X

Figure 8 illustrates the net transformation represented by equation (19).
The significance of this transformation is that it suggests an analytic form
for the complex potential when inviscid flows encounter boundaries such as
those depicted in Figures 2, 6 or 8. For example, let us expand equation
(19) into its real and imaginary parts and see what information can be
gained from the results obtained. Expansion of the hyperbolic cotangent
of complex argument yields the following:

ILl. .sinh — isin —
coth(~~) = coth(-?-4) = coth 71

~~ 2

_ iz) 
= 

r2 2

2(y + z ) cosh 2 cos
r r (20)

= A
1

(y, z) + 

~~~~~~~~ 
= A3(y, z)e i8

~~~~~

ILl.sinh 2 —sin

where: A1(y,z) = 
r 

~~ 
A2(y,z) = 

r

cosh 2 — cos —~~ cosh 2 
— cos —i-

r r r r S
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/ 2 2 A2(y,z)
A3(y, z) = IA

1 (y,
z) + A2 (y,z); and, ~(y,z) = Arc Tan

Now observe that if r2 
= 2z (the equation of the upper cylinder in Figures

2 or 8) then A1(y, z) = (sinh ~~)/(cosh ~l.) and A2 (y, z) = (—1) / (cosh ~~) ,  so

2 i ~v(sinh ) + 1 cosh
that: A

3 (y,
z) = A1

2 (y, z) + A2
2
(y,z) = 

2z 
2 2 ILl. 

= 1.
(cosh ) cosh

2z 2z

The exact same statement can be made for the lower cylinder which is defined

‘ y the equation r2 = —2z because the negative sign disappears when
A
1

(y, z) and A2(y,z) are squared in the calculation of A3
(y,z). The modulus

of equation ( 20) is thus equal to 1 on the boundary defined by figures 2
or 8. Mo reover , the logarithm of this modulus is therefore equal to zero
on this particular boundary . Consequently , we conclude that the quantity
represented by the logarithm of the modulus of equation (20) could represent
the st ream funct ion for  flow around a double—cylinder geometric configurat ion
such as that  being considered here. In fact , upon plotting this logarithm ,
we f ind that it corresponds to a circulation pattern around just such a
doub le cylinder configuration.  This is illustrated in Figure 9.

To summarize , up to this point it has been shown that if we take the
log of both sides of equa tion (20) , the real par t of the righ t hand side ,
i .e . , log A 3(y, z) rep resents the streamline pattern for  f luid circulat ion
around a boundary consisting of two unit cylinders tangent to one another
as shown in Figures 2, 8 and 9. This log funct ion should therefore
correspond to the stream function, ‘F , of the complex velocity potential
suggested by equations (19) and (20). In order to affect this corres-
pondence we must multiply the log of equation (20) by the quantity i, so
that log A

3
(y , z) will now become the imaginary part of the complex potential

w = ~ + i’Y , and thus correctly represent a stream func t ion .  Finally , to
(lesignate some strength to the circulation pat tern , we assign some arbitrary
parameter K to the complex velocity potential giving the result:

w = iK log [coth (.~2L) ] (2l~

The imaginary part of equation (21) now yields a circulat ion streamline S

pattern (Figure 9) around the boundaries defined by the equat ion

r~ = ± 2z. This circulation pattern is a measure of the strength of v or t i ~ es
which are downstream of the boundaries, and , in fact , is directly propor-
tional by a factor of 2,i to the magnitude , K , or vortex strength of the

21
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Figure 9. Circulation Pattern around a Double— Cylinder Conf igura t ion .
The Non—diniensionalized Stream Functions for this Circulation
Pattern are given by the logarithm of Equation (20) defined
in the text .
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vortex pair defined by the complex velocity potential:

x —  x
w iK log 

— 
° ( 2 2)

x

Thus , we conclude that the vortex pai r on the downstream side of the
cy linders illustrated in Figure 6 may be defined by the stream function:

1 ~- x — x
‘I’ = Im (iK log [coth (-~-- ) ] }  In [i log 

~ 
— 

(23)

Note , in equation (23), that K (a real constant) and the location , y ± iz
are still undefined. In any event, we may plot (2T1 ’Y/K) for arbitrary y and

z just to get an idea of what the streamline patterns look like. This is

done in Figure 10 for a vortex pair placed at y = 1.6 and z = ± 1.6.

Determination of Circulation Strength

It was mentioned earlier that the strength , K, of the circulation
pattern could be computed if we say something about how the vortex pair
moves relative to the cylinders. More specifically ,  reasoning has been
presented for assuming that early in the flow—development process the
separated wake stays confined to the immediate region of the cy linders ,
and that the vortex layers therefore remain stationary with respect to
these cylinderical bodies. Stating this fact mathematically allows K to
be determined as follows: suppose the flow we are examining consists of
a cross—flow pattern having streamlines defined by the imaginary part of
equation (1), and vortices defined by the stream functions of equation
(23). Then, the cross—flow would , for K arbitrary , have a tendency to
carry the vor tex pair along with it, so that these would be shed down-
stream as a func tion of time. Moreover , each vortex would , itself , have
a tendency to induce a translational velocity at the center of its
corresponding partner . In fact , for the situa tion shown in Figure 6 ,
note that the velocity field induced by each vortex on the other has a
tendency to cause the vortex pair to drift upstream. Now, if we impose
the stationarity condition as described earlier , then, by requiring the
downstream velocity of the vortex pair to exactly balance the upstream
velocity, we find that K no longer becomes arbitrary but takes on a
value determined uniquely by the condition of s ta t ionar i ty .  The velocity
induced at y + iz by the complex velocity potential given in equation

(1) is (dw/d~) evaluated at y0, a0. Similarly, the velocity induced

at y + iz by the stream function given in equation (23) is

23

_



- 

~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I \ \ \I 1.0+ 1 \ \

~ 0.4

.004 .01 .02 .03 .04

S 

.004 _ _ _

/ / 7~~~~~~~~~~~~~~~~~~o.4

I / / ~~~~~~~~~~~~~~~f -1.0 + / / / /~~~~~~~~~~~~~ .o.6

Figure 10. Non dimensional Streamline Patterns for Vortex
Pair in The Vicinity of Two Tangent Cylinders.
Note: All Stream Functions Below the Axis
z 0 are Negative

24



____________________________________________________ -

(—a ~ /a z) + i(3V/ ~ y) also evaluated at y0 , z0. Adding these two velocities
together and setting their sum equal to zero thus insures stationarity
of the vortex pair and gives a relationship between the circulation
strength, K, the cross—flow velocity, V, and the vortex locations y0 ±
iz0. At this point, however , we cannot pursue the analysis any fur ther
until y and z are somehow quantitatively defined.

Potential flow theory alone can provide no information concerning
the location of vortices in a separated wake . Such information must be
determined either by considering the variation of pressure across the
boundary layer, as described by Sarpkaya (1968) and Bar—Lev and Yang
(1975), or by performing a series of carefully designed experiments. It
is our intent to exploit both of these techniques in future studies.

SECTION IV

CONCLUDING REMARKS

In this repor t, the mathematical model developed in an earlier work
(Schneck, 1976) has been expanded upon in two ways. First, actual
forces which tend to dislodge two limbs from one another, or from a
restraining surface, have been calculated in the absence of flow separation.
Second , the theory has been modified to allow for the inclusJ~on of some
physical effects attributable to separation of flow around the blunt
body segments. It is clear from the results obtained thus far, that
aircraft ejections taking place above Mach 0.8 have associated with them
a very high probability of limb—flail injury. This would appear to be
due to the forc es generated as a consequence of the manner in which the
ejection seat occupant intercepts the air stream . The generation of
stagnation points in the flow leads to limb—dislodging forces which ,
beyond Mach 0.7, exceed the musculo—skeletal ability of the pilot to
“hold on”. This, then, beccmes an important design criterion for
ejection systems, i.e., to minimize stagnation of the flow as the pilot
intercepts the air stream.

It is likely that flow separation also plays an important role in
the generation of limb dislodging forces because this phenomenon is
responsible for the major component of drag when a blunt body is placed
in a high—speed fluid flow. It is thus important to quantify the
effects of flow separation and it is anticipated that this will be done
in future  investigations —— both analytically and experimentally . Also
to be examined in future  studies is the time—course of limb dislodging

S forces. That is , the force distribution shown in Figure 4 exists at the
onset of ej ection and these are peak forces that prevail so long as the
limb is in contact with a restraining surface. Once contact with the
surface is broken , there follows a redist r ibution of fo rces, and this
information is desirable input to the ATS simulation which provides
kinematic data. All of this work is being carried out in an effort to
define specific design criteria for safer ejections.
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LIST OF SYMBOLS

sinh

A (y, z)
1 itzcosh 2 — cos —-~

r r

itz—sin —

rA (y, z)2 71z
cosh 

2
— cos ---1

r r

A3(y,
z) ~~1

2
(y,Z) + A2

2(y,z)

I B 2k I Bernoulli Number of order 2k

p — p
C Surface Pressure Coefficient = 1p 

2~~~O

F The same as

K Circulation Strength around double—circular—cylinder configuration

U
0H Mach Number =
C

+

~l,2 Designates curves in space

U0 
Magnitude of Free—Stream Air Flow Velocity

V Magnitude of the Cross—Flow Velocity
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W Mapping Function

a Radius of circles tangent to y—axis; Average human forearm radius

b Arbitrary Coefficient

c Speed of Sound

d Ordinary Differential Operator

e Base for Natural Logarithms = 2.718281828

f Magnitude of the radial force generated by the fluid pressure, p

Total vertical force tending to dislodge the human forearm from
a surface (or other limb) with which it is in contact.

f The component of radial force in the z—direction , per unit length
pe rpendicular to the y—z plane. S

k arbitrary integer exponent or subscript

arbitrary Integer exponent or subscript, independent of k

n arbitrary integer exponent or subscr ipt , independent of k and in

o used as a subscr ipt to designate free—stream conditions , or to
locate speci f ic points in space , or to specif y reference
quantities.

p Aerodynamic Pressure

p Refe rence Pressu re
0
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1 2 2q — P U sin ~o 2 o

2 2 2r Radial coordina te , r = y + o

r Radial location of the center of a vortex S

0

s Exponential Transformation Coordinate (See x below)

t Time Coordinate

u Bilinear Transf ormation Coordinate (See v below) S

v Bilinear Transformation Coordinate f or the transformation u ÷ iv - 

-

w Complex Velocity Potential, w = ~ + iF

x Exponential Transformation Coordinate for the transformation
x + i s  

S

y Coordinate axis perpendicular to the line along which two limbs
are In tangent contact , or the line along which one limb is in
tangent contact with a restraining surface , and lying within
the restraining surface.

S 

y the y—coordinace locating the center of a vortex.

z Coordinate axis orthogonal to y and the restraining surface,
I.e., normal to the arm rest.

z The s—coordinate locating the center of a vortex

The angle of a t tack of the free stream relative to the center—
line of the limb.

A2(y,z)

~(y,z) Arc Tan A
1

(y , z)
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a — a
Azimuthal Location of Vortex = Arc Tan 0

0

0

Transformation Coordinate (See ~ below)

K Vortex Strength

p Fluid Mass Density

p
0 Reference Density

y Azimuthal Coordinate, Tan y = 
Z ; a 

S

0 Inscribed Angle

z S

0 Vor tex Location = Ar c Tan —
~~o

a z — a

T y + jG = re1~

Inverse Bilinear Transformation Coordinate for the transformation - S

~~+ I r ~.

6 ~- cot 0

iOx y + i z = R e

x y — i z

it 3.141592654

Designates Infinity

Stream Function of the Flow
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Velocity Potential of the Flow

3 Designates Partial Dif fe ren t i at ion  
3
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APPENDIX

COMPUTER PROGRAMS FOR CALCULATING
AND PLOTTING STREAM FUNCTIONS

A. NON-DIMENS1ONALIZED STREAMING FLOW PATTERN

DIMENSION G(4200) ,H(42 00 ) ,LABEL(lO) ,LABLE( lO) ,N2 (4 00)
DATA LAB EL ( l)/ ’  Y ‘I S

DATA L A B L E ( l )/ ’  z ‘I
Y= .5
X=5.
CALL SAXI S(X ,Y,LABLE ,—4,7.O,90.,l.,l.,l . , 1.)
X= 0.
CALL SAXI S(X ,Y ,LABEL ,—4,l0. ,O. ,—5. ,l. ,l. ,O.0)
CALL CIRCLE(5. , l.5,1.)
P1=355. /113.
DO 9 N=l,31,2
PSIB=0. l*N
PSIU=PSIB+. 005
PSIL=PSIB— .005
N 1=0
DO 4 J=l,400
Y= .025*(J_l)~ 5 .O
N2 (J)=O
11=166
IF(Y.GT.—2 .O.AND .Y.LT.2. 0)11=500
DO 5 1=1,11
IF(Y.GT.-2.O.AND.Y.LT.2.O)GO TO 7
Z=.03O*I
GO TO 10

7 Z=.OlO*I
10 IF(((Z_l)*(Z_l)+Y*Y).LT.l)GO TO 5

RSQ=Y*Y+Z*Z
IF(RSQ.EQ.O.O)GO TO 5
Q=RSQ—Z/2
IF(Q.GT.— .Ol.AND.Q.LT. .Ol)GO TO 5
F1Y=PI*Y/RSQ
F1Z=PI*Z/RSQ
IF(ABS(F1Z—l.5708).LT.0.OOl)G0 TO 5
F2=TAN(F1Z)
F3=COSH(F1Y)
F4=TANH (FlY)
PSI=PI *F 2/ ((F3 *F3) * (F4*F4+F2 *F2))
IF(PSI.LE.0.)GO TO 5
IF (PSI.LT.PSIL)CO TO 5
IF (PSI.LT.PSIU.AND.PSI.GT.PSIL)GO TO 45
GO TO 5

45 Nl=N1+l
N 2 ( J ) = N 2 ( J ) + 1

31

~

- - - -

~

- 5
55

~ 
- -

~~~
- - - --

~~~~
- -
~~~~~~~

-
~~~~~~~~



r ’~~~~~ 
~~~~~~~ - S 5 - S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S5-~5-~~• 5-5 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

II

IF(N2 (J) .GE .2) CO TO 92
G(Nl)—Y+5 .
U(Nl) — z÷ .5
GO TO 5

92 N 1=Nl—].
5 CONTINUE
4 CONTINUE

CALL LINE(G,H,N].,+1)
9 CONTINUE

CALL PLOT(O.,O.,—4) .~ 
S

STOP
END
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B. NON-DIMENSIONALIZED VORTEX PATTERN

D IMENSION G( 4200) ,H(4200) ,LABEL (lO) ,LABLE( lO) ,GG(3000) ,Hll(3000)
l,N2(4 00) ,Zl(600) ,W(4 02) ,Z2(l500)
DATA LABEL (1)/ ’  y ‘/
DATA LABLE(l)/’ z ‘I
DATA YO/l.6/,ZO/l.6/
Y— .5
X=5 .
CALL SAXIS(X ,Y,LABLE ,— .4,7.O,90.,l.,l.,l.,l.)
x-O.
CALL SAXIS(X ,Y,LABEL,—4,lO.,O.,—5.,l.,l.,O.O)
CALL CIRCLE(5.,l.5,l.)
P1=355./113.
DO 9 N=l,3l,2
PSIB=O. l*N
PSIU=PSIB+. 005
PSIL=PSIB— .005
KK= 1
N1=0
N3=0
DO 4 J=l ,400
Y=.025*(J_l)_5.0
N2(J)=O
11=166
IF(Y.GT.0.O0.AND.Y.LT. 3.0) 11=500
DO 5 1=1,11 5

IF(Y.GT.0.00.AND.Y.LT.3.0)GO TO 7
Z=.030*I
GO TO 10

7 Z=.0lO~I
10 W(J)=Z

A4A=SQRT ( (Y—Y0) **2+(Z_Z0) **2)
B4=SQRT((Y_YO) **2+(Z+Z0)**2) 

S

IF(A4A. EQ. 0. 0)PSI=l000
IF (A4A.EQ .0.0)G O TO 5
E4=B4 /A4A
IF(E4.EQ.O.O)PSI=l000 4
IF (E4 .EQ .0.O)G0 TO 5
PSI=ALOG(E4)
IF(PSI.LE.0.)GO TO 5
IF (PSI.LT.PSIL)GO TO 5
IF (PSI.LT.PSIU.AND.PSI.GT.PSIL)G0 TO 45
GO TO 5

45 Nl=Nl+l
Zl(l)=W(J)
N2(J)—N2(J)+l
IF(N2(J).GE.2)GO TO 92
IF(N .EQ .1.AND .KK.EQ.2 )G0 TO 12
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IF (A B S (Z l ( K K ) — W ( J ) ) .G T . O . 3 0 ) c o  TO 92
12 KK=KK+1 2

Zl(KK)=W(J)
G(Nl)=Y-f5.
H(Nl)=Z+.5
GO TO 5

92 Nl=N1—l
IF(ABS (Zl(KK)—W(J)).LE.O.05)GO TO 5
N 3=N3+l
Z2(l)=1000 S

IF(ABS(Z2(N3)—W(J)).LE.O.O5)GO TO 8
Z2(N3)=W(J)
GG (N3) =Y+5
HH(N3)=Z+. 5
GO TO 5

8 N3=N3—l
5 CONTINU E
4 CONTINUE

CALL LINE(G ,H,Nl ,+l)
IF(N3.LE.2)GO TO 9
CALL LINE(GG ,HH ,N3 ,+1)
WRITE(6, 5O)Nl ,N3,PsIB

50 FORI4AT(6X,14,2X,14,2X,FlO.3)
9 CONTINUE
CALL PLOT(O.,O.,—4)
STOP
END
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C. NON-DINENSIONALIZED CIRCULATION PATTERN

DIMENSION G(4200),H(42 00) ,LABEL(lO) ,LABLE(lO) ,N2(5 00)
DATA LABLE(l)/’ ‘1
DATA LABEL(l)/’ ‘I —

Y=O.5
x=5. S

CALL SAXIS (X ,Y ,LABLE , —4 , lO., 90., — 5 . , l., l.,O. )
x=l. 0
Y=5.5
CALL SAXIS(X,Y,LABEL,—4,8.O,O.O,—4.,l.,l.,O.)
CALL CIRCLE(5.,4.5,l.)
CALL CIRCLE(5.,6.5,l.)
P1=355. /113.
DO 15 L=l,2

S F=l.O
IF(L.EQ.2)F=—1.O
DO 9 N=7,l52,l5
PSIB=N*.005
PSIL=PSIB— .01
PSIU=PSIB+.Ol
N l 0
DO 4 J=1, 350
Y=O.02*(J_l)_3.5
N2 (J)=O
11=120
IF(Y.GT.—l.2.AND.Y.LT.l. 2)11=300
DO 5 1=1,11
IF(Y.GT .—1.2.AND.Y.LT.1.2)GO TO 7
Z=.025*I_ .025 S

GO TO 10
7 Z= .O 1O*I— . 010
10 Z=F*Z

IF(Y.EQ.O.O.AND.Z.EQ.O.O)GO TO 5
IF(((Y+l)*(Y+l)+Z*Z).LT.l)G0 TO 5
IF(((Y_l)*(Y_1)+Z*Z).LT.l)GO TO 5
R=SQRT(Y*Y+Z*Z)
DP PI*Z/R/R
IF(ABS(DP).GT.l50)GO TO 5
Al=COSH (PI*Z/R/R)_COS(PI*YIR/R)
IF(ABS(Al).LT.O.000l)GO TO 5
A2=SINH(PI*Z/R/R) /A1
IF(ABS(A2).LT.O.OOl)GO TO 5
A3=O. 0—SIN (PI*Y/R/ R) /Al
IF(ABS(A3).LT.0.QOl)GO TO 5
A4=SQRT (A2*A2+A3*A3)
IF(A4.EC.0.O)GO TO 5
PSI=ALOG(A4)
IF(PSI.LE.0.)GO TO 5
IF (PSI.LT.PSIL)GO TO 5
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I
IF (PSr.LT.P5Iu.AND pSI GT PSIL)GO TO 45GO TO 5

45 N1=N1+l
N2 (J) N2 (J) +1
IF(N2(J).GE.2)GO TO 2
G(Nl)=z÷5. 0

GO TO 5
2 Nl=Nj-].
5 CONTINuE
4 CONTINUE

CALL LINE(G,li,N1,+].)
9 CONTINIJ~

15 CONTINUE
CALL PLOT(Q. ,O . , ...4)
STOP
END
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